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ABSTRACT 

An advancement of the two stage growth recipe for the fabrication of CIGS solar cells was 

developed. The developed advancement was inconsistent in producing samples of similar 

stoichiometry. This was a huge barrier for up scaling the process as the behavior of devices 

would be different due to variation in stoichiometry. Samples with reproducible stoichiometry 

were obtained once the heating rate of elements, selenium in particular was better understood. 

This is mainly attributed to the exponential increase of selenium flux after its evaporation 

temperature. Monitoring the selenium flux was vital in getting constant selenium fluxes.  Few 

changes to the growth recipe were induced to optimize the amount of selenium being used. 

Depositions were done using constant selenium to metal flux ratio of 5. Elemental tradeoffs were 

observed as a result of the growth recipe change. These tradeoffs are in favor of the two stage 

growth recipe. The solar cells were fabricated on a soda lime glass substrate with a molybdenum 

back contact. Improper sample cleaning and storage were found to affect the deposition outcome 

of the molybdenum back contact. This also had a cascading effect on the absorber layer. 

Residual precipitates during deposition of CdS were avoided by increasing the spinner speed 

which increased the reaction rate. This is attributed to the growth of CdS either by cluster-by-

cluster growth or by ion-by-ion growth. SEM, EDS were some important tools used to 

characterize the devices.  EDS in particular, was used extensively at different stages throughout 

the growth process to ensure that we were heading in the right direction. Current-voltage (I-V) 

measurements were done to study the solar cell performance under light and dark. 
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CHAPTER 1: INTRODUCTION 

 “I have no doubt that we will be successful in harnessing the sun's energy. If sunbeams were weapons of 

war, we would have had solar energy centuries ago." - Sir George Porter, Nobel Laureate in Chemistry. 

1.1   Free Energy 

The growing demand for energy and a limitation on its major source (fossil fuels) has proved to 

be a huge concern for the human race. The initial availability of fossil fuels was taken for granted 

and the importance of renewable energy was not realized until the mid-1970. The oil embargo by 

the Arab countries during this period had a huge price inflation on the crude oil barrels .This 

emphasized the necessity for dependent sources of energy. Renewable energy sources are 

dependent sources of energy because they are continuously replenished. The sun is an energy 

source with a 10billion year lifetime. This easy availability and accessibility makes solar energy 

a stand out in the renewable energy department.  

The creation of electric current in a material upon light exposure is called photovoltaic effect. 

Solar cells are semiconductor materials which exhibit photovoltaic behavior.  Although solar 

cells for terrestrial applications were used as early as 1958, their commercial growth is slow. 

Solar cells should satisfy an optimum cost to efficiency ratio for commercial success. Thin film 

technology has the capability to give a low cost to efficiency ratio. Solar cells manufactured 

using this technology have thin layers of photovoltaic materials to give high efficiency. 

Permutation in the order of deposition can further reduce the cost of thin film solar cells. This 

study involves CIGS thin film solar cells manufactured in a certain order which makes it 

commercially viable. 
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1.2   The Idea 

The generation of electric current in a material upon light exposure was first observed by 

Edmund Bequerel in 1839 [1]. The explanation of this effect can be derived from the 

photoelectric effect. Photoelectric effect describes light as packets of energy called photons. 

When photons are incident on a material’s surface, they transfer their energy to the electrons in 

the material. If a photon has energy greater than the work function or binding energy of an 

electron, the electron is released. Photoelectric effect and photovoltaic effect are similar except 

for the fact that in photoelectric effect the incident light excites the electron all the way to the 

vacuum level whereas in photovoltaic effect the incident light excites the electron to a new 

energy level where it is free to move within the material. When photovoltaic effect takes place in 

a material which has a built-in electric field, the electrons can be made to flow in a certain 

direction. This constant flow of electrons is the electric current, and by placing conductive metal 

contacts, we can tap this current out for external use. The tapped current multiplied with the 

voltage (the built-in electric field) defines the power that a solar cell can produce.  

1.3  Thin Film Solar Cells 

In 1954, solar cells were first commercially manufactured at Hoffman Electronics Corporation. 

They started making use of solar cells for toys and other minor uses [2]. The costs of their solar 

cells were $250 per watt and this was almost hundred times more than the cost per watt produced 

by coal at that time. At present we are able to manufacture solar cells for as low as $0.7 per watt. 

A decline rate for the cost of crystalline silicon solar cells is forecasted by Richard Swanson, the 

founder of SunPower Corporation. Swanson’s law states that, the cost of the photovoltaic cells 

needed to generate solar power falls by 20% with each doubling of global manufacturing 

capacity [3].  
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Figure 1  Swanson effect [4] 

Along with cost/watt, another important parameter is the efficiency. Having a low cost/watt and 

low efficiency is going to make the solar module less worthy. Thin film technology has the edge 

of making high efficiency devices using lower cost. Since only a thin coating of the light 

absorbing material is used, they promise a lower cost in their making .They also have the 

flexibility in forming semiconductor films of various compositions through vacuum deposition 

techniques such as physical vapor deposition , chemical vapor deposition and sputtering .Some 

of the non-vacuum  thin film fabrication techniques such as spray pyrolysis and solution growth 
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doesn’t require expensive equipment for manufacture and can be carried out with cheap labor 

due to the simplicity of the process. The manufacture of thin film materials on flexible substrates 

can further reduce the cost as they can be easily transported and manufactured on a large scale.  

 

Figure 2  Solar cell efficiencies over the years [5, Public Domain Image] 
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Figure 2 gives an overview of the best solar cell efficiencies so far .Even though the efficiencies 

of multijunction cells, single junction GaAs and crystalline Si cells are more than thin film 

technology; they involve an increased cost in their making. CIGS can be manufactured for a 

lesser cost per watt for the same range of efficiencies as multijunction cells, single junction 

GaAs, crystalline Si cells and other thin film technologies.  

1.4  CIGS vs Silicon 

Swanson’s effect shows that the cost/watt of crystalline solar cells to be dropping rapidly, so 

what is the need for an alternative material?  

1. The absorption coefficient of CIGS is 3 x 10
5
 cm

-1
, it requires only a thin layer of CIGS 

(~1µm) to collect 99% of sunlight. Si is an indirect bandgap material and requires more 

amount of material (~100-200) µm to collect the same amount of sunlight as CIGS. There is 

an effective use of raw material in CIGS. 

2. CIGS can be manufactured on flexible substrates unlike Si. Flexible substrates allow CIGS to 

be manufactured using a roll-to-roll process. Roll-to-roll process allows CIGS to be 

continuously processed rather than in batches and this significantly reduces the processing 

cost. The easy transportation of the flexible solar modules reduces the transportation cost too. 

3. The energy payback time (the time taken for the cell to generate enough energy to offset the 

energy used for its manufacturing) is comparatively low for CIGS when compared to Si. 

Figure 3 shows the absorption coefficient vs incident photon energy of various semiconducting 

materials used for solar cell development. From the figure we can see that CuInSe2 (Copper 

Indium Selenide or CIS) clearly has a wider absorption spectrum when compared to other 

materials. CIGS has an absorption spectrum very similar to CIS. 
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  Figure 3  Absorption coefficients of different semiconducting materials [6]  

“Reproduced by permission from Hans Joachim Mӧller, Semiconductors for Solar Cells, 

Norwood, MA: Artech House, Inc., 1993. © 1993 by Artech House, Inc.” 

1.5  CIGS and its Properties 

CIGS is a I-III-VI quaternary compound belonging to the chalcopyrite family. The chemical 

formula for CIGS is CuInxGa(1-x)Se2, the value of x varies from 0 to 1. If the value of x is 0, the 

compound becomes copper gallium selenide and if it is 1, the compound becomes copper indium 

selenide. CIGS is used as an absorbing layer of a solar cell. It is usually deposited on a 

molybdenum back contact. The order of deposition for a solar cell is as follows:                     

Glass substrate / molybdenum / CIGS / CdS / ZnO / ZnO:Al. The chalcopyrite structure of CIGS 

is shown in figure 4. 
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Figure 4  Chalcopyrite structure of CIGS [7] 

The absence of atoms from their respective places leads to defects. CIGS is self doping 

semiconductor and its type is decided by defects (antisite defect, vacancy defect and interstitial 

defect).The acceptor type (p-type) defects include copper vacancies and copper on indium 

antisite and the donor type (n-type) defects include indium on copper antisite and selenium 

vacancies. If the CIGS film is copper rich, it tends to be more p-type due to copper on indium 

antisite defect. If the CIGS film is In rich, the film can be n-type or p-type due to the existence of 

indium on copper antisite and copper vacancies at the same time. This is called compensation 

effect. The copper rich CIGS film has a bad (usually shorted) junction due to the presence of 

highly conductive copper selenide. 
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1.5.1  Ga Graded CIGS Structure 

The bandgap of pure CuInSe2 is 1.0ev and that of pure CuGaSe2 is 1.7ev, the compounds can be 

alloyed to get intermediate bandgaps [8]. One of the main advantages of CIGS is the flexibility 

in varying the material properties as a function of film depth. The required material properties 

can be achieved by alloying the elements at different rates. Graded structures improve the cell’s 

performance in many ways. The absence of graded bandgaps in solar cells means that there is no 

drift force outside the depletion region .This absence will force the carriers to rely solely on 

diffusion, and if the carriers are generated much further than a diffusion length away from the 

edge of the depletion region, they have a low probability of being collected through the contacts 

[9].Devices without a graded structure, start to lose current and fill factor while gaining little 

voltage if the bandgap is increased beyond 1.25ev [9].The value of electron affinity varies with 

the Ga concentration and this idea is used in devices to have a graded bandgap. Thus by 

controlling the Ga concentration, a graded bandgap can be engineered. The most successful 3 

stage process results from a certain depth profiling of the Ga/(Ga+In) ratio which is believed to 

contribute to the excellent performance of the cells [8].The variation of bandgap in CuIn(1-

x)GaxSe2 is given by Eq 1 [10] : 

Eg = 1.011 + 0.664x – 0.249x (1-x) 

Equation 1  Variation of bandgap in CIGS 

The variation of the bandgap according to the above equation is nonlinear and it is referred to as 

optical bowing. The grading of Ga also provides the absorber layer with a good adhesion to the 

back contact. Gabor reports the formation of a back surface field near the back contact due to the 

strong tendency of Ga to move towards the back of the device. This back surface field is similar 
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to an electric field, it reflects the minority carriers back to the p-n junction and prevents them 

from recombining with the back contact [9].The shifts in conduction band with and without Ga 

grading can be seen in the figure below. 

 

 

 

 

 

 

 

 

(a)                                                                                (b) 

Figure 5  Band structure for  a) Homogenous CIGS structure      b) Graded CIGS structure 

1.5.2  Importance of Sodium in CIGS 

The importance of sodium’s incorporation was initiated by Hedström and his workers in 1993. 

Although our process involves sodium diffusion from SLG, the absence of sodium in flexible 

substrates makes it a necessity quantity to be provided externally. The sodium from SLG diffuses 

into molybdenum from glass and into CIGS absorber layers from molybdenum. Some of the 

effects of sodium in CIGS are: 

1. Sodium’s diffusivity increases the overall conversion efficiency. Its effect is mainly seen by 

the increase of open circuit voltage (Voc) and fill factor (FF), although there is not much 

effect on the short circuit current [11]. 
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2. The performance of the cells is found to be more homogenous; however care should be taken 

as too much diffusivity can cause the device to degrade [11]. 

3. An increase in sodium diffusivity is found to increase the carrier concentration [12]. 

4. Although changes in material properties such as increase in mobility and homojunction 

formation have been linked to the diffusivity of sodium, their influence on the efficiency of 

the device is minimal. The most influential effect due to sodium diffusivity in the efficiency 

is linked to the passivation of grain boundary defects by sodium [12]. 
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CHAPTER 2: SEMICONDUCTOR AND SOLAR CELL PHYSICS 

The physics of a solar cell has its roots in semiconductors. Understanding the physics of 

semiconductor is essential in order to understand the operation and working of solar cells. 

The nature of a material is described by the band theory of solids. The band theory of solids is a 

concept derived from the energy levels of an atom. The atom consists of nucleus and electrons. A 

material consists of zillions of atoms placed periodically with a certain distance from each other. 

This distance is called as the inter-atomic distance. The atoms are placed close enough for the 

orbitals of each atom to overlap with one another leading to a series of bands called “energy 

bands”. These energy bands explain the nature and behavior of materials.  

The highest range of electron energy level where an electron is present at zero temperature is 

termed as the valence band. Valence band can be related to the outer most electrons that bonds 

successive atoms. They can be broken and used for conduction. The unoccupied energy bands 

which can accommodate electrons energies strong enough to break the binding energy of an 

atom are termed as conduction bands. Conduction bands can be visualized as the atomic lattice 

which allows the free movement of delocalized electrons.   

Metals, insulators and semiconductors can be easily classified according to the band theory. In a 

metal, the valence band and conduction band are overlapped. It symbolizes that the electrons are 

free to move within the lattice of the material and hence has a high conductivity. In an insulator, 

the valence band and conduction band are separated by a large energy gap and so a lot external 

energy is required for the electrons to make it to the conduction band. Thus conduction is not 



12 
 

easily possible in an insulator. Semiconductors are materials whose conductivity lies between a 

metal and an insulator. Semiconductors have their energy bands separated but with a permissible 

gap. The electrons can make it to the conduction band with a certain amount of external energy. 

2.1  Semiconductors 

Semiconductors are classified as intrinsic or extrinsic semiconductors based on their impurity 

level. An intrinsic semiconductor is extremely pure and devoid of any impurities whereas an 

extrinsic semiconductor has externally added impurities to it. The process of externally adding 

impurities to a semiconductor (say Si) is termed doping. The extrinsic semiconductor is a n-type 

semiconductor if the added impurity is a donor impurity (an atom having 5 valence electrons in 

the outermost shell) and it is a p-type semiconductor if the added impurity is an acceptor 

impurity (an atom having 3 valence electrons in the outermost shell).Pauli’s exclusion principle 

states that “fermions cannot exist in identical energy states”. Considering the fact that electrons 

are fermions, they obey Pauli’s exclusion principle .At zero temperature the electrons start 

arranging themselves from the lowest available energy state to form a heap of electrons. The 

fermi energy is defined as the surface of the heap of electrons at absolute zero. The electrons will 

not have enough energy to rise up above this surface at absolute zero. For any temperature above 

0K, electrons are continuously excited to different energy levels and we can only give the 

probability of where the electron can sit. The fermi level is defined as the energy level with 50% 

probability of occupation. The fermi distribution function is given by: 

 

 

 

Equation 2  Fermi distribution function 

1 

1 + e 
(E-E

F
)/kT 

F(E) = 
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The band diagram uses fermi level as the base for describing a p-type, n-type or intrinsic 

semiconductor. The semiconductor can be identified by the position of the fermi level. 

 

 

 

 

 

 

 

(a)                                            (b)                                             (c) 

Figure 6  (a) intrinsic semiconductor (b) p-type semiconductor (c) n-type semiconductor 

In the above figure, EC represents conduction band energy, EV represents valence band energy 

and EF represents fermi energy. In figure 6(a), the Fermi level is exactly at the center, meaning 

no external impurities were added. This says that the material is an intrinsic semiconductor and it 

is denoted by i in the figure. In figure 6(b), the Fermi level is more towards the valence band 

energy and this tells us that the semiconductor is doped with an acceptor impurity and there are 

more holes than electrons (p-type). The p-type semiconductor is denoted by P in the figure.  

Figure 6(c) has its Fermi level more towards the conduction band energy, meaning the 

semiconductor was doped with a donor impurity and it has more electrons than holes (n-type). 

The n-type semiconductor is denoted by N in the figure. 
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2.2  P-N Junction 

When a p-type semiconductor and a n-type semiconductor are brought in contact with each 

other, a P-N junction is formed. During P-N junction formation, the holes flow from the p-type 

semiconductor to the n-type region leaving behind ionized acceptors and the electrons flow from 

the n-type semiconductor to the p-type semiconductor leaving behind ionized donors. When this 

happens, the fermi energy of both the p-type and n-type semiconductors reaches equilibrium. 

The region which consists of the ionized donors and acceptors are called depletion region as they 

are depleted of charge carriers. They can also be called as space charge region. The presence of 

charges of opposite polarity in the space charge region gives rise to a potential difference across 

the junction. This built in electric field in a P-N junction is called as built-in potential (Vbi). 

 

(a) 

 

(b) 

Figure 7  (a) P-N junction (b) Energy band diagram 
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 The built in potential is given by: 

Vbi = (kT/q) * ln(NA ND/ni 
2
) 

Equation 3  Built in potential 

The width of the depletion region is given by: 

W = [2NA+ND) Vbi]
1/2

 / [q * (NAND)]
1/2 

Equation 4  Width of the depletion region 

Vbi and W represent the built in potential and the width of the depletion region. NA represents the 

acceptor impurity concentration on the p-side of the junction whereas ND represents the donor 

impurity concentration on the n-side of the junction. T is the temperature, q is the charge of an 

electron, k is the Boltzmann constant, ni is the intrinsic carrier concentration and is the 

dielectric constant. 

2.2.1  Biased P-N Junction 

When external power supply is given to a P-N junction it is said to be biased. When the positive 

terminal of the power supply is connected to the p side and the negative terminal of the power 

supply is connected to the n side of the junction, the P-N junction is forward biased. During 

forward bias there is a reduced potential energy barrier. The majority carriers from p and n side 

of the junction tend to crossover this reduced potential energy barrier resulting in diffusion 

current. When the positive terminal of the power supply is connected to the n side and the 

negative terminal of the power supply is connected to the p side of the junction, the P-N junction 

is reverse biased. During reverse bias, the majority carriers are attracted to the power supply and 

hence there is no diffusion current. 
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2.2.2  Abrupt P-N Junction 

When the impurity concentration in a P-N junction abruptly changes from acceptor impurities 

(NA) to donor impurities (ND) and vice versa, an abrupt P-N junction is formed. If NA>>ND or 

vice versa, a one sided abrupt junction is formed.  

 

Figure 8  Space charge distribution in an abrupt P-N junction 

 

Figure 9  Electric field distribution of an abrupt P-N junction 
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Figure 10  Potential variation of an abrupt P-N junction 

In figure 9, Xp refers to the distance of the diffused electrons in the p-region and Xn refers to the 

distance of the diffused holes in the n-region. E is the electric field, Emax is the maximum electric 

field and the area of Δ XpEmaxXn is equal to the diffusion potential. In figure 10, V symbolizes 

the potential and Vbi indicates the built in potential. 

2.3  Heterojunction 

The junction formation between two dissimilar semiconductors is termed as a heterojunction. 

Figure 11 shows the energy band diagram of two dissimilar semiconductor which are isolated 

from one another.The band bending in heterojunction is different than homojunction because of 

the difference in bandgap, electron affinity and work function of the two dissimilar 

semicondcutors. Figure 12 shows the band diagram after the heterojunction formation. In figure 

11 and figure 12, the subscript 1 is assigned to the symbols which describe semiconductor 1(p-

type) and the subscript 2 is assigned to the symbols which describe semiconductor 2(n-type). χ 

represents the electron affinity, Φ is the work function, Eg is the bandgap, ΔEC and ΔEV are the 
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change in conduction and valence band respectively. EC, EV and EF are the conduction band 

energy, valence band energy and the Fermi energy. 

 

Figure 11  Energy band diagram of two isolated semiconductors 

 

Figure 12  Heterojunction of an ideal P-N heterojunction at thermal equilibrium 
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We have Eg1 > Eg2 and the discontinuities in the band are given by: 

ΔEC = χ1 – χ2 

Equation 5  Discontinuity in the conduction band 

   ΔEV = Eg1 - Eg2 - ΔEC 

Equation 6  Discontinuity in the valence band 

Solar cells are preferred to have a heterojunction than a homojunction . The main reasons being: 

1. A solar cell must effectively make use of the solar spectrum. The heterojunction has two 

dissimilar semiconductors having two different bandgaps, Eg1 and Eg2 (Eg1 > Eg2). If one side 

of the larger bandgap semiconductor is placed facing the sun and the other side is in a 

heterojunction contact with the lower bandgap semiconductor, the photons with energy 

greater than or equal to Eg1 are absorbed by the top layer and the top layer acts as a window 

for lower energy photons which are absorbed in the lower bandgap semiconductor. This is 

not possible in a homojunction because both the semiconductors have the same bandgap.  

 

2. Considering the structure of the solar cell, the P-N junction is followed by the front contacts 

to tap out the electrons. When the carriers are generated outside the depletion region and if 

they are more than a diffusion length away, they have a high chance of recombination to the 

front contact. In a heterojunction, the top wide bandgap layer can be made thin so that most 

of the light reaches the junction and the lower bandgap material significantly reducing 

recombination to the front contact. The energy band, conduction band and valence band 

offsets can be schematically shown for the various junction formations in a solar cell. Wei 
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and Zunger [13] calculated theoretically the offsets between CGS, CIS and CdS. The offset 

between CdS and ZnO was calculated more recently [14]. Figure 13 shows the schematic 

representation of the theoretically determined offsets. 

 

Figure 13  Band offsets between CGS – CIS – CdS – ZnO 

As we can see from above figure, the bandgaps of the materials are aligned in such a way that the 

light is incident on the higest bandgap material first (with the exception of CIS and CGS, this is 

because we tend to form a Cu rich CGS base for increased grain growth of the subsequent layer), 

all the high energy photons are absorbed here. The lower energy photons are be absorbed by 

subsequent layers and hence we can see a decreasing tend in bandgap. The bandgap of CGS and 

CIS are such that the higher band gap CGS is towards the backside and lower bandgap CIS is 
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towards the front. This is due to the fact that Ga tends to accumulate towards the back of the 

device and section 1.5.1 discusses how the bandgap can be engineered by varying the Ga content 

for improved cell performance.  

2.4  Solar Cells 

Solar cells are semiconductor devices which convert light to electricity. The semiconductor 

devices with which solar cells are made consist of a P-N junction. When photons (light) are 

incident on a material and if their energy is greater than the bandgap of the material, they have 

sufficient energy to excite electrons to the conduction band.  

E = hc/λ > Eg 

Equation 7  Photon energy greater than bandgap for conduction 

where E is the energy of incoming light, h is the Planck’s constant, c is the speed of light; λ is the 

wavelength of incoming light and Eg is the bandgap of the material. When electrons are in the 

conduction band, they are free to move within the material. The excitation of an electron also 

creates a hole in the valence band which is free to move in the valence band of the material. Thus 

the successful excitation of an electron by a photon creates an electron – hole pair (EHP) which 

is free to move in the material. When EHP’s are within the depletion region of P-N junction, they 

are swept across the junction due the drift force generated in the depletion region. These carriers 

are then tapped out by placing metal contacts. The absorption of light by a material is given by 

the below equation. 

I (λ) = I0 exp [ -α (λ ) x ]  

Equation 8  Absorption of light [8] 
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I0 is the intensity of light, α is the absorption coefficient, λ is the wavelength of light and x is the 

distance penetration depth of light from the surface of incidence.  

2.4.1  Photocurrent Generation and Spectral Response 

The solar responds to the different spectrum of the sun in different ways. This means that the 

amount of photo carriers generated varies for different wavelengths of sunlight. The spectral 

response of a solar cell gives us an idea about the quantum efficiency of the solar cell. The 

quantum efficiency of the solar cell tells us the amount of photons that are converted to 

electrons. Ideally this ratio should be one, but it varies depending on the wavelength of light and 

bandgap of the material. The rate of generated photo carriers is given by the equation: 

G( λ, x) = α (λ) F(λ) [ 1- R(λ) ] exp [- α (λ) x]  

Equation 9  Generation rate of photo carriers [6] 

where F() is the number of incident photons per cm
2
 per second per unit bandwidth, R() is the 

fraction of these photons reflected from the surface and x is the distance from the surface where 

EHP’s are created. Assuming low injection conditions and necessary boundary conditions, the 

spectral response is given by the equation: 

                                  SR(λ)  =                   1                   [ Jp(λ) + Jn(λ) + Jdr(λ) ] 

         qF(λ) [ 1 - R(λ) ] 

Equation 10  Spectral response 

Current density is current per unit area and it is represented by J. Jp(λ), Jn(λ) and Jdr(λ) are the 

photo-current density contributions from p-region, n-region and depletion region respectively. 

SR(λ) is the internal spectral response and q is the charge of an electron. The photocurrent 
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density can be obtained from the spectral response. If λm is the longest wavelength corresponding 

to the absorber bandgap, the photocurrent density is given by the equation: 

JL = q ∫                  
  

 
 SR(λ)  d λ 

Equation 11  Photocurrent density 

2.4.2  Current-Voltage (I-V) Characteristics  

As discussed previously when photon excitation create EHP’s near the depletion region, they 

give rise to the flow of charge carriers. These charge carriers are termed photocurrent. In the 

dark, the solar cell does not produce any photo current and it is given by the diode equation: 

I = I0 (exp (qV/kT – 1)) 

Equation 12  Dark current of a solar cell [1] 

where V is the applied bias, I0 is the reverse saturation current, k is the Boltzmann constant and T 

is the absolute temperature. When light is shone on a semiconductor material, photocurrent is 

generated and it is given by the equation: 

I = I0 (exp (qV/nkT – 1)) - IL  

Equation 13  Photocurrent under illumination [1] 

where n is the diode ideality factor and IL is the photo generated current. The short circuit current 

(Isc) is obtained when no bias is applied to the P-N junction and the open circuit voltage is 

obtained when I=0. The open circuit voltage is given by: 

VOC = (kT/q) ln [(IL/Isat) +1]  

Equation 14  Open circuit voltage [1] 
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The photo generated current (IL) is relative to the depletion width (W), minority carriers 

diffusion length of holes and electrons ( Lp and Ln), the area (A) of the active region and the 

generation rate (G) of EHP’s. It is given by: 

IL = qAG (Lp + Ln  + W)  

Equation 15  Photo generated current [1] 

The current-voltage (I-V) response to the dark and light is shown in figure 14 

 

Figure 14  I-V characteristics of a solar cell 

As shown in the figure, when the product of current and voltage is positive, as in the first and 

third quadrants, the solar cell acts a diode. This is analogous to the solar cell in dark. When the 

product of current and voltage is negative, as in the fourth quadrant, power is generated from 
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within. This is analogous to solar cell under light illumination. The point of maximum power 

(Pmax) is termed as the fill factor. The fill factor is also the product of maximum voltage Vmax and 

maximum current Imax. It is given by the equation: 

FF=VmaxImax/VocIsc   

Equation 16  Fill factor [1] 

The amount of light that is converted to electricity by the solar cell is given by the efficiency of 

the solar cell. The efficiency is given by the equation: 

η  = Pmax/Pi = FF VocIsc/Pi   

Equation 17  Efficiency of a solar cell [1] 

Pi is the power of light incident upon a solar cell. 

2.4.3  Equivalent Circuit of a Solar Cell 

 

a)                                                                         b) 

Figure 15  Equivalent circuit of a solar  cell  a) Ideal solar cell  b) Solar cell with series and 

parallel resistances 
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The ideal solar cell and a solar cell with series and parallel resistance is shown in the above 

figure. An ideal solar cell consist of the photo generated current IL parallel to the P-N junction, 

which is represented by the diode. It has infinite shunt resistance and zero series resistance. In 

reality, solar cells have series and shunt resistances. The series resistance (Rs ) has contributes 

from the bulk resistance of the semiconductor, the metal contacts and also from the contact 

resistance between the semiconductor and metal contacts. Majority of the series resistance is due 

to the resistance of the metal contacts. The effect of series resistance on the I-V curve can be 

seen in figure 16. The effect of Rs can be found from the I-V curve. It is the reciprocal of the 

slope of the I-V curve under high forward bias. The Rs has no effect on Voc and little effect on Isc, 

however the FF is significantly reduced. 

 

Figure 16  Effect of series resistance 

The shunt resistance is mainly attributed to any shorting paths in a solar cell. The presence of 

pinholes in a solar cell can lead to shorting paths. Figure 17 shows the effect of shunt resistance 
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on the I-V curve. Shunt resistance is the inverse of slope of the I-V curve under reverse bias. The 

Rsh affects the FF significantly and it als lowers the Voc and current. 

 

Figure 17  Effect of shunt resistance 
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CHAPTER 3: DEVICE FABRICATION AND CHARACTERIZATION 

This section deals with the device structure and outline followed by the methods used to 

fabricate them. Our fabricating techniques are clearly explained and the nuances in the 

characterization methods are also looked upon.  

3.1  Device Structure and Outline 

 

Figure 18  Structure of solar cell  

The fabrication of our CIGS solar cells takes shape as shown in the above figure. It’s a bottom –

up approach done by depositing layers of material over one another. The fabrication of the solar 

cell is started by depositing materials over a glass substrate. The glass substrate undergoes a 
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special cleaning procedure (discussed in detail in section 3.2) and then the following depositions 

follow through: 

1. A bi-layer of molybdenum with a thickness of about 1μm. It is deposited by DC sputtering of 

Molybdenum. This serves as the back contact of the solar cell. 

2. 2μm thickness of CIGS. It is deposited by thermal evaporation of Cu, In, Ga and Se sources. 

This is the absorber layer of the solar cell and it is a P-Type semicondcutor. 

3. 800Å of Cadmium sulphide (CdS) deposited by chemical bath deposition of cadmium 

actetate, thiourea and strong ammonia solution. It acts as the window layer and as N-type 

semiconductor for the P-N junction. 

4. The N-type layer is followed by a 800 Å thickess of ZnO. The ZnO is deposited by RF-

sputtering in the presence of argon and oxygen.  

5. The final layer of the solar cell is 3000 Å thick aluminum doped ZnO deposited by RF-

sputtering in the presence of Ar gas. It is doped with 2% Al.  It acts as the front contact of the 

solar cell. 

3.2  Fabrication Techniques 

3.2.1  Substrate 

The substrate is the base of the solar cell and it should be very clean and smooth. Scratches in the 

substrate have proven to have negative effects during absorber layer processing [23]. Soda lime 

glass (SLG) is the substrate used by our group. SLG is preferred due to its low cost and easily 

availability. SLG is first cut into several 2mm thick square pieces of side 1.34” x 1.34” using a 

glass cutter. As mentioned earlier (section 1.5.2), the diffusion of sodium from SLG is vital for 

good device performance. The SLG has a limitation to the maximum temperature it can be 
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heated. Warps and imperfections were observed in samples when the substrate temperature went 

above 600
ᵒ
C. SLG is then put to a series of cleaning steps starting with soap scrubbing the glass 

pieces. Usually a group of ten glass samples were subjected to the cleaning procedure at a time. 

To minimize damage while scrubbing, we made sure that the teeth of the brush were very soft. 

The soap scrubbing is done for 3 minutes and after this the individual samples are rinsed under 

DI water for 2 minutes. After a group of ten samples are scribed and washed, they are place in a 

holder and put inside a teflon beaker. The beaker is filled with methanol and it is sonicated for an 

hour. This is believed to remove organics from the glass. After an hour sonication, the methanol 

is emptied and the samples are washed in DI water again. The beaker is filled with DI water and 

it is sonicated again for an hour. This makes sure that the glasses are clean from alcohol. The 

samples are kept immersed in DI water until they are ready for usage. Just before usage, the 

samples are rinsed once again in running DI water and dry blown with compressed nitrogen. The 

samples are also slightly heated or kept in the oven for 15 minutes to ensure it is free from 

moisture before the deposition starts. 

3.2.2  Molybdenum Back Contact 

Molybdenum is chosen as the back contact because it forms an ohmic contact with the absorber. 

The deposition chamber is first pumped down to a base pressure of 4μT. It is then purged with 

Argon gas for the gas to occupy a certain pressure of the chamber. The effect of pressure and 

power is very critical during the deposition of molybdenum. Films deposited under high power 

and low pressure are more conductive but have poor adhesion to the SLG as the film is under 

compressive stress, whereas films deposited under low power and high pressure have better 

adhesion but poor conductivity as the film is under tensile stress [15]. A bilayer of molybdenum 

is deposited with the initial layer deposited under high working pressure (10mT) in order to get 
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good adhesion with SLG and the second layer is deposited at low pressure (4mT) to get good 

conductivity. A constant power of 860W was used throughout. The rate is kept constant at 12Ȧ/s 

for the initial layer and 15Ȧ/s for the second layer. The initial layer is 2000Ȧ thick and the 

second layer is 8000Ȧ thick. Such a bilayer structure is used as the back contact of the solar cell.  

3.2.3  CIGS Thermal Evaporator System 

The CIGS absorber layer is a P-type semiconductor. Ongoing research and past data from the 

USF semiconductor laboratory has suggested that the best devices are made with Ga/(In+Ga) 

ratio close to 0.3 and Cu/(In+Ga) close to 0.9. The CIGS absorber layer fabricated in this thesis 

deals with a multisource thermal evaporation system. The system has 4 effusion cells each 

containing the materials copper, indium, gallium and selenium. Each effusion cell has a crystal 

monitor associated with it to determine the rates at which the elements are deposited. The power 

controllers heat up the effusion cells, the power is varied based on the feedback from the 

thermocouple. A set temperature is entered in the power controller and the thermocouple gives 

the feedback to the power controller based on the temperature of the respective effusion cell. 

When the set temperature is reached, the feedback makes sure that the effusion cells receive 

optimum power to maintain the desired temperature. Care should be taken while using a multi-

source system for absorber deposition. The wide variety of elements and the long fabrication 

time used to create the absorber can increase the rate of error inside the chamber. The chamber 

should be well cleaned from time to time and the effusion cells must be checked for power and 

thermocouple shorts often. Liquid nitrogen is used as a cold trap, mainly for freezing the Se 

vapors. This helps to protect the turbo pump during the course of the run. A gate valve is used to 

divide the chamber into two and a vent valve is used to vent the chamber after the deposition.  

Figure 19 shows a rough overview of the multisource evaporation chamber. 
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Figure 19  Thermal evaporator used in CIGS growth 
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A sample is tightened to a sample holder and loaded to the chamber. The thermal evaporator has 

two pumps to keep it under vacuum. Initially the roughing pump or mechanical pump is used to 

pump the chamber to a pressure of 90mT. The roughing valve is opened first and this pumps 

down the section above the gate valve to 90mT. Once this pressure is reached, the roughing 

valve is switched off and the foreline valve is turned on. The section below the gate valve is then 

pumped down to 90mT. The pressure readings from the chamber are read by the two 

thermocouple gauges TC1 and TC2. Once the upper and lower section of the gate valve is of the 

same pressure (90mT), the gate valve is opened. After the gate valve is opened, the chamber 

becomes whole instead of two separate sections and the pressure is low enough for the turbo 

pump to be switched on. The ion gauge is used to read pressures below 1mT. The turbo pump is 

switched on and the chamber is allowed to pump down to 5μT. This pressure is low enough to 

have a large mean free path and once this pressure is reached the effusion cells are gradually 

heated in steps. The substrate heater which is controlled by a variable transformer is also 

simultaneously ramped up to desirable temperature. In the figure 19, the shutters to individual 

effusion cells are not shown to avoid complexity of the diagram. Shutters for individual cells can 

be opened to check if the rates of the materials are as required. There is also a sub shutter which 

covers the sample and is opened only when the deposition begins. So the need of worry for 

sample contamination during opening the effusion cell shutters is avoided. The sub shutter is also 

not shown in fig 19 to avoid complexity of the diagram. Once the effusion cells have reached 

desired temperature, a program which uses light-o-rama controller to open and close shutters at 

precise intervals is used to follow a particular time profile for the growth process. The intervals 

at which these shutters are opened and closed decide the outcome of the deposition.   Liquid 

nitrogen is filled to a tank and it is connected to the chamber through a hose. This set acts as a 
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cold trap for the system. After the deposition is finished, turbo is switched off, roughing valve 

and foreline valve are closed and the system is allowed to cool to around 50
ᵒ
C. After the chamber 

has cooled, the vent valve is opened and the chamber is vented. The sample is now ready for the 

next step. 

3.2.3.1  Fabrication of the CIGS Absorber Layer 

The fabrication of the two stage growth recipe starts with the deposition of Copper, Gallium and 

Selenium. The rate of copper, gallium and selenium are maintained at 2Å/s, 1.5Å/s and 15Å/s 

respectively. Details regarding the flux rates and order of deposition are mentioned in the results 

section. The fluxes of copper, gallium and selenium combine together on a molybdenum coated 

glass substrate, which is placed at an optimum distance from the sources and maintained at 

300°C (figure 19). The CGS deposition goes on for the first 34 minutes. During the 27
th

 minute 

of the CGS deposition, the substrate temperature is increased from 300°C to 550°C and the 

selenium flux is increased from 15Å/s to 25Å/s. This rise in substrate temperature and selenium 

flux is done uniformly in a time span of 7 minutes. An increase in the substrate temperature 

increases the incorporation of Se in a CIGS film [21]. At the 34
th

 minute, the substrate 

temperature is 550°C and the selenium flux is 25 Å/s, it is at this point indium comes into play 

and it has a flux rate of 2.5Å/s. The metal fluxes are Cu-2Å/s, In-2.5Å/s and Ga-1Å/s. From this 

point on, the second stage of deposition takes place till the 56
th

 minute. Thus the second stage of 

deposition lasts for 22 minutes and the total run time mounds to 56 minutes. At the 56
th

 minute, 

the metals are switched off, but the Se flux is maintained at 15 Å/s for 10 minutes. This step 

ensures that there is enough Se flux to maintain the selenization. At the end of the 66
th

 minute, 

the potentiometer which maintains the substrate temperature at 550°C is turned to zero, and the 

sample is set to cool to room temperature. As there is a loss of gallium and indium due to the 
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formation of volatile gallium and indium species [22], the selenium flux is maintained at 5 Å/s 

until the substrate temperature reaches 225°C. This temperature drop takes about 20 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20  Time-Temperature profile for CIGS absorber layer 

3.2.4  Chemical Bath Deposition of the N-type Contact 

The CIGS layer is succeeded by the deposition of cadmium sulfide (CdS).  CdS has a bandgap of 

around 2.4eV and the wavelength of sunlight in this region is absorbed by this layer and the 

wavelength lesser than this bandgap is transmitted through the layer. CdS is deposited by 

chemical bath deposition of cadmium acetate, thiourea and strong ammonia solution. The 

process is as follows: A beaker is filled with 400ml DI water. After the deposition of absorber 
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layer, the sample is kept under vacuum until the sample is ready for the CdS deposition. The 

sample is taken out just before the CdS deposition and it is immediately placed in a sample 

holder and put into the beaker filled with DI water. A magnetic stirrer is placed below the sample 

holder. 60ml of 0.15M cadmium acetate and 75ml of strong ammonia solution is poured into the 

beaker filled with DI water. This setup is the placed in a hotplate and a predetermined heating 

rate is set and the magnetic stirrer is made to spin. Once the heating and stirring starts, a 

thermometer is inserted inside the beaker to note the temperature of the solution. When the 

temperature reaches 30
ᵒ
C, 60ml of 0.15M thiourea is added to the solution. The solution is 

heated until 80
ᵒ
C and then it is timed to about 1 minute and 30 seconds. Since a lot of parameters 

are associated with the procedure a proper understanding of the precipitation process and the 

color change of the solution is required to know if a proper deposition has taken place. Once the 

sample holder is taken out of the solution, it is transferred to another beaker containing DI water 

and allowed to cool for 5 minutes. Once this is done, the water containing impurities is poured 

and new DI water is filled in. The beaker is set to sonicate for 15 minutes [16]. It is also proven 

to produce uniform films under non optimal conditions (excess or shortage of precursor 

concentrations). The sample is now ready for the subsequent intrinsic layer and top contacts. 

3.2.5  ZnO Deposition 

The intrinsic ZnO is deposited after the CdS deposition and before the front contact. The role of 

ZnO is to act as a buffer layer. It is called as the buffer layer because it protects the sensitive 

absorber layer from damage during subsequent processing of other layers. For example, our 

procedure follows the deposition of aluminium doped zinc oxide (ZnO:Al) by RF sputtering after 

the ZnO deposition. If this deposition had taken place before the buffer layer growth, it would 

have damaged the absorber layer. ZnO is deposited by RF sputtering. 800Ȧ of ZnO is deposited 
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in an atmosphere of argon and oxygen. The sample is slightly heated before the deposition to 

drive off any moisture on the substrate. The power of the sputtering gun is maintained at 330W 

and the rate of deposition is maintained at 2Ȧ/s. It also serves as a barrier to the aluminium 

atoms of the succeeding front contact layer. This barrier stops the Al atoms from diffusing into 

the CdS layer and causing a short.  

3.2.6  Front Contact ZnO:Al Deposition 

The front contact is contains a layer of ZnO doped with aluminium. It is deposited by RF 

sputtering of ZnO:Al target. Before the ZnO:Al deposition, a mask containing 10 dots (each of 

1cm
2
 area) is placed onto the predecessor layer of  i-ZnO. The device is then loaded into the 

chamber and the deposition is done. A ZnO:Al layer, which is 3500Ȧ thick is deposited at the 

rate of 10 Ȧ/s and a temperature of around 125  C. The power of the sputtering gun is maintained 

constantly at 330W. The electrical and optical properties of this layer are essential to the current 

produced in a solar cell. The resistivity is expected to be in the higher 10
-4

 region and optical 

transmission of 90% of the sunlight is expected. Degradation of the target dopants can cause a 

dip in the electrical and optical properties of ZnO:Al layer which might have a negative impact 

on the current produced by the solar cell. 

3.3  Characterization of the Device 

3.3.1  Energy Dispersive Spectroscopy (EDS) 

EDS is a technique which uses electron beams to excite the emission of characteristic x-rays 

from a sample. This technique has a lot of nuances associated with it. The solar cells 

characterized by our EDS quantitative technique are bound to have a small errors associated with 

quantitative analysis. One of the most important criteria for EDS quantitative analysis is that the 

sample should be homogenous. The procedure used to fabricate our absorber layers makes it 



38 
 

non-homogenous. We use a two layer fabrication method, each layer having a different 

stoichiometry from the other. An EDS performed after the two layer fabrication will be semi 

quantitative. Another factor involved with the EDS quantitative analysis is the depth from which 

characteristic x-rays are excited. The depth from which the x-rays are emitted depends on the 

beam current and the thickness of the sample. If the sample is too thin, the x-rays generated from 

the bulk might not be very accurate. Thus, an analysis done on the sample should ensure that the 

sample is homogenous, thick enough for X-rays to pass through the bulk and should also have a 

smooth surface, which helps in eliminating topographic error. Figure 21 shows the diagram of 

electron-sample interaction which takes place during EDS analysis. The characteristic x-rays are 

used to analyze the sample qualitatively and quantitatively.  

 

Figure 21  Electron beam - Sample interaction 
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There are some complications associated with characterizing samples before CdS deposition. An 

EDS performed before the CdS deposition might cause harm to the absorber layer. It is not 

advisable to expose the absorber to the atmosphere for a long time as well. Chances of oxygen 

and water vapor accumulation are more when the sample is used for analysis and this does not go 

well during the subsequent CdS deposition.  

3.3.2  I-V Characteristics 

The solar cells were subjected to current-voltage measurements in the dark and light. The curves 

and plots obtained from dark and light measurements were analyzed. The variation in efficiency 

was compared to the position and the stoichiometry at that position. 
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CHAPTER 4: RESULTS AND DISCUSSION 

The credit behind the growth recipe goes to the research activities conducted in our lab so far. 

We have found a way to reduce the cost of CIGS manufacturing using an advancement of the 

two-stage process. The research looks promising, but the poor reproducibility of results makes it 

a daunting task for up scaling the process. Errors associated with a multistage evaporation 

system, improper sample cleaning and storage and nuances in chemical bath deposition 

techniques are the leading causes associated with poor reproducibility. The results of the device 

are reproducible after the errors were culminated. 

4.1  Two-Step Growth Recipe  

The two step growth recipe involves the deposition of Copper Gallium Selenide (CGS) followed 

by Coppper Indium Gallium di Selenide (CIGS). This may come as a surprise as the bandgap of 

CGS (~1.68eV) is higher than the bandgap of CIGS (~1.18eV). The reason why CGS is 

deposited initially is because it provides a growth base for the deposition of CIGS. A copper rich 

CGS will provide the subsequent layer of CIGS with a larger grain size.  Materials deposited at 

different times throughout the growth cycle are preferred to single stage co-deposition [17]. 

There is little scope of improvisation in a co-deposition process, whereas materials deposited at a 

particular time, can make use of certain advantages present at that time. Selenium incorporation 

in CIGS film is vital to the device performance. Selenium incorporation is almost 50-60% for a 

wide range of selenium to metal ratios. At low selenium flux, there may be loss of copper [18]. 

This is a menace, especially when we are trying to get a copper rich CGS base. Thus a low 
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selenium flux will deter a copper rich base and reduce device performance. It is very important 

to keep the Selenium to metal flux ratio at 3-5. Figure 22 shows the metal ratio present with 

respect to the atomic % of Se. These data points were obtained as a result of series of runs which 

had varying selenium fluxes. The Se fluxes were unmonitored during the course of the run and 

the varying data supports the fact that the process was not reproducible due to uncontrolled Se 

flux rate. Under conditions that give rise to excessive Se incorporation there is apparent loss of 

Ga as well. 

 

Figure 22  Cu/In and Cu/Ga as a function of Se content 

4.2  Controlled Selenium Flux 

The two stage process takes place in a chamber with four effusion cells, one each for copper, 

indium, gallium and selenium. The metals which include copper, indium and gallium, have an 

evaporation rate which is linearly proportional to temperature. After reaching their evaporation 

temperature, their flux rate increases at a constant rate with rise in temperature. Thus the metals 

practically require no monitoring; they just have to be kept at a constant temperature to provide 

the necessary flux. Selenium on the other hand, is very difficult to control. Once the evaporation 

temperature is reached, even a small increase in temperature will render the selenium flux 
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uncontrolled. Once selenium reaches its evaporation temperature its flux rate increases 

exponentially with rise in temperature. Unmonitored selenium fluxes usually disrupt 

reproducibility and throw off the stoichiometry. Figure 24 shows the atomic percentage of 

selenium for eight different depositions, four which were done when the selenium flux was not 

monitored and four which had their flux rate monitored. The metal ratios of the unmonitored Se 

fluxes were inconsistent but we can see that the monitored Se flux runs had reproducible results. 

We can also see that the incorporated Se for the monitored deposition is 60% (which is too high); 

this needs to be 50 %. This can be achieved by reducing the flux rate of Se. 

 

Figure 23  Monitored vs Unmonitored Se flux depositions 

4.3  Growth Recipe Changes 

The previous two stage growth recipe developed in our lab was poor in stoichiometry 

reproducibility. This was due to the fact that selenium received the same treatment as the metals, 

with respect to heating and maintaining a fixed temperature to get a constant evaporation rate. 

The assumption was that all the elements had a constant flux rate for a fixed temperature. This 

assumption proved to be costly in terms of reproducibility. There was no fixed Se temperature to 

maintain a constant flux rate. This is attributed to the ongoing formation of secondary 

thermocouple effects under the effusion cell. When the Se flux was better monitored, meaning a 

45

48

51

54

57

60

63

0 2 4 6  
In

co
rp

o
ra

te
d

 S
e 

(%
) 

(Cu+In+Ga)/10 

Monitored and
controlled Se flux
deposition

Unmonitored Se
flux deposition



43 
 

certain amount of power was given to maintain a constant flux rate, the growth recipe needed 

certain changes. The usual growth recipe had the CGS deposition for 29 minutes and CIGS 

deposition for 22 minutes, Cu was shut off 5 minutes before the total deposition time of 56 

minutes. The Cu cut off towards the end was done to maintain stoichiometry. This growth recipe 

apart from imitating the three stage deposition also proved to disrupt the metal ratios when a 

constant selenium flux of 25 Å/s was maintained. Series of runs were done to find the right 

combination. The initial CGS deposition was cut off by 5 minutes, making the first stage of 

deposition close to 24 minutes and the second stage of CIGS deposition was made to run for 27 

minutes taking the total run time to 56 minutes, a constant selenium flux of 25 Å/s was 

maintained throughout. Let this be called as process 1. Figure 24 shows the Cu/In and Cu/Ga 

ratios for process 1. The results of process 1 were reproducible, but we were using selenium flux 

in excess. Few more changes to the growth recipe were done to reduce selenium wastage and get 

the optimum ratios. Instead of constantly maintaining the selenium flux at 25 Å/s, we maintained 

selenium to metal flux ratio of 5. The initial CGS run had a selenium flux of 15 Å/s and the 

subsequent CIGS run had a flux of 25 Å/s, thus avoiding wastage of selenium without 

compromise in quality. This is called process 2.  

 

Figure 24  Growth recipe results for process 1   
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Figure 25  Growth recipe results for process 2 

Figure 26 shows the Cu/In and Cu/Ga ratio in process 2. Figure 24 and figure 25 show a few 

deviations in the Cu/Ga ratios .These deviations are due to gradients found along the sample. 

These gradients are an outcome of variation in elemental thickness (discussed in section 4.5). 

Figure 28 shows the metal to group III ratios for process 2. The values of the metal to group III 

ratios determine the quality of the device. A Cu/III ratio of (0.9 - 1) and a Ga/III ratio of (0.2 - 

0.3) are expected for a good device. 

 

Figure 26  Metal/III ratios for process 2  
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The copper cut off time was adjusted so that all the elements were shut at the 56
th

 minute, 

making it an ideal two stage process. This also proved to be helpful for increasing the Cu content 

in process 2, as a majority of the Cu/III points were below 0.9. This growth recipe has a CGS 

deposition for the first 34 minutes and followed by a CIGS deposition for the next 22 minutes. 

The Cu cut off time was slowly increased over the processes to make sure Cu shuts off towards 

the end of the run. Figure 27 shows how the Cu/III ratio keeps increasing as a result of constant 

Se flux and increasing Cu cut off time. The run is engineered to get a Cu/III ratio of 0.9-1 and a 

Ga/III ratio of 0.2-0.3.   

 

Figure 27  Copper cut off time 
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growth recipe change was to reduce selenium wastage and increase the atomic percentage of 

copper, overall increasing the copper to group III ratio. By introducing the indium lately, we 

hoped to bring down the indium atomic percentage and increase the copper by a few atomic 

percentages. The unexpected act was how gallium reacted to the growth recipe change. For the 

same gallium rate, a fall in gallium content by a factor of 2/5 was observed, indicating a gallium 

loss of 40%. We also observed a fall in selenium atomic percentages. It is well understood that 

the there is more time of CGS deposition for a late introduction of indium. For a CGS deposition, 

selenium must form various compounds with copper and gallium. The loss of gallium points to 

the direction of the formation of volatile gallium (GaxSey). Even though there is a fall in gallium 

content, the rate of gallium deposition is same in both the growth recipes (process 1 and process 

2), meaning the amount of gallium used up in the process is the same. The gallium incorporation 

has a loss of 40% and this is not a major concern because the Ga/III ratio is brought down from 

0.34 to 0.24. The Ga/III ratio was high in the first place and bringing it down only adds more 

sense to the process.  

 

Figure 28  Atomic % of elements present in process 1 and process 2 
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Figure 29  % change in atomic percentage of elements between process 1 and process 2 

Figure 29 shows the percentage change in atomic percent of elements between process 1 and 

process 2.  We can see a 24% increase in Cu, an unchanged In, a 47% decline in the Ga content 

and a 3% fall in the Se content. The shift in process has a profound effect on Cu and Ga.  
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a minor error for the huge variation it shows. The error can be due to the fact that kapton tape 

was placed, peeled and replaced on the sample. As a result of this there were glue deposits from 

the kapton tape. This might have caused a minor error during the step height measurement. The 

figure shows that copper is pretty stable throughout the sample but selenium has a lot of 

variations. The high flux rate of selenium can contribute to the non-uniform thickness across 

sample. Figure 32 shows the variation of device performance with variation in stoichiometry. 

 

Figure 30  Atomic composition of elements for SC-47 

 

Figure 31  Thickness variation across the sample 
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Figure 32  Device performance as a result of thickness variation 

As mentioned previously, an EDS measurement done after the deposition of cadmium sulphide tends to 

deviate from the normal readings a little. This can be seen in figure 32, where a Cu/III ratio of 1.2 has 

good device properties, but in reality a Cu/III ratio of 1.2 should not yield working results.  

4.6  Improper Sample Storage and Cleaning Process 

Glass samples are transformed to solar cells with subsequent thin film depositions. These glass 

samples must have a proper storage and cleaning process. Molybdenum back contact and the 

CIGS absorber layer are very sensitive to the cleaning and storing process. Glass samples should 

never be stored in polymers. The usage of polymers to store samples might lead to sample 

contamination. When we used polymers to store samples, we found that our subsequent back 

contact deposition was not adhesive to the glass sample. Instead of recognizing this as an issue 

with sample storage, we thought our cleaning process was not good enough and we introduced 

Hydrogen Fluoride (HF) treatment to the cleaning process. Although the adhesion issue was 

solved using this step, the device performance was on the decline side. The reason HF treatment 
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was able to solve the adhesion issue was because HF was able to etch away the polymers 

sticking to the glass substrate. HF was instrumental in getting a proper molybdenum back contact 

deposition, but we found that it also dissolved the sodium in the soda lime glass. With this 

happening, there will be no sodium available for diffusion during the CIGS growth process.. This 

was partly believed to degrade device performance. We finally identified issues with polymer 

storage and HF treatment and got rid of both the parameters. There was a good adhesion between 

glass and molybdenum back contact after the polymer storage was stopped, even without the HF 

treatment. Care should be taken while cutting the soda lime glass into smaller pieces using a 

glass cutter. Small glass debris and impurities flying around during the cutting process should be 

immediately washed. Cutting a bunch of samples together, without washing the individual glass 

pieces immediately, will allow the impurities to dry.  

 

 

a)                                                                           b) 

  

Figure 33  SEM images of molybdenum  a) Gradients observed due to polymer storage       

b) Contamination observed at 30000X due to polymer storage 
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Figure 34  Imperfections arising due to improper sample cleaning and storage 

4.7  Nuances in Chemical Bath Deposition 

There are two types of growth of CdS films; they are Ion-by-ion growth and cluster-by-cluster 

growth.  Ion-by-ion growth give rises to A-quality films and cluster-by-cluster growth give rises 

to B-quality films [19]. A-quality films are required for uniform deposition and homogenous 

nucleation. The speed of the magnetic stirrer is vital to the outcome of deposition. An increase in 

the stirring speed causes the arrival rate of Cd
+2

 and S
-2

 ions to increase. This results in 

precipitation of the colloidal CdS particles which grow only by ion-by-ion growth [19]. Vigorous 

stirring is also proven to reduce the powdery nature, physical coherence and spectacular 

reflectance of the films [19]. The increase in the deposition rate lowers the saturation thickness 

[19]. In general, the light absorbed in the CdS layer decreases the quantum efficiency in the blue 

part of the spectrum [20]. Thus, a less thick film, gives better quantum efficiency through the 

spectrum. Initially due to our low spinning speed, we formed a cluster-by-cluster growth of CdS. 

The precipitation on the sample was powdery and when sonication was done, the precipitated 
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powder fell and gave rise to pin holes. When the spinning speed was adjusted, the CdS 

deposition on the sample was homogenous and there were no powdery precipitates. 

 

                                     a)                                                                         b)     

Figure 35  a) Uneven grains due to low spinner speed  b)  Even grain growth for an 

increased spinner speed 

 

 

                                     a)                                                                           b) 

Figure 36  a)  Non uniform deposition due to cluster-by-cluster growth  b) Uniform 

deposition due to Ion-by-ion growth 
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4.8  EDS Depth Penetration 

EDS was extensively used for determining the atomic composition of elements in the CIGS solar 

cells. The beam voltage determines the penetration depth. For the atomic elements present in a 

sample, EDS beam voltage can be between ten times the lowest peak of interest and two times 

the highest peak of interest for accurate results. The input beam voltage for CIGS was varied for 

two input voltages 25KeV and 15KeV. The variation in elemental composition as function of 

depth is studied. A casino simulation of how far the input beam travels through the sample is also 

shown. The blue colored lines are the primary electron beam which creates the X-rays required 

for EDS analysis and the red colored lines are the backscattered electrons.  

 

 

 

 

 

 

 

 

 

 
 

Figure 37  A depth profile simulation at 25KeV 
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Figure 38  A depth profile simulation at 15KeV 

Parameters such as the elements in the sample, thickness of the sample and the beam voltage are 

inputted for the simulation of depth profiling. The simulation in figure 37 shows that the 

obtained atomic composition for 25KeV input voltage is roughly from the first 1700 nm of the 

CIGS sample. The total CIGS thickness is 2000 nm (or 2 μm). Similarly, figure 38 shows that 

the obtained atomic information for a 15KeV input voltage is from the first 720 nm of a 2000 nm 

thick CIGS sample. The input voltage of 25KeV gives the in-depth detail of the sample, whereas 

the input voltage of 15KeV is more towards the surface. Thus grading of elemental composition 

with respect to the depth can be seen. Figure 39 shows the atomic composition of elements for an 
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input voltage of 25KeV. From the simulations above, we can roughly determine the depth of the 

information to be from the first 1700 nm of the 2000nm thick CIGS sample. 

 

 

 

 

 

 

Figure 39  EDS analysis on CIGS sample at 25KeV 
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Figure 40 shows the atomic composition of elements for the same CIGS sample at 15 KeV. This 

information is obtained from the first 700nm of the CIGS sample. A decline in In, Cu and Ga 

atomic percentages and an increase in the Se atomic percentage can be seen.  

 

 

 

 

 

 

Figure 40  EDS analysis on a CIGS sample at 15KeV 
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A decline in the Ga atomic percentage from the top of the sample to the bottom confirms gallium 

tendency to accumulate towards the back of the device. The importance of this is already 

discussed in section 1.5.1. 

4.9  I-V Characteristics of the Device 

I-V characteristics were obtained for devices made with process 1. A Cu/III ratio of 0.78 and 

Ga/III ratio of 0.34 yield the following I-V characteristics.  

 

Figure 41  Dark I-V for SC-53 

 

Figure 42  Light I-V for SC-53 
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A highest Voc of 520 mV was obtained for Cu/III of 0.666 and Ga/III of 0.43. Figure 42 and 43 

show the dark and light I-V curves for SC-56. 

 

Figure 43  Dark I-V for SC-56 

 

Figure 44  Light I-V for SC-56 

The increase in Voc is attributed to the increase in Ga/III ratio. An increase in Ga/III ratio 

increases the bandgap of the device thereby increasing the Voc. Even though there is an increase 

in Voc , the current and fill factors take a hit and reduce the device efficiency. This highlights the 

-0.00005

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

-0.4 -0.2 0 0.2 0.4 0.6 0.8

Dark I-V 

Series1

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

-0.4 -0.2 0 0.2 0.4 0.6 0.8

Light I-V 

Series1



59 
 

need for the right stoichiometric balance to get optimum device performance. The best efficiency 

curves were obtained for Cu/III of 0.98 and a Ga/III of 0.35. Figure 44 and 45 show the dark and 

light I-V characteristics for SC-47. 

 

Figure 45  Dark I-V for SC-47 

 

Figure 46  Light I-V for SC-47 
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There was a hiatus in the solar cell manufacturing and we concentrated on developing the 

absorber with optimized elemental usage. When the manufacturing of solar cells resumed, we 

were having issues with producing solar cells with good current and fill factors. A part of this 

can be blamed on the top contact. The depletion of the target had reduced the conductivities of 

the top contact. Figure 46 and 47 shows the I-V characteristics of process 2. 

 

Figure 47  Dark I-V for MSC-11 

 

 

Figure 48  Light I-V for MSC-11 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

The objective of this thesis was to control processing the of two stage CIGS solar cells. The 

control of the process minimizes error and enhances throughput during commercial manufacture. 

Different processes have been tried to get the right recipe useful for scaling up of the process. 

The solar cells made with process 2 have an optimum elemental usage with the right 

stoichiometric balance. To achieve reproducible results with this process, it is important to 

follow certain guidelines. The basics of the guidelines start with the storing and cleaning process. 

The samples should never be stored in polymers, even prior to the cleaning process. The effect of 

improper sample storage can be seen on the back contact and also on the absorber.  It is 

important to use only DI water throughout the cleaning procedure, even while soap scribing the 

glass samples. A proper monitoring of the Se flux is required for reproducible absorber layer. It 

is also helpful to understand how the evaporation rate of Se changes with temperature. It is better 

to do a rate monitoring test for all the effusion cells from time to time. This is because metals and 

metal-selenium compounds might get deposited under the thermocouples, leading to a secondary 

thermocouple under the effusion cell. Removing the effusion cells outside the chamber is not 

recommended on a regular basis. This often leads to changes in the orientation of the effusion 

cells which throws off stoichiometry of the absorber. Care should be taken after the deposition of 

CIGS absorber layer, an EDS measurement done after absorber layer deposition might be 

harmful for the absorber layer. EDS is always preferred to be done after CdS deposition. CdS 

should be done immediately after the sample is taken out of the vacuum chamber and it is 

preferable for the CIGS sample to remain in vacuum before the CdS deposition. Nuances in 
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chemical bath deposition of CdS are to be kept in mind while doing the run, mainly with the 

spinning rate which determines if the solution is grown by ion-by-ion growth or cluster-by-

cluster growth. The quantitative readings from the EDS after CdS deposition cannot be taken as 

such. We must understand that there is a slight error involved and should be open to the idea of a 

plus or minus 5-10% error. Also the quantitative amount of Cd and S in the overall EDS data, 

throws the ratio of CIGS a bit. Another factor to be wary of during the processing of CIGS solar 

cells is the top contact. The top contact, ZnO:Al, is very sensitive to oxygen present inside the 

vacuum chamber. A low base pressure (< 6 µT) is to be maintained prior to the deposition. 

Heating the chamber before achieving the base pressure also helps in reducing the partial 

pressure of oxygen inside the chamber by releasing all the water vapor molecules sticking to the 

chamber walls. It is important to have a temperature of at least 125  C during the ZnO:Al top 

contact deposition. Thus a propitious process for two stage CIGS solar cells was developed. A 

better control during the growth process and a reproducible device stoichiometry was achieved. 

The process has great potential to enhance throughput of commercial manufacture of CIGS solar 

cells. Further improvements in the process can be made with better conductivity of the top 

contact.  
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