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ABSTRACT

Wireless Sensor Networks (WSNs) continue to grow as one of the most exciting and challenging

research areas of engineering. They are characterized by severely constrained computational and

energy resources and also restricted by the ad-hoc network operational environment. They pose

unique challenges, due to limited power supplies, low transmission bandwidth, small memory sizes

and limited energy. Therefore, security techniques used in traditional networks cannot be directly

adopted. So, new ideas and approaches are needed, in order to increase the overall security of the

network. Security applications in such resource constrained WSNs with minimum overhead provides

significant challenges, and is the main focus of this dissertation.

There is no “one size fits all” solution in defending WSNs against intrusions and attacks. There-

fore, intrusions and attacks against WSNs should be carefully examined to reveal specific vulnera-

bilities associated with them, before beginning the design of any kind of intrusion prevention and

detection systems. By following this rationale, the dissertation starts with providing information

regarding the WSNs, types of attacks towards WSNs, and the methods on how to prevent and detect

them. Then, in order to secure WSNs, a security provisioning plan is provided.

In general, the following processes may be involved in securing WSNs: Intrusion Prevention,

Intrusion Detection, and Intrusion Mitigation. This dissertation presents solutions (algorithms and

schemes) to the first two lines of defenses of the security provisioning plan, namely, Intrusion Pre-

vention and Intrusion Detection.

As a first line of defense in securing WSNs, this dissertation presents our proposed algorithm

(“Two-Level User Authentication” scheme) as an Intrusion Prevention System (IPS) for WSNs.

The algorithm uses two-level authentication between a sensor node and a user. It is designed for

heterogeneous WSNs, meaning that the network consists of two components: regular nodes and

more powerful cluster heads. The proposed scheme is evaluated both analytically and also in a

simulation environment, by comparing it to the current state-of-the-art schemes in the literature.

x



A comprehensive and systematic survey of the state-of-the-art in Intrusion Detection Systems

(IDSs) that are proposed for Mobile Ad-Hoc Networks (MANETs) and WSNs is presented. Firstly,

detailed information about IDSs is provided. This is followed by the analysis and comparison of

each scheme along with their advantages and disadvantages from the perspective of security. Finally,

guidelines on IDSs that are potentially applicable to WSNs are provided. Overall, this work would

be very helpful to the researchers in developing their own IDSs for their WSNs.

Clustering (of the nodes) is very important for WSNs not only in data aggregation, but also in

increasing the overall performance of the network, especially in terms of total life-time. Besides, with

the help of clustering, complex intrusion prevention and detection algorithms can be implemented.

Therefore, background on the clustering algorithms is provided and then a clustering algorithm for

WSNs is proposed, that is both power and connectivity aware. The proposed algorithm provides

higher energy efficiency and increases the life-time of the network. In evaluating the proposed

clustering algorithm (in a simulation environment by comparing its’ performance to the previously

proposed algorithm, namely Kachirski et al.’s algorithm), it is demonstrated that the proposed

algorithm improves energy efficiency in WSNs.

Finally, an IDS framework based on multi-level clustering for hierarchical WSNs is proposed. It

is based upon (the nodes use our proposed clustering algorithm while forming their clusters) the

clustering algorithm that is proposed in this dissertation. The framework provides two types of

intrusion detection approaches, namely “Downwards-IDS (D-IDS)” to detect the abnormal behavior

(intrusion) of the subordinate (member) nodes and “Upwards-IDS (U-IDS)” to detect the abnormal

behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-

IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated

and presented.

Overall, this dissertation research contributes to the first two lines of defenses towards the security

of WSNs, namely, IPS and IDS. Furthermore, the final contribution of this dissertation is towards

the topology formation of the WSNs (especially for the hierarchical WSNs), namely, clustering;

which would be very useful in implementation of the IPS and IDS systems that are presented in this

dissertation.
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CHAPTER 1 :

INTRODUCTION

1.1 Background

Wireless communications is inevitable in today’s technology owing to the advantages it brings,

such as mobility, portability, freedom from wired infrastructure, etc. Despite the benefits, it intro-

duces opportunities to adversaries for eavesdropping of the data being transmitted, and also makes

active intrusions easier (through the wireless medium). In order to prevent unauthorized access

to the network, the design of secure communication protocols are needed, which will provide both

privacy of the wireless data communications and authenticity of communicating parties.

Wireless Sensor Networks (WSNs) continue to grow as one of the most exciting and challenging

research areas of engineering. There are many applications of WSNs which are intended to monitor

physical and environmental phenomena such as ocean and wildlife, earthquakes, pollution, wild fires

and water quality. WSNs can also be used to gather information regarding human activities such

as health care, manufacturing machinery performance, building safety, military surveillance and

reconnaissance, highway traffic, etc.

WSNs are characterized by severely constrained computational and energy resources, and an ad

hoc operational environment. They possess unique characteristics such as limited power supplies, low

transmission bandwidth, small memory size and limited energy; therefore security techniques used in

traditional networks cannot be adopted directly. Security applications (e.g. intrusion prevention and

intrusion detection) in such resource constrained WSNs with minimum overhead reveals significant

challenges, and is the main focus of this dissertation.

As mentioned earlier, WSNs are one of the most promising technologies that have applications

ranging from health care to tactical military. Although WSNs have appealing features (e.g. low

installation cost, unattended network operation, etc.), due to the lack of a physical line of defense

(i.e., there are no gateways or switches to monitor the information flow) and also due to the physical

constraints, the security of such networks is a big concern. This is valid for the applications especially
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where confidentiality has prime importance. For instance, securing WSNs is critically important in

tactical (military) applications where a security gap in the network would cause casualties of the

friendly forces in a battlefield.

Stuxnet virus, which was targeted at the Iranian nuclear power plants, has shown that the

network security is not a hoax, but a reality [1]. A 500KB worm has shut down a number of

facilities (14 industrial sites) and severely damaged targeted power plants resulting in up to 2 years

of delay to the uranium-enrichment plan. One of the intriguing facts of the Stuxnet is that it was

able to penetrate closed networks (intranet), although the targeted facilities did not have direct

access to the internet. This is a very important example from real life that shows us the importance

of preventing and also detecting intrusions in any kind of network (closed or open) on time.

In order to operate WSNs in a secure way, if possible, intrusions should be prevented with

intrusion prevention techniques. Otherwise, they should be detected on time with intrusion detection

techniques, before attackers can harm the network resources (i.e., sensor nodes) and/or information

destination (i.e., data sink or base station).

1.2 Research Motivation and Goals

WSNs are characterized by severely constrained computational and energy resources, and also

restricted by the ad-hoc network operational environment. Although there are plenty of applications

for the WSNs, in most cases they are deployed in hostile environments where physical security does

not exist and they are operated in an un-attended way.

Keeping these constraints of the WSNs in mind, it is obvious to conclude that traditional security

solutions of wired/wireless networks would not be feasible for WSNs. Any security solution to

be devised for WSNs needs to consider these limitations and constraints of WSNs. These facts

encouraged us to address security challenges in our dissertation as one of the main concerns.

Intrusion prevention is the first line of defense in any security system. Therefore, any security

plan being developed for WSNs should start with an Intrusion Prevention System (IPS) that is

suitable (designed by taking into account of all the constraints and challenges of WSNs). Current

IPSs available in the literature, SPINS [2], TinySec [3] and LEAP [4], provide only one-hop “node

authentication”, opting out the end-to-end secure communication (i.e., between the user and the

sensor node). This is a very big security drawback, since the integrity of the data being transmitted

cannot be guaranteed. Other proposed schemes provide end-to-end secure communication with

2



either Secret Key Cryptography (SKC) [5–7]; or with Public Key Cryptography (PKC) [8]. SKC

based schemes are not scalable for thousands of sensor nodes and users, and need significant memory

to store authentication codes. Thus, addition of new nodes and users is troublesome in terms of

key distribution. On the contrary, PKC based scheme is not practical for WSNs because of the

homogenous network structure it possess, meaning that all the power and processing demanding

PKC operations are supposed to be handled on the normal sensor nodes. As a result, authentication

operations take minutes and batteries of the sensor nodes deplete faster. Therefore, one of the main

goals of this dissertation is to propose an IPS that provides a unique solution (by using PKC and

SKC in an intelligent way) to prevent intrusions in WSNs by opting out all the design drawbacks

mentioned above.

When an intruder manages to pass the first line of defense (namely IPS) in a network, it should

be detected by the Intrusion Detection System (IDS); in order to take further action to diminish

the damages that could be carried out by the intruder. Hence, IDS should constitute the second

line of defense in securing the WSNs. Here, it is important to emphasize that our focus (of IDS)

is on the hierarchical WSNs, meaning that sensor nodes are gathered into groups called “Clusters”.

The current IDSs for hierarchical WSNs available in the literature have drawbacks: In the IDS

approaches proposed by [9], [10] and [11], the direction of the alert propagation is from sub-ordinates

through CHs, leaving the following question unanswered for the detection part: “What happens if

a malicious CH drops the packet that is coming from a subordinate node and is about to alert an

upper level CH?”. In the IDS approaches proposed by Agah et al. [12, 13], only one of the clusters

of the network is monitored at a time. This leaves the rest of the network unprotected. In the

IDS approach of Su et al. [14], both downwards and upwards protection are provided, meaning that

CH’s monitor subordinate nodes and vice versa, respectively. However, the proposed scheme uses

SKC and therefore new nodes cannot be added to the network after the deployment, which makes

it impractical. Therefore, another main goal of this dissertation is to propose an IDS framework for

hierarchical WSNs that provides a unique solution to detect intrusions in WSNs by opting out all

the design drawbacks mentioned above.

Hierarchical WSNs usually use “Clustering” for the formation of their architecture. With the

help of clustering, complex intrusion prevention and detection algorithms can be implemented. Fur-

thermore, clustering is very important for WSNs not only in data aggregation, but also in increasing

the overall performance of the network, especially in terms of total life-time. Clustering algorithms
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for WSNs should be devised considering the special needs of WSNs; most importantly they should

be very stingy in power consumption. Additionally, since cluster heads are assigned with high power

consuming tasks, clustering algorithm should take into account the power levels of each candidate.

Finally, elected cluster heads should be somewhere close to the main communication hubs, thus clus-

tering algorithm should also consider the connectivities of the candidates. The proposed clustering

algorithms in the literature either do not consider power awareness [15, 16], connectivity aware-

ness [17–21], or both [9, 22, 23]. Therefore, another goal of this dissertation is to design a Clustering

Algorithm that will be aware of both the power and the connectivity of the candidate nodes.

1.3 Contributions of this Dissertation

In providing “Security Provisioning” for WSNs, our main contributions in the different areas can

be summarized as follows:

1. Intrusion Prevention: For Intrusion Prevention in WSNs, we have developed a Two Level

User Authentication scheme. Our scheme is designed for heterogeneous WSNs, where

the network consists of two different types of elements, namely cluster heads and sen-

sor nodes. Our analysis and simulation results show that our scheme is not only more

secure and scalable than existing secret key cryptography based schemes [5–7], but also

requires less processing power and provides higher energy efficiency than existing public

key cryptography based schemes [8].

2. Intrusion Detection: For Intrusion Detection in WSNs, we have developed a framework

to detect intrusions in WSNs. Our framework is an IDS based on multi-level clustering

for hierarchical WSNs. The framework consists of two parts: 1)Downwards-IDS (D-IDS)

and 2) Upwards-IDS (U-IDS). D-IDS detects intrusions through subordinate members,

whereas U-IDS detects intrusions through cluster heads. By using analytical calculations,

the optimum parameters (number of maximum hops for D-IDS and monitoring group size

for the U-IDS) of our proposed framework are evaluated.

3. Clustering: We have devised a power and connectivity aware clustering algorithm that

increases energy efficiency, and therefore increases the overall life-time of the WSNs. Ac-

cording to the simulation results, our proposed algorithm is energy efficient and also pro-

vides longer life-time to the network (in the worst-case scenario, up to 85% for a 15-node
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network with 1-hop connectivity), compared to the previous algorithm (namely, Kachirski

et al.’s algorithm [15]).

1.4 Organization of this Dissertation

The organization of this dissertation is as follows:

In Chapter 21, a detailed background on WSNs is provided. Chapter 2 starts with the description

of wireless ad-hoc networks (mobile ad-hoc networks - MANETs), and then provides the character-

istics of WSNs and finally emphasizes the distinctions between WSNs and MANETs. Afterwards,

the application areas of the WSNs are mentioned. Finally, the security issues for WSNs, such as

the attacks against WSN security are discussed. Without knowledge of attacks, neither can security

measures be devised to protect WSNs, nor can models be developed to detect intrusions towards

the WSNs. Therefore, more information on attacks and security measures to counter those attacks

are provided. One of the main counter measures against attacks is Cryptography. Some background

of cryptography and its application to WSNs are provided. Following that, some open problems in

WSN security are mentioned. Finally, the authors’ point of view regarding the provisioning of the

security towards WSNs is presented.

In Chapter 32, a detailed description of the proposed Two Level User Authentication scheme for

heterogeneous WSNs is provided. It is an IPS that was devised to prevent intrusions against WSNs.

The proposed user authentication scheme is secure and scalable. In addition, it employs both public

and secret key cryptography schemes, by taking advantage of the strengths of both schemes. In

order to evaluate security and performance analysis of the proposed scheme, it is compared to the

current state-of-the-art schemes in the literature, both analytically and with simulations.

In Chapter 43, a thorough literature survey of the state-of-the-art IDSs that are proposed for

WSNs is provided. Firstly, detailed information about IDSs is provided. Secondly, a brief survey

of IDSs proposed for Mobile Ad-Hoc Networks (MANETs) is presented and applicability of those

systems to WSNs is discussed. Thirdly, IDSs proposed for WSNs are presented. This is followed by

the analysis and comparison of each scheme along with their advantages and disadvantages. Finally,

guidelines on IDSs that are potentially applicable to WSNs are provided. The chapter concludes by

highlighting open research issues in the field.

1The content of this chapter is published in parts in [24, 25].
2The content of this chapter is published in parts in [26–28].
3The content of this chapter is published in parts in [29].
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In Chapter 54, clustering algorithms that are proposed for WSNs are investigated. Then, a

clustering algorithm for WSNs, that is both power and connectivity aware is proposed. The proposed

algorithm provides higher energy efficiency and increases the life-time of the network. The proposed

clustering algorithm is evaluated in a simulation environment and its’ performance to a previously

proposed algorithm (namely Kachirski et al.’s algorithm) is compared.

Chapter 65 presents our proposed IDS framework for hierarchical WSNs that is based on multi-

level clustering. It is based upon the clustering algorithm that is proposed in this dissertation

(the nodes use our proposed clustering algorithm that is presented in Chapter 5, while forming their

clusters). Our proposed IDS framework provides two types of intrusion detection approaches, namely

“Downwards-IDS (D-IDS) Scheme” to detect the abnormal behavior (intrusion) of the subordinate

(member) nodes and “Upwards-IDS Scheme” to detect the abnormal behavior of the cluster heads.

Furthermore, the effect of cluster size (maximum hops between cluster head and cluster members) on

the detection (malicious subordinate nodes) probability of the proposed D-IDS scheme is evaluated.

Finally, the effect of total number of monitoring nodes on the detection (malicious cluster head)

probability of the proposed U-IDS scheme is evaluated.

In Chapter 7, contributions from Chapters 2-6 are summarized and then recommendations for

future work are presented.

4The content of this chapter is published in parts in [30].
5The content of this chapter is published in parts in [31].

6



CHAPTER 2 :

SECURITY IN WIRELESS SENSOR NETWORKS

Wireless ad hoc network (or Mobile ad hoc network - MANET1) is composed of a network of

wireless devices that have no a priori infrastructure support (there is no specifically assigned routers

or gateways exists). These devices in this context are called “nodes”. Nodes dynamically establish

connections when they are in radio range of one another and thus this is called communication “on

the fly”. Nodes that are out of the range of each other rely on the intermediate nodes to forward

their packets. Therefore, each node may act as source, sink or a relay for packets depending on the

position [32].

MANETs are multi-hop networks in which all nodes work cooperatively to maintain network

connectivity. They are useful in situations where temporary network connectivity is needed such

as natural disaster area. Such a network would allow medical personnel to retrieve patient records

from hospital databases assuming that the network managing station (base station) of the network

has connection to those databases via internet or some other ways. In the same manner insurance

company agents can get and submit queries from their databases in order to file claims regarding to

the damages of their customer goods.

Recent developments in wireless communications and micro electro mechanical systems (MEMS)

technologies facilitated the design of wireless sensor networks (WSNs), in which sensor nodes collect

the intelligible data from their surrounding environments and share them in a wireless fashion to

send the information towards a meaningful data sink. WSNs are special application of MANETs,

in which they have limitations on energy, computational power, memory storage, mobility, etc.

According to scientific predictions, the total number of wireless sensors deployed is expected

to reach 60 trillion in years 2012-2022, meaning 10,000 sensors for every person on the world [33].

Therefore, all the problems and challenges concerning WSNs will expose plentiful topics for academia

as well as the commercial researchers.
1In general, the terms of mobile ad-hoc networks (MANETs) and wireless ad-hoc networks are used inter-

changeably; therefore from now on, we will use MANET to refer both of them throughout the dissertation.
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Nodes in the WSN have limited power supplies. Therefore WSNs require energy-efficient proto-

cols and applications that would maximize the total lifetime of the WSN. Besides, nodes are prone

to the failures, which would change the topology of the WSN unpredictably.

In a WSN, communications among the nodes are not continuous. This is because of the fact

that WSN provides data to the users either on demand or upon event detection. While not in the

communication phase, nodes either switch to “idle” phase or “hibernate” phase and they turn off

their radios. In fact, this helps nodes to save energy and increases the total lifetime of the WSN.

WSNs may be subjected to different kinds of attacks (intrusions) against their availability (Denial

of Service - DoS attacks) and against the integrity, authenticity and confidentiality of the information

that is transmitted, processed and stored on the nodes. Besides, in some applications (e.g. military),

WSNs are deployed in hostile environments and are operated unattended way, increasing the risk of

being captured and compromised. These necessitate the security to be considered as one of the key

design criterion for WSNs.

2.1 Characteristic of Wireless Sensor Networks

Comparison of WSNs vs. MANETs: Basic differences between WSNs and MANETs are [34]:

• The number of sensor nodes in a WSN can be several orders of magnitude higher than

the nodes in a MANET.

• Sensor nodes are densely deployed, and are stationary in most of the scenarios. Whereas in

MANETs, nodes are most likely mobile and because of that they are not densely deployed.

• Sensor nodes are prone to failures due to harsh environments and energy constraints.

• The topology of a sensor network changes frequently due to the failures, but not as rapid

as in the case of MANETs where the nodes are moving.

• Sensor nodes are limited in computation, memory, and power resources; compared to the

powerful nodes of MANETs which are typically laptop or a PDA.

• Sensor nodes may not have a global identification, on the contrary, MANET nodes gen-

erally deployed with an IP address.

• WSNs are widely used in environmental and building monitoring in which sensor nodes

retrieve information on an event and pass this information to the base station; whereas
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MANETs are used in disaster relief operations and tactical operations in which multiple

kinds of radio carrying devices (aircraft borne, sea craft borne, ground craft borne, ground

personnel borne, etc.) communicate with each other.

These differences (especially constraints on WSNs) greatly affect the implementation of secure

data transmission in WSNs. As an example, low powered radio transmission of sensor nodes makes

the communication channel susceptible to DoS attacks. Contrary to MANETs, advanced anti-

jamming techniques (such as frequency-hopping spread spectrum communication) and physical tam-

per proofing of nodes are quite impossible in a WSN due to the requirements of a greater design

complexity and higher energy consumption.

Features of WSNs: WSN is a distributed system, which does not have any infrastructure support

(no gateways or routers). WSN consists of low cost, small sized nodes which are mostly stationary.

Nodes in a WSN are generally deployed in large-scale, so that they need the ability to self-organize

for the sake of wireless communications in a multi-hop way. Nodes need to operate autonomously

with a limited amount of resources, requiring power efficient communication strategies (i.e., sleep,

hibernate, awake cycles).

Network Topology of WSNs: In general, Hierarchical Topology is used for WSNs in which the

network is divided into clusters. Key points of hierarchical topology are;

• Each cluster consists of two types of nodes: cluster heads (CHs) and subordinate (member)

nodes.

• In most of the cases, varying levels of computational power within WSN; CHs have more

computational power.

• Sensors do not communicate each other directly, the CHs are the gateways in doing so.

• Data flows from sensor nodes to the CHs.

Hardware specifications of WSNs:

• ARM-7 microprocessor is widely used in today’s WSN nodes, which is working in the

milli-watt range.

• XBee and XBee-PRO IEEE 802.15.4 OEM RF modules are embedded solutions providing

wireless end-point connectivity to devices. These modules use the IEEE 802.15.4 network-

ing protocol for fast point-to-multipoint or peer-to-peer networking. They are designed
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for high-throughput applications requiring low latency and predictable communication

timing.

• ZigBit is a low-power, high-sensitivity 802.15.4/ZigBee module. ZigBit is based on the

industry leading Atmel Z-link hardware platform. The powerful ATmega 1281v MCU

features 128KB of flash memory and 8KB of RAM. The transceiver boasts -101dBm of

Rx sensitivity and up to +3dBm of Tx power. A link budget of 104dB gives the ZigBit

a much longer range than competitive modules with lower link budgets. ZigBit packs

impressive functionality into less than a square inch of space and offers superior radio

performance with exceptional ease of integration. The ZigBit module eliminates the need

for costly and time-consuming RF development, and shortens time to market for a wide

range of wireless applications.

• Libelium Wasp motes [35] use ZigBit technology for telecommunications.

• Memsic MicaZ motes [36] use IEEE 802.15 technology for telecommunications.

Constraints and Challenges of WSNs: Increasing deployment of WSN for different applications is

due to its inherent advantageous characteristics: such as, self-configuration, multi-hop behavior, no

single point of failure, autonomous behavior, infrastructure-less operation, ease of deployment, and

low cost. However, the benefits and flexibility of WSNs inevitably introduce many design challenges

and constraints.

Main constraints of WSNs inherent from their design are;

• Limited bandwidth of wireless links lead to lower QoS compared to wired links.

• Limited battery power (typically 2AA sized batteries).

• Limited bandwidth (low throughput).

• Limited memory.

Main challenges in designing algorithms (i.e., telecommunications, networking and security) for

WSNs;

• Dynamic topology due to nodes’ mobility leads to packet losses, network partition, and

network instability due to frequent route disconnections.
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• Broadcast nature of wireless link leads to unavoidable interference and thus causes packet

errors.

• Heterogeneous nodes with different capabilities (e.g., air interfaces) create further chal-

lenges.

• Network connectivity depends on transmission power, nodes density, and dynamic topol-

ogy.

• Network reliability and robustness depends on autonomous nodes’ behavior, node density,

network load, topology changes, and link disconnections.

• Network security is critical since wireless links are prone to eavesdropping.

• Network scalability presents a daunting challenge for QoS delivery (for example, through-

put or delay guarantees, etc.), network management, and security.

• By its nature, WSNs communicate through open air. Therefore it is vulnerable to various

kinds of attacks such as eavesdrop-ping, Denial of Service (DoS), man in the middle, etc.

• The sensor hardware is not reliable, not tamper proof and operates in an unattended

environment, which makes it an open target for node capture attacks (physical attack).

• Secure deployment of new nodes to an existing WSN without the need of renewal of the

keys throughout the old nodes is problematic.

• Revocation of misbehaving nodes from WSN is also a problem to be solved.

• Sensor nodes are battery powered devices, so energy consumption is very important. Since

wireless communication spends much more energy than computing; in order to extend

the lifetime of the WSN, any algorithm including communication of the nodes has to be

optimized.

• Providing security with minimum load to the sensor nodes is the main challenge.

2.2 Applications of Wireless Sensor Networks

The main objective of any WSN application is to provide solution to challenging real world

problems, such as detection and tracking the movement of troops on a battle field, monitoring
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environmental pollutants, measuring traffic flow on the roads, and tracking the location of the

patients in a hospital.

Military: Some of the potential military applications are; homeland security, target tracking and

reconnaissance.

Civil: Some of the potential civil applications are; industrial sensing (and automation moni-

toring), habitat and other environmental monitoring, scientific data collection, building monitoring,

object tracking, intrusion detection (burglar alarms), emergency response and disaster recovery, haz-

ard and structural monitoring, traffic control, inventory management in factory environment and

health care (medical).

Commercial: Some of the potential commercial applications are; smart home monitoring (pa-

tient or elder people monitoring - proximity control), smart grid and remote home management

(power switches, lights, door locks, air conditioner, etc.). Especially, remote home management

would be very helpful to elderly people, wireless connected motion detectors (to monitor whether

they fall down), stove on/off (they may forget to turn off the stove), refrigerator on/off. Smart

home monitoring would be very helpful to track patient behavior(to observe the side effects of the

medicines).

2.3 Security Issues in Wireless Sensor Networks

Wireless sensor networks (WSNs) have promising network infrastructure for many military ap-

plications, such as battlefield surveillance and homeland security monitoring [37]. In those hostile

tactical scenarios and important commercial applications, security mechanisms are necessary to

protect WSNs from malicious attacks.

A WSN may have to scale up to thousands of sensor nodes; and at the same time it needs simple,

flexible, and scalable security protocols. However, to design such security protocols is not an easy

task. Higher-level security and less computation and communication over-head are contradictory

requirements in the design of security protocols for WSNs. In most cases, a trade-off must be made

between security and performance [38].

2.3.1 Cost of Security

Security is a risk management of balancing the loss from breaches against the costs of security,

both of which are difficult to measure.

12



Figure 2.1 Optimization of security vs. cost [39].

From the optimization point of view to the information security and risk management; risk

reduction is defined as the balance of the cost of the breaches against the cost of security counter

measures to mitigate the risk. As shown in Figure 2.1, there is an optimal (minimum) point on the

total cost curve (shown with orange dot) which can be found as the sum of the two costs, where

the cost of countermeasures equals the cost of breaches. This is the point where optimal level of

security is satisfied at minimum cost and should be the main target of the security administrators

while designing their security plans.

2.3.2 Security Goals

Security goals for an information system are generally cumulated into three: CIA - Confidential-

ity, Integrity and Availability. Beside these trio, we may include non-repudiation and privacy as a

supporting elements.

Confidentiality: Only authorized parties should be able to access the data provided by WSN. At-

tacks against confidentiality: Eavesdropping of wireless communications, physical capture of sensor

nodes.
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Integrity: If an authorized user receives data from the WSN, this data should be correct and

valid; it shouldn’t be changed by unauthorized parties. Attacks against integrity: Physical capture

of some sensor nodes or intrusion of new malicious nodes.

Availability: WSN should always be able to answer any authorized request in its life time before

the request expires. Attacks against availability: Denial of service (DoS) attacks such as power

exhaustion attacks, jamming attacks, and collision attacks.

Non-repudiation: Neither the sender, nor the receiver can deny the transaction of the message.

2.3.3 Security Services

In order to fulfill the Security Goals in a network, Security Services are introduced:

Access Control: Access Control is about granting user access to network resources. It should

provide access to legitimate users and deny access to illegitimate users. Access control is comprised

of authentication and authorization.

Access control ensures that all accesses to objects (information resources) are authorized by

regulating different privileged operations.

Precision agriculture is a good example for application of access control for WSNs [24]. For

example let’s say a WSN provider offers data services to subscribed farmers regarding information

on their farms. Farmers may need to know the accurate readings on the humidity of the soil, in

order to engage the sprinklers on time, before the crops be withered. In order WSN provider to

make profit, only the legitimate users should get response to their queries from the WSN.

Authentication: It establishes a relation between a user and some identity (password, secret key,

token, etc.). Authentication can be based on three techniques:

• Something the user knows, such as a password. Comes along with password management,

which is required to prod users to change their passwords regularly, to select strong ones,

and to protect them.

• Something the user possesses, such as a token. Each token has a unique secret crypto-

graphic key stored within it, used to establish the token’s identity via a challenge-response

handshake.

• Something the user is, such as biometric data (finger prints, retina scan, etc.).
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Technically, the best combination would be user-to-token biometric authentication, followed by

mutual cryptographic authentication between the token and system services.

Authorization: Establishing a relation between a user and a set of privileges (access rights,

allowed operations (read-write, read-only, etc.). This is generally implemented by access control

lists.

Audit: It is the process of gathering data about activity in the system and analyzes it to discover

security violations or diagnose their cause. Analysis can occur off-line after the fact or online in real

time. In the latter case, the process is usually called intrusion detection. Audit has two components:

the collection and organization of audit data, and an analysis of the data to discover or diagnose

security violations.

2.3.4 Possible Attacks against WSNs

Appendix B summarizes attacks towards WSNs. The classification is provided according to the

OSI protocol layer, meaning that attacks towards each OSI protocol layer (physical, data-link, etc.)

are introduced separately.

2.3.5 Solutions to Defend against Attacks towards the WSNs

Appendix C summarizes solutions to defend WSNs against attacks towards them, especially the

DoS attacks (blackhole, Sybil, flooding, etc.).

2.3.6 Patch Management

Patch management is a security practice designed to pro-actively prevent the exploitation of

security vulnerabilities that exist within a network. The expected result is to reduce the time and

money spent dealing with vulnerabilities and exploitation of those vulnerabilities. Timely patching

of security issues is generally recognized as critical to maintaining the operational availability, con-

fidentiality, and integrity of networks. However, failure to keep operating system and application

software patched is one of the most common issues identified by security professionals. New patches

are released daily, and it is often difficult for even experienced system administrators to keep abreast

of all the new patches and ensure proper deployment in a timely manner.

Patch Management System (PMS)’s are useful to update patch and/or firmware to the end

devices (such as sensor nodes) in order to defend the network against recently discovered/revealed
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vulnerabilities. The importance of the PMSs has been arising, since the damages of the industrial

espionage cases (e.g. Stuxnet virus [1]) revealed.

In the literature, several PMSs [40–43] are introduced to address the mentioned problems above.

However they provide partial solutions to the problem and there is no “one size fits all” solution

proposed yet. The following statement may summarize the challenge for developing PMSs: “There

are too much vulnerabilities, requiring too many patches, with too many deployment mechanisms

to be deployed to too many machines”.

Readers, who are interested in application PMSs to Wireless Industrial Sensor Networks would

find more information in the our paper [44].

2.3.7 Open Problems in WSN Security

Following is the list of open problems of WSN security.

• Trust: Trust is a big problem in WSNs. Especially following topics are worth to work on:

trustworthiness, mutual trust, and trust management.

• Adaptability: Since WSNs possess frequently changing topology, security solutions must

be highly adaptable.

• Scalability: Hence a WSN may consist of thousands of sensor nodes, the security mecha-

nisms should be scalable.

Researchers can follow any topic on this list to conduct their research on WSN security.

2.4 Cryptography for Wireless Sensor Networks

2.4.1 Secret (Symmetric) Key Cryptography

Consider the WSN shown in Figure 2.2. By using Secret Key Cryptography (SKC), in order to

send encrypted messages to its’ neighboring sensor nodes (namely, S2, S3, S4 and S5), sensor node

S1 needs to encrypt each message by using the pair wise “Secret Key” associated with that specific

neighbor. In our example, S1 needs to encrypt the message outgoing to S2 with the pair wise Secret

Key S1-S2, message outgoing to S3 with the pair wise Secret Key S1-S3, message outgoing to S4

with the pair wise Secret Key S1-S4 and finally, message outgoing to S5 with the pair wise Secret

Key S1-S5. For the neighbors of S1 (namely, S2, S3, S4 and S5), in order to decrypt the messages

coming from S1, they need to decrypt the encrypted message by using the same pair wise “Secret

16



Figure 2.2 Illustration of secret key cryptography in wireless sensor networks.

Key” associated with S1 (Secret S1-S2, Secret S1-S3, Secret S1-S4, and Secret S1-S5.). By using

this methodology, each node needs to store the pair wise secret keys associated with its neighboring

nodes.

In a large network, distribution and management of these pair wise secret keys (Secret Sn-Sm)

is a big problem in terms of communications overhead, memory usage, message complexity, and

security resilience.

2.4.2 Public (Asymmetric) Key Cryptography

The computationally expensive portion of a Public Key Cryptography (PKC) system is typically

the private key operations. PKC algorithms such as Rivest-Shamir-Adleman (RSA) algorithm,

typically select the shorter keys as a public key in order to minimize the public key operations

such as digital signature verification and encryption. Therefore, longer keys are selected as private

keys, resulting with slow and resource demanding private key operations, such as decryption and

signature generation. On the other hand, Elliptic Curve Cryptography (ECC) algorithm requires

more overhead for encryption and signature verification than for decryption and signing [25]. Overall,

the drawback of PKC is that it suffers from computational complexity (algorithms).
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Figure 2.3 Illustration of public key cryptography in wireless sensor networks.

Consider the WSN shown in Figure 2.3. By using PKC, in order to send encrypted messages

to its’ neighboring sensor nodes (namely, S2, S3, S4 and S5), sensor node S1 just needs to encrypt

message by using its “Private Key”. For the neighbors of S1 (namely, S2, S3, S4 and S5), in order

to decrypt the messages coming frm S1, they need to decrypt the encrypted message by using the

“Public Key” of S1. By using this methodology, each node needs to store the public keys of its

neighboring nodes as well as its own private key.

2.4.3 Hybrid Cryptography

When the number of the users in a WSN is too many, PKC algorithms are used for user authen-

tication, as it scales much better than SKC algorithms. On the other hand, PKC algorithms require

too much power to operate. Therefore for the communications between the sensor nodes, SKC al-

gorithms are used. Sensor nodes in the communication range of the user serve as gateways between

the two parts of the WSN which are using either PKC or SKC. The user communicates with the

sensor nodes in the communication range using PKC, afterwards these sensor nodes communicate

with the rest of the WSN using SKC as shown in Figure 2.4 [26].
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Figure 2.4 Illustration of hybrid cryptography in wireless sensor networks.

In hybrid cryptography approach, PKC is used for session key setup and authentication, whereas

SKC is used to provide privacy. Here is the required steps, in order to achieve a secure network with

hybrid cryptography:

1. Secure channel setup between the user and the WSN: The user executes a mutually

authenticated key establishment protocol using PKC with some specified sensor nodes.

The protocol results in the establishment of shared session keys between the user and each

honest node which participated in the protocol run.

2. Authenticated querying: After the successful secure channel setup, the base station or

the nodes in user’s proximity forward user’s queries into the sensor network and append

to them some additional information enabling the other nodes to verify the legitimacy of

the query.

The first phase naturally includes the user authentication phase. Although a secure channel is

not required for access control, it is considered here because secure channel setup is a very well-

studied standard procedure and incurs marginal additional costs in comparison to unilateral user
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authentication. Additionally, secure channels between the users and the WSN are very likely to

be required in the overall WSN design. For example, the answer to the query should be kept

confidential. Moreover, the user should also be able to ascertain that it communicates with the

genuine sensor network.

We briefly outline a possible solution to access control assuming that the query is addressed to

a single sensor node, say sensor node S7. First, the user sends the query to the surrounding nodes

(S2, S3, S4 and S5) using the previously established secure channels. Each node computes a message

authentication code (MAC) on the query using the key shared with the node S7. For example, these

keys could be computed using polynomial-based key pre-distribution. The computed MACs are sent

back to the user who appends them to the query. The node S7 answers the query only if enough

MACs are appended.

Note that in this solution, no coordination between the nodes in user’s proximity is required.

The node S7 answers the query only if enough MACs are appended to it. Such solutions should gen-

erally be preferred, as coordination requires additional messages, and therefore, additional resource

consumption.

2.5 Security Provisioning Plan for Wireless Sensor Networks

As a starting point of a provisioning plan for any network security system (in order to set-up a

rigid security system to cope with attacks), these steps should be followed:

1. Specification of the network resources.

2. Planning and design of intrusion prevention.

3. Planning and design of intrusion detection.

4. Planning and design of intrusion mitigation.

These steps are also visualized in Figure 2.5, as a flow chart of “Security provisioning plan for

WSNs”. In the flow chart, it is shown that, our security provisioning plan starts with “Specification

of the network resources”. This step is followed by the first line of defense, “Intrusion Prevention”.

Attacks, that would able to manage to pass the first line of defense, should be detected by the second

line of defense, “Intrusion Detection”. Finally, detected intrusions should be mitigated through the

last step, “Intrusion Mitigation”.
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Figure 2.5 Security provisioning plan for wireless sensor networks.

2.5.1 Specification of the Network Resources

It’s clear that specification of the network resources is the first step in any kind of network

solution. We need to know what we need to keep secure from attackers and what kind of resources

we have to fight against attackers. Besides, any solution that we devise has to be applicable to the

network in concern. The topology (tree, ring, star, etc.) of the network has to be specified. Mobility

(mobile, slightly mobile, stationary, etc.) of the network has to be specified. Hardware and software

of the nodes need to be specified. Finally, frequency and data rate of the radio transmission need

to be specified. All these specifications would affect our tailoring of the design from lightly to a

moderate level.

2.5.2 Intrusion Prevention

Access control and authentication are the security measures to prevent intrusions. In any security

system design, intrusion prevention constitutes the first line of the defense.

Intrusion prevention is the 2nd step in a network security plan. The network members should

not be imitated by any non-member entity, and/or they should not be compromised by attackers,

and/or their hardware should not be tampered by attackers, etc. In a wired network concept this

is very well established. But in the case of wireless network concept, intrusion prevention is not as
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easy as it is thought. Especially in WSNs, intrusion prevention is almost impossible considering the

fact that physical capture of the nodes is almost inevitable (unless very specific tamper resistant

hardware is used). Hence prevention of the intrusion is not feasible in WSNs, we will leave it as the

final step of our security plan. Therefore, detection of the intrusion (misbehaving nodes) would be

a good choice of starting point to a security plan.

2.5.3 Intrusion Detection

Intrusion is an unauthorized (unwanted) activity in a network that is either achieved passively

(information gathering, eavesdropping) or actively (harmful packet forwarding, packet dropping,

hole attacks, etc.). “Intrusion Detection” is detection of any suspicious behavior in a network

performed by the network members. In our security plan, the 3rd step is the “Intrusion Detection”

which would help mitigation step (4th step) by providing following information: identification of

the intruder, and/or location of the intruder (single node/ regional), and/or time (date) of the

intrusion, intrusion activity (active, passive), intrusion type (hole attacks worm hole, black hole,

sink hole, selective forwarding attack, etc.), layer of the intrusion (physical, data link, network,

etc.), etc. That’s why “Intrusion Detection” is very important for a network from the security point

of view.

In any security system design, intrusion detection constitutes the second line of the defense.

intrusion detection systems are helpful to the overall security system in both ways:

• During any intrusion event, intrusion detection systems capture the logs of the event and

alert the system administrators and/or the intrusion mitigation systems.

• The captured audits of an intrusion event can be investigated later on, in order to improve

the first layer of defense (would provide enough clues about the gaps in the system),

intrusion prevention.

Intrusion detection systems seek to help carry out audit controls. Passive intrusion detection

systems analyze the audit data, usually offline, and bring possible intrusions or violations to the

attention of the auditor. Active intrusion detection systems analyze audit data in real time and may

take immediate protective response such as killing the suspected process and disabling the account.

Two approaches used: Anomaly detection is based on the assumption that the exploitation of

the vulnerabilities of the system involves abnormal use of the system. Misuse detection is based
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on rules specific events, sequences of events, or observable properties of the system, symptomatic of

violations.

2.5.4 Intrusion Mitigation

The 4th and final step of our security plan is the “Mitigation of the Intrusion”. This step follows

the intrusion detection and feeds (inputs) from the outputs of that step. That’s why it is very

important to design both steps in parallel and/or in coordination. The detected intrusions will be

either by passed (zone blocking, re-routing), and/or ignored (packet dropping), and/or physically

destroyed (in a military scenario), etc. according to the security strategy.
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CHAPTER 3 :

INTRUSION PREVENTION WITH TWO LEVEL USER AUTHENTICATION IN
HETEROGENEOUS WIRELESS SENSOR NETWORKS

3.1 Introduction

In any kind of network, there are two major steps to ensure security: intrusion prevention

and intrusion detection. As a first line of defense, network is secured by using intrusion prevention

methods such as authentication, authorization and access control. From computer security, we know

that no system is completely secure unless it has no connection to outside world (close network).

Hence, we are dealing with networking which means multiple of connections to outside world (open

network), the intrusions are inevitable. Here, the second line of defense comes into the picture-

intrusion detection: any kind of intruder that has managed to pass the first line of defense, need

to be captured by this step. This chapter contributes to the first line of defense, namely to the

intrusion prevention for heterogeneous (clustered) WSNs.

One of the major methods used for intrusion prevention is User Authentication (UA): If a user

does not have enough credentials then (s)he will be denied to access the network. This would

eventually prevent intrusions throughout the network, provided that the UA scheme is very well

designed to cover entire network and leaving no weak points in terms of security. UA is critically

needed for networks that are transferring confidential (sensitive and valuable) information to the

legitimate users; such as the coordinates of a hostile vehicle for a military surveillance application,

medical statistics of a patient for a health care application, etc.

Tactical WSN is a very good example of UA application. Let us say a WSN is deployed in

warfare conditions and is used to gather tactical information of enemy forces on the war field. In

this example, we will use the concept of proximity sensors that discover any vehicle or a soldier in

their preset perimeter. Location of any hostile vehicle or soldier is very important under warfare

and should be available to only friend forces to assess tactical advantage. Any friendly vehicle or a
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soldier should not trigger an alarm in the proximity sensors (by using predefined communications

using UA), but any existence of foe would do so. This is achieved by UA.

Health care is another example of UA application for WSNs. Let us say, a WSN offers instanta-

neous medical data service to subscribed health care employees such as doctors and nurses. Since the

confidentiality of the data is important (i.e., privacy of patient medical records), only the legitimate

users should get a response to their queries. Unauthorized users must be prevented from accessing

the mentioned confidential information. Therefore UA is a must in these kinds of networks.

WSNs are characterized by unique characteristics:

• Severely constrained computational and energy resources: limited power supplies (limited

energy), small memory sizes.

• Ad hoc operational environment: There is no structured network (there is no dedicated

router or switch for network operations)and transmission bandwidth is narrow.

Therefore security techniques used in traditional networks cannot be adopted directly. As a result,

although UA has been well studied for traditional networks, the models proposed for those networks

cannot be applied directly to WSNs because of the unique characteristics that WSNs possess. UA

in such a resource constrained WSN with minimum overhead provides significant challenges and is

an ongoing area of research.

UA is very important for WSNs. In order to save the diminishing power resources, network should

not be accessible by the unauthorized users. Any extra data transmission in the network generated

by the malicious users (eg. flood messages) may cause battery power of a sensor node to be depleted

faster. In a WSN, since an adversary can easily inject messages, any node receiving a message needs

to make sure that the data used in any decision-making process originates from the correct source.

UA prevents unauthorized parties from participating in the network: legitimate nodes should be

able to detect messages from unauthorized nodes and reject them. UA is an intended feature that

would prevent intruders and this way ensure trustability for WSN users.

In this chapter, we propose a secure and scalable UA scheme to prevent intrusions in WSNs.

The rest of the chapter is organized as follows: Section 3.2 provides related work for UA in WSNs,

motivation of this work and our research goals. Section 3.3 presents our proposed TLUA scheme.

Section 3.4 provides the security analysis of TLUA scheme. Performance evaluation of TLUA scheme
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is provided analytically in Section 3.5 and by simulations in Section 3.6. Finally, Section 3.7 concludes

the chapter and outlines future work.

3.2 Related Work, Motivation and Research Goals

There are a couple of papers published in the area of authentication for WSNs: Perrig et al. [2]

proposed a suite of security building blocks for WSNs called SPINS. It is optimized for resource

constrained environments and wireless communication. SPINS has two secure building blocks: SNEP

and µTESLA. µTESLA is a broadcast authentication scheme and SNEP provides two-party data

authentication. TinySec [3] is a lightweight, generic security package that can be integrated into

sensor network applications. It is incorporated into the official TinyOS release. LEAP [4] is a key

management protocol for sensor networks that is designed to support in-network processing, while

at the same time restricting the security impact of a node compromise to the immediate network

neighborhood of the compromised node. LEAP also includes an efficient protocol for inter-node

traffic authentication based on the use of one-way key chains. A salient feature of the authentication

protocol is that it supports source authentication without precluding in-network processing and

passive participation.

SPINS, TinySec, LEAP are not “User Authentication” schemes, they only provide one-hop “node

authentication”. It means that only two neighboring nodes authenticate to each other. End-to-end

secure communication (i.e., user - sensor node) is not provided. In end-to-end secure communication,

intermediate nodes cannot “see” what is being transmitted between two “end” parties, because of

the encryption (two end parties share a common encryption key).

Recently, several schemes have been introduced as a UA scheme for WSNs: Wong et al. [5](through-

out the chapter we call this as WZCW scheme) proposed a dynamic UA scheme for homogenous

WSNs. Later this work was improved by Tseng et al. [6] (throughout the chapter we call this as

TJY scheme) with the following advantages; including resistance of the replay and forgery attacks,

reduction of user’s password leakage risk, capability of a changeable password, and better efficiency.

As discussed in [5], authors claim that weak-password authentication is not suitable for WSNs be-

cause it loads the computational overhead to the used cryptography algorithm. In other words the

algorithm must be strong enough to compensate for the weakness in the key. Therefore they recom-

mend strong-password authentication for WSNs in which computational load is light, owing to the
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strength in the key. As a summary, both schemes use SKC for UA throughout the network which is

not scalable for a large number of sensor nodes and users.

Although Benenson et al.’s scheme (throughout the chapter we call this as BGR scheme) [8] uses

PKC for UA, it is not practical for WSNs because of the homogenous network structure, meaning

that all the power and processing demanding PKC operations are supposed to be handled on the

normal sensor nodes. As a result, authentication operations take minutes (as the authors of [8]

confess) and batteries of the sensor nodes deplete faster (according to findings of [45]).

To the best of our knowledge, the only heterogeneous approach to the UA in WSNs in the

literature is Le et al.’s [7] scheme (throughout the chapter we call this as TTUA scheme). In TTUA

scheme, CHs are used as a backbone in the network so that the sensed data, after being collected,

are transmitted through CHs towards the requesting users. For authentication purpose, SKC is

issued between the CHs and the users. However, it is practically impossible to scale SKC keys to

include a large number of users and sensor nodes, because of the memory limitations. Besides, in

SKC, excluding existing users from the network and including new users to the network, requires key

revoking and key re-distribution, which needs a considerable amount of communication overhead.

These are the biggest constraints of the TTUA scheme.

The schemes mentioned above use either PKC approach (BGR) or SKC approach (WZCW,

TJY and TTUA). Both approaches have advantages and disadvantages. PKC is preferable in terms

of scalability and key management, but it is unsuitable for the sensor nodes due to higher pro-

cessing power requirement and lower energy efficiency. In contrast, SKC is preferable in terms of

lower processing power requirement and higher energy efficiency, but it is not scalable because of

memory restrictions and it requires a complicated key pre-distribution, user revocation and key

re-distribution.

WZCW, TJY, and BGR schemes are using homogenous WSN architecture, in which the net-

work consists of one type of sensor node only. Nowadays, because of having better performance,

heterogeneous WSN architecture is on demand. This kind of network consists of two types of nodes:

Cluster Heads (CHs) and sensor nodes(s). TTUA scheme adopts heterogeneous WSN architecture

and owing to the high processing powered CHs, it offers better performance compared to WZCW,

TJY and BGR schemes. On the other hand, it is based on SKC just like as WZCW and TJY

schemes. Therefore, it is not scalable for thousands of sensor nodes and users, occupies a significant
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memory to store authentication codes. Thus, addition of new nodes and users is troublesome in

terms of key distribution.

In this chapter, we propose a secure and scalable UA scheme, named as Two Level User Au-

thentication (TLUA), to overcome mentioned shortcomings of the current state of the art schemes

(namely WZCW, TTUA, TJY and BGR schemes). In our scheme, we adopt the idea of a two

level heterogeneous network architecture in which a user communicates with a sensor node through

Cluster Head (CH) of that sensor node. Our scheme uses Public Key Cryptography (PKC) between

CHs and users, and Secret Key Cryptography (SKC) between CHs and sensor nodes. We have pre-

sented basics of our scheme in [27] and then presented our early findings of performance evaluations

in [28].

This work extends our previous efforts in a more comprehensive, presentable and conclusive way;

then evaluates our TLUA scheme and compare its performance with state of the art schemes in the

literature (namely TTUA, TJY1and BGR schemes). Evaluations are provided in two ways:

1. Analysis on the following criteria are provided:

• memory storage requirement,

• scalability,

• communication cost (in terms of time and energy),

• computational cost.

2. Simulation on energy consumption and total delays are provided.

3.3 Two Level User Authentication Scheme

Part of our scheme is first presented in [27]. In this work, in order to relieve the confusion in the

terminology (among the tiered networks and our two level architecture), we renamed our scheme as

Two Level User Authentication Scheme (TLUA).

In our TLUA scheme, we adopted the idea of two level heterogeneous network architecture of

TTUA scheme in which a user communicates with a sensor node through CH of that sensor node.

Our proposed scheme not only keeps all the advantages of the TTUA scheme but also enhances its

1Since TJY scheme is a superior version of WZCW scheme, evaluations regarding TJY scheme will represent both
schemes.
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security by issuing PKC. Therefore, TLUA adopts (inherits) all the advantages of the PKC over

SKC.

In [45], it is shown for WSNs that Elliptic Curve Cryptography (ECC) algorithm to have a

significant advantage over Rivest-Shamir-Adleman (RSA) algorithm, as it reduces computation time

and the amount of transmitted and stored data. Hence ECC is the best known algorithm in PKC [46,

47]; we adopt it to our TLUA scheme. By doing so, not only the scalability of the network is

improved, but also security of the scheme is enhanced. In TLUA scheme, ECC is used for digital

signature generation and verification between the users and the CHs; and Elliptic Curve Diffie

Hellman (ECDH) key exchange protocol is used to exchange secret keys among CHs and sensor

nodes.

3.3.1 System Model

In TLUA scheme, WSN consists of CHs and sensor nodes, representing a Heterogeneous network

structure: 1) CHs have high processing capability and long lasting power supplies, such as iPAQ

PDA [48]. 2) Sensor nodes have low processing capability and limited power supplies, such as

MICA-2 motes [49].

CHs are assumed as trusted gateways to the sensor nodes. TLUA scheme takes advantage of high

processing power CHs to decrease the processing load on the sensor nodes. Hence they have better

power supplies compared to sensor nodes, and are capable to run power hungry PKC algorithms.

Therefore, between CHs and users, a PKC algorithm (namely ECC) is used for UA purposes. Once

a user is authenticated to a CH then allowed to access the sensor nodes through that CH. Since it

is low power demanding, between CHs and sensor nodes an SKC algorithm is used for UA.

TLUA allows a user to register once and authenticate to the network many times. Users can

also change the password anytime at will. We consider large WSN (100’s of sensor nodes) deployed

in any variety of environments. In our WSN’s architecture, base station (BS) is the point of central

control, which serves as a trusted key management facility. BS is many orders of magnitude more

powerful than sensor nodes. Typically, BSs have enough battery power to surpass the lifetime of

all sensor nodes, sufficient memory to store cryptographic keys, stronger processors, and means

for communicating with outside networks. After the deployment, sensor nodes form groups, called

clusters, see Figure 3.1. For each cluster, a powerful node (e.g. PDA) is assigned as a CH. CHs have

higher communication power than sensor nodes and therefore possess far more radio transmission

29



coverage. CHs can communicate with each other and also with BS. In order to protect the keying

materials, CHs are equipped with tamper-resistant hardware. This assumption is reasonable, hence

the number of CHs in a heterogeneous WSN is relatively small (e.g., approximately 20-30 CHs for

1,000 sensors), and the cost of such tamper-resistant hardware is small [50]. Users are equipped with

portable computing devices, such as laptops, with no power constraints compared to sensor nodes.

Users interact with the WSN for data query and retrieval. After processing sensed information; the

sensor node either sends the data upon event detection or stores it to serve for the next query.

Figure 3.1 User authentication scenario in the TLUA scheme.

3.3.2 Key Agreement and Key Distribution

In our scheme we considered a Public Key Infrastructure (PKI) issuing ECC throughout the

WSN. The network structure is the same as suggested in [7]. One BS serves as the certification

authority for the network. ECC is used for encryption and decryption, Elliptic Curve Digital Sig-

nature Algorithm (ECDSA) is used for digital certificate generation and verification. The difference

between a digital signature and a certificate is verification of a digital certificate reveals the content

whilst verification of a digital signature reveals the hash of the content [51]. ECDH key agreement
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protocol is used for key agreement between a CH (e.g. A) and their member sensor node(s), to be

used as pair-wise MAC keys, KA,s. Initially, BS generates elliptic curve parameters for ECC and

ECDSA operations to be used by BS, CHs and users, and for ECDH operations to be used by CHs

and sensor nodes. These parameters are; base point P , private key pri keyBS and the corresponding

public key pub keyBS = pri keyBS×P (where × stands for elliptic curve point multiplication) itself.

BS also generates private-public key pairs for each sensor node (pri keys, pub keys = pri keys×P )

and for each CH (pri keyCH , pub keyCH = pri keyCH × P ). Each sensor is pre-loaded with their

private - public key pair and also the public key of the CHs. Each CH is pre-loaded with their

private-public key pair and also the public keys of the sensor nodes.

In our scheme, between CHs and sensor nodes, in order to let both parties agree on a shared

secret key, ECDH key agreement protocol is used as discussed in [25]. ECDH allows two parties

to agree on the secret key of the SKC algorithm they are using: in our case it is MAC. In order

to reduce energy consumption, all public keys needed for ECDH protocol are exchanged between

sensor nodes and corresponding CHs before the deployment. Thus, no further communication is

needed to exchange public keys. After deployment, each sensor node (s) computes a shared secret

key (KA,s) with its CH (e.g. A), for authentication purposes as follows:

• s computes the elliptic point Rs as shown in Equation 3.1:

Rs = (xs, ys) = pri keys × pub keyA (3.1)

• A also computes another elliptic point RA as shown in Equation 3.2:

RA = (xA, yA) = pri keyA × pub keys (3.2)

• Since Equation 3.3 holds, then Rs = RA, and so does xs = xA. As a result KA,s = xs is

assigned as the shared secret key between s and A.

pri keys × pub keyA = pri keys × pri keyA × P.

= pri keyA × pri keys × P.

= pri keyA × pub keys. (3.3)
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Table 3.1 List of notations used in Section 3.3.

Abbreviation Interpretation

A cluster head named A

BS base station

cert certificate

decryptx(y) decryption of y with key x, using ECC

ECC elliptic curve cryptography

ECDSA elliptic curve digital signature alg.

encryptx(y) encryption of y with key x, using ECC

H(.) hash value

IDx identification number of x

KA,s pair-wise key between A and s

MAC message authentication code

pri key private key

pub key public key

s sensor node

signx(y) ECDSA signature

T time stamp

U user

verify(z) verification of z

∥ concatenation

* new

We assume that the key distribution between BS and CHs is established in a manner that all

the CHs have the public key of the BS, namely pub keyBS .

3.3.3 Authentication

TLUA includes three phases: Registration, Authentication, and Password Change. The oper-

ational functionality (handshake messages) of all these phases are summarized and illustrated in

Figure 3.22.

User registration: User sends a request to the BS for registration to the WSN along with his ID

encrypted with the public key of the BS, as shown in Equation 3.4:

user → BS : {Registration request; encryptpub keyBS
(IDU )} (3.4)

BS has the ID list of the legitimate users and provides each legitimate user a certificate. BS

has private and public key pair (pri keyBS , pub keyBS) and the certificate is the user’s ID signed

2For abbreviations and notations used in Figure 3.2, please refer to Table 3.1.
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Figure 3.2 Communication handshake messages that are passed between different entities of the
WSN for Registration, Authentication and Certificate Renewal phases of the TLUA scheme.
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by the BS, using the private key (pri keyBS). As a final step, BS sends back the certificate to the

user (see Equation 3.5).

BS : certU = signpri key BS(IDU )

BS → User : certU (3.5)

In user authentication phase, with the public key of the BS (pub keyBS), each CH can verify

the certificate of the user and extract the ID of the user, namely IDU .

User authentication: All the communications within the network are routed by the CHs. Let

us consider the scenario where the user wants to access data aggregated at a sensor s (suppose A

is CH of s), and let us also assume that A is the closest CH in the proximity of the user (intra

communications and authentications among CHs are beyond the scope of our chapter). Then the

authentication process includes the following steps:

• Step 1) The user sends his certificate certU and time stamp TU along with the hash value

of those concatenated by user ID, IDU to A as shown in Equation 3.6:

user → A : certU , TU ,H(certU∥TU∥IDU ) (3.6)

where ∥ means concatenation and H stands for hashing algorithm such as SHA-1. In this

representation, the hash value represents the variable (changes with the time, protected

by time stamp) password of the user.

Upon receiving an authentication request from the user, A first checks whether TU is

valid, if yes then it can verify the certificate of the user by using the public key of the BS

(pub keyBS) and extract the ID of the user, namely IDU , as shown in Equation 3.7:

A : verify(certU ) = IDU (3.7)

Finally A verifies the hash value of the user by using the ID of the user as shown in

Equation 3.8:
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A : verify(H(certU∥TU∥IDU )) (3.8)

• Step 2) If the verification is successful (meaning that the password provided by the user

is correct), A sends s, its identification (IDA) and time stamp (TA) along with a MAC

using its shared pair-wise key (KA,s) with the sensor s, MAC(KA,s, IDA∥TA), as shown

in Equation 3.9:

A → s : IDA, TA,MAC(KA,s, IDA∥TA) (3.9)

Upon receiving the message, s first checks if TA is valid. If yes, it verifies IDA by gen-

erating a MAC with the shared pair-wise key with A (KA,s) and comparing it with the

received MAC, as shown in Equation 3.10:

s : verify(MAC(KA,s, IDA∥TA)) (3.10)

If all of these are successful, then the user is authentic. After successful authentication,

sensor s is ready to send data to the user. s may send a short message to inform the user

that he is authenticated via A.

User Password Change and Certificate Renewal: TLUA allows users to change their password

by means of certificate renewal at their will. Users can do so through BS. The user encrypts the

new public key (pub key∗U ) and its new ID ID∗
U with its current private key (pri keyU ), as shown

in Equation 3.11:

user → BS : encryptpri keyU
(pub key∗U∥ID∗

U ) (3.11)

After receiving the encrypted message, BS decrypts it by using the current public key of the

user (pub keyU ), as shown in Equation 3.12:

BS : decryptpub keyU
(pub key∗U∥ID∗

U ) (3.12)
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Then BS can sign the new ID (ID∗
U ) by its private key (pri keyBS) to obtain a new certificate

(cert∗U ) and send it back to the user, as shown in Equation 3.13:

BS : cert∗U = signBS(ID
∗
U )

BS → user : cert∗U (3.13)

3.4 Security Analysis

In this section, we analyze the security of the TLUA scheme. In a two-party communication case,

data authentication can be achieved through a purely symmetric mechanism: The sender and the

receiver share a secret key to compute a Message Authentication Code (MAC) of all communicated

data. When a message with a correct MAC arrives, the receiver knows that it must have been sent

by the sender. In our TLUA scheme, MAC is used for all transmissions which involve sensor nodes

and PKC (especially the ECC) is used in the backbone architecture of the network, namely between

user side, BS and CH. Accordingly, not only the security aspect of the network is increased, but

also most of the advantages of PKC and SKC are retained.

Authentication and encryption techniques can prevent an outsider to launch a Sybil attack3

against WSN. However, an insider cannot be prevented from participating to the network. (S)he

can achieve this by using the identities of the nodes (s)he has compromised. Besides, using globally

shared keys allows an insider to masquerade as any node. PKC can prevent such an insider attack.

It is one of the reasons to adopt it in our TLUA scheme. Although SKC is efficient in processing

time for sensor networks, they generally require complicated key management, which needs large

memory and communications overhead. On the other hand, PKC has simple key management with

the more computational time trade-off. With the recent progress in ECC, Wang et al. [52] shows

that PKC can be more advantageous than SKC not only with key management but also in terms

of the memory usage and security resilience. This is another reason to adopt PKC to our TLUA

scheme. In TLUA users can be added and revoked on the fly. CHs only need to keep the public key

of the BS. Whereas in TTUA CHs need to keep the password list of the users every time.

3In Sybil attack, an adversary captures a single sensor node and illegitimately claims multiple identities to the
sensor network.
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In the TTUA scheme, the hash value of the user password is sent to the BS through a secure

channel. Also, the hash values list of the CHs secret keys is sent from BS to the user through

the secure channel. It means that in case of any intrusion into the secure channel, the WSN would

be compromised. In our TLUA scheme, owing to the Public Key Infrastructure (PKI), a secure

channel is not needed between user and BS. Therefore users do not have to plug in to the BS for

key exchange. This means that users in our network are free to move anywhere but the coverage

area of the BS.

In TTUA if the secret key (KA) of the CH A is captured, then the network is compromised and

all the user passwords stored on A must be revoked. In TTUA scheme, users change their passwords

through CHs. In our TLUA scheme, users directly communicate with BS to change the password.

Since CH is not involved in the password change session, TLUA is less vulnerable compared to

TTUA. In TTUA scheme, a hash function (SHA-1) is used to secure the authentication message

between the user and the CH. In our TLUA scheme, we use ECC which is more secure than SHA-1

given that both use same sized keys.

3.4.1 Node Compromising Attacks

Since CHs are equipped with tamper resistant hardware, it is impossible to compromise them.

This way the SKC pair-wise keys between each sensor and associated CH is secured on the CH

side. Also the PKC keying materials between CHs and users are also secured. The weakest element

of our proposed scheme is the sensor nodes, since they do not have tamper resistant hardware. In

terms of security, we do not let sensor nodes carry any valuable information to compromise the

overall WSN. Hence the secret keys between a CH and each member sensor node are different, the

furthest point any attacker can reach is the compromising of the link communication between the

sensor node captured and the related CH. To defend this, in our TLUA scheme the secret keys

between CHs and sensor nodes are updated at certain periods with ECDH protocol.

3.4.2 Replay Attacks

In the TLUA scheme an attacker cannot re-use the previous successful login messageH(certU∥TU∥IDU ),

because the time stamp TU generated by the user protects this message to be used again after a

certain time. After the useful time passes, CH will not allow access to the user. Thus, reply attacks

are defended that way.
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3.4.3 Impersonation Attacks

Our proposed scheme is resilient against impersonation attacks in the following manner: In

authentication phase, an outsider tries to impersonate the login message H(certU∥TU∥IDU ) by

fabricating IDU as IDU−guessed. The fabricated ID will change the hash value and will be caught

by the CH throughout the hash value verification, as shown in Equation 3.14:

H(certU∥TU∥IDU−guessed)! = H(certU∥TU∥IDU ) (3.14)

3.4.4 Brute-force Attacks

Our proposed scheme is resilient against brute force attacks in following manners:

• In the password change phase, an adversary intercepts the message

(encryptpri keyU (pub key∗U∥ID∗
U )) and tries to decrypt the message by estimating the

public key of the user. So (s)he needs to try every combination of (pub keyU ) to decrypt

the password change message. This kind of attack is known as brute force attack and is

practically and cryptographically infeasible to be successful in useful time.

• In the password change phase, an adversary intercepts the message

(encryptpri keyU
(pub key∗U∥ID∗

U )) and tries to estimate the private key of the user from

the encrypted message, which is practically and cryptographically infeasible in useful time.

3.5 Performance Evaluation by Analysis

In this section, we analytically evaluate (by using theoretical calculations and also practical

results from the literature) the performance of our proposed TLUA scheme and compare it to TTUA,

TJY, and BGR schemes for the following criterions: storage requirement (memory), scalability,

computational cost and communication overhead.

3.5.1 Storage

For Cluster Heads: TTUA scheme requires each CH to store user IDs and hashed password

values, which adds up with the increasing number of users. As mentioned in [7], for the TTUA

scheme, assuming that there are n number of users, user ID size is 8 bytes, and the hashed password

value is 20 bytes, each CH has to store n × 28 + 120bytes of data for the users. Whereas in our
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Table 3.2 Comparison of memory storage (bytes) required on each sensor node and CH
(for1, 000users) in TLUA, TTUA, TJY and BGR schemes.

TLUA TTUA TJY BGR

CH 40 28,120 N/A N/A

Sensor node 80 20 10,000 40

TLUA scheme, to authenticate the users, the only key that CHs have to store in their memory is

the public key of the BS (pub keyBS). This advantage is brought by the PKC. In our scheme, since

we use 160 bits (20 bytes) elliptic curves, the public key size is 40 bytes (keep in mind that, for a

160 bits elliptic curve, certificate is 40 bytes long, public key is 40 bytes long and private key is 20

bytes long). Assuming n=1,000; the memory required to store keys on each CH are as shown in

Table 3.2. Since TJY and BGR schemes do not require any CHs in their network, we will denote

them as N/A in the table.

For Sensor Nodes: In TLUA scheme, each sensor node need to store private key of it self and

public key of the CH for ECDH operation4. After the ECDH operation, CH and sensor nodes agree

on a secret key KA,s which is 20 bytes long. As mentioned earlier, for ECDH, public key is 40 bytes

long and private key is 20 bytes long. So, total memory space required for the keys are 80 bytes

long. In TTUA scheme, each sensor stores a secret key KA,s which is 20 bytes long. In TJY scheme,

every sensor node stores 10 bytes long key for each user. Therefore each sensor node needs to store

n×10bytes long keying material. Finally, in BGR scheme, each sensor node need to store public key

of the certification authority, which is 40 bytes. Assuming n=1,000; the memory required to store

keys on the each sensor node is as shown in Table 3.2.

3.5.2 Scalability

As mentioned in the previous section, owing to the PKC approach, the memory space available

on CHs in TLUA scheme does not change with the number of users. So we can state that there is

no limit on the number of users. Literally speaking, TLUA scheme may manage thousands of users

without any problem. Where as in TTUA scheme, memory space available on CHs is inversely

proportional to the number of users. In TJY scheme, memory space available on sensor nodes is

inversely proportional to the number of users, whereas in BGR scheme (owing to the PKC approach)

it does not change with the number of users.

4This public key-private key pair is used by ECDH key agreement protocol to generate KA,s in the network
initialization phase.
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Table 3.3 Comparison of total number of users to be supported in TLUA, TTUA, TJY and BGR
schemes.

TLUA TTUA TJY BGR
> 10,000 < 100 > 10,000 < 200

Following the calculations from the previous section, if the memory size of each CH and sensor

node for storing the keys is allocated as 2 Kbytes, then the number of users that would be supported

in both TTUA and TLUA schemes are as shown in Table 3.3. Its apparent that TLUA and BGR

schemes are very flexible and scalable compared to TTUA and TJY schemes in terms total number

of users to be supported. Although according to our calculations there is no limit on the number of

users for TLUA and BGR schemes, we limit this number to 10,000; which is reasonable for practical

applications.

3.5.3 Computation

To compare the computational cost we have two comparison criterion: time cost and energy cost.

We are interested on the operations running on CHs and sensor nodes but not interested in the

operations running on the user devices and the base station. After we calculate the time cost of

each scheme, we will calculate the energy cost of each scheme accordingly.

As a reference for our calculations, we used broad variety of reliable research results from the lit-

erature, especially papers on application of cryptography primitives over 8-bit CPU devices (namely

Atmel ATmega microcontrollers) and hand held PDA devices (namely iPAQ). For the calculations

involving sensor nodes, we referred to following research papers: [45, 46, 53–60]. For the calcula-

tions involving CHs, we referred to following research papers: [25, 61, 62]. For CH devices, we will

consider iPAQ H3670 PDA. For sensor nodes, we will consider Berkeley’s MICA2 motes5.

Time cost: We define TMAC , TSHA1, TRC5, TXOR and TV ER as computational time cost of

performing hash based message authentication code (CBC-MAC), hash function (SHA-1), symmetric

encryption (RC5), XOR operation, and digital signature verification with ECDSA, respectively.

Following this convention the computational time costs of TLUA, TTUA, TJY and BGR schemes

are presented in Table 3.4. Since TJY and BGR schemes do not require any CHs in their network,

we will denote their time cost as N/A in the table.

5Atmel ATmega microcontroller is the main chip on MICA2 motes.
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Table 3.4 Comparison of computational time cost on each sensor node and CH in TLUA, TTUA,
TJY and BGR schemes, provided as analytically.

Scheme Phase Cluster head Sensor node

TLUA reg. 0 0
aut. 1TV ER + 1TSHA1 + 1TMAC 1TMAC

TTUA reg. 1TRC5 + 1TSHA1 0
aut. 1TSHA1 + 3TMAC 1TMAC

TJY reg. N/A 1TSHA1

aut. N/A 2TSHA1 + 2TXOR

BGR reg. N/A 0
aut. N/A 2TV ER + 1TSHA1

Table 3.5 Time spent on MICA2 motes (sensor nodes) for processing each security primitive.

Operation Time

TSHA1 4.91 ms
TMAC 7.56 ms
TXOR ≈ 0 ms
TV ER 3.27 sec

According to practical implementations on MICA2 motes (sensor nodes), the computational time

required for each security primitive are as shown in Table 3.5.

In the case of BGR scheme, which is a PKC approach to UA in WSNs, authors [8] provided their

experimental result as follows: Authentication takes 375 sec of time on a sensor node. Considering

that the paper was published in 2005, we revised this number with latest findings in the literature [60,

63]. With recently discovered fast point multiplications, ECDSA signature verification costs as less

as 3.27 sec. Literally speaking, in our analysis, we used up to date numbers in order to provide a

fare comparison.

According to practical implementations on PDA devices (CHs) (i.e., iPAQ H3670), the energy

spent for each security primitive are summarized in Table 3.6.

Table 3.6 Time spent on iPAQ PDA devices (CHs) for processing each security primitive.

Operation Time

TSHA1 10.13 µsec
TMAC 15.47 µsec
TRC5 10.53 µsec
TV ER 130.82 msec
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Table 3.7 Comparison of computational time cost on each sensor node and CH in TLUA, TTUA,
TJY and BGR schemes, provided as numerically.

Scheme Phase Cluster head Sensor node TOTAL

TLUA reg. 0 0 0
aut. 130.85msec 7.56msec 138.41msec

sub-total 130.85msec 7.56msec 138.41 msec
TTUA reg. 20.66µsec 0 20.66µsec

aut. 56.54µsec 7.56msec 7.62msec
sub-total 77.2µsec 7.56msec 7.64 msec

TJY reg. 0 4.91msec 4.91msec
aut. 0 9.82msec 9.82msec

sub-total 0 14.73msec 14.73 msec
BGR reg. 0 0 0

aut. 0 6.545sec 6.545sec
sub-total 0 6.545sec 6.545 sec

By using practical results of Table 3.5 and Table 3.6 we updated Table 3.4 as shown in Table

3.7. According to these results we see that TTUA is the fastest scheme and BGR is slowest (almost

1,000 fold slower). Although our TLUA scheme is using PKC, its performance results are very close

to the SKC based schemes (TTUA and TJY) owing to the high speed processing capabilities of its

CHs. To provide a better comparison, we plotted the total time cost (in msec) of each scheme as

shown in Figure 3.3.

In our TLUA scheme, CHs are not involved in the registration phase, therefore the computation

cost is zero. The authentication phase takes almost 138 milliseconds for TLUA scheme and 8

milliseconds for TTUA scheme. Which means that TLUA scheme is slower than (almost 15 fold

slower) TTUA scheme for the authentication phase, which is expected. This is the trade off for

changing cryptography approach from SKC to PKC. But keeping in mind that, BGR scheme requires

6.545 sec for the authentication phase, our scheme is almost 50 times faster owing to the high

processing powered CHs.

Energy cost: As in the case of time cost calculations, we define EMAC , ESHA1, ERC5, EXOR

and EV ER as computational energy cost of performing hash based message authentication code

(HMAC), hash function (SHA-1), symmetric encryption (RC5), XOR operation, and digital sig-

nature verification with ECDSA, respectively. Following this convention the computational energy

costs of TLUA, TTUA, TJY and BGR schemes are presented in Table 3.8. Since TJY and BGR

7Note that this figure is plotted in logarithmic scale.
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Figure 3.3 Comparison of total computational time costs (CH + s) of TLUA, TTUA, TJY and
BGR schemes7.

Figure 3.4 Comparison of computational time costs on sensor nodes of TLUA, TTUA and TJY
schemes.
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Table 3.8 Comparison of computational energy cost on each sensor node and CH in TLUA, TTUA,
TJY and BGR schemes, provided as analytically.

Scheme Phase Cluster head Sensor node

TLUA reg. 0 0
aut. 1EV ER + 1ESHA1 + 1EMAC 1EMAC

TTUA reg. 1ERC5 + 1ESHA1 0
aut. 1ESHA1 + 3EMAC 1EMAC

TJY reg. N/A 1ESHA1

aut. N/A 2ESHA1 + 2EXOR

BGR reg. N/A 0
aut. N/A 2EV ER + 1ESHA1

Table 3.9 Energy spent on MICA2 motes (sensor nodes) for processing each security primitive.

Operation Energy

ESHA1 5.9µWs/byte
EMAC 9.0µWs/byte
EXOR ≈ 0µWs/byte
EV ER 45.09mWs

schemes do not require any CHs in their network, we will denote their energy cost as N/A in the

table.

According to practical implementations on MICA2 motes (sensor nodes), the computational

energy spent for each security primitive are as shown in Table 3.9.

According to practical implementations on PDA devices (CHs) (i.e., iPAQ H3670), the energy

spent for each security primitive are summarized in Table 3.10.

By using practical results of Table 3.9 and Table 3.10 we updated Table 3.8 as shown in Table

3.118. These results are very consistent with our findings for time cost calculations in previous

section.
8Throughout these calculations we kept data size fixed as 20 bytes.

Table 3.10 Energy spent on iPAQ PDA devices (CHs) for processing each security primitive [61].

Operation Energy

ESHA1 0.76 µWs/byte
EMAC 1.16 µWs/byte
ERC5 0.79 µWs/byte
EV ER 196.23 mWs
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Table 3.11 Comparison of computational energy cost on each sensor node and CH in TLUA, TTUA,
TJY and BGR schemes, provided as numerically.

Scheme Phase Cluster head Sensor node TOTAL

TLUA reg. 0 0 0
aut. 196.27mJ 180µJ 196.45mJ

sub-total 196.27mJ 180 µJ 196.45mJ
TTUA reg. 31µJ 0 31µJ

aut. 84.8µJ 180µJ 269.6µJ
sub-total 115.8µJ 180 µJ 295.8µJ

TJY reg. 0 118µJ 118µJ
aut. 0 236µJ 236µJ

sub-total 0 354 µJ 354µJ
BGR reg. 0 0 0

aut. 0 90.298mJ 90.298mJ
sub-total 0 90.298 mJ 90.298mJ

Table 3.12 Comparison of communication cost for TLUA and TTUA schemes.

Phase TLUA TTUA

Registration 0 Cbr

Authentication 2CU−A + 2CA−s 2CU−A + 2CA−s

Total 2CU−A + 2CA−s Cbr + 2CU−A + 2CA−s

According to these results we see that TTUA is the most energy efficient scheme and BGR is

the worst (almost 300 fold more energy consumption). Although our TLUA scheme is using PKC,

its performance results are very close to the SKC based schemes (TTUA and TJY) owing to the

heterogeneous network architecture. To provide a better comparison, we plotted the total energy

cost (in microJoules) of each scheme as shown in Figure 3.5.

In our TLUA scheme, CHs are not involved in the registration phase, therefore the energy

cost is zero. The authentication phase spends almost 200 milliJoules for TLUA scheme and 300

microJoules for TTUA scheme. Which means that TLUA scheme spends more (almost 650 fold)

energy than TTUA scheme for the authentication phase, which is expected. This is the trade off

for changing cryptography approach from SKC to PKC. But keeping in mind that most (> 99%) of

this energy is spent on the CH. In our TLUA scheme, energy spent on the sensor node is same as

the one on TTUA scheme, which is 180 microJoules. Compared to BGR scheme (which requires 90

milliJoules),TLUA scheme is very energy efficient (500 fold) on the sensor node.

10Note that this figure is plotted in logarithmic scale.
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Figure 3.5 Comparison of total energy costs (CH + s) of TLUA, TTUA, TJY and BGR schemes10.

Figure 3.6 Comparison of energy costs on sensor nodes of TLUA, TTUA, and TJY schemes.
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Figure 3.7 Comparison of energy consumptions on sensor nodes for three different schemes.

3.5.4 Communication

For communication cost, we are interested in the communications involving either CHs or sensor

node s. To calculate communications cost, we define a number of notations as follows (all of these

are in number of hops):

• Cbr: Communication cost for broadcasting user ID and password to all CHs

• CU−A: Communication cost between the user and the cluster head A

• CA−s: Communication cost between cluster head A and sensor node s

For registration phase, TLUA has no cost on CHs or sensor nodes, whereas TTUA needs to

broadcast user ID’s and passwords to all CHs. For authentication phase, both schemes have the

same cost, 2 messages sent between user and CH, and 2 messages sent between CH and sensor node.

The communication costs of the both schemes are summarized in Table 3.12. This table provides

the communications between; 1) the users and CHs, 2) CHs and sensor nodes (s).
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According to the comparison of Table 3.12, we can conclude that both TLUA and TTUA schemes

have same communication cost for the authentication phase. However, for the registration phase

TTUA scheme requires a costly network-wide broadcast message, where as TLUA scheme requires

none. So as a summary, our TLUA scheme outperforms TTUA scheme in terms of communications

overhead.

3.6 Performance Evaluation by Simulation

We used SENSE (Sensor Network Simulator and Emulator) [64] to simulate and compare energy

consumption and delay between TLUA [27], TTUA [7], and TJY [6] schemes. The simulation results

show that the average energy consumption and delay time of different network topologies. Because

cluster heads are much more powerful than sensor nodes, we only considered energy consumption

of the sensor nodes. For each network topology, user’s location and the login-node are randomly

changed within the sensor field.

3.6.1 Simulation Model

The network deployment is similar to [50] with a BS and 300 sensors randomly distributed in a

300 m × 300 m area. There are additional 20 CHs in the sensor field [50]. The transmission range of

a sensor s and a CH is 60 m and 150 m, respectively. Sensors and CHs are formed in clusters. Each

cluster has one CH. Sensors in the same cluster are connected with its CH via one or more hops.

We use the same energy model used in ns-2.1b8a [65] that requires 0.66 W , 0.359 W , and 0.035 W

for transmitting, receiving, and idling, respectively. We set the power consumption rate for SHA-1

and CBC-MAC calculation as 0.48 W according to [50] and [66]. As analyzed in [3] and [67], we set

the time consumption for computing a CBC-MAC and a SHA-1 as 7.1 ms and 3.5 ms, respectively.

The simulation uses MAC 802.11 Distributed Coordination Function (DCF). Two-ray ground is used

as the radio propagation model. For routing in TLUA, TTUA and TJY schemes, we applied Ad hoc

On-Demand Distance Vector (AODV) protocol. User ID length is 8 bytes, SHA-1 value is 20 bytes.

As discussed in [3], the choice of 4 bytes MAC is not security detrimental in the context of sensor

networks. So we applied 4 bytes CBC-MAC for every message and ran the simulation with five

different network topologies. For each topology, five scenarios are applied, in which user’s location

and the login-node is randomly selected. For TJY scheme, we set the gate-way node in the center

of the sensor field. We then averaged the results from those scenarios.
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Figure 3.8 Comparison of computational times on the authentication phase for three different
schemes.

3.6.2 Results

Our simulation results are shown in Figure 3.7 (this graphic compares total energy consumption

on the sensor nodes for the authentication and registration phases) and Figure 3.8 (this graphic

compares overall computational times for the authentication and registration phases). For one

registration, the user is authenticated 1, 5, 10, and 20 times and in the graphs it is shown on the

x-axis, respectively.

Figure 3.7 shows that the energy consumption (the energy consumption on sensor nodes for

computation processes and for communication packets) of TLUA and TTUA is almost same and

they are about half of TJY scheme. This is because computation cost of TLUA and TTUA are less

than TJY scheme and they do not require any extra communication with the gate-way node during

authentication process. However, TLUA and TTUA consume the same amount of energy because in
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both schemes the communication cost between the user and targeted sensor, and the computational

cost of the sensors are the same. This is consistent with our analytical results (See Figure 3.6).

Figure 3.8 shows that total delay time of TLUA is slightly greater than of TTUA but far less

than TJY. This is consistent with our analytical results (See Figure 3.4). Although we used ECC

signature verification in our scheme, this did not drop the overall performance significantly, owing to

CHs with high processing speed (ECC signature verification takes about 1.65 ms on CH equipped

with iPAQ [68]). 0.2 sec total delay of TLUA scheme is very compatible with TTUA scheme and

way much better than TJY and BGR schemes. Furthermore, if the processing speed of the CH is

increased (i.e., more powerful mobile devices), the delay on CH would be decreased dramatically,

and our scheme would perform better than TTUA scheme.

3.7 Conclusions and Suggestions for Future Research

In this chapter, a novel IPS for heterogeneous WSNs, named as Two Level User Authentication

(TLUA) scheme, is presented and then its performance is compared to the current state-of-the-art

schemes in the literature. Proposed scheme employs both PKC and SKC approaches, so that it

takes advantage of both schemes. Analysis and simulation results have shown that TLUA scheme

is not only more secure and yet scalable than existing SKC based schemes, but also requires lesser

processing power and provides higher energy efficiency than existing PKC based schemes. Proposed

scheme brings advantages (scalability, flexibility) of PKC, without requirement of extra cost (in

terms of energy) on the sensor nodes. Besides, time cost of the proposed scheme is very negligible

compared to the other PKC based schemes (namely BGR scheme).

As a future work, hardware implementation (with real sensor devices) of the proposed TLUA

scheme would be investigated.
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CHAPTER 4 :

INTRUSION DETECTION SYSTEMS FOR WIRELESS SENSOR NETWORKS

4.1 Introduction

Owing to their easy and cheap deployment features, Wireless Sensor Networks (WSNs)1are ap-

plied to various fields of science and technology: To gather information regarding human activities

and behavior, such as health care, military surveillance and reconnaissance, highway traffic; to mon-

itor physical and environmental phenomena, such as ocean and wildlife, earthquake, pollution, wild

fire, water quality; to monitor industrial sites, such as building safety, manufacturing machinery

performance, and so on. [69]

On the other hand, security in WSNs is an important issue, especially if they have mission-critical

tasks [70]. For instance, a confidential patient health record should not be released to third parties

in a heath care application. Securing WSNs is critically important in tactical (military) applications

where a security gap in the network would cause causalities of the friendly forces in a battlefield.

Solutions to security attacks against networks (wireless and/or wired) involve three main com-

ponents [71]:

• Prevention (defense against attack): This step aims to ‘prevent’ any attack before it

happens. Any proposed technique will have to defend against the targeted attack.

• Detection (being aware of the attack that is present): If an attacker manages to pass the

measures taken by the ‘prevention’ step, then it means that there is a failure to defend

against the attack. At this time, the security solution would immediately switch into

the ‘detection’ phase of the attack in progress and specifically identify the nodes that are

being compromised.

1See Appendix for the list of abbreviations used throughout this survey.
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• Mitigation (reacting to the attack): The final step aims to ‘mitigate’ any attack after it

happens by removing (revoking from the network routing tables) the affected nodes and

securing the network.

Intrusion is an unauthorized (unwanted) activity in a network that is either achieved passively

(e.g. information gathering, eavesdropping) or actively (e.g. harmful packet forwarding, packet

dropping, hole attacks). In a security system, if the first line of defense, “Intrusion Prevention,”

does not prevent intrusions, then the second line of defense, “Intrusion Detection,” comes into play.

It is the detection of any suspicious behavior in a network performed by the network members. In

any security plan, intrusion detection systems provide some or all of the following information to the

other supportive systems: identification of the intruder, location of the intruder (e.g. single node

or regional), time (e.g. date) of the intrusion, intrusion activity (e.g. active or passive), intrusion

type (e.g. attacks such as worm hole, black hole, sink hole, selective forwarding, etc.), layer where

the intrusion occurs (e.g. physical, data link, network). This information would be very helpful

in mitigating (i.e., third line of defense) and remedying the result of attacks, since very specific

information regarding the intruder is obtained. Therefore, intrusion detection systems are very

important for network security.

WSNs have unique characteristics such as limited power supplies and energy, low transmission

bandwidth, small memory size and data storage. Due to these restricted operating conditions (con-

strained computational and energy resources along with an ad hoc communication environment)

of WSNs, most of the security techniques (including intrusion detection techniques) devised for

traditional wired/wireless networks are not directly applicable to a WSN environment [24].

Designing an effective and efficient intrusion detection technique that is applicable to WSNs is a

very big challenge, which motivated us to work on this research area. The first task of any research

is to conduct an extensive literature review, which led us to the preparation of this survey as the

first outcome of our research.

The rest of the chapter is organized as follows: In Section 4.2, a brief overview of IDSs, their

classifications and their requirements is provided. Section 4.3 includes a brief survey of IDSs proposed

for MANETs, followed by the comments regarding their applicability to WSNs. Section 4.4 specifies

the challenges and restrictions of WSNs and highlights the differences compared to the other types of

networks (wired/wireless). Then, a detailed literature review on IDSs devised for WSNs is provided

along with comments on their prominent and lacking features. Finally, our paper is concluded by
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comparing existing approaches, highlighting their lacking points and providing a general model for

an IDS that would be applicable to WSNs.

4.2 Intrusion Detection Systems (IDSs)

In a network or a system, any kind of unauthorized or unapproved activities are called intru-

sions. An Intrusion Detection System (IDS) is a collection of the tools, methods, and resources to

help identify, assess, and report intrusions. Intrusion detection is typically one part of an overall

protection system that is installed around a system or device and it is not a stand-alone protection

measure [72]. In [73], intrusion is defined as: “any set of actions that attempt to compromise the

integrity, confidentiality, or availability of a resource” and intrusion prevention techniques (such as

encryption, authentication, access control, secure routing, etc.) are presented as the first line of

defense against intrusions. However, as in any kind of security system, intrusions cannot be totally

prevented. The intrusion and compromise of a node leads to confidential information such as se-

curity keys being revealed to the intruders. This results in the failure of the preventive security

mechanism. Therefore, IDSs are designed to reveal intrusions, before they can disclose the secured

system resources. IDSs are always considered as a second wall of defense from the security point of

view. IDSs are cyberspace equivalent of the burglar alarms that are being used in physical security

systems today [74]. As mentioned in [73], the expected operational requirement of IDSs is given as:

“low false positive rate, calculated as the percentage of normalcy variations detected as anomalies,

and high true positive rate, calculated as the percentage of anomalies detected”.

4.2.1 Requirements of IDSs

The IDS being designed, should satisfy following requirements:

• not introduce new weaknesses to the system,

• need little system resources and should not degrade overall system performance by intro-

ducing overheads,

• run continuously and remain transparent to the system and the users,

• use standards to be cooperative and open,

• be reliable and minimize false positives and false negatives in the detection phase.
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Figure 4.1 Classification of IDSs.

4.2.2 Classification of IDSs

As shown in Figure 4.1, IDSs can be classified as follows [75], [76], [77]:

Intruder Type: Intruders to a network can be classified into two types:

• An outsider using different means of attacks to reach the network.

• A compromised node that used to be a member of the network. According to [78], internal

attacks against ad-hoc networks use two types of nodes:

– Selfish node: Uses the network resources but does not cooperate, saving battery

life for their own communications. It does not directly damage other nodes.

– Malicious node: Aims at damaging other nodes by causing network Denial-of-

Service (DoS) by partitioning, while saving battery life is not a priority.

An IDS can detect either external intruders, internal intruders, or both; according to its design

aspects. But keeping in mind that internal intruders (insider attack) are not easy to detect, since
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they have the necessary keying materials to neutralize any precautions taken by the authentication

mechanisms.

Intrusion Type: Intrusions in a network may happen in various ways:

• Attempted break-in: An attempt to have an unauthorized access to the network.

• Masquerade: An attacker uses a fake identity to gain unauthorized access to the network.

• Penetration: The acquisition of unauthorized access to the network.

• Leakage: An undesirable information flow from the network.

• DoS: Blockage of the network resources (i.e., communication bandwidth) to the other

users.

• Malicious use: Deliberately harming the network resources.

IDSs may provide partial detection solution to those attacks. But of course, all system administrators

would like to have a perfect IDS that would able to detect all of the intrusions listed above.

Detection Methodologies: IDSs are functionally categorized into three groups: anomaly based

detection, misuse based detection, and specification based detection:

• Anomaly Based Detection: This is based on statistical behavior modeling. Normal op-

erations of the members are profiled and a certain amount of deviation from the normal

behavior is flagged as an anomaly. The disadvantage of this detection type is that the nor-

mal profiles must be updated periodically, since the network behavior may change rapidly.

This may increase the load on the resource constrained sensor nodes. According to [15],

this model detects intrusions in a very accurate and consistent way (low false positive and

false negative rates) under the condition that the network being observed follows static

behavioral patterns. The advantage of this detection type is that it is well suited to detect

unknown or previously not encountered attacks. According to Garcia-Teodoro et al. [79],

anomaly based IDSs are further divided into three categories according to the nature of

the processing involved in the behavioral model considered. These categories are modified

according to [74] and the final categorization is illustrated in Figure 4.2:

– Statistical based: In statistical based anomaly detection, the network traffic is

captured and then a profile representing its stochastic behavior is generated.
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Figure 4.2 Classification of anomaly based IDSs according to their detection algorithms.

As the network operates in normal conditions (without any attack), a reference

profile is created. After that, the network is monitored and profiles are gen-

erated periodically and an anomaly score is generated by comparing it to the

reference profile. If the score passes a certain threshold, the the IDS will flag

an occurrence of the anomaly.

Statistical based anomaly detection is divided in three subcategories:

∗ Univariate: Parameters are modeled as independent Gaussian ran-

dom variables.

∗ Multivariate: Correlations between two or more metrics are also con-

sidered here.
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∗ Time series model: Here, an interval timer is used along with an

event counter that takes into account the order and inter-arrival times

of the observations and also their values.

Statistical methods for anomaly detection are very well defined in [80] and

here an example methodology for the detection of packet dropping attacks is

summarized: Forwarding percentage (FP) of node m is the ratio of forwarded

packets by m over the packets that are transmitted from M to m and m should

forward, observed for a sufficient period of time (τ). It is calculated as follows:

FPm =
packets actually forwarded

packets to be forwarded

(4.1)

=
#(m,M)−#([m],M)

#(M,m)−#(M, [m])

Where:

∗ m: monitored node

∗ M: monitoring node

∗ #(m,M): the number of outgoing packets from m of which node M

is the next hop

∗ #([m],M): the number of outgoing packets from m of which node m

is the source and node M is the next hop

∗ #(M,m): the number of outgoing packets from M of which node m

is the next hop

∗ #(M, [m]): the number of outgoing packets from M of which node

m is the final destination

∗ FPm: forwarding percentage of node m

If the denominator of equation (1) is not zero and if FPm = 0, then this event

is detected as “Unconditional Packet Dropping” and m is identified as attacker.

If the denominator of equation (1) is not zero and if FPm is less than a certain

threshold (TFP ) and following condition (2) holds then this event is detected
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as “Random Packet Dropping” and m is identified as attacker.

0 < FPm < TFP < 1 (4.2)

– Knowledge based: Knowledge based anomaly detection rely on the availability

of the prior knowledge (data) of the network parameters in normal operating

condition as well as the one under certain attacks.

∗ Expert Systems: It is based on rules classification of audit data.

∗ Description languages: Diagrams (such as Unified Modeling Lan-

guage (UML) diagrams) are generated based on the data specifica-

tions.

∗ Finite State Machine: States and transitions are defined according

to the available data set.

∗ Data clustering and outlier detection: Observed data are grouped

into clusters according to a specified similarity or distance measure.

Points that do not belong to any cluster are named as the outliers.

– Machine learning based: In machine learning based anomaly detection, an ex-

plicit or implicit model of the analyzed patterns is generated. These models are

updated periodically, in order to improve the intrusion detection performance

on the basis of the previous results.

∗ Bayesian networks: It is based on probabilistic relationships among

the variables of interest.

∗ Markov models: It is based on stochastic Markov theory in which the

topology and capabilities of the system are modeled as states that

are interconnected through certain transition probabilities.

∗ Fuzzy logic: It is based on approximation and uncertainty.

∗ Genetic algorithms: It is inspired by the evolutionary theory of bi-

ology.

∗ Neural networks: It is based on the human brain foundations.
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∗ Principal Component Analysis (PCA): Its is based on a dimension-

ality reduction technique known as PCA.

• Misuse Based (Signature Based or Rule Based) Detection: The signatures (profiles) of

the previously known attacks are generated and are used as a reference to detect future

attacks. For instance, a typical example of a signature would be: “there are 3 failed login

attempts within 5 minutes” for the brute force password attack. The advantage of this

type of detection is that it can accurately and efficiently detect known attacks; hence they

have a low false positive rate. The disadvantage is that if the attack is a new kind (that

was not profiled before), then the misuse detection would not able to catch it. Sobh [75]

pointed out that these systems are very much like the anti-virus systems, which can detect

most or all known attack patterns, but are of little use for the attack methods that are

unknown yet. On the other hand, in [81], the authors present the following rules in order

to monitor the network anomalies:

– Interval rule: delay between the arrivals of two consecutive messages must be

within certain limits.

– Retransmission rule: the transit messages should be forwarded by the interme-

diate nodes.

– Integrity rule: the original message from the sender must not deviate when it

arrives to the receiver.

– Delay rule: the retransmission of a message must occur after a certain wait

time.

– Repetition rule: same message can only be transmitted from the same node in

certain number of counts.

– Radio transmission range: the messages should be originated from the neigh-

boring nodes only.

– Jamming rule: the number of collisions for a packet transmission must be lower

than a threshold.

• Specification Based Detection: A set of constraints that describe the correct operation

of a program or protocol is defined. Then execution of the program with respect to the
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defined constraints is monitored [76]. This methodology was introduced in [82], which

provided the capability to detect previously unknown attacks, while exhibiting a low false

positive alarm rate.

Sobh [75] identified the main distinction among the first two methods as: “anomaly detection

systems try to detect the complement of bad behavior but misuse detection systems try to recognize

known bad behavior”.

Specification based intrusion detection techniques combine the advantages of both misuse and

anomaly based detection techniques, by using manually developed specifications and constraints to

characterize legitimate system behavior. Specification based intrusion detection techniques are sim-

ilar to anomaly based detection techniques, in that both of them detect attacks as the deviations

from a normal profile. Since specification based detection techniques are based on manually devel-

oped specifications and constraints, they have low false alarm rate compared to the high false alarm

rated anomaly based detection techniques. On the other hand, the cost to achieve the mentioned

low false alarm rate is that the development of detailed specifications and constraints would be very

time consuming [83].

Source of the Audit Data: IDSs can be categorized into two groups according to the source of

the audit data (depending on the location of the data to be analyzed):

• Host based Intrusion Detection System (HIDS): HIDS is concerned with the events on

the host that they are serving. They are capable of (but not limited to) detecting the

following intrusions: changes to critical system files on the host, repeated failure access

attempts to the host, unusual process memory allocations, unusual CPU activity or I/O

activity. HIDS achieves this by either monitoring the real-time system usage of the host

or by examining log files on the host.

• Network based Intrusion Detection System (NIDS): NIDS passively or actively listens to

the network transmissions, captures and examines packets that are being transmitted.

NIDS can analyze an entire packet, payload within the packet, IP addresses or ports.

Computing Location of the Collected Data: IDSs are divided into four categories according to

the computing location of the collected data:

• Centralized IDS: A centralized computer monitors all the activities in the network and

detects intrusions by analyzing the monitored network activity data.
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• Stand-alone IDS: An IDS runs on each node independently and every decision is based on

the information collected at its own node. Members of the network are not aware of the

intrusions happening around them because stand-alone IDS do not allow individual nodes

to cooperate or share information among each other. They work as if they are alone.

• Distributed and Cooperative IDS: This is proposed for flat network infrastructures. Each

node runs an IDS agent which participates (cooperatively participating in the global

intrusion detection decisions and actions) in the intrusion detection and response of the

overall network. If a node detects an intrusion with weak or inconclusive evidence, it can

initiate a cooperative global intrusion detection procedure. If a node detects an intrusion

locally with sufficient evidence, it can independently alert the network regarding an attack.

• Hierarchical IDS: This is proposed for multi-layer (clustering) network infrastructures.

Cluster heads (CHs) are responsible for monitoring their member nodes, as well as par-

ticipating in the global intrusion detection decisions.

• Mobile Agent based IDS: Each mobile agent is assigned to perform a specific task of

the IDS on a selected node; and the intrusion detection is performed by the cooperative

action of these selected nodes. After a certain time period or after a specific task is

done, agents may relocate to other pre-defined nodes in order to increase network lifetime

and/or efficiency of the IDS. Specifications of mobile agents are provided as follows:

– Mobility: Mobile agent brings the code to the data on a remote host for asyn-

chronous execution. This would help to reduce the amount of the exchanged

data significantly.

– Autonomy: Mobile agents are given a mission upon their creation: they should

be capable of achieving their tasks without any external help.

– Adaptability: Mobile agents should adapt their behaviors according to the

information they gather while performing their tasks.

Infrastructure: Anantvalee et al. [76] divided IDSs (for MANETs) into two groups according to

their network infrastructures:

61



• Flat: All nodes are considered as equal in capabilities and they may participate in routing

functions. This infrastructure is suitable for civilian applications, such as networking in

a classroom or a conference.

• Clustered: All nodes are not considered as equal. Nodes within transmission range are

grouped into a cluster and they elect a node as cluster head (CH) to centralize routing

information for that cluster. Generally, CHs consist of more powerful devices and backup

batteries, resulting in a longer transmission range. Therefore, CH nodes form a virtual

backbone of the network. Depending on the routing protocol, intermediate gateways may

relay packets in between the CHs. This kind of infrastructure model is very suitable for

military applications because of having a better command/control hierarchy.

Usage Frequency: According to the usage frequency, IDSs are divided into two categories:

• Continuous (on the fly): The IDS monitors the network continuously.

• Periodical: The IDS monitors the network in certain periods of time.

4.2.3 Decision Making in the IDS

There are two types of decision making mechanisms for IDSs:

• Collaborative decision making: All (or some) of the members of the network collaborate

to conclude a decision regarding an event. For instance, in the case of majority voting,

the final decision is made in favor of the majority of the members ending up with either

of two decisions: “the event is an intrusion” or “the event is not an intrusion”

• Independent decision making: Each member concludes a decision regarding the events

surrounding them.

According to [74], an IDS concludes either of four decisions (with non-zero probabilities) mentioned

below as a result of the decision making process over an event:

• Intrusive but not anomalous (false-negative): There is an intrusion to the system, but the

IDS fails to detect it and concludes the event as non-anomalous one.

• Not intrusive but anomalous (false-positive): There is no intrusion to the system, but the

IDS mistakenly concludes a normal event as an anomalous one.
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• Not intrusive and not anomalous (true-negative): There is no intrusion to the system,

and the IDS concludes the event as non-anomalous one.

• Intrusive and anomalous (true-positive): There is an intrusion to the system, and the IDS

concludes the event as an anomalous one.

For IDSs in WSNs, due to the nature of wireless communications, the following situations would

result in false positives and that is why they need to be considered in the decision making model [78]:

• collisions

• packet drops

• limited transmission power

• fading battery power

4.2.4 Intrusion Response

When an attack is possible to happen, the IDS does not take preventive measures, since the

prevention part is left to the Intrusion Prevention System (IPS). The IDS works in a reactive way

compared to the proactive way of the IPS. Whenever the intrusion alert is generated by the IDS,

the following action(s) would be taken according to the system specifications:

• An audit record should be generated.

• All the network members, the system administrator (if it exists) and the base station (if

it exists) should be alerted about the intrusion. If possible, location and identity of the

intruder should be provided in the alert message.

• If it exists, a mitigation method should be induced in order to stop the intrusion. For

example, an automated corrective action should be generated through a collaborative

action of the network members (especially the neighboring members to the incident).

4.2.5 Related Work and Suggested Readings

Readers, who are interested in the IDSs, can find more information (general information or

specific areas other than WSNs) in the following papers:

• A very good classification of the IDSs is provided by Sobh [75].
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• Classification of the IDSs for MANETs are provided by Ngadi et al. [72], Anantvalee and

Wu [76], and Albers et al. [77].

• Garcia-Teodoro et al. [79], provided a survey of techniques, systems and challenges on the

anomaly based NIDS.

• A brief survey of IDSs that are proposed for WSNs is provided in [84] and in contrast,

our paper provides an extended survey with in-depth details comparing the proposed

methods.

• A survey of IDSs for Collaborative systems is provided in [85]. A more specific survey on

alert correlation in collaborative intelligent IDSs is presented in [86]. Another work on

decentralized multi-dimensional alert correlation for collaborative IDSs is provided in [87].

• A survey of IDS in Cloud computing is provided in [88], which would be helpful to secure

next generation networks.

• Garcia et al. [89] provides details of postmortem intrusion detection for Cyber security

systems and computer forensics. They show a classifier method for analyzing log files by

using hidden Markov model.

• Evasion techniques that are threatening IDS are presented in Cheng et al.’s work [90].

They provide details of 5 different techniques (DoS, packet splitting, duplicate insertion,

payload mutation, shellcode mutation) and assess the effectiveness of these techniques on

3 most recent IDSs.

• Please note that the IDS that are investigated in this survey are related to information

and computer security; and they are not related to the topic of “Intrusion detection for

perimeter protection”. Readers, who are interested in the later topic, please refer to the

works presented in [91] and [92].

• Survey presented in this chapter does not include the methodologies and ideas that are

proposed to secure the IDSs. Readers, who are interested in that topic may refer to

Shakshuki et al.’s work [93].
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Figure 4.3 Building blocks of an IDS agent.

4.3 IDSs Proposed for MANETs and Their Applicability to WSNs

The IDSs for MANETs are very well investigated and here a summary of the literature is provided,

in order to help the reader with a better understanding of the current state of the art. Following

each review, we will discuss about each proposed IDS on the applicability to WSNs.

4.3.1 Agent Based Distributed and Collaborative IDSs

The first article on intrusion detection for MANETs was written by Zhang and Lee [94]. They

proposed an agent based distributed and collaborative IDS which is compliant with the Wireless

Ad Hoc Network operating conditions. As also mentioned in [76], the IDS agent described in [94]

is composed of six blocks as shown in Figure 4.3: The local data collection block is responsible

for collecting real-time audit data (user activities, system call activities, communication activities,

and other traces) within its radio receiver range. This real-time audit data is analyzed by the local

detection engine for the evidence of any kind of anomaly. In case of any anomaly detection, this block

informs the local response and global response blocks (either one of them or both, depending the type

of attack) in order to take a response against the anomaly (a possible intrusion). If the detection is

inconclusive and needs more evidence, cooperation is conducted by the cooperative detection engine

block and the communications with the neighboring agents needed for this cooperation is done

through the secure communication block. For each agent, there is a module to detect anomalies,

called the “local detection engine”. These modules have two components, namely:

• features: describes a logical event in the network such as the percentage of the route

changes of a node’s routing table.
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• modeling algorithm: uses features as an input to the rule based pattern matching al-

gorithm and then specifies whether the incidence is a normal or not according to the

predefined matching criterion.

In their model, every node participates in the decision making process. After a certain threshold, the

local IDSs trigger the global IDS which necessitate collaborative decision of the nodes neighboring

the flagged node. This decision is made through a majority voting process. Detection is made by

using the means of “entropy”: The higher the entropy, the higher is the probability of anomaly. The

proposed method is useful to detect only the attacks against the routing protocols; i.e., mis-routing,

false route updating, packet dropping, DoS.

After anomalies are detected, depending on the level of the anomaly, either a local response

is created or a global (collaborative) response is created among with the neighboring nodes. And

communications pertaining to this global response should be assessed through secure communication

links among the nodes. According to the authors, determining the features that would lead the

modeling algorithm to detect anomalies with low percentage of false positive detection rates is a

non-trivial task.

The authors used two types of classifiers: Decision tree and Support Vector Machine. Updates

of the routing tables are chosen as a trace data in three ways: percentage of the changed routes,

percentage of changes in the sum of hops of all the routes, and the percentage of newly added routes.

Trace analysis and anomaly detection are the two main methods for the IDS that are used by the

authors. Data obtained from normal network routing operation is fed to the training algorithm to

obtain reference values of the classifiers. Then deviations (correlate) from normal profile classifiers

are used to determine the anomalies in the network routing.

The devised method was tested on the ns-2 simulator for the following MANET routing protocols:

DSR (Dynamic Source Routing; a reactive, source initiated, on-demand routing protocol), AODV

(Ad-hoc On-demand Distance Vector; a reactive, source initiated, on-demand routing protocol),

and DSDV (Destination Sequenced Distance Vector; a proactive, table-driven, routing protocol).

According to the results, their algorithm performs better for on-demand protocols than proactive

protocols, because it is easier to observe the correlation between the traffic patterns and routing

message flows in on-demand protocols.

As an extension to their previous work, Zhang et al. [73] introduced the idea of multi-layer

integrated intrusion detection and response, which is built upon the distributed and collaborative
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agent based IDS proposed in [94]. In the latest proposal, the intrusion detection module at each layer

still needs to function properly, but detection on one layer can be initiated or aided by evidence from

other layers. By this way, the authors claim that their IDS can achieve better performance in terms

of both higher true positive and lower false positive detection rates. The proposed schemes [73, 94]

might be applicable to WSNs in a sense that special care needs to be taken: As an example, they

might be applied to a hierarchical WSN, where CHs might run the proposed schemes in a global

sense and the sensor nodes in a local sense (division of the labor).

Following the works of Zhang et al. [73, 94], Albers et al. [77] improved the distributed IDS

structure by including mobile agents with the design. Mobile agents bring the code to the data, as

opposed to traditional approaches where data is conveyed towards the computation location. By this

way, asynchronous execution of the agent is performed on a remote host. This decreases the amount

of data traffic (involving the agents) in the network significantly. On the other hand, it increases the

individual work load of each node, which is not desirable in WSNs. Besides, transmission of mobile

code (an executable portion of the IDS is transferred to the nodes for on-site data processing) would

decrease the bandwidth of the WSN, where bandwidth efficiency is of prime importance.

Kachirski and Guha [95] further improved the mobile agent notion of [77] by providing efficient

distribution of mobile agents with specific IDS tasks (network monitoring, host monitoring, decision

making and action taking) according to their functionality across the wireless ad hoc network. This

way, the workload of the proposed IDS is distributed among the nodes to minimize the power

consumption and IDS related processing times by all nodes. Therefore, this scheme is applicable

to WSNs. Another improvement is to restrict computation-intensive analysis of overall network

security to a few nodes only.

4.3.2 Clustering (Hierarchical) based IDSs

In Kachirski and Guha’s approach [15], regular nodes do not participate in the global decision

making process. Only the CHs are responsible for the global decision making process and the

response. The main reason for this is to reduce the energy consumption. They wanted to conserve

the energy of the majority of the nodes, by simply assigning them as subordinates under CHs.

In [80], clustering is used to select a single layer of sparsely positioned promiscuous monitors.

These monitors are used to determine routing misbehavior via statistical anomaly detection. To

conserve resources, a cluster based detection scheme is used in which a node is periodically selected
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as the intrusion detection monitoring agent within each cluster. In the proposed architecture, a

detection agent runs on each monitoring node to detect local intrusions and then it collaborates

with other agents to investigate the source of intrusion and coordinate responses.

In [96], the authors proposed a scheme that applies decentralized, cooperative intrusion detec-

tion approach for clustered MANETs. Dynamic hierarchy is used as an organizational model which

allows higher-layer nodes to selectively aggregate and reduce intrusion detection data as it is re-

ported upward from the leaf nodes to a root. This infrastructure not only allows intrusion detection

observations to be gathered efficiently from the network, but also provides incremental aggregation,

detection, and correlation as well as efficient dissemination of intrusion response and management

directives. The proposed scheme is tested for the following three scenarios:

• Intentional data packet dropping

• Attacks on MANET routing protocol

• Attacks on network and higher-layer protocols

Clustering based IDSs would be beneficial for WSNs if they are applied with special care. Be-

cause, CHs would deplete their energies faster than the other nodes which may cause segmentations

(groups of nodes that are disconnected from each other) in the network. Therefore, extra batteries

might be installed on CHs in order to help them to live longer, or CHs would be elected periodically

in a sense that the node with the highest energy at each period would become the CH.

4.3.3 Statistical Detection based IDSs

Puttini et al. [97] provides an intrusion detection algorithm based on Bayesian classification

criteria. Their design is based on statistical modeling of reference behavior using mixture models

in order to cope with an observable traffic composed of a mixture of different traffic profiles due to

different network applications. It is focused on the detection of packet flooding, an example of a DoS

attack, and scanning of attacks against MANETs. The proposed model builds a behavioral model

that takes into account multiple user profiles and uses a posteriori Bayesian classification of data as a

part of the detection algorithm. In [32], the authors use estimated congestion at intermediate nodes

to make decisions about malicious packet dropping behavior. They suggest that traffic transmission

patterns should be used in concert with suboptimal MAC to preserve the statistical regularity

from hop to hop. The proposed intrusion detection technique is a general one which is suitable
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for networks that are not bandwidth limited but have strict security requirements such as tactical

networks. Therefore it is not applicable to WSNs that have limited bandwidth. Statistical methods

require too much data processing in order to sift the information that is valuable for statistics.

Therefore, they are not applicable to WSNs.

4.3.4 Misuse Detection based IDS

Nadkarni and Mishra [98] proposed an IDS based on a misuse detection algorithm. Their imple-

mentation focused on distance-vector routing protocols such as DSDV protocol. Their implemen-

tation aimed at detecting DoS and replay attacks as well as compromised nodes. Their simulation

results have provided significant results about not only the accuracy and robustness of the scheme

but also the non-degradability of network performance. On the other hand, DSDV requires regu-

lar update for its routing tables which would not only deplete the energy resources of the nodes

faster but also consume a portion of the valuable available bandwidth. Therefore, application of this

algorithm to WSNs is not recommended.

4.3.5 Reputation based IDS

A reputation based IDS scheme promotes node cooperation through collaborative monitoring of

the nodes and a grading system associated with the results of the collaborative monitoring.

Michiardi and Molva [78] used the concept of reputation in order to evaluate a member’s con-

tribution to the network. The higher a member’s reputation, the more selected connections can

be made with other members of the network. This means that, members of the network would

rather communicate with that particular node compared to the lower reputation ones, which would

encourage members to increase their reputations. The authors defined three types of reputations:

• Subjective reputation: evaluated considering the direct interaction between a subject and

its neighbors.

• Indirect reputation: evaluated by the non-neighbor members of the community.

• Functional reputation: subjective and indirect reputations calculated with respect to

different functions (packet forwarding, route discovery, etc.).

Their collaborative reputation evaluation system consists of two basic components:
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• Reputation Table: A data structure, stored on each node which includes the reputation

data pertaining to a node.

• Watchdog Mechanism: Calculates pre-defined functional reputations according to the

data stored at the reputation table and then detects misbehaving nodes. Detection is

based on a threshold value (e.g. zero) of the reputation; if the reputation of a specific

member drops below the threshold value, then the watchdog mechanism will deny any

communications with that member.

DoS attacks were also of concern to them. Therefore, they proposed a generic mechanism based

on reputation to enforce cooperation among the nodes. Besides, this reputation mechanism prevents

DoS attacks resulting from selfish nodes.

CONFIDANT protocol [99] works as an extension to reactive source routing protocols, such as

DSR, and uses a reputation based system that rates nodes based on their malicious behavior. Alarm

messages coming from other nodes are evaluated and the reputation of the node under investigation

is updated only if the messages are coming from the fully trusted nodes. A neighborhood watching

scheme is used to detect intrusive activity made by the next node on the source route. When a

node detects a malicious neighbor, it sends an alarm message to other nodes on its list of trusted

neighbors. The overall protocol may be summarized in one sentence as: “Cooperation of nodes for

the sake of fairness”.

Both of the proposed schemes of [78] and [99] are applicable to WSNs with a slight modification:

The renewal period of the reputation tables would be decreased, in order to increase the bandwidth

efficiency.

4.3.6 Zone based IDS

With Zone based IDS of Sun et al. [100], the network is divided into non-overlapping zones and

each IDS agent broadcasts locally generated alerts inside the zone. Gateway zones are responsible

for aggregation and correlation of locally generated alerts. Only gateway nodes can generate network

wide alarms. Alerts indicate possible attacks and are generated by local IDS agents, while alarms

indicate the final detection and can be generated only by gateway nodes.

The functionality of their proposed local aggregation and correlation engine is; to locally aggregate

and correlate the detection results of detection engines. Whereas, the functionality of their proposed
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global aggregation and correlation engine in gateway nodes is; to aggregate and correlate the detection

results from local nodes in order to make final decisions.

Local alerts are generated according to two detection criteria: 1) Percentage of change in route

entries, which represents the deleted and newly added routing entries in a certain time period; 2)

Percentage of change in number of hops, which represents the change of the sum of hops of all

routing entries in a certain time period.

According to the authors simulations (performed on GloMoSim network simulator); as the mo-

bility decreased, their model responded with fewer false positives. Besides, aggregation algorithm

of gateway nodes achieved much lower false positives than the IDS of local nodes, because they can

collect information from a wider area and make more accurate decisions.

The proposed model detects intrusions in the routing layer of the OSI stack; it ignores other

layers. Since the attacks happening in other layers would not be detected by this model, it is a

partial IDS.

The proposed scheme requires each node to have the geographical information surrounding them.

Although this is possible by attaching a global positioning system (GPS) receiver to the nodes in

MANETs; it is infeasible in WSNs, because (most) sensor nodes are not generally equipped with

GPS.

4.3.7 Game Theory based IDSs

In [101] and [102], the authors present a game-theoretic method to analyze intrusion detection

in MANETs. They use game theory to model the interactions between the nodes of an ad hoc

network. They model the interaction between an attacker and an individual node as a two player

non-cooperative game. According to their assumptions, as long as the beliefs are consistent with

the information obtained and the actions are optimal given the beliefs, the model is theoretically

consistent.

The proposed schemes need a central processing unit, in order to process all the observations

collected by the monitoring mechanism. This requires a high speed microprocessor as well as a large

memory space to store the data to be processed. Therefore, in order to apply these schemes to

WSNs, one should pick a centralized WSN, where a base station (BS) equipped with a computer

that has high speed processing power and large memory. Besides, the schemes should be modified

to decrease the traffic load in between each node and the BS. For example, a logging mechanism can

71



be used, where each node may store information regarding the data interactions with other nodes

(and also if possible with the attackers). Then these logs may be sent to the BS, for the application

of the game theory based detection.

4.3.8 Genetic Algorithm based IDS

Sen and Clark [103] investigated the use of evolutionary computation techniques to discover

detectors suited to complex (lack of central computing unit, highly mobile nodes, limited resources)

MANET environment. Authors applied grammatical evolution and genetic programming techniques

to detect ad hoc flooding and route disruption attacks on AODV. Authors showed that their evolved

programs performed good on simulated networks with varying mobility and traffic patterns.

Although this methodology might be very promising for MANETs where most of the nodes (e.g.

PDAs) are powerful enough to run such energy consuming algorithms; it is not applicable to WSNs

where sensor nodes have limited capacity on data processing along with the data storage.

4.3.9 Other Works

In [104], the watchdog mechanism is implemented on top of DSR protocol to verify that when

a node forwards a packet, the next node in the path also forwards the packet; otherwise the next

node is announced as misbehaving. Watchdogs run on each node, listens to transmissions of the

neighboring nodes in a promiscuous mode. Watchdogs may not always be effective because of the

packet collisions. The proposed watchdog mechanism is applicable to WSNs.

Wai et al. [105] proposed a hybrid IDS that can both work on wired networks as well as wireless

ad hoc networks. The proposed model promises to use both anomaly and misuse detection algo-

rithms. Both the details of the proposed model and the implementation results were not provided,

thus making it impossible to compare its performance to the previously proposed models. Besides,

the proposed scheme requires an end-to-end secure communication channel between nodes, which

generally does not exist in WSNs.

MANETs became very useful for tactical networks such as command posts, vehicle convoys,

autonomous robot systems, and also for infantry troops. The authors of MITE (MANET Intrusion

Detection for Tactical Environments [106]) aim at developing prototypical solutions for intrusion

detection in MANETs, especially in tactical scenarios. The results of MITE have been realized and

evaluated as real-world implementations besides the simulation results. The authors proposed a
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robust and resource saving sensor detector infrastructure as well as supporting components. The

TOGBADmodule of the proposed scheme uses a significant amount of the network traffic. Therefore,

it is not applicable to WSNs, where the bandwidth is a scarce resource and needs to be utilized very

efficiently.

Wei and Kim [107] used traffic prediction to detect intrusions in Wireless Industrial Networks.

Authors proposed a data traffic prediction model based on autoregressive moving average (ARMA)

using the time series data. According to their simulations, the model quickly and precisely predicted

the network traffic and sifted out the attackers. Although the achievements seems promising; the

proposed method brings extensive traffic load to the network for the sake of the monitoring data

packets and also requires a centralized processing unit to store and analyze the whole traffic data,

which are not provided in WSNs.

Readers, who are interested in IDSs designed for MANETs would find more information in the

following papers:

• Brutch and Ko [82] provided a brief overview of research efforts on IDS for wired networks

and wireless ad hoc networks. Besides, they provide classifications and different architec-

tures of IDSs and highlight on their limitations in wireless ad hoc operation environment.

They mention the methods to detect the attacks against the routing infrastructure and

also methods to detect the attacks against mobile nodes.

• Mishra et al. [108] provided a brief introduction of MANETs and IDSs, and then summa-

rized the key features of the IDSs proposed in the literature. They provided a survey on

IDSs devised for MANETs.

• Sun et al. [83] provided a brief overview of intrusion detection techniques and a thorough

survey on IDSs in MANETs. They also provided a literature overview of intrusion preven-

tion algorithms proposed for WSNs. The article is written from the point view of secure

in-network data aggregation.

• Sen and Clark [109], provided a survey of IDSs for MANETs. According to the authors,

intrusion detection for MANETs is a complex and difficult task due to the dynamic nature

of MANETs, their highly constrained nodes and the lack of central monitoring points.

• Ngadi et al. [72] also provided a brief survey of IDSs for MANETs.
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Table 4.1 Proposed IDSs for MANETs and their applicability to WSNs.

Proposed system Detection technique Applicability to WSNs

Zhang and Lee [73, 94] distributed and collaborative applicable with modification
Albers et al. [77] distributed and collaborative not applicable
Michiardi and Molva [78] reputation applicable with modification
Kachirski and Guha [15] clustering applicable with modification
Kachirski and Guha [95] distributed and collaborative applicable
Huang and Lee [80] clustering applicable with modification
Sterne et al. [96] clustering applicable with modification
Puttini et al. [97] statistical not applicable
Rao and Kesidis [32] statistical not applicable
Nadkarni and Mishra [98] misuse not applicable
CONFIDANT protocol [99] reputation applicable with modification
Sun et al. [100] zone based not applicable
Patcha and Park [101, 102] game theory applicable with modification
Marti et al. [104] watchdog applicable
Wai et al. [105] hybrid not applicable
MITE protocol [106] network monitoring not applicable
Sen and Clark [103] genetic algorithms not applicable
Wei and Kim’s [107] autoregressive moving average not applicable

4.3.10 Summary and Future Remarks

In this section, we present IDSs that are proposed for MANETs and discuss their applicability

to WSNs. Some systems would be applicable directly (generic proposals), some would be applicable

with major modifications, while the rest would not be applicable to WSNs (specific proposals),

simply because of the unique design requirements of WSNs. Table 4.1 summarizes the schemes

discussed so far, in terms of their detection technique and their applicability to WSNs.

Clustering (hierarchical networking) would be beneficial in adapting MANET IDS schemes to

WSNs. For instance, consider the application of agent based IDS of [73] to a clustered WSN. The

proposed IDS scheme would be divided into two categories as follows: Global IDS agents would be

installed (with a full version of the scheme) on CHs; whereas local IDS agents would be installed

(with a light version of the scheme excluding the global components) on each sensor node as shown

in Figure 4.4. After two or more local IDS agents report the occurrence of an event, a global IDS

agent would take charge and run a global detection sequence throughout the network. By running

the full version of the scheme only on CHs and running the lighter version on the sensor nodes, the

energy consumption of the whole scheme on the WSN would be significantly decreased and as a

result; total life time of the network would be increased.
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Figure 4.4 Application of an IDS devised for a MANET to a WSN by using clustering approach.

4.4 IDSs proposed for WSNs

Intrusion detection in WSNs is becoming a key research topic addressed in the literature. There-

fore, in this section, the research done so far in this field is summarized. Before starting, in Section

4.4.1, the unique challenges of WSNs that make it difficult to apply traditional (designed for wired

or generic wireless networks) IDSs are presented. WSNs are special version of MANETs, with very

specific design restrictions. Therefore, in Section 4.4.2, the key differences of both networks will

be mentioned. Finally, in Section 4.4.3, the state-of-the-art IDSs in the literature of WSNs will be

provided. Following all the reviews, we will discuss about advantages and disadvantages of each

scheme by providing them in a comparable chart.

4.4.1 Constraints and Research Challenges in WSNs

The proliferation of WSNs led researchers to develop strategies about providing stable commu-

nications and networking for distributed network environments, and also about how to secure these
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strategies with limited resources. The lack of fixed infrastructure (i.e., gateways, routers, base sta-

tions, etc.) makes the design of security related models and algorithms for WSNs more difficult.

Bandwidth, throughput, battery life are the scarce resources that need to be used with great con-

sideration. Following is a brief list of constraints and the corresponding challenges they bring to

WSNs:

• There is no infrastructure in WSNs to support operations such as communications, rout-

ing, real time traffic analysis, encryption, etc.

• Nodes are prone to physical capture, tampering or hijacking which compromises network

operations.

• Compromised nodes may provide misleading routing information to the rest of the WSN

leaving the network un-operational (blackhole, wormhole, sinkhole attacks).

• Wireless communication is susceptible to eavesdropping, which would reveal important

data to adversaries and/or to jamming/interfering, which would cause DoS in the WSN.

• There is no trusted authority; decisions have to be concluded in a collaborative manner.

In designing an IDS for WSNs, these constraints and challenges should be considered.

4.4.2 Differences between MANETs and WSNs

Roman et al. [110], highlighted the fact that the IDSs that are designed for MANETs cannot

be applied to WSNs directly. Since MANETs are mobile and IDSs for them are designed in the

same manner, they will be less effective in a stationary network such as WSNs. Following are basic

distinctive features that differentiate WSNs from MANETs:

• Mobility: Compared to mobile MANET nodes, WSN nodes are generally stationary.

• Computational capacity: WSN nodes have limited computational power compared to the

MANET nodes. A typical sensor node such as MICAz [111] runs an Atmel ATmega128L

processor with a maximum speed of 16 MHz [112], whereas a typical MANET node, such

as generic commercial laptop, may have a processor with a maximum speed of 4 GHz [113].

• Communications range: The range of communication is around 20-30 meters for WSN

nodes (for MICAz [111]), whereas it is up to 100 meters for MANET nodes (for XBee

WiFi module [114]).
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• Communications bandwidth: The communication bandwidth is limited to 250 kbps (for

a typical MICAz mote [111]) data rate in WSNs, whereas it goes up to 65 Mbps (for a

typical XBee WiFi module [114]) data rate in MANETs.

• Lifetime of the power source: WSN nodes have a very limited power source, such as 2 AA

sized batteries for MICAz motes [111] (with an approximate energy capacity of 10 Wh),

whereas MANET nodes generally have a bigger battery, such as laptop batteries (with

an approximate energy capacity of 150 Wh). Obviously, this would affect their lifetime

directly. Assuming that their power consumption rates are same, MANETs would have

approximately 15 times more life time compared to WSNs.

• Autonomy: In MANETs, every node is managed by a human user, whereas in WSNs

every node is autonomous in a sense that it receives and sends data from/to the base

station (BS). That BS is generally managed by a human but not the sensor nodes.

• Node density: Node density in WSNs is higher than that in MANETs. On the other

hand, WSNs nodes are more susceptible to hardware failures (battery constraints, lacking

physical security, etc.), which would decrease the node density with advancing time.

Before adapting an IDS that is designed for a MANET to a WSN, these distinctive features

should be considered.

4.4.3 Proposed Schemes

Clustering (Hierarchical) based IDSs: In [9], a hierarchical framework for intrusion detection

as well as data processing is proposed. Throughout the experiments on the proposed framework,

they highlighted the significance of one-hop clustering. The authors believed that their hierarchical

framework was useful for securing industrial applications of WSNs with regard to two lines of defense.

In [10], the authors proposed an isolation table to detect intrusions in hierarchical WSNs in an

energy efficient way. Their proposal required two-levels of clustering. According to their experiment,

their isolation table intrusion detection method could detect attacks effectively. The problem with

this proposal is as follows: The authors claim that each level monitors the other level and report

any anomalies to the base station. Since it is a hierarchical network, any alert generated by the

lower level nodes must pass through the higher level nodes. In the case that the higher level node
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is the intruder, it will not allow the BS to be aware of its misbehavior by simply blocking the alert

messages it receives from the lower level nodes.

In [14], an IDS based on clustering approach was proposed. Their proposal also ensured the

security of the CHs. In their approach, members of a cluster monitor their CH in a time scheduled

manner. In this way, energy for all cluster members is saved. On the contrary, cluster members

are monitored by the CH, not by the contribution of cluster members. This also saves the energies

of the cluster members. Through simulations, the authors showed that their proposed algorithm is

much more efficient compared to other algorithms in the literature. The problem with this approach

is its key management mechanism. It’s a part of the IDS and helps the IDS to establish pairwise

keys among the nodes. The IDS uses these keys through the authentication of the messages. The

key management assumes that the nodes are stationary (non-mobile) and the new nodes cannot be

added after the pairwise keys are established. This constitutes a handicap for the model considering

the fact that WSN may periodically require deployment of the new nodes.

In [115], the authors incorporated a hierarchical IDS model in which the network is divided into

clusters and for each cluster, a CH is elected. They issued centralized routing, meaning that every

packet of transmitted data will be forwarded to the CH and then to the base station. Their proposal

included a method to place intrusion detectors in the CHs so that the entire network is covered with

a minimum number of detectors. The authors did not provide any simulation results or any real

experimental data. So, it is not clear whether the system would perform as promised.

In [11], a distributed cluster based anomaly detection algorithm was proposed. They minimized

the communication overhead by clustering the sensor measurements and merging clusters before

sending a description of the clusters to the other nodes. The authors implemented their proposed

model in a real-world project. They demonstrated that their scheme achieves comparable accuracy

when compared to centralized schemes with a significant reduction in communication overhead.

Distributed and Collaborative IDSs: Krontiris et al. [116] proposed a distributed IDS for WSNs

based on collaborative neighborhood watching. In a simulation environment, the authors evaluated

the effectiveness of their IDS scheme against blackhole and selective forwarding attacks.

In [117], a solution to the problem of cooperative intrusion detection in WSNs was proposed,

where the nodes were equipped with local detector modules and have to identify the intruder in

a distributed way. The detector modules triggered suspicions about an intrusion in the sensor’s
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neighborhood. The authors presented necessary and sufficient conditions for successfully exposing

the attacker and a corresponding algorithm that is shown to work under a general threat model.

In [81], the proposed IDS used a specification based detection algorithm. The authors used a

decentralized approach of detection in which intrusion detectors were distributed among the network

(their distance was one-hop, covering the entire network). The collected information and its pro-

cessing were performed in a distributed fashion. They claimed that this distributed approach was

more scalable and robust compared to a centralized approached owing to the fact that the intrusion

detectors had different views of the network by being distributed to all over the network.

Statistical Detection based IDSs: Ngai et al. [118] presented an algorithm to detect the intruder

in a sinkhole attack. The proposed algorithm first finds a list of suspected nodes and then effectively

identifies the intruder in the list through a network flow graph. The algorithm implements a mul-

tivariate technique (statistical - parametric technique) based on the chi-square test. Effectiveness

and accuracy of the proposed algorithm is verified by both numerical analysis and simulations. The

authors claimed that their algorithm’s communication and computational overheads are reasonable

for WSNs.

In the proposed algorithm of [119], the sensor network adapts to the norm of the dynamics in

its natural surroundings so that any unusual activities can be singled out. In order to achieve this,

they employ a hidden Markov model. The authors claimed that their proposed algorithm is easy

to employ, requiring minimal processing and data storage. The functionality and practicality of the

algorithm is shown through experimental scenarios. The proposed algorithm sifts out any unusual

readings by using the statistical approach. So it is a very specific kind of IDS that is mainly focused

on the accuracy of the data gathered rather than the security of the nodes or the links.

In [120], the authors proposed a real time, node based anomaly detection algorithm that observes

the arrival processes experienced by a sensor node. They developed an arrival model for the traffic

that can be received by a sensor node and devised a scheme to detect anomalous changes in that

arrival process. The detection algorithm kept short term statistics using a multi-level sliding window

event storage scheme. In this way the algorithm could compare arrival processes at different time

scales. The authors claimed that their algorithm was resource aware and has low complexity.

Game Theory based IDS in WSNs: In [12] and [13], Agah et al. considered attack and detection

as both participants of the game and formulated strategies for both parties. In order to increase

detection probability, strategies were normalized into a non-cooperative, non-zero game model. Both
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schemes focused on determining the weakest node in the network and then providing strategies to

defend that node. The problem with this approach was that there might be multiple intrusions to

the WSN and only one of them would be caught by the IDS while leaving others undetected.

Anomaly Detection based IDSs: In [121], Rajasegarar et al. provided a survey article about the

state of the art in anomaly detection techniques for WSNs. They suggested for the researchers (for

anomaly detection) to consider the inherent limitations of WSNs in their design so that the energy

consumption in sensor nodes is minimized and the lifetime of the network is maximized. In [122],

the same authors proposed a solution to the problem of minimizing the communication overhead in

the network while performing in-network computation when detecting anomalies. Their approach

to this problem is based on a formulation that uses distributed one-class quarter-sphere support

vector machines to identify anomalous measurements in the data. Data vectors are mapped from

the input space to a higher-dimensional space for further investigations. The authors implemented

their proposal in a real-world project and they claimed that their model was energy efficient in terms

of communication overhead while achieving comparable accuracy to a centralized scheme.

Bhuse and Gupta [123] proposed lightweight methods to detect anomaly intrusions in WSNs.

Their main idea was to re-use the already available system information (such as neighbor lists,

routing tables, sleep/wake-up schedules, receive signal strength indication, MAC layer transmission

schedules) that was generated at various OSI layers of a network protocol stack, especially the

physical, MAC and routing layers. In order to have a better detection rate, the authors proposed

multiple detectors monitoring different layers of the OSI stack. This is not feasible for WSNs,

because intrusion monitoring in different layers and sustaining the coordination of these monitors

may rapidly deplete the scarce resources of the WSN. Besides, the authors proposed their schemes

for outsider attacks only, ruling out the insider attacks. This is inadequate choice, because sensor

nodes in a WSN are very vulnerable to insider attacks such as physical capture attack, Sybil attack,

etc.

Onat and Miri [124] provided an IDS for WSNs that was based on detection of packet level

receive power anomalies. The detection scheme was focused on transceiver behaviors and packet

arrival rates of the neighboring nodes of a particular node. WSNs are rarely mobile and therefore

they have a stable communication pattern when compared to MANETs. The authors exploited this

specific distinction. Each node built a simple statistical model of its neighbors’ behavior and used
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this statistics to detect any abnormal changes in the future. The proposed model worked well to

detect impersonation attacks.

Watchdog based IDS: Roman et al. [110] provided guidelines about application of IDSs (that

are designed for MANETs) to static WSNs. Then they propose an IDS for WSNs called ‘sponta-

neous watchdogs’, in which the neighbors are optimally monitored and where some nodes choose to

independently monitor the communications in their neighborhood.

Reputation (Trust) based IDS: Wang et al. [125] proposed an IDS for WSNs that uses packet

marking and then heuristic ranking algorithms to identify most likely bad nodes in the network.

Each packet is encrypted and padded so as to hide the source of the packet. The packet mark is

added in each packet such that the data sink can recover the source of the packet and then figure

out the dropping ratio associated with every sensor node. According to their simulations, most of

the bad nodes could be identified by their heuristic ranking algorithm with small false positive rate.

Bao et al. [126] proposed a hierarchical trust management for WSNs to detect selfish and ma-

licious nodes. Authors developed a probability model utilizing stochastic Petri nets technique to

analyze the protocol performance and validated subjective trust against objective trust obtained

based on ground truth node status. Their trust-based IDS algorithm outperforms anomaly-based

IDS algorithms in the detection probability percentage while maintaining sufficiently low false pos-

itive rates.

4.4.4 Issues and Comments Concerning the Proposed Schemes

IDSs proposed for WSNs are summarized in Table 4.2 including their required network archi-

tecture, detection technique and highlighting features of each scheme. Accordingly, the following

conclusions are drawn for the proposed IDSs in WSNs:

• In hierarchical, clustering based IDSs, clustering algorithms may consume considerable

amount of the network’s energy through the formation of the clusters. After the clusters

are formed and the CHs are elected, CHs may constitute a single point of failure and they

have to be secured. Besides, if the CH is not a special node (more powerful), then the

overhead of being a CH will diminish its resources very quickly.

• Agent based IDSs reduce the network load and latency. On the other hand, they cause

high energy consumption of the nodes they are working on. Communication cost between
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Table 4.2 Comparison of the IDSs proposed for WSNs.

Proposed
system

Architecture Detection technique Highlighting features

Da Silva et
al. [81]

Distributed Rule based approach (in-
terval rule)

Scalable, robust and fast intrusion detection.

Roman et
al., [110]

Distributed
and Coopera-
tive

Spontaneous watchdogs Relies on the broadcast nature of sensor communi-
cations and takes advantage of the high density of
sensors being deployed in the field.

Chen et al.
[10]

Hierarchical Rule based approach Uses monitoring group of nodes and routing tables
for detection

Su et
al. [14]

Hierarchical Rule based approach
(packet dropping rate)

Saves energy, extends the network lifetime. On the
other hand, new nodes cannot be added to the net-
work.

Strikos
[115]

Hierarchical Rule based approach Combined already existing approaches, in order to
achieve a more complete solution. Neither simula-
tion results, nor real world experimental results are
provided.

Rajasegarar
et al. [11]

Hierarchical Specification based ap-
proach, data clustering
(standard deviation from
the average inter-cluster
distance)

Achieved comparable performance with the central-
ized schemes.

Krontiris et
al. [116]

Distributed
and Coopera-
tive

Rule based approach
(packet dropping rate)

Detects only blackhole and selective forwarding at-
tacks. Besides, proposed solution works only when
there is one attacker.

Krontiris et
al. [117]

Distributed
and Coopera-
tive

Specification based ap-
proach

Proposed solution works only when there is one at-
tacker.

Ngai et al.
[118]

Centralized
(BS)

Statistical based anomaly
detection (parametric),
routing pattern anomalies

Specified to detect Sinkhole attacks only.

Doumit
and
Agrawal
[119]

Hierarchical Statistical anomaly based
approach (parametric),
hidden Markov model

Focused on the accuracy of the data gathered, rather
than the security of the nodes or the links.

Onat and
Miri [120]

Stand alone Statistical based anomaly
detection (real time traffic
on the nodes, arrival pro-
cess)

Keeps short term dynamic statistics using a multi-
level sliding window event storage scheme. The
scheme works on each node, therefore the detections
are local and nodes are not aware of the attacks
globally (network-wide).

Agah et al.
[12, 13]

Hierarchical Game theory along with
Markov decision process

Only one of the clusters of the network is monitored
at a time. This leaves the rest of the network un-
protected.

Bhuse and
Gupta [123]

Stand-alone Rule based approaches (for
physical, MAC, routing
and application layers)

Proposed lightweight techniques that would detect
anomalies at all layers of a network stack in WSNs.

Onat and
Miri [124]

Distributed
and Coopera-
tive

Statistical anomaly based
approach (average receive
power and average packet
arrival rate)

Exploits the stability of the neighborhood informa-
tion of the WSN nodes.

Rajasegarar
et al. [122]

Distributed Anomaly based approach,
support vector machine

Minimizes communication overhead while perform-
ing in-network anomaly detection.

Wang et al.
[125]

Centralized
(data sink)

Reputation based ap-
proach

Uses heuristic ranking algorithms to identify most
likely bad nodes in the network.

Bao et al.
[126]

Hierarchical Reputation based ap-
proach

Uses high scalable cluster-based hierarchical trust
management protocol to effectively identifying the
selfish and malicious nodes.
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agents and coordinator, or in between agents, may cause congestion and bottle neck in

the network.

• Rule based IDSs are simple to install and easy to operate. On the other hand, they need

continuous rule updates in order to cope with the new released attacks.

• Data mining based IDSs can detect unknown attacks. Unfortunately they have high

computational complexity and high energy consumption requiring large amounts of data

samples. Besides, they also need efficient analytic tools to analyze mass audit data and a

mass storage.

• In game theory based IDSs, the detection rate can be adjusted by the network security

administrator through changing the parameters. The problem with this system is that it

is non-adaptive and requires human intervention for a stable operation.

4.5 Future Directions in the Selection of IDS for WSNs

Energy consumption of the IDSs is an important issue from a system design point of view. WSNs

consume energy through sensing the surrounding phenomena, processing the sensed information and

transmitting the resultant data. Therefore, the IDSs need to spend the least amount of energy as

possible to spare enough energy for the crucial operations of the WSN. As a result of this low energy

consumption requirement of WSNs, it is beneficial to use a hierarchical model for IDSs. This means

that the network would be divided into clusters, each of which will have a CH. Accordingly, the

energy consumption will be minimized by avoiding the need for all the nodes to send data to the

BS. Besides, high energy consuming IDS algorithms would run only on the CHs which would save

energy on the rest of the nodes and ultimately increase the total lifetime of the network.

Since there are a variety of intrusion detection algorithms available, the selection of the intrusion

detection technique would be specific to the requirements of the intended application; i.e, the attacks

that need to be detected, the accuracy of the detection (percentage of the false positives and true

positives), and the duration of the detection time.

Our suggestion for the selection of the IDS for WSNs will be application specific (various sug-

gestions for different applications):

• For the mobile applications, where sensor nodes are in movement, we recommend the

usage of distributed and cooperative IDS schemes, as they are scalable, robust and fast.
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Da Silva et al.’s [81], Roman et al.’s [110] and finally Onat and Miri’s [124] proposed

schemes are recommended as the most promising ones among those presented in Table

4.2.

• For the stationary applications, where there is a centralized computing unit at BS or at

data sink, we recommend the usage of centralized IDS schemes, as they are powerful and

can detect whole range of attacks. Among the schemes presented in Table 4.2, Wang et

al.’s [125] proposed scheme is recommended for adopting or can be a good starting point

to build on it.

• For the cluster based applications, where the network is divided into clusters, the usage

of hierarchical IDS schemes is suggested. Among the schemes presented in Table 4.2,

Su et al.’s [14] work is recommended, if the network is stable and no nodes are to be

added. Otherwise, Bao et al.’s [126] work is suggested, as it is efficient for the scalable

and dynamic network topologies.

For the researchers that are considering to simulate and compare the performances of the various

IDS schemes, Adaobi et al.’s work [127] would be a good starting point. In their work, authors

provide a case scenario on how to simulate an attack against a WSN and evaluate the performance

of an anomaly-based IDS. Authors simulate their scenario in ns-2 simulation environment [65], with

AODV protocol. They provide 4 metrics (namely, true positives, true negatives, false positives, and

false negatives) calculated by analyzing the packet delivery ratio while changing the pulse rate.

To the best of our knowledge, there is no paper published regarding the effects of the IDSs on

the energy consumption of WSNs. For the researchers that are considering to evaluate the cost of

the IDS schemes on the WSNs, this would be a good topic to research.

4.6 Conclusions

In this chapter; IDSs along with their classifications, design specifications and requirements,

are briefly introduced. Secondly, IDSs that are proposed for MANETs are presented and their

applicability to WSNs, are discussed. Thirdly, IDSs proposed for WSNs are discussed and their

distinctive features are highlighted in a comparable chart, followed by the comments regarding IDSs

that would be applicable to WSNs are presented. Finally, in order to help researchers in the selection
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of IDS for WSNs, recommendations of promising proposed schemes are provided along with future

directions for this research.
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CHAPTER 5 :

POWER AND CONNECTIVITY AWARE CLUSTERING FOR WIRELESS
SENSOR NETWORKS

5.1 Introduction

As mentioned in earlier chapters, WSNs are characterized by severely constrained computational

and energy resources, and an ad hoc network operational environment. They pose unique challenges,

due to limited power supplies, low transmission bandwidth, small memory sizes and limited energy;

therefore, networking techniques used in traditional networks cannot be adopted directly [24]. So,

new ideas and approaches (algorithms) are needed in order to increase the overall performance of

the network, especially in terms of total life-time. Clustering, is one of those techniques that is

very useful to WSNs in data aggregation, and is the main focus of this chapter.

A clustered-WSN is typically as shown in Figure 5.1. Each cluster is a group of interconnected

sensor nodes with a dedicated node called cluster head (CH). CHs are responsible for the management

of the cluster such as scheduling of the medium access, dissemination of the control messages, and

the most importantly, data aggregation [23]. The size of a cluster is defined as the hop distance from

the CH to the farthest node in the cluster. For example, in a 3-hop cluster, the distance between

the CH and the farthest node is 3-hops (4 nodes are in the path including the end points). The

clustered network shown in Figure 5.1 has a 1-hop distance in between CHs and the member sensor

nodes.

Clustering is the process of grouping the nodes in a network that are within a specified hop

distance or have some shared common properties into clusters and electing CHs for each cluster.

This election can be made permanent (static clustering) or repeated in some certain time intervals

(dynamic clustering). Clustering is used in many applications of wireless sensor networks in order

to reduce the traffic load on the nodes through data aggregation process, to prolong total network

life-time, to balance the data traffic in the network and finally to increase the scalability (allows the

deployment of hundreds or thousands of nodes). Besides, clustering helps us to increase security of
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Figure 5.1 A typical clustered WSN.

the network by allowing implementation of complex cryptography algorithms. By using clustered

networking approach, power consuming algorithms (such as data aggregation) would be run on the

CHs and this would help us to significantly improve the total life-time of the network.

In this chapter, we investigate clustering algorithms that are proposed for WSNs and propose

a new clustering algorithm that is both power and connectivity aware. The rest of the chapter is

organized as follows: Section 5.2 provides a description of the related work available in the litera-

ture. Section 5.3 presents Kachirski et al.’s connectivity aware clustering algorithm and Section 5.4

provides the revised and improved version of that algorithm. Our proposed power and connectivity

aware clustering algorithm is presented in Section 5.5. Section 5.6 provides the comparison of both

schemes and also presents the details of our simulation environment. In Section 5.7, we discuss the

observations regarding the effects of the clustering on the performance of the WSNs. Finally, Section

5.8 concludes the chapter and outlines future work.
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5.2 Related Work

There are plenty of clustering algorithms available in the literature that are proposed for wireless

networks. In this section, we present the most widely used clustering algorithms and mention their

advantages and disadvantages:

Low Energy Adaptive Clustering Hierarchy (LEACH) [17], is a distributed clustering algorithm

in which nodes make autonomous decisions without any centralized control. Cluster formation is

cyclically performed and history information of the previous CHs are stored. CHs are assigned as

a result of a random procedure, where each node can declare itself as a CH with some probability.

Energy levels of the nodes are included as a factor in the CH selection whilst connectivity of the

nodes are ignored. Therefore, it is not guaranteed that every node is within K-hops of a CH. This

is the main concern of LEACH, which may cause some nodes to be segregated from the rest of the

network during the time period in between the two election cycles. Another drawback of LEACH

is due to the assumptions that not only the network size and the number of CHs are known in

advance but also all nodes are very well synchronized (in order to ensure that CHs can be re-elected

periodically to balance the energy consumption). These are very specific assumptions that might

not fit well to the real life applications of WSNs.

In [18], Bandyopadhyay et al. propose a distributed and randomized clustering algorithm similar

to the LEACH. The proposed algorithm also aimed at energy efficiency and its difference from the

LEACH is that it provides hierarchical (multi-level) clustering as well. Other than that, the proposed

algorithm holds the same concerns and the drawbacks as LEACH does.

In [21], Jia et al. present an energy consumption balanced clustering algorithm (LEACH-EP) for

WSNs that is based upon LEACH algorithm. It introduces energy factor in CH electing threshold,

and optimizes the election probability of CH. As in the case of LEACH, LEACH-EP comes with

specific assumptions as well.

Energy Efficient Clustering Scheme (EECS) [20] is also based upon LEACH algorithm and aims

at energy efficiency. Its difference from the LEACH is the set-up phase of the clusters (cluster

formation). The proposed algorithm holds the same concerns and the drawbacks as LEACH does.

In Hybrid, Energy-Efficient, Distributed Clustering (HEED) [19] approach; CHs are periodi-

cally selected according to a hybrid of their residual energy and a secondary parameter, such as a
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node’s proximity to its neighbors or node degree. HEED does not make any assumptions about the

distribution or the density of the nodes, nor their connectivities.

Evenly Distributed Clustering (EDC) algorithm [16] distributes clusters uniformly and minimizes

the number of clusters. It considers the connectivity of the nodes with the K-hop parameter. It is a

heuristic approach, in which each node only exchanges its head selection with its neighbors. Based

on neighbors’ selection results, each node chooses the nearest head as its CH. The drawback of this

algorithm is that it does not consider the density of the nodes in a network. In order to increase

the life-time of the network, it is important to elect more CHs in the dense areas of the network.

However, the algorithm is aimed at distributing the cluster heads evenly to the network deployment

field.

In [23], Brust et al. present algorithms for cluster head candidate selection that are based on

topology (location) of the nodes. The algorithms aim to avoid selecting nodes located close to

the network partition border because those nodes are more likely to move out of the partition,

thus cause a clusterhead re-election. By using the connectivity information, they propose three

algorithms to find the strong, weak, bridge and board nodes in the network. Authors do not provide

any information on how to select the CHs among their selection of nodes (strong, weak, bridge and

board nodes). Overall, this classification of nodes for CH selection would be useful for the mobile

ad hoc networks (MANETs) where mobility is the prime factor that changes the network topology.

However, the network topology in WSNs is quite stable compared to MANETs, and therefore this

kind of node classification is unnecessary for CH selection.

Energy Efficient Unequal Clustering (EEUC) [22] is proposed for periodically data gathering

WSNs. It partitions the nodes into clusters of unequal size, and clusters closer to the base station

have smaller sizes than those farther away from the base station. This way, CHs closer to the base

station can preserve some energy for inter-cluster data forwarding.

Hierarchical clustering proposed in [9] is a framework based on two-level clustering; multi-hop

clusters for data aggregation (the first level clustering) and 1-hop clusters for intrusion detection

(the second level clustering). Although the idea sounds promising in some applications of WSNs

(especially the industrial applications); the details of the formation algorithms for the multi-level

clustering were missing (we assume that this was left as a future work).

Kachirski et al.’s [15] clustering algorithm is based on the connectivity of the nodes in the network.

The higher connectivity (neighbors) a node has, the higher probability of it to be elected as the CH
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of a certain neighborhood (cluster). This algorithm is one of the best choice for us to work on for

several reasons: First of all, it did not require probabilistic approach on clustering and therefore the

result of the clustering would cover the whole network. Secondly, the connectivity of the nodes are

the main concern on the election of CHs, which is reasonable. In general the nodes that have more

connections would be rather elected as CHs. Finally, the algorithm is easily implementable, which

allows the proof of the theoretical work on both hardware and simulation environment.

The only missing part in Kachirski et al.’s [15] clustering algorithm was the power awareness.

Therefore, in this article, we propose our clustering algorithm that is built upon the revised version

of Kachirski et al.’s algorithm. Our algorithm is both power and connectivity aware, that is why, it

provides maximum throughput while saving energies of the nodes, therefore significantly increases

the life-time of the network.

5.3 Kachirski et al.’s Connectivity based Approach for Clustering

Kachirski et al.’s [15] clustering algorithm is based on the connectivity of the nodes in the

network. The higher connectivity (neighbors) a node has, the higher probability of it to be elected

as the cluster head (CH) of a certain neighborhood (cluster).

In order to demonstrate the principles of the algorithm, consider the network shown in Figure 5.2.

Here we assume that each node has 1−hop1 connectivity, meaning that each node can communicate

with its direct neighbors that are in 1− hop communications distance (in terms of radio range). In

order to elect the CHs, these are the steps to be followed:

1. Let Ci denote the number of established connections (nodes that are one-hop away in our

case) for node i, with total number of N nodes in the network. Each node calculates its

own Ci value (as shown in Figure 5.3, note that the numbers written each node represents

total number of neighbors for each node) and sends it to all its neighbors.

2. After receiving Ck values from its neighbors k (where k ̸= i, for all i = 1 . . . N), a node i

calculates the connectivity index (Si) as shown in Equation 5.1:

Si = Ci +
∑
k

Ck (5.1)

1The same method would be applied in the case of multiple-hop (2,3,. . . , etc.) connections if needed.
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Figure 5.2 A typical 9-node WSN.

Figure 5.3 Established connections graph, indicating total number of one-hop neighbors for the
WSN shown in Figure 5.2.
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Figure 5.4 Connectivity index graph (1-hop) of the WSN shown in Figure 5.2.

Each node calculates its own connectivity index according to Equation 5.1. For the

network shown in Figure 5.3, the connectivity indices would be as shown in Figure 5.4.

3. Each node broadcasts its connectivity index (Si) to all other nodes with a time to live

(TTL) value equivalent to time spent through one hop communication.

4. Each node then has to participate in a voting session in which the cluster head will be

determined. Each node votes for the node that has the highest Si value, as a result of the

broadcast operation in Step-3.

5. After the voting procedure, if a node receives at least one vote, it is assigned as the

cluster head. After the voting session, the network members in Figure 5.4 select their

cluster heads as shown in the Figure 5.52.

5.4 Revised Version of Kachirski et al.’s Connectivity based Approach for Clustering

In the specific case of the network shown in Figure 5.2, there are nine members of the network

and three members (out of nine) are elected as cluster heads, as a result of the voting procedure (see

Figure 5.5). As the network connectivity increases, we expect to have more connected members in the

network resulting in less number of selected cluster heads. As an example, for the same configuration

of the network in Figure 5.2, if we use 2− hop connectivity for the node communications, we obtain
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Figure 5.5 Elected cluster heads (1-hop) (shown in yellow color) and associated number of votes,
after the voting session for the WSN shown in Figure 5.2.

the neighborhood graph as shown in Figure 5.6. By applying Equation 5.1 and then performing the

voting session, the connectivity index graph (denoted on the nodes) and the cluster head selections

would be as shown in Figure 5.72.

This is quite an interesting result, since we were expecting to have less cluster heads by increasing

the connectivity (number of maximum hops). This happens because of a fault in the voting procedure

of Kachirski et al.’s [15] clustering algorithm: We realized that throughout the voting procedure,

nodes are not voting for themselves and this may result in more cluster heads to be elected than

needed. In order to fix this problem, we revised Kachirski et al.’s clustering algorithm by letting the

nodes voting for themselves (if they have the highest connectivity index).

We applied the revised scheme to our example network (see Figure 5.2) and the result of the

voting scheme is shown in Figure 5.83. As a result, the total number of cluster heads is one, resulting

in less cluster heads (instead of three) as we expected.

2Cluster heads are highlighted with yellow color and also the votes they received are noted on top of them in red
color writing.

3Cluster heads are highlighted with yellow color and also the votes they received are noted on top of them in red
color writing.
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Figure 5.6 Established connections graph, indicating total number of two-hop neighbors for the
WSN shown in Figure 5.2.

Figure 5.7 Connectivity index graph and elected cluster heads (2-hop) of the WSN shown in Figure
5.2.
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Figure 5.8 Elected cluster heads (2-hop) of the WSN shown in Figure 5.2 by using the Kachirski et
al.’s revised clustering scheme.

5.5 Our Power and Connectivity Aware Approach for Clustering

In WSNs, energy is one of the scarce resources that needs to be conserved. As a result of

the clustering algorithms, elected cluster heads become the highest energy consuming nodes of the

network, since they perform operations related to data aggregation, security, routing, etc., on behalf

of the other nodes.

Kachirski et al.’s [15] clustering algorithm (see Section 5.3) and its revised version (see Section

5.4) does only consider a node’s connectivity with its neighbors while determining a cluster head.

But it does not consider any parameter regarding the energies of the nodes.

In order to increase the total life-time of a WSN, energy (power) levels of the nodes also should

be considered while determining the cluster heads. Therefore, we propose a power and connectivity

aware clustering algorithm based upon Kachirski et al.’s [15] clustering algorithm. We achieve this

by introducing power level readings through connectivity index calculations (step-2). Our scheme

determines the cluster heads according to this calculations. Voting scheme follows the revised version

of the Kachirski et al.’s clustering algorithm (node may vote for themselves).
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The description of our proposed scheme is as follows:

1. Let Ci denote the number of established connections for node i, with total number of

N nodes in the network. Each node calculates its own Ci value and sends it to all its

neighbors.

2. After receiving Ck values from its neighbors k (where k ̸= i, for all i = 1 . . . N), a node i

calculates the connectivity index (Si) as shown in Equation 5.2:

Si = Ci +
∑
k

Ck + β × Pi (5.2)

With the help of Equation 5.2, each node’s connectivity index not only carries information

regarding its connectivity with its neighbors but also informs the power level of that

particular node4.

Consider the network shown in Figure 5.2. The connectivity indices and the voting results

were shown in Figure 5.8. Here, we re-calculate the connectivity indices for that network

according to Equation 5.2 as shown in Figure 5.9. Here, each green writing over the

nodes represents the power level (percentage) of that node at the time that the clustering

calculation is done.

3. Each node broadcasts its connectivity index (Si) to all other nodes with a time to live

(TTL) value equivalent to time spent through one hop communication.

4. Each node then has to participate in a voting session in which the cluster head will be

determined. Each node votes for the node that has the highest Si value (nodes are allowed

to vote for themselves), as a result of the broadcast operation in Step-4.

5. After the voting procedure, if a node receives at least one vote, it is assigned as the

cluster head. After the voting session, the network members in Figure 5.9 select their

cluster heads as shown in the Figure 5.105.

When a WSN uses our power and connectivity aware clustering approach, we expect two param-

eters to effect the total-life time of the network:
4In our calculations, Pi value represent the battery level of each particular node, i.e., 1.00 means the battery level

of the node is 100% of its maximum level.
5Cluster heads are highlighted with yellow color and also the votes they received are noted on top of them in red

color writing.

96



Figure 5.9 Connectivity index graph (2-hop) of the WSN shown in Figure 5.2, as a result of our
power and connectivity aware clustering approach.

Figure 5.10 Elected cluster heads (2-hop) of the WSN shown in Figure 5.9 by using our power and
connectivity aware clustering scheme.
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Figure 5.11 Total life-time vs. beta, for the WSN shown in Figure 5.9 by using our power and
connectivity aware clustering scheme.

• Power factor (β): An optimum value of β can be determined by fixing every parameter

in the network and then by observing the total life time of the network with the change

of β. Here, it is important to note that, β is not correlated to the connectivity term (Ck)

in Equation 5.2 (i.e., power level of a node is not directly related to the total number of

established connections to a node but to the throughput measured on those links).

• Period of clustering (τ): It is the time period that determines the renewal of the cluster

heads by re-applying the clustering algorithm. An optimum value of τ can be determined

by fixing every parameter in the network and then by observing the total life time of the

network with the change of τ .

As an example, we simulated our power and connectivity aware clustering algorithm on the

network shown in Figure 5.9 with the simulator discussed in the next section (Section 5.6). Figure

5.11 shows the behavior of the total life time with the change of β; whereas Figure 5.12 shows the

behavior of the total life time with the change of τ . According to the result of the simulations, we

may conclude that, for the network configuration of Figure 5.9 and the parameter selection shown

in Section 5.6.2; the optimum value of β is 200 (the total life-time curve in Figure 5.11 saturates
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Figure 5.12 Total life-time vs. period of clustering, for the WSN shown in Figure 5.9 by using our
power and connectivity aware clustering scheme.

for β ≥ 200) and the optimum value of τ is 45 (the total life-time curve in Figure 5.12 gets the

maximum value at τ = 45 and starts decreasing as τ becomes bigger or smaller than this value).

5.5.1 Applicability of Our Power and Connectivity Aware Clustering Algorithm to

Nowadays WSNs

Our power and connectivity aware clustering algorithm is very applicable to nowadays WSNs.

Because, current Commercial Off-The-Shelf (COTS) nodes, such as Wasp motes [35], provide the

power reading of it’s batteries (as a percentage) as an available information which could be sent to

other nodes. This information would be used directly by our power and connectivity aware clustering

algorithm in order to determine the cluster heads.

5.6 Comparison of Both Schemes in Terms of Total Life-time of the Wireless Sensor

Network

In order to evaluate and compare the effect of both Kachirski et al.’s (revised) and our power and

connectivity aware clustering algorithms on the total life time of the WSNs, we created a simulation

environment in MATLAB. The details of the simulation environment are as follows:
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Figure 5.13 Radio energy dissipation model used in our simulations [128].

5.6.1 Energy Consumption Calculations

For energy consumption calculations, we followed Heizelman et al.’s work [128]. We assume a

simplified model (since radio wave propagation is mostly non-stable and difficult to model) for the

radio hardware energy dissipation, where the transmitter dissipates energy by running the radio

electronics and the power amplifier, whereas the receiver dissipates energy by running the radio

electronics only, as shown in Figure 5.13.

We consider two different channel models depending on the distance between the transmitter

and the receiver:

1. Near Field (free space - fs) Channel Model: If the distance between the transmitter and

the receiver is less than a threshold (d0) then this model is used (also called d2 power-loss

model).

2. Far field (multipath - mp) Channel Model: If the distance between the transmitter and the

receiver is greater than a threshold (d0) then this model is used (also called d4 power-loss

model).

According to [21], the threshold value for the distance is calculated as follows:

d0 =

√
ϵfs

√
ϵmp

(5.3)

where ϵfs and ϵmp are constants related to free space loss and multipath loss, respectively.

In order to transmit m-bit data to a distance of d, the radio spends:

ETx(m, d) = ETx−elec(m) + ETx−amp(m, d) =


mEelec +mϵfsd

2, d < d0.

mEelec +mϵmpd
4, d ≥ d0.

(5.4)
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In order to receive the same m-bit data, the radio spends:

ERx(m) = ERx−elec(m) = mEelec. (5.5)

The energy spent on the radio electronics circuitry, Eelec, is due to the digital modulation

(transmitter-side), digital demodulation (receiver-side), error correction codes and filtering; whereas

the amplifier energy, ETx−amp is due to the electromagnetic spreading of the signal into the air and

depends on the distance as mentioned above (see Equation 5.3.).

Let’s assume that each cluster head has N member nodes. Cluster head dissipates energy by re-

ceiving the data from member nodes, aggregating those data , and finally transmitting the aggregate

data to the BS. We assume that BS is located far away from the nodes and therefore transmission

between the cluster head and the BS follows the far field channel model (d4 power-loss model).

During a single data frame, we calculate the energy dissipated in the cluster head as follows:

ECH = {Eaggregating data from member nodes}+ {Etransmit aggregate data to BS}.

(5.6)

= {N(mEelec +mEDA)}+ {mEelec +mϵmp(dtoBS)
4}.

where m represents total number bits in a data frame, mEDA represents the energy dissipated

during aggregating m-bit data and finally dtoBS represents the distance between the cluster head

and the BS.

Assume that each member node is located in the near field of the cluster head, so that near field

channel model (d2 power-loss model) will be used for calculating the energy dissipated during data

transmission from the member node towards the cluster head. Therefore, we calculate the energy

dissipated in each member node as follows:

Emember node = mEelec +mϵfs(dtoCH)2. (5.7)

where dtoCH represents the distance between the member node and the cluster head and therefore

it takes different values for each node.
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Table 5.1 Values for the energy consumption related parameters used through our simulations.

Parameter Value

Eelec 50nJ/bit
ϵfs 10pJ/bit/m2

ϵmp 0.0013pJ/bit/m4

d0 87.7m
EDA 5nJ/bit/data

For all our simulations in the text, we followed [128] and used the values for the energy consump-

tion related parameters as shown in Table 5.1.

5.6.2 Simulation Parameters

Here are the parameters that we used during the simulation:

• Each node in the network is identical to each other and has a starting energy of 2 Joules.

• There is a base station (BS) located outside of the network to collect the data from cluster

heads.

• The deployment area is 100m x 100m.

• Data flow from nodes to cluster heads. Cluster heads aggregate the data and then forward

to the BS.

• The header size for each frame is 200 bits.

• The header size for each frame is 4000 bits.

• Data rate is 1 frame per 10 minutes (0.1 frames/min).

• We consider a packet drop rate of 5% for the transmission of each data frame due to the

collisions and multi-path fading.

• We consider a stationary network, meaning that both BS and the nodes are not moving.

• Since we will be comparing two clustering schemes, we ignored the cost associated with

the formation (voting and etc.) of the clusters.

• Each simulation is run 1000 times and an average value of the life time (that falls into 95%

confidence interval) is calculated. For example, for the simulation result of Figure 5.19
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Figure 5.14 Distribution plot of the simulation time.

(Section 5.6.4), the distribution of the total life-time is shown in Figure 5.14. Here, the

lower bound and upper-bounds of the confidence interval (95%) , as well as the mean value

are shown on the graph. Figure 5.15 and Figure 5.16 show the corresponding histogram

plot and quantile-quantile plot, respectively. In these figures, the first plot represents our

simulation data, and the second plots represent the normal distribution (Gaussian) that

has the same mean value as of our data. From these figures, we observe that our simulation

result shows a normal distribution (in quantile-quantile plot, our data cumulates on the

x=y line). Therefore, we calculated the mean value for each simulation in this text to

represent all the values resulted in 1000 iterations.

5.6.3 Coordinates

Throughout our simulations, we assumed that both BS and the nodes are stationary, therefore

their coordinates are fixed. For the following sections, coordinates of the nodes and the BS will be

as shown in Figure 5.17. Here, circular shapes represent the nodes (blue ones are the member nodes

and the red ones are the cluster heads) whereas the square shape represents the BS. The red lines

represent the connection between the cluster heads and the BS, whereas the blue lines represent

the connections between the cluster heads and their member nodes. The whole deployment area is
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Figure 5.15 Histogram plot of the simulation time compared to the normal distribution.

Figure 5.16 Quantile-Quantile plot of the simulation time compared to the normal distribution.

104



Figure 5.17 Plot of coordinates of the nodes and the BS throughout the simulations.

100m x 100m and the location of the BS is [100m, 100m]. The nodes are deployed to the area with

the following boundaries: [10m, 10m], [10m, 30m], [50m, 10m], [50m, 30m].

5.6.4 Energy Consumption of Kachirski et al.’s Clustering Algorithm (revised version)

We ran Kachirski et al.’s clustering algorithm (revised version) on our simulator with the pa-

rameters shown in Section 5.6.2 and the coordinates shown in Section 5.6.3. We consider 1-hop

connectivity for all nodes in the network. Figure 5.18 shows the total number of neighbors for each

node (including the connection paths), connectivity indices, results of the voting along with the

elected cluster heads.

Figure 5.19 shows the energy consumption performance of the mentioned algorithm with respect

to time. We stopped the simulation, whenever a single node dies (runs out of battery power), and

we call this time as the “total-life time of the network”, since at this point the network starts to

disintegrate (segregation starts).

In Figure 5.19, we can see that node-8 depleted its energy faster than other nodes and therefore

determined the network’s life-time as 163.77 hours.
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Figure 5.18 Cluster head selection of a 9-node WSN with Kachirski et al.’s algorithm (revised
version) for 1-hop connectivity case.

Figure 5.19 Energy consumption graph of Kachirski et al.’s clustering algorithm (revised version)
for 1-hop connectivity case.
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Figure 5.20 Cluster head selection of a 9-node WSN with our algorithm at time t = 0.

5.6.5 Energy Consumption of Our Power and Connectivity Aware Clustering Algo-

rithm

We ran our power and connectivity aware clustering algorithm (revised version) on our simulator

with the parameters shown in Section 5.6.2 and the coordinates shown in Section 5.6.3. We consider

1-hop connectivity for all nodes in the network. As mentioned in Section 5.5, we selected β as 200

and τ is 45, in order to achieve the maximum life-time. Figures 5.20 and 5.21 show the result of the

clustering algorithm at times t = 0 and t = t1(t1 > 0), respectively. Figure 5.22 shows the energy

consumption performance of our algorithm with respect to time. In Figure 5.22, we can see that

node-8 depleted its energy faster than other nodes and therefore determined the network’s life-time

as 316.66 hours.

In order to provide further proof of performance improvement on life time, we repeated the same

simulation setup with different network topologies with 7 nodes, 9 nodes and finally 15 nodes (see

Figure 5.23). We ran both clustering algorithms on these networks in 3 different maximum number

of hops: 1, 2 and 3. The resulting relative performance improvements on the life-time of the network

are as shown in Table 5.2. Accordingly we conclude that, as the maximum number of hops increases,
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Figure 5.21 Cluster head selection of a 9-node WSN with our algorithm at time t = t1(t1 > 0).

Figure 5.22 Energy consumption graph of our power and connectivity aware clustering algorithm
for 1-hop connectivity case.
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Figure 5.23 Different network topologies with 7 and 15 nodes.

Table 5.2 Relative performance improvements (%) on the life-time of the network when our algorithm
is used.

Maximum hops for 7-node network for 9-node network for 15-node network

1 hop 86 93 85

2 hops 234 313 256

3 hops 366 463 438

our clustering algorithm becomes more beneficial. This is because, more nodes become eligible to be

elected as CHs as the maximum number of hops increases. According to our simulations, the relative

performance improvement of clustering algorithm varies between 85-93% for 1-hop neighborhood,

234-313% for 2-hop neighborhood, and finally 366-463% for 3-hop neighborhood, respectively.

5.7 Some Observations on the Effect of Clustering to the Network Performance

5.7.1 Effect of Maximum Number of Hops on Total Number of Cluster Heads

As the maximum number of hops increases, the nodes in the network achieve more communica-

tions with the other member nodes, and as a result the network requires less number of cluster heads.

To support this hypothesis, we have run the cluster head selection algorithm on a 15 nodes network

for 3 different maximum number of hops: 1,2 and 3. The resulting total number of neighbors, con-

nectivity indices, voting results and the elected cluster heads are shown in Figure 5.24, Figure 5.25

and Figure 5.26, respectively. Accordingly, Figure 5.27 shows the plot of maximum number of hops

vs. total number of elected CHs, for a 15 node network.
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Figure 5.24 Clustering of 15-node network, 1-hop communications case.

Figure 5.25 Clustering of 15-node network, 2-hop communications case.
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Figure 5.26 Clustering of 15-node network, 3-hop communications case.

Figure 5.27 Maximum number of hops vs. total number of CHs for a 15 node network.
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Figure 5.28 Coordinates of the nodes and the BS.

5.7.2 Effect of Total Number of Cluster Heads (maximum hops) on Total Life-time of

the Network

The coordinates of the BS and the WSN nodes are as shown in Figure 5.28. BS is located in

the far field of the WSN, meaning that the distance between CHs and the BS is greater than 87.7

meters. The simulation parameters are as same as shown in Section 5.6.2. β is chosen as 200 and

the τ as 40 frames. By using these parameters and coordinates, we run the simulation for 10 cases of

the maximum hops: 0,1,...,8 and 9. Figure 5.29 shows the behavior of total life-time of the network

with respect to maximum hops. Accordingly, we conclude that as the maximum hops increases, the

total life-time of the network increases. From the slope of the curve, we deduct that this increase

saturated at a certain number of hops. This is the point where each node can reach any node in the

network (6-hops in this case).

5.7.3 Effect of Total Number of Nodes in a Cluster on Total Life-time of the Network

We wondered about the effect of total number of the nodes in the network on the total life-time

of the network. To investigate this, we considered the same network shown in Figure 5.28 along with

the simulation parameters same as Section 5.7.2. The only parameter that is different here is the
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Figure 5.29 Maximum hops vs. total life-time of the network.

maximum hops. We kept it constant and equal to 3. Then we started the simulation with 15 nodes

and then each time we removed one of the end nodes, repeated the simulation till we are left with

1 node in the network. As a result, Figure 5.30 shows the behavior of total life-time of the network

with respect to the total number of nodes in the network. Accordingly, we conclude that there is a

certain number of nodes (6 nodes in our case) in the network that provide the network to achieve

maximum total life-time (519.15 hours in our case).

5.7.4 Effect of Data Rate on Total Life-time of the Network

Here, we investigated the effect of frame rate of the nodes in the network on the total life-time

of the network. We considered the same network shown in Figure 5.28 along with the simulation

parameters same as Section 5.7.2. The only parameter that is different here is the maximum hops.

We kept it constant and equal to 3. Then we started the simulation with 15 nodes and then each

time we changed the frame rate, repeated the simulation for various frame rates. As a result, Figure

5.31 shows the behavior of total life-time of the network with respect to the frame rate of the nodes

in the network. Accordingly, we conclude that as the frame rate increases, total life-time decreases.

This is an expected result, because as the frame rate increases, more packets are sent between the

nodes thus more energy is consumed.
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Figure 5.30 Total number of nodes vs. total life-time of the network.

Figure 5.31 Frame rate vs. total life-time of the network.
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5.7.5 Conclusions from the Observations

There are 3 major trade-off situations that need to be balanced when implementing solutions

(i.e., security, etc.) to a clustered WSN:

1. There is a trade-off between ’maximum hop count’ and ’total number of CHs’. As the

maximum hop count increases, total number of CHs decreases and vice versa.

2. There is a trade-off between ’total number of CHs’ and ’total life-time of the network’.

There is an optimum number of CHs which leads network to survive the most life-time

possible (without having any partioning/segregation).

3. There is a trade-off between ’data rate (frames/minute)’ and ’total life-time of the net-

work’. As the data rate increases, more data need to be processed and more packets need

to be transmitted causing more power to be spent, therefore the total life-time of the

network decreases.

5.8 Conclusions and Suggestions for Future Research

In this chapter, the energy consumption simulation results of revised version of Kachirski et al.’s

clustering algorithm and our proposed power and connectivity aware clustering algorithm are pro-

vided. According to these results, our proposed power and connectivity aware clustering algorithm

out performed revised version of Kachirski et al.’s clustering algorithm in terms of energy efficiency

and also total life-time of the network.

According to the simulation results, with our proposed power and connectivity aware clustering

algorithm, relative performance improvement (compared to the revised version of Kachirski et al.’s

clustering algorithm) in total life-time of the network varies between 85-93% for 1-hop neighborhood,

234-313% for 2-hop neighborhood, and finally 366-463% for 3-hop neighborhood, respectively.

Here, note that mobility can also be included as an another parameter in cluster head calculations

(in Equation 5.2) for MANETs. For example, highly mobile nodes (Wasp motes [35] provide 3-axis

accelerometer reading which would be used to measure mobility) maybe elected as cluster heads,

because they might be in contact with most of the nodes in a certain amount of time. Since WSNs

are mostly stationary, mobility is not considered in the calculations presented in this chapter and

left as a future work to be considered.
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CHAPTER 6 :

AN INTRUSION DETECTION SYSTEM BASED ON MULTI LEVEL
CLUSTERING FOR HIERARCHICAL WIRELESS SENSOR NETWORKS

6.1 Introduction

In this chapter, an Intrusion Detection System (IDS) framework for hierarchical Wireless Sensor

Networks (WSNs) that is based on multi-level clustering is proposed. The framework is based upon

the clustering algorithm that is proposed in this dissertation (the nodes use our proposed clustering

algorithm that is presented in Chapter 5, while forming their clusters). Our proposed IDS framework

provides two types of intrusion detection approaches, namely “Downwards-IDS (D-IDS) Scheme”

to detect the abnormal behavior (intrusion) of the subordinate (member) nodes and “Upwards-IDS

Scheme” to detect the abnormal behavior of the cluster heads.

In order to detect intrusions towards WSNs, detecting the abnormal behaviors of the member

nodes (in a cluster) is not sufficient. As mentioned in Chapter 41, after the clusters are formed and

the CHs are elected, CHs may constitute a single point of failure. Therefore, in order to have a

complete IDS for hierarchical WSNs, intrusions through CHs need to be detected as well.

It is important to emphasize that our focus in this research is on the hierarchical WSNs, meaning

that sensor nodes are gathered into groups called “Clusters”2. Here, we would like to mention the

references that are directly related to our proposal. In the IDS approaches proposed by [9], [10]

and [11], the direction of the alert propagation is from sub-ordinates through CHs, leaving following

question unanswered for the detection part: “What happens if a malicious CH drops the packet that

is coming from a subordinate node and about to alert an upper level CH?”. In the IDS approaches

proposed by Agah et al. [12, 13], only one of the clusters of the network is monitored at a time. This

leaves the rest of the network un-protected. In the IDS approach of Su et al. [14], both downwards

and upwards protection are provided, meaning that CH’s monitor subordinate nodes and vice versa,

1Readers that are interested to read more on IDSs and related work, may refer to Chapter 4.
2Readers that are interested to read more on clustering algorithms and related work, may refer to Chapter 5.
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respectively. However, the proposed scheme uses SKC and therefore new nodes cannot be added to

the network after the deployment, which makes the proposed scheme impracticable to be used.

For our IDS framework, we adopt the idea of downwards and upwards protection proposed by Su

et al. [14]. For our D-IDS scheme, we adopted the “Isolation Table” concept that was suggested by

Chen et al. [10] and also “Watchdog” concept that was suggested by Krontiris et al. [129]. For our

U-IDS scheme, we adopted the “Monitoring Group” concept that was presented by Su et al. [14].

Finally, for both D-IDS and U-IDS schemes, as a detection algorithm, we adopt the “Sequential

Probability Ratio Test” algorithm that was proposed by Brown and Du [130].

The rest of the chapter is organized as follows: Section 6.2 present the system model of the

proposed IDS framework. Sections 6.3 and 6.4 presents the details of the D-IDS and U-IDS schemes,

respectively. Details of the “Sequential Probability Ratio Test” that is used in our proposed D-IDS

and U-IDS schemes is presented in Section 6.5, whereas Section 6.6 summarized the decision making

process for each scheme. In Section 6.7, the effect of cluster size (maximum hops between cluster head

and cluster members) on the detection probability of our Intrusion Detection System is investigated,

when the IDS is located on the CH (D-IDS). In the reverse manner, in Section 6.8, the effect of total

number of monitoring nodes on the detection probability of a malicious cluster head is investigated,

when the IDS is located on the member nodes of a cluster (U-IDS). Finally, Section 6.9 concludes

the chapter.

6.2 System Model

As the name implies, the proposed IDS is based on multi-level clustering; meaning that level-1

cluster heads (CHs) are the CHs for sensor nodes and at the same time subordinates for level-2 CHs,

in the same manner, level-2 CHs are the CHs for level-1 CHs and at the same time subordinates for

level-3 CHs, and so on, as shown in Figure 6.1.

For the selection of the cluster heads, our proposed power and connectivity aware clustering

algorithm (for details, refer to Section 5) can be used as follows:

• Level-1 CH’s would be selected by selecting the maximum hop size as “1”.

• Level-2 CH’s would be selected by selecting the maximum hop size as “2”.

• Level-n CH’s would be selected by selecting the maximum hop size as “n”.
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Figure 6.1 Multi-level clustering for our proposed IDS framework.

Our proposed IDS framework provides two types of intrusion detection approaches for the pre-

sented multi-level clustered WSN:

1. Downwards Intrusion Detection System (D-IDS): CH’s are responsible for watching all

the activities of their subordinates by using watchdogs and recording their activities in a

table called “Isolation Table”.

2. Upwards Intrusion Detection System (U-IDS): A certain number of (monitoring group

size, m) subordinates coordinately monitor the activity of the CH and report any abnormal

activity to an upper level CH.

Intrusions through subordinates of the network are detected by the D-IDS and intrusions through

CHs of the network are detected by the U-IDS. By this way, our overall proposed IDS framework

(D-IDS and U-IDS) covers entire network in terms of detecting intrusions.

6.3 Downwards Intrusion Detection System (D-IDS)

CHs hold watchdog counters with abnormality counters for each subordinate. Since the intrusion

detection direction is from CH’s towards subordinates, we call this scheme as “Downwards Intrusion

Detection System (D-IDS)” For example, consider the network show in Figure 6.2. Here, Node-A is

the level-1 CH of the remaining nodes. Therefore it has a watchdog (abnormality) counter for each

subordinate node, namely, Node-1, Node-2, ..., Node-6.
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Figure 6.2 Usage of watchdog counters for our D-IDS.

Whenever any watchdog counter reaches a certain threshold, the associated node is flagged and

included in the isolation table. Then as a mitigation step, any communication with this node is

blocked (packets to be forwarded to this node as well as the packets coming from this node are

dropped). For example, consider again the same network shown in Figure 6.2. But this time,

assume that the watchdog counter of Node-4 is “10” and also assume that the threshold level for the

watchdog counters is “10” as well. Since the watchdog counter of Node-4 has reached the threshold,

Node-4 is marked as an abnormal node in the isolation table as shown in Figure 6.3. Then finally,

all communications with Node-4 is blocked by the level-1 CH (Node-A).

The mentioned D-IDS is applicable to all levels. For example, consider the network shown in

Figure 6.4. This time, Node-A is a subordinate of Node-X (an upper level node, level-2), just like

Node-B and Node-C. Node-X holds watchdog counters for the abnormal behaviors of Node-A, Node-

B and Node-C. As mentioned above, if any watchdog counter reaches a certain threshold, associated

entry in the isolation table will be marked and a mitigation technique is issued (revocation of the

node from the network).
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Figure 6.3 Usage of isolation table for our D-IDS.

Figure 6.4 Implementation of D-IDS for upper levels of the network.
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6.4 Upwards Intrusion Detection System (U-IDS)

A certain number of (monitoring group size, m) subordinates coordinately monitor the activity

of the CH and report any abnormal activity to an upper level CH. Abnormal activity is determined

when the watchdog counter reaches or exceeds a certain threshold. In accordance with the coordina-

tion concept, the total value of the abnormal cases is calculated by the logical “OR (+)” operation,

individual watchdog results of each monitoring node is OR’ed with the rest of the watchdog results.

As a result, the final decision associated with the abnormal behavior of the CH is concluded by the

coordinated effort of all monitoring nodes.

The rationale for using OR operation is as follows: In some specific time interval, some of the

monitoring nodes might be in “sleep” mode and therefore might miss the abnormal behavior of the

CH. But in that specific time frame, the other monitoring nodes possibly would be in “awake” mode

and catch the incidence. So, after a certain period of time (update interval), each monitoring node

sends its’ individual result to the rest of the monitoring nodes and final decision is made.

In order to catch most of the incidences (high probability of detection), the sleep/awake cycles of

the monitoring nodes should be assigned accordingly. For instance, if there are 3 monitoring nodes

in a cluster and if one of them is in sleep mode at a specific time frame, then in order to catch the

incidences, the rest of the monitoring nodes should be in awake mode.

Consider the cluster of a network shown in Figure 6.5. Here, Node-A is again the level-1 CH

of the remaining nodes. Subordinate nodes are, namely, Node-1, Node-2, ... Node-5 and Node-6.

Among those, Node-1, Node-3 and Node-5 constitute the monitoring group. Their responsibility is

to monitor the abnormal activity of Node-A (consider that Node-A is showing abnormal behavior

for all time frames t1, t2, t3, t4). At a specific time frame, if the monitoring nodes are in awake mode

and detect any abnormality, they update their watchdog counters, accordingly. For example, at the

specific time frame of t1, Node-1 was in sleep mode and therefore it was not able to detect any

abnormality. But, Node-3 and Node-5 were in awake mode and detected an abnormality of Node-A

and updated their own watchdog counters, accordingly (associated to the time frame of t1). At the

end of the time frame t4, it is observed that out of 4 instances, Node-1 detected 2 instances, Node-3

detected 3 instances and Node-5 detected 2 instances.

The monitoring nodes share the entries of their watchdog counters among each other in certain

time intervals. In the specific case shown in Figure 6.5, assume that the monitoring nodes share the
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Figure 6.5 Usage of monitoring group for our U-IDS.

entries of their watchdog counters after the time frame t4. This is shown in Figure 6.6. Here, as a

result of the arrival of the watchdog counter entries from Node-3 and Node-5, Node-1 (m1 ) updates

the watchdog counter entries associated with them and finally the total number of encounters is

calculated by the OR operation as mentioned earlier. In accordance with the updates from Node-3

and Node-5, Node-1 has refreshed its watchdog counter and calculated the total number of incidences

as “4”. In the same manner, Node-3 and Node-5 will update their watchdog counter entries and

calculate the total number of incidences as “4”.

After each update interval, monitoring nodes check their updated counter values. Whenever

their watchdog counter reach a certain threshold (“15” in our example), they send an encrypted

alert message to an upper level CH. The reason of encryption is to hide the alert message from the

CH that is under investigation (Node-A in our example).

These alert messages are sent directly to the upper level cluster head. In order to do so, we

assume that the radios of the nodes have two different operation modes: “Normal” and “Alert”.

In the normal mode, since CH’s are generally in one hop away, the radios operate to transmit in

short range. This energy saving mode helps nodes to increase their life-time. In the alert mode, the
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Figure 6.6 Watchdog update propagation in our U-IDS.

Figure 6.7 Alert propagation towards upper levels in our U-IDS.
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radios operate to transmit in long range. By this way, without the help of intermediate nodes, a

monitoring node can directly send the alert messages to an upper level CH.

Consider the case shown in Figure 6.7. Here, as mentioned above, in each update interval,

each monitoring node updates the other monitoring nodes and also check its’ watchdog counter.

After a certain period of time, watchdog counters of all the monitoring nodes reached the threshold

value of “15”. Therefore, they changed their radio’s mode of operation to “Alert” mode and sent

an encrypted alert message directly to an upper level CH, namely a level-2 CH. In this specific

example, Node-1 has a higher probability to alert level-2 CH, since its location is closer than Node-3

and Node-5.

6.5 Detection of DoS Attacks in WSNs by using Sequential Probability Ratio Test

Wald’s Sequential Probability Ratio Test (SPRT) for detection of Selective Forwarding Attacks

(a DoS attack in network layer of WSNs) was used in [130]. This method detects intentional packet

drops with a high probability of detection rate. Therefore, it can be applied to any packet drop

attack towards the security of WSNs, for example DoS attacks in network layer (blackhole attacks,

sinkhole attacks, etc.).

According to SPRT, a random variable p is used to define the status of packet forwarding, where

0 denotes successful transmission of the packet (Good), and 1 denotes a packet drop (Bad). p is

calculated as the percentage of dropped packets over all packets to be transmitted. p’ is defined as

the acceptable probability of dropped packets. A node is considered as legitimate if p ≤ p′ holds,

and it is considered as compromised if p > p′ holds. p0 < p′ < p1 defines the “gray region” for the

decision making, where the decision is inconclusive regarding the legitimacy of the node. Figure 6.8

pictures the decision boundaries for the SPRT, namely; white, gray and black regions.

Note that 1, 2, . . . ,m represents the sample number. The ultimate goal is to minimize the miss

detection rate, α = P1(|Dm = 0) and the false alarm rate, β = P0(|Dm = 1), where Dm stands for

the decision at step m. At the same time, we need to achieve this in minimum number of samples

(mmin). SPRT calculates this number as shown in Equation 6.1:

mmin =
L(p) log(β) + (1− L(P )) log(α)

p log(p1

p0
) + (1− p) log( 1−p1

1−p0
)

(6.1)

Where L(p) is calculated as shown in Equation 6.2,
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Figure 6.8 Thresholds for the decision making.

L(p) =
( 1−β

α )h − 1

( 1−β
α )h − ( β

1−α )
−h

(6.2)

and h can be determined by solving the Equation 6.3:

p =
1− ( 1−p1

1−p0
)h

(p1

p0
)h − ( 1−p1

1−p0
)h

(6.3)

After setting all the parameters (p0, p1, α, β) and collecting m samples, the acceptance threshold

(am) and the rejection threshold (rm) can be found by using Equations 6.4 and 6.5, respectively:

am =
log( β

1−α )

log(p1

p0
)− log( 1−p1

1−p0
)
+m

log( 1−p0

1−p1
)

log(p1

p0
)− log( 1−p1

1−p0
)

(6.4)

rm =
log( 1−β

α )

log(p1

p0
)− log( 1−p1

1−p0
)
+m

log( 1−p0

1−p1
)

log(p1

p0
)− log( 1−p1

1−p0
)

(6.5)

Let ⌈am⌉ denotes upper bound for am and ⌊rm⌋ denotes lower bound for rm. For each sample,

⌈am⌉ and ⌊rm⌋ should be revised according to new values of am and rm respectively.

Let dm denotes the number of packets dropped in the m number of samples. Then, SPRT test

needs to be continuously performed as long as the Equation 6.6 holds:

⌈am⌉ < dm < ⌊rm⌋ (6.6)
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At each round of the SPRT test, there are three possible outcomes based on the result of the

comparison shown in Equation 6.6:

1. If dm ≤ ⌈am⌉, then the conclusion is that the node is legitimate.

2. If ⌈am⌉ < dm < ⌊rm⌋, then the SPRT test needs to be continued.

3. ⌊rm⌋ ≤ dm, then the conclusion is that the node is compromised.

6.6 Decision Making in IDSs

According to Patcha et al. [74], decision engine (i.e., decision making algorithm) of an IDS

concludes either one of four decisions (with non-zero probabilities) as a result of the decision making

process over a triggered alarm (event):

• Intrusive but not anomalous (false-negative): There is an intrusion to the system, but

IDS fails to detect it and concludes the event as non-anomalous one.

• Not intrusive but anomalous (false-positive): There is no intrusion to the system, but IDS

mistakenly concludes a normal event as an anomalous one.

• Not intrusive and not anomalous (true-negative): There is no intrusion to the system,

and IDS concludes the event as non-anomalous one.

• Intrusive and anomalous (true-positive): There is an intrusion to the system, and IDS

concludes the event as an anomalous one.

Figure 6.9 summarized the mentioned possibilities regarding the legitimacy assessment of a node.

Eventually we expect the selected decision making algorithm to generate more percentage of true-

positives and true-negatives, and less percentage of false-positives and false-negatives.

6.7 Effect of Cluster Size on the Detection Probability of the D-IDS

In this section, we followed Shin et al.’s approach [9] to evaluate the effect of clustering on the

detection probability of D-IDS. Our main focus is to calculate the effect of the maximum distance

(hops) between cluster head (CH) and cluster members on the intrusion detection probability.

In Figure 6.10, a WSN is divided into clusters. Maximum distance of each cluster is 2 hops,

meaning that in a cluster, a CH (denoted as red nodes in the figure) is maximum of 2 hops away
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Figure 6.9 All possible detection results of an IDS.

from its member nodes. As an example; node A is a CH and nodes B and C are its member nodes.

2-hop cluster does not mean that node C is in direct communication range of A (as we can see in

the figure, C is outside of the communication range of A), but it means that A can connect and

monitor behavior of C through node B (since B is in communication range of both A and C, B

performs as a relaying node between nodes A and C).

CHs (such as node A) can use indirect monitoring (A monitors node C through node B) through

intermediate nodes (such as node B) to detect intrusions that would happen at the end nodes (such

as node C). However, this kind of monitoring definitely will increase the network overhead. Besides,

reliability of the intermediate nodes, such as the sleep rate and error rate, would certainly change

the overall performance of the intrusion detection system.

Let us define the average Sleep Rate and the average Error Rate3 of all the nodes (except CH and

the malicious node) to be s and e, respectively. Here, we assume that the probability distributions

of these random variables (s and e) to be Gaussian with means 0 ≤ E(s) ≤ 1 and 0 ≤ E(e) ≤ 1;

variances σ2
s and σ2

e .

If a CH detects a malicious node located at j-hop away from the CH in an i-hop cluster, where i

is the cluster size in terms of number of hops, and if 0 ≤ j ≤ i holds; then the Detection Probability

(pi,j) of each node is given by:

3Here, Error Rate is due to packet losses caused by the transmission problems, such as packet collisions.
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Figure 6.10 An example of clustered network with a maximum hop distance of 2.

pi,j = {(1− E(s))(1− E(e))}j−1 (6.7)

In Table 6.1, different values of pi,j are shown as i and j are varied4.

Table 6.1 Detection probability (pi,j) for different values of i and j.

j = 1 j = 2 j = 3 j = 4
i = 1 1 N/A N/A N/A
i = 2 1 (1− E(s))(1− E(e)) N/A N/A
i = 3 1 (1− E(s))(1− E(e)) {(1− E(s))(1− E(e))}2 N/A
i = 4 1 (1− E(s))(1− E(e)) {(1− E(s))(1− E(e))}2 {(1− E(s))(1− E(e))}3

Finally, the Average Detection Probability (Pi) of i-hop cluster is given by:

Pi =
1

i

i∑
j=1

pi,j =
1

i

i∑
j=1

{(1− E(s))(1− E(e))}j−1 (6.8)

4Here, note that the value of j cannot exceed the value of i.
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Figure 6.11 Effect of cluster size on the detection probability of the D-IDS for various packet loss
rates while the sleep rate is 60%.

Figures 6.11 and 6.12 show different values of Pi as the maximum number of hops (i) changes

according to Equation 6.8. There are 5 plots in each figure, for various values of E(e) in Figure 6.11

and E(s) in Figure 6.12, respectively.

In Figure 6.11, E(s) = 0.6 means that the average sleep rate of the nodes is 60%. Each plot

represents a different value of E(e) with a variance of 10%. From the plots, it can be observed that

as the packet loss rate of each node increases, the average intrusion detection probability of the

D-IDS decreases, which is expected. As the error rate increases, it becomes difficult for the D-IDS

to determine if the loss of a packet was caused by a channel error (natural causes) or an outside

(intruder) effect.

In Figure 6.12, E(e) = 0.3 means that the average packet drop rate of the nodes is 30%. Each

plot represents a different value of E(s) with a variance of 10%. From the plots, it can be observed

that as the sleep rate of each node increases, the average intrusion detection probability of the

D-IDS decreases, which is also expected. As the sleep rate increases, the chance of the D-IDS for

catching an intrusion decreases. Hence, the fewer number of nodes are awake in the network, the

lesser intrusions will be caught by the D-IDS. In other words, an intrusion that would be caught by
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Figure 6.12 Effect of cluster size on the detection probability of the D-IDS for various sleep rates
while the packet loss rate is 30%.

an intermediate node would be simply missed, because the node was sleeping at the exact time that

the intrusion happened.

From the plots of Figures 6.11 and 6.12, we can conclude that as the number of maximum range

of a cluster (maximum number of hops from a CH and a member node in a cluster) increases, the

average intrusion detection probability of the D-IDS decreases. In other words, indirect monitoring

of the intrusions has a bad effect on the overall intrusion detection probability of the IDS.

6.8 Effect of Monitoring Group Size on the Detection Probability of the U-IDS

In this section, we follow Yang et al.’s work [131], to investigate the effect monitoring group size

(m) on the detection probability of malicious cluster heads in our U-IDS. Here, we assume that m of

the member nodes of a cluster has an intrusion detection scheme that are running in a collaborative

manner. Thus, cluster members periodically give a decision regarding the trustworthiness of a cluster

head.
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Figure 6.13 A typical 15-node clustered WSN (1-hop distance).

Consider the clustered WSN (1-hop distance) shown in Figure 6.13. Node A (marked with red

color) is the cluster head and it has 15 member nodes, which are in the radio coverage of A. Among

these member nodes, 4 of them (m=4 ; marked with green color and denoted as m1,m2,m3 and m4)

are collaborating to monitor the activity of A.

In order to calculate the effect monitoring group size (m) on the detection probability of malicious

cluster head, assume that the size of a cluster is N (15 in our case) and the probability of each

member node to detect the malicious cluster head is Pd. Then, the total probability of the malicious

cluster head to be detected PD, as a result of the collaboration size (m) (m number of the nodes) is

calculated as shown in 6.9:

PD =

N∑
k=m

(
N

k

)
P k
d (1− Pd)

N−k (6.9)

Figure 6.14 shows the change of overall detection probability (PD) with respect to the collab-

oration size (m number of the nodes) for various values of Pd, for a cluster size of 15 (N = 15).

Accordingly, it can be observed that collaboration is useful in increasing the overall detection rate
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Figure 6.14 Detection probability (PD) vs. collaboration size(m) for various values of Pd.

(PD). As the collaboration size (monitoring group size, m) increases, overall detection probability

increases and approaches to 1 (100%).

Again, assume that the size of a cluster is N and the probability of each member node to

fail (false-alarm) in detecting the malicious cluster head is Pf . Then, the total probability of the

malicious cluster head goes un-detected (false-alarm) PF , as a result of the collaboration size (m

number of the nodes) is calculated as shown in 6.10:

PF =
N∑

k=m

(
N

k

)
(1− Pf )

k(Pf )
N−k (6.10)

Figure 6.15 shows the change of overall false-alarm probability (PF ) with respect to the collab-

oration size (m number of the nodes) for various values of Pf , for a cluster size of 15 (N = 15).

Accordingly, it can be observed that collaboration is useful in decreasing the overall false-alarm rate

(PF ). As the collaboration size (monitoring group size, m) increases, overall false-alarm probability

decreases and approaches to 0 (0%).
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Figure 6.15 Detection probability (PF ) vs. collaboration size(m) for various values of Pf .

6.9 Conclusions and Suggestions for Future Research

This chapter presented our proposed Intrusion Detection System (IDS) framework based on

multi-level clustering for hierarchical wireless sensor networks. It is based upon the proposed clus-

tering algorithm (the nodes use our proposed clustering algorithm while forming their clusters, see

Chapter 5). Our proposed IDS framework provides two types of intrusion detection approaches,

namely “Downwards-IDS” to detect the abnormal behavior (intrusion) of the subordinate (member)

nodes and “Upwards-IDS” to detect the the abnormal behavior of the cluster heads.

The effect of cluster size (maximum hops between cluster head and cluster members) on the detec-

tion probability of a malicious node was evaluated, when the IDS is located on the CH (Downwards-

IDS). In the same manner, the effect of total number of monitoring nodes on the detection probability

of a malicious cluster head was evaluated, when the IDS is located on the member nodes of a cluster

(Upwards-IDS).

There is a trade-off between “maximum hop count” and “intrusion detection probability”. As

the maximum hop count increases, intrusion detection probability (of an IDS) decreases and vice

versa. According to the results of the analytical calculations presented in Section 6.7, following
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recommendations are provided for the maximum hop count: Figures 6.11 and 6.12 suggest to keep

the maximum hop distance lower than “4”. Maximum hop distance should be selected as “2” or

“3”, depending on the “sleep rate” of the nodes and “average packet loss rate” of the network (1.0

represents 100% probability of a node to be sleeping or a packet to be lost): If the “sleep rate”

and/or “average packet loss rate” are higher than 0.7; then the maximum hop distance should be

selected as “2”, otherwise it should be selected as “3”.

As in most technologies, nothing comes for free. By using more number of monitoring members,

higher detection rates and lower false alarm rates can be achieved. The cost for this achievement is

the loss of scarce resources ( e.g., energy). Therefore, a proper trade-off point need to be determined

in finding the right number for the monitoring group size (m).

As Figure 6.14 in Section 6.8 suggests, out of 15 nodes in each cluster, by selecting m=7 ; very

satisfactory detection probability (> 95%) can be achieved if the individual detection probabilities

are higher than 70%. Again, out of 15 nodes in each cluster and for the same group size (m=7 ),

Figure 6.15 suggests that the false-alarm probability will be lower than 5% if the individual false-

alarm rates are lower than 30%.
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CHAPTER 7 :

CONCLUSION AND FUTURE WORK

7.1 Conclusions

In order to protect Wireless Sensor Networks (WSNs) from intrusions (attacks), this disserta-

tion presents a security provisioning plan (please refer to Chapter 2) that consists of three main

components: 1)Prevention, 2)Detection, and 3)Mitigation, of intrusions. Solutions to the first two

components of the security provisioning plan are proposed in this dissertation: an Intrusion Preven-

tion System (IPS) and an Intrusion Detection System (IDS).

The proposed IPS scheme (please refer to Chapter 3) targets intrusion prevention in user level;

whereas the proposed IDS framework (please refer to Chapter 6) targets intrusion detection in both

sensor level and CH level.

The proposed IPS scheme employs both PKC and SKC approaches, so that it takes advantage

of both schemes. Analysis and simulation results have shown that, the proposed IPS scheme is

not only more secure and yet scalable than existing SKC based schemes, but also requires lesser

processing power and provides higher energy efficiency than existing PKC based schemes. Proposed

IPS scheme brings advantages (scalability, flexibility) of PKC, without requirement of extra cost

(in terms of energy) on the sensor nodes. Besides, time cost of the proposed IPS scheme is very

negligible compared to the existing PKC based schemes.

The proposed IDS framework provides two types of intrusion detection approaches, namely

“Downwards-IDS” to detect the abnormal behavior (intrusion) of the subordinate (member) nodes

and “Upwards-IDS” to detect the the abnormal behavior of the cluster heads. The effect of cluster

size (maximum hops between cluster head and cluster members) on the detection probability of a

malicious node was evaluated, when the IDS is located on the CH (Downwards-IDS). Similarly, the

effect of total number of monitoring nodes on the detection probability of a malicious cluster head

was evaluated, when the IDS is located on the member nodes of a cluster (Upwards-IDS). Following

the evaluations, optimum numbers for the mentioned parameters are suggested.
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For both components of the security plan (IPS and IDS), clustering is a requirement; meaning

that after deployment, sensor nodes form clusters and elect cluster heads. The proposed power

and connectivity aware clustering algorithm (please refer to Chapter 5) is the main workhorse in

achieving this.

According to the energy consumption simulation results, our proposed power and connectivity

aware clustering algorithm out performed existing clustering algorithm in the literature, in terms of

energy efficiency and also total life-time of the network.

7.2 Future Work

The testing and performance evaluation of our proposed IDS framework for a specific attack,

such as blackhole attack, is left as a future work. Besides, in order to inspect the efficiency of the

security provisioning plan for WSNs, the interaction and behavior of the proposed IPS scheme and

IDS framework have to be investigated while they are operating together.

In order to investigate real time performances of the proposed algorithms, it is worth considering

the hardware implementation with real sensor devices. Although we have done some simple imple-

mentation tests on 2-3 sensor nodes, it would be better to observe the behavior of our algorithms

while they are operating on a larger scale network consisting of 30-50 sensor nodes.

In general, nodes in the WSNs are considered to be stationary. So, throughout this dissertation,

our proposed algorithms are evaluated accordingly. But for some special applications of mobile

WSNs, the effects of mobility on the proposed algorithms have to be studied.

We anticipate that in providing energy efficient clustering and prevention/detection of intrusions,

the proposed algorithms and schemes presented in this dissertation can be applied (with some

modifications) to the new emerging technologies such as pervasive computing, cloud computing,

ubiquitous computing and internet of things.
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formance analysis of public-key cryptographic operations in the wtls handshake protocol,”
in Electrical and Electronics Engineering, 2004.(ICEEE). 1st International Conference on.
IEEE, 2004, pp. 124–129.

[69] Y. Zhou, Y. Fang, and Y. Zhang, “Securing wireless sensor networks: a survey,” Communica-
tions Surveys and Tutorials, IEEE, vol. 10, no. 3, pp. 6–28, 2008.

[70] X. Chen, K. Makki, K. Yen, and N. Pissinou, “Sensor network security: a survey,” Communi-
cations Surveys and Tutorials, IEEE, vol. 11, no. 2, pp. 52–73, 2009.

[71] A. Fuchsberger, “Intrusion detection systems and intrusion prevention systems,” Information
Security Technical Report, vol. 10, no. 3, pp. 134–139, 2005.

[72] M. Ngadi, A. Abdullah, S. Mandala, et al., “A survey on manet intrusion detection,” Inter-
national Journal of Computer Science and Security, vol. 2, no. 1, pp. 1–11, 2008.

[73] Y. Zhang, W. Lee, and Y. Huang, “Intrusion detection techniques for mobile wireless net-
works,” Wireless Networks, vol. 9, no. 5, pp. 545–556, 2003.

[74] A. Patcha and J. Park, “An overview of anomaly detection techniques: Existing solutions and
latest technological trends,” Computer Networks, vol. 51, no. 12, pp. 3448–3470, 2007.

[75] T. Sobh, “Wired and wireless intrusion detection system: Classifications, good characteristics
and state-of-the-art,” Journal of Computer Standards and Interfaces, vol. 28, no. 6, pp. 670–
694, 2006.

141



[76] T. Anantvalee and J. Wu, “A survey on intrusion detection in mobile ad hoc networks,”
Wireless Network Security, pp. 159–180, 2007.

[77] P. Albers, O. Camp, J. Percher, B. Jouga, L. Mé, and R. Puttini, “Security in ad hoc networks:
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the anomaly intrusion-detection in mobile ad hoc network environments,” in Personal Wireless
Communications. Springer, 2006, pp. 182–193.

[98] K. Nadkarni and A. Mishra, “Intrusion detection in manets-the second wall of defense,” in
Industrial Electronics Society, 2003. IECON’03. The 29th Annual Conference of the IEEE,
vol. 2. IEEE, 2003, pp. 1235–1238.

[99] S. Buchegger and J. Le Boudec, “Performance analysis of the confidant protocol,” in Proceed-
ings of the 3rd ACM international symposium on Mobile ad hoc networking and computing.
ACM, 2002, pp. 226–236.

[100] B. Sun, K. Wu, and U. Pooch, “Zone-based intrusion detection for mobile ad hoc networks,”
Int. Journal of Ad Hoc and Sensor Wireless Networks, vol. 2, no. 3, 2003.

[101] A. Patcha and J. Park, “A game theoretic approach to modeling intrusion detection in mo-
bile ad hoc networks,” in Information Assurance Workshop, 2004. Proceedings from the Fifth
Annual IEEE SMC. IEEE, 2004, pp. 280–284.

[102] ——, “A game theoretic formulation for intrusion detection in mobile ad hoc networks,” In-
ternational Journal of Network Security, vol. 2, no. 2, pp. 131–137, 2006.

[103] S. Sen and J. Clark, “Evolutionary computation techniques for intrusion detection in mobile
ad hoc networks,” Computer Networks, vol. 55, no. 15, pp. 3441–3457, 2011.

[104] S. Marti, T. Giuli, K. Lai, M. Baker, et al., “Mitigating routing misbehavior in mobile ad hoc
networks,” in International Conference on Mobile Computing and Networking: Proceedings of
the 6 th annual international conference on Mobile computing and networking, vol. 6, no. 11,
2000, pp. 255–265.

[105] F. Wai, Y. Aye, and N. James, “Intrusion detection in wireless ad-hoc networks,” Term Paper,
School of Computing, National University of Singapore, 2003.

143



[106] M. Jahnke, G. Klein, A. Wenzel, N. Aschenbruck, E. Gerhards-Padilla, P. Ebinger, S. Karsch,
and J. Haag, “Mite–manet intrusion detection for tactical environments,” in Proc. of the
NATO/RTO IST-076 Research Symposium on Information Assurance for Emerging and Fu-
ture Military Systems, Ljubljana, Slovenia, 2008.

[107] M. Wei and K. Kim, “Intrusion detection scheme using traffic prediction for wireless industrial
networks,” Communications and Networks, Journal of, vol. 14, no. 3, pp. 310–318, 2012.

[108] A. Mishra, K. Nadkarni, and A. Patcha, “Intrusion detection in wireless ad hoc networks,”
Wireless Communications, IEEE, vol. 11, no. 1, pp. 48–60, 2004.
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Appendix A

A.1 Security Vocabulary

Access control : Ensures that all accesses to objects (information resources) are authorized by

regulating different privileged operations.

Attack : A specific formulation or execution of a plan to carry out a threat.

Audit : It is the process of gathering data about activity in the system and analyzes it to discover

security violations or diagnose their cause.

Authentication: It establishes a relation between a user and some identity (password, secret key,

token, etc.).

Authorization: Establishing a relation between a user and a set of privileges (access rights,

allowed operations (read-write, read-only, etc.)).

Availability : The network should always be able to answer any authorized request in its life time

before the request expires.

Confidentiality : Only authorized parties should be able to access the data.

Integrity : If an authorized user receives data, this data should be correct and valid; it shouldn’t

be changed by unauthorized parties.

Intrusion: A set of actions that are planned to compromise the security goals (integrity, confi-

dentiality, and availability) of a computer system.

Non-repudiation: Neither the sender, nor the receiver can deny the transaction of the message.

Penetration: The ability to get unauthorized access to a computer system as a result of a

successful attack.

Risk : Accidental exposure of information, or violation of operation integrity due to the vulnera-

bilities in the system.

Vulnerability : A flaw in the system that exposes its information to accidental disclosure.
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Appendix B

B.1 Attacks towards the Wireless Sensor Networks

In the literature, there is a variety of classifications for attacks towards the Wireless Sensor

Networks (WSNs) [80, 132–134]. Following, a brief summary of these classifications is provided:

• According to Source of the Attack: Internal (insider)/external (outsider) attacks. Intrusion

prevention mechanisms can catch external attacks but not the internal attacks. The only

way of reacting against internal attacks is using the Intrusion Detection Systems (IDSs).

After an intrusion is detected then a prevention mechanism would be issued to minimize

the adverse effects.

• According to Participants: Host-based/network-based attacks.

• According to Activity of the Attacker: Passive/active attacks.

• According to the Targeted OSI Protocol Layer: Security attacks can also be categorized

based on the OSI protocol layers that are being targeted for node compromise:

– Physical layer attacks: radio interference, jamming, DoS.

– Data link (MAC) layer attacks: sleep deprivation torture (denial of sleep).

– Network layer attacks: sinkhole, wormhole, blackhole, selective forwarding,

Sybil, HELLO flooding.

– Transport layer attacks: memory exhaustion attack.

– Application layer attacks: information gathering attack.

• According to the Techniques Used to Perform the Attack:

– Cash poisoning: Information stored in routing tables are modified, deleted or

injected with bogus data.

– Fabricated route messages: Route messages (e.g. request, reply, error, etc.)

that contain malicious data are injected into the network.

∗ False resource route: False route information is advertised through-

out the network (e.g. setting the route hope count to minimum

regardless of the destination).
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∗ Maximum sequence: Modifying the sequence field in control mes-

sages to exceed the maximal allowed value, which would invalidate

all legitimate messages although they normally have sequence time

in the allowed ranges.

– Flooding: Delivering unusual large amount of data or control packets to clog

the network.

– Packet dropping: A node drops data packets (conditionally or randomly) that

it was supposed to forward.

– Rushing: Uses a weakness that some of the routing protocols possess; whichever

routing message arrives first to the recipient is accepted as the valid route

and the others are rejected (first come, first served). The attacker exploits

this vulnerability by broadcasting malicious control messages quickly to block

legitimate control messages that arrive later on [135].

– Spoofing: Injecting data or control packets with modified source addresses to

imitate as if they were sourced by legitimate users.

– Sybil: A single node presents multiple identities to other nodes of the network.

This causes confusion in the network; nodes receive contradicting routing paths

that are passing through the attacker [136].

– Wormhole: A tunnel is created (by out of the band, high transmission con-

nection) between two nodes that can be utilized to secretly transmit packets,

which would cause confusion and/or delusion in the network [137].

Among these, we will use both ”According to source of the attack” and ”According to the

targeted OSI protocol layer” classifications as shown in Figure B.1. Following subsections include

descriptions of each item in the Figure B.1.

B.1.1 Passive Attacks

Passive attacks are performed in a way that it cannot be sensed by any means. This is because

of the fact that the adversaries do not make any radio emissions. Since wireless links are easier to
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Figure B.1 Security attacks towards the WSNs - OSI layered description

tap, wireless networks are more susceptible to passive attacks, such as eavesdropping, which can be

performed easily listening to the wireless communication amongst sensor nodes in the WSN without

capturing any of them. Passive attacks are mainly against data confidentiality.

In passive attacks, attackers are typically camouflaged, i.e. hidden, and tap the communication

lines to collect data. Passive attacks can be grouped into eavesdropping, node malfunctioning, node

tampering/destruction and traffic analysis types (see Figure B.1).

Passive Information Gathering (Eavesdropping): Eavesdropping is also known as “Passive in-

formation gathering”. Classified data can be eavesdropped by tapping communication lines, and

wireless links are easier to tap. Therefore, wireless networks are more susceptible to passive attacks.
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Since WSNs use short range communications, attacker must be in proximity in order to gather useful

information.

WSNs are a little more secure against tapping compared to other longer range wireless technolo-

gies, because signals are sent over shorter distances.

Node Malfunctioning: This may happen due to many different factors from faulty sensors or

energy depletion due to sensor overwhelming or other DoS attacks.

Node Tampering/Destruction: Physically destruction (with the usage of electrical surge, physical

force or ammunition) or tampering (changing the wiring of the electronic board, memory, etc.) of

the nodes by any means.

Traffic Analysis: As well as the content of data packets, the traffic pattern may also be very

valuable for adversaries. Important information about the networking topology can be derived by

analyzing traffic patterns. In WSNs, the nodes closer to the base station, i.e. the sink, make more

transmissions than the other nodes because they relay more packets than the nodes farther from the

base station. Similarly, clustering is an important tool for scalability in WSNs and cluster heads

are busier than the other nodes in the network. Detection of the base station, the nodes close to it

or cluster heads may be very useful for adversaries because a denial-of-service attack against these

nodes or eavesdropping the packets destined for them may have a greater impact. By analyzing the

traffic, this kind of valuable information can be derived.

Moreover, traffic patterns can pertain to other confidential information such as actions and

intentions. In tactical communications, silence may indicate preparation for an attack, a tactical

move or infiltration. Similarly, a sudden increase in the traffic rate may indicate the start of a

deliberate attack or raid.

B.1.2 Active Attacks

In active attacks, malicious acts are carried out not only against data confidentiality but also

data integrity. Active attacks can also aim for unauthorized access and usage of the resources or the

disturbance of an opponent’s communications. An active attacker makes a radio emission or action

that can be sensed by the WSN elements [138]. An example is DoS attack in the physical and/or

network layer that would cause network elements to drop data packets.
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In active attacks, an adversary actually affects the operations in the attacked network. This

effect may be the objective of the attack and can be detected. For example, the networking services

may be degraded or terminated as a result of these attacks. Sometimes the adversary tries to stay

undetected, aiming to gain unauthorized access to the system resources or threatening confidentiality

and/or integrity of the content of the network. Active attacks that we are interested for WSNs

grouped into two main groups, attacks towards for all layers and attacks towards network layer.

Network layer attacks are divided into seven classes, as shown in Figure B.1.

B.1.2.1 Attacks Towards all Layers

Denial-of-Service (DoS): A denial-of-service (DoS) attack mainly targets the availability of net-

work services. A DoS is defined as any event that diminishes a network’s capacity to perform its

expected function correctly or in a timely manner. A node is isolated from the rest of the network

by blocking the incoming and outgoing packets.

In DoS attack, an adversary attempts to prevent legitimate and authorized users of services

offered by the network from accessing those services. The classic way to achieve this is to flood

packets to any centralized resource (access point) used in the network so that the resource is no

longer available to the nodes in the network, resulting the network no longer operating what was

designed for. This may lead to a failure in the delivery of guaranteed services to the end users.

DoS attack in the physical layer is called jamming. A malicious device can jam a wireless carrier

by transmitting a signal at that frequency. The jamming signal contributes to the noise in the carrier

and its strength is enough to reduce the signal-to-noise ratio below the level that the nodes using

that channel need to receive data correctly. Jamming can be conducted continuously in a region,

which thwarts all the nodes in that region from communication. Alternatively, jamming can be done

temporarily with random time intervals, which can still very effectively hamper the transmissions.

The algorithms in the link layer, especially MAC schemes, present many exploitation opportuni-

ties for DoS attacks. For example, MAC layer DoS attacks may continuously jam a channel. More

complex DoS attacks can be designed based on MAC layer addressing schemes.

In the case of network layer DoS attack, an attacker injects significant amount of packets into

the network which causes congestion in the network traffic as well as deprivation of power resources
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Table B.1 DoS attacks towards WSNs [140].

DoS attacks Meaning

Radio interferences Jamming of the radio transmission in the MAC or physical layer

Physical tampering An attacker captures and compromises the sensor nodes

Denying channel An attacker uses collision to damage the wireless channel and causes packets
to be dropped

Black holes A malicious node in the route sinks and drops messages that are routed
through them

Misdirection An attacker uses loop or detour to misdirect traffic

Flooding A malicious node floods lots of messages to cause congestion and energy
exhaustion

Anti-synchronization An attacker forges timing control messages to disrupt the synchronization
between two nodes

Critical attack An attacker learns the critical resources such as cluster heads and attacks
them.

throughout the network. Examples: “Routing table overflow attack: Creation of the routes to

the non-existing nodes”, “sleep deprivation attack: deprivation of the power supplies of a targeted

node” [139].

Application layer protocols can also be exploited in DoS attacks. Protocols like node localization,

time synchronization, data aggregation, association and fusion can be cheated or hindered. For

example, a malicious node that impersonates a beacon node and gives false location information or

cheats with regard to its transmission power, i.e. transmitting with less or more power than it is

supposed to do, may hamper the node localization scheme. Since these kinds of attack diminish the

related network service, they can also be categorized as DoS attacks.

All the possible DoS attacks against WSNs are summarized in Table B.1.

B.1.2.2 Attacks Towards Physical Layer

Jamming: It is a DoS attack at the physical layer. A malicious device can jam a signal by

transmitting in the same frequency. The jamming signal contributes to the noise in the carrier

and its strength is enough to reduce the signal-to-noise ratio below the level that the nodes using

that channel need to receive data correctly. Jamming can be conducted continuously in a region,

which thwarts all the nodes in that region from communication. Alternatively, jamming can be done

temporarily with random time intervals, which can still very effectively hamper the transmissions.
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Node Capture Attack: An adversary takes over the control of the sensor node by a physical attack,

e.g. attaching cables to its circuit board and reading stored data as well as ongoing transmission in

the WSN. Two problems arise in this case:

• Captured node can make arbitrary queries on behalf of the attacker (DoS attack against

availability).

• Captured node can provide false data to the legitimate users (attack against integrity).

B.1.2.3 Attacks Towards Data Link (MAC) Layer

Sleep Deprivation Torture (Denial of sleep): Preventing a node from going to sleep leading

to energy depletion from draining the battery. This can be from collision attacks or repeated

handshaking (RTS/CTS). In this attack, a node is forced to deplete whole energy stored in its

batteries [141].

B.1.2.4 Attacks Towards Network Layer

HELLO Flooding Attack: Attacker (has longer transmission range than normal nodes) broadcasts

advertisement messages to whole network and convinces other nodes that it is located in their

neighborhood.

Routing protocols broadcast “HELLO” message to inform of their presence to one-hop neighbors.

A node receiving such a packet assumes that it is within the radio range of the sender which may

not be true during this attack. A malicious node may flood “HELLO” packets with high enough

transmission power to convince every node in the network that it is their neighbor. When the other

nodes send their packets to the malicious node, those packets are not received by any node.

Many protocols require nodes to broadcast HELLO packets to announce themselves to their

neighbors, and a node receiving such a packet may assume that it is within (normal) radio range

of the sender. This assumption may be false: a laptop-class attacker broadcasting routing or other

information with large enough transmission power could convince every node in the network that

the adversary is its neighbor.
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“Flooding” is usually used to denote the epidemic-like propagation of a message to every node

in the network over a multi-hop topology. In contrast, despite its name, the HELLO flood attack

uses a single hop broadcast to transmit a message to a large number of receivers [133].

Hole Attacks

• Blackhole Attack: A malicious node may drop all the packets that it receives for forward-

ing. This attack is especially effective when the black hole node is also a sink hole. Such

an attack combination may stop all the data traffic around the black hole. In some texts,

this attack is also referred as “Selfishness”.

• Sinkhole Attack: All the traffic of the network is directed to a single node but in this

case it does not drop any packets. By this way, expects to remain un-detected by the

IDS. Since the all traffic of the network passes through this particular node which literally

“sinks” all the data it receives, the name is given to this attack.

A malicious node can advertise by broadcasting to all the neighbor nodes that it is the

best next hop for sending the packets to its destination. When a node becomes a sink

hole, it becomes the hub for its vicinity and starts receiving all the packets which are

dropped.

A malicious node can be made very attractive to the surrounding nodes with respect

to the routing algorithm. For example, very attractive routing advertisements can be

broadcast and all the neighboring nodes can be convinced that the malicious node is the

best next hop for sending the packets to the base station. When a node becomes a sink

hole, it becomes the hub for its vicinity and starts receiving all the packets going to the

base station. This creates many opportunities for follow-on attacks.

• Wormhole Attack: A tunnel (out of the band fast transmission path) is created between

two nodes that can be utilized to transmit packets in a faster way. This way, two far parts

of the network advertised as neighbors to attract the surrounding traffic.

A malicious node can eavesdrop or receive data packets at a point and transfer them

to another malicious node, which is at another part of the network, through an out-
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of-band channel. The second malicious node then replays the packets. This makes all

the nodes that can hear the transmissions by the second malicious node believe that the

node that sent the packets to the first malicious node is their single-hop neighbor and

they are receiving the packets directly from it. The packets that follow the normal route

reach destination node, later than those conveyed through the wormhole and are therefore

dropped because they do more hops - wormholes are typically established through faster

channels. Wormholes are very difficult to detect and can impact on the performance of

many network services such as time synchronization, localization and data fusion.

Node Replication Attack: An attacker intentionally puts replicas of a compromised node in many

places in the network to incur inconsistency. Like the Sybil attack, the node replication attack also

can enable attackers to subvert data aggregation, misbehavior detection, and voting protocols by

injecting false data or suppressing legitimate data [142].

Routing Attacks

• Network Partitioning: A full connected network is portioned to sub-networks in which

the nodes in different sub-networks cannot communicate each other although they are

connected.

• Routing Loop: A routing loop is introduced in a route path. It is created by spoofing

routing updates. Suppose an adversary can determine that node A and node B are within

radio range of each other. An adversary can send a forged routing update to node B with

a spoofed source address indicating it came from node A. Node B will then mark node

A as its parent and rebroadcast the routing update. Node A will then hear the routing

update from node B and mark B as its parent. Messages sent to either A or B will be

forever forwarded in a loop between the two of them. This leads to energy depletion and

eventual node/network failure [133].

• Spoofed, Altered or Replayed Routing Information: Routing information exchanged among

nodes can be altered by malicious nodes to have a detrimental effect on the routing scheme.
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Selective Forwarding Attack: It is a special kind of black hole attack, in which malicious node

acts more cleverly and does not drop every packet it receives but the ones it selects. By this way,

attacker expects to remain un-detected by the IDS.

Similar to sinkhole attacks, a malicious node subverts the routing protocol by making itself part

of many routes but instead of dropping of all packets selectively drop some packets while forwarding

others in order to avoid detection.

Forwarding packets is a major responsibility of a routing node. However, a malicious node

intentionally may drop any packet and forward other ones.

Multi-hop networks are often based on the assumption that participating nodes will faithfully

forward the messages they received. In a selective forwarding attack, malicious nodes may refuse to

forward certain messages and simply drop them, ensuring that they are not propagated any further.

A simple form of this attack is when a malicious node behaves like a black hole and refuses to

forward every packet it receives. However, such an attacker has the following risk: Neighboring nodes

will conclude that it has failed and they may decide to seek another route. A more subtle form of

this attack is when an adversary selectively forwards packets. An adversary interested in suppressing

or modifying packets originating from a select few nodes can reliably forward the remaining traffic

and limit suspicion of her wrongdoing.

Sybil Attack: A single node presents multiple identities to other nodes of the network. This

causes confusion in the network; nodes receive contradicting routing paths that are passing through

the attacker. This reduces the effectiveness of fault-tolerance schemes and poses a significant threat

to geographic routing protocols. Apart from these services it may also affect the performance of

other schemes such as misbehavior detection, voting-based algorithms, data aggregation and fusion

and distributed storage.

B.1.2.5 Attacks Towards Transport Layer

Synchronization Flooding: An attacker sends multiple connection requests without ever complet-

ing the connection, thus overwhelming the buffer.
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B.1.2.6 Attacks Towards Application Layer

Sensor Overwhelming: Attacking or altering sensitivity of the sensor measurements. Target

sensors with spurious interference or completely overwhelm and inundate with false stimuli.

160



Appendix C

C.1 Solutions to Defend Against Various Attacks Towards the WSNs

Routing protocols can be designed such that an adversary cannot compromise nodes/messages

or make the routing scheme dysfunction. This is the most effective approach with respect to the cost

of the security scheme and effectiveness in defense of WSNs against the threats. Therefore, most of

the techniques fall into this category. Preventive approaches are designed to counter known threats

and may not be effective against new threats. Detection schemes for misbehaving or malfunctioning

nodes can be designed in a more generic fashion. On the other hand, they can be more costly than

preventive approaches. Finally, routing can be designed such that it still delivers the data packets

to the destination when there is an attack. Such resilient techniques are also costly.

Following subsections provide solutions (strategies and techniques) to defend against various

attacks towards the WSNs:

C.1.1 Solutions to Defend Against DoS Attacks

In [143], authors propose a cross-layer security mechanism, namely “Swarm Intelligence”, to

detect DoS attacks. They also provide countermeasures to mitigate this kind of attack.

In Table C.1, some of the solutions to defend WSNs against DoS attacks are summarized.

C.1.2 Solutions to Defend Against HELLO Flooding Attacks

One possible solution to this problem is provided in [133]: Force every node to authenticate each

of its neighbors with an identity verification protocol using a trusted base station. If the protocol

sends messages in both directions over the link between the nodes, HELLO floods are prevented when

the adversary only has a powerful transmitter because the protocol verifies the bi-directionality of

the link.

C.1.3 Solutions to Defend Against Node Replication Attack

Conventional methods to detect a node replication attack usually include centralized computing

based on node locations or the number of simultaneous connections, which is vulnerable to the

single-point failure. Distributed detection of the node replication attack was proposed in [142],

where each node is assumed to know its location, and it is required to send its location to a set of
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Table C.1 Solutions to defend WSNs against DoS attacks [13].

DoS attack Defense strategy

Radio interference Usage of spread-spectrum communication

Physical tampering Usage of tamper-resistant nodes

Denying channel Usage of error correction codes

Black holes Usage of multiple routing paths

Misdirection Usage of source authorization

Flooding Limiting the total number of connections

witness nodes. If a witness node finds a contradiction in the location claims of a suspected node

identity, this suspected node identity must be replicated many times. Asymmetric key technology is

used here to guarantee the authenticity of location claims. A similar approach is discussed in [144]:

Each node has a private key corresponding to its location, and the location based key can be used

to detect node replicas.

C.1.4 Solutions to Defend Against Passive Information Gathering (Eavesdropping)

Attacks

Link layer encryption would prevent outsider attacks such as eavesdropping, and some of the

solutions are provided in [133, 145–147].

C.1.5 Solutions to Defend Against Selective Forwarding attacks

There are two approaches to defending against selective forwarding:

• Detecting the nodes that selectively forwarding.

• Developing routing schemes that are more resilient and can deliver packets even when

there is a selective forwarding attack.

One approach to detecting the nodes that selectively forward is based on acknowledgements [148].

Every intermediate node that forwards a packet waits for an acknowledgement from the next hop. If

the next hop node does not return the same number of acknowledgements as the number of packets

sent, the node generates an alarm about the next hop node. However, compromised nodes can also

generate acknowledgements for the packets that they dropped, which make this scheme fail.
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Multipath routing can be an effective way to mitigate selective forwarding and black hole attacks

[133]. This requires at least link-disjoint paths, where two paths may share some nodes but no link.

Of course, node-disjoint paths, where two paths do not have any node in common, are better and

reduce the risk of selective forwarding attack compared to link-disjoint paths. However, disjoint

paths are not always available, and when paths are not disjoint, if the selectively forwarding node is

the node common to all the paths, then the attack can become as effective as in single-path routing.

Braided paths [149] may have nodes in common, but have no links in common (i.e., no two con-

secutive nodes in common). The use of multiple braided paths may provide probabilistic protection

against selective forwarding and use only localized information.

In [130], authors describe an efficient scheme for reporting packet drops. They also present

an effective scheme, namely “Wald’s Sequential Probability Ratio Test”, for detecting the selective

forwarding attack in a heterogeneous sensor network. According to presented simulation results,

proposed scheme achieves high detection ratio and low false alarm rate.

Wang et al. [150] proposed a failure detection framework to detect the selective forwarding attack.

The observation is that for a routing node, the number of packets it forwards must be equal to the

number of packets it receives. In their framework, each sensor node can work under a promiscuous

mode so that it can overhear the transmission of neighboring nodes. If a neighbor of a suspected

node finds that the number of packets that the suspected node fails to forward exceeds a certain

threshold, the neighbor can collaborate with other neighbors of the suspected node, and the opinions

from the neighbors of the suspected node are collected to form a decision about the suspected node.

C.1.6 Solutions to Defend Against Sinkhole Attacks

An algorithm which detects sinkhole attacks is presented in [118]. Proposed algorithm first finds

a list of suspected nodes, and then effectively identifies the intruder in the list through a network

flow graph.

C.1.7 Solutions to Defend Against Sybil Attack

To detect the Sybil attack, two methods were discussed in [151]. One method is radio resource

testing in which each node assigns a unique channel to each of its neighbors, including fake neighbors,
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and tests whether its neighbors can communicate with it through the assigned channels. Because

the radio of a sensor platform is usually incapable of simultaneously sending or receiving on more

than one channel, the failure of communication through one channel may be a sign of the Sybil

attack. The other method is to use the ID-based symmetric keys. For example, each sensor node

is preloaded with a set of keys that are selected from a global key pool by its node ID. The ID of

a suspected node is challenged by a set of validating nodes based on the keys shared between the

suspected node and the validating nodes. Several other methods were suggested in [151], including

registration, position verification, and code attestation.

To defend against Sybil attacks, the identities of every node should be verified. This can be

done either directly or indirectly. In direct validation a node directly verifies whether the identity

of a neighboring node is valid. For example, a node may assign each of its neighbors a separate

channel to communicate and ask them to transmit during a period. Then it checks these channels

in a random order within that period. If a node is transmitting in its assigned channel, the node is

a physical node. If no transmission is detected on a channel, it indicates that the node assigned to

that channel may not be a physical node [151].

In indirect validation another trusted node provides the verification for the identity of the node.

For example, every node may share a unique key with the base station. When two nodes need to

establish a link between them, they verify each other’s identity through the base station by using

these keys [133]. At the same time they can be assigned a session key. Nodes can also be allowed

to establish links with a limited number of neighboring nodes. Thus, compromised nodes can only

communicate with a limited number of verified neighboring nodes, which also limits the impact of

Sybil attacks.

Moreover, ID-based public keys [144] also can defeat the Sybil attack because both the ID and

location information were taken into the generation of key material during the initialization phase,

hence multiple identities need multiple keys, and this is impossible for a malicious node to achieve.

C.1.8 Solutions to Defend Against Wormhole Attacks

Wormholes are difficult to detect because an adversary passes the packets to a distant point from

the point at which they are received by using a single hop out-of-band channel. This channel cannot
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be listened to by the network. Moreover, the real copy of the packet reaches the point that receives

the replayed copy later than the replayed copy. Therefore, the replayed copy is fresher than the real

copy.

Detection mechanisms against wormhole attacks can be based on temporal and spatial analysis

of the packets. To detect the Wormhole attack, Hu et al. proposed to use packet leashes [137],

where location or timing information is embedded in packets, to limit the maximum range over

which packets can be tunneled. They require that each node either knows its location or has a

tightly synchronized clock so that this information can be used to calculate the maximum distance

that a relayed packet could travel.

Directional antennas [152] were also used to defend against the Wormhole attack, where some

direction information is used to detect the replayed packets. However, these defenses target ad

hoc networks and require expensive hardware devices, which may be infeasible for most resource

constrained sensor networks.

Wang and Bhargava [153] proposed to use centralized computing to detect theWormhole attack in

sensor networks, in which a controller collects the location information for all nodes to reconstruct the

network topology such that any topological distortion can be visualized. However, the visualization

approach incurs too much communication overhead, especially when malicious nodes move around in

the entire network because each location change of the Wormhole triggers a new round of execution

of the topology reconstruction algorithm. Location-based keys [144] also can effectively address the

Wormhole attack because each packet is authenticated by the location-based key.

C.1.9 Summary of the Solutions

Table C.2 summarizes the attacks and proposed solutions related to corresponding attacks.

Among those sinkhole attacks and wormholes pose significant challenges to secure routing pro-

tocol design, and it is unlikely there exists effective countermeasures against these attacks that can

be applied after the design of a protocol has completed. It is crucial to design routing protocols

in which these attacks are meaningless or ineffective. Geographic routing protocols are one class of

protocols that holds promise.
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Table C.2 Attacks and proposed solutions to defend (detect or prevent) against those attacks.

Attack type Proposed Solutions for Detection Proposed Solutions for Preven-
tion

Eavesdropping N/A Link-layer encoding [2, 133, 145–147]

DoS Swarm intelligence [143] Usage of spread-spectrum communi-
cation [13]

Selective for-
warding

Acknowledgement monitoring [148], Re-
porting packet drops [130], Failure detec-
tion framework [150]

Multi-path routing [149]

Sybil Radio resource testing and ID-based sym-
metric keys [151]

Identity verification [151], ID-based
public keys [144]

Node Replica-
tion

Distributed detection [142] ID-based public keys [144]

Wormhole Packet Leashes [137], directional antennas
[152]

Location-based keys [144], centralized
computing [153]

Sink hole [118] N/A

HELLO flood-
ing

N/A Identity verification protocol [133]

An ultimate limitation of building a multi-hop routing topology around a fixed set of base

stations is that those nodes within one or two hops of the base stations are particularly attractive

for compromise. After a significant number of these nodes have been compromised, all is lost. This

indicates that clustering protocols like LEACH [17] where cluster-heads communicate directly with

a base station may ultimately yield the most secure solutions against node compromise and insider

attacks.
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D.1 Author’s Other Contributions

During his Ph.D. study, the author (İsmail Bütün) has contributed to the literature on variety

of topics which would not be included in this dissertation. Here is a short list of these contributions:

1. Telecommunications and Networking Author has many contributions in the field of telecom-

munications and networking:

• Worked on “Cooperative MAC protocols for Wireless Ad-Hoc Networks”. The

research was published in [154].

• Worked on “Queuing Theory” and evaluated the “Quick Start” algorithm for

low-latency networks. The research was published in [155].

• Conducted research on the effect of “Mobility Prediction” on the performance

of Cognitive Radio Networks. The research was published in [156].

• Worked on network coding. Published our research named “Comparison of

Routing and Network Coding in Undirected Network Group Communications”

in [157].

• Worked on scheduling in Wireless Networks. Published our research named

“Adaptive Rate Transmission with Opportunistic Scheduling in Wireless Net-

works” in [158].

• Worked on delay considerations in Wireless Networks. Published our research

named “Delay Considerations with Two-hop Opportunistic Relays in Wireless

Networks” in [159].

2. Cryptography and Network Security: Author has many contributions in the field of cryp-

tography and network security:

• Author finalized his Master Thesis named “A Blind Digital Signature Scheme

using Elliptic Curve Cryptography” and this work is accepted for publication

in [160].
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• Author and his colleagues focused on energy-efficient access control schemes for

WSNs and published their work in [25].

• Author conducted research in Siemens Corporate Research Center in 2011 for 6

months. The result of this research was a patent on Patch Management Systems

named “Networking Elements as a Patch Distribution Platform for Distributed

Automation and Control Domains” [44].
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