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ABSTRACT  

Biomedical devices that function in-vivo offer a tremendous promise to improve the 

quality of life for many who suffer from disease and trauma. The most important consideration 

for these devices is that they interact with the physiological environment as designed without 

initiating a deleterious inflammatory response. ISO 10993 outlines the current international 

guideline for investigating the biocompatibility of such devices. Numerous groups report the use 

of ISO 10993 as the basis for their experimental evaluation of candidate materials for 

neuroprosthetics, as well as other biomedical devices, however most of these reports fail to 

completely comply with the standard. This leads to a lack of consistent results between R&D 

groups, which hinders progress in the implantable biomedical device field. For the first time, and 

to the best of our knowledge, we present a methodology that is in strict adherence to the 

methodologies presented in ISO 10993, namely direct contact and extract testing. In addition we 

show that the MTT assay, which has been used in multiple reports, suffers from a major flaw that 

can create false results especially for conductive materials. We also report on our application of 

ISO 10993-12 with respect to control materials and preparation methods. These materials are 

gold and polyethylene as negative reaction controls, and copper and polyvinyl chloride organotin 

(PVC-org. Sn) as positive reaction controls. The results of our tests are consistent to what has 

been previously reported, albeit in separate reports. We used silicon carbide, which is a very 

promising candidate material for neuroprosthetics, as our test materials. Not only have we 

confirmed the outstanding in-vitro response of 3C-SiC and amorphous SiC, we do this in strict  



ix 

compliance to ISO 10993 thus showing that it is indeed possible to quantitatively assess the 

performed of materials in a statistically significant and highly repeatable fashion. 
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CHAPTER 1: INTRODUCTION 

1.1. Need for in vivo Biomaterials  

As a result of the evolution in health science the living condition for human beings has 

become longer and of higher quality. The discovery of new medicines, the invention of 

biomedical devices, the widespread use of prosthetic implants as well as new cures and treatment 

methods are examples of this progress. Many diseases and traumas that were not curable in the 

past can now easily can be treated with a prescription or prosthetic devices. The biomaterials 

described by Williams ,1987, and the materials that have been used for medical applications that 

are in close and persistent contact with the human body are in many cases implanted within 

tissue [1]. This raises the important point that biomedical devices, and the materials that they are 

made of, must be highly compatible with the human body for the lifetime of the treatment which, 

for highly complex prosthetics, is equivalent to the lifetime of the patient. 

Biomedical devices offer a wide range of solutions to improve the life of humans who 

suffer from disease and trauma. This is a broad range of treatments, from diabetes management 

to dental/bone implants and, more recently, robotic prosthetics that enable the restoration of 

functionality after the loss of a limb or severe brain trauma. All of these devices share one thing 

in common – they must function inside the human body, i.e., in vivo, for long periods of time. 

Therefore implant and prosthetic device materials must possess certain critical characteristics, 

such as mechanical strength, surface hardness; wear resistance, chemical stability, corrosion 
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resistance, biocompatibility, and hemocompatibility. This doctoral dissertation research focused 

on developing a comprehensive strategy to evaluate materials for in vivo applications and was 

centered around the use of the international standard organization (ISO) standard for biomedical 

materials and devices, ISO 10993. 

1.2. ISO 10993 Introduction  

The ISO 10993 standard was established to standardize methodologies for the biological 

evaluation of medical devices and biomaterials, by determining the corrosion behavior, cytotoxic 

reactions of cells within physiological environments in-vitro, and hemocompatibility of the 

implant devices and materials.  

ISO 10993 provides the minimum requirements for the testing of a new material and/or 

device that may be used in contact with the human body. The manufacturers must follow this 

guideline while they are developing their product if they are to be granted permission for clinical 

trials in humans. The Food and Drug Administration (FDA) in the USA requires the results of 

biocompatibility tests of these products before approval for device marketing, for example. 

Therefore following the protocols of ISO 10993 is mandatory by the FDA and it is mentioned in 

a blue book memorandum in 1995: #G95-1, entitled ‘‘Use of International Standard ISO 10993, 

Biological Evaluation of Medical Devices ’’ [2]. 

ISO 10993-5 provides a very reliable protocol to initially test novel biomaterials and 

biomedical devices in vitro by testing the toxicity of the implants. The latest edition of ISO 

10993, published in 2009, consists of 20 sections. In this research we studied the methods that 

focused on material corrosion resistance (10993-14), biocompatibility (109993-5) and 

hemocompatibility (10993-4).  
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Sample preparation, test conditions, selection of controls, volume to surface area ratio 

and conditions of the equipment are described in section 12 of the ISO (i.e., ISO 10993-12), so 

this section was studied first. Strict adherence to the protocols in this section was the first priority 

since most of deviations from the ISO protocols happens when the researchers do not consider 

the details in this part of the ISO standard [3]. 

After material preparation, testing the chemical stability candidate materials in a 

physiological environment is the first step. The degradation of materials implanted in the body is 

important from several aspects; any released ions or particles from the device/implant can be 

toxic or at least can cause an abnormality in the concentration of chemicals within the human 

body. In addition any deterioration in the biomaterial can result in performance failure of the 

prosthetic device, in this case a second surgery would be inevitable. Section 14 and 15 of ISO 

10993 provide the protocols which are useful in studying the degradation of materials [4, 5]. 

The major concern when a material is implanted or is in contact with the human body is 

if the material is non-toxic. Section 5 of ISO 10993 recommends several assays to study the in 

vitro cytotoxicity behavior of the materials. Direct contact of the cells with the actual device, 

preparing the extract from the materials under test and testing the extract liquid on the cells as 

well as testing cell viability using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide] assays are the methods that are suggested in the ISO 10993-5 [6]. 

When a prosthetic device is implanted in the body physical scaring of the surrounding 

tissue and interaction with local blood vessels is inevitable. Thus, while a material can be non-

toxic and chemically stable, it can still cause blood clotting or a severe hemorrhage because of 

their interaction with blood. The guideline for evaluation of the hemocompatibility of the 

biomaterials and devices is provided in ISO 10993-4 [7]. 
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The standard, which was compiled from previous cytotoxicity studies, does fall short in 

completeness in that it targets only particulates and chemical compounds that have leached away 

from the material into the cell media. In this work, we present a new method, which was 

developed to test not only the compounds that leach out from novel biomaterials, but also test the 

cellular reactivity in proximity to the material under evaluation [6]. 

1.3. Biocompatibility of the Materials 

The concept of biocompatibility is a vast topic which has been studied for a long time. 

Unfortunately the definition of biocompatibility means different things to different researchers 

typically. The capability of a biomaterial to implement its preferred function according to the 

medical treatment chosen, with highest efficiency in contact with the body tissue, and the 

absence of any unwanted local or systemic side effects, is described in the literature [8-11]. 

Almost all medical devices are made from various biomaterials so investigating the 

biocompatibility of all of the materials that were used in the prosthetic device that are in contact 

with tissue, or have a high risk of contact with tissue, is required. Numerous researchers continue 

to try to figure out the interaction of these biomaterials with the human body and how these 

interactions affect the performance of the implanted device [9, 10]. 

The human body has a complex immune system and a complex tissue regeneration 

mechanism. Therefore studying the biocompatibility of a material on one type of cell line or 

tissue is not sufficient. To figure out if a material is biocompatible, or not, the standard institutes 

such as ISO and ASTM established a battery of in vitro test standards. ISO 10993-5 is a good 

example of such a protocol. Although the in vitro tests cannot individually verify the 

biocompatibility of a material or device, they provide valuable data for the next steps which are 

ideally in vivo tests followed by human clinical trial. Having a reliable set of in vitro 
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biocompatibility data can result in the reduction of animal use and also help set the stage for 

human trials [11]. 

Cubic silicon carbide, more commonly written as 3C-SiC, was recognized as an 

alternative biomaterial for the first time by Colletti et al. of the USF SiC Group in 2007 [12, 13]. 

These results demonstrated that 3C-SiC has an advantage in biocompatibility over Si in terms of 

cell attachment and viability. They studied the biocompatibility of silicon and several polytypes 

of silicon carbide using MTT assays and fluorescent microscopy [12, 13]. Frewin et al. in 2009, 

of the same group, studied the neural / 3C-SiC interface using the same methods as well as 

atomic force microscopy (AFM). They suggested the application of 3C-SiC as an invasive neural 

implant due to its outstanding characteristics including excellent neuronal cell attachment, the 

absence of 3C-SiC surface degradation and excellent lamellipodia permissiveness [14, 15]. In 

our studies a new modified biocompatibility method is used to evaluate the biocompatibility of 

3C-SiC, silicon and a-SiC. The results will be compared to the conventional methods of 

biocompatibility evaluation in chapter 3.  

1.4. Hemocompatibility of the Materials  

ISO 10993-4 provides test methods to evaluate blood/material interaction. Blood cell 

adhesion is a measure of the blood-compatibility of a material when considered in conjunction 

with distal embolization. Also platelet count and platelet aggregation are important for 

evaluating the hemocompatibility of materials [7, 16]. ISO 10993-4 suggested a static state for 

hemocompatibility tests, which clearly is not close to the real condition. Testing the materials in 

a dynamic state is a complementary test that can be done on implants that are to be used in 

contact with blood, which is particularly true for neural implants due to the vasculature of the 

human brain. 
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In previous studies the blood compatibility of silicon-based semiconductors and a-SiC 

was investigated [17, 18]. The results showed an outstanding blood compatibility behavior of a-

SiC, which made it a favorable candidate for the coating of cardiovascular implants [19, 20]. 

Nurdin et al. in 2003 studied the hemocompatibility of SiC in comparison to DLC coatings [21] 

and Schettini et al. in 2009 showed the preliminary hemocompatibility of 3C-SiC based on 

platelet activation studies under static conditions [22]. In this dissertation evaluation of the 

hemocompatibility of silicon and 3C-SiC semiconductors will be evaluated in a dynamic state to 

support these static state tests (Chapter 4).  

1.5. Chemical Simulation of the Body Environment in vitro  

ISO 10993-14 provides methodology guidelines for the identification and quantification 

of degradation products from ceramics in a simulated physiological solution and also in an 

extreme solution [4]. The first step in the biocompatibility assessment of a material is to evaluate 

the chemical stability and corrosion resistance of the materials. Based on ISO 10993-14 this test 

consists of two parts. The first part is to test the material in a simulated solution with a pH of 7.4 

± 0.2 which is similar to human biological pH. The second part is immersion in an extreme 

solution of pH 3.0 ± 0.2, which simulates the pH of the human body under extreme acidic 

conditions. Testing of the implant materials in neutral pH and extreme acidic states are necessary 

but not necessarily sufficient. For neural implants, which are used in the cerebral region, the pH 

tolerance must be around 5.9 ± 0.2 in the presence of nitrous ions. Silicon based materials, which 

are very common in neurological implants, are extremely sensitive to nitrous ions [23]. 

Therefore to test the corrosion resistance of neurological implants a complimentary test must be 

performed in addition to ISO-10993-14 to evaluate the corrosion resistance in the presence of 
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nitrous ions. When the material or device has passed the corrosion test it will then be eligible for 

cytotoxicity assays [4, 5].  

The degradation of neurological implant materials in buffer solutions at various 

temperatures for several time frames was studied in the past; the effect of temperature on 

material degradation of polymeric biomaterials in such accelerated aging experiments was the 

most significant parameter and it was found to follow the time dependence of 2ΔT/10 where T is 

the elevated temperature above 37C [24, 25]. In this work we seek to develop a similar relation 

for silicon-based semiconductor materials and, in particular, silicon carbide (SiC).  

In Sella et al in 1993, the corrosion properties of amorphous silicon carbide (a-SiC) 

coatings was measured using potentiodynamic polarization tests in biological media, and no 

reaction was observed in comparison to the non-coated surface. The corrosion current was 

almost zero even at high potentials [26]. In our experiments we determined the corrosion 

resistivity of a-SiC in acidic and neutral solutions using the immersion method while comparing 

the results to control materials, which are silicon (positive control) and cubic silicon carbide 

(negative control). The results will be presented in chapter 2.  

1.6. Cell Biology 

1.6.1. Fibroblast Cell Line (L 929 Cell Line) 

There are four major types of tissues in the human body and connective tissue is one of 

them. Collagen is the most common protein in the human body which forms a fibrous structure 

to realize connective tissue [27].  

Ligaments and tendons consist mostly of dense connective tissues. Bones are connected 

to each other at the joints by ligaments, which have a rope-shaped structure. On the other hand 
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skeletal muscles and joints are connected to each other by tendons. In addition to these examples 

of connective tissue is the dermis which consists of dense connective tissue formed completely 

from collagen. Fibroblasts are spread among the collagen fibers in a dense connective tissue 

matrix and form a subunit of collagen that is called tropocollagen - they build the larger 

collagenous structures. Glycoproteins and polysaccharides are created by fibroblasts to form a 

substrate. The collagen fibers of dense connective tissue are encapsulated by this gel-like 

material that was produced by the fibroblasts, and formed an "extracellular matrix", which 

facilitates the integrity of the ligaments and tendons. All of this defines the mechanical properties 

of the connective tissue. In addition, due to the repair properties of fibroblasts, any tissue damage 

stimulates fibroblast creation [28, 29]. Therefore fibroblasts are a nearly ideal cell line with 

which to test the biocompatibility of new biomaterials. 

Fibroblast cells vary based on their activity, size and shape. The term Fibroblast describes 

the activated form of these cells that are metabolically active cells, thus they have the suffix of 

blast in their name. For example fibrocytes cells are not active. But most of the time the term 

fibroblast is used to name both fibroblasts and fibrocytes. The fibroblast cells are larger in 

comparison to fibrocytes and also have a rough endoplasmic reticulum [30]. The mouse 

fibroblast cell line clone 929 of strain L, which were derived from a C3H male mouse, is the 

most commonly used cell line in this family of cells for cytotoxicity assays [30, 31] and is also 

specifically called out in ISO 10993. 

1.6.2. Neuroglioma Cells (H4 Cell Line) 

Neurons and neuroglial cells form the central nervous system (CNS) and they have equal 

share to form the CNS structure. Maintaining the homeostasis, providing support, protecting the 

neurons and forming myelin is the major role of neuroglia cells, which are non-neural cells of the 
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CNS. The glia cells also are mentioned as nervous system’ "supporting cells" in the literature. 

The neuroglia cells have four major tasks; the structural task of these cells is to embrace the 

neurons and keep them in proper position; the insulation role of these cells is to surround the 

neurons and insulate them from each other. They also act as defending cells whereby they 

destroy pathogens and remove dead neurons; the last role of these cells is to provide nutrients 

and oxygen to the neurons [32-34]. 

The H4 cells are neuroglioma tumor cells from human brain neuroglia tissue. Since the 

neuroglial cells are the scaffold of the neurons this cell line can be used for the goals of assessing 

cell permissiveness on neurological implants. The adhesion of the glial cells to the surface has 

been used as a primary step of biomaterials testing in previous research due to its convenient 

comparison to actual neural cells [35-37].  

1.6.3. Primary Neurons  

The basic physiological performance of the neurons normally is studied by using primary 

neuronal cultures and neuronal cell lines extracted from rodents. In addition, they are also used 

to study the neuron / biomaterial interaction and effect of chemicals on neurons. The effect of 

released chemicals on the viability of the neurons is called neurotoxicity and is a valuable 

experiment that can be used in the design of neuroprosthetic implants. The protocol for culturing 

neurons for short-term experiments is not as difficult as the long-term culture of pure neurons. In 

this study 96 hours of cell culture was considered as the seeding duration [38, 39].  

1.7. Statistical Theories  

To have comparable results statistical analysis must be done on the data obtained from 

the tests. Analysis of variance (ANOVA) is a method that can be used to compare the statistical 
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data, such as mean and variance of several groups, to provide a statistical model for the process. 

By using the ANOVA method, the obtained variance in a specific variable is divided into 

components attributable to different sources of variation. In a simple word, ANOVA provides a 

statistical test so that the results of various experiments can be comparable and one can figure out 

if the means in several experimental groups is equal or not, and expands the t-test to more than 

two groups [40]. 

Any statistical analysis which verifies the t-distribution for the data is called t-test. The 

null hypothesis can be evaluated by t-test. So if the null hypothesis is correct the data has the t-

distribution. In our experiment the paired t-test was used to verify the statistical significance or 

two groups of data, this paired test was done on all the samples, having a normal distribution in 

data values was the only assumption that we made [40]. 

1.8. Summary  

The goal of this doctoral research was two-fold; first to develop a complete set of 

experiments that can determine all the characteristics required for the successful use of invasive 

neurological implants in strict adherence to ISO 10993; second, to find an alternative material for 

neurological implants since conventional materials have yet to show long-time durability of more 

than 4 years in vivo.  

To peruse the first goal, a battery of complementary tests were conducted including the 

evaluation of the corrosion behavior of materials in the presence of nitrous ions, cytotoxicity 

evaluation of the materials considering leached ions from the materials, and the behavior of the 

cell/ material surface after the direct implantation of cells. This will be complimented by the 
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evaluation of the hemocompatibility of the materials in a dynamic flow system using the platelet 

activation method [41, 42].  

Previous studies of 3C-SiC and a-SiC indicated outstanding corrosion resistance, 

biocompatibility and static hemocompatibility performance. The reliability of 3C-SiC, a-SiC or 

any component including these two materials as a biomaterial device were evaluated by 

performing further investigations and complementary tests have been suggested. This is a 

comprehensive materials evaluation that has not been demonstrated to date and represents a 

significant contribution to the field of biomaterials evaluation and development.  
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CHAPTER 2: CORROSION AND MATERIALS DEGRADATION 

In Chapter 1 the goals of this research project were presented, which involved a 

coordinated battery of material stability testing followed by biological testing in vitro. ISO 10993 

was introduced as the relevant standard that must be followed in order to see a biomedical device 

reach human clinical trial. In this chapter we will discuss how to faithfully follow the standard to 

determine the material stability requirement. To achieve the goals of this project three types of 

experiments have been designed. The first was to evaluate the corrosion resistance and material 

degradation of the materials by performing soak tests (Chapter 2), while the second was to 

evaluate the cytotoxicity of materials (Chapter 3) and the last involves testing the 

hemocompatibility of these materials under dynamic flow conditions (Chapter 4).  

Corrosion tests in simulated and extreme solution were performed on both experimental 

controls and Si (100), 3C-SiC, a-SiC (four variant formulations), SiO2, W and parylene C 

samples. For the controls gold (Au) and polyethylene (PE) served as the negative controls, while 

copper (Cu) and organo tin-doped polyvinyl chloride (PVC org.-Sn) served as positive controls; 

characterization and data analysis has been performed and is presented. The material surface 

changes were characterized using the scanning electron microscope (SEM), Atomic Force 

Microscope (AFM) and Optical Profilometer (OP) before and after soaking the samples.  

2.1. Sample Preparation 

Silicon substrates in the (100) orientation, 100 mm diameter, 500 µm thick, were cleaned 

using the RCA cleaning method that consists of two steps [43]. In standard clean 1 (SC1) the 
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wafers were immersed in a 1:1:5 solution of NH4OH (ammonium hydroxide, 27%):H2O2 

(hydrogen peroxide, 30%): H2O at 80°C for 10 minutes to remove any organic contamination. 

SC1 treatment normally results in the formation of a thin layer of oxide on the surface of the 

wafers. In standard clean 2 (SC2) the wafers were immersed in 1:1:6 HCl:H2O2:H2O at 80°C for 

10 minutes to remove any trace metallic contamination, then the wafers were dipped in 5% HF 

acid at 25°C for 1 minute to remove the formed oxide layer. The wafers were then rinsed with DI 

water for 5 minutes after RCA cleaning and dried with nitrogen gas [43].  

When the wafer was dried completely the desired materials were deposited on it. Metallic 

materials were deposited on the wafers using an electron beam physical vapor deposition (e-

beam PVD) in the University of South Florida – Nanotechnology Research & Education Center 

(USF-NREC). The a-SiC film was deposited by J. register of the USF SiC Group using plasma 

enhanced chemical vapor deposition (PECVD) located in the USF-NREC facility (Plasmatherm 

700 PECVD tool). The 3C-SiC film was grown by M. Reyes of the USF SiC Group on the Si 

substrate using a hot-wall chemical vapor deposition (CVD) reactor in ENB111 at USF.  

After depositing the proper thin film on the silicon substrate, the 4” wafers were cut into 

coupons, 8×10 mm in size, using a diamond-blade dicing saw. 68 coupons of this dimension can 

be obtained from each 4” wafer. 

The coupons were removed from the dicing saw frame and cleaned as follows: Each 

coupon was placed in a test tube and 5 mL of acetone (99% volume) was added. The tubes were 

then sonicated for 10 minutes at 25°C to remove any oily contamination and debris from the 

dicing process. The acetone was removed from the tubes and replaced by 5 mL of isopropanol 

alcohol (IPA, 96% volume) then the samples were sonicated for 10 minutes at 25°C to remove 

any acetone residue. The IPA was removed from the tubes and replaced by DI water and 
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sonicated for 10 minutes at 25°C. The samples were then retrieved from the tubes and dried 

using pure nitrogen gas (99% N2) then stored in clean waffle packs in a sealed environment until 

they are used in the various corrosion experiments as outlined above. 

 

Figure 2.1: Flowchart showing the sample preparation steps and sample distribution for the 

material stability (Blue - Chapter 2), biocompatibility (Green -Chapter 3) and hemocompatiblity 

(Red – Chapter 4) tests based on ISO 10993. 

For the material stability study tests, such as the immersion tests (material degradation 

tests), the samples can be used right after solvent cleaning. But to use a sample in a biological 

environment to test the biocompatibility the samples must be sterilized (Chapter 3). The ceramic 

materials were sterilized using an autoclave at 120°C for 1 hour. The metallic and semiconductor 

samples were sterilized using a dry sterilizer under vacuum at 100°C. The polymer samples were 

sterilized using Ethyelene Oxide (EtOx) at George Mason University (GMU) and shipped in 

sterile bags to USF for subsequent processing. The consumption of the raw materials was based 

on the following numbers, 9 coupons for extract tests, 10 coupons for cytotoxicity assays, 10 



15 

coupons for hemocompatibility tests, 12 coupons for degradation in simulated solution, 12 

coupons for corrosion testing in extreme solutions and 10 coupons for nitric acid simulated aging 

testing. A total of 63 samples of each raw material are required for a complete set of 

experiments. Figure 2.1 shows the steps involved in sample preparation and the sample dispersal 

for each test. 

2.2. Scientific Controls 

By using a scientific control the effect of unwanted experimental variables, other than the 

desired one(s), can be reduced and hopefully eliminated. Therefore experiments have more 

reliable results when control experiments are performed [3]. Control experiments must be 

selected based on the primary hypothesis of the experimental method being used. For example, 

during corrosion testing an inert material does not have any chemical reaction with the test 

environment so it is an ideal negative control because of the absence of any corrosion reaction 

phenomenon.  

Ideally, all variables in an experiment are controlled. The goal an experiment is to verify 

that the obtained results are because of the tested variable, so by testing on the controls and 

getting the expected results the correct performance of the test can be determined. The 

researchers are able to make a logical decision by selecting the proper scientific controls and 

verify the correctness of obtained data. Therefore proper selection of experimental controls is 

imperative and was the first task undertaken in this work. 

2.2.1. Negative Control Selection 

By selection of the “negative controls” the researchers verify that no reaction or effect 

happens on the negative control samples while doing the experiments. They are 
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designed/selected to ensure that there is no experimental effect when there should be no effect. 

To continue with the example of corrosion testing, a negative control is a material that will not 

react with the corrosive environment being studied. We would say that the negative control 

group should show a negative, or null, response during the time of the experimental study. 

 Au as a negative control for corrosion and biological tests 

In ISO 10993-12 polyethylene was suggested as a negative control, since this material is 

an insulator the necessity of having a conductor negative control is crucial. In the literature gold 

(Au) is the recommended conductive negative control material. Au shows good biocompatibility 

and is almost inert in the body. In addition it is not reactive in a corrosive environment and 

serves as a suitable negative control for corrosion studies as well. Pt is also a reliable 

biocompatible – corrosion resistant material and was also used during this work as a negative 

control during biological testing (Chapter 3).  

The e-beam PVD equipment housed in the USF-NREC was used to deposit the metallic 

control thin films on 4” (100) Si wafers. A 99.99 % gold bar (Swissgold) was cut into small 

pieces and placed in a ceramic crucible. In order to ensure proper Au adhesion to the Si surface, 

Ti was used as an adhesion layer (which is also a bio-rated material). Ti pellets (99.99% Sigma 

Aldrich) were placed in another ceramic crucible. The Ti was melted and evaporated in vacuum 

using a high current electron beam (typically 100 mA). The Ti film was deposited at the rate of 

10 Å/sec and the deposited film thickness was ~200 Å. Then the Au crucible was exposed to the 

electron beam. The molten Au is very sensitive to beam current fluctuations and if the current 

increases abruptly it will result in molten Au particles being ejected from the crucible, which 

results in film pinhole formation. The optimum deposition rate was 5 Å/sec and the deposited 

film thickness was ~1500 Å. 
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 PE as an insulator negative control for biological tests  

Based on ISO 10993 polyethylene (PE) is the recommended insulator negative control 

material. PE shows good biocompatibility and is almost inert in the body.  

PE tape (3M Transpore™ Surgical Tape) was used as the source of PE material. The 

samples were cut into 8×10 mm pieces under a clean hood using a surgical blade. The samples 

were then disinfected using a 70% ethanol solution and rinsed with DI water.  

 PBS as solution negative control  

Phosphate buffered saline (PBS), at the concentration of 10 mM (i.e., 1X PBS solution), 

is a buffer solution commonly used in biological research. It is a water-based salt solution 

containing sodium phosphate and, in some formulations, potassium chloride and potassium 

phosphate.  

Table 2.1: The DI water grade requirements based on ISO-3696 [44]. 

Parameter Grade 2 

pH value at 25 °C inclusive range Not applicable 

Electrical conductivity mS/m at  

25 °C, max.  
0.1 

Oxygen (O) content mg/l, max. 0.08 

Residue after evaporation on heating at 

110 °C mg/kg, max. 
1 

Silica (SiO2) content mg/l, max. 0.02 

Absorbance at 254 nm and 1 cm optical 

path length, absorbance units, max. 
0.01 

PBS has many uses because it is isotonic and non-toxic to cells. These uses include 

substance dilution and cell container rinsing. PBS with Ethylenediaminetetraacetic acid (EDTA) 

is also used to disengage attached and clumped cells from sample surfaces.  

The 1X PBS solution was prepared by dissolving 5 tablets of PBS (Invitrogen 

technologies) in grade 2 Deionized Water (based on ISO-10993). The pH was adjusted to 
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7.4±0.1 by NaOH (sodium hydroxide) – HCL (hydrochloric acid) titration. Table 2.1 shows the 

requirements of grade 2 DI water based on ISO-3696.  

2.2.2. Positive Control Selection 

The scientists use the “positive controls” to verify that the experiment has affected the 

sample and if that effect is what they expect. The positive controls confirm that the experiment 

has the result that supposed to have, by implementation of results of previous studies or scientific 

facts.  

The experiment must be done again if the positive control did not behaved as expected, 

there may be a flaw with the test. Also the positive controls were used as factors that can be 

compared with other experiments done in the past if the investigating phenomena is complicated 

to evaluate.  

 Cu as positive control for corrosion and biological tests 

Based on ISO 10993 copper (Cu) is the recommended conductive positive control 

material. Cu shows no biocompatibility and is totally toxic to cells. In addition it is reactive in a 

corrosive environment and therefore serves as a suitable positive control for corrosion studies.  

The e-beam evaporator housed in the USF-NREC was used to deposit Cu metallic thin 

films on the 4” (100) Si wafers. Cu pellets (99.99 % pure, Sigma Aldrich) were cut into small 

pieces and placed in a ceramic crucible. Ti pellets (99.99 % pure, Sigma Aldrich) were placed in 

another ceramic crucible (again, Ti being used as an adhesion layer). The Ti was melted and 

evaporated in vacuum using a high current electron beam. The Ti film was deposited at the rate 

of 10 Å/sec and the thickness was ~200 Å. Then the Cu crucible was exposed to the electron 

beam. The optimum deposition rate was 12 Å/sec and the film thickness was ~1500 Å.    
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 PVC as insulator material positive control for biological tests  

Based on ISO 10993 organo tin-doped polyvinylchloride (PVC org.-Sn) is the 

recommended insulator positive control material. PVC org.-Sn shows no biocompatibility and is 

toxic to cells. In addition it is reactive in a corrosive environment and thus also serves as a 

suitable positive insulator control for corrosion studies.  

Two PVC variants were used in this research. The first PVC org.-Sn used was found to 

be highly variable in its biological response. In order to have a better positive control F-4040-A 

PVC tube provided by Tygon (aka fuel and lubricant tubing, Yellow) was used as the source of 

the PVC positive insulator control material. The exact toxic dopant used in this material is a 

trade secret but we found this material to be a reliable positive control (Chapter 3).  The samples 

were sterilized with ethylene oxide (EtOx) at George Mason University (GMU) and shipped in 

sterile bags to USF. The samples were cut in 2 mm pieces under a clean hood using a surgical 

blade. Based on calculations a 2 mm length of the tubing has the equivalent surface area of an 

8×10 mm planar sample coupon. This is an important consideration since the media to material 

surface ratio must be constant and equal to 3 mL/cm2 as stated in Chapter 1 in order for the test 

to be in compliance with ISO 10993.  

 Citric acid as a solution positive control  

Citric acid buffer solution at a pH of 3.0±0.1 is the suggested solution for positive control 

in ISO-10993. Citric acid is a weak organic acid with the chemical formula C6H8O7. It is a 

natural preservative and is also used to provide an acidic or sour taste to foods and drinks. In 

biochemistry, the conjugate base of citric acid, citrate, is important as an intermediate in the 

citric acid cycle, which occurs in the metabolism of all aerobic organisms. 
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Citric acid is a commodity chemical, and more than a million tons are produced every 

year by fermentation. It is used mainly as an acidifier, as flavoring, and as a chelating agent. 

Figure 2.2 shows the chemical structure of citric acid.  

 

 

Figure 2.2: The chemical structure of citric acid C6H8O7. 

A buffered citric acid solution was prepared with a pH of 3.0±0.2 at a temperature of 

37±1 °C as follows: 21 g of citric acid monohydrate (99.9%, ACS reagent Sigma Aldrich) was 

dissolved in 500 mL of grade 2 DI water in a 1 l volumetric flask. 200 mL of 1 M sodium 

hydroxide solution was added to the flask, then the volume was adjusted to 1000 mL using grade 

2 DI water. 40.4 mL of the dilute solution was mixed with 59.6 mL of 0.1 M hydrochloric acid to 

obtain the desired buffered citric acid solution [4]. 

2.3. Test Materials 

2.3.1. (100) Silicon  

Silicon wafers (University Wafer, Inc.) with the crystallographic orientation of (100) and 

thickness of 500 µm were used as test materials. Since this type of wafer is used as the substrate 

for the entire semiconductor and conductor materials in this work it can be considered as a 

baseline material.  
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2.3.2. Cubic Silicon Carbide (3C-SiC) 

Thin films of cubic-silicon carbide (3C-SiC) on (100) silicon were grown in the MF2 

chemical vapor deposition reactor at the University of South Florida [45]. The process involves 

using a horizontal hot-wall, low pressure reactor at the growth rate of ~5 µm/h at 1350°C for the 

biocompatibility, corrosion and hemocompatibility tests. In addition these films were used for 

SiC nanowire experiments at the University of California at Berkley (Chap. 5). The SiC growth 

sample number were USF2-12-147, USF2-13-012, USF2-13-018 and USF2-13-092, which is 

stated for reference. Quantitative analysis was performed via atomic force microscopy (AFM) 

using a Park Systems XE-100 AFM in tapping mode (Si3N4 probes).  

 
                             10×10 µm 

   
                           5×5 µm 

Figure 2.3: AFM micrographs of (left) 10×10 and (right) 5×5 µm scans of 3C-SiC sample USF2-

12-147. AFM measurement was in tapping mode with a 0.2 Hz scan rate. The micrographs are 

normalized to a Z height interval of (+10,-10) nm (see scale bar on the right). Note the surface 

displays atomic steps which is an indication of high-quality crystal growth. 

The scan rate was 0.2 Hz for all of the AFM characterization reported here. A 

representative rq value for the sample was ~7.2±0.5 nm RMS. Figure 2.3 shows 10×10 and 5×5 

µm AFM micrographs of the 3C-SiC samples, again for reference, as the sample morphology 

changes across the wafer but the reported RMS roughness value was ~ 7 nm across the wafer. 
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AFM data elaboration was performed using the XEI software (Park Systems). The 5x5 

µm micrograph shown in Figure 2.3 was used for this data processing example. In these 

measurements the average value for the terrace width was about 41 nm and the step height was 

about 4.57 Å. Figure 2.4 shows this AFM data elaboration.  

 

Figure 2.4: Line scan of the 5×5 µm AFM micrograph of Figure 2.3 of 3C-SiC sample USF2-12-

147. The rq value was 7.2±0.5 nm RMS. From this line scan the terrace width is ~ 41 nm and the 

step height (not shown) about 4.5 nm   

2.3.3. Silicon Carbide (a-SiC) 

Four different variants of a-SiC were prepared by J. Register of the USF SiC Research Group 

using the USF-NREC Plasmatherm 700, plasma enhanced chemical vapor deposition (PE-CVD) 

tool [46]. The sequence of the deposited layers for type I was a-SiC on Si (100), for type II was 

a-SiC on SiO2 on Si (100), for type III was a-SiC on 3C-SiC on Si (100) and for type IV was a-

SiC on SiO2 on 3C-SiC on Si (100). The a-SiC film was deposited on all substrates (Type I-IV) 

simultaneously in order to allow for direct comparison of the underlying material impact on the 

measured response. Since a-SiC is used as a coating on numerous materials, these four variants 

were selected in order to best understand the performance of the coating and influence of the 

underlying material. The cross-sectional view of each formulation and thickness of the deposited 

layers are described below. 
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 Type I (a-SiC/ Si) 

A (100) silicon wafer (500 µm, University wafers) was cleaned using the RCA method 

[43]. The a-SiC thin film was deposited on a silicon wafer using plasma enhanced chemical 

vapor deposition (PECVD). The thickness of the a-SiC film was ~300 nm. Figure 2.5 shows the 

cross sectional view of the coating layers in type I a-SiC.  

 

Figure 2.5: Cross-section showing the structure of type I a-SiC developed for testing in 

this research. The a-SiC was ~300 nm thick and deposited on 500 µm thick Si (100) 

substrate. 

 Type II (a-SiC/ SiO2/ Si) 

The second type of a-SiC was deposited on a layer of PECVD-deposited 800 nm thick 

SiO2 (deposited by R. Everly of the USF NREC using the Plasmatherm 700 PECVD tool) using 

PECVD. The SiO2 layer was deposited on a (100) silicon wafer. The a-SiC thickness was ~300 

nm.  Figure 2.6 shows the cross sectional view of the coating layers in type II a-SiC.  

 

Figure 2.6: Cross-section showing the structure of type II a-SiC developed for testing in 

this research. The a-SiC was ~300 nm thick, deposited on 800 nm thick SiO2 and 

deposited on 500 µm thick Si (100) substrate.  
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 Type III (a-SiC/ 3C-SiC/ Si) 

The third type of a-SiC was grown on a layer of 3C-SiC film using PECVD. The 3C-SiC 

was grown on a (100) silicon wafer using ho wall CVD by Dr. M. Reyes of the USF SiC Group 

[47]. The a-SiC thickness was ~300 nm. The 3C-SiC thickness was ~6.2 μm. Figure 2.7 shows 

the cross sectional view of the coating layers in type III a-SiC.  

 

Figure 2.7: Cross-section showing the structure of type III a-SiC developed for testing in 

this research. The a-SiC was ~300 nm thick, deposited on ~6.2 μm 3C-SiC and grown on 

500 μm thick Si (100) substrate. 

 Type IV (a-SiC/ SiO2/ 3C-SiC/ Si) 

The fourth type of a-SiC was deposited on a layer SiO2 film deposited using PECVD, 

which previous had been deposited on a layer of 3C-SiC. The 3C-SiC was grown on a (100) 

silicon wafer using hot wall CVD. The a-SiC thickness was ~300 nm.  

 

Figure 2.8: Cross-section showing the structure of type IV a-SiC developed for testing in this 

research. The a-SiC was ~300 nm thick, deposited on 800 nm SiO2, deposited on ~6.2 µm 3C-

SiC and grown on 500 μm thick Si (100) substrate. 
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The thickness of oxide layer was 800 nm. The 3C-SiC thickness was measured to be ~6.2 

µm. Figure 2.8 shows the cross sectional view of the coating layers in type IV a-SiC. 

2.4. Corrosion Testing in Simulated Solution  

The material coupons, 8×10 mm in size, were solvent cleaned and rinsed with DI water 

according to the protocol that was mentioned in the sample preparation section of this chapter. 

The goal of these experiments was to determine the degradation of materials in a simulated 

solution which has similar pH, temperature and chemical composition to the human body. The 

samples were placed in pyrex screw cap test tubes (sigma aldrich), 1.6 mL of filtered 10 mM 

PBS (phosphate buffer saline to have electrolyte to surface area ratio of 1 mL/cm2) was added 

and the cap was closed loosely to avoid any internal pressure increase inside the tubes. A 2 µm 

particulate filter used for PBS filtration. The pH of the solution was monitored 24/7 using a PC 

controlled SPER scientific pH meter. The pH was maintained at 7.4±0.1 and the tests performed 

at 37°C and 60°C for 4 days and 30 days, respectively. This was done to allow for accelerated 

aging effects to be studied during this work which is also in compliance with the ISO standard. 

The tests were repeated for 6 treatments of each material studied.  

Artificial cerebrospinal fluid (ACSF) is another alternative for a simulated solution when 

the implant is used in a neurological environment. Another alternative is artificial plasma, which 

is useful for blood environment simulated testing. Cu was used as the positive and Au as the 

negative controls for conductive materials. For polymer materials PVC (tygon) was the positive 

control and PE was the negative control. Scanning electron microscopy (SEM) and optical 

microscopy (OM) were used for the qualitative evaluation of materials degradation. Atomic 

force microscopy (AFM) was used for nanometer-scale surface feature observation and optical 

profilometry (OP) was used for large-scale surface characterization.  
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2.4.1. Scanning Electron Microscopy  

The Hitachi SU-70 and Hitachi S-800 scanning electron microscopes housed at the USF 

NREC facility were used to determine the surface morphology changes qualitatively.  The SEM 

was used in field emission mode at 25 kV acceleration voltage using the secondary electron 

detection mode. The samples were imaged at a tilt angle of 45° at 100, 1000, 5000, 10000 and 

50000X magnifications. The magnification and tilt angle were selected based on feature size and 

surface roughness values of the samples.  

Figure 2.9 shows the SEM micrographs of the Au negative conductor control samples 

used in corrosion tests. When the SEM results of samples after soaking in 1X PBS at 37 and 60 

°C for 24 hours, 96 hours and 30 days were compared to the SEM micrograph of the Au baseline 

surface, no surface degradation was observed. Having no reaction with the chemical environment 

confirms the role of Au as a negative control, as was expected.   

Figure 2.10 shows the SEM micrographs of the Cu samples as the positive conductor 

control samples in the corrosion test. When the SEM result of samples after soaking in 1X PBS 

at 37 and 60 °C for 24 hours, 96 hours and 30 days were compared to the SEM micrograph of the 

Cu baseline surface, a significant surface degradation can be see. By comparing the SEM 

micrographs of the Cu samples soaked for different time frames, it can be understood that Cu 

oxide crystals were grown in size after passing longer periods of time.  Having a complete 

reaction with the chemical environment confirms the role of Cu as a positive control, again as 

was expected. 
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Figure 2.9: The SEM micrographs of Au samples at 60° tilt angle, 25 kV acceleration voltage 

and 5000X magnification after soaking in 1X PBS at 37 and 60°C. No change in surface 

morphology was observed confirming that Au is a suitable negative control material. 
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Figure 2.10: The SEM micrographs of Cu samples at 60° tilt angle, 25kv acceleration voltage 

and 5000X magnification after soaking in 1X PBS at 37 and 60°C. Significant changes in 

morphology observed confirming that Cu is a suitable positive control material. 

Figure 2.11 shows the SEM micrographs of the PE samples used in the corrosion test. 

When the SEM result of samples after soaking in 1X PBS at 37 and 60 °C for 24 hours, 96 hours 

and 30 days were compared to the SEM micrograph of PE baseline, a slight surface degradation 

can be detected. By comparing the SEM micrographs of the PE samples soaked for 30 days to 

the rest of the samples, it can be understood that the PE samples could not tolerate the high 

temperatures for longer periods of time.  Having a complete partial reaction with the chemical 
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environment rejects the PE sample as a negative insulator control for corrosion tests.  Therefore a 

more suitable insulator negative control material is required to properly follow the ISO standard. 

Since parylene-C is a standard negative control for biological testing, this material was evaluated 

(see Fig. 2.13) and found to be a suitable negative control for corrosion testing as well, as 

described below. 
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Figure 2.11: The SEM micrographs of PE samples at 60° tilt angle, 25kv acceleration voltage 

and 5000X magnification after soaking in 1X PBS at 37 and 60°C. Changes in surface 

morphology were observed which invalidate PE as a suitable negative control material. 

Figure 2.12 shows the SEM micrographs of the PVC (Tygon) samples as the positive 

conductor control samples used in the corrosion test. When the SEM result of the samples after 

soaking in 1X PBS at 37 and 60 °C for 24 hours, 96 hours and 30 days were compared to the 

SEM micrograph of PVC baseline, a significant surface degradation can be see. By comparing 

the SEM micrographs of the PVC samples soaked for different time frames, it can be understood 

that the surface degradation increased after passing longer periods of time at higher temperatures.  

Having a complete reaction with the chemical environment confirms the role of PVC as a 

positive control as it was expected.   
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Figure 2.12: The SEM micrographs of PVC samples at 60° tilt angle, 25kv acceleration voltage 

and 5000X magnification after soaking in 1X PBS at 37 and 60°C. Significant changes in surface 

morphology were observed confirming that PVC (Tygon) is a suitable positive control material. 
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Figure 2.13: The SEM micrographs of parylene C samples at 60° tilt angle, 25kv acceleration 

voltage and 5000X magnification after soaking in 1X PBS at 37 and 60°C. No change in surface 

morphology was observed confirming that parylene-C is a suitable negative control material. 

Figure 2.13 shows the SEM micrographs of parylene-C samples which were evaluated 

for use as a negative insulator control sample in the corrosion test since PE failed the test. When 

the SEM result of samples after soaking in 1X PBS at 37 and 60 °C for 24 hours, 96 hours and 

30 days were compared to the SEM micrograph of parylene-C baseline, no surface degradation 

can be see. Having no reaction with the chemical environment confirms the role of parylene-C as 

a negative control, as was expected. 
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2.4.2. Atomic Force Microscopy 

The USF SiC Group atomic force microscope (XE-100 Park systems) was used to 

determine the surface roughness of the samples. The optimum performance range of the AFM 

with the current set up is ±200 nm in surface topology (i.e., z variation). So this machine was 

only used for samples with a smooth surface morphology. A Wyko 100322 optical profiler (OP) 

was used to evaluate samples that displayed a higher surface roughness. AFM and OP are two 

methods that quantitatively characterize the surface roughness of planar samples. Surface 

roughness quantitative data, accompanied by SEM qualitative data, can give us a valuable 

interpretation from the material’s degradation after soaking in various temperatures and for 

various time durations.  

 

Figure 2.14: Sample map showing the position of the patches in 5 regions studied for each 

sample and their corresponding designation. Each patch has a rough dimension of 500 by 500 

µm. The patches evaluated were randomly chosen in order to save time and data analysis. Each 

sample had a minimum of 3 patches of each sample evaluated and since 10 samples were tested 

for each experiment proper statistical methods were used to properly average the data. 
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The AFM was used in tapping mode using non-contact tips from Budget Sensors® and 

the samples scanned for 5×5, 10×10 and 45×45 µm scan sizes. Each sample was scanned in three 

randomly selected regions from 5 major regions. Figure 2.14 shows the location of the test 

regions on the test samples.  

2.5. Material Stability Tests on Silicon 

In a previous investigation by C. Frewin of the USF SiC Group [14], it was observed that 

Si had surface damage after cell culture, but the exact source of this damage was unknown [12, 

14, 15]. Goodwin et al. in 1997 and Pocock et al. in 2001 indicated in their work that the 

cultured of hippocampal microglial cells could release nitric oxide [48, 49]. Wink et al. in 1998 

provided evidence about the role of nitric oxide in the biochemistry of neurological systems [50, 

51]. The release of nitric oxide in the extracellular fluid within the brain by inflammatory cells 

can result in the formation of nitrous and nitric ions which act as corrosive agents for silicon. 

ISO 10993 suggests a set of corrosion tests prior to any in vivo application of the implantable 

materials and devices [4, 5]. In this experiment, we devised a method, based off of the ISO 

standard, to identify the source of the surface modifications seen after cell culture on Si. The 

surface morphology of (100)Si was examined using samples cultured with H4 neuroglioma 

(from H4 ATCC ® HTB-148™) cells against samples soaked in Dulbecco's modified eagle 

medium (DMEM) and artificial cerebrospinal fluid (ACSF) [52].  

A series of in vitro tests were designed to study the stability of silicon to cell media, cell 

media plus H4 cells, and artificial cerebrospinal fluid (ACSF). Si(100) coupons, 8 x 10 mm in 

size, were immersed in these solutions for 96 hours at 37°C. 
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Table 2.2: Cleaning methods description 

Cleaning 

method 
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

Solvent 

cleaning 

Rinsing 

with DI 

water flow 

for 5 

minute 

Immersion 

in Acetone 

for 10 

minutes in 

ultrasonic 

bath 

Rinsing with 

DI water 

flow for 2 

minutes 

Immersion 

in iso-

propanol for 

10 minutes 

in ultrasonic 

bath 

Rinsing 

with DI 

water flow 

for 2 

minutes 

Drying with 

N2 

Piranha 

Cleaning 

Solvent 

cleaned 

Rinsing with 

DI water 

flow for 5 

minutes 

Immersion 

in Piranha 

solution for 

10 minutes 

Rinsing with 

DI water 

flow for 10 

minutes 

Drying 

with N2 
 

HF Cleaning 
Piranha 

Cleaned 

Rinsing with 

DI water 

flow for 5 

minutes 

Immersion 

in HF 

solution for 

10 minutes 

Rinsing with 

DI water 

flow for 10 

minutes 

Drying 

with N2 
 

After the immersion test the samples were cleaned individually under a flow of deionized 

water for 10 minutes to remove any residue from the biological solutions. Then the samples were 

kept in dry sample holders to await analysis. 

Table 2.2 shows an overview of all three cleaning methods that were used in these 

experiments. This step was performed since the cleaning method itself could serve as the source 

of the observed surface degradation. Therefore it was important to understand the role, if any, of 

the cleaning method used on the observed surface morphology after in vitro testing. 

The cleaning methods may be different from other references. In this set of experiments, 

as indicated in the table, the samples were solvent cleaned before piranha cleaning; also they 

have been piranha cleaned before HF cleaning. 
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2.5.1. Solvent Cleaning of Immersed Samples  

The samples were rinsed with DI water flow for 5 minutes. Then the samples were 

individually sonicated in acetone for 10 minutes. To remove any residual solvents they were 

rinsed with DI water for 2 minutes after that. Then the samples were sonicated in isopropanol for 

10 minutes. Quantitative analysis was performed using the AFM (Park systems XE-100) in 

tapping mode. Figure 2.25 (A-C) shows the AFM results of solvent cleaned samples for a scan 

area of 45 x 45 μm. 5 x 5 μm and 10 x 10 μm scans were also recorded to reveal more detailed 

surface features. 

Table 2.21 shows the AFM data elaboration for all of the samples. The surface roughness 

and peak-to-valley values for all of the samples are recorded in Table 2.5.  

The Hitachi S800 SEM at the USF NREC was used for qualitative surface analysis. 

Magnifications of 100X, 500X, 1000X and 5000X were used during this investigation. Figure 

2.22 (A-C) shows the SEM micrographs of the samples after solvent cleaning at 1000X as a 

representation of all of the scans. Sample surface tilting angle of 45° was also used to reveal 

more features on the surface.  

2.5.2. Piranha Cleaning of Immersed Samples 

Piranha solution (1:2 H2SO4:H2O2) was prepared in the ENB111 laboratory at USF. The 

temperature of the solution was approximately 80-85°C. The samples had been solvent cleaned 

and rinsed with DI water previously, then they were immersed in piranha for 10 minutes. After 3 

samples were cleaned a new solution was prepared so as to have a consistent cleaning step for all 

samples studied. After piranha cleaning the samples were rinsed with DI water for 10 minutes. 

The samples were then dried and kept in cleaned sample holders. 
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Quantitative analysis was performed using the AFM Park Systems XE-100 AFM in 

tapping mode. Figure 2-21 (D-F) shows the AFM results of solvent cleaned samples for a scan 

area of 45x45μm. 5x5μm and 10x10μm area scans were recorded to reveal more detailed 

features. 

Solvent Cleaned 

   

 

A: Cell Media+ 

H4 Cells . 
B: Cell Media . C: ACSF . 

Piranha Cleaned 

   

D: Cell Media+ 

H4 Cells . 
E: Cell Media . F: ACSF. 

HF Cleaned 

   

G: Cell Media+ 

H4 Cells 
H: Cell Media I: ACSF 

Figure 2.15: 45×45 µm area AFM micrographs of silicon samples immersed in Cell Media+ H4 

Cells (left column) , Cell Media (center column) and ACSF (right column) for 96 hours at 37°C. 

Cleaned with Solvents, solvents + Piranha and Solvents + Piranha + HF, respectively. The 

micrographs are normalized to a Z height interval of +10,-10 nm, permission obtained from [52], 

presented in appendix A [52]. 

The Hitachi S800 SEM at the USF NREC was used for qualitative surface analysis. 

Magnifications of 100X, 500X, 1000X and 5000X were used during this investigation. Figure 

2.22 (D-F) shows the SEM micrographs of the samples after Piranha cleaning at 1000X as a 



35 

representation of all of the scans. Sample surface tilting angle of 45° was also used to detect 

more features on the surface. 

2.5.3. Hydrofluoric (HF) Acid Cleaning of Immersed Samples 

Hydrofluoric acid (HF) is an extremely strong acid, used for removing oxides on the 

surface of samples. The samples were previously solvent and piranha cleaned. Then the samples 

were immersed in buffered HF for 10 minutes. After cleaning the samples were rinsed with DI 

water to remove any residue. The samples were then dried and kept in cleaned plastic sample 

holders. 

Quantitative analysis was performed using the AFM (Park Systems XE-100) in tapping 

mode. Figure 2.21 (G-I) shows the AFM results of HF cleaned samples for a scan area of 45 x 45 

μm. 5 x 5 μm and 10 x 10 μm area scans were recorded to reveal more detailed features. 

The Hitachi S800 SEM at the USF NREC was used for qualitative surface analysis. 

Magnifications of 100X, 500X, 1000X and 5000X were used during this investigation. Figure 

2.22 (G-I) shows the SEM micrographs of the samples after HF cleaning at 1000X as a 

representation of all of the scans. Sample surface tilting angle of 45° was also used to detect 

more features on the surface.  

To separate the major factors that may have caused the surface degradation of Si, the 

samples were tested in three distinct environments consisting of: the presence of H4 cells in 

DMEM, DMEM in absence of the cells, and ACSF, an artificial formulation of biological 

cerebral-spinal fluid which is suggested in ISO 10993. 

From Figure 2.22, the original surface of the silicon sample was very smooth and flat due 

to chemical mechanical planarization (CMP) processing by the wafer manufacturer. 
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Consequentially, no particulates or depressions can be seen on the surface of the untested 

material. Based on our observation from the SEM micrographs in Figure 2.22 and AFM 

micrographs in Figure 2.21, miniscule surface modifications occurred across the surface of the 

samples in the presence of DMEM and ACSF. Before cleaning, this surface change was more 

significant, but was considerably reduced after cleaning the samples with piranha and HF, 

indicating the presence of organic particulates or solidified salts to likely be the source of the 

observed surface features. Anisotropic etching, or chemical etching, of (100) Si produces a 

distinctive pyramid shape due to faster etching rate of the (100) plane as compared to the (111) 

plane [11]. As the SEM and AFM micrographs did not display the presence of the typical 

pyramid shaped pits, we have no indication of the chemical etching of (100)Si from the cell 

media/ACSF only. 

Table 2.3: AFM data extracted from in vitro tests 

Cleaning 

method 
Data 

Cell Media+H4 

Cells 
Cell Media ACSF 

Solvent cleaned 

Surface 

roughness, Rq 

(RMS) 

4.859 nm 4.392 nm 2.550 nm 

Peak to valley : 69.276 nm 78.378 nm 102.217 nm 

Solvent + 

Piranha Cleaned 

Surface 

roughness Rq 

(RMS) 

10.315 nm 3.377 nm 2.669 nm 

Peak to valley : 146.975 nm 75.099 nm 56.719 nm 

Solvent + 

Pirhana +HF 

cleaned 

Surface 

roughness Rq 

(RMS) 

30.305 nm 789.180 pm 808.417 pm 

Peak to valley : 348.478 nm 14.865 nm 7.438 nm 
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Alternatively, the morphology of the Si samples exposed to the presence of H4 cells in 

cell media displayed a significant surface modification. This surface change was also seen and 

increased in size through the various cleaning stages, with the largest effect noticed after HF 

cleaning. As HF removes SiO2, this would indicate that the surface was partially oxidized by the 

biological environment 
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G: Cell Media+ H4 Cells H: Cell Media I : ACSF 

Figure 2.16: SEM micrographs of silicon samples immersed in Cell Media+ H4 Cells, Cell 

Media and ACSF; for 96 hours at 37°C. Cleaned with Solvents, the acceleration voltage was 25 

kV, working distance was 5 mm and sample surface tilting angle was 0°, gold palladium coating 

were not used for these scans. Magnification 1000X. The scale bars’ length is 50µm in all the 

micrographs, permission obtained from [52] presented in Appendix A. 

The qualitative results from SEM and AFM analysis verify the presence of multiple 

pyramid shaped pits on the surface of this type of material, as seen in Figure 2.23. The average 

pit depth was 57±8 nm with average width of 4600±70 nm. The deepest pit that was observed 

had the depth of 138 nm. Due to the absence of these features on the soaked samples, we theorize 
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that the cells are the most likely source of the surface etching. Inflammatory cells have been 

shown to release chemicals during frustrated phagocytosis to dissolve the invading material [53]. 

Furthermore, it has been reported that neural inflammatory cells, like microglia, produce large 

amounts of nitric oxide, NO, a free radical which is used in signaling and cellular defense, and 

hydrogen peroxide, an oxidizing agent. NO in aqueous environments can chemically react to 

produce numerous species, one of which is nitric acid (HNO3), a known anisotropic etchant of Si 

[50, 51, 54].  These chemicals could be the source of the oxidation and subsequent etching as 

revealed by the HF, but we will need to use alternative measurement techniques, like mass 

spectroscopy, to exactly quantify the chemical factors involved. Furthermore, we need to 

evaluate if this effect is particular to the H4 glial derived immortalized cell line, or if it is 

characteristic of all cells. To accomplish this aim we will use immortalized mouse fibroblasts, 

L929, and primary derived rat neurons as a comparison. 

   

100x 500x 1000x 

   

5000x 10000x 20000x 

Figure 2.17: SEM results of silicon after in vitro testing. Clear changes to the Si surface are 

observed indicating that Si, a known cytotoxic material, is not chemically stable in physiological 

environments and suffers increased degradation in the presence of plated cells (H4 human 

neuroglioma cells). 
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2.6. Surface Degradation of a-SiC and 3C-SiC 

Corrosion resistance of the four variant formulation of a-SiC was evaluated in PBS at  

20 °C, 37 °C and 60 °C the results were compared to 3C-SiC, SiO2 and Si (100). Figure 2.18 

shows the effect of temperature on the surface degradation of the Cu and PVC after 30 days. As 

it can be seen the obtained data fits the empirical model that mentioned in the section 1.5. The 

proportional surface roughness change was considered as surface degradation data. 

 

Figure 2. 18: Surface degradation of positive controls. Cu as conductor positive control and PVC 

as insulator positive control.  

The surface degradation for the silicon based semiconductor materials also evaluated and 

effect of temperature was observed. In figure 2.19 the quantitative data collected with AFM 

before and after corrosion test in PBS after 30 days for a-SiC, 3C-SiC, SiO2 and Si was shown. 

As it can be seen in this figure the average surface roughness has not been changed for 3C-SiC 

and all four types of a-SiC after 30 days and even by increasing the temperature to 60 °C. But 

the surface degradation for Si and SiO2 increased by increasing the temperature. The slope of 

fitted line for Si was larger than SiO2. 
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Figure 2. 19: Surface roughness change of a-SiC, 3C-SiC, SiO2 and Si (100). 

2.6. Summary 

As described in Chapter 1 the first evaluation that devices and biomaterials must pass is 

the materials stability test. In this chapter two of the methods that are specified by the ISO, 

namely ISO 10993-14 and ISO 10993-15 [4, 5], were used to determine the degradation of the 

materials for both reaction controls and test materials.  

Corrosion tests in PBS and HCL-Tris at 37°C and 60°C for 96 hours and 30 days were 

performed at the pH = 7.4 ± 0.2 based on ISO 10993-14 [4]. The control materials were selected 

based on ISO 10993-12 [3], polyethylene as the insulator negative control, Cu and PVC as the 

positive controls. But the ISO gave the freedom to the researcher to select the conductive 

negative control. To select the best conductive negative control, a variety of materials such as W, 

Pt and Au were tested for the degradation experiments. The only material that satisfied all the 

requirements of the stability test in a simulated solution was Au. Thus for the rest of experiments 

Au was used as conductive control material. In all the experiments including neutral and extreme 

solutions 3C-SiC, a-SiC, SiO2 and Si (100) were tested as semiconductor materials. All of the 
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semiconductor materials passed the corrosion test in neutral solution at 37 °C and 60 °C except 

for Si (100) which showed minor surface damage at 60 °C after 30 days of soaking.  

There are two goals in doing the corrosion test in a neutral environment; the first goal is 

to eliminate the materials that cannot stand the natural environment, a material that is not stable 

enough to tolerate the pH= 7.4 ± 0.2 definitely cannot resist in the harsh environment of the 

human body. So those materials would be eliminated to avoid a waste of further time and 

resources. The second goal of this experiment was to determine the effect of temperature as an 

acceleration factor. By checking the micrographs for positive controls it can easily be seen that 

the samples tested at a higher temperature faced more degradation, as expected. In the literature 

this acceleration factor was formulated as 2ΔT/10.  For our experiments, the surface roughness 

change (Δrq /rq1 ) was used as the quantitative value to verify this formula in our experiments for 

the positive control materials in neutral solutions. The most important factor that was ignored by 

previous studies reported in the literature is the liquid volume to surface area ratio. As specified 

in ISO 10993-15 section 7.2 this value for all of the soak tests, including tests in simulated 

solutions and extreme solutions, must be 1 mL / cm2 [5].  

After elimination of weak materials by testing in neutral environment, testing of the 

samples in the extreme environment of citric acid at a pH of 3.0 ± 0.2 is suggested by ISO 

10993-14 [4]. The test was performed at 37 °C for 96 hours and 30 days. The temperature was 

not elevated for the acid test due to safety purposes. The same control materials that were used in 

the neutral solution were used in this experiment. No surface degradation was observed on Au 

but the surface of the positive controls had severe damage. Also all of the semiconductor 

samples, including 3C-SiC, a-SiC, SiO2 and Si (100), passed the experiment without any 
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degradation. It can be concluded that temperature is more effective for design of acceleration 

tests in comparison to pH. 

The last set of experiments was performed in acid solutions and base solution; various 

concentrations of HNO3 (1 µM, 1mM and 0.1 M) at 37 °C for 96 hours and 30 days were used as 

the acid solution; also KOH in various concentrations (1 µM, 1mM and 0.1 M) at 37 °C for 96 

hours and 30 days was used as the basic solution. The data is under preparation and will be 

included in the final version of dissertation. 

By doing the materials degradation test the researcher can determine the stability of their 

products so that they can consider it in their fabrication process. The next step of pre medical 

evaluation of biomaterials and biodevices is to evaluate their in vitro cytotoxicity; First to 

eliminate the number of animals that would be sacrificed for in vivo experiments, and second to 

reduce the number of materials that need to be tested in vivo to save the time and resources.   
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CHAPTER 3: BIOCOMPATIBILITY OF THE BIOMATERIALS 

In Chapter 1 the minimum requirements of a premedical evaluation of a biomaterial was 

described. In Chapter 2 materials stability as the first step in the design of a biodevice was 

presented. The materials that have passed the stability test will then be evaluated from a toxicity 

point of view based on ISO 10993-5 [6]. In this chapter the biocompatibility evaluation of the 

materials based on the ISO standard will be presented. 

In modern biomedical devices the goal is distributed sensors that are able to record 

patient biological activity, such as vital signs, and ideally provide therapeutic pathways via 

treatment or the dispensing of medicine based on the measured parameters. In most cases it is 

absolutely essential that there be at least a component of the device that performs it’s function in 

vivo. One example of where traditional medicine is not able to provide assistance to patients is 

when they suffer the loss of a body part, such as limbs and joints. Then prosthetics become 

necessary and a plethora of examples are now common place – knee and hip replacements, 

dental implants, etc. One of the grand challenges of our time is both understanding how the brain 

functions and restoring lost cognitive functionality after trauma or disease. For example patients 

with Parkinson’s disease or severe injury in the nervous system can recover all or part of their 

functionality via the use of brain machine interfaces [14, 53]. Diabetic patients can be treated by 

implantable biological microelectromechanical systems (BioMEMS) for drug delivery [54] and 

patients with arthritis or movement disorders can be cured by joint replacement [55]. To be able 

to use a device in contact with the human body it must satisfy several requirements such as 
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corrosion resistance, biocompatibility, hemocompatibility and durability in the physiological 

environment of the human body for the desired time period which is, in general, application 

specific. 

ISO 10993 provides a guideline to evaluate the biocompatibility of biomedical devices 

and biomaterials. All the devices that are interfacing with the human body, including implants 

and external devices, must not cause irritation or any disturbance of human body physiology. 

ISO 10993 consists of several parts which describe sample preparation and reference (i.e., 

control) materials selection [3], biomaterial chemical stability [4, 5], in vitro tests such as 

cytotoxicity [7] and hemocompatibility evaluation [6, 16]. For a device to be selected for clinical 

trial strict adherence to ISO 10993 is a minimum requirement, hence it is critical to fully 

understand the standard and how to properly implement it in the laboratory. 

ISO 10993-5 recommends the following methods to evaluate the cytotoxicity of the 

biomaterials and devices: testing via cell media extract, direct contact cell seeding and MTT (3-

(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide) assay as an appendix [6]. ISO 

10993-5 has been used as a baseline for that purpose in research activities by a lot of groups 

around the world for various applications of biomedical devices. For example it was used in the 

evaluation of materials for the construction of neural implants [56], implantable biosensors [57], 

drug delivery implants [2] and even for the evaluation of biodegradable implants such as Mg 

alloy bone scaffolds [58]. In many cases the method that was used, while originally based on ISO 

10993, has deviations from the original protocol, which could result in inconsistency of the data 

and therefore comparison of results from different laboratories becomes very difficult. The 

common deviations from the protocol, as introduced in Chapter 1, are in the following 

parameters: surface area to volume ratio, the use of agitation, and especially the selection of 
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correct control materials and proper sterilization methods. For example, Green et al. used in-vitro 

testing with the extract and direct contact tests as an evaluation of cytotoxicity of microelectrode 

arrays (MEAs). While the surface area was mentioned in the extract preparation part of the paper 

the reason for avoiding agitation was not mentioned. In addition for the direct contact assays 

performed the cells were grown on top of the specimens which is a deviation from the protocol 

and an indicator of cell permissiveness not cytotoxicity [59]. Cell permissiveness was used in 

some cases including our previous work [12-15]. Although cell attachment to the surface of 

some materials is an important factor in biomaterials selection, it must not be mistaken with 

cytotoxicity [12, 14]. In another case Meric et al. used ISO 10993 as a method for cytotoxicity 

evaluation of silica-glass fiber composites for dental applications but preparation of the extracts 

in a non-sterilized environment, the absence of agitation of the samples, and the use of test tubes 

as the carrier of the extracts were deviations which can affect the reproducibility of the 

experiments [60]. The extract method shows promising results for the cytotoxicity evaluation of 

materials but it should be considered that testing with extracts only is valuable for degradable 

materials and it can result in misleading results when it is used for robust materials with lower 

biocompatibility. Also the absence of essential proteins such as albumin in the extract test could 

be critical since albumin can increase the materials degradation by a factor of 4, which can result 

in an increase of harmful corrosion products in the extracts [61]. To have a complete verification 

of biocompatibility for implantable materials a series of cytotoxicity assays, or a method that 

includes all of their criteria, is necessary. In this chapter we present such a methodology that is in 

strict compliance with ISO 10993 and it is our hope that this chapter will serve as a practical 

guide to how to perform these highly critical biomaterial and biodevice compatibility 

assessments. 
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There are basically three (3) methods for conducting the in vitro cytotoxicity assays, as 

illustrated in Figure 3.1. The first method (Figure 3.1. left), the extraction method, involves the 

transfer of cell media that was exposed to the material under test (including controls) to a cell 

culture well that has living L929 cells present. One then observes the response of these cells to 

the addition of this extract. The next two methods are based on a direct testing approach. In the 

direct method (Figure 3.1. center) the material under test (including controls) is placed above the 

cells that have been cultured in the well and the reaction of the cells to the presence of the 

material is evaluated. One issue here is the mass of the sample and the likely probability that this 

will cause a mechanical effect on the cells rather than only a chemical effect. In the seeding 

method (Figure 3.1. right) the goal is to plate the cells on the material under test and study the 

resulting cell behavior.  

 

Figure 3.1: The schematic of material/ cell orientation in: Extract test based on ISO 

10993-5 section 8.2 (left)[6], Direct test based on ISO 10993-5 section 8.3 (center)[6] and 

Seeding test (right)[12-15]. 

 

 3.1. Sample Preparation  

The test materials used in this set of experiments consisted of both materials under test 

and the proper control materials as per ISO 10993 and as described in Chapter 2. The materials 
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under test were coupons diced from the following materials: (100) Si 100 mm wafers (ID 1910 

obtained from University wafer); SiO2 deposited on (100) Si 50 mm wafers in a plasma 

enhanced chemical vapor deposition (PECVD) system with an oxide thickness of 1500 nm; Ti/W 

deposited on (100)Si 100 mm wafers using electron beam physical vapor deposition - EB PVD 

(1500 Å of W deposited on 200 Å of Ti which serves as an adhesion layer). The Control 

materials consisted of: Ti/Cu deposited on (100)Si 100 mm wafers using EB PVD (1500 Å of Cu 

deposited on 200 Å of Ti); Ti/Au deposited on (100)Si 100 mm wafers using EB PVD (1500 Å 

of Au deposited on 200 Å of Ti); Polyethylene tape (1534-3, 3M ™ Transpore™); polyvinyl 

chloride doped with organotin (PVC-org. Sn) and polyvinylchloride (F-4040-A, Tygon®).  

All of the wafers were cut into 8×10 mm coupons using a dicing saw with a diamond-

coated blade. The PE tape and the PVC tube were cut to have 80 mm2 of exposed surface area. 

After dicing the metallic and semiconductor samples, the samples were cleaned in acetone, 

isopropanol and deionized water (ρ > 16 MΩ cm) for 10 minutes using an ultrasonic bath to 

remove any organic residue and debris from cutting. The PVC was sterilized via EtOx at George 

Mason University. The metallic and semiconductor samples were sterilized in a dry heat 

sterilizer at 120 C for 60 min in the presence of N2 gas. The PE tape was disinfected by 70% 

ethanol solution as sterilization of this material, in the form tested, was not possible.  

3.2. Cell Culture 

The entire cell plating activity was performed in a disinfected environment under a 

sterilized biological hood. 30 minutes prior to cell culture activity the UV light inside the hood 

was turned on to disinfect the hood chamber. The glass door of the hood remained closed and the 

operator left the room while the UV light was on. After UV sterilization the hood chamber was 

disinfected using a 70 % (volume %) ethanol solution. Clean lab coats and disposable nitrile 
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gloves (powder free Touch N Tuff ® Ansell) were worn by the operator to avoid any 

contamination. 

The following materials and supplies were used for cell culturing. One T-75 flask 

(CytoOne), six sterile 10 mL serological pipets (USASCIENTIFIC), one sterile 15 mL conical 

screw cap centrifuge tube (USASCIENTIFIC), one sterile 50 mL conical screw cap centrifuge 

tube (USASCIENTIFIC), one sterile 200 µL centrifuge tube (USASCIENTIFIC), a Motorized 

Pipet Filler/Dispenser (Fisher Scientific), a 200 µL manual pipetter (Digital Adjustable-Volume 

Pipetter, Fisher Scientific), 1X sterile PBS solution, and finally a 6-well plate which contained 

the mounted coupons as described above. The required supplies for cell culturing were sprayed 

by the 70% ethanol solution and were placed in the bio hood prior to assay processing.  

ISO 10993-5 suggests the use of a Mice fibroblast cell line (NCTC clone 929, strain L) 

for cytotoxicity assays, which is commonly known as L929 [6]. In this set of experiments the 

L929 cells, purchased from American type culture collection (ATCC® CCL-1™), were used. 

The cell culture media consisted of Dulbecco's Minimum Eagle Medium (DMEM) (Life 

Technologies™ #10313-021), infused with 10% fetal bovine serum (FBS) (Life Technologies™ 

#16000-044), 2.2mM l-glutamine GlutaMAX-1 (Invitrogen #35050-061), and 1% antibiotic / 

anti mycotic solution (Sigma #P4458-100ML). The L929 cells were cultured in 75 cm2 tissue 

culture flasks (CytoOne T-75 filter cap; USAScientific, Ocala, FL) in a water jacketed incubator 

at 37°C, 95% relative humidity and 5% CO2. The L929s received fresh media every 72 hours by 

replacing 50% of the existing media. The cells remained in the flask until they were used for 

cytotoxicity assays; otherwise they were passed to a new flask when they exceeded 90% 

confluence level, to avoid any over population.  
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The cell culture media and trypsin 1x (gamma irradiated, SAFC bioscience) were placed 

in a water bath at 37°C and allowed to reach the proper temperature. This temperature 

adjustment must be done to avoid any thermal shock to the cells.  

The most confluent flask of cells was selected from the incubator. The flask was 

disinfected with 70% ethanol and placed in the hood. The 50 mL conical centrifuge tube was 

marked as trash, and then the old cell culture media was removed from the flask using a 10 mL 

serological pipet and disposed of in the trash tube. 5 mL of sterile 1X PBS was added to the cells 

in the flask, the flask cap was closed and the flask was tilted to wash the cells completely and 

then the contaminated PBS was disposed of. Next 4 mL of warm trypsin was added to the cells 

to scrape the cells from the walls of the flask. The cap was closed and the flask was tilted to 

cover all the cells with trypsin. The flask was then stored in the incubator for 10 minutes. The 

cell-trypsin mix was agitated using the pipette to remove any cell agglomerations. Next the cell-

trypsin mix was added to a 15 mL conical centrifuge tube and 8 mL of fresh cell media was 

added to that which was agitated again by the pipette to form a uniform solution.  

Next 30 µL of the cell mixture was extracted using the digital pipette and placed in the 

200 µL centrifuge tube. Then 30 µL of trypan blue solution (0.4%, sigma life science) was added 

to tube and was agitated to have a uniform liquid after which 15 µL of the cell mix was placed in 

a hemocytometer (Bright-Line TM  Sigma-Aldrich) and a glass cover slide placed on top. The 

cells in 4 corner regions of the hemocytometer and the central region were then counted using 

the optical microscope (ZEISS - image.M2m) in the bright field mode. The area of each square is 

1 mm2 and the height is 0.1 mm so when we count the cells in each square it means we count the 

cells in 0.1 mm3. The hemocytometer was used to calculate the cell population prior to seeding 

on the specimens. Figure 3.2 shows the hemocytometer being loaded with the cell mix.  



50 

 

Figure 3.2: Photograph of the hemocytometer used for counting the cell concentration. Shown is 

a pipette which is used to transfer the cell mix to the hemocytometer for analysis. A glass cover 

slide is placed (not shown) prior to microscope observation. 

To number of cells present per microliter is calculated based on the number of counted 

cells, n, via the following formula [62]: 

#𝐶𝑒𝑙𝑙𝑠/𝜇𝑙 =
𝑛 × 2 × 10

5
 

Where n is the number of cells in a large square ( cells per 1 mm x 1 mm x 0.1 mm), 2 is the 

dilution factor of trypan blue, 5 is used to calculate the average number of cells per 0.1 mm3, and 

10 is used to calculate the number of cells per 1 mm3 (or 1µL). 

Because we counted five regions and we added them up we must divide the “n” by “5” to 

have the average number of cells in the regions. Also the dilution factor with trypan blue was 

two so we must multiply the average by “2” and to get cells per 1 mm3 we must multiply the 

number by 10. The number of cells per microliter was recorded for each material tested in order 

to check the repopulation behavior of the cells. 

3.2.1 Cell Plating 

Before plating the cells on the test coupons and control surfaces, 2 mL of cell culture 

media was added to each well. Knowing the concentration of cells, as described above, the 

proper number of cells can now be plated on the test materials in the 6-well plate. The proper 
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number of cells is the number of cells which, when plated, will yield 80% confluency after 96 

hours of cell incubation.  

After cell plating the 6-well plate was placed in an incubator (fisher-scientific) at 37°C, 

95% relative humidity, 5% CO2, for 96 hours and the cells monitored periodically for cell growth 

and infection. 

To make sure that we have cells for the next experiments we need to pass some cells to a 

new flask. Based on the plan for future experiments the quantity of cells that were seeded in the 

flask varies. Normally 2 × 106 of cell mix was placed in a new T-75 flask, after which 10 mL of 

fresh media was added. The generation number, passage date, cell type, operator’s initials and 

the volume of added cell mix were recorded on the flask. By doing this procedure we maintain 

the cell line for future experiments.  

All waste was disposed of in the biohazard bin and the hood disinfected with 70% 

ethanol solution after this step. The test was repeated 5 times to achieve N=10 for each test 

material.  

3.3. Extract Method 

As described in Section 3.1, to evaluate the effect of leached ions from a material under 

test on the cells ISO 10993-5 recommends a protocol under the name of extract test. Figure 3.1 

(left) shows an illustration of this method. The L929 cells were seeded on a 96-well plate 

(CytoOne; USAScientific, Ocala, FL), with nine wells used for each assay. Each well received 

1.5 × 104 of L929 cells to reach 80% of confluence, followed by the addition of cell media to 

adjust its volume to 100 μl total volume. The cells were incubated for 24 hours at 37°C, 95% 

relative humidity and 5% CO2. To obtain the extracts each sample was placed into a well of a 24-
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well plate then the cell culture media was added until 3 cm2/mL exposed surface area to media 

ratio was achieved (as specified by the ISO). The 24-well plate containing the materials was 

carefully sealed with parafilm and placed on a shaker at 1 Hz frequency for 24 hours at 37°C. 

The 96-well plate was retrieved from the incubator and the media replaced by extracts of various 

percentages (100%, 70% and 50%). The assays consisted of a triplicate of 100%, 70% and 50% 

extract replacement. The assays were repeated three times for the test materials, controls and 

polystyrene wells which served as the baseline. The 96-well plate that included the added 

extracts was incubated for 24 hours at 37°C, 95% relative humidity and 5% CO2. After 24 hours 

of incubation the old media was removed and the wells were stained by ethidium homodimer-1 

(EthD-1, life technology) and calcein, AM (to detect live cells) and the fluorescence tagged cells 

were then imaged using a fluorescence microscope (Zeiss image.M2m) at 5X and 50X 

magnification. 

Selection of controls were discussed in Chapters 1 and 2. Polyethylene was selected as 

the negative control for insulator materials as it was mentioned directly in ISO 10993-12 

Appendix A [3]. But since no negative control material for conductors was suggested by the ISO 

standard, platinum [63] and gold [64], which are conventional biomaterials that have been used 

in the human body and are known as inert materials, were used as the conductive material 

negative controls. The positive controls were copper for conductive materials and PVC doped 

with organo-tin (PVC-org. Sn) for insulator materials as these were mentioned in Appendix A of 

ISO 10993-12 [3]. A fluorescence microscope was used in order to have a qualitative and 

quantitative evaluation of cell behavior in the presence of the various materials. Calcein was 

used as a fluorescence dye to detect cell viability, which has the ability to penetrate through the 

cell membrane. When this happens the esterases enzyme of the cell removes the acetomethoxy 
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group from the calcein am, which results in a green fluorescence. It can only happen in live cells 

so the presence of green fluorescence means that the cells are alive [65]. A second dye, ethidium 

homodimer, was used as the second fluorescence dye and this dye was used to detect dead or 

dying cells. Under normal circumstances the ethidium cannot penetrate the cell through the 

membrane but when the cell is dead or dying the stain can enter the cell and react with the DNA 

of the cell. Under the fluorescence microscope the dying or dead cells will appear as dark orange 

or red spots [65]. Figure 3.3 shows the fluorescence micrographs of the Au and Cu control 

materials, which are used to verify if the test was working properly.  

The effect of the concentration of leached ions from the extracts was evaluated by 

replacement of various quantities of old media by material extracts. Figure 3.3 a) shows 

fluorescence micrographs after replacement of 50% of old media by Au extract. As expected all 

the cells emitted green light, which means all the cells are alive and no toxic reaction happened 

between cells and the extracts from our negative control. When the concentration of the extract 

was increased to 70% and even to 100% for Au specimens the cells passed the minimum 

required viability, Figure 3.3 c) shows the cells after replacement of 100% of old media with Au 

extract at 50X magnification. Figure 3.3 b) illustrates qualitative evaluation of cell viability in 

the presence of Cu extracts after replacing 50% of old media with extracts. As can be seen in this 

micrograph most cells are dead (orange fluorescence) and the few living cells, which appear to 

be unhealthy, are present and clearly dying. When the concentration of Cu extract was increased 

to 70% and 100% no live cells were seen, as shown in figure 3.3 d).  
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Figure 3.3: Live/ dead cell assay data. Fluorescence micrographs of control materials: a) 50% of 

media replaced by Au extract; b) 50% of media replaced by Cu extract; c) 100% of media was 

replaced by Au extract; and d) 100% of media was replaced by Cu extract. The size of the scale 

bars is 50 µm. Green fluorescence signifies live cells while orange/red dead cells. 

Figure 3.4 contains a histogram of L929 cell viability in the presence of the control 

material extracts at three various concentrations from the 100 %, 70 % and 50 % of extracts. The 

conductor controls and PE, the negative insulator control, behaved as expected but the PVC org.-

Sn, which is supposed to be a positive control, did not have a toxic reaction with the cells. We 

believe that the toxic elements, which were present in this product, were removed at the time of 

material fabrication so that this material does not have the expected toxic effect. In order to have 

a more reliable positive reaction control the PVC org.-Sn was replaced by another type of PVC 

known as Tygon. The exact toxic element(s) in the second type of PVC is unknown due to 

confidential fabrication method but for the test performed on this material a strong toxic reaction 

occurred between the extract and the cells. Application of Tygon as a positive control was 

reported by Charkhkar et. al [21] as well as Hooper and Cameron [66]. As can be seen the cell 
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viability increased by decreasing the concentration of extracts of Au and Cu but a logical trend 

was not found for the insulator controls.  

 

 

Figure 3.4: Quantitative data of control materials Au, Cu, PE and PVC done with extract method on 

L929 cells. For reference 100% and 70% threshold are shown with dashed lines. Materials who fall 

below 70% have, by ISO 10993 definition, failed the test. Cu, as expected, failed the test but 

unfortunately PVC org.-Sn did not. Based on these results the positive control was switched to 

Tygon which proved to be a reliable positive reaction control (not shown). 

 

3.4. Direct Contact Method 

As was mentioned in Section 3.1 of this chapter to study the direct material/ cell 

interaction ISO 10993-5 suggests the Direct Contact method. It is illustrated in Figure 3.1 

(center) that the cells were seeded in the well plate and then the test materials were placed above 

them. The L929 cells were seeded on a 6-well plate (CytoOne; USAScientific, Ocala, FL). Each 

well received 2 mL of fresh cell culture media and 1.8 × 105 of L929 cells to reach 80% of 

confluence. The well plate was incubated for 24 hours at 37°C, 95% relative humidity and 5% 

CO2. After one day the cells were checked under the microscope to verify their sub confluence 

status. The old media was replaced by 2 mL of fresh media. The sterilized samples were then 

placed in the center of each well and it was verified that at least a monolayer of cells were 

covered by the sample. The plate was incubated for another 24 hours at 37°C, 95% relative 
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humidity and 5% CO2 [7]. After 24 hours the materials were removed and the wells imaged 

using the fluorescence microscope.  

Figure 3.5 illustrates the fluorescence micrographs of Au as the negative conductor 

control material to verify the performance of the test. As can be seen in Figure 3.5 a) the number 

of live cells close to the material, and where the material used to be, is zero. But as can be seen in 

figure 3.5 b) at a location far from the material the cells behaved normally. Since this behavior 

happened for all materials, including the negative controls, it can be assumed that the decrease in 

cell viability could be a result of mechanical force applied by the weight of material to the cells 

rather than the toxicity of the materials. It can be clarified better if we recall Figure 3.1 (center) 

where the cell/material orientation was illustrated. As it can be seen the material is on top of the 

cells so if the material is heavy it can put pressure on the samples and kill them.  

  

Close to material Far from the material 

Figure 3.5: Fluorescence micrographs of Au as negative control material after performing direct 

contact method with L929 cells. The size of scale bars is 500 µm. Note the lack of cells at/near 

where the material was located but normal cell population observed far from the sample position. 

This data indicates that the direct contact method can cause cell death due to mechanical, and not 

cytotoxic, effects. 

In Figure 3.5 b) the fluorescence micrograph of the well that included the gold sample 

shows that the cells are alive as expected for gold samples. Also in the case of light materials the 

specimens were floating on the surface of the media and did not sink properly to get in contact 
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with the cells, which is another reason why the direct contact method suggested by ISO 10993 

may not be the best method to use for cytoxicity testing. 

 

Figure 3.6: Quantitative analysis of the direct contact test on control materials. Note all materials 

failed the test, which is an unexpected result and provides evidence that mechanical damage from 

the test material may be masking the cytoxicity results which were as expected for the extract 

method (see Fig. 3.4).  

Figure 3.6 shows the quantitative analysis of the direct contact test on the aforementioned 

control samples using the L929 cells. All data was normalized to culture treated polystyrene well 

plates. Surprisingly the cells did not behave as expected. Although the number of live cells was 

significantly higher in the negative control cultures to the positive controls, as expected, they 

should have displayed a viability of more than 70% to be considered as nontoxic materials.  

However they failed the test which we believe is a result caused by test coupon mechanical 

damage and not a cytoxic effect. 

3.5. Seeding Method 

In section 1 of this chapter a second method that has been reported in the literature to 

study the cell/material interaction was discussed. In this method samples were placed in the well 
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plate and the cells were plated on top of them. Figure 3.1 (right) illustrated the position of the 

cells and material. The samples were placed in the center of the wells in the 6-well plate. The 

L929 cells were seeded to the well plate and each well received 1.1 × 105 of L929 cells to reach 

80% of confluence and 2 mL of fresh cell culture media. The plate was incubated for 96 hours at 

37°C, 95% relative humidity and 5% CO2 [7]. The materials were then removed carefully and 

imaged using the fluorescence microscope.  

  

Figure 3.7: Fluorescence micrographs comparing PE after (a) direct surface seeding method, 

with b) the extract method with 100% media replacement. The size of scale bars is 50 µm. Note 

that the PE failed the direct seeding test while it passed the extract test (not shown), thus showing 

that proper selection of the proper cell assay under ISO 10993 is critical. 

As mentioned in ISO 10993-12, and based on other tests that were performed, PE is 

supposed to be a negative insulator control which means no toxic reaction with the cells. But as 

can be seen in Figure 3.7 a), which shows cell permissiveness after testing PE with the surface 

seeding method, no cells were attached to the surface. Also to verify the nontoxicity of PE, 

Figure 3.7 b) is included for comparison; in this figure the fluorescence micrograph of PE after 

100% replacement of media with the extract is illustrated. One explanation of this observation 

can be the effect of surface wettability, surface roughness, etc., which can affect the cell 

attachment but are not necessarily caused by material toxicity.  
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Figure 3.8: Qualitative analysis of the control materials (Au, Cu, PE and PVC) using surface 

seeding method. Note that all materials, including the negative controls, have failed the test as 

per the ISO definition of 70% viability. This method assesses material permissiveness and this 

result was not expected and requires further study. 

Figure 3.8 shows the quantitative results of the surface seeding method. All the results 

were normalized to cell culture treated polystyrene. The cells did not attach to the PE samples, 

which could be a result of the surface properties of that material and not a cytotoxic effect, since 

PE easily passed the extract test. But even for Au samples the cell permissiveness did not reach 

70% in comparison to the baseline so clearly some systematic error in the implementation of this 

variation of the cell cytoxicity assay is present and must be better understood. 

3.6. Direct Cell Plating (BAMBI Method)  

In the recent sections we have outlined the methods specified in the ISO standard, namely 

the extract, direct contact and cell seeding methods. One of the important observations of this 

work was that a more elegant solution should be possible that both adheres to the ISO standard 

while optimizing the information that can be gained about a material under test. In this section a 

direct cell plating method, which we have called the BAMBI method for Biocompatibility of 

Advanced Materials for Brain Interfaces (DARPA project title that funded this research), is 
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presented. This work has indeed resulted in a very efficient method to follow the ISO standard 

and gain as much insight into the behavior of a material under test by basically combining the 

cell seeding and extract methods all in one test. We now describe how this was accomplished. 

 

Figure 3.9: BAMBI method sample placement schematic showing the orientation of samples in 

the 6 well cell culture plate containing 2 coupons of test material, 1 coupon of positive control, 1 

coupon of negative control, and 2 CTPC samples used as baseline. 

Test material coupons, 8 × 10 mm in size, were mounted on tissue culture treated (CT), 

22 mm diameter, round polycarbonate (PC) cover slides, using Hystoacryl® glue. The coupons + 

CTPC slides were mounted within 6-well TC plates (CytoOne®, USASIENTIFIC). The 6-well 

plate was sealed using the parafilm tape and cured for at least 72 hours at 37 °C allowing the 

glue solvent to evaporate completely so as not to affect the cytotoxicity results, one hour before 

using the 6-wll was placed under the sterilized bio hood and the seal was opened, rinsed with 

sterilized DI water and left there to degas and water to be removed.  

Figure 3.9 shows top view of how the materials were mounted within the 6-well plate. 

Figure 3.10 shows how the cells were plated on the combination of the PC slide and the 

samples.  
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Figure 3.10: Illustration of BAMBI method sample mounting on a cell treated polycarbonate 

slide and the cells seeded above them versus time. After 96 hours the mounted sample is 

removed and the cell population, both on the test material and the baseline polycarbonate disk, 

evaluated thus combining the extract method (evaluation of cell population on the disk) and 

direct seeding method (evaluation of the cell population on the test material, which is a measure 

of material permissivity).  

After 96 hours of cell culture the sample/slide combination was carefully removed from 

the well. The dye was added to the cells to provide a fluorescence tag with which to determine 

the live or dead status of the cells. The fluorescence dye consists of 10 mL of 10 mM PBS 

diffused with 5 µL of 1 mg/mL calcein dye (1mg/mL in anhydrous DMSO, Life Technologies) 

to detect live cells and 7.5 µL of 2 mM ethidium homodimer-1 dye (EthD-1,2mM solution in 1:4 

DMSO/H2O,invitrogen) to detect dead cells.  

The fluorescence microscope (ZEISS image.M2m) was used for qualitative and 

quantitative evaluation of the live/dead behavior of the cells. The quantitative evaluation of 

live/dead behavior of the cells was obtained by taking images at low magnification but from a 
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whole population of the cells on the material and CTPC. The qualitative analysis of cell 

attachment to the surface of the material can be determined by imaging at higher magnifications 

such as 50X.  

  

(a) Au-negative conductor control (b) Cu-positive conductor control 

  

(c) PE-negative insulator control (d) PVC org.-Sn positive insulator control 

Figure 3.11: BAMBI method fluorescence micrographs, at 10X magnification, of the wells that 

included the control materials (a) Au, (b) Cu, (c) polyethylene and (d) PVC organo-Sn. Cells 

present on the test materials are out of focus and thus appear black in the image (see Fig. 3.12 for 

cell images from the test materials). 

Figure 3.11 shows the fluorescence micrograph of the wells that included the control 

materials. The 10X magnification micrograph shows the whole cell population, which is useful 

for statistical analysis of live/dead assays.  

Based on the fluorescence microscope images in Figure 3.11 the population of live cells 

is totally dominant for the negative controls, as expected. The cells are alive in the PE and Au 

wells indicating that there was no leaching of toxic ions to the cell media so the role of these two 

materials as negative controls were verified. Figure 3.11 shows no live cells in the Cu and PVC 

org.-Sn wells indicating that toxic materials leached from the materials and reacted with the 
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cells. The leached ions from Cu and PVC org.-Sn caused the death and absence of cell 

attachment to the wells.  

Based on the fluorescence microscope images from the surface of the control materials at 

10X magnification, the Au and PE controls showed a large population of attached cells and they 

are healthy and alive. The 50X magnification micrographs of the Au and PE confirm that the 

cells are attached perfectly to the surface and are healthy. So an absence of a reaction with the 

cells means the negative materials behaved as expected. We can see the opposite behavior for the 

Cu and PVC org.-Sn samples, no cells were present on the surface of the samples and also the 

50X magnification images showed the absence of healthy live cells on these materials. Having 

the reaction of toxic material with the cells verifies the role of Cu and PVC org.-Sn as positive 

controls. Figure 3.12 shows the 10X and 50X magnification micrographs of the control material 

surface cell population.  

   

(a) Au-negative conductor control (b) Cu-positive conductor control 

  

(c) PE-negative conductor control (d) PVC org.Sn-positive conductor control 

Figure 3.12: BAMBI method fluorescence micrographs, at 10X and 50X magnifications, of the 

materials that included the control materials (a) Au, (b) Cu, (c) polyethylene and (d) PVC 

organo-Sn. (See Fig. 3.11 for well images corresponding to this data). 
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Figure 3.13 shows the wells that contained the 3C-SiC samples as the test material. By 

comparing the micrographs with the control and baseline images, the complete absence of any 

reaction between the 3C-SiC samples with the cells in the well is obvious. So we can understand 

that 3C-SiC behaves more like a negative control. The quantitative analysis can verify this 

hypothesis. In the next session the statistical analysis will be discussed.  

The statistical analysis of the live/dead cell biocompatibility tests quantitatively verified 

the fluorescence microscopy micrographs in the previous section. All the results were 

normalized to the corresponding CTPC slide, so the results not only can be compared to the 

controls but also they can be compared to each other.  

 

Figure 3.13: BAMBI method fluorescence micrographs of 3C-SiC, Cu as positive control, Au 

as negative control and 2 CTPC as baseline samples, from the wells at 10X and 50X 

magnification. Note that 3C-SiC displays outstanding in-vitro performance thus motivating the 

use of 3C-SiC as a negative control for additional experiments. 

Figure 3.14 shows the quantitative statistical analysis of the live/dead assays for the 

control materials and test materials. The negative controls such as PE, Au and Pt had more than 



65 

90% of live cells in total (well + material), as expected. Also the positive controls such as Cu and 

PVC org.-Sn had less than 2% live cells in total. 

The test results for 3C-SiC and type I a-SiC (500 nm of a-SiC on Si (100), same material 

as described in Chapter 2) are also presented. 3C-SiC grown on Si (100) shows an outstanding 

number of live cells and the results are comparable to the negative materials such as Au or Pt. 

But a-SiC showed 80% live cell viability which passes the test but less than the 3C-SiC viability 

results. More statistical data and discussion about the four types of a-SiC will be presented here.  

 

Figure 3.14: BAMBI method statistical analysis of control materials (Cu, Au, PVC org.-Sn, PE) 

and test materials (3C-SiC and a-SiC). Note that 3C-SiC and a-SiC pass the test with 3C-SiC 

having comparable behavior to the negative controls. 

3.7. Summary 

ISO 10993 provides a general protocol for testing the biocompatibility of materials.  

While this method is one of the best currently existing methods for testing materials it could not 
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solely fulfill all the demands for the biomaterials testing and it requires some complementary 

methods, one of which has been introduced in this chapter – the BAMBI method. 

In this chapter first the extract test, which is a part of ISO 10993-5, was used to evaluate 

the cytotoxicity of the control materials including PE, Au as a negative control and PVC and Cu 

as positive controls; and test materials including Si (100), SiO2 , a-SiC, 3C-SiC and W. Although 

the extract method showed promising results we must consider that this method evaluates the 

indirect effect of leached chemicals on the cells and does not give any information about 

cell/material direct interaction.  

In section 8.3 of ISO 10993-5 a method was introduced as the direct cell test. This 

method was also tested on control materials and the results were not as expected for these 

materials. Since the material was placed above the cells, the cells cannot tolerate the weight of 

the material and will die eventually, and since the material is placed face down it is not clear that 

the cell died due to the leaching of the ions from the deposited film or from the substrate material 

itself, which was fully exposed in this method.  

In the literature a method was introduced that uses direct cell seeding on the sample to 

evaluate the cytotoxicity, and this method was described as seeding method in this chapter. The 

cells on the material were analyzed after 96 hours. Although this method is a better method to 

study the cell/ material interaction, we have to consider that in this test we study the cell/ 

material permissiveness and not the cytotoxicity. As was shown in this chapter the PE sample 

(insulator negative control) that was introduced by ISO as inert material; did not show any cell 

attachment but we know from the ISO standard and other experiments that PE is an inert non-

toxic material. So the necessity of the design of a method that has all the advantages of ISO 

method became apparent and was undertaken. 
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Due to this concern a method, named the BAMBI method, was developed at USF to 

evaluate the cytotoxicity and cell permissiveness at the same time and was shown to overcome 

all of the drawbacks of the other methods in ISO 10993. The results of BAMBI test were 

checked with the already published results of other tests, and no contradiction observed. Indeed 

direct seeding and extract tests were separately performed and the data completely correlated 

with the BAMBI method (except for the issue described above for the direct seeding method and 

the mechanical cell damage observed).  

By testing a material from both a stability and biocompatibility point of view the 

premedical tests are almost completed as specified in ISO 10993. But we must consider that 

these two characteristics are required but they are not sufficient. In addition to stability and 

nontoxicity the biomaterial must have a good interaction with blood. It is obvious that a material 

cannot be implanted in the body and not contact with any blood vessel. Since the biomaterials 

are implanted to improve the quality of life for the patient and not increase their suffering the 

implant material must not cause any blood coagulation. In Chapter 4 the hemocompatibility of 

the materials for pretrial in vivo will be discussed thus completing the battery of tests required by 

ISO 10993 to qualify a biomedical device for clinical trials.   
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CHAPTER 4: HEMOCOMPATIBILITY OF BIOMATERIALS 

In the last two chapters the chemical stability of materials in physiological environments 

and the cytotoxicity of these same materials were reported. In addition to those characteristics 

implantable materials must be compatible with blood. To emphasis the importance of 

hemocompatibility, just in the brain alone there are 500 miles of blood vessels [67], so when a 

prosthetic device is implanted in brain tissue interaction with a vascular vessel is not only 

probably but inevitable.  

 

Figure 4.1: Human brain and neck blood vessel network (i.e., brain vasculature) [67] showing 

how dense is the brain vasculature. Clearly any neural implant will subtend a blood vessel thus 

making the hemocompatibility of biomaterials an important property of implantable devices. 

Image Copyright belongs to © to-BBB, permission obtained from © to-BBB and presented in 

appendix A.  
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The brain vasculature system is illustrated in Figure 4.1. It can be seen that the network 

of blood vessels is packed densely so any foreign object which is implanted in a patient’s head 

must not cause any thrombosis when it contacts a blood vessel [68, 69]. As a part of the 

premedical evaluation of implantable biomaterials and devices performing a test that can 

determine the blood compatibility (i.e., hemocompatibility) is necessary. Embolic problems with 

catheters, failure of biosensors due to thrombus accumulation and platelet activation on long-

term implants are just a few examples of the problems that may occur if an implantable 

biomaterial is not hemocompatible [70]. 

In the literature, which has been focused on the topic of blood compatibility, researchers 

try to answer the following questions: 

 How can blood compatibility be measured?  

 What materials can be called ‘hemocompatible’?  

 What is the biological basis of the reaction of materials with blood [70]? 

Based on these questions, in this chapter the focus is on both a hemocompatibility 

methodology and materials evaluation. The minimum requirements for hemocompatibility 

measurements are mentioned in section four of ISO 10993. Based on ISO 10993-4 we describe 

an experiment we designed to evaluate the blood compatibility of the materials both in the static 

and dynamic state. 

The first step was to understand the thrombosis model, then to develop the experimental 

methods and finally to select the experimental controls based on the current information present 

in the ISO. Statistical data (mean value, standard deviation, 95% confidence interval) must be the 

experimental outcome of any hemocompatiblity assessment. Tests have to be performed with a 
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minimum delay of usually 2 hours since some properties of blood change rapidly following 

collection. Various conditions (depending on the wall shear rate) were simulated within the 

circulation system (i.e., dynamic testing). The qualities and aspects of hemocompatibility that 

can be analyzed are platelet activation, oxidative burst, hemolysis, fibrinolysis, fibrin formation, 

generation of thrombin, contact activation, and complement activation [18]. In this chapter the 

major focus is on platelet activation in the dynamic state. The results were entered non-

dimensionally into a non-dimensional score system, where 0 points stand for the best and 100 

points for the worst experimental outcome. The goal was to find a good correlation between the 

total platelet activation score in the high shear stress system. Before explanation about the circuit 

design some basic flow dynamics phenomena about human physiology must be explained [16, 

22].  

4.1. Flow Dynamics 

The blood flow in vains, artheries and capillaries can be considered as a laminar flow 

which is consisted of parallel streamlines in the rigid tubes. Since the blood flow is considered as 

a laminar flow the thin blood layer which is in contact with the blood vessel can be considered as 

a steady layer without any velocity. The velocity in the center of the blood vessel has the highest 

value. Figure 4.2 shows the flow gradient within a blood vessel. A flow which has a velocity 

lower than the critical velocity is called the laminar flow and if the velocity is equal or higher 

than the critical value it is called the turbulent flow. The turbulent flow normally generates sound 

on the other hand the laminar flow is silent, the sounds crated by the turbulent flow is called a 

bruit and is so useful in medical sciences.  
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Figure 4.2: Velocity vector distribution of a laminar flow pattern in a tube geometry. Zero 

velocity occurs on the blood vessel walls and a maximum flow occurs in the blood vessel center, 

as shown. 

There are two parameters that affect the probability of turbulence flow occurrence first is 

the radius of the tube and second is the viscosity of the blood. The mathematical relation of the 

inertial ratio to viscous forces is a unit-less number called Reynolds number which can specify 

the probability of having a turbulence flow [20, 71]. The magnitude of the Reynolds number has 

a direct relation with the probability of turbulence; the increase in value of the number will result 

in increase of value of probability.  

In humans, by the time of constriction in the artery and when the maximum systolic 

ejection occurs the blood flow becomes a turbulence flow and the velocity value is more than 

critical velocity value [17, 72]. In the patient with anemia due to lower blood viscosity the 

Reynolds number increases so the probability of the turbulence flow increases and they will have 

systolic murmurs [17].  

At the time of study the flow dynamic recognizing the difference between the velocity 

that is defined as displacement in unit time (e.g., m/s), and the flow, which can be defined as 

moved volume per unit time (e.g., cm3/s). The value of the flow (Q) is equal to Velocity (V) 

multiplied by cross-sectional area of the tube (A), the following equation is showing the value:   
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V = Q/A. 

In the tubes network such as human vascular system the total cross-sectional area of the 

blood vessels has an inverse effect on the average blood velocity at that specific point. For 

example the average blood velocity in the aorta is higher than the capillaries which has the 

slowest velocity due to a larger total cross sectional area. It must be kept in mind that the 

diameter of an individual capillary is smaller than the aorta but the total cross section of the 

capillaries is 1000 times larger than the value for the aorta and in blood flow the total cross 

section is considered not the individual cross section. When the blood enters the veins the 

velocity increases but it is not as fast as the aorta.  

The average velocity of blood is 40 cm/s in the aorta, also the maximum velocity occurs 

in systolic state which is 120 cm/s and the same value but with opposite direction happens in 

diastolic state.  

4.2. Chandler’s Loop 

A useful test configuration was developed by Chandler in 1958 to measure blood-clotting 

times [7]. The Chandler’s loop system consisted of a tube that was filled 70% of its capacity with 

blood and connected with a silastic collar to close the loop, the circuit was tilted at 45°. The tube 

was rotating till the blood clot in the tube, the time that requires to form a blood layer on the 

surface and form the blood clot was the goal of his initial study [73]. 

In recent years, the Chandler loop system has been modified for anti-coagulated blood to 

measure biomaterial-induced platelet activation [8]. The most noticeable modification in the 

chandler’s loop is the increase of surface-area-to-blood-volume ratio which will result in the 

reduction of background noise. Even with the modifications in the Chandler’s loop the presence 
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of air bubbles which cause blood-air interface is a major drawback in this method of evaluating 

the hemocompatibility of the materials. Presence of blood-air interface could result in protein 

aggregation which will result in platelet activation. In the empirical experiments presence of 

even microscopic air nuclei resulted in increase of platelet adhesion and activation of them 

afterwards [42]. 

4.3. Current Design  

These experiments were designed to use a modified Chandler’s loop. The loop consists of 

a peristaltic pump, 0.2” (5.08 mm) diameter S-50-HL PVC Medical Surgical Tubing, Clear 

(Tygon) tubing (the surgical grade PVC provided by Tygon is different from the fuel PVC tubes 

that contain organo-tin and used as positive control in chapter 3), a sample holder, polymeric 

gasket and a vacuum system as shown in Figure 4.3 below. The circuit was placed inside a 1 m3 

polyethylene chamber including an electrical heater which maintains the temperature at 37±1 °C. 

The system is housed in the Pathology & Cell Biology Laboratory of Dr. K. Muffly, USF 

Morsani College of Medicine.  

A 

 

B 

 

C 

 

Figure 4.3: The schematic of the modified Chandler’s circuit design in A) stage 0, the circuit is 

open and the tubes were rinsed with PBS B) stage 1 the circuit is still open but the blood source 

is connected and C) stage 2 the circuit is closed and the tubes are completely filled with PRP. 

The sample size was originally 50 x 75 mm. A new sample holder was designed using 

solid works and printed using the USF SiC Group 3D printer (using nylon). The sample size 
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from the new design is 10 x 30 mm which was done to conserve area and reduce materials cost, 

especially for the SiC samples. Once the new system passed the leaching test it replaced the old 

one. Figure 4.3 (right) shows the initial sample holder.  

  

Test set up in USF College of medicine Sample Holder 

Figure 4.4: The current dynamic hemocpmaptibilty test set up in Dr. Muffly’s lab in the 

USF College of Medicine (left). The original sample holder, which can accommodate 

large 50x75 mm samples (right). 

Figure 4.4 shows the new sample holder design. The left figure shows the 3D-printed 

sample holder, the center figure is the solid works™ design and the right one is the sample 

holder which was machined out of Teflon. Due to surface roughness issues, which disturbed the 

fluid flow during prototype testing, it was decided to machine a block of Teflon instead of using 

the 3D printed nylon cell. The Teflon cell will be used for all subsequent experiments presented 

in this chapter. 

prosthetic pump 
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Figure 4.5: Design and fabrication of a new, more cost-effective sample holder. USF SiC Group 

3D printed nylon cell (Left), solid-works schematic (center), the sample holder machined out of 

Teflon by the USF engineering machine shop (right). The scale bars have the length of 2 cm in 

all the images. 

4.4. Method and Materials  

The test materials were: Si (100) from University wafers Lot 567434, 3C-SiC grown in 

University of South Florida SiC Group hot-wall CVD reactor MF2 (sample ID USF2-14-28), a-

SiC deposited via PECVD on Si in the USF NREC, Polyethylene (as negative control) and PVC 

(tygon) (as positive control). 

4.4.1 Platelet Rich Plasma (PRP) Preparation  

Farm pig blood was provided by the University of South Florida's Center for Advanced 

Medical Learning and Simulation (USF-CAMLS) labs under Institutional Animal Care and Use 

Committee (IACUC) certification (protocol ID: T IS00000216). The blood was collected post 

mortem by the CAMLS lab technician in blood bags including acid citrate dextrose (ACD) as an 

anticoagulant (1:9 ACD: blood volume ratio). The blood bags were stored in a portable 

refrigerator at 4°C and transported to the IDRB 313 Lab using a portable refrigerator at 4°C. 

Next 50 mL ACCUSPIN™ centrifuge tubes were filled with 45 mL of whole blood. The tubes 

were centrifuged at 4°C for 10 min at 1000 g. As shown in Figure 4.6.a the blood consists of 

three phases after centrifuge, 55% of total blood is the plasma which will be above the other 

layers due to its lower density; the buffy coat which includes leukocytes and platelets form 1% of 
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whole blood and is located between the plasma and Erythrocytes layers; the Erythrocyte layer 

has the highest density and will be the under the two other layers after centrifuge. In Figure 4.6.b 

the whole blood sample after centrifuge is shown. Due to the presence of the membrane in the 

ACCUSPINTM the plasma, leukocytes and platelets phases were not mixed with the Erythrocytes 

and form a type of media that had a high concentration of the platelets. The PRP was collected in 

the 50 mL conical centrifuge tubes and stored in the refrigerator at 4°C. The concentration of 

platelets in the PRP was measured using a hemocytometer and it was found to be ~150,000 

platelets per 1 μl.  

a)  b)  

Figure 4.6: Formulation of PRP for hemocompatiblity testing. a) Schematic that shows the three 

phases of the blood after centrifuge b) The 50 mL ACCUSPIN centrifuge tube including the 

separated PRP and Erythrocytes phases. The PRP is the nearly clear liquid layer on top of the 

two red layers below. 

The PRP was then transported to the Pathology & Cell Biology Laboratory of Dr. K. 

Muffly, USF Morsani College of Medicine (transit time ~20 min) where it was used to test the 

platelet interaction with various materials as outlined above.  
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We can determine the PRP velocity directly from equation (4.1) (i.e., V=Q/A). By 

measuring the flow Q and knowing the cross-sectional area the velocity V can be determined. 

Based on the velocity we can control the flow to be laminar or turbulent.  

The flow rate was measured right before and after the sample holder. The tube area is 0.2 

cm2, so the flow must be less than 8 cm3/s. So we have adjusted the pump in a way that the flow 

that enters the sample holder is equal to the flow that exits the sample holder and is less than 8 

cm3/s. When we did this measurement, the PRP was replaced with 100 mL of fresh PRP, the 

flow cell tubing filled, and the flow initiated with a syringe by hand. When the tube was filled 

and air bubbles were minimized the two ends of the tube were connected to have a closed loop 

flow system (Fig. 4.3 b). The pump ran for 15 min and the sample under test retrieved for 

platelet fixing and subsequent microscope analysis.  

Platelet activation was evaluated by using fluorescence microscopy as described by N. 

Schettini of the USF SiC Group during her static hemocompatiblity tests of SiC materials [22]. 

Her sample preparation involved 1 μl/ mL Rothamin solution in 1X PBS which was used as the 

fluorescent dye, and the micrographs were analyzed using image J analysis software. Surface 

changes were evaluated using SEM and AFM analysis after platelet removal and sample 

cleaning. In that work it was demonstrated that 3C-SiC had superior hemocompatiblity to 4H- 

and 6H-SiC, as well as Si, via the observation of significantly lower platelet adhesion and 

activation [74]. Indeed the work reported by Schettini was the basis for the dynamic work 

reported here, as a more realistic model of the physiological environment is a more reliable 

measure of a materials compatibility with blood. 
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4.5. Static Hemocompatibility Experiment 

The hemocompatibility of semiconductor materials and specifically silicon carbide in the 

static state was studied by Schettini in 2009 [22] and 3C-SiC showed a promising result in those 

experiments. So in this set of experiments the hemocompatibility of Si (100), 3C-SiC, SiO2 and 

a-SiC were evaluated when the flow rate was equal to zero cm3/s to achieve two goals: first to 

study the platelet adhesion to the surface when the shear forces are not present, and second to 

have a comparable result to the previous studies.  

 
a) 3C-SiC 

 
b) a-SiC 

 
c) SiO2 

 
d) Si (100) 

Figure 4.7: Static hemocompatibility test fluorescence micrographs using Rothamin as a 

fluorescence tag at 50 x of magnification. a) 3C-SiC b) a-SiC, c) SiO2 and d) Si (100). Scale bar 

is equal to 100 µm. 

As shown in Figure 4.7. a) the 3C-SiC fluorescence micrograph shows little platelet 

activation. By comparing this result with the a-SiC micrograph in 4.7. b) and Si (100) in 4.7. d) it 

can be concluded that 3C-SiC showed an acceptable hemocompatibility in comparison to the 

other two silicon based material that are already used in prosthetic devices. Also SiO2 was tested 

as positive control and to show that the test is working. As it can be seen in Figure 4.7. c), the 
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platelets were completely activated on the surface of SiO2 which verifies the role of glass as a 

positive control for blood compatibility. 

The statistical analysis was performed on the results of hemocompatibility test. The bar 

chart including the standard deviation as the positive error bar is illustrated in Figure 4.8. The 

ANOVA analysis showed the value of 4.1 for “F” which is higher than the 3.4 value for Fc. This 

means that the samples behaved significantly differently. Also by doing the paired t-test on the 

results we can conclude that 3C-SiC showed the lowest platelet activation, a-SiC had more 

platelet activation than 3C-SiC and Si (100) showed higher values in comparison to the first two 

samples. The SiO2 showed the highest value of platelet activation among the tested materials. 

 

 

Figure 4.8: Static hemocompatibility histogram of platelet activation of the Si, a-SiC, SiO2 and 

3C-SiC in static hemocompatibility test using standard deviation as the error bar. Activated 

platelets per mm2 used to evaluate the hemocomaptibility of the materials.4.6 Dynamic 

Hemocompatibllity Experiments. 

The hemocompatibility of the biomaterials were tested in a dynamic state to simulate the 

real conditions of the in vivo environment. Tests in a static state showed a promising result but to 

verify the performance of a device for biomedical applications it must be tested in more realistic 
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environment. Applied shear forces to the blood proteins could alter the platelet adhesion to the 

surface of implanted samples. Therefore a study of the effect of various flow rates and exposure 

time on platelet binding and activation is very important. The samples for the dynamic 

experiment were 3C-SiC, a-SiC, Si (100) and SiO2 thin film.  

 

 
3C-SiC 

 
a-SiC 

 
SiO2 

 
Si (100) 

Figure 4.9: Static hemocompatibility test fluorescence micrographs using Rothamin as a 

fluorescence tag at 50 x of magnification. a) 3C-SiC b) a-SiC, c) SiO2 and d) Si (100). Scale bar 

is equal to 100 µm. 

Figure 4.9 a shows the fluorescence micrograph of 3C-SiC after dynamic 

hemocompatibility testing with the rate of less than 8 cm3/s for 15 minutes. As can be seen in the 

figure the 3C-SiC samples showed the lowest platelet activation. The platelet activation was 
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higher on a-SiC in comparison to 3C-SiC and also Si (100) (Figure 4.9.d) which showed higher 

platelet activation in comparison to the first two type of materials.  

 

Figure 4.10: Dynamic hemocompatibility histogram of platelet activation of the Si, a-SiC, SiO2 

and 3C-SiC using standard deviation as the error bar. Activated platelets per mm2 used to 

evaluate the hemocomaptibility of the materials. 

The qualitative data of Figure 4.9 can be more meaningful when statistical analysis was 

performed on the obtained data. Figure 4.10 shows a histogram including the data standard 

deviation as error bars. Two important points can be understood from the statistical analysis of 

dynamic test. First, the platelet activation decreased when a shear force was applied to the cells 

in the flow even for the laminar flow conditions of the test. The activation of the platelets 

decreased by a factor of 9% when the materials were tested under laminar flow. Second point 

that can be understood from Figure 4.10 is the performance of the materials. The materials 

behaved the same way in the dynamic test as they behaved under a static state. 

4.7 Summary 

In the last two chapters the stability and cytotoxicity of biomaterials were studied. In this 

chapter the blood compatibility of biomaterials under the static state and under laminar flow 
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using PRP was studied. A modified chandler’s loop was used as the blood circuit. The platelet 

activation as measure of hemocompatibility was studied using fluorescence microscopy. The 

data obtained from the static test verified the previous work reported using the same method by 

Schettini in 2009 [22]. That is that 3C-SiC showed lower platelet attachment and activation in 

comparison to conventional implant materials such as Si (100), a-SiC and SiO2. The obtained 

result from dynamic testing under laminar flow had the same performance as the samples in 

static state, but 9% lower platelet attachment, on average, for almost all samples tested. While 

this preliminary dynamic flow data is encouraging we need to study the performance of the 

materials in various flow rates and time frames to fully understand the hemocompatibility of a 

particular material (see Chapter 6 Future Work).   
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CHAPTER 5: SILICON CARBIDE NANOWIRES AS A BIOMATERIAL 

We have discussed the preclinical evaluation of biomaterials and prosthetic devices in the 

last four chapters where we have outlined a methodology fully consistent with ISO 10993 and 

also suggested an alternative method (i.e., the BAMBI method), which can be used as a 

complement to ISO 10993. In this chapter we will study the biological properties of silicon 

carbide nanowires (SiCNWs) as a new biomaterial. In chapter 2 we have shown that SiC, both in 

cubic and amorphous crystallographic forms, has adequate corrosion resistance and chemical 

stability. In Chapter 3 we saw that SiC specimens (3C-SiC and a-SiC) passed the ISO 10993 cell 

viability requirement. So by knowing that SiC is a chemically stable material with a high degree 

of biocompatibility, the SiCNWs could be a new candidate for device fabrication, since it has all 

the advantage of SiC and also has enormous surface area in comparison to planar samples. 

The goal of this chapter is to study the cytotoxicity and cell permissiveness of various 

types of SiCNWs and compare it to the results obtained from testing other materials. These tests 

give us the ability to determine the potential applications of SiCNWs to record from and 

stimulate neurons, as well as its potential use in biosensors. .  

5.1. Silicon Carbide Nanowire Properties 

Silicon carbide nanowires (SiCNWs) have become popular because they not only have 

the outstanding properties of silicon carbide, but also due to their small dimension, they can be 

used in applications where a high surface area to weight ratio is required. Silicon carbide under 

specific circumstances solidifies in various crystallographic structures called SiC polytypes [75]. 
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One of the hexagonal polytypes, named 6H-SiC, is the most stable structure among the 

SiC polytypes from a thermodynamic equilibrium aspect. But the cubic form of SiC, 3C-SiC, is 

the most stable during low temperature growth; Thus 3C-SiC is the most abundant SiCNW 

structure. After SiCNW grwoth a thin layer of oxide and a carbon rich phase normally form on 

the surface of the wires [79]. Since the nanowire is a 1-dimensional structure enclosed in a 

continuous outer structure it can be considered as a nanocable rather than a nanowire. However 

the nanowire coating is a native oxide that does not have any effect on the properties of the 

material and can be removed by HF etching [76]. 

  

Figure 5.1: 3C-SiC NWs grown in UC Berkeley: a) SEM micrograph of Si(100)/3C-SiC substrate b) 

XRD spectrum of Si(100)/3C-SiC. The 3C-SiC on Si substrate [75]. Image copyright permission 

obtained from [75] and presented in appendix A. 

Scanning electron microscopy is the most common method used to study the surface 

properties of the grown SiCNWs. Figure 5.1 a) shows some representative SEM micrographs of 

SiCNWs grown at UC Berkeley by J. Alper and L. Luna on a Si (100)/3C-SiC substrates. The 

SiCNWs were grown using the solid-liquid-solid growth method with Ni as the catalyst [77]. 

The SiCNWs have a straight structure with random orientations and small dendrites can be seen 

on the main stem of the wires. As can be seen in Figure 5.1 b) the presence of both silicon 

carbide phase and Si in the XRD spectrum is specified [75, 77, 78]. 



85 

Another type of SiCNW is shown in Figure 5.2, which shows a curved structure of long 

wires attached to the surface of a Si (100) substrate. These wires were grown by P. Lagonegro of 

the Italian National Research Center, IMEM-CNR, affiliated with University of Parma via solid-

liquid-solid method using Fe as a catalyst [79]. The average diameter of this type of nanowire 

was 20±5 nm and the average length of 5000±100 nm.   

  

Figure 5.2: SEM micrograph of SiO2/SiCNWs grown directly on (100)Si in the IMEM-CNR 

laboratory, Parma, Italy, copyright permission obtained from [80] and presented in appendix A. 

High-resolution SEM was used in the literature not only for evaluating the dimension of 

the SiCNWS but for determining the growth mechanism. This was done by inspecting the tips of 

the SICNWs for the presence of the catalyst metals. As shown in Figure 5.3 a) the structure of 

SiCNWs transformed to a hexagonal prism and in Figure 5.3. b) a bamboo shape structure just 

by changing the reaction temperature from 1470 ◦C to 1550 ◦C and 1630 ◦C, respectively. The 

results have been explained in terms of equilibrium shapes at each temperature [81-83]. 
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Figure 5.3: High resolution SEM micrographs of various structures of individual SiCNWs. 

a) hexagonal prism NWs, b) bamboo-like NWs, c) conical growth tips of cylindrical NWs. 

Copyright permission obtained from [81-83] and it is presented in appendix A.  

5.2. SiCNW Fabrication Methods 

In this section the methods that have been used to fabricate the SiCNWs will be 

discussed. Traditionally 3C-SiC nanowires were grown in the 1990’s via the decomposition of 

organic silicon compounds, carbothermal reduction of silica and reaction between silicon halides 

and CCl4. Most of the conventional SiCNWs were thicker than 500 nm in diameter which made 

them less suitable for micro/nanoelectronic applications [76]. 

5.2.1 Conversion of C or Si 1D Structures to 3C–SiC  

The first method of SiCNW fabrication that will be discussed here is the conversion of 1-

D carbon fibers to SiCNWs. In this method carbon nano tubes (CNTs) were exposed to a Si-rich 

vapor formed by evaporation of SiI2 or SiO with the result of the gas/solid reaction being the 

formation of SICNWs. This method was used for the first time by Zhou and Seraphin [84] in 

1994. The only drawback in this method is the large size of the SiCNWs, as described by Dai et 

al. with the diameter and length of these NWs being larger by one order of magnitude in 

comparison to CNTs [85]. But this problem was solved by them and they were able to produce 

SiCNWs identical to CNTs with a diameter of 2-30 nm [85].  

Conversion of 1-dimensional Si structures to SiCNWs is the second method that will be 

discussed in this section. Growing 3C-SiC on Si by heating the Si substrate in the presence of a 
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carbon rich gas is very common but there are two factors that increase the presence of defects in 

this film: first there is the difference in thermal expansion coefficient of Si and C, and second 

there is the lattice constant mismatch between Si and 3C-SiC [86]. The accumulated strain can be 

released through lateral relaxation for SiCNWs so there is less concern about that in NW growth 

compared to thin film growth. Growth of SiCNWS from silicon nanowires (SINWs) was 

reported by Zhang et al. in 2000 as a side effect when they were trying to form CNTs on SINWs 

[87].  

5.2.2. SiCNW Growth Based on the Vapor–Liquid–Solid (VLS) Mechanism 

The VLS method process is the most developed process to grow the SiC nanowires. In 

the VLS method liquid phase catalyst is used to form an alloy with the substrate by increasing 

the temperature the alloy forms a supersaturated vapor phase which results in growth of the 

nanowirestructure. The only drawback in fabrication using VLS method is presence of catalysts 

on the tip of nano wires. Various growth configurations using the VLS mechanism have been 

employed for the SiCNW growth. In this work the silicon carbide nanowires grown in University 

of Parma used the VLS method using Fe(NO3)3 as liquid catalyst which formed an Fe-Si alloy on 

the surface and the islands for nucleation and growth of SiC nanowires [88]. 

5.3. Cytotoxicity Evaluation of SiCNWS 

The SiC nanowire and SiO2 nanowires samples provided by P. Lagonegro (of University 

of Parma- IMEM-CNR laboratory) were tested using the extract method, as described in Chapter 

3. Figure 5.4 shows the assay results for the test materials. 100% of the media was replaced by 

the extract from the samples. Based on ISO 10993-12 the volume to area ratio for the thin films 

tested with less than 0.5 mm thickness is 6 cm2 /mL and for the specimens with complicated 
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shape or porosity the ratio is 0.2 g/ mL. Using material mass instead of surface area for samples 

with a complex shape is reasonable since precise surface area measurement methods, such as 

Brunauer–Emmett–Teller (BET) method [3], are not available in most laboratories, so the ISO 

organization simplified the test and allows the use of mass / volume ratio in this specific 

exceptional case. So the first ratio 6 cm2/mL was used for the planar Si, SiO2, a-SiC and 3C-SiC 

samples; and the 0.2 g/mL ratio was used for the nanowire samples.   

As can be seen in Figure 5.4. the lowest cell viability was observed for the Si and SiO2 

samples, which is not unexpected since the presence of SiO2 in a liquid for long times results in 

the formation of a weak acid called silicic acid [53]. This acid, even in low concentration, can 

cause cell death. To verify the formation of an acid in the presence of SiO2 and Si, an 

independent experiment was performed. The samples were placed in the media for 4 days under 

the same conditions of the extract test but in a chemical hood, the pH was monitored 

continuously, the initial pH of 7.2±0.2 DMEM dropped to 6.7±0.2 after one day and to 6.4±0.2 

after four days in the presence of the Si sample. The pH value for the SiO2 sample was even 

lower and the pH after one day was 6.5±0.2 and after four days it was 5.9±0.2. Also a blank test 

tube including just the DMEM was monitored all the time and the pH was 7.3±0.2 after one day 

and 7.4±0.2 after four days, thus discounting any degradation in pH with time and temperature of 

the liquid media. 
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Figure 5.4: Histogram of the quantitative evaluation of semiconductor materials via extract 

method based on ISO 10993-5, after 24 hours on L929 fibroblast cells. Volume to area ratio for 

the thin films was 6 cm2 /mL and for the NW specimens 0.2 g/ mL as specified in ISO 10993. 

The SiC NWs tested were provided by P. Lagonegro of University of Parma. In this data all SiC-

based materials passed the test while Si and SiO2 failed (less than 70% cell viability). 

The cell viability for the SiCNWs is lower than 3C-SiC but it is higher than a-SiC. Since 

the expected structure of SiCNWs is the cubic form, ion release is not expected to be the reason 

for lower cell viability. Instead in the recipe for SiCNWs growth the presence of Fe as a catalyst 

is noticeable, so the lower cell viability may be the influence of the growth catalyst. But since it 

is chemically and crystallographicaly the same as 3C-SiC, a more stable structure is expected 

from it in comparison to a-SiC samples. A more likely explanation is that there may be residue in 

the NW matrix that was difficult to remove completely during NW sample cleaning.  
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Figure 5.5: Histogram of the quantitative evaluation of semiconductor materials via MTT assays 

based on ISO 10993-5. This data is consistent with the extract method data (Fig 5.4) in that all 

SiC materials passed the test and planar Si and SiO2 failed. It is indeed interesting that the SiO2 

coated SiC NWs passed the test, an observation under further study. 

As an additional measurement MTT assays were performed on the wells that included the 

cells previously plated on the test samples. The cell culture time was 24 hours and 6×10 4 L929 

cells were seeded on the materials. As it can be seen in Figure 5.5 Si and SiO2 have the lowest 

cell viability among the tested samples and it can be explained the same way that was mentioned 

previously in the extract section. But since there was no shaking in this method the quantity of 

released ions and the concentration of formed acid is lower, so likely more cells survived the 

MTT assay. 

5.4. Cell Adhesion on SiCNWS 

Seeding cells directly on the material and the study of the adherence mechanism on them 

is the method that we used for studying the cell permissiveness on SiCNWs. Both L929 

fibroblast cells and H4 Neuroglima cells were used to study the cell/material surface interaction. 
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The behavior of the cells on the control materials was reported in the previous sections. In this 

section the cell adhesion on Si, SiO2 (film), 3C-SiC, a-SiC, SiCNWs and SiO2NWs will be 

presented. Sample preparation and cell culturing was performed exactly as described in Chapter 

3.  

 
3C-SiC 

 
 a-SiC 

  
Si (100) 

 
SiO2 

 
SiC nanowires 

  
SiO2 nanowires 

Figure 5.6: Fluorescence micrographs of H4 neuroglioma cell adhesion on a) 3C-SiC, b) a-SiC c) 

Si(100), d) SiO2 , e) SiC nanowires f) SiO2 nanowires.   

The samples were extracted and analyzed via fluorescence microscopy. Generally the cell 

adhesion on silicon-based semiconductor materials is good, but we want to study this aspect 

within this type of semiconductor material family and find an alternative for Si, since Si showed 

less chemical stability in comparison to 3C-SiC and a-SiC. 

Figure 5.6 shows fluorescence micrographs of H4 cells plated on various semiconductor 

materials. The cell adhesion on Si is shown in Figure 5.6 a).  As can be seen the cells are 

attached very well to the surface but the cells are not confluent in comparison to the cells shown 

in figure 5.6 c) that shows the 3C-SiC samples. The SiCNWs in Figure 5.6 e) show good 
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adhesion but, due to the structure of the SiCNWs, there seem to be present an agglomeration of 

cells. This may be due to the cells being trapped in the network of the wires and not having any 

place to move to and grow. The agglomeration also can be seen in Figure 5.6 f) as well but cells 

on this surface had a lower survival rate due to presence of SiO2. 

 
3C-SiC 

 
a-SiC 

 
Si (100) 

 
SiO2 

 
SiC nanowires  

 
SiO2 nanowires  

Figure 5.7: Fluorescence micrographs of cell permissiveness on semiconductor materials using 

L929 fibroblast cells. a) 3C-SiC, b) a-SiC c) Si(100), d) SiO2, e) SiC nanowires f) SiO2 

nanowires. 

In Figure 5.7 L929 cell permissiveness is shown, since one of suggested applications of 

the nanowires could be a tissue scaffold culturing fibroblast cells. The number of cells on Si was 

low, as expected, but the number of cells on the flat SiO2 film was relatively high which was 

surprising. However if the micrographs are studied closely it can be seen that most of the cells 

have a round shape that can tell us the cells are actually dying, in our opinion due to the better 

hydrophilicity of the oxide layer in comparison to the bare silicon surface the number of cells 

attached to that surface is higher but when the samples start to release ions and silicic acid cell 
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survival is reduced. The better understanding of cell adhesion mechanism on the SiC nanowires 

requires further investigation.  

In Figure 5.7 c) and d), it can be seen that 3C-SiC and a-SiC showed almost the same L929 

cell permissiveness. In Figure 5.7 e), the fibroblast cells seem to not attach to the surface of 

SiCNWs, which is not expected but by studying the micrograph closely the cells appear to be 

healthy, the writer assumes that the stiff structure of SiCNWs network perhaps did not let the 

L929s form a colony and start to grow, because the fibroblast cells need to be in contact with 

each other to grow properly. On the other hand since the SiO2NWs have a weaker structure so 

the cells can move around and find each other to grow better, which can be seen in Figure 5.7 f).  

5.5. Summary 

In this dissertation and also previous studies by our group, 3C-SiC showed great material 

stability, biocompatibility and hemocompatibility. In this chapter the biocompatibility of 

SiCNWs which have exactly the same chemical composition and almost the same 

crystallographic structure as 3C-SiC were tested.  

The SiCNWs, due to their enormous surface area, can be useful in the design of sensors 

that require both high surface area and biocompatibility. The biocompatibility results using the 

extract and MTT methods for SiCNWs were compared to flat 3C-SiC, a-SiC, Si (100) and SiO2. 

The SiCNWs showed higher biocompatibility in comparison to a-SiC, Si (100) and SiO2  but 

lower biocompatibility in comparison to 3C-SiC. The decrease in biocompatibility can be due to 

small quantity of residues of Fe which was used as the catalyst during the growth of nanowires, 

or more likely the incomplete removal of chemical residues due to the intricate structure of the 

3D NW matrix.  
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Further studies on the extract liquid that was in contact with the NWs should help to shed 

some light on the observed findings. Rinsing with 0.1 HCl after growth can be an alternative for 

removal of the remained catalysts, and other methods can be employed to further understand 

these very preliminary results.  Nonetheless the observed cytotoxicity assays show that SiC NWs 

did indeed pass the ISO 10993 tests which are very promising for this material system.  
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CHAPTER 6: SUMMARY AND FUTURE WORKS 

6.1. Summary  

The challenge of modern implantable biomaterials is the long-term functionality in-vivo 

whereby both the device is able to continue functioning while the surrounding biological 

material is not affected. The difficulty is two-fold for this ambitious goal – to realize truly bio- 

and hemo-compatible materials, and to have the proper means to assess the performance and 

predict long-term performance. The goal of this research was to develop the proper methodology 

to address the second issue, while helping to further provide evidence that 3C-SiC, and its 

associated materials, meet the first issue.  

To state it differently, we are trying to achieve two goals by doing these experiments. 

First to develop an experimental methodology that can determine all the characteristics required 

for the invasive neurological implant; second, to continue to evaluate 3C-SiC, a-SiC (four 

formulations) and SiCNWs as alternative materials for neurological implants since conventional 

materials do not show long-time durability with a maximum reported in-vivo operation of 4 

years reported to date in the literature.  

The immersion test in a simulated electrolyte mimicking the neutral pH of 7.4 ± 0.2 in 1X 

PBS, Tris-HCl, ACSF and Artificial Plasma (including the albumin) for 96 hours and 30 days at 

37°C and 60°C was done on control materials, 3C-SiC, a-SiC, Si (100) and SiO2. The AFM and 

SEM data sets were completed for all of these materials. The test materials, which failed to resist 
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the neutral pH, were eliminated and the test was continued with the chemically stable materials. 

The citric acid challenge was conducted based on ISO 10993-15 and as described in the text in 

Chapter 2. The failed materials were screened and the last acid challenge, which was nitric acid 

resistivity, were done on them.  

Based on previous works that have done by the USF SiC group since 2007, 3C-SiC 

showed promising biocompatibility and hemocompatibility, the MTT cytotoxicity assays were 

done by Colletti et al. in 2007 [12], direct cell plating done by Frewin et al. in 2009 [14] and 

hemocompatibility evaluation was done by Schettini in 2009 [22]. During the last two years the 

live/dead assays based on the extract method and the new BAMBI method were performed on 

control materials and 3C-SiC samples. These results verified previous works of the USF SiC 

group. Complementary tests on Si (100), tungsten and 4 types of a-SiC based on the extract and 

new BAMBI method were done to complete the experiments. Also hemocompatibility tests were 

performed in a dynamic state on the materials, which had passed all of the chemical tests and 

biocompatibility tests. This is the first time that a fully comprehensive battery of tests have been 

performed on an important material system, namely material stability, biocompatibility (both 

cytotoxicity and material permissivity) and hemocompatibility. 3C-SiC and a-SiC passed all tests 

with flying colors which, once again, demonstrates the potential of this important material 

system for advanced biomedical devices. 

6.2 Future Works 

Materials degradation was discussed in Chapter 2 of this manuscript. The most important 

test to evaluate the degradation of a material is the potentiodynamic test. By knowing the 

primary information about the degradation of a material; a complementary potentiodynamic test 

can be used to evaluate the corrosion current, passive potential and break down potential of the 
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material, and can thus give us valuable information. First to determine the corrosion resistance, 

second to evaluate the material for possible use as a biosensor. Testing the impedance and also 

open circuit potential can be helpful as well. Also the potentiodynamic test can be done in the 

presence of albumin which is the most common protein in human body. For a more in-depth 

understanding of material stability in-vivo it is recommended that potentiodynamic tests be 

performed so that feedback can be provided to the material developer to improve their material 

performance.  

The cytotoxicity assays have shown that some materials were releasing ions, which cause 

toxic effect on the cells. But the identity of these ions is, at present, unknown. In addition the 

critical concentration for each ion that can cause the death of the cells is also unknown. Study of 

the leached liquid from the materials with chemical methods such as inductively coupled plasma 

mass spectrometry (ICP-MS) and attenuated total reflection- Fourier transform infrared 

spectroscopy (ATR-FTIR) could be valuable as well and should be considered for especially 

promising biomaterials.  

In Chapter 4 we determined the hemocompatibility of some candidate materials using 

Platelet Rich Plasma (PRP) by studying the platelet activation on surfaces exposed to PRP in a 

dynamic flow condition. To have a realistic evaluation of the hemocompatiblity a study of whole 

blood, or perhaps a more complex blood solution containing PRP as the main component, can be 

studied.  

Study of the neurotoxicity on the materials and devices should be done for materials that 

have potential application as neuroprosthetics. Therefore specific neurological environment 

testing, both in terms of material stability (Chapter 2), biocompatibility (Chapter 3) and 

hemocompatiblity (Chapter 4) should be undertaken for particularly promising neuroprosthetic 



 

98 

candidate devices/materials. Indeed this can be achieved by following the methodology 

developed here and altering the test solutions to better mimic the neural environment. 
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Appendix A: Copyright Permissions  

In this section the copyright permission from the websites and the journal publishers 

which, own the copyright of the corresponding figures will be presented. In figure 2.15 the AFM 

and figure 2.16 SEM micrographs were already published in MRS Fall 2013 the permission to 

reuse the micrographs was obtained in July 29, 2014 from Cambridge University Press the 

copyright owner and it is presented in figure A.1 of the appendix A. The figure 4.1 was presented 

from the website “to-BBB.com”, the permission obtained from © to-BBB institute administrator 

via email on July 30, 2014, the written permission is presented in figure A.2. The figure 5.1 SEM 

micrograph and XRD spectrum was already used in the Journal of Power Sources in Elsevire, the 

permission license is presented in figure A.3. The figure 5.2 and figure 5.3 used from Institute of 

Physics (IOP) publishing, journals, the name of journals and permission to use the figures from 

them is presented in figure A.4 of appendix A. The permission for these figures obtained from 

permissions@iop.org on July 30, 2014 and it was confirmed by Lucy Evans the publishing 

assistant of IOP. 

mailto:permissions@iop.org
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Figure A.1: Copyright permission to reuse the figures from Cambridge University Press, 

for figure 2.15 and 2.16. 
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Figure A.2: Copyright permission to reuse the figures from © to-BBB, for figure 4.1. 
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Figure A. 3: Copyright permission to reuse the figures from Elsevier, for figure 5.1. 
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Figure A. 4: Copyright permission to reuse the figures from institute of physics 

publishing, for figure 5.2 and figure 5.3. 
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Appendix B: Chemical Composition of Electrolytes 

The quantities that are mentioned in the following list, is to obtain 1 liter of the 

electrolytes.  

 Phosphate Buffer Saline (1X-PBS):  

1.37 M NaCl (58.44 g/M) …………………………..80.0 g 

27 mM KCl (74.55 g/M) …………………………....2.01 g 

100 mM Na2HPO4 (141.958 g/M) …………………..14.2 g 

17.6 nM KH2PO4 (136.086 g/M) ……………………2.395 g 

HCl (to adjust the pH) 

NaOH (to adjust the pH) 

 Artificial Plasma: 

NaCl ............................................................ 6.800 g 

CaCl2........................................................... 0.200 g 

KCl .............................................................. 0.400 g 

MgSO4 ........................................................ 0.100 g 

NaHCO3...................................................... 2.200 g 

Na2HPO4 .................................................... 0.126 g 

NaH2PO4 .................................................... 0.026 g 
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 Artificial Cerebrospinal Fluid (ACSF): 

NaCl ……………………………………….7.5975 g 

KCl ………………………………………...0.2236 g 

NaH2PO4 …………………………………0.1500 g 

Glucose ……………………………………1.8016 g 

NaHCO3 …………………………………..1.6802 g 

MgSO4 ……………………………………0.3204 g 

CaCl2-2H2O ……………………………....0.3675 g 


	University of South Florida
	Scholar Commons
	January 2014

	Biomaterial Testing Methodology for Long-Term in vivo Applications: Silicon Carbide Corrosion Resistance, Biocompatibility and Hemocompatibility
	Maysam Nezafati
	Scholar Commons Citation


	tmp.1410224824.pdf.F49PB

