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ABSTRACT 

 

Silicon carbide (SiC) has been around for more than 100 years as an industrial material 

and has found wide and varied applications because of its unique electrical and thermal 

properties. In recent years there has been increased attention on SiC as a viable material for 

biomedical applications. Among these applications are those where SiC is used as a substrate 

material for biosensors and biotransducers, taking advantage of its surface chemical, 

tribological and electrical properties.  

In this work we have used the proven bio- and hema-compatibility of SiC to develop a 

viable biorecognition interface using SiC as the substrate material for myocardial infarction 

detection. The approach followed included the development of an electrochemical-based sensor 

in which 3C-SiC is used as the active electrode and where flat band potential energy changes 

are monitored after successive modification of the SiC with aminopropyltriethoxysilane, anti-

myoglobin and myoglobin incubation.  

We have studied the quality of self assembled monolayers obtained by surface 

modification of SiC using organosilanes such as aminopropyltriethoxysilane and octadecene, 

which is the starting point for the immobilization of cells or proteins on a substrate. We 

employed this technique on 6H-SiC where we were able to control the proliferation of H4 human 

neuroglioma and PC12 rat pheochromocytoma cells in vitro. Finally, aminopropyltriethoxysilane 

(APTES) was successfully used to immobilize anti-myoglobin on the 3C-SiC electrodes as 

demonstrated by fluorescence microscopy results. The electrical characterization of the 

surfaces was performed via impedance spectroscopy and by measuring changes in flat band 

potential using the Mott-Schottky plot technique.  



x 

Changes in flat band and impedance of the SiC/antibody/protein interface would allow us 

to detect changes in the space charge region of the semiconductor. However, we believe that 

because of the presence of surface states and different crystal defects on the 3C-SiC we did not 

observed repeatable results that allowed us to identify the presence of myoglobin in solution. In 

addition, certain modifications need to be performed to the electrochemical cell in order to 

confirm the presence of the myoglobin immobilized on the functionalized SiC surfaces.  

 

 

 



1 

 
 
 
 
 
 

1 CHAPTER 1: INTRODUCTION TO A MYOCARDIAL INFARCTION SILICON 

CARBIDE IMMUNOSENSOR 

 

1.1 Research Objective and Motivation 

Enabling the continuous monitoring of physiological parameters that provide a physician 

with the knowledge to determine a proper therapy for their patient is becoming a major area of 

interest in the biomedical research [1]. The use of biomarkers, in addition to other techniques, 

can produce more effective and targeted diagnoses provided that they can be implemented in 

real-time [2].  

Individuals with silent cardiac syndrome develop myocardial infarctions (MI) that go 

unnoticed and require periodic examinations [3]. The continual monitoring of Troponin I, 

Creatine kinase (CK1) and Myoglobin can provide highly specific diagnostic data even before 

the clinical manifestations of a MI becomes apparent. Myoglobin concentrations rise quickly 

after a MI event and it is thus considered a biomarker for the early detection of MI [4]. 

Silicon Carbide (SiC), and more specifically 3C-SiC, has been shown to be a bio- and 

hema-compatible semiconductor material [5]. Various forms of SiC have been extensively used 

and studied, such as amorphous SiC, as a heart stent coating [6, 7], and it has been shown to 

be a promising material for long-term biological applications [8]. The fact that 3C-SiC can be 

grown by chemical vapor deposition (CVD) on Si substrates has made it an attractive material 

for BioMEMs applications and field effect devices such as the field effect transistor or FET [9, 

10]. The principle of operation of a FET biosensor is based on the assumption that charged 

molecules in close proximity to the semiconductor induce an electric field that penetrates the 
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near-surface region of the semiconductor and alters the conductivity of the semiconductor, a 

change which can be sensed electronically.  

Proteins such as antibodies and myoglobin have many charges and the use of 

alternating current (AC) and electrochemical impedance spectroscopy (EIS) allow the 

measurement of changes produced by the mentioned molecules once immobilized on a 

semiconductor or a metal surface. The use of EIS allows one to identify physical processes 

related to biological process on the SiC surface that dominate different parts of the impedance 

spectrum [11]. 

 

1.2 Acute and Silent Myocardial Infarction 

Heart attack is the usual name given to acute myocardial infarction (AMI), even though it 

is also used to refer to other diseases. This condition can be the first manifestation of a coronary 

disorder or it can become a major concern for patients with established coronary disease. AMI 

is probably one of the main diseases to cause death, mostly in developed countries. Statistics 

suggest that around 1.5 million heart attacks occur each year, one occurs every twenty seconds 

and a possible death every minute [12]. The intensive care unit (ICU) usually contains a 

significant number of patients having underlying cardiac disease. This includes patients with 

acute myocardial infarction, acute heart failure, among other symptoms [13].  

The two words, myocardial and infarction, imply that cardiac myocytes in the heart tissue 

die, mainly because of a lack of oxygen [14]. Myocardial infarction consists of irreversible 

necrosis in heart muscle after a prolonged ischemia. Oxygen is supplied to the heart through the 

arteries in order to complete metabolic processes.  

Plaque rupture or thrombus formation in a coronary vessel may cause a reduction of 

blood supply to an area of the myocardium along with an imbalance in the oxygen supply [15], 

see Figure 1. If blood flow to the heart is interrupted, the tissue that has suffered necrosis will 

not recover and is usually covered by a collagen scar. The consequence is that the heart action 
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potential will occur at a slower rate, resulting in a low heartbeat rate that will be prolonged so 

that the healthy tissue can contract. Healthy heart muscle does not relax because the electrical 

impulse can reenter and trigger healthy heart muscle to beat again. If the beat rate reaches 200 

beats per minute, heart output and blood flow are reduced to zero and eventually the heart 

stops beating.  

 

 

Figure 1 Possible causes of myocardial infarction illustrated in the heart. 
 

 

In an event where there is of lack of oxygen in the heart, a reduction in the metabolism in 

the organ occurs, which reduces the force of muscular contraction and a decrease of the 

systolic wall motion in the affected region. In addition to the mentioned changes, there is 

diastolic relaxation with abnormal systolic contractile function and a thickening of the heart walls 

which leads to the formation of ischemic tissue. 

 

1.2.1 Silent Myocardial Infarction 

A silent myocardial infarction is defined as heart ischemia with no symptoms related to 

the same, i.e., an absence of chest discomfort [3, 16]. It has been estimated that silent ischemia 

occurs in 2-4% of the adult population [17]. Typically in 20 - 60% of patients that present acute 
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myocardial infarction the classic symptoms are not displayed and are classified as silent 

myocardial infarction [18]. Since no symptoms are noticed at the time of the occurrence of the 

infarction, it is typically detected by a surveillance of ECG, during which some of the patients 

show atypical symptoms [19]. Patients that are predisposed to this condition include individuals 

with renal failure [20], patients with sudden death [21] and those with unstable angina [22].  

 

1.2.2 Diagnosis of Myocardial Infarction 

Diagnosing cardiac infarction is a difficult task, especially in the ICU mainly due to the 

non-specificity of clinical signs and symptoms. Sometimes, the symptoms are non-specific and 

the disease can be misdiagnosed and attributed to gastrointestinal, neurological, pulmonary or 

musculoskeletal disorders, especially in diabetics and the elderly [23]. The criteria for diagnosis 

of AMI includes: Symptoms of ischemia, chest pain (when the infarction lasts for more than 20 

min) or coronary occlusion, electrocardiogram (ECG) changes of new ischemia such as ST 

segment elevation or depression and development of pathological Q waves (see Figure 2), 

evidence of loss of myocardium (using imaging methods) or regional wall motion abnormality 

[24]. Moreover, changes in ECG present low sensitivity and sometimes the AMI could be silent 

with no chest pain or other symptoms. The methods to detect silent ischemia include the use of 

a treadmill or echocardiography. However, they tend not to be precise because the silent 

infarction usually occurs during periods of low activity including rest or sleep. A Holster monitor 

is also used because it provides the advantage of monitoring the patient during their daily 

routines; however the ST segments of the ECG recorded tend to be non-specific and there is 

high variability in the data recorded from day to day. In addition a Holster monitoring can only be 

used for 72 hrs. [25]. 

Continuous monitoring of the physiologic conditions and prompt treatment can reduce 

mortality and improve patient outcome.  
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a) b) c) 

Figure 2 ECG representations a) P,Q,R,S & T Waves b) normal sinus rhythm [26] and c) myocardial 
infarction rhythm. Note the elevation of the ST segment in yellow. 
 

1.2.3 Biochemical Markers for Diagnosis of AMI 

Biochemical markers are macromolecules present in the sarcolemmal membrane of 

myocytes. Typically, they are not present in blood, but they begin to diffuse into the cardiac 

interstitial tissue and into the micro-vascular and lymphatic tissue after an injury. When these 

molecules are present in the blood circulation this can be taken as an indication of myocardial 

necrosis and most of the time it is confirmed using ECG and/or imaging techniques. The main 

proteins that appear in the circulation after heart tissue damage include: Myoglobin, cardiac 

troponin (cTn) T and I, creatine kinase (CK) and lactate dehydrogenase (LDH) [27]. Levels of 

myoglobin rise and fall rapidly after 24 hrs., whereas levels of cTn and CK can remain elevated 

for up to one week [28].  

In patients with diagnostic ECG changes cardiac markers are only useful to confirm the 

diagnosis, but they become essential for patients with non-specific symptoms since the use of 

biochemical markers enhance previous clinical ECG information [23]. The advantage of 

combining cardiac markers with other methods resides in the possibility of determining the 

severity of the disease in addition to prognosis values that can be used to formulate the 

appropriate therapy.  

ST segment

QT interval

PR interval

PR segment

QRS complex



6 

1.2.3.1 Myoglobin 

Myoglobin is a compact heme protein with a low molecular weight of around 17.8KD (kilo 

Dalton). It is mainly found in cardiac and skeletal muscle, and facilitates the transport of oxygen 

to the cell mitochondria [29]. Myoglobin is one of the earliest known and commercially available 

biochemical markers used for the detection of AMI. After the first symptoms of AMI are detected 

it is rapidly released from the site of injury and its sensitivity is greater than CK-MB and cTn.  

The concentration of Myoglobin in serum levels increases within 2 hrs. after myocardial 

infarction and reaches a peak concentration after 6 - 9 hrs. [30]. A serum concentration of 

myoglobin greater than 110 μg/L is considered abnormal and indicative of AMI [14]. 

Nevertheless, when using this biomarker one has to consider that since it is present in both 

skeletal and cardiac muscle, it would be released into the bloodstream after damage to any of 

these. It is recommended that a combination of two biomarkers, such as cTn or CK-MB, be 

used to diagnose AMI as it serum levels of myoglobin are also elevated due to neuromuscular 

disorders, renal failure, exercise or drug intake [31]. 

 

1.2.3.2 Cardiac Troponin (cTn)  

Troponin is a molecular complex with a relative mass of 80 KD and is formed by three 

subunits: TnC the Ca binding subunit, TnT the tropomyosin binding subunit and TnI the 

inhibitory subunit. The cTnI is expressed only in the myocardium. This protein plays a significant 

role in muscle contraction coupled with ATPase. In cardiac muscle, this protein regulates 

muscle contraction in response to intracellular Ca concentration [32].  

The cTn biomarker has demonstrated high specificity and is sensitive to detect cardiac 

injury [33]. Elevations in this biomarker's levels are registered after 6 - 9 hrs. after onset of the 

infarction symptoms. It has excellent myocardial tissue specificity as well as high clinical 

sensitivity and reflects even microscopic zones of myocardial necrosis [27]. 
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Blood samples are typically drawn from the patient within 6- 9 hrs. after the onset of 

symptoms, and additional samples are taken 12 - 24 hrs. if the initial measurements do not 

present high enough levels. cTnI is also useful for late or continuous monitoring of AMI because 

elevated concentrations in the blood can be detected after 5 - 8 days of AMI onset. In addition, a 

rising or falling pattern is needed to distinguish background levels of cTn, for example, patients 

with chronic renal failure from patients with AMI. The disadvantage of the current methods used 

is that when this type of analysis is performed the results are needed in 30 min, but the reality is 

that results are usually available after 2 hrs. [34]. 

 

1.2.3.3 Creatine Kinase (CK)  

Creatine kinase is a dimeric enzyme with a molecular weight ~80 KD that exists as three 

different isozymes: MM (muscle), MB (hybrid), and BB (brain). The isozymes names indicate the 

tissue of origin. For instance, the CK-MB has its highest concentration in heart muscle, and that 

is the main reason to use it as a diagnostic of myocardial infarction [35]. As with cTn, an 

increase in CK-MB level can be used as a measurement for the diagnosis of myocardial 

infarction. For this particular enzyme, gender specific values should be taken into consideration. 

Similarly to the evaluation of cnT, the CK-MB measurement should be done at the time of the 

first evaluation of the patient and within 6–9 h later in order to demonstrate the rise or fall of CK-

MB levels for the diagnosis of AMI. In addition, in a few cases patients may require an additional 

sample to be drawn between 12 and 24 h if the earlier CK-MB measurements were not high 

enough to account for AMI diagnosis. Nonetheless, measurements of CK-MB alone are not 

recommended for diagnosis of AMI because of the large skeletal muscle distribution and the 

lack of specificity of this enzyme [27]. 
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1.3 Immunosensors 

Immunosensors can play an important role in the improvement of public health by 

providing for rapid detection, high sensitivity, and specificity in areas such as clinical chemistry, 

food quality, and environmental monitoring [36]. In contrast to immunoassays, like ELISA 

(enzyme immunosorbent linked assay) the development of transducer technology allows for the 

detection of trace substances in the environment of interest using label-free detection methods. 

This allows one to analyze the target substance more quickly than with conventional methods 

such as ELISA.  

The design of a biosensor involves the inclusion of a biological receptor, used for the 

detection of a target analyte. Typically the receptor is immobilized onto a physical or 

physicochemical transducer, which translates the biological interaction between the receptor 

and the target analyte into an electrical signal. Examples of biological receptors include: 

enzymes, antibodies or antibody fragments, membrane receptors, whole cells, and DNA 

fragments. In particular, the term immunosensor is specifically employed to describe devices 

that take advantage of the affinity and the specificity between an antibody and the 

corresponding antigen to detect and quantify the presence of substances such as viruses, 

microorganisms, and toxins in a mixture to be analyzed [36, 37].  

In order to build an efficient immunosensor/biosensor, the immobilized molecule should 

possess a low degree of nonspecific binding (NSB). Although antibodies are highly specific to a 

particular antigen, NSB could occur due to the matrix or surface where the antibody is to be 

immobilized or different components in the sample serum that may interact with the sensor 

substrate [37]. 

Some of the most frequent transducer methods are based on electrochemistry, 

fluorescence, interferometry, resonance, and reflectometry. Figure 3 shows an illustration of 

several detection methods used to detect immunoreactions.  
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Figure 3 Detection methods for diagnostic applications using immunoreactions. Based on [36]. 
 

1.3.1 Immunoreaction/Biomolecular Recognition Element.  

The use of an antibody as the recognition element in biological devices, has received 

increased attention because they can be obtained from natural sources and present a high 

degree of specificity to the molecule of interest.  

 

1.3.1.1 Antibody Structure 

An antibody is a globular protein with approximately 150 kD molecular weight and can 

have different amino acid sequences which makes them a diverse protein [38]. Since the 

function of an antibody is to bind to foreign molecules, the typical method used to synthesize 

them includes the use of B-lymphocytes in the presence of an antigen, i.e. a molecule that does 

not belong to the animal. Different classes of antibodies have a unique amino acid sequence 

that can bind to a specific epitope, located on the so called "arms" of the antibody; whereas the 

"stem" defines the biological activity that defines the response to an antigen including allergy, 

lysis or phagocytosis [36, 38].  

The principal antibody found in serum is immunoglobulin or IgG. The simplified structure 

of an antibody is illustrated in Figure 4 using IgG as a typical example. It consists of two heavy 
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chains (VH and CH1) and two light chains (VL and CL) that contain functional domains. The Fab 

portion contains the structural recognition domain while the Fc region does not bind to an 

antigen and is known as the effector domain. The Fab fragments can be obtained by using 

reducing agents, which could produce an improved immobilization and exposure of the binding 

sites for immunosensor device construction [38, 39].  

 

 

Figure 4 Immunoglobulin (IgG) simplified structure. 
 

1.3.1.2 Antibody Immobilization 

An effective immobilization of the biorecognition element, i.e. antibody, on the device 

surface is important. Complete loss of protein activity could happen due to random orientation 

and structural deformation of the antibody molecule once immobilized on the surface [40]. For 

this reason, the orientation, distribution and density of the antibodies on the surface should be 

controlled if possible. The use of self-assembled monolayers and Langmuir-Blodgett films [41, 

42] are widely used for the mentioned purpose in addition to the use of a crosslinking agent [8, 

43] or through entrapment in a gel matrix or polymer [44].  
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Immobilization techniques are mainly based on three mechanisms that include: physical, 

covalent or bioaffinity. There is no unique strategy that works for immobilizing all types of 

proteins and some work better compared to others when implemented in immunosensors.  

 

1.3.1.2.1 Physical Immobilization 

This method is based on the adsorption of proteins to flat surfaces via intermolecular 

forces, such as ionic bonds and polar interactions [40]. This is a fast and simple method but 

useful only in single-use assays because the proteins may be removed by buffers or detergents 

when performing and experiment [37, 40].  

If this method is used for protein immobilization, the resulting layer may tend to be 

randomly oriented. Likewise, a high density packed layer may block the protein active site which 

interferes with their functional properties (e.g. it may prevent antigen-antibody binding) [40]. This 

method of protein immobilization is typically used in enzyme-linked immunosorbent assay 

(ELISA) preparation, for which polystyrene plates have been optimized to increase antibody 

adsorption [37] 

 

1.3.1.2.2 Covalent Immobilization 

The advantage of using a covalent binding method for protein (or antibody) 

immobilization is that the attachment of the molecule is more stable with long-term preservation 

of its activity, thus making it possible to regenerate the surface after performing the assay.  

The covalent bond obtained after applying this method is formed between side chains 

exposed functional groups of the protein with the ones on the modified substrate. The latter 

ones are obtained by chemical modification of the surface using the techniques mentioned in 

section 1.4. The resulting bond is almost irreversible with high surface coverage [40].  
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Covalent binding is achieved with heterobifunctional and homobifunctional crosslinking 

reagents. One of the disadvantages of using covalent binding is that linking chemistries are not 

always selective. For instance, if coupling is done between a surface and an antibody and the 

lysine group is targeted, random orientation of the protein could be the product because this 

amino acid is found throughout the antibody structure.  

 

1.3.1.2.3 Bioaffinity Immobilization 

The immobilization of proteins through biochemical affinity reactions presents an 

advantage over the other immobilization techniques presented because this method provides 

oriented immobilization of the protein of interest. The idea being that not only the immobilization 

of the protein is achieved but also it allows the researcher to detach proteins and use the 

surface more than one time for different assays [40]. The most common system used for this 

purpose is the biotin-avidin/streptavidin system, which is a very strong non-covalent bond with 

an affinity ~ 1015. Such a strong bond allows the use of harsh biochemical assays [37].  

Avidin can bind with up to four molecules of biotin and this glycoprotein is soluble in 

aqueous solution. The bond between avidin and biotin is not affected by pH, temperature or 

organic solvents [45]. On the other hand, biotin is a small molecule and its conjugation to 

macromolecules does not affect its functionality. The use of sulfo-NHS of biotin is employed to 

target amine groups on surfaces (e.g. aminopropyltriethoxysilane) [46, 47].  

 

1.4 Electrical and Electrochemical Impedance Sensors 

 

1.4.1 Impedance Spectroscopy 

The characterization of the electrical properties of materials, conducting or 

semiconducting electrodes, and their interfaces can be done using a very sensitive technique 
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known as impedance spectroscopy. The use of impedance spectroscopy allows the 

investigation of the dynamics of bound or mobile charges in the bulk or interfacial regions of 

conductors, semiconductors and even insulators [48].  

The general approach is to apply an electrical stimulus (i.e. AC voltage or current) to the 

electrodes and measure the response (resulting AC current or voltage) [48]. The applied AC 

voltage is sinusoidal given by (1), where ω is the radial frequency and Vm is the peak voltage. 

The current (e.g. response to the voltage stimulus) is characterized by the amplitude, Im and the 

phase shift, φ as seen in (2).. In impedance based biosensors the applied AC voltage is small ( 

c.a. 10 – 25 mV) because the I-V relationship is linear only for small perturbations [49]. 

Likewise, the probe molecules should not be disturbed (covalent bond energies are ~ 1-3 eV), 

which can be easily achieved with impedance spectroscopy.  

 𝑉 = 𝑉𝑚 sin𝜔𝑡  (1) 

 𝐼 = 𝐼𝑚 sin(𝜔𝑡 + φ)  (2) 

The ratio of Vm/ Im and the phase φ are used to determine the impedance of the device 

under test, represented as a complex number, as in (3), with magnitude and phase: 

 𝑍 =  𝑅 +  𝑗𝑋 (3) 

 |𝑍|  =  √𝑅2  + 𝑋2  and φ =  arctan 𝑋/𝑅  (4) 

If the voltage is applied at different frequencies an impedance spectrum is obtained. This 

is displayed in a Nyquist plot, that shows the imaginary component of the impedance on the y 

axis and the real component on the x axis and in a Bode plot.  

Specific regions of the spectrum can be linked to characteristic frequency ranges linked 

to different phenomena that occur at the electrode interface [50]. The impedance spectrum is 

interpreted based on an equivalent circuit that best fits the data. The equivalent circuit usually 

consists of configurations of resistors and capacitors in series, parallel, or both. In Figure 5 we 

present the two main equivalent circuits used. The differences between the circuit in Figure 5a 
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and Figure 5b is the inclusion of the Warburg impedance Zw. This impedance is considered 

when a faradaic sensor is built due to the diffusion of charge that is transferred across the 

electrolyte/metal interface. For this reason, they require the addition of a redox species that will 

oxidize and reduce by the transfer of an electron to and from the metal electrode. On the 

contrary, non-faradaic sensors require no additional reagent and the value of R is ideally infinite 

but, in reality, that is not the case [51]. 

 

 
a)  

b) 
Figure 5 Common equivalent circuits used in impedance spectroscopy. a) Non-faradaic sensor b) 
Faradaic sensor. Adapted from [51]. 
 

The resistances in the circuit usually represent the solution resistance (Rs), which 

depends on the ionic concentration of the solution and the distance between the working and 

reference electrode. The charge-transfer resistance (Rct) is due to electron transfer because of 

oxidation or reduction reactions at the electrode [51, 52]. 

The capacitance, C, can be modeled as the series combination of the electrode 

capacitance, Celec, the modified surface of the electrode, Cs, and the double layer capacitance 

Cdl, as in (5). Because the double layer capacitance has a large value, its contribution is 

negligible. The value of Cs depends of the thickness of the modified layer and its dielectric 

constant given in (6), where ε is the relative dielectric constant, A is the electrode area and d is 

the layer thickness [53]. Because of the roughness of the electrode and other non-idealities of 

the surface, the system is modeled instead as a constant phase element with impedance Yo (j 

ω)-n. Yo is a proportionality constant, j=√−1 and n is -1<n<1, but it is typically between 0.7 and 

0.9 [54]. 
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The values of C, Rs and Rct can be estimated using the Nyquist plot as seen in Figure 6. 

Rs and Rct are obtained from the intercept with the Z' axis and C from the value of ω (2πf) at the 

value of Z" max. At low frequencies diffusion affects the mass-transfer control process, this is 

the Warburg impedance, Zw with a phase of 45°. 

 

 

Figure 6 Nyquist plot for the equivalent circuit in Figure 5a. 
 

1.4.2 The Double Layer Capacitance  

When a metal electrode is polarized and is in contact with an ionic solution it attracts 

ions of opposite charge. Hence, an excess of ions buildup at the interface. Because of the 

accumulation of these ions at the interface, their concentration in the electrolyte decays 

exponentially and also the electric field produced in the vicinity of the metal/electrolyte interface 

[51]. This interface can be described as a capacitor whose plates are the metal surface and the 

ions adsorbed at the surface, which is commonly known as the Helmholtz layer. An adsorbed 

layer of water molecules at the interface separates the ions from the solid surface. The 

Helmholtz layer is formed by two planes: the inner Helmholtz plane formed by solvent molecules 

or ions in direct contact with the metal (i.e. specifically adsorbed), and the outer Helmholtz plane 
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that is the region that is close to the solvated ions. There is also a diffusion layer in which ions in 

thermal motion counterbalance the charges in the Helmholtz layer, as illustrated in Figure 7. 

Outside the Helmholtz layer a region with excess ions of similar sign to the one in the outer 

Helmholtz layer exists. This region is known as the Gouy layer.  

Because the distance between the metal surface and the adsorbed ions is so small (less 

than 1 nm), considering such a small distance in (6) the value of the capacitance is very high 

c.a. 50- 70 μF/cm2 [52, 55]. If any coating covers the electrode, the double layer capacitance 

appears in series with it as was mentioned in section 1.4.1 

 

 

Figure 7 Simplified scheme of the Helmholtz layer that exists between an electrode and electrolyte 
solution. Based in [56]. 
 

1.4.3 Electrode Configuration 

In impedance measurements there are two types of measurements that can be 

performed: One of them is electrical impedance, which is a two-electrode measurement 

performed with a working and a counter electrode, using a lock-in amplifier and frequency 

response analyzer (FRA). The counter electrode provides current to the cell and the working 

electrode provides measurements of the current through the cell. The  electrodes may be of 
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equal or different area [48, 57]. A two-electrode measurement is used to measure high 

impedance materials where the impedance of the cables is not significant [48]. 

The other type of impedance measurement is electrochemical impedance, which is a 

three or four electrode measurement, with a working, counter and reference electrode. The 

three-electrode measurement set-up is typically used in corrosion experiments while the four-

electrode measurement technique is used with low impedance materials and to compensate for 

any voltage drop due to connections to the working electrode. Since the measurement is 

performed using a potentiostat, the reference electrode is used to reference the interrogating 

voltage that is applied to the cell [57]. In Figure 8, we present the basic instrumentation and set-

up for an electrical/electrochemical measurements. 

 

 
Figure 8 Illustration of the basic setup for the measurement of electrical or electrochemical impedance 
spectroscopy. A two-electrode impedance biosensor is shown connected to the FRA.  

 

In an electrochemical cell the reference electrode maintains a fixed electrical potential 

between the working electrode and the solution. This allows a known voltage to be applied. A 

standard hydrogen electrode is the preferred option but a piece of wire can be used as a 

pseudoreference electrode and provides for a reproducible and stable potential in the cell [58].  
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1.4.4 Electrochemical Immunosensor 

Electrochemical immunosensors are based on the detection of an immunoreaction using 

as a transduction method such as amperometry, potentiometry or conductometry which 

measures current, electrical potential or conductivity, respectively.  

 

1.4.4.1 Amperometry Based Immunosensors 

The principle of amperometric sensors is based on the measurement of a current flow 

generated by an oxidation-reduction reaction (redox) at a constant applied voltage. Since many 

proteins are not able to act as redox partners in electrochemical reactions, a catalyzing label of 

a redox chemical reaction is the target analyte at the sensing electrode [36, 59]. Enzymes such 

as horseradish peroxidase and glucose oxidase have been used as labels [60]. Some of the 

most popular amperometric sensors includes glucose electrodes and the detection of 

Escherichia coli in bacterial contamination of food [61, 62]  

 

1.4.4.2 Potentiometry Based Immunosensors 

Potentiometric biosensors measure the variation in charge-density on the surface of the 

electrode after a molecule has been bound to a surface or a catalytic process has taken place 

on it. This type of sensor operates at constant (almost zero) current [63]. Ion-selective field 

effect transistors (ISFET, a modified MOSFET) are based on the interaction of H ions from the 

solution and the surface of an insulating layer that induces an electric field in the transistor 

substrate between the source and drain. The substrate potential also changes with different 

analyte concentrations [59, 63]. An illustration of the basic structure of an ISFET device is 

presented in Figure 9. 

Some of the applications include enzymatic-based reactions to detect urea, glucose 

oxidase, urease and pathogen detection [62, 64]. 
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Figure 9 Schematic of a typical Ion-selective field effect transistor (ISFET) structure. 
 

1.4.4.3 Conductometry Based Immunosensors 

This type of sensor is based on the measurement of the electrical conductivity of a 

solution after the application of an electric field between two electrodes. The change in electrical 

conductivity is generated by biochemical enzymatic reactions that consume or generate ions. 

The mentioned enzymes are typically immobilized directly on two metal electrodes, usually Au 

or Pt [59, 63]. Conductometric devices are characterized by short response times, stability and 

ease of handling [36]. Few applications are available, including measurement of urea [65] and 

interdigitated microelectrodes (IDEs) that use conductive polymers to detect capacitance 

changes after enzyme modification [66].  

Even though conductometric sensors are very precise for the detection of some 

molecules (e.g. urea detection) there are still issues to solve including reproducibility in complex 

biological solutions due to variations of pH and ionic composition [36].  

 

1.5 Summary 

The diagnosis and treatment of acute and silent myocardial infarction have concerned 

physicians for a long time. The development of strategies that could alert the patient and the 

medical specialist previous to a myocardial infarction event should greatly reduce the mortality 

risk. Materials that allow for the integration of sensing and drug delivery have a lot of potential to 
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replace current diagnostic techniques. Semiconductor materials are ideal candidates as the 

substrate of such devices since they allow for the integration of ‘system on a chip’ platforms. In 

this work we present a study of the use of the electrical, chemical and polytypic properties of 

silicon carbide to build a sensor to diagnose acute myocardial infarction. Because this material 

has also shown biocompatibility and hema-compatibility properties, which will described in 

Chapter 2, there is a possibility that with the appropriate configuration it can be used in 

implantable applications to accurately detect silent myocardial infarction in real-time.  

In this chapter we described the basic principles involved in building an immunosensor 

device for the mentioned purpose. Since this technique is based in cardiac biomarker 

recognition by an antibody, we explained the process to bind antibodies to a substrate and the 

basics of impedance spectroscopy as the technique to detect protein binding on the sensor 

structure.  

This dissertation has been organized by chapters. In Chapter 2 we provide a short 

literature review regarding the versatility of SiC as a biosensor and biocompatible material. In 

addition, the physics principles behind building a potentiometric biosensor for detection of 

myocardial infarction are described. We explain the dynamics at the electrolyte/semiconductor 

interface and how the energy levels in the material are affected by it.  

Chapter 3 covers the application of self-assembled monolayers (SAMs) on SiC, as the 

first layer in the immunosensor construction. We explore the use of SAMs, both to increase cell 

proliferation on 6H-SiC and to immobilize anti-myoglobin on 3C-SiC for the detection of 

myoglobin, one of the biomarkers related to myocardial infarction. We employed surface 

characterization techniques such as: XPS, AFM and surface water contact angle to characterize 

the functionalized surfaces and the quality of the anti-myoglobin immobilization process on 3C-

SiC and the cell morphology on modified 6H-SiC. 

Chapter 4 presents an overview of the development of a potentiometric sensor using 3C-

SiC as the platform. We investigate the changes in the flat band potential of 3C-SiC after the 
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surface modification with aminopropyltriethoxysilane (APTES) and the immobilization of different 

concentrations of myoglobin. We use Mott-Schottky plots and impedance spectroscopy to study 

the changes in the space charge region of the semiconductor that are affected by the charges of 

the antibodies and proteins immobilized on its surface. Finally, Chapter 5 covers the 

conclusions and future work that will lead into the construction of long-term cardiovascular SiC 

sensors.   
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2 CHAPTER 2: FUNDAMENTALS OF SILICON CARBIDE BASED IMMUNOSENSOR 

 

2.1 Note to Reader 

Parts of this chapter have been previously published [67] and are utilized with 

permission of the publisher. 

 

2.2 SiC as a Biomaterial for Biosensors 

The realization of bioelectronic devices based on wide bandgap (WBG) compound 

semiconductors has shown increased interest in recent years. The application of such materials 

for the realization of field effect transistors (FETs) [68, 69] are just one example of the 

multifunctional properties that make them promising materials in the fabrication of high 

performance microelectronic devices to interface with biological systems. One of the main 

concerns in materials research for biomedical applications is the search for materials that 

produce low or no adverse reaction when implanted in the body and that can therefore be 

implanted long-term. In the field of semiconductors, silicon (Si) has always been the preferred 

substrate material for micro-devices due to its low-cost and high-quality. However, it presents 

several drawbacks that limit its use in biomedical applications. Si has been used in Ion Sensitive 

Field Effect Transistors (ISFETs) for interfacing with neuronal networks or living tissue [70, 71].  

Nevertheless, the implantation of a Si Utah probe in a cat's brain has resulted in a 

chronic astroglial response that limits the time of functionality of the device [72]. The fact that Si 

is also opaque to visible wavelengths limits its applicability in certain fields (e.g. retinal implants) 

and may be undesired in others, where optical inspection/sensing might be required (e.g. 
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labeled biomarker detection). In general, the properties of WBG materials are superior to those 

of Si for biological applications, and can yield long-term stability under chemically harsh 

environments and physiological conditions [69]. A few examples of the extensive use of some 

WBG materials in the biomedical field include: GaN and AlGaN which have proven to be 

chemically stable and naturally biocompatible [73]. AlGaN, AlN and ZnO present piezoelectric 

properties ideal to build resonator devices for high mass sensitive sensor devices and for 

biosensor applications [74, 75]. 

AlN-based light emitter devices (LEDs) are expected to emit in the deep UV (wavelength 

~ 210 nm) which makes it appealing for the detection of small toxic and cancer causing particles 

[76]. Silicon carbide (SiC) possesses good biocompatibility [5, 77-79] in addition to high 

chemical inertness and can be used to make different types of electronic devices with similar 

processes used in Si processing. For example, gas sensors [68, 80] have been built, strong 

needles for organ transplantation monitoring [10] and Schottky devices for high power 

applications, which are commercially available [81], among others. 

In this chapter we present a survey of the progress in SiC biosensor related research 

and the basics of semiconductor/electrolyte physics involved in semiconductor immunosensor 

construction.  

 

2.2.1 SiC Polytypes, Synthesis and Preparation 

SiC is a material that consists of the covalent bonding of Si and C atoms, in a 

tetrahedron form in which Si (or C) is the central atom. The high mechanical and chemical 

stability of the material are determined by the very short bond length, shown in Figure 10 and, 

hence, a very high bond strength is present in the SiC structure [82, 83]. It belongs to the class 

of wide band gap (WBG) semiconductors with band gap energy from 2.4 to 3.2eV depending on 

the polytype.  
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Figure 10 All SiC crystals are formed via bi-layers of C and Si, covalently bonded to form a tetrahedron 
that forms the basic building block of SiC, adapted from [84]. 

 

SiC can be formed in amorphous, polycrystalline and monocrystalline solid forms. It has 

more than 200 polymorphic forms, called polytypes, but 3C-SiC, 4H-SiC and 6H-SiC are the 

most readily grown and can be purchased on the market. The stacking order of the double 

layers of Si and C atoms defines the different polytypes of SiC. In Figure 11, the three different 

positions that the stacking sequence assumes in the lattice are reported as A, B and C, where k 

and h denote crystal symmetry points that are cubic and hexagonal, respectively. For example, 

3C-SiC (or β-SiC), is the cubic form where the 3 delineates that 3 bi-layers of Si-C are needed 

to form the basic structure and C indicates that the crystal form is cubic. This polytype presents 

an ABC… sequence (Figure 11far right). 4H-SiC and 6H-SiC (α-SiC) are the hexagonal forms, 

where the 4 and 6 delineate that 4 and 6 bi-layers are needed while the H indicates that the 

crystal form is hexagonal. They have stacking sequences that are ABCB (Figure 11far left) and 

ABCACB (Figure 11 middle) for 4H-SiC and 6H-SiC, respectively. 

 

 

Figure 11 Atomic stacking sequence of the relevant SiC polytypes viewed in the 11-20 plane. From left to 
right, 4H-SiC, 6H-SiC, and 3C-SiC, adapted from [84]. 
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Amorphous silicon carbide, denoted typically as a-SiC, is inherently insulating, it has 

high-K dielectric properties, high wear resistance, and works well as a durable coating, which is 

the product of the amorphous microstructure and low deposition temperatures used. The lower 

deposition temperature prevents any dopants that may be present during the deposition process 

from being electrically activated [85]. a-SiC is now being used as an inert encapsulating coating 

for in vivo prosthetics and it has been approved for commercial use as a coating for heart stents 

[86]. The deposition of a-SiC can be performed in a number of ways. including sputtering, 

chemical vapor deposition (CVD or PECVD) , and pulsed laser deposition (PLD) [85].  

Polycrystalline materials consist of several small crystalline regions, called grains or 

crystallites, bonded together by crystallographically defective regions called grain boundaries. 

Grain formation in polycrystalline films grown using CVD processes is sensitive to several 

parameters such as temperature, deposition rate, dopant concentration, pressure, and impurity 

concentration. Unlike single-crystal SiC, poly-silicon carbide, or poly-SiC, can be grown on a 

wide variety of substrates, at lower temperatures (500–1,200 °C), and a wider set of processes 

exist compared to monocrystalline epitaxial film growth. Poly-SiC growth has been 

demonstrated on widely used surface micromachining substrates such as Si, Si3N4, and SiO2 

[87]. Likewise, the deposition of a poly-Si seed-layer on oxide to realize MEMS structures such 

as cantilevers and membranes can be easily released leaving behind high-quality 3C-SiC 

structures [88]. For the crystalline form of SiC the dominant application is power electronic 

devices, where the crystal of choice is 4H-SiC due to it having the highest band gap (3.2 eV) 

while 6H-SiC is ideally suited for solid-state lighting (LEDs) as its lattice constant is close to that 

of the GaN family of alloys used in advanced LEDs [84]. 

 

2.2.2 SiC a Unique Material for Biosensing 

SiC’s electrical, mechanical and thermal properties determine its suitability as a 

biomaterial and biosensing substrate. It possesses high thermal conductivity, on par with copper 
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at room temperature [89], its Young's modulus is higher than that of Si, and its high breakdown 

field ~ 2 MVcm-1 [90], is double than that of Si. SiC has been recognized as a viable material for 

applications involving high temperatures or hostile environments [89]. The chemical inertness of 

SiC suggests a high resistance to corrosion in harsh environments such as body fluids. In 

addition, its high elastic modulus, and low friction coefficient [91], make SiC an ideal material for 

smart-implants and in-vivo biosensors [92].  

Compared to other semiconductors, SiC's wide band-gap increases its sensing 

capabilities. For instance, 4H-SiC presents a bandgap of 3.23 eV thus greatly reducing the 

number of electron-hole pairs formed from thermal activation across the band-gap, which allows 

high temperature operation of SiC sensors (indeed the intrinsic carrier concentration of SiC is 

~10-6-10-8 cm-3 while for Si is ~1010 cm-3, more than 16 orders of magnitude lower than Si [91, 

93, 94]). In addition to the fact that its refractive index is greater than that of other materials, 

such as diamond, its transparency to visible light and UV wavelength absorption, make it an 

ideal material for optical-based biosensing devices [95]. 

One of the main biomedical applications of SiC has been as a hard coating for non-

fouling coronary heart stents [6, 7, 96, 97]. In-vitro and in-vivo tests done by Amon et al. showed 

that a-SiC on stainless steel stents had no cytotoxic reaction to L929 mice fibroblasts, and that 

there was no thrombus formation on stented vessels after blood perfusion for three days [98]. 

Moreover, they found that fibrin formation was significantly reduced at the a-SiC surface as 

compared with 316L stainless steel heart stents. Rzany et al., exposed both 316L stainless steel 

uncoated and coated with a-SiC to circulating human blood for 15 min, and observed a dense 

fibrin network with incorporated blood cells on the metallic surface whereas only single thrombi 

and erythrocytes were observed on the a-SiC-coated surface [6]. In a two-year clinical study 

that was conducted on 300 patients using the BIOTRONIK (Germany) Tenax stent covered with 

a-SiC, the authors concluded that a-SiC stents significantly reduced early and late coronary 

events, possibly due to the attenuation of progressive endothelial cell growth at the site of 
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intervention [97]. Several studies found similar results when implanting a-SiC stents with low 

rates of death, emergency revascularization, stent-related myocardial infarction and stent 

thrombosis [99-101]. For a complete review in the topic see [7]. 

SiC is also considered a popular material to be used as a passivation layer for prosthetic 

bone and hip implants. Biomorphic SiC ceramics are very promising as load bearing and base 

materials for dental and orthopedic implants, mainly due to its excellent mechanical properties. 

Will et al. [102] used biomorphous SiC that was processed from sipo wood by heating in an inert 

atmosphere and infiltrating the resulting carbon replica with a liquid silicon melt at 1450°C. After 

performing in-vitro experiments using simulated body fluid, the authors observed the formation 

of a bone-like apatite reaction layer on the biomorphic SiC surface [7]. On the other hand, 

Santavirta et al. [103] investigated the cytotoxicity of Ti based pins for hip replacement implants 

compared to coated SiC-Ti pins. By using a colony outgrowth inhibition test of JCRB0603 cells, 

they found that SiC-Ti particles did not inhibit colony outgrowth [103]. In their work, Saki et al. 

[104] investigated the viability and cell attachment of osteoblast like cell (Saos-2) on a ceramic 

bio-scaffold of hydroxyapatite-alumina and SiC (HA-Al2 SiC). Cell growth and viability studies 

using trypan blue showed that the scaffold is able to support osteoblast attachment and growth, 

with 89% of the cells harvested alive on the scaffolds compared to 97.5% of the cells harvested 

from tissue culture polystyrene after one week. [104].  

It has been reported in the literature that some SiC-based whiskers and powders show a 

certain degree of toxicity [105]. For this reason, it is necessary to understand what form of SiC is 

needed for a particular application because SiC shows different biocompatibility trends 

according to the SiC type and the organism that it is brought in contact with [5]. Svensson et al. 

have studied the toxicity of asbestos and compared the hazardous crocidolite to SiC whiskers 

by studying the cloning efficiency of V79 cells [105]. These authors concluded that if the 

materials are not handled or processed properly they can exhibit high cytotoxiciy levels, 

dependent also on the concentration of the material. Nevertheless, Rödelsperger and Brückel 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22R%C3%B6delsperger%20K%22%5BAuthor%5D
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demonstrated that carcinogenicity of SiC based particles is related to the shape and size of the 

fragments; whiskers being carcinogenic while granular SiC has a lower carcinogenic potency 

[106]. Bluet et al., reported on a selective cytotoxicity of 3C-SiC QDs in-vitro to epithelial and 

cancer cells. They investigated AT-84 cells, derived from oral squamous carcinoma as well as 

HSC-2 cells and S-G cells which are immortalized gingival epithelioid cells. The authors 

observed that significant changes of the AT-84 cells occurred after incubation with the SiC-QDs 

with indented borders and irregular shapes. Using MTTs assays they were able to show that 

treatment of the cells with 10 µg/ml and 50 µg/ml of NPs did not affect their viability after 72 hrs, 

however this was not so for the immortalized epithelioid cell line, which suggests the potential of 

SiC QDs as anti-tumoral agents [107].  

Other authors have found that the effect of single crystalline SiC on cells or tissues 

proved to be non-invariant. The fact that SiC can be formed in different polytypes, as explained 

before, could be one of the reasons for this behavior. For instance, Colleti et al. tested the 

biocompatibility of crystalline SiC using in-vitro techniques with B16-F10 mouse melanoma, BJ 

human fibroblast, and human keratinocyte (HaCaT) cell lines, and found that there was 

qualitatively no difference between 3C, 4H- and 6H-SiC in terms of cell viability and proliferation 

[77]. An in-vitro study performed by Frewin et al. on 3C-SiC and nanocrystalline diamond with 

PC12 (rat pheochromocytoma) and H4 (human neuroglioma) cell lines showed superior 

lamellipodia permissiveness on 3C-SiC compared to Si. But the cells on the other polytypes, 

6H- and 4H-SiC, showed reduced cell viabilities and substrate permissiveness [78, 108]. The 

same group also investigated biocompatibility of 3C-SiC in-vivo using C56BL/6 mice. They 

compared the response of 3C-SiC against Si at 5, 10, and 35 days after implanting the materials 

in a wild-type mouse’s brain. Using CD45 dye to observe the activation of microglia and 

macrophages, the authors showed that the 3C-SiC surfaces revealed limited immunoresponse 

and significantly reduced microglia compared to the Si substrate [109]. 
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It has also been determined that less biofouling and platelet aggregation occurred on 

3C-SiC when exposed to blood, which can be an advantage for bioelectronic device fabrication. 

Schettini et al., concluded that 3C-SiC is a hema-compatible material compared to 4H- and 6H-

SiC which did not show the same behavior. In fact 4H- and 6H-SiC were similar to Si, a known 

non-hema-compatible material [110]. The different responses of the skin, brain and blood cells 

to the three popular SiC polytypes may be attributed to the surface charge, roughness and the 

chemical properties of the surface. Clearly it is very important to know which form of SiC is 

being exposed to biological matter as it may indeed affect the biological response. 

Finally, implantable biosensors formed from 3C-SiC, while bio-benign, must also adopt 

approaches to address the challenges of chronic indwelling biocompatibility. Among these are; 

design approaches that eliminate sharp edges that will otherwise be a source of tissue irritation 

that provoke the inflammatory response [111], surface modification with biomimetic chemistries 

such as polyethylene glycol (PEG) and methacryloyloxyethyl phosphorylcholine (MPC) that 

have been shown to resist extracellular matrix protein adsorption/denaturation [112, 113], the 

use of bioresponsive hydrogels [114] in support of the chronic release of anti-inflammatory and 

immunosuppressant drugs such as dexamethasone [115, 116] and the release of factors such 

as vascular endothelial growth factor (VEGF) that promotes vascularization [117] and basic 

fibroblastic growth factor (bFGF) that promotes angiogenesis [118]. These approaches are 

among those actively under investigation as a means to limit fibrotic encapsulation [119] of 

implantable biosensors [120]. 

The major advantages of 3C-SiC in biosensor applications are its chemical inertness 

and thus likely robustness to wear and oxidative degradation following implantation. The ease 

and reproducibility of quantitative surface modification and functionalization also supports 

quantitative immobilization of biomolecules leading to high reproducibility and a likely low 

coefficient of variation in bioanalytical applications. The principal disadvantage is its cost due to 

the high growth temperatures needed to form the material as well as the lack of wet-chemical 
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etching (indeed, a benefit in terms of material stability) which poses some challenges in the 

device fabrication arena. 

 

2.2.3 Biosensor Configurations Employing SiC 

From the device design perspective, SiC has been considered an ideal material for 

power devices and systems. However, as we have described in the previous sections, its 

properties also make it suitable for biomedical applications. For the construction of biological 

MEMs devices, 3C-SiC is the material of choice because it is less expensive, less polar than 

other SiC polytypes and is grown on Si which permits the implementation of the processing 

techniques used for that material [121, 122].  

Depending on the device to be built, the different forms/polytypes of SiC provide specific 

advantages.  

 

Table 1 Main sensors application and SiC polytype and requirements, adapted from [95]. 
Device application SiC polytype/form Material criteria for application 

 
 
Biomedical sensors 

Semi-insulating hexagonal 
polytype (4H-SiC /6H-SiC) 

• Transparency 
• Low leakage (at room 

temperature) 
Porous hexagonal polytype (6H-
SiC) 

• Thick free standing layers 

SiC (amorphous) coating  • Biochemical inertness 
Hall and temperature 
sensors 

Semi-insulating 4H-SiC with 
epilayer 

• Low leakage (at high 
temperature) 

MEMs-NEMs resonators Heteroepitaxial (3C-SiC) • Low gradient and in-plane stress 
Pressure sensors, 
accelerometer, HT gas 
sensors 

Heteroepitaxial (3C-SiC) • Low gradient and in-plane stress 
• Appropriate electrical 

characteristics 
 

For instance, for biomedical devices that require low leakage and/or biochemical 

inertness one polytype may prove to be superior while films needed for the construction of 

MEMs devices demand certain mechanical properties and processing tools that may favor a 
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difference polytype. In Table 1 we provide a list of the typical applications with the potential for 

success and the material type recommended, based on the work of [95].  

 

2.2.3.1 Electrically-Based SiC Biosensors 

The electronic properties of SiC have made it a suitable material for biomedical devices, 

especially those that are based on a surface impedance change or are electrochemistry related. 

For these particular applications, doping level, surface termination and choice of SiC polytype 

play an important role, since the background current and voltammetric reactivity of SiC 

electrodes would be affected. When SiC is appropriately doped, the conductivity of this material 

dramatically increases and exhibits electrical characteristics similar to carbon materials [123]. 

But in contrast to carbon, the close-packed hexagonal or cubic-SiC structure should afford a 

well-defined surface for electron transfer [124]. Thus, the use of doped SiC as an electrode 

material has not been widely researched for electrochemistry based applications. In the work 

performed by Hume and Kolthoff, a SiC electrode was used as an oxidation-reduction indicator 

electrode in potentiometric titrations of potassium iodide with permanganate and with ceric 

sulfate of ferrous iron with permanganate, of titanous chloride with ferric chloride, and of 

hydrochloric acid with sodium hydroxide [125]. The electrodes were made with single crystal 

SiC and their behavior was studied by measuring their potential against a calomel electrode. 

The authors concluded that the SiC electrode behaved similarly to an oxidation-reduction 

indicator material such as Au and Pt. Meier et al. implemented a chemical vapor deposition 

method using tetramethylsilicon and a resistively heated carbon fiber to produce a concentric 

SiC conductor that proved to be suitable for voltammetric measurements [126]. They found that 

the SiC electrode in 0.1 M H2SO4 showed a wide potential window, free from interference from 

+1.4 V to -1.2 V vs. a Ag/AgCl electrode. 

Singh and Buchanan built a SiC-C fiber electrode for detection of electroactive 

neurotransmitters, namely dopamine and vitamin C [127]. The fabrication of this electrode was 
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based on an electrolytic etching technique developed by the authors. The SiC provided 

insulation near the carbon tip and highly localized charge transfer, stiffness and protection by 

inhibition of O2, H2O and ionic diffusion. The sensing of dopamine hydrochloride and vitamin C 

was done by voltammetric and impedance spectroscopy techniques, monitoring oxidation 

currents that varied linearly with their concentration. They also recorded in-vivo action potentials 

from anesthetized rat brains with very high signal to noise ratio. Wu et al. also worked on the 

detection of ascorbic acid (AA) and dopamine (DA) [128]. In their study they were able to 

resolve the overlapping voltammetric responses of AA, DA and uric acid (UA) on a SiC-coated 

glassy carbon (GC) electrode, and the selective determination of DA in the presence of AA and 

UA with a sensitivity of 16.9 A M-1 cm-2 and a detection limit of 0.05 μM [128].  

Salimi et al. used SiC nanoparticles to modify a GC electrode to detect insulin 

concentrations via electrocatalytic oxidation [129]. Using cyclic voltammetry, differential pulse 

voltammetry (DPV) and flow injection analysis (FIA), the authors found a dynamic linear range 

of detection up to 600 pM, sensitivity of 710 pApM-1cm-1 and a detection limit of 3.3 pM. Their 

electrode demonstrated high sensitivity, excellent catalytic activity, short response time, and 

long term stability [129]. A superoxide dismutase (SOD) biosensor based on SiC nanoparticles 

has been reported by Rafee-Pour et al. The characterization and analytical performance of the 

biosensor was based on direct voltammetry and amperometry of immobilized SOD onto the 

surface of a GC electrode modified with SiC nanoparticles. They found that the response of the 

sensor was stable after 24 hrs. of storage in a pH 7 solution, perhaps due to the chemical 

stability of the SiC film. In addition, they demonstrated that the sensor presented a sensitivity of 

1.46 nA*μM-1 and 1.375 nA*μM-1 with a detection limit of 1.66 μM and 1.4 μM for cathodic or 

anodic detection of superoxide, respectively [130]. In the recent years, research has been 

focused on the detection of DNA bases via electrochemical methods on SiC modified sensors. 

Ghavami et al. implemented a glassy carbon (GC) electrode modified with SiC nanoparticles for 

simultaneous determination of DNA bases using differential pulse voltammetry (DPV) [131]. 
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They found that no specific electron transfer mediator or reagent was necessary to build the 

biosensor. The detection limit of the GC/SiC electrodes toward guanine (G), adenine (A), 

thymine (T) and cytosine (C) determinations were 0.015, 0.015, 0.14, and 0.14 μM, respectively 

and the sensitivities were 0.3877 0.3289 0.0175 and 0.0499 µA/ μM, respectively. The sensor 

exhibited good stability, reproducibility and long lifetime [131]. Yang et al. presented the surface 

modification of nanocrystalline SiC with diazonium salts via electrochemical methods for later 

DNA bonding with a nitrophenyl film to the modified electrodes [132]. They showed that the 

modified electrode presented a wider potential window and lower background current than GC 

electrodes. The authors also demonstrated successful DNA immobilization on the modified SiC 

surfaces using Cy5 labeled cDNA with increased red fluorescence on the nitrophenyl|SiC 

surfaces compared to the bare SiC. Likewise, the voltammogram of hybridized DNA indicated 

the presence of target DNA [132]. 

Godignon's group has focused their efforts on developing temperature and impedance 

based sensors on SiC. Mainly needles for open heart surgery monitoring or graft monitoring of 

organs during transplantation and transportation. They concluded that the control of the surface 

properties of the material is a challenge when building biomedical devices [95] . Their 

impedance microsystem consisted of four Pt electrodes on an isolated semi-insulating SiC 

substrate. A Pt serpentine conductor served as the temperature sensor with the aim of 

distinguishing impedance changes due to either tissue or thermal effects. In their work, the 

authors also identified the advantages and potential of using SiC for DNA polymerase chain 

reaction (PCR) electrophoresis chips because of the high electric field strength and resistivity of 

semi-insulating SiC, in addition to its high thermal conductivity [95]. The same group expanded 

the description of myocardial ischemia monitoring probes and transplantation organ/tissue 

ischemia monitoring with SiC impedance based needles in the articles by Pascual et al. [133], 

Gabriel et al. [10] and Gomez et al. [134]. The article by Pascual et al. focuses on the 
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fabrication, packaging and mechanical properties of the devices for such application, whereas 

the last two also consider the electrical characterization of the probes.  

In their study, Pascual et al. described the fabrication of the needles on both 6H-SiC and 

4H-SiC wafers with four Pt electrodes insulated from the substrate and passivated with SiO2 and 

Si3N4 layers including the temperature sensor structure described above. The mechanical tests 

they performed included simulations with ANSYS 5.6 and an INSTRON 4464 system to test 

compression and bending of the needles. The authors also determined the forces needed to 

penetrate heart tissue. The values obtained were 1.32 N, which was lower than 1.35 N for Si. 

Likewise, the maximum bending force that could be applied to the needle tip without breakage 

of the same was 17.4 N compared to 16.4 N for Si. The fact that the needles fulfill the 

mechanical requirements for this application are an indication of the possibility of using these 

types of probes to reduce organ bleeding upon needle insertion [133].  

In terms of the benefits of using SiC as ischemia monitoring probes, both Gomez et al. 

[134] and Gabriel et al. [10] concluded that there is less leakage current in a SiC impedance 

sensor compared to Si-based devices that present current leakage paths across the substrate 

at high frequencies (i.e. above 5 kHz), which generates a false impedance change [134]. In fact, 

Gomez et al. compared in-vitro experiments of four electrode measurements in 0.09% or 0.9% 

NaCl from 10 Hz to 1 MHz with a modified in-vivo system where the probes where placed close 

to the cortico-medullar junction of male Wistar rats (Ifa Credo) and measured the impedance in 

the 100 Hz to 100 kHz range. They demonstrated that the operating range of SiC-based 

impedance probes can be extended up to the 100 kHz range with the possibility of performing 

multi-frequency analysis and the creation of more accurate frequency-dependent analytical 

models of impedance [134]. Besides performing in-vitro characterization of the device, Gabriel 

et al., presented in their article an extensive mechanical analysis of the Si and SiC wafers used 

to build their probes [10]. They confirmed the values for hardness, elastic modulus and fracture 

toughness of the SiC and Si substrates but also the modulus of rupture for the fabricated 
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probes. They emulated real-life conditions in a deflection test whereby they anchored the needle 

at one end and applied force from the nanoindenter on the other. The critical load at which the 

SiC needles fractured was 2.5 times higher than for Si needles (1053±200 mN vs. 452±37 mN). 

In addition, they found a modulus of rupture 4 times higher for SiC needles than that of Si 

needles (774 MPa vs. 188 MPa), which demonstrated the superior mechanical and electrical 

properties of SiC for impedance based needle probes [10].   

Multi-electrode arrays (MEAs) with semi-insulating 6H-SiC have also been demonstrated 

by Godignon et al. In their article, the authors describe the construction of a 16 electrode MEA 

with locally grown carbon nanotubes (CNTs) on Pt electrodes to improve the electrode to 

medium impedance and growth of neurons on the MEAs. A reduction in the electrode 

impedance was obtained with CNTs grown on the Pt electrodes compared to bare Pt 

electrodes. In addition uniform CNT growth on SiC based MEAs was achieved because of the 

better temperature uniformity on the material.  

In the same work the authors describe the material considerations to build a micro-fluidic 

chamber with 3C-SiC on silicon-on-insulator (SOI) wafers, for magnetic resonance imaging 

(MRI) equipment [121].  

The area of Field Effect Transistors (FETs) on SiC has not been significantly exploited 

for biological applications. FETs made of SiC can function at high temperatures, in particular 

FET-based gas sensors that operate around 1000°C have made use of this property [9]. Also, 

prototypes and commercially available devices can be found that operate at very high 

frequency, high power and in harsh environments, such as Schottky devices from Infineon 

Technologies (Germany) [81], UV flame detectors from General Electric (U.S.A.) [135] and gas 

sensors developed by SenSiCAB (Sweden) [136] . The possibility to integrate SiC and grow 

other materials on its surface, for example AlN that enables a wider bandgap of ~ 6 eV 

(depending on the polytype), allows the integration with resonators on the same chip [68]. Lloyd 

Spetz et al. reported the measurement of NO, an interesting gas to measure due to its 
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participation in the metabolism in an individual's breath [137]. They proposed a multifunctional 

sensor device with an integrated transistor, resonator and resistivity change measurements. A 

heterostructure that may be realized, for example SiC|ZnO, as in Figure 12, can provide 

biosensing based on the current change between the source and drain as a function of the gate 

voltage after immobilization of biomolecules in the gate area. A FET biosensor of this type, 

responsive to EH changes in the environment modulated by a biological reaction, is known as an 

ion specific FET (i.e., ISFET) device. An ISFET is in essence a transistor without a gate 

electrode that requires an external reference electrode for operation. For this reason, the 

authors investigated a preliminary device using a MOS (metal on semiconductor) structure 

using Ti/Au, Al2O3 and a Si substrate [137].  

 

 

Figure 12 Scheme of a sensor device that includes a transistor, a resonator and resistive measurements 
between the finger electrodes. a) Side view and b) Top view of the device proposed by [137]. 

 

2.2.3.2 Optically-Based SiC Biosensors 

As was mentioned in Section 2.3, SiC also presents appropriate optical properties to 

develop biocompatible optical based detection sensors. In particular, quantum dots (QDs) have 

proven to be a growing research field for SiC. QDs are interesting tools for cell tagging because 

of their properties including: their size and tunable emission spanning from the ultraviolet to the 

near infrared, the high extinction coefficient combined with a comparable quantum yield to 
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fluorescent dyes, and resistance to photo-oxidation (i.e. photobleaching) [138]. Botsoa et al. bio-

imaged living cells with SiC QDs. They fabricated 3C-SiC nanoparticles by means of 

electrochemical anodization of a low resistivity 3C-SiC polycrystalline wafer and subsequent 

grinding and centrifugation to collect particles less than 10 nm in size. Different concentrations 

(0.1 to 2 g/l) of the SiC QD suspension was added to 3T3-L1 fibroblasts and incubated for 15 

hrs. and then analyzed with fluorescent microscopy, using UV/violet excitation. The authors 

found that the QDs are strongly localized inside the cells, mainly at the nucleus and they noted 

a heterogenous distribution of the fluorescent intensity. The cells were also incubated for one 

week with QDs and were found to be alive, which evidenced the non-toxic effect of the 3C-SiC 

particles to the cells [138]. Another material that is showing good promise as an optical 

biosensor substrate is amorphous SiC, or a-SiC.  

Caputo et al. have reported on a two-color a-Si/a-SiC photosensor for DNA detection. 

The sensor is based in the detection of DNA strands labeled with two fluorochromes (Alexa 

Fluor 350 and Cy5) using a p-i-n-i-p a-Si/a-SiC stacked structure that basically detects different 

spectral regions depending on the voltage applied to the diode structure [139]. They used a UV 

radiation source that excited the biomolecule markers inducing fluorescence; the re-emitted light 

that passed through a glass/TCO layer and was absorbed by the a-Si/a-SiC photosensor 

producing a photocurrent that was proportional to the quantity of fluorochromes present. In this 

work, the authors reported detection limits of 10 nmol/l and 400 nmol/l for Alexa Fluor 350 and 

Cy5 labeled DNA strands, respectively [139]. But SiC can also be used for biological imaging in 

fluidic environments. Taubner et al. reported the successful development of a 3C-SiC based 

superlens for near-field scanning optical microscopy (NSOM) [140]. A free standing 440 nm 

thick 3C-SiC film grown on a (100) Si substrate is the core of the superlens with a 220 nm thick 

SiO2 film that allows the thin film superlens to be displaced at the required distance (~880 nm) 

from the specimen when applying the NSOM technique. The use of a SiC superlens structure 

allowed them to enhance the spatial resolution of the subsurface features by a factor of 4 
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compared with near-field imaging without superlensing of the SiC slab. The possibility of 

incorporating a 3C-SiC superlens to a microfluidic device could enable in-situ NSOM imaging of 

biological samples. An evanescent waveguide structure microfabricated in SiC on Si substrates 

was recently reported by Pandraud et al. Interestingly, the relatively large index of refraction of 

a-SiC, compared to similarly-deposited Si3N4 and SiO2, enhances the ability of the waveguide 

structure to sense chemicals. The authors concluded that surface roughness of the a-SiC is 

such that the propagation loss was reduced to 1–5 dB/cm [141]. 

 

2.2.3.3 SiC MEMs Biosensors 

The mechanical, chemical and electrical properties of SiC that were described in the 

previous sections also make SiC an attractive structural material for MEMS and NEMS 

applications. SiC MEMs have been typically used in applications that include harsh chemical, 

high-radiation or high-temperature environments; for which Si is not suitable. The evaluation of 

MEMs materials performed by Kotzar et al., demonstrated the biocompatibility of seven MEMs 

materials including single crystal 3C-SiC [79]. The materials were evaluated using a baseline of 

the ISO-10993 standard for physicochemical and biocompatibility tests. The main focus of the 

article was to understand the effect of sterilization on the material surface and its cytotoxic effect 

by culturing L-929 mouse fibroblast cells on the surfaces for 48 hrs. The authors showed that 

neither Si3N4 nor SiC elicited significant non-biocompatible responses which renders them 

suitable for future BioMEMs applications [79].  

The high Young’s modulus of SiC enables the fabrication of wide frequency resonators. 

Until now, this has been the main structure developed and studied on 3C-SiC, with cantilevers 

or bridge structures that could be very useful for mass detection, gas sensing or biomolecule 

identification [95]. SiC membranes vary in thickness and typically a 2 µm-thick membrane is 

able to withstand pressures of over 100 PSI without breaking. For practical, long-term 

micromachined BioMEMS pressure sensors, one would need to incorporate biocompatible and 
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antifouling characteristics [122]. a-SiC is also an attractive material for MEMS and NEMS 

applications because it retains the mechanical and chemical durability of its crystalline 

counterparts [142], while being electrically insulating and being processed at much lower 

substrate temperatures. Its electrically insulating properties enable its use for dielectric isolation 

instead of SiO2 and Si3N4. Typically a-SiC is used as an etch mask for bulk micromachining as 

in the work by Iliescu et al. [143] where a-SiC is implemented as a protective mask to increase 

the etching resistance towards SiO2 with the aim to fabricate microfluidic channels. In some 

cases, a-SiC is used as a planarizing membrane to cover the microchannel. Later, Iliescu et al 

studied the use of 2.5 μm low stress a-SiC membranes for cell culture, potentially valuable for 

bioMEMs applications. They pre-treated micromachined a-SiC membranes with 40% NH4F and 

incubated NIH3T3 fibroblasts for 24 and 48 hrs on the membranes. Using microscopy they 

found that the cells proliferated more on the a-SiC membrane than on monocrystalline SiC 

[144]. 

 

2.3 Electrochemistry of Semiconductors 

In this work we aim to use Silicon carbide (SiC) as an electrode that will produce a 

change in its electrical properties after protein binding for the diagnosis of acute myocardial 

infarction. The use of SiC for this purpose requires the understanding of solid state physics and 

electrochemistry because phenomena associated with both disciplines will be seen in the 

SiC/electrolyte (e.g. Phosphate Buffered Saline) system. In this section we will present a brief 

introduction to the semiconductor physics content related to semiconductor electrochemistry. 

 

2.3.1 Energy Levels in Semiconductors 

A semiconductor is characterized by electron energy levels which are described by 

energy bands. In all semiconductors there is a forbidden energy region or gap in which energy 
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states cannot exist in the absence of crystal defects. This energy gap (i.e. the semiconductor 

band gap) determines the properties of the material. Energy bands are only permitted above 

and below this energy gap. The upper bands are called conduction bands and the lower ones 

are called valence bands [145].  

Electrons can be excited to the conduction band thermally, optically or photochemically. 

In order to achieve doped semiconductor films, an additional element is introduced into the 

semiconductor such that these processes are satisfied at low temperatures (ideally below room 

temperature). For example, the addition of P in a Si crystal introduces occupied energy levels 

into the band gap close to the lower end of the conduction band, which allows for an easier 

promotion of electrons to the conduction band [146]. Thus P doped Si is n-type due to the fact 

that the conduction band is populated with electrons independent of device electrical bias, 

surface charge and band bending. 

 

2.3.1.1 Fermi Level and Band Bending 

The Fermi level (EF) is defined as the energy level at which the probability of occupation 

by an electron is 0.5. A more meaningful way to think of this is that this is the ‘halfway point’, 

meaning half of the electrons in the semiconductor are above and half below this value. For an 

intrinsic, or undoped, semiconductor the Fermi level is found at the mid-point of the band gap 

[146]. If the position of the Fermi level within the bandgap is known, the density of electrons and 

holes can be calculated from equations (7) and   (8), where EF,n and EF,p are quasi Fermi levels 

for electrons and holes, respectively, n and p, are the density of electrons and holes, NC is the 

density of states at the lower edge of the conduction band and NV is the density of states at the 

upper edge of the valence band [145].  

 𝐸𝐹,𝑛 = 𝐸𝐶 − 𝑙𝑛 �𝑁𝐶
𝑛
�  (7) 

 𝐸𝐹,𝑝 = 𝐸𝐶 − 𝑙𝑛 �𝑁𝑉
𝑝
�  (8) 



41 

At equilibrium, the Fermi level is constant throughout the semiconductor. For an n-type 

semiconductor, the Fermi level lies above the midgap level and below the conduction band, 

whereas for a p-type semiconductor it is found below midgap and above the valence band (see 

Figure 13a. and b.). The Fermi level of a semiconductor varies with the applied potential; for 

example, moving to more negative potentials will raise the Fermi level [146]. 

 

 

 
a. 

 
b. 

Figure 13 Fermi level at equilibrium in a) n-type and b) p-type semiconductor. EC and EV are conduction 
and valence band edges, respectively. 
 

2.3.2 The Electrolyte 

Electrical current in liquid electrolytes is carried by ions that are formed by dissociation of 

salts like KCl or Na2SO4 in a suitable polar solvent, which is usually water. Both positive and 

negative ions are produced by dissociation and are found in equal concentrations in the water. 

For reference, electrolyte conductivities > 10-2Ω-1*cm-1 and with ion concentrations of > 10-1 M 

are required in order to achieve an adequate level of conductance in an electrochemical cell 

[147].  

In term of electronic energy levels, an ion or molecule in solution presents a tendency to 

release (occupied level) or to accept (free level) electrons when the molecule approaches an 

electrode or another ion. The energy level model in electrolytes can be more complicated than 

the one of semiconductors, because of the interactions of ions with the solvent and thermal 

fluctuations. As a result of thermal fluctuations it is not possible to determine the exact energy of 

the ion at a specific time. Hence, ionic energy levels in solutions are described in terms of 

probability distributions, similarly to the case presented for semiconductors [148]. 
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In Figure 14 the ideal probability distribution of the energy levels in the electrolyte is 

represented by two Gaussian functions centered at Eox (potential of oxidizing species, i.e., 

accepts an electron) and Ered (reducing species, i.e., donates an electron). Eredox refers to a state 

where equal numbers of reducing and oxidizing agents are present in solution [148, 149].  

 𝐸𝑟𝑒𝑑𝑜𝑥 = 1
2

(𝐸𝑟𝑒𝑑 + 𝐸𝑜𝑥) (9) 

 

Figure 14 Representation of energy levels in a polar solution. Adapted from [148]. 
 

An effective Fermi energy in the solution is defined as Eredox. If equilibrium is reached 

with an electrode in solution the Fermi energy of the electrode will move to Eredox due to electron 

exchange with the redox couple [149]. This is the definition of equilibrium in the 

electrolyte/electrode (or semiconductor) system. 

 

2.3.3 The Semiconductor|Electrolyte Interface 

The distribution of charge and potential in a semiconductor and an electrolyte when they 

are brought into contact is similar to the case described in section 1.4.2. However, given that 

semiconductors have lower carrier density than metals, the counter charges described before 

are distributed below the interface and a layer known as the space charge region (SCR) in the 
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semiconductor is formed [150]. The SCR in the semiconductor is in contact with the Helmholtz 

layer in the electrolyte which is followed by the Gouy layer as seen in Figure 15 [149, 150].  

 

 

Figure 15 Double layer at the semiconductor|electrolyte interface. 
  

The total charge at the semiconductor|electrolyte interface consists of the fixed charge 

in the SCR, the surface state charge, the charge of ions adsorbed in the Helmholtz layer and 

the ions in the diffuse, or Gouy, layer. The typical thickness of the Helmholtz layer is ~ 0.4-0.6 

nm, the SCR is ~10-1000 nm and ~ 1-10 nm for the diffuse layer [150, 151]. Because the 

thickness of the SCR depends on the concentration of mobile charge carriers it is proportional to 

the Debye length. The Debye length defines the distance over which a charge imbalance (i.e. 

caused by an applied electric field) is neutralized by majority carriers under steady state or 

equilibrium conditions [152]. The Debye length is approximately 100 nm for semiconductors with 

a doping concentration of ~ 1015 cm-3 and around 10 nm in dilute 0.01 M ionic solutions [153].  

The capacitance of this interface can be represented as the series capacitances in (10), 

where CSC, CH and Cd are the capacitance of the SCR, the Helmholtz and the Gouy layers, 

respectively.  

 
1
𝐶

= 1
𝐶𝑆𝐶

+ 1
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+ 1
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For highly concentrated electrolytes ( > 0.01 M ) the contribution of Cd can be neglected 

[154]. For an ideal semiconductor|electrolyte interface the major potential drop will be across 

the space charge layer and the total capacitance of the system will be due to CSC. In addition 

the values of CSC are between 0.001-1 μF/cm2 in contrast to those of CH that are between 10-

100 uF/cm2 and the region with the lower capacitance tends to dominate the total capacitance 

of the system [155]. In the case when the semiconductor is degenerately doped (i.e. doping 

concentration is 1019-1021 cm-3) or when it is in accumulation the system behaves as a 

metal|electrolyte interface and CH dominates the total capacitance in the system [151]. 

 

2.3.3.1 Space Charge Layer in Accumulation and Depletion  

If a potential is applied to a semiconductor electrode in solution a reorganization of 

charges takes place until equilibrium is re-established. This means that the Fermi level in the 

semiconductor must equal the Fermi level of the solution. The Fermi level in the bulk of the 

semiconductor remains constant but the change in potential in the SCR produces a degree of 

bending at the edge of the conduction and the valence bands.  

Three situations can be identified which are referred to as flat band potential (the bands 

are flat), depletion (the semiconductor surface is depleted of mobile charges) and accumulation 

(the semiconductor surface is full of mobile charges). When at the applied potential the Fermi 

level is equal to the redox potential of the electrolyte the flat band condition is achieved and 

there is no band bending (see Figure 16a). The potential is therefore known as the flat band 

potential. For an n-type semiconductor, if the applied voltage is anodic (positive potential) the 

SCR is depleted of majority carriers, the bands bend upwards and the SCR presents an excess 

of fixed positive charge (see Figure 16b). On the contrary, if the voltage is cathodic (negative 

potential), there is an accumulation of mobile charges in the SCR and the band edges bend 

downwards (see Figure 16c). When the semiconductor electrode is in accumulation it will act 
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like a metal due to the high density of charges at the surface [155]. The thickness of the 

accumulation layer is typically close to 10 nm [149]. 

 

 
 

 
a)  

b) 
 

c) 
Figure 16 Band bending in an n-type semiconductor a) Flat band potential b) depletion and c) 
accumulation.  
 

2.3.4 The Determination of the Flat Band Potential Using Mott-Schottky Plots 

The measurement of the capacitance across the SCR provides important information 

about possible changes in the energy bands of the semiconductor due to the reaction with the 

electrolyte or when charged molecules are deposited on its surface. If the position of the band 

edges is of interest one can perform capacitance-voltage measurements, also known as Mott-

Schottky plots [151, 155]. The Mott-Schottky relation for an n-type semiconductor is shown in 

equation (11). Where ND is the doping concentration, εo is the permittivity of free space, ε is the 

dielectric constant of the semiconductor, q is the charge of the electron, T is temperature, k is 

Boltzmann’s constant, V is the applied voltage and VFB is the flat band potential at which the 

bands are "flat" across the semiconductor-electrolyte interface. 

 1
𝐶𝑆𝐶2

= 2
𝑁𝐷𝜀𝜀𝑜𝑞

�𝑉 − 𝑉𝐹𝐵 −
𝑘𝑇
𝑞
�  (11) 

A plot of 1/CSC
2 as a function of the potential (vs. the reference electrode) should be a 

straight line with a slope proportional to the doping density and in which the intercept with the V 

axis equals the flat band potential [155]. The depletion width can also be determined using 

equation (12) 
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 𝑊 = 2
𝑁𝐷𝜀𝜀𝑜𝑞

�𝑉 − 𝑉𝐹𝐵 −
𝑘𝑇
𝑞

  (12) 

It is important to emphasize that there can be deviations from the ideal behavior 

presented in this section due to irregularities in the surface including surface roughness [156], 

non-uniform spatial doping and the presence of deep donor and acceptor impurities [151, 157]. 

Also, a contribution from the Helmholtz capacitance [158], ionic adsorption at the surface [159], 

presence of an oxide film [160] may also result in non-ideal behavior. 

 

2.4 Summary 

In the first part of this chapter we have provided an overview of the major types and 

possible applications of SiC for biomedical sensors. The possibility of the integration of other 

materials and systems on SiC increases the possibilities to create complex devices that can 

perform multiple biomolecule detection and analysis on a single platform. We also discussed 

several SiC material properties that put it in the advantage to be used as a biosensor substrate 

with respect to other materials. For instance, the remarkable chemical and mechanical 

properties, and the fact that SiC can be produced into different forms (e.g. BioSiC made from 

wood, a-SiC, nanoporous SiC, etc.), and polytypes (i.e. cubic, rhombahedral and hexagonal) 

make it suitable for a wide variety of applications.  

After exposing the reasons to use SiC in electrically-based biosensors, the second part 

of this chapter dealt with the basics and physics behind the use of the Mott-Schottky technique 

which we plan to use to detect myoglobin on SiC sensor surfaces. We describe the principles 

behind the semiconductor|electrolyte interface since the measurement is based on the 

capacitance changes in the space charge region of the semiconductor. The concepts described 

both in this chapter and chapter 1 provide the basics for the promising technique to detect 

myocardial infarction using impedance and field effect based SiC biosensors. 
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3 CHAPTER 3: SIC FUNCTIONALIZATION 

 

3.1 Note to Reader 

The results presented in this chapter have been published [161-165] and are utilized 

with permissions of the publisher ("Reprinted with permissions").  

 

Most biomolecule recognition-based systems require immobilization of specific 

molecules with controlled structural order and composition. A viable immobilization approach is 

covalent attachment [166]. Surface functionalization provides many advantages in the 

development of semiconductor based biosensors, including the control of the interfacial 

properties of the substrate material itself. In addition, surface functionalization is one of the main 

tools used for covalent biomolecule immobilization. It may be used for imparting molecular 

functionality to the substrate, thus enabling sensitivity towards chemical stimuli [167].  

Self-assembled monolayers (SAMs) are composed of organic molecules that are 

covalently immobilized on the surface of the semiconductor via suitable linker groups [168-170]. 

In general, hydrogen- (H-) or hydroxide- (OH-) terminated surfaces provide the reactive sites 

necessary to obtain high quality monolayers. Hydrosilylation and silanization are two common 

surface functionalization processes that have been used extensively on Si substrates [167, 170, 

171] and SAMs synthesized in this way have been analyzed in detail, with either suppression or 

enhancement of cell spreading and proliferation depending on the identity of the molecular end-

group of the SAM [172].  
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Hydrosilylation of Si typically involves the attachment of long-chain alkenes to the 

surface of the H-terminated semiconductor through addition reactions, resulting in formation of 

Si-C covalent bonds with the surface [170, 173]. Silanization, on the other hand, requires an 

OH-terminated surface which can react with the alkoxy groups of organosilane molecules [167, 

173]. The functionalization of SiC is possible using both alkenes and organosilanes, similar to 

the processes used for Si, but certain differences in the surface preparation must be addressed 

[168, 173-176]. Treating 6H-SiC (0001) with HF creates a nearly perfect OH-terminated surface 

[177]. Alkoxylation using alkenes is possible on OH-terminated surfaces via a Markovnikov 

addition reaction, but leads to a Si-O-C bonding configuration that is chemically less stable than 

direct Si-C bonding [173].  

 

3.2 SiC Chemical Functionalization (SAMs) 

Practical studies have been performed by different groups to gain insight into the bio-

functionalization of SiC. Rosso et al. demonstrated successful alkyl monolayers covalently 

bound on HF-treated SiC surfaces, including 6H-SiC (0001) and 6H-SiC (0001) and 

polycrystalline 3C-SiC, through thermal reaction [173] and UV irradiation [174] with 1-alkenes. 

They concluded that the attachment of alkyl chains on the SiC surfaces seemed to occur via the 

formation of an ether bond between a thin oxycarbide layer and the second carbon of the 

double bond. Their results included very hydrophobic methyl-terminated surfaces on flat SiC, 

which they showed to be stable under harsh acidic conditions (e.g., no change in water contact 

angle after 4 h in 2 M HCl at 90 °C), while their stability in alkaline conditions (pH 11 at 60 °C) 

also superseded that of analogous monolayers such as those on Au, Si, and SiO2. Similarly, 

Schoell et al. demonstrated the covalent functionalization of aminopropyldiethoxymethylsilane 

(APDEMS) and octadecyltrimethoxysilane (ODTMS) on n-type 6H-SiC (0001) (i.e., Si-face) 

surfaces via wet chemical processing techniques [176]. Desorption temperatures in the range of 
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830 K proved the covalent bonding of the organic molecules to the SiC surface. They also 

immobilized fluorescence-labeled proteins on patterned APDEMS monolayers to prove the 

functionality of the surface and the wettability contrast obtained on a micropatterned ODTMS-

modified 3C-SiC surface [176]. This group also developed a plasma-based method to passivate 

n-type 6H-SiC with chlorine and obtained almost flat band conditions on the 6H-SiC (0001) 

surface. Hence, they were able to perform successful ultraviolet light-induced grafting of 

trifluoroacetamid (TFAAD-protected long-chain ω-unsaturated amine (10-aminodec-1-ene)) and 

thermally induced alkylation with 1-octadecene on both 6H-SiC (0001) and 6H-SiC (0001�) [178]. 

Later, Howgate et al. focused on the impact of UV photocatalytic cleavage on n- and p-type 

GaN and SiC with covalently bound self-assembled monolayers (SAMs) formed from ODTMS. 

They found that significant and rapid photocatalytic degradation of the organic layer occurred on 

n-type GaN. Their results proved that the charge-transfer processes between semiconductors 

and organic systems depends on the positions of the conduction and valence band edges and 

can be tailored by appropriate choice of the semiconductor Fermi level [179]. 

Aghdassi et al., investigated the suitability of octadecylsiloxane (ODS) on 6H-SiC (0001) 

as an insulating dielectric for electronic passivation of the surface. They used XPS, ultraviolet 

photoemission spectroscopy (UPS) and inverse photoemission (IPE) experiments and 

concluded that a large HOMO–LUMO energy gap of about 9 eV is present in the ODS-SiC 

system. Barrier heights of 3.3 eV and 2.7 eV were observed for electron and hole transport from 

the substrate into the adlayer and contributed to demonstrate their hypothesis. They also  

presented an extensive description of the electronic and structural properties of the silane-SiC 

interface [180]. 

Williams et al. also looked into the immobilization of proteins onto functionalized SiC. 

They demonstrated selective immobilization of streptavidin via biotinylation of 4H-SiC (0001) 

functionalized with APTES. The biotin-streptavidin is a strong bond (Kd, on the order of 4x10-14 

M; ca. 425 pN) [181] that is routinely used as a model substrate for biomolecule detection. The 
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authors found, using different characterization techniques that included XPS, ellipsometry, 

contact angle and fluorescence microscopy, that an optimization of the APTES layer was critical 

to the successful streptavidin immobilization, in addition to a biotinylation step prior to the 

streptavidin attachment to prevent non-specific binding of this protein with the 4H-SiC|APTES 

surfaces [182]. What is interesting in their work is that they present an alternative hydroxylation 

to the diluted HF dip step used by other authors, and employed instead a treatment with oxygen 

plasma (20% O2/ 80% Ar) to grow a thin oxide followed by exposure to air for 2-3 hrs to allow for 

chemisorption of water molecules that facilitates the silanization process [182].  

Petoral et al. reported on the surface functionalization with 

mercaptopropyltrimethoxysilane (MPTMS) of wide band gap semiconductors including SiC, 

ZnO, and GaN. They used n-type 4H-SiC (both 4H-SiC (0001) and 4H-SiC (0001)), and the 

MPTMS monolayers were prepared by evaporation of a pure solution in a sealed vacuum 

chamber for 1 hr. Using XPS and water contact angle measurements they observed the 

formation of a monomolecular layer of MPTMS on the SiC surfaces [183]. In addition, they 

immobilized an amino acid derivative pTyr-PT but only on MPTMS-functionalized ZnO and GaN 

surfaces. Yakimova et al. used a similar process to functionalize SiC and, in addition to 

MPTMS, also studied APTES films on 4H-SiC. They also evaluated the electrical contribution 

from the organic layers and their behavior as a possible insulator on SiC, similar to SiO2. They 

used silver epoxy as a back contact and a thick probe as the gate contact. What they found was 

that the device exhibited a Schottky diode like I-V characteristic similar to a reference sample 

with no isolation layer and one sample with a 1 nm thick SiO2 film [69]. 

Bhowmick et al. demonstrated the successful covalent functionalization of quartz and n-

type 6H-SiC with APTES and benzo(ghi)perylene-1,2-dicarboxylic dye. The authors used XPS 

to show the presence of the APTES layer but concluded that not all amino groups of the 

APTES-functionalized surfaces reacted to bind the dye molecules [184]. They also found that 

the dye functionalization was not uniform throughout the surface, showing different island sizes 
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of the dye and including different chemical environments on SiC. Nevertheless, their 

fluorescence lifetime measurements indicate the presence of more than one local environment 

for surface-bound benzo(ghi)perylene-1,2-dicarboxylic anhydride independent of the substrates 

and that the single-crystal SiC surface provided a more homogeneous environment than the 

quartz surface [184]. Protein-resistant SiC surfaces, to prevent device failure due to fibrous 

encapsulation, were investigated by Qin et al. The authors prepared films terminated with 

oligo(ethylene glycol) (OEG) via photochemical grafting onto 3C-SiC. By immersing the OEG 

coated samples in a 0.1% fibrinogen solution in PBS for 1 hr they determined, using the N-1s 

signal from XPS, that the OEG coating reduced the non-specific adsorption of fibrinogen on the 

substrates by 99.5% and remained resistant after storage in PBS for 4 weeks at 37.1°C [185]. 

 

3.3 Increased Cell Proliferation on Surface Modified 6H-SiC 

In this section, we demonstrate that the proliferation and attachment of two immortalized 

neuronal cell lines can be enhanced after bio-functionalization of 6H-SiC using both 

hydrophobic and mildly hydrophilic SAM layers. The contrasting properties of the functionalized 

surfaces are shown to affect the cell response to the surfaces, which were assessed through 

the observation of PC12 and H4 cell proliferation and morphology.  

 

3.3.1 Substrate Preparation  

Two 6H-SiC off-axis n-type wafers (3.43º off-axis, Si (0001) face, 420 μm thick), 

purchased from Cree, Inc. were diced into 5x5 mm2 die. A hydrogen etching process was first 

performed in order to obtain well-ordered, atomically flat surfaces free of polishing scratches 

and with reduced defect densities [186, 187]. The samples were then ultrasonically cleaned in 

acetone, methanol, and isopropanol, followed by a 10 min. immersion in piranha solution 

(H2SO4:H2O2 2:1). A sequence of oxygen plasma (2450 MHz, 200 W, 1.4 mbar) treatment and 
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etching for 5 min in 5% diluted HF to obtain the hydroxyl (-OH) termination was performed twice 

before functionalizing the surfaces. The thermal alkylation process with 1-octadecene was 

performed directly on OH-terminated surfaces. For the silanization processes, using 

aminopropyldiethoxymethylsilane (APDEMS) and aminopropyltriethoxysilane (APTES), the 

oxygen plasma step was replaced with an HCl (1:2, HCl:H2O) dip followed by a 5% diluted HF 

dip, the last step was performed to obtain the hydroxyl (-OH) termination. 

 

3.3.2 Preparation of APTES, APDEMS and Octadecene on 6H-SiC Substrates 

After cleaning and etching of the samples, alkylation of 6H-SiC (0001) was performed by 

reaction of the hydroxylated surfaces with 1-octadecene for 120 min at 200 °C under Ar. The 

samples were then ultrasonically cleaned in hexane, chloroform, and methanol for 10 min each. 

The silanization reactions were performed by immersing the samples in 10% APDEMS (or 

APTES) in anhydrous toluene for 90 min at room temperature in an N2 environment, followed by 

ultrasonic cleaning in toluene and isopropanol, for 20 min each. After SAM formation, the 

samples were placed in ethanol to prevent bacterial growth and surface oxidation before cell 

seeding. 

 

3.3.2.1 Methodology for Surface Characterization 

Static water contact angle (SWCA) measurements were performed using a KSV 

CAM101 system from KSV Instruments. Briefly, a 3 µl droplet of DI water was deposited on 

three different samples for each of the surfaces prepared. The droplet contact angle was 

determined by measuring the angles between the baseline of the drop and the tangent of the 

same. In addition, atomic force microscopy (AFM) topography measurements of the surfaces 

were performed using an XE-100 Advanced Scanning Microscope from Park Systems under 

ambient conditions. Surface scans of 5µm x 5µm area were collected in tapping mode, and the 
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overall RMS roughness (Rq) was calculated using the Park Systems XEI image analysis 

software. 

 

3.3.2.2 Biocompatibility Assessment 

Two immortalized neural cell lines obtained from American Type Culture Collection 

(ATCC, Manassas, VA) were used for this study: H4 human neuroglioma (ATCC # HTB-148) 

and PC12 Rat pheochromocytoma (ATCC # CRL-1721). The H4 cell line was cultured in 

advanced Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS), 2.2 mM L-glutamine GlutaMAX-1, and 1% penicillin-streptomycin (PS). The PC12 

line was grown in Kaighn’s F-12K media supplemented with 10% FBS, 10% horse serum, and 

1% PS. The media and sera were purchased from Invitrogen.  

In order to perform the MTT assay and determine the cell proliferation on the substrates, 

each of the tested samples was placed into one well of a 12-well plate. Cell concentrations of 

5x105 cells/ml for both the H4 and PC12 cell lines were seeded in each well while adding 2 ml of 

cell media, followed by incubation at 37 °C for 96 hrs. in a 5% CO2 and 95% relative humidity 

atmosphere. MTT assays were then performed in accordance with the procedures outlined in 

[78], with each assay repeated three times and in triplicate for each type of sample and for the 

polystyrene (PSt) control. The results were normalized with respect to the PSt control reading 

and statistical analysis was performed using ANOVA and the Tukey test, with an established 

statistical significance of p < 0.05. For the cell morphology and evaluation of filopodia and 

lamellipodia extensions, 12 well plates were also used, and 5x103 cells/ml were seeded under 

the same environmental conditions. After 48 hrs., the samples were removed from the media 

and the cells were fixed using 4% paraformaldehyde and methanol. The AFM micrographs were 

taken in contact mode and the live cells were immersed in DPBS solution during the 



54 

measurements. The AFM images were used to identify the filopodia and lamellipodia by relative 

height (∼200-300 nm) and to assess spreading on the different surfaces.  

 

3.3.2.3 SiC Substrate Characterization 

The characterization of SAM-functionalized SiC substrates using X-ray photoelectron 

spectroscopy (XPS), ellipsometry, contact angle measurements, AFM topography, and Fourier 

transform infrared spectroscopy (FTIR) have been previously reported [169, 173, 176, 184]. We 

confirmed the characteristics of the functionalized SiC surfaces that are most pertinent to the 

current study (i.e. topography and wettability) prior to cell seeding. Static water contact angle 

(SWCA) measurements give an indication of the degree of hydrophobicity and hydrophilicity of 

the functionalized substrates. Table 2 contains the SWCA and RMS roughness values (reported 

as the statistical mean ± standard deviation of the mean) for the surfaces tested. We observed 

hydrophobic behavior for the 1-octadecene-treated sample, consistent with molecular methyl 

end-groups [173, 188].  

 

Table 2 SAM characterization via AFM and water contact angle 
analysis. 
Substrate Surface Roughness,  

Rqa (nm RMS) 
Contact angle b(º) 

6H-SiC untreated 0.30±0.1 19±2 
6H-SiC with 1-
octadecene 

0.34±0.1 101±5 

6H-SiC with APDEMS 0.36±0.1 48±4 
6H-SiC with APTES 0.38±0.2 54±2 
a Average surface roughness calculated from 5µm x 5µm scan areas 
averaged over 5 scans per surface. 
b Contact angles measured with 3 μL water droplets and averaged over 
3 different surface readings. 

 

The APDEMS and APTES surfaces were moderately hydrophilic, with values in the 

expected range for amino end-groups [172, 176]. The untreated sample exhibited hydrophilic 

behavior, consistent with a native oxide. Surface topography analysis with AFM showed a very 
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smooth surface following etching and prior to functionalization as seen in Figure 17a with a ~ 

0.3 nm RMS value. The 1-octadecene-treated surface showed a similar topography to the pre-

functionalized 6H-SiC surface with no aggregates (See Figure 17b). On the other hand, on the 

APDEMS and APTES-functionalized surfaces, some signs of oligomerization, most likely due to 

homogeneous methoxy cross-linking, were observed as particulates, and a difference of RMS 

roughness is obtained with respect to the 6H-SiC substrate (see Figure 17c and Figure 17d).  

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 17 AFM micrographs comparing the morphology of (a) 6H-SiC, (b) 1-octadecene functionalized 
6H-SiC after alkylation, (c) APDEMS, and (d) APTES functionalized 6H-SiC after silanization. AFM data 
were recorded in non-contact mode with scan areas of 5 µm x 5µm and the scale bar range is 0 to 3.5 
nm. 
 

3.3.2.4 Cell Viability and Morphology 

MTT assays were performed to quantify the cell viability on 6H-SiC (0001) substrates 

with and without the three SAMs described above. Although both cell lines exhibited 

qualitatively similar behavior, the PC12 cells showed a generally lower proliferation than the H4 

cells. For the H4 cells, the Tukey test determined that the mean viability values of 0.44±0.03 

and 0.76±0.07 relative to PSt obtained on the unmodified 6H-SiC substrates and on the 1-
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octadecene functionalized surfaces were statistically similar. These results are in agreement 

with the lower permissiveness values determined through optical inspection of the cell 

morphology on these two surfaces. On the other hand, the APDEMS and the APTES treated 

surfaces showed dramatic increases in cell viability, exceeding the PSt control surface with 

mean viability values of 2.14±0.19 and 2.72±0.26 relative to PSt, respectively. These two values 

were statistically similar, as per the Tukey test, but different from octadecene modified and bare 

6H-SiC. Of the two cell lines, the PC12 cells displayed the lowest proliferation on the bare 6H-

SiC surface, with a mean viability of only 0.22±0.04 relative to PSt. A statistical difference of the 

bare 6H-SiC compared to the 1-octadecene functionalized surface was obtained with the Tukey 

test, with the octadecene-modified surface exhibiting a viability of 0.66±0.06 relative to PSt, an 

indication that the surface termination clearly affects this cell type. The APDEMS functionalized 

surface yielded a 1.26±0.09 proliferation with respect to PSt, whereas cell proliferation after 

functionalization with APTES was close to 1.86±0.15, much higher than the PSt control.  

The average cell viability values obtained for the four surfaces tested were significantly 

different (p-value < 0.05) which is an indication that the response of the cells to the surface is 

indeed due to the material with which they are interacting and not to random factors involved in 

the experiment. More importantly, these results show a statistically significant degree of higher 

cell proliferation than previous studies performed with PC12 cells on porous Si [189] and SAMs 

on Si and glass substrates [172]. Figure 18 displays a summary of the cell viability obtained for 

both cell lines on each of the surfaces tested.  

Insight into the cell morphology was obtained via AFM analysis. Figure 19 displays 

selected AFM micrographs of the H4 cell line for both the unmodified and SAM-modified 

surfaces, including a living cell and a fixed cell for each (3 cells were scanned per surface and a 

representative image was selected that best illustrates the cell morphology). Figure 20 shows 

the same for the PC12 cell line. Although some subtle differences in cell morphology exist, both 

cell lines exhibited certain trends on each type of surface.  



57 

 
Figure 18 Proliferation of H4 and PC12 cell lines on the (0001) 6H-SiC substrates as a function of surface 
termination, as determined by MTT assay analysis. Results are normalized to the polystyrene control well 
and are expressed as the sample distribution of the mean (𝑥) and standard error of the mean (σM), 
normalized to the PSt readings. 

 

For the bare 6H-SiC and 1-octadecene modified surfaces, AFM micrographs showed 

elongated or rounded cells with few focal points or filopodia and lamellipodia extensions. 

Indeed, the lamellipodia areas seen on those surfaces were not significant with respect to the 

total cellular areas (see Figure 19 and Figure 20). For both cell lines on the APDEMS and 

APTES treated surfaces, cells with elongated shapes that were flattened and expanded over 

larger surface areas were observed, suggesting good attachment and consistent with the high 

proliferation observed using MTT assays.   

Additionally, there was evidence of focal point attachment, filopodia and lamellipodia 

extensions, as well as intercellular interaction. These results compliment the MTT assays, which 

showed greater proliferation on these surfaces compared to the untreated and 1-octadecene 

modified 6H-SiC surfaces. 
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a) 

 
c)  

e) 
 

g) 

 
b) 

 
d) 

 
f) 

 
h) 

Figure 19 AFM micrographs for H4 cells, fixed (top row) and live (bottom row), on the untreated a) and b) 
and modified c) through h) 6H-SiC substrates. a) and b) are untreated 6H-SiC, c) and d) are 6H-SiC after 
alkoxyylation with 1-octadecene, e) and f) are 6H-SiC after silanization with APDEMS, and g) and h) are 
6H-SiC after silanization with APTES. Scan size: 45µm x 45µm. 
 

 
a) 

 
c)  

e) 
 

g) 

 
b) 

 
d) 

 
f)  

h) 
Figure 20 AFM micrographs for PC12 cells, fixed (top row) and live (bottom row), on the untreated a) and 
b) and modified c) through h) 6H-SiC substrates. a) and b) are untreated 6H-SiC, c) and d) are 6H-SiC 
after alkoxyylation with 1-octadecene, e) and f) are 6H-SiC after silanization with APDEMS, and g) and h) 
are 6H-SiC after silanization with with APTES. Scan size: 45µm x 45µm.. 
 

3.4 Surface Modification and Covalent Immobilization of Anti-Myoglobin on 3C-

SiC  

In this section we describe the surface modification of 3C-SiC (100) with 3-

aminopropyltriethoxysilane (APTES) and the subsequent immobilization via covalent 

conjugation of anti-myoglobin on the modified surfaces, which are the critical initial steps for the 

fabrication of immunosensing based devices.  
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3.4.1 Preparation of 3C-SiC for Surface Modification 

3C-SiC was grown in a horizontal, low pressure, CVD reactor on (100) silicon (Si) 

substrates at 1385°C [190]. The 3C-SiC samples were prepared by solvent cleaning, first in 

acetone then in isopropanol for 5 min each, followed by piranha cleaning (H2SO4:H2O2) (1:1) for 

10 min and then immersed in HCl: H2O (1:2) for 2 min to remove any residual sulfur and finally 

dipped in 5% aqueous hydrofluoric acid (HF) to remove any native oxide. Surface hydroxylation 

(-OH termination) was achieved with a final HF treatment done immediately prior to the 

functionalization reaction. 

 

3.4.2 Surface Functionalization of 3C-SiC with APTES 

Surface functionalization of 3C-SiC with APTES (Sigma-Aldrich) was done by immersion 

in a 1% APTES/toluene solution for 90 min. The samples were then rinsed by ultrasonication 

with toluene, toluene/isopropanol (1:1) and isopropanol for 20 min and 10 min for the last two 

steps. This was followed by a baking step at 100°C for 1 hr in an oven. Static water contact 

angle (SWCA) measurements were acquired using a KSV CAM 101 system in which 3 ml DI 

water droplets were deposited on the hydroxylated 3C-SiC and the APTES modified 3C-SiC 

surfaces. In addition, XPS was used (SPECS XR-50 Mg-Anodex-ray source, EKα = 1253:6 eV 

and photoelectron detection with a SPECS Phoibos 100 hemispherical analyzer and a MCD-5 

detector) to measure the elemental composition and the chemical state of the elements on the 

SiC surface. The comparison of the survey and core level spectra of the hydroxylated SiC and 

the functionalized surfaces were used to confirm the successful formation of APTES layers on 

SiC. In addition, a XEI 100 scanning probe atomic force microscope (Park Systems) was used 

to analyze the surface topography before and after functionalization. 
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3.4.2.1 Characterization of the 3C-SiC|APTES Surface  

SWCA measurements following surface cleaning and hydroxylation of the 3C-SiC 

substrates was found to be 16±3° and after APTES surface modification it was 62±1°, which 

shows an increase in surface hydrophobicity similar to the findings of Schoell et al. for 3C-SiC 

functionalization with aminopropyldiethoxymethylsilane [191],  

Bierbaum et al. of aminopropyltrimethoxysilane on Si (111) [171] and Baur et al. of 

APTES on GaN and AlN [192]. AFM analysis of the surface topography of the 3C-SiC and 

chemically modified surfaces demonstrated that no surface aggregates or new features were 

produced, which is evident in the small change of the value of the surface roughness. For the 

bare surface the RMS roughness was ~0.9 nm and for the APTES-modified surfaces the RMS 

roughness value was 1.1 nm. These observations suggest formation of a smooth uniform 

organic layer (Figure 21a and Figure 21b). 

 

  
a) b) 

Figure 21 AFM micrographs (1000 X 1000 nm2, z scale 3 nm) of a) hydroxylated 3C-SiC b) 
Corresponding APTES modified surfaces. Images taken in non-contact mode. 
 

XPS analysis revealed that the 3C-SiC was successfully modified by the identification of 

new carbonaceous and amino species on the modified surfaces. The deconvolution of the C-1s 

spectra resulted in two components, one at 283.5 eV that can be attributed to the C of the SiC 

substrate, and another one at 285.5 eV (Figure 22) due to the APTES-modified samples, which 
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can be attributed to hydrocarbons at the surface. These peaks have also been identified by 

Schoell et al. and Rosso et al. in previous reports on 6H-SiC and 3C-SiC surface 

functionalization [173, 176, 191]. Following surface modification with APTES, an attenuation of 

the SiC substrate peaks for the C1s core level was observed, as seen in Figure 22a, due to the 

presence of overlying organic layers. 

For the N-1s core level spectra, two components were resolved at 400.5 eV and 404.2 

eV (Figure 22b), which arise from terminal -NH2 and -NH3
+ functional groups [171, 191]. This 

result demonstrates the effective formation of thin organic layers with a high concentration of 

reactive NH2 groups that would allow for successful attachment of the anti-myoglobin on the 

surface. 

 

 
a) 

 
b) 

Figure 22 a) C-1s core level spectra and b) N-1s core level spectra of the 3C-SiC after HF dip and APTES 
surface functionalization. The solid lines give the fitted spectral components of the deconvoluted data. 
 

3.4.3 Anti-Myoglobin Immobilization on the 3C-SiC|APTES Surfaces 

The immobilization of anti-myoglobin (Fitzgerald Industries) on the APTES modified SiC 

surface was performed via covalent conjugation at a concentration of 100 μg/ml. Covalent 

coupling was achieved by activating carboxylic acid groups of anti-myoglobin with 2 mM 1-ethyl-

3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) (ProteochemTM). Since EDC 

produces a reactive unstable intermediate, 5 mM N-hydroxy-sulfosuccinimide (Sulfo-NHS) 
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(ProteochemTM) are also added in MES buffer (2-(N-morpholino)ethanesulfonic acid) at a pH of 

5. The EDC, sulfo-NHS and antibodies are deposited directly on the APTES|SiC surface and 

incubated overnight at 4°C, this process is illustrated in Figure 23. After incubation of the 

antibodies, subsequent washes with PBS and 0.05% Tween 20 were performed followed by a 

blocking step consisting of washing with 1% Bovine Serum Albumin (BSA) in Phosphate 

Buffered Saline (PBS). 

 

 

Figure 23 Process followed for anti-myoglobin immobilization. a) EDC-Sulfo NHS solution and anti-
myoglobin are deposited on APTES|SiC samples, b) Activation of the antibody carboxylic group with 
EDC, sulfo-NHS produces a semi-stable amine-reactive ester and c) Antibodies coupled to the surface. 
 

The surfaces used as controls for this experiment included, i) physical adsorption of the 

antibody on the surface, which was studied by omitting the EDC-Sulfo NHS covalent 

conjugation step, and ii) omission of the BSA blocking step. The former control reports 

differences between covalent and non-covalent immobilization of anti-myoglobin. The latter 
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control investigated blocking by the adsorption of BSA as a means to prevent non-specific 

adsorption of Myoglobin. AFM was employed to monitor the surface topography after antibody 

immobilization and to check the uniformity of the surface. Likewise, fluorescent microscopy was 

used as a means to test the specificity of the Myoglobin to the anti-myoglobin immobilized on 

the 3C-SiC surfaces. 

 

3.4.3.1 Evaluation of Anti-Myoglobin Immobilization On 3C-SiC|APTES Surfaces 

Via AFM 

The qualitative evaluation of the anti-myoglobin immobilization was done with AFM. 

Three types of surfaces were evaluated: Surface A, covalent conjugation of anti-myoglobin to 

the surface followed by BSA blocking, Surface B, non-covalent linkage of anti-myoglobin to the 

surface followed by BSA blocking, and Surface C, with no BSA blocking step following the 

EDC/Sulfo-NHS covalent coupling of anti-myoglobin to the surface.  

Surface A shows a uniform and densely packed antibody film with some isolated 

proteins. Some of the images present particles with a diameter ~20 nm while for others the 

length was close to 50 nm (Figure 24a). We also observed that the particles have a globular 

shape due to its protein nature, as was reported by several authors [193-195]. On the other 

hand, Surface B presents smaller particles packed in molecular arrays where the antibodies 

appear to adsorb in clusters. However, there are certain regions where no antibody adsorption 

occurred as seen in Figure 24b. This surface presents non-specific adsorption of anti-myoglobin 

because of the absence of covalent conjugation with EDC/Sulfo NHS. In addition, there are 

lower amounts of anti-Myoglobin on Surface B compared to Surfaces A and C. A blocking agent 

was used to fill up those gaps where covalent immobilization of anti-Myoglobin has not occurred 

and to prevent cross-reactivity and/or non-specific adsorption of other proteins. 
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For Surface C, where the BSA blocking step was omitted, similar images to Figure 24a 

were obtained; however, there were fewer clusters and less protein accumulation, which can be 

seen in some of the darker spots in Figure 24c. The larger aggregates on Surface A are likely 

due to the presence of BSA, a well know sticky protein, that readily adsorbs and forms 

aggregates. Surface C reflects the absence of the blocking protein, as the size of the particles 

have been reduced to an average of 30 nm. If the blocking step with BSA is omitted, the 

antibody immobilization process is not affected. However, it may impact the successful 

quantification of the antibody-antigen interaction because non-specific binding of the myoglobin 

(antigen) could possibly take place on the surface, which leads to poor results. 

 

a) b) 
 

c) 
Figure 24 AFM micrograph (1000 X 1000 nm2, z scale 5 nm, non-contact mode) after myoglobin 
immobilization a) surface A (covalent immobilization and BSA blocking), b) surface B (non-covalent 
adsorption) and c) surface C (covalent immobilization and no BSA blocking. 
 

3.4.3.2 Analysis of the Specificity of the 3C-SiC|Anti-Myoglobin Surface to 

Myoglobin 

Specificity of an immunosensor to the antigen of interest is one of the main properties 

that can be accomplished with immunosensors, as was explained in Chapter 1. For this reason, 

after performing the characterization of the anti-myoglobin immobilized on the APTES modified 

3C-SiC we used fluorescent microscopy to detect anti-myoglobin/myoglobin binding.  
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In this experiment we labeled myoglobin (Fitzgerald Industries) and hemoglobin (Sigma-

Aldrich) with Alexa Fluor-488 (Life technologies) and incubated for 2 hrs. [196, 197] the anti-

myoglobin immobilized on functionalized SiC surfaces. The idea being that when the myoglobin 

binds to the respective anti-myoglobin (Surface A*) it will produce a strong green luminescence 

signal. The hemoglobin was used as a negative control (Surface B*), since hemoglobin should 

not bind to anti-myoglobin functionalized surfaces. In addition, the incubation of the proteins 

directly on the SiC|APTES surfaces (Surface C*) is considered the second negative control.  

The fluorescent intensity of the anti-myoglobin surfaces (Surface D*) was also measured 

as a negative control with lower values expected than on Surface A* because there is no 

presence of the labeled protein on the surfaces. As a positive control, anti-hemoglobin was 

immobilized on 3C-SiC|APTES surfaces and the labeled hemoglobin was used as the target 

proteins. In addition, myoglobin was incubated on anti-hemoglobin as the negative control. We 

refer to the respective surfaces in the positive control as Surface A** for SiC|APTES|anti-

hemoglobin|BSA|hemoglobin, Surface B** for SiC|APTES|anti-hemoglobin|BSA|myoglobin, 

Surface C** for SiC|APTES|anti-hemoglobin|BSA| and Surface D** for 

SiC|APTES|BSA|hemoglobin. 

In Figure 25 we present an illustration of the surfaces tested in this section and the steps 

followed to test the specificity of the SiC|APTES|anti-myoglobin surfaces to myoglobin. The 

protocol used for the anti-myoglobin (or anti-hemoglobin) was initially the one we described in 

Section 3.3.3. However, some modifications were made to this protocol because a strong signal 

due to non-specific binding of myoglobin was observed in Surface B** and of hemoglobin on 

Surface B*. For these reasons, the concentration of BSA as the blocking solution was increased 

to 3% with 0.25% of Tween 20 [198, 199]. It has been shown by other authors that the addition 

of Tween 20 to PBS helps to prevent non-specific adsorption of proteins on ELISA microtiter 
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plates [199] and of IgG on silanized Si surfaces after adding it to fetal calf serum blocking 

solution [198].  

The EDC-SulfoNHS protocol to crosslink the anti-myoglobin (or anti-hemoglobin) to the 

SiC|APTES surfaces was also modified to prevent hydrolysis that could cause regeneration of 

the carboxyl group in the antibodies after these are brought in contact with the 2 mM EDC-5mM 

SulfoNHS solution [200, 201]. After mixing the anti-myoglobin (or anti-hemoglobin) in EDC-

SulfoNHS solution for 20 min we added 20 mM mercaptoethanol to quench the activation of the 

carboxyl group in the antibodies according to the steps followed in [202]. After the activated 

proteins reacted with the amino-terminated SiC|APTES surfaces, 10 mM hydroxylamine was 

added. This step hydrolyzes any un-reacted NHS that could interact with myoglobin that we are 

planning to detect [200, 201]. 

 

 
Figure 25 Illustration of the sequence followed to test the specificity of the SiC modified surfaces. The 
surfaces has been labeled from A* to E* to identify each of the treatments tested and the * to differentiate 
them from the surfaces tested in section 3.3.3.1. 

SiC

1. SiC Surface functionalization with 
aminopropyltriethoxysilane (APTES)

2. Anti-myoglobin immobilization 
using EDC/Sulfo NHS coupling SiC

3. Block with 3% BSA with 0.25% 
Tween 20 (Surface D*) SiC

4. Incubate lableled protein for 2 hrs at room temperature

SiC|APTES|BSA|Anti-myoglobin|Myoglobin SiC|APTES|BSA|Anti-myoglobin|Hemoglobin
(Surface A*)                                                             (Surface B*)

SiC

2a. Incubate lableled protein 
for 2 hrs at room temperature 
(Surface C*)

SiC | APTES | BSA| Myoglobin

SiC SiC

5. Quantify fluorescence using image J 

APTES

Anti-Myoglobin

BSA
Alexa-fluor 488 
labeled myoglobin

Alexa-fluor 488 
labeled hemoglobin
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To take the fluorescent images we used a Leica compound microscope with a CCD 

camera (SPOT5) and an exposure time of 5 sec. We took 5 images for each of the surfaces 

tested and the green intensity was quantified by calculating the integrated density of the images 

with ImageJ [8]. In order to process the data we subtracted the background (SiC substrate 

without surface modification) from surfaces A* to D*. In addition, for simplicity all of the results 

were normalized with respect to the average integrated density obtained on the surface where 

we expected the highest fluorescence to be generated (Surface A*) and are reported in Figure 

26. The data is reported as the sample distribution of the mean (𝑥) (n= 9) and the standard error 

of the mean (σM). A t-test was performed for each surface with respect to their controls.  

 

 
Figure 26 Normalized fluorescent intensity of Alexa-Fluor 488 labeled myoglobin and hemoglobin bound 
to APTES (left), anti-myoglobin (center) and anti-hemoglobin immobilized on SiC (right) with their 
respective controls. The results are expressed as the sample distribution of the mean (𝑥) and standard 
error of the mean (σM) and normalized to the positive control experiments in each test. + denotes p-values 
< 0.05 with respect to the antibody immobilized control and ++ denotes p-values < 0.05 with respect to the 
surface after APTES modification. 
 

From the results presented in Figure 26 and Figure 27 we confirm the successful 

immobilization of anti-myoglobin on SiC and the specificity to the target protein, i.e. myoglobin. 

The fluorescent intensity levels on Surfaces A* and A** were higher compared to the control 
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surfaces, with a higher fluorescent level on surface A** compared to A*. On the other hand, 

surfaces B* and B** did not show zero fluorescence and the degree of fluorescence was higher 

than surfaces D* and D** but comparable to surfaces C* and C**. This is an indication that a low 

degree of non-specific binding could occur on the surface but is not significant compared to 

surfaces A* and A**. In addition this may not affect the detection of the target protein. Lastly, 

surfaces D* and D** showed was very low fluorescence intensity (close to zero). The fact that 

D** is lower than D* could be due to the higher fluorescence intensity on A** than on A*, which 

influences the normalized results.  

 

 
 

 
 

a) b) c) d) 

    
e) f) g) h) 

 
 

 
 

i) j) k) l) 
Figure 27 Green signal extracted from fluorescent images before background subtraction for the tested 
surfaces. The fluorescent intensity is represented in the RGB histogram (green channel) and microscope 
image a) and b) non-treated SiC, c) and d) Surface C* (no protein), e) and f) Surface C*, g) and h) 
Surface D*, i) and j) Surface B*, and k) and l) Surface A*. 
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3.5 Summary 

In this chapter we presented two different applications of self-assembled monolayers 

(SAMs) on SiC surfaces. The first one illustrated the process to tailor the SiC surface to study 

the effect of chemical termination in cellular attachment and proliferation. In section 3.1 we 

presented a brief overview of the different works regarding SAM formation and quality on SiC.  

Then, in section 3.2 we studied the possibility of increasing cellular proliferation and 

attachment on 6H-SiC (0001) with PC12 and H4 cells using SAMs with terminal methyl and 

amino groups.  

The results obtained from two in-vitro techniques, MTT assays and AFM cell morphology 

inspection, confirmed the characteristics of substrate viability and permissiveness, which were 

significantly better for the amino (NH2)-terminated surfaces with an increase of ~5x and ~3x 

(APTES and APDEMS, respectively) for PC12 cells and ~8x and ~6x (APTES and APDEMS, 

respectively) for the H4 cell line with respect to the pre-treated 6H-SiC substrates.  

This study indicates that the application of SAMs on 6H-SiC can greatly increase cell 

viability and substrate permissiveness while providing the ability to modify specific surface 

properties. This method allows for direct control of the wettability, surface chemical reactivity, 

and surface charge, which can directly impact the adsorption of ECM proteins that mediate cell 

adhesion and spreading.  

The second application of SAMs on SiC (section 3.3), shows a way to produce a specific 

functionality to the surface to immobilize antibodies. This technique has been widely used for 

protein concentration detection in immunosensors. We were able to demonstrate that 3C-SiC 

(100) functionalization with APTES has successfully proven to be a starting point to link 

antibodies to the substrate. The fact that the APTES layer was uniform, as seen with AFM, and 

showed a change in surface wettability after chemical treatment of 3C-SiC, allowed the 

antibodies to attach to the functional moiety of the self-assembled monolayer. The use of 

covalent conjugation agents like EDC/Sulfo-NHS on Surface A compared to Surface B (where 
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no EDC/Sulfo-NHS was used) yielded appreciable differences in the molecule conformation on 

the surface, i.e. homogeneous and uniform for Surface A while Surface B had areas where no 

proteins have been attached. We have also seen ovoid protrusions with diameters from 45 to 60 

nm similar to the work done by Ehrhart et al. for hepatitis detection on polystyrene [19]. This 

could be due to the superimposition of two Y shaped immunoglobulins (IgG) that were randomly 

distributed on the surface. We would not expect the molecules to exhibit a Y shape because of 

the conformational flexibility of IGgs and interactions with the substrate.  

On the other hand, in the experiment performed to test protein specificity we observed 

higher fluorescence values on sample A** compared to A*. The difference in the average 

fluorescence values was also compared using the t-test (p-value < 0.01). We could attribute this 

difference to possibly more uniform anti-hemoglobin (surface A**) layers that were formed on 

the SiC|APTES surfaces. The antibody immobilization performed via covalent 

heterobifunctional linkers produces random orientation and conformation of the antibodies on 

the target substrate as mentioned in section 1.3.1.2. Some degree of non-specific adsorption of 

myoglobin and hemoglobin was observed on surfaces C* and C**. Both surfaces presented 

fluorescence intensities higher than the SiC|APTES surface and it was not surprising that the 

values were similar to surfaces B* and B** in some specimens. The non-specific adsorption 

could be due to electrostatic binding of myoglobin and hemoglobin on areas of the samples 

where BSA has been displaced by the target molecule or regions where the APTES did not 

conform properly on the surfaces. For instance, Williams et al have found that BSA and 

streptavidin could non-specifically bind to APTES modified 4H-SiC, due to protonation of the 

APTES terminal group at a pH ~ 7.4 causing electrostatic binding of the proteins to the surface 

[203]. Other reasons for non-specific adsorption include the effect of surface roughness and 

defects in the formation of homogeneous self-assembled monolayers and non-immobilized 

bioreceptors as presented by Choi et al. This group has also shown that BSA can sometimes be 
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displaced by other proteins or form a multilayer with proteins with opposite charges [204]. Even 

though we observed a similar behavior on our surfaces while looking for particular reasons for 

the non-specific adsorption on SiC, modified surfaces are outside of the scope of this work. Also 

because of the lower fluorescence intensity (2 times lower) on surfaces B* and B**, we 

concluded that the signal due to non-specific adsorption is not high enough to generate a false 

response when trying to target myoglobin. The results presented in this chapter suggest that 

SiC is a suitable substrate material for cell-based and immunosensing devices as was shown in 

sections 3.2 and 3.3.  
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4 CHAPTER 4: MYOGLOBIN DETECTON VIA IMPEDANCE SPECTROSCOPY ON 

3C-SIC (100) 

 

In Chapter 1 we described the concepts behind the construction of a SiC-based 

immunosensor. This includes the detection analyte, the antibody, the covalent immobilization of 

the antibody to solid surfaces, and the principal techniques employed to translate the antigen-

antibody binding mechanism in terms of a measureable signal. Then, in Chapter 2 we discussed 

the properties and major works related to SiC biosensors, in addition to the physics behind the 

semiconductor|electrolyte interface that provides an understanding in the principles behind an 

immuno-electrochemical based device.  

Before building a SiC CHEMFET to detect myocardial infarction we have decided to 

understand how each of the layers involved in the immunosensor construction affect the space 

charge region (SCR) of the semiconductor. For this reason, in this chapter we focus on the 

application of the concepts and protocols described in the previous chapters to study the 

changes in flat band potential and impedance in the SCR of 3C-SiC after formation of the 

APTES (i.e. the starting point for antibody immobilization), anti-myoglobin immobilization and 

afterwards, and the impact of adding different concentrations of myoglobin on top of the sensor 

surface. This last step is done with the purpose of identifying if we can detect levels of 

myoglobin similar to the those found in patients prone to AMI as well as healthy individuals 

using electrochemical means. However, due to the limited number of SiC samples available, we 

only tested one concentration of myoglobin ( 1 ug/ml), the same used in Chapter 3. 
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4.1 Electrochemical Cell Construction 

 

4.1.1 3C-SiC (100) Working Electrode Fabrication  

The 3C-SiC (100) films used in this work consist of a ~2 μm thick low-doped (Nd ~ 1014 

cm-3) epitaxial film grown on a 4" Si (100) wafer as in [190] followed by a ~2 μm in-situ heavily-

doped 3C-SiC film. In-situ doping is accomplished during the epitaxial growth phase by 

including 50 sccm of UHP N2 into the precursor gas mixture in [190].  

 

4.1.1.1 Characterization of In-Situ Doped 3C-SiC (100) Films 

The surfaces of USF1-12-017 and USF1-12-018 were characterized by means of 

scanning AFM and electron microscopy (SEM), so that morphological information of the 

semiconductor surface could be correlated with device performance presented later on in this 

chapter.  

Figure 28 shows topological data of the (100) SiC surface after AFM characterization of 

USF1-12-017. The AFM micrograph shows large flat mesas, called anti-phase domains (APD), 

with abrupt changes in height between the mesas, called anti-phase boundaries (APB). These 

are a characteristic topographical feature of 3C-SiC grown on (100) Si substrates. The height 

data shows many islands that are several tens of nanometers high with respect to the local 

surrounding film clustered along the APB and loosely scattered on the domains. Plan-view SEM 

micrographs of USF1-12-017 shows a surface morphology consisting of jagged, abrupt edge 

discontinuities of the phase boundaries separating the large mosaic-like regions of the anti-

phase domains. 

Close examination of the domain regions at magnifications >10 K (Figure 29b and 29d) 

reveals subtle square-shaped terraces resulting from the step-flow growth of the heteroepitaxial 

film. 
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Figure 28 AFM micrograph of the in-situ doped SiC films (USF1-12-17) used for the electrochemical 
measurements. Rq = 7.2±3 nm and classic anti-phase domains are clearly evident, as expected. 

 

The SEM images of USF1-12-017 show small dark areas covering the surface. It is 

interesting to note that the size of these features appear to be larger and more numerous along 

the APB edges, while smaller dark anomalies are evenly-distributed across the APDs along the 

step-edges of the terraces. Electron dispersion spectroscopy (EDS) analysis using an EDAX-

Phoenix EDS system was performed on the anomalous features. The EDS spectrum of the dark 

areas indicated the anomalies were regions of carbon-rich silicon carbide. Analysis of the x-ray 

spectrum by percentage of the number of atoms detected for the carbon-rich SiC reveals 63.5% 

C and 36.5% Si, whereas the surrounding SiC demonstrated 49.5% C and 51% Si. A possible 

hypothesis for the presence of these features could be due to a carbon-rich precursor gas 

chemistry. 

During the CVD growth process, the precursor gases decompose and adhere to the 

substrate surface as adatoms. These adatoms diffuse along the surface until they encounter an 

area of low energy, i.e. step edges on the film surface, and bind to the surrounding atoms. The 

slightly higher bond energy of the C-C bond (346 KJ/ mol) may favor the formation of C-C bonds 

over Si-C (318 KJ/ mol). Also, given that computational simulations have demonstrated that 

carbon adatoms experience a lower surface diffusion energy barrier than silicon adatoms on the 
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(100) SiC surface [205], the likelihood of carbon adatoms bonding to one another in a carbon-

rich environment seems very plausible. Assuming the possibilities of the hypothesis, it would 

make sense to see large and numerous anomalies present at the APBs. These results also 

seem to suggest that any stoichiometric imbalances in the precursor gas composition that favor 

a carbon-rich chemistry do not produce films with the excess carbon evenly distributed within 

the film, but produce films consisting of localized areas of carbon-rich SiC embedded in a 1:1 

stoichiometric SiC matrix.   

The plan-view SEM images of USF1-12-018 also show the characteristic APB and APD 

features seen on USF1-12-017. However, the surface does not demonstrate the same character 

as the anomalies seen with the C-rich SiC film. The anomalies seen on the surface of USF1-12-

018 are larger, more isolated and far less numerous than the features seen on USF1-12-017.  

These features appear to protrude from the surface, much like a hillock or an inclusion. 

EDS analysis of the features show a very similar stoichiometric composition as the surrounding 

film. 

In order to determine the approximate doping concentration of the 3C-SiC films, the 

wafers where RCA cleaned and CV (capacitance vs. voltage) measurements performed using a 

Hg probe (LEI 2017B, Lehighton Electronics Inc.). Figure 30a and Figure 30b show the 

Capacitance vs. applied potential (E) curve and the corresponding calculated doping 

concentration with respect to the depletion width. Using the equations (11) and (12) described in 

section 2.2 we obtained an average doping density for the in-situ doped 3C-SiC wafers of ~3.64 

x 1018 cm-3.  
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a) b) 

  
c) d) 

Figure 29 SEM images taken on the in-situ doped SiC films used for the electrochemical measurements. 
The first wafer (USF1-13-17) corresponds to a) 5K magnification and b) 10K magnification, the second 
wafer grown (USF1-13-18) corresponds to a) 10K magnification and b) 20K magnification. The surface 
contains cluster defects in addition to anti-phase domains. Cluster defects can act as surface 
recombination centers that will directly impact CHEMFET operation. 
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a) 

 
b) 

Figure 30 Characterization of the in-situ doped 3C-SiC wafers using Hg probe. a) CV measurements and 
b) calculated doping concentration (Nd). An acceptable level of doping (~3.64 x 1018 cm-3) was achieved 
during growth which should be suitable for electrochemical measurements. 

 

After confirming that the doping concentration was appropriate to make ohmic contacts 

to SiC, we proceeded to e-beam evaporate Ti/Ni (20 nm/150 nm) followed by Ti/Au (25 nm/150 

nm) where the Au layer was deposited to prevent oxidation of the contacts. A schematic of the 

fabrication process of the SiC electrodes is shown in Figure 31. After contact formation, the 

contacts were annealed for 3 min (10 cycles of 20 sec each) at 1050°C in a rapid thermal 

annealer (Temp Teck Inc). Figure 32a shows the change in the inter-contact resistance before 

(9.8±3 Ω*cm-1) and after (7.2±1 Ω*cm-1) annealing the specimens while Figure 32b shows a 

picture of the contacts on the 3C-SiC sample. It is worth mentioning that two concentric 

electrodes were fabricated in order to reduce any reduce any edge effects on the electric 

field/current profile. 
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Figure 31 Process steps to fabricate ohmic contacts on in-situ doped 3C-SiC (100). The contact details 
are shown in Figure 32. 
 

 
a) 

 

 
b) 

Figure 32 a) Inter-contact resistance for ohmic contacts fabricated on in-situ doped 3C-SiC and b) pattern 
of the SiC electrode. Note: pink represents the metal. The contact resistance after annealing was ~ 7.2±1 
Ω*cm-1. 
 

4.1.2 SiC Electrochemical Cell 

In order to test the sensor an electrochemical cell was designed and constructed. The 
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nylon base to which the cover mount was adjusted with two screws (see Figure 33a and Figure 

33b).  

The working electrode is the SiC specimen which consists of two concentric circular 

electrodes as described in the previous section. This shape was chosen to have a uniform 

current distribution across the SiC film when the current is applied from the potentiostat, as 

shown in Figure 33a. The inside electrode is the one where the current is applied and the outer 

one is where the voltage is probed with respect to the reference electrode. The reference 

electrode was a miniature Ag/AgCl electrode for the potentiodynamic tests and, for the Mott-

Schottky and impedance spectroscopy tests, a Ti wire electrode with an outer mixed-metal-

oxide surface was used as a low impedance reference electrode [58]. This later electrode was 

previously calibrated against the Ag/AgCl electrode. In all cases, the potentials have been 

converted to the saturated calomel electrode (SCE) scale for reporting purposes [8]. 

A Ti wire was used also as the counter electrode to provide a pathway for the current 

through the electrolyte. The four-electrode configuration was employed to avoid any voltage 

drop at the current insertion contact that could be caused by non-idealities of the ohmic contacts 

[206].  

The electrochemical cell arrangement is presented in Figure 33a. We also show the 

equivalent capacitance and resistance in the same figure for reference. For simplicity, we have 

not included the double layer capacitance in this figure. 
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a) 

 
b) 

Figure 33 a) Diagram for the electrochemical cell used to study the SiC electrode before and after surface 
modification. Equivalent electrical parameters are shown to indicate their position with respect to the 
device and measurement apparatus.  b) Picture of the SiC cell used in the laboratory.  The WE (E) and 
WE(I) are circular electrodes as shown on the right. 
 

4.2 Specimen Preparation and Testing Methodology 

The SiC samples were solvent cleaned in an ultrasonic bath for 5 min in acetone and 

isopropanol and rinsed in DI water. The specimens were then immersed in diluted HF (1:100, 

HF: DI water) for 5 min to remove the native oxide and to obtain a hydroxyl (-OH) terminated 

surface. After cleaning the specimens and modifying the surfaces as described in section 

3.3.3.2., three different tests were performed: 1) Impedance spectroscopy in the frequency 

range of 0.01Hz - 300kHz at 10 mVrms. 2) Mott-Schottky plots were obtained from 1kHz and 

10kHz with a voltage sweep of -0.6V to 0.6V (vs. SCE) with an amplitude of 10 mVrms and 
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50mV/s scan rate. This voltage range was chosen in order to avoid modifying the test due to H2 

evolution or O2 reduction on the surfaces. 3) Cyclic polarization was performed in the same 

voltage range used for the Mott-Schottky experiments (5mV/s scan rate) to determine the open 

circuit potential (OCP) and the degree of passivation of the SiC electrodes before and after 

surface functionalization (including the antibody immobilization step). All the experiments were 

performed in Dr. Alberto Sagüés’ laboratory in the dark at ~ 21 ± 2°C using a Gamry Reference 

600 potentiostat. In all cases the electrolyte used was 0.1 M Phosphate buffer saline, PBS (KCl 

2.68mM, KH2PO4 1.47 mM, NaCl 136.89 mM and Na2HPO4 8.10 mM). 

 

4.3 Impedance Spectroscopy of the Functionalized 3C-SiC Surface 

For the impedance spectroscopy, a total of seven specimens were tested. The idea was 

to perform these experiments to understand trends and identify the passivation of the surfaces 

after surface modification. This experiment was planned to test the same surfaces described in 

section 3.3.3.2. However, due to availability of the material the surfaces included in the 

impedance and Mott-Schottky experiments were surface A* (i.e. myoglobin bound to anti-

myoglobin modified surfaces), surface B* (i.e. hemoglobin bound to anti-myoglobin modified 

surfaces) and surface C* (i.e. myoglobin immobilized on SiC|APTES surfaces) described in the 

mentioned section. The purpose of using surfaces B* and C* was to have two different controls 

that would allow us to identify if there are changes, or not, in impedance and flat band potential 

in the cases where the target protein myoglobin should bind to the anti-myoglobin modified SiC.  

The impedance spectra (as well as Mott-Schottky) were collected after each step of the 

preparation of the surfaces. That means that for surface A* we did an impedance test after 

hydroxylation of SiC, after APTES functionalization, after anti-myoglobin functionalization and 

finally after myoglobin incubation. In the following section we will discuss the results for each of 

the mentioned surfaces.  
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4.3.1 Analysis of Impedance Spectroscopy Results for Surface C* 

The first control surface tested was surface C*. The Nyquist plot obtained for two of the 

three specimens tested is presented in Figure 34. The results for the third specimen are not 

presented due to the similarity to the ones obtained for sample 17R shown in Figure 34b. By 

looking at the Nyquist plots we could say that 18F shows an indication of passivation due to the 

APTES layer compared to specimen 17R because the increase in the amplitude of the 

semicircular plot. Likewise on Figure 34a we see that after the incubation of myoglobin there is 

no increase in impedance whereas we see the opposite in Figure 34b. This could be an 

indication of some binding of the myoglobin to a defective APTES film.  

 

 
a) 

 
b) 

Figure 34 Nyquist plots obtained for each layer needed to form surface C* on specimen a) 18F obtained 
from wafer USF1-13-18 and b) 17R from wafer USF1-13-17.  Bare SiC  APTES,  
Myoglobin. 
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The Bode plots shown in Figure 35 show evidence of the non-idealities in the impedance 

magnitude for both specimens prior to the functionalization, especially at lower frequencies. The 

lower frequencies (f< 1Hz) typically represent the behavior of the double layer capacitance 

[207]. As can be seen from the insets of Figure 35b and Figure 35d, at higher frequencies (> 

100 kHz) the curves do not fully converge to the same impedance value due to differences in 

the solution resistance. This behavior may be due to variations in the position of the reference 

electrode when the samples are withdrawn and reintroduced in the electrochemical cell after 

performing surface modification steps. In addition, we see that for specimen 17R the magnitude 

of impedance is almost the same as that for the bare SiC surface after APTES functionalization 

but decreases for frequencies < 1kHz. It could be that the APTES layer formation on this 

sample did not result in a homogeneous layer. For sample 17R, the myoglobin incubation step 

seems to result in the highest impedance from the Nyquist plots, higher than the curve obtained 

for the APTES modified surface. In the Bode plots (see Figure 35) the impedance appears to be 

higher at lower frequencies (< 1Hz) but lower than APTES at higher frequencies. For 18F, the 

impedance presents a different behavior than on 17R, with a small increase after APTES 

functionalization, mostly at < 1Hz and then decreases after myoglobin incubation on the 

samples for all the frequency range tested. 

 

4.3.2 Analysis of Impedance Spectroscopy Results for Surface B* 

For surface B*, the one in which anti-myoglobin immobilization has been performed and 

hemoglobin is incubated to test for non-specific binding, three samples were also tested. 

However we noted metal residue (maybe from the liftoff step) on one of the samples and it was 

therefore not included in the analysis. From Figure 36 we identify similar trends on both 

specimens but the impedance tends to be higher on 17Q for the Bare SiC and APTES treated 

surface compare to 17P. There is an indication of an increase in the real and imaginary 

components from the starting hydroxylated SiC surface to the anti-myoglobin surface. We 
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observed no or very small binding of hemoglobin because no significant change in impedance 

was observed after this step. 

 

 
a) 

 
 
 

 
b) 

 
c) 

 
 
 
 

 
d) 

Figure 35 Bode plot on SiC, after APTES and after myoglobin incubation (surface C*) on specimen a) 
18F obtained from wafer USF1-13-18 b) inset for the |Z| at high frequencies for 18F c) 17R from wafer 
USF1-13-17 and d) inset for the |Z| at high frequencies for 17R. |Z| Bare SiC  |Z| APTES, 

 |Z| Myoglobin. The open symbols represent the phase. 
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a) 

 
b) 

Figure 36 Nyquist plots obtained for each layer needed to form surface B* on specimen a) 17P and b) 
17Q both from wafer USF1-13-17.  Bare SiC  APTES,  Anti-Myoglobin 
Hemoglobin. 
 

The Bode plots for surface B* are shown in Figure 37. The inset shown in Figure 37b 

and Figure 37d illustrates a similar tendency for the impedance magnitude on both specimens. 

However, we have to be careful when judging the results because of the variability in the 

solution resistance. Similar to what we observed in Figure 35a for specimen 18F, there is an 

increase in impedance after APTES functionalization suggesting passivation of the surfaces due 

to increased impedance with respect to the surfaces with no treatment (Bare SiC). This effect is 

increased after the anti-myoglobin linking step in the Nyquist plot presented in Figure 36, but it 

shows a decrease in impedance. For specimen 17P, the impedance is higher after anti-

myoglobin immobilization at f < 1Hz, but is lower at all frequencies for 17Q (see Figure 37).  
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a) 

 
 
 
 
 

 
b) 

 
c) 

 
 
 
 
 

 
d) 

Figure 37 Bode plot of each layer that forms surface B* on specimen a) 17P b) inset for the |Z| at high 
frequencies for 17P c) 17Q and d) inset for the |Z| at high frequencies for 17Q. Both specimens were 
obtained from wafer USF1-13-17. |Z| Bare SiC  |Z| APTES,  |Z| Anti-Myoglobin 

 |Z| Hemoglobin. The open symbols represent the phase. 
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and anti-myoglobin linking to the surfaces. The situation was different after the myoglobin 

incubation, where we saw this behavior for only one specimen. However, for this specimen we 

also saw a different behavior in the impedance magnitude after linking the anti-myoglobin to the 

APTES surfaces as can be seen in Figure 39a and Figure 39b. Since the values observed for 

the impedance in the Nyquist plots were similar for both specimens 17C and 18C but different in 

the bode plots we considered that another effect besides the surface treatment may be 

responsible for these unexpected results. Different apparent capacitances due to different 

effective areas when taking one measurement after APTES or anti-myoglobin can cause 

deviations in the expected response. This could produce erroneous values of the magnitude of 

the impedance in combination with the variations in the position of the reference electrode.  

 

 
a) 

 
b) 

Figure 38 Nyquist plots obtained for each layer needed to form surface A* on specimen a) 17C obtained 
from wafer USF1-13-17 and b) 18C from wafer USF1-13-18.  Bare SiC 

 APTES,  Anti-Myoglobin  Myoglobin. 
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a) 

 
 
 
 
 

 
b) 

 
c) 

 
 
 
 
 
 
 

 
d) 

Figure 39 Bode plots obtained for each layer that forms surface A* on specimen a) 17C obtained from 
wafer USF1-13-17 b) inset for the |Z| at high frequencies for 17C c) 18C from wafer USF1-13-18 and d) 
inset for the |Z| at high frequencies for 18C. |Z| Bare SiC  |Z| APTES,  |Z| Anti-
Myoglobin  |Z| Myoglobin. The open symbols represent the phase. 
 

4.4 Equivalent Circuit Used to Fit the Impedance Spectroscopy Results 

As was explained in section 1.4.1, Nyquist and Bode plots can be associated with an 

equivalent circuit of resistors and capacitors. Fitting our data to an equivalent model will provide 

more information regarding the quality of the films and the changes in the SCR after the surface 

modification. In Figure 40 the equivalent model used in this work is presented. It includes two 
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constant phase elements (CPEs) to include the non-linearity observed in bode plots. Because of 

the surface roughness and the irregular structure of the coatings, in this case APTES and 

antibodies, a CPE is used to describe this kind of systems appropriately, just as we described in 

section 1.4.1. 

The first CPE reflects the changes in the double layer capacitance (Cdl) that dominates 

the frequency range 0.1Hz -1Hz. After surface modification, the double layer capacitance is 

considered to be in series with the layer obtained after modification, as shown in Figure 40b. 

After performing the model fitting the value of n obtained for this CPE was between 0.8 to 1.0, 

which is close to an ideal behavior, except for specimens 17R, 18H and 18F that presented the 

less ideal behavior with 0.6 < n < 0.9. The second CPE corresponds to the SiC SCR (Csc) that 

dominates the frequency range 1 kHz -10 kHz. After fitting the data to the model the value of n 

for this CPE was between 0.8 to 1.0, which is close to ideal behavior, except for specimens 17P 

and 17Q that presented a less ideal behavior of 0.6 < n < 0.9. 

The model also includes the solution resistance (Rs), the charge transfer resistance (Rct) 

that is related to the passivation of the films, and the resistance associated with the SCR (Rsc) in 

the SiC. 

The variations of each of the parameters that conform to the equivalent circuit are 

presented in Figure 42 and Figure 43. In addition, the percentage change is included in Tables 

3, 4 and 5. Because of the variability in the results, we decided not to average the values 

obtained for each sample used to test surfaces A*, B* and C*. This could provide a better way to 

understand the expected behavior when the target surfaces (and the controls) are tested.  
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Figure 40 Equivalent circuit used to perform the fitting of the impedance spectra obtained for surfaces A*, 
B* and C*. Left model for bare SiC. and right model for functionalized SiC. 
 

4.4.1 Model Fitting for Surface C* 

In general Rct increased after the APTES functionalization, except for samples 18H and 

17R where the value decreased. This indicates less passivation of the APTES film on these two 

specimens. Likewise, APTES is known to form in islands which could cause that part of the SiC 

is exposed to the electrolyte leading to subsequent myoglobin binding directly to the SiC 

surface. This can be concluded from the higher Rct and the decrease in Cdl after myoglobin 

immobilization for samples 17R and 18H in Table 3.  

The increase in Csc after APTES modification can be due to protonation of the monolayer 

from an NH2 to NH3
+ end group. Both terminations are typically obtained on the surface after 

modification of SiC [191]. A positive net charge on the semiconductor surface will cause a 

decrease in the depletion layer width and, hence, an increase in Csc. It is still not clear why the 

value for Rsc increases for sample 18F contrary to what is expected due to a lower depletion 

width, and is seen in sample 17R. 

 

4.4.2 Model Fitting for Surface B* 

For the other specimens used to test surfaces B* and A*, similar trends in Rct and Cdl 
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rest of the parameters do not present the percentage increase that was expected for all the 

specimens. In the case of specimens 17P and 17Q (surface B* test) the Rct after anti-myoglobin 

immobilization was reduced. One could think that the cross-linking of the anti-myoglobin 

surfaces did not result in a uniform film. From Figure 37, the change in the impedance 

magnitude is small which can be misinterpreted when fitting the model or perhaps a different 

model should be used to fit the data. However, Csc shows an increase that could indicate the 

presence of the positive charges due to the antibodies. It could also be an increase in 

protonated end-groups of the APTES films that could prevent the anti-myoglobin from linking to 

the surface. The final treatment that included the hemoglobin immobilization showed very small 

changes in Rct for sample 17P but much higher increase on sample 17Q, which could suggest 

NSB on the later sample. These results were not completely clear because the analysis of Csc 

gives an indication of very little changes in the depletion width in the semiconductor.  

 

4.4.3 Model Fitting for Surface A* 

Similar trends with respect to the samples used to test surface B* were identified for 

specimens 17C, 18B and 18C that were used surface A*. Even though some inconsistencies 

where seen for Cdl, Rsc and Csc, one can see that for sample 17C the increase in Rct and 

increase in Cdl, together with an increase in Csc after myoglobin immobilization, provides an 

indication of the detection of the protein on this specimen.  

On the other hand, on 18C after the myoglobin immobilization step we did not see 

significant changes in Rct, Cdl in addition to a very small increase in Csc that confirms that no 

protein was detected on this sample.  

The net charge of the APTES, the antibodies and the later protein binding affect the 

band bending of the semiconductor, as mentioned in chapter 2. From the model fitting some 

conclusions were drawn and, in other to give the reader a more clear explanation, we provide 

an illustration of changes in the SCR of the semiconductor for a particular charge present at the 



92 

semiconductor-electrolyte interface. Both the APTES and antibodies present a positive net 

charge [208, 209], whereas myoglobin and hemoglobin tend to be negatively charged in buffers 

with pH above their isoelectric point (pI). The pI for myoglobin is 7.2 and for hemoglobin is 6.5 

[210, 211]. However, the conformation of the protein could change once bound to the surface 

and also the amino acids that are exposed and that determine its net charge. When the n-type 

semiconductor, SiC in this case, is in depletion (see chapter 2) and brought in contact with 

positive charges the upward band bending is reduced by an amount proportional to Efb. In this 

case, a small amount of majority carriers is induced close to the interface leading to a decrease 

in depletion width, increase in capacitance and decrease in impedance. On the other hand, for a 

negative charge molecular layer, the upward bending is increased and also the flat band 

potential moves towards more negative values. In addition, an increase in impedance and 

decreased capacitance are expected due a larger depletion width. For more details see the 

illustration in Figure 41. 

 

 
a) 
 

 
b) 

Figure 41 Schematic that illustrates the change in band bending after a) APTES, antibody immobilization 
and b) protein binding to antibody modified surfaces. 
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a) 

 
b)  

c) 

 
d)  

e) 
 

f) 
Figure 42 Fitted values of Rct for a) surfaces C*, b) surfaces B*, and c) surfaces A*. Fitted values of Cdl for d) surfaces C*, e) surfaces B*, and f) 
surfaces A*. These values were obtained after fitting the equivalent circuit model described in Figure 40. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 43 Fitted values of Rcs for a) surfaces C*, b) surfaces B*, and c) surfaces A*. Fitted values of Csc d) surfaces C* e) surfaces B* and f) 
surfaces A*. These values were obtained after fitting the equivalent circuit model in Figure 40. 
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Table 3 Percentage change in the values of Rct, Cdl, Rcs and Csc for surface C*. 

 

Rct Cdl 

∆ APTES-Bare ∆ Myo-APTES ∆ APTES-Bare ∆ Myo-APTES 

18F 
18H 
17R 

1895.78 
-78.61 
-24.64 

 

12.40 
2568.54 
-99.95 

 

-97.03 
397.75 
58.46 

 

8.94 
37.46 
-46.06 

 

 
Rsc Csc 

18F 
18H 
17R 

712.24 
488.43 
-76.54 

 

-100.00 
-96.48 
3161.57 

 

28.25 
0.53 
590.68 

 

15.02 
81.70 
.76 

 

 
 
 
 

Table 4 Percentage change in the values of Rct, Cdl, Rcs and Csc for surface B*. 

 

Rct Cdl 

∆ APTES-Bare ∆ AntiMyo-APTES ∆ Hemo-AntiMyo ∆ APTES-Bare ∆ AntiMyo-APTES ∆ Hemo-AntiMyo 

17P 
17Q 

1691 
371.54 

-60.44 
-61.16 

-4.22 
94.38 

-84.7 
-66.32 

18.54 
44.63 

-5.5 
-13.75 

 
Rsc Csc 

17P 
17Q 

19 
290 

671.8 
94.1 

3537 
-60.66 

-11.44 
-9.78 

19.45 
44 

2.5 
-6.28 
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Table 5 Percentage change in the values of Rct, Cdl, Rcs and Csc for surface A*. 

 
Rct Cdl 

 
∆ APTES-Bare ∆ AntiMyo-APTES ∆ Myo-AntiMyo ∆ APTES-Bare ∆ AntiMyo-APTES ∆ Myo-AntiMyo 

17C 
18C 
18B 

785 
231.9 
285.8 

-38.9 
-9.4 
-14.4 

34.6 
43.4 
-20 

-66.8 
-97.5 
-96.7 

-84.7 
29.9 
6.7 

36.2 
-14.5 
40.4 

 
Rsc Csc 

17C 
18C 
18B 

-48.4 
24250.3 
24250.3 

2539.8 
30.9 
67.34 

611.3 
-4.6 
-0.01 

-55.76 
2.93 
-100 

14.57 
-100 
38.4 

-14.4 
7.9 
-0.03 
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4.5 Cyclic Polarization Tests on 3C-SiC 

A potentiodynamic scan taken on a 3C-SiC sample after OH termination is illustrated in 

Figure 44. At potentials higher than -0.1 V (vs. SCE) the oxidation/reduction rates were small, 

with typical currents of ~ 2-3 x 10-8 A/cm2. This behavior is typical of a passivated surface with 

no apparent redox reaction occurring in the system [8]. Small (or no) hysteresis was observed 

for the samples tested. At more negative (cathodic) potentials a cathodic reaction with limiting 

current on the order of 10-5 A/cm2 and with tafel slope [8] of ~ 100- 150 mV/decade was 

identified. Therefore for these measurements the voltage sweep was limited to -0.6 V to 0.6 V 

(vs. SCE) to avoid any reaction due to H2 evolution or O2 reduction that could affect the 

measurements [8].  

However, the cathodic reaction observed in Figure 44 could be in part due to O2 present 

in air because the experiments were not performed in an Ar or N2 environment. No increase was 

observed after performing the APTES or anti-myoglobin immobilization and the anodic current 

decreased slightly to 1-2 x10-8 A/cm2. The same was observed when the values of the open 

circuit potentials were ~ -100 ± 50 mV (vs. SCE) with only a 10% increase (at most) after 

surface modification.  

 

 
Figure 44 Potentiodynamic scan taken on SiC after OH termination. The arrows indicate the direction 
of the scans. 
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4.6 Mott-Schottky Plots of Functionalized 3C-SiC 

The Mott-Schottky plots obtained for the same surfaces described in the previous 

section provided some information that could help us to better understand the impedance 

results. However, a strong hysteresis was observed on some specimens which can be due to 

the presence of surface states and defects as described in section4.1.1. For the analysis of the 

Mott-Schottky plots, we used a model that included the series resistance (Rs) due to the 

reference electrode, in series with a capacitor due to the semiconductor (Csc) in parallel with a 

resistor (Rsc) to account for imperfections of the material.  

 

4.6.1 Analysis of Mott-Schottky Plots for Surface C* 

The results obtained for surface C* are shown in Figure 45. For specimen 18F after OH 

termination a small peak close to -150 mV (vs. SCE) was identified which can be attributed to 

the presence of surface states [212]. On both specimens 18F and 17R the value of the 

capacitance increases after both APTES functionalization and myoglobin immobilization. While 

there was not a big difference in capacitance on sample 18F after APTES, there was after 

myoglobin incubation (a 3X increase). This behavior was not expected for sample 18F because 

for this sample we assumed that myoglobin was not bound to the modified 3C-SiC surface 

based on the Nyquist and impedance results (see Figure 34 and Figure 35). On the other hand, 

there was a ~ 2X increase in capacitance from the bare substrate to the myoglobin 

immobilization for sample 17R. We tried to maintain the same scale for the Mott-Schottky plots 

but given the more pronounced changes in sample 17R compared to sample 18F.  

Using the plots in Figure 45c and Figure 45d and equation (11) we found the flat band 

potential (Efb) for the three specimens used to test surface C*. As we can see there is a strong 

frequency dependence that is confirmed in Figure 46. At 10 kHz the values of the capacitance 

are lower compare to the values obtained at 1 kHz. In addition, the change in capacitance after 
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APTES and myoglobin incubation is less at 10kHz than at 1kHz, which could be due to the 

presence of surface states that have less effect at higher frequencies [151].  

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 45 CV and Mott-Schottky plots obtained for each layer needed to form surface C* at 1kHz on 
specimen a) and c) 18F obtained from wafer USF1-13-18 and b) and d) 17R from wafer USF1-13-17. 

 Bare SiC  APTES,  Myoglobin. E denotes potential which is reported with respect to 
the SCE (saturated calomel electrode). 
 

We can see in Table 6 that, in general, the flat band potentials are more negative at all 

of the higher frequencies. For specimen 17R the standard deviation presents values that are 

almost half of the calculated flat band potentials. The high values obtained for the standard 

deviation of the Efb is a consequence of the hysteresis observed after running successive 

experiments from -0.6V to 0.6 V (vs. SCE) and in the opposite direction. The hysteresis could 

rise from the defects described in section 4.1.1 and surface states (trapped charges and 

recombination), which was also seen in the variation of the value of Nd calculated after each 
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treatment. It was not possible to identify a clear trend in the values for the flat band potential for 

the three specimens. For samples 18F and 17R we have seen that after APTES 

functionalization the Efb shift is negative which indicates the presence of negative charges on 

the surface. This is contrary to the case of sample 18H where Efb shifted to more positive 

values. The higher value observed at 10kHz could be due to protonation of APTES. A similar 

trend was observed by Yu et al and was considered a consequence of the density of surface 

states in the semiconductor [213]. There are different parameters that influence a shift in Efb 

after surface modification such as defects and surface dipoles [214]. 

 

 
Figure 46 Comparison of CV plots obtained for surface C* at 1kHz (  Bare SiC  APTES,  
Myoglobin) and 10kHz (  Bare  APTES Myoglobin) on specimen 17R. E denotes 
potential, which is reported with respect to the SCE (saturated calomel electrode). 
 

4.6.2 Analysis of Mott-Schottky Plots for Surface B* 

The CV and Mott-Schottky plots for the second control, i.e. surface B*, are shown in 

Figure 47. The capacitance decreases after APTES modification and anti-myoglobin 

immobilization. However, there is only a small increase in capacitance from the APTES to anti-

myoglobin immobilization step and a small decrease after hemoglobin immobilization on the 

anti-myoglobin surfaces. 
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Table 6 Flat band potential at 1 kHz and 10 kHz for surface C*. 
 Bare SiC APTES  Myoglobin  
 Efb (mV) Nd (cm-3) Efb (mV) Nd (cm-3) ∆ Efb (mV) Efb (mV) Nd (cm-3) ∆ Efb (mV) 
18H  

-775±17.7 
-875±3.5 

 
7.28x1018 
3.64x1018 

 
-755±35 
-720±14 

 
1.45x1019 
4.85x1018 

 
20±0 
155±21 

 
-361.25±507 
-1600±0 

 
1.82x1020 
4.85x1019 

 
-530±763 
-880±28 

1kHz 
10kHz 
18F         
1kHz -590±84.8 1.46x1019 -955±35 2.43x1019 -365±120 -1200±212 1.46x1020 -245±177 
10kHz -845±7 3.64x1018 -875±35 7.28x1018 -30±28 -1350±155 1.82x1019 -475±35 
17R         
1kHz -593±298 1.46x1019 -1316±702 7.28x1019 -723±261 -2350±1504 3.64x1019 -1175±672 
10kHz -790±456 1.46x1019 -1000±577 7.28x1019 -210±14 -1550±890.6 3.64x1018 -550±70.7 
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For the two specimens shown in Figure 47 the results were similar at 1kHz and 10kHz, 

being the capacitance of specimen 17P was almost 3 times higher than that of sample 17Q. The 

fact that the capacitance is ~ 2 μF/cm2 between 0.1V and 0.6 V (vs. SCE) can be due to the 

presence of surface states that at 1kHz and 10kHz affect the interface in a way that we see the 

effect of the double layer capacitance [215]. In both samples the same peak that was observed 

in specimen 18F is also seen around -0.15 V (vs. SCE) and it shifts to -0.2 V (vs. SCE) after the 

surface treatments. This is a consequence of surface states [212] which is confirmed in Figure 

48. In this figure we can see that Mott-Schottky plots taken from -0.6 V to 0.6 V (vs. SCE) and in 

the opposite direction present hysteresis and in Figure 48a the first scan performed present and 

additional a peak ~ -0.15 V (vs. SCE) consistent with the behavior obtained in Figure 45a and 

that is attributed to charge trapping and recombination in [149].  

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 47 CV and Mott-Schottky plots obtained for each layer needed to form surface B* at 1kHz on 
specimen a) and c) 17P and b) and d) 17Q both from wafer USF1-13-17.  Bare SiC  APTES, 

 Anti-Myoglobin Hemoglobin. 
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The frequency dependence of the CV and Mott-Schottky plots taken on the specimens 

used to test surface B* is illustrated in Figure 48. A strong hysteresis effect is observed at 1 kHz 

that is reduced at 10 kHz but does not disappear at the higher frequencies, say at 100 kHz. The 

same effect is observed after taking the measurements on the modified surfaces. The reduced 

hysteresis effect after APTES and anti-myoglobin immobilization may be an indication of the 

passivation these layers provide by blocking any surface-charge exchange with the electrolyte. 

However, for these specimens the measurements obtained at 100 kHz showed consistent 

values of Nd from the starting surface to the last treatment, similar to the ones obtained for these 

specimens with a Hg probe. In addition, the error in the calculated Efb (see Table 8) is less 

compared to the 1kHz experiments. 

Increasing the test frequency to 100 kHz (see Figure 49) shows almost no change in 

capacitance after immobilization of hemoglobin, which confirms the specificity of the SiC-anti-

myoglobin substrates as indicated in section 3.3.3.2. This behavior is also confirmed in the 

small change in Efb obtained from the Mott-Schottky plot in Figure 49b. At this frequency we 

also see that at the more negative potentials the capacitance reaches a plateau that is more 

stable after APTES formation, which has been related to the organic layer blocking the electrons 

at the surface of the semiconductor [216]. 

The calculation of the Efb did not provide consistent results for both specimens after 

each treatment at the different frequencies. In addition the values of the calculated Nd varied at 

1kHz and 10kHz but was ~ 1018 cm-3 at 100kHz after each treatment was performed. This is an 

indication of a reduced impact of the surface states at higher frequency. The variability in Nd is 

also higher in sample 17P than in sample 17Q, which could be due to variations in SiC film 

thickness because the wafer was not rotated during the growth process (there is a slight 

variation in film thickness as a result). The higher Nd values measured for sample 17P could 

also explain why variations in the Cdl or how the molecular layer affects the CV shown in Figure 

47.  
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a) 

  
b) 

 
c) 

Figure 48 Mott-Schottky plots obtained for specimen 17P after OH termination at a) 1 kHz b) 10 kHz and 
c) 100kHz on specimen on 17P.  and  represent scans taken from -0.6 to 0.6 V each 
followed by  and  taken from 0.6 to -0.6 V. 
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In Table 7, the ∆Efb after APTES was positive for sample 17P at 1kHz and 10kHz and 

negative at 100kHz. Sample 17Q showed negative values for ∆Efb after APTES modification. As 

with the previous specimens, the high negative flat band potential can be a consequence of a 

high density of surface states. Similarly to the findings of Yu et al. for alkyl monolayers on n-type 

Si [213]. 

 

 
a)  

b) 
Figure 49 a) CV and b) Mott-Schottky plots obtained surface B* at 100kHz on specimen on 17P.  
Bare SiC  APTES,  Anti-Myoglobin Hemoglobin. 
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a small increase in sample 17C that can also be seen in the Mott-Schottky plots shown in Figure 

50c and Figure 50d.  

 

 
a)  

b) 

 
c) 

 
d) 

Figure 50 CV and Mott-Schottky plots obtained for each layer needed to form surface A* at 1kHz on 
specimen a) and c) 17C and b) and d) 18B.  Bare SiC  APTES,  Anti-Myoglobin  
Myoglobin. E denotes potential which is reported with respect to the SCE (saturated calomel electrode). 
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Table 7 Flat band potential at 1 kHz , 10 kHz and 100 kHz for surface B*. 
 Bare SiC APTES  Anti-Myoglobin Hemoglobin 

Efb (mV) Nd (cm-3) Efb (mV) Nd (cm-3) ∆Efb (mV) Efb (mV) Nd(cm-3) ∆Efb(mV) Efb (mV) Nd(cm-3) ∆Efb(mV) 
17P 
1kHz 
10kHz 
100kHz 

 
-320±125 
-285±106 
-312±53 

 
5.26x1019 
2.1x1019 

6.1x1018 

 
-236.7±35.6 
-267±62.6 
-465±11 

 
1.66x1019 
4.61x1018 

3.1x1018 

 
83.3±91 
7.5±33.1 
-105±53 

 
-262±90.7 
-280±35.6 
-615±11 

 
1.85x1019 
6x1019 

3.3x1018 

 
3±35 
-2.5±35 
-116±65 

 
-265±120 
-136.7±35 
-625±17 

 
1.82x1019 
1.46x1019 

3.3x1018 

 
-40±28 
80±42 
-25±28 

17Q            
1kHz -175±58 1.13x1019 -262±81 5.5x1018 -87.5±74 -302±139 7.9x1028 -40±175 -270±98 6.7x1018 85±106 
10kHz -317±49.2 5.7x1018 -483±125.8 1x1020 -180±87.2 -375.3±29 3.27x1018 100±100 -435±50 3.27x1018 -60±14 
100kHz -650±0 3.27x1018 -650±53 2.5x1018 -37.5±53 -605±21 2.7x1018 -7.5±75 -670±29 2.7x1018 -65±50 
 
 
 
 

Table 8 Flat band potential at 1 kHz and 10 kHz for surface A*. 
 Bare SiC APTES  Anti-Myoglobin Myoglobin 

Efb (mV) Nd (cm-3) Efb (mV) Nd (cm-3) ∆Efb(mV) Efb (mV) Nd(cm-3) ∆Efb (mV) Efb (mV) Nd(cm-3) ∆Efb (mV) 
17C  

-500±70 
-550±0 

 
7.28x1018 

7.28x1018 

 
-532.5±10 
-562.5±8 

 
3.64x1018. 
3.64x1018 

 
-32.5±60.1 
-12.5±17.8 

 
-535±21 
-567±3.3 

 
1.43x1018 
2.43x1018 

 
-2.5±31.8 
-5±28 

 
-545±35 
-582±0 

 
2.9x1018 

2.9x1018 

 
-10±11 
-15±0 

1kHz 
10kHz 
18C            
1kHz -450±141 1.1x1019 -800±141 3.64x1018 -350±282 -740±268.7 3.28x1018 60±127 -820±226.3 3.28x1018 -80±42 
10kHz -685±91.9 7.28x1018 -815±120.2 2.9x1018 -130±212 -825±106 3.28x1018 -10±14.1 -885±120.2 2.7x1018 -65±14 
18B            
1kHz -623±81.4 6.5x1018 -855±21.2 1.61x1018 -260±113.1 -770±268.7 3.28x1018 85±247 -780±254.5 3.28x1018 -10±14 
10kHz -850±28.3 7.28x1018 -835±50 1.46x1018 15±77.8 -845±148.5 2.9x1018 -10±98.9 -900±70.7 2.9x1018 -55±78 
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For these specimens it was not possible to obtain one unique conclusion from the 

extrapolated flat band potentials. At 1 kHZ and 10 kHz, samples 17C and 18C had a ∆Efb from -

45 mV (vs. SCE) to -350 mV (vs. SCE) similar to sample 18B after APTES functionalization, 

although the later only had a ∆Efb. of 15 (vs. SCE)  Small changes in flat band potentials after 

surface functionalization have been linked to no surface dipole formation on the surface [213]. 

On the other hand, in the cases where the ∆Efb is more than -100 mV can be a consequence of 

the presence of surface states [213]. For the surface with the immobilized anti-myoglobin the 

∆Efb is less than 100 mV (vs. SCE) for the three specimens being only -10 mV (vs. SCE) for 

sample 18B and 18C at 10 kHz.  

After myoglobin immobilization we can see in Table 8 that a very negative ∆Efb of ~ -1V 

(vs. SCE) was observed. Myoglobin presents a negative charge at pH higher than 5.3 [210] and 

for this reason the value that we found for the flat band potential after myoglobin immobilization 

on the anti-myoglobin surfaces could be an indication of the detection. However, if we consider 

the impedance results in Figure 38 and Figure 39 this could only be true for specimen 17C. 

 

4.7 Discussion and Conclusions of the Myoglobin Detection on SiC Via 

Impedance Spectroscopy 

Even though the data obtained for the impedance detection of myoglobin on 

functionalized 3C-SiC did not present a unified trend a few conclusions can be drawn from this 

work. One step that proved to be very important to successfully perform the binding of the 

protein to the surface was the preparation of the self-assembled monolayers. In section 3.1 we 

presented an extensive discussion in the preparation and characterization of self-assembled 

monolayers on SiC. Even though researchers have been successful in modifying the surface 

termination of SiC this technique may not be adequate to guarantee the success in the 

fabrication of a SiC-field effect device in contact with an electrolyte. This step will directly impact 
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the covalent linking of the antibodies, which also has problems on its own as discussed in 

sections 1.3.1.2 and 3.3.3.  

Since our main goal was to use the Mott-Schottky plots as the main characterization 

approach to determine successful detection of myoglobin on SiC it is worth to spend some time 

discussing some of the factors that could have impacted the variability in our results. One of the 

main issues could be the position of the reference electrode, as we mentioned in section 4.3, 

and the effective area that is exposed to the electrolyte that affects the apparent capacitance 

measured which could be a consequence of not accurately measuring the pressing force of the 

o-ring against the SiC sample. This could affect both the impedance and CV measurements and 

provide variable results.  

From the Mott-Schottky plots, it was interesting to see a peak in the CV plots that other 

authors have seen as a consequence of the presence of surface states [216, 217]. In addition a 

strong frequency dependence was also seen in all the specimens tested, an example is shown 

in Figure 48 and Figure 49. This effect has been related to surface states [149, 156], non-

uniform spatial doping and the presence of deep donor and acceptor impurities [151, 157]. 

In most of the Mott-Schottky plots we observed two slopes, even for the SiC before the 

chemical modification. Some authors have found a similar behavior on alkyl modified p-type and 

n-type Si, which indicates that due to the thin films the semiconductor does not reach inversion 

but goes into deep depletion and this has been explained by the presence of deep localized 

levels [218]. Lauermann et al. also found it difficult to obtain straight and reproducible Mott-

Schottky plots with 6H-SiC and 3C-SiC, hence making it difficult to calculate accurately the flat 

band potential [219]. Similarly to what we have found, their extrapolated flat band potential is ~ -

350 mV (vs. SCE) at pH 0 with an increase of 52 mV per pH, which gives ~ -450 mV (vs. SCE) 

at pH 7. The results presented in Table 6 to Table 8 showed similar values and some were 

higher in some cases. They concluded that the quality of the crystal and the presence of surface 

states, obtained from photocurrent measurements, affected significantly their results [219]. 
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We also found that in some cases the flat band potential shifted towards more negative 

values after APTES and anti-myoglobin immobilization. Einati et al. found shifts towards positive 

potentials after APDEMS functionalization of p-type Si and an increase in the magnitude 

towards positive potentials have been attributed to protonation of the end-groups [214]. On the 

other hand, a decrease and/or more negative flat band potentials have been identified when 

negatively charged ions are adsorbed at a semiconductor surface [220]. And also on alkyl 

monolayers films prepared on n-type Si in addition to a decrease in capacitance after 

functionalization of the Si surfaces [213, 216]. The variability and flat band potential shift after 

surface functionalization can be affected by defects in the structure. In particular, APTES has 

been demonstrated to form in islands and tends to crosslink both the substrate and the 

organosilane itself preventing the crosslinking of other proteins effectively to the surface [221, 

222]. In some cases, the quality of the monolayer is not an issue, but the rearrangement of the 

dipole charge on the substrate after adding the monolayer or the interaction of the monolayer 

with the electrolyte [214]. In order to understand if the last two phenomena are affecting our 

measurements further experimentation needs to be conducted.  

Because of the variability on the results, we conclude that using the Mott-Schottky and 

impedance spectroscopy techniques proved not to be reliable to detect myoglobin 

immobilization under the specified conditions. Some authors have obtained similar uncertainty 

in their work with the immobilization of anti-α-fetoprotein on p-type Si for the detection of the 

respective antigen (α-fetoprotein). Due to inconsistency of their results at different frequencies 

the authors opted to use the real component of the impedance obtained after Mott-Schottky 

measurements at higher frequencies (e.g. 100kHz) to identify changes in antibody-antigen 

binding [11]. Similarly, Bataillard et al. investigated the detection of the same antigen using also 

anti-α-fetoprotein on p-type Si.  
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Because it was not possible to differentiate the flat band potential changes after the 

surface modifications these authors opted to extend their scanning potential range to analyze 

the molecular layer capacitance and not the capacitance in the space charge region of the 

semiconductor [223]. Both of these approaches could be implemented in our research, 

considering that by extending the voltage range other chemical processes could take place 

during the experiment.  

More experiments should be performed in order to explain some of the trends observed 

for the parameters of the equivalent circuit model and the flat band potential shift. This includes 

using an electrolyte with different pH, performing the EIS measurements at a fixed DC bias with 

respect to the reference electrode, comparing the fitting of the data to other equivalent circuits, 

among other changes in the electrochemical cell that will be described in Chapter 5. 
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5 CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

 

There are many opportunities to use SiC as a substrate and active material to be 

incorporated in devices that require certain chemical, mechanical and electrical properties when 

implanted in the harsh environment of the human body. In this dissertation we presented a 

study that included the surface modification of SiC for the development of immunosensors. The 

polytype of interest was 3C-SiC because of the proven hema-compatibility and biocompatibility 

with several cell lines that indicated that it may be a viable substrate to detect biomarkers in 

blood. Moreover, there is still a need to look for more explanations to identify how surface 

charge, morphology, and chemical termination affect cell attachment and proliferation, as well 

as toxic and pharmacokinetic effects of SiC in-vivo. In order to address hema-compatibility in-

vivo, hema-compatibility must be first studied under blood flow conditions and target the 

expression of specific proteins such as P-selectin and fibrinogen [110, 224, 225]. 

We were also interested in using SiC to build a device to predict silent myocardial 

infarction, because the integration of other materials and systems on SiC increases the 

possibilities to create complex devices that can perform multiple biomolecule detection and 

analysis on a single platform (i.e. system on a chip). At first glance, some of the proposed 

devices built on SiC could be considered costly because of the costs associated with material 

fabrication. At the same time, since SiC is a potential material for long-term device implantation, 

other costs associated with patient treatment and multiple surgeries for implant replacement can 

be reduced thus rendering SiC-based biosensors (like the one proposed in this work) more than 

cost effective, not to mention the obvious improvement in the quality of life for patients who can 

avoid repetitive surgical procedures. 
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5.1 Conclusions 

In Chapter 2 we discussed some of the main advantages of using SiC in biosensors and 

summarized the type of polytype and crystal suitable for particular applications. This depends 

on a particular doping level selected in order for this material to be used in impedance or 

potentiostatic systems. Likewise, care should be taken in the characterization of the SiC film or 

polytype to be used. As we demonstrated in chapter4, the inherent presence of defects (e.g. 

stacking faults, voids, etc.) significantly impacts the response of electrically based biosensors.  

Since the surface functionalization of SiC with organic molecules is recognized as a 

crucial step in biological sensor development, it has been demonstrated on all relevant forms of 

SiC. In chapter 3 we demonstrated the successful immobilization of anti-myoglobin and later, 

the detection of myoglobin via fluorescent microscopy. However, by performing impedance 

spectroscopy experiments in Chapter 4 the binding of myoglobin on SiC modified surfaces was 

not easy to identify. And we believe that the quality of the APTES films contributed significantly 

to the results. For this reason, we suggest that more efforts should be dedicated to further 

developing self-initiated photografting and photopolymerization (SIPGP) films on SiC [165, 226, 

227]. These types of films could provide a more reproducible and uniform film for the precise 

immobilization of antibodies or other targeted proteins.  

 

5.2 Future Work 

Because of the high variability of the results observed in the impedance spectroscopy 

and Mott-Schottky measurements in sections 4.3 and 4.6, we propose to do several 

modifications to the electrochemical setup. This includes making a fixture that provides a 

precise method to fix the reference electrode (activated Ti mesh) every time the samples are 

inserted or removed from the setup. In addition, because initially an SU8 coating was used as a 

passivation layer for the electrode and it seemed to fail in some of the specimens thus affecting 
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the results, we propose to increase the inside diameter of the inner electrode compared to the 

o-ring used to fix the sample. This way the metal of the electrode will not be exposed to the 

electrolyte and there are no chances of having parasitic capacitance effects due to a failed 

protective coating.  

Another issue that was identified after building the cell was the use of screws to press 

the sample against the o-ring (see Figure 33). This may contribute to differences in apparent 

capacitance due to different pressure on the sample after surface treatment. It is not clear yet 

how to improve this but we need to find a way to fix the sample without pressing to hard and 

break it. 

Using Si as a control experiment can also provide better insight into how the defects 

inherent in the SiC material affects the results. Some similarities have been observed with some 

of our results and similar work performed on Si. Because Si has been widely characterized and 

it has less surface defects, having a highly doped n-type Si crystal could help to predict 

impedance and flat band potential changes after the protein immobilization on these 

semiconductor surfaces. In addition, we can perform the analysis and fitting the impedance 

results with other equivalent circuit models that includes more resistive or capacitive elements 

that resemble failed coatings [207, 215]. On the other hand, we can focus our work into 

measuring the resistive or capacitive effect cause by the immobilized biomolecules 

implementing an analysis approach like the ones proposed by Souteyrand et al. [228] and 

Bataillard et al. [223] and described in section 4.7. 

Lastly, since we also discussed in chapter 2 that SiC can be produced in different forms 

(e.g. BioSiC made from wood, a-SiC, nanoporous SiC, etc.) and polytypes (i.e. cubic, 

rombohedral and hexagonal) we can also explore the construction of interdigitated 

microelectrode (IME) arrays on amorphous-SiC (a-SiC). The initial idea when this dissertation 

work was started was to develop IMEs on SiC but, at the moment we did not have access to 

insulating  SiC material. Recently, we have developed in the SiC group with the support of the 



115 

NREC staff, 200 nm a-SiC films (via PECVD) that do not present apparent defects or pinholes 

as demonstrated by the SEM images in Figure 51, taken at different magnifications with a 

Hitachi SU-70 SEM. We have also built some IMEs on a-SiC and SiO2 using Ti/Au as the metal 

electrode with a 5 μm and 10 μm pitch. The sensors showed a small leakage current, a good 

indication of the insulating properties of the a-SiC films. However, some improvements may 

need to be done regarding the mask used to make the devices, such as undercutting and non-

straight edges that were observed via SEM in Figure 52b.  

 

 
a) 

 
b) 

Figure 51 SEM images taken on a-SiC films. Films deposited by J. Register and R. Everly in the 
Plasmatherm 700 PECVD took at the USF NREC core facility. 
 

 
 
 
 
 
 

 
a) 

 
b) 

Figure 52 Photograph of a) IME built on a-SiC and b) SEM image of the Ti/Au digits of the IME built on a-
SiC. 
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Appendix A Calculation of the Expected Capacitance of the SiC Space Charge 

Region 

 

In this appendix we include some calculations and fitting of the results obtained 

experimentally from the electrochemical impedance and Mott-Schottky plots from Chapter 4. 

 

A.1 Capacitance of SiC After OH Termination 

Assuming a depletion width of 0.094 μm and Nd 3.64x 1018 cm-3 from the Hg probe 

measurements we obtain the capacitance of the SiC space charge region using equation (13). 

 𝐶𝑆𝑖𝐶 = 𝜀𝜀𝑜
𝑑

= 9.7𝑥8.85𝑥10−14

0.094𝑥10−4
= 93.4 𝑛𝐹

𝑐𝑚2  (13) 

A.2 Capacitance of SiC After APTES Surface Modification 

In order to calculate the capacitance of the SiC|APTES surfaces, we assume that the 

net charge of the APTES layer induces a depletion width in the semiconductor. Carre et al. [229] 

proposed that APTES films have a density of ~ 1.2 amine groups/nm2. 

If we assume Q = q/nm2 (q = 1.6x10-19 C), we have: 

 𝑄 = 𝑞 ∗ 𝑑 ∗ 𝑁𝑑. (14) 

 1014𝑞
𝑐𝑚2 = 𝑞 ∗ 𝑑 ∗ 𝑁𝑑  (15) 

 𝑑 = 0.00002 𝑐𝑚 = 200 𝑛𝑚  (16) 

Using equation (12) we calculate 𝐶𝑆𝑖𝐶 = 43 𝑛𝐹/𝑐𝑚2 after APTES functionalization. 

 

A.3 Fit of the Experimental Data  

Using expressions for the total capacitance in depletion and accumulation we fit the CV 

data obtained for bare SiC and APTES modified SiC presented in section 4.6.3. 
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A.4 Fitting of the CV Results for the SiC After OH Termination 

Using the values obtained from extrapolating the Mott-Schottky plots presented in Figure 

50 and Table 9, i.e. Efb = -550 mV and Nd = 7.28x1018 cm-3. We consider that in accumulation 

there is a voltage drop both in the SCR and the Helmholtz capacitance, CH and that the charge 

in the SCR (QSiC) is the same as in the Helmholtz layer, see (17). we used the calculated 

capacitance in accumulation and depletion expressed in equations (18) to (20) to fit the 

experimental data as shown in Figure 53. In this case we assumed a CH= 5 μF/cm2 in series 

with the SiC's SCR capacitance. 

In accumulation: 

 𝐸 − 𝐸𝑓𝑏 = 𝑉𝑆𝑖𝐶 + 𝑉𝐶𝐻 = 𝑄𝑆𝑖𝐶
𝐶𝑆𝑖𝐶

− 𝑄𝑆𝑖𝐶
𝐶𝐻 

  (17) 

 𝑄𝑆𝑖𝐶 = �2𝜀𝜀𝑜𝑘𝑇𝑁𝑑𝑒
−𝑞𝑉𝑆𝑖𝐶2𝑘𝑇   (18) 

 𝐶𝑆𝑖𝐶 = �𝑞2𝜀𝜀𝑜𝑁𝑑
2𝑘𝑇

𝑒−
𝑞𝑉𝑆𝑖𝐶
2𝑘𝑇   (19) 

 
1
𝐶𝑇

= 1
𝐶𝑆𝑖𝐶

+ 1
𝐶𝐻

  (20) 

In depletion: 

 𝐶𝑆𝑖𝐶 = �
𝑞𝜀𝜀𝑜𝑁𝑑

2(𝐸−𝐸𝑓𝑏−
𝑘𝑇
𝑞 )

  (21) 

 
1
𝐶𝑇

= 1
𝐶𝑆𝑖𝐶

  (22) 

As seen in Figure A. 1 the best fitting is achieved including the Helmholtz capacitance 

(CH) in accumulation and a difference of the calculated and experimental data is observed 

between -200 and 200 mV probably due to the presence of surface states or defects that were 

not considered in the simulated CV data.  
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Figure A.1 Experimental and fitted CV data for SiC. Experimental bare SiC  without CH in 
accumulation  Including the CH= 5 μF/cm2 in accumulation . 
 

A.5 Fitting of the CV Results for the SiC After APTES Surface Functionalization 

Similarly to the calculations performed for the simulated CV data for the bare SiC, we 

consider equations (17) to (19) for the total capacitance in accumulation and depletion. 

However, equation (20) is modified as shown in (23) since we include the effect of the APTES 

capacitance in series to the CH in accumulation. We assume a value of CAPTES= 4.4 uF/cm2 that 

gives an approximate thickness of the APTES film of 5 Å lower than the 10 Å calculated via XPS 

by Schoell et al. [191].  

In accumulation: 

 
1
𝐶𝑇

= 1
𝐶𝑆𝑖𝐶

+ 𝐶𝐻 +𝐶𝐴𝑃𝑇𝐸𝑆
𝐶𝐻∗𝐶𝐴𝑃𝑇𝐸𝑆

  (23) 

We see in Figure A. 2 that the fitted data closely fits the experimental data but assuming 

CH higher than for the bare SiC simulated data. The experimental data shows no "bumps" or 

indications of surface states probably due to the insulating effect of the APTES films. 
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Appendix A (Continued) 

 

 

Figure A.2 Experimental and fitted CV data for APTES coated SiC. Experimental APTES|SiC 
Including CAPTES = 4.4 μF/cm2 and CH= 7 μF/cm2 in accumulation Including CAPTES = 4.4 

μF/cm2 and CH= 5 μF/cm2 in accumulation.  
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Appendix B Permission for Reproduction of Materials 

In the figure below is the permission from IEEE to use the material from [163] including 

in Chapter 3, section 3.4 to 3.4.3.1, Figure 21, Figure 22, Figure 22 and Figure 24.  

 

Figure B.1 IEEE policy for using IEEE intellectual property in a thesis or dissertation work. 
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Appendix B (Continued) 

Below is the permission from Cambridge University Press to reproduce material from 

[161] in Chapter 3, including sections 3.2 to 3.3.2.4, Figure 17 and Figure 18 and Table 2, in 

addition to excerpts from [164] and [165] in sections 3.2 to 3.3.2.4 and excerpts of [162] in 

section 3.4 and 3.4.3.1 and modifications of Figure 21 and Figure 22. 

 
Figure B.2 Reprint permission from Cambridge University Press. 
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Appendix B (Continued) 

Below is the permission to reproduce material from [67] in Chapter 2, including section 

2.2 to section 2.2.3.3, Figure 10, Figure 11, Figure 12 and Table 1. 

 
Figure B.3 Permission of reproduction of articles from Biomedical Microdevices (Springer). 
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Appendix B (Continued) 

Below is permission to reproduce excerpts from [165] in Chapter 3, section 3.2 to section 

3.3.2.4. 

 
Figure B.4 Permission to use excerpts of a co-authored book chapter (Publisher: Elsevier). 
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