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Abstract

Wireless energy harvesting is one of the promising alternative methods to power next
generation wireless networks such as wireless sensor networks and wireless communi-
cation networks. In Wireless Energy Transfer, in order to improve the energy harvesting
capability, energy beamforming has recently drawn significant research attention, where
we can direct the majority of transmit signal energy to a particular set of receivers.

In this thesis, we consider energy harvesting in wireless networks and investigate
optimum energy harvesting schemes with different objectives. This thesis is divided
into two parts. In the first part, we focus on transmit energy beamforming for multi-user
networks. We first obtain the optimum beamforming scheme in order to maximize the
total energy harvested by all users. Next, we identify that total energy maximization
can lead to big differences in the energy harvested by the users. Therefore, in the pro-
ceeding chapters we investigate different beamforming schemes to increase the fairness
among the users. Furthermore, we extend our analysis to obtain transmit beamforming
schemes to achieve throughput fairness among users. In the second part of this thesis,
we focus on wireless energy transfer in point-to-point networks. In particular, we look
at opportunistic energy transfer schemes to transfer energy from a power transmitter to a
receiver when the receiver is imposed with a strict time deadline. We first formulate the
problem for a general model to handle multi-antenna networks with different models for
channel fading with the assumption that the energy consumed for channel estimation is
negligible.We look at different special cases of the problem and compare the proposed
solution to a non-causal solution as an upper bound. Then we reformulate the problem
to consider the channel estimation energy and obtain the optimum opportunistic energy
transfer scheme.
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Chapter 1

Introduction and Background

1.1 Motivation of the Thesis

Wireless communications have advanced tremendously in the past decades to become

an essential and inseparable part of our daily lives. The current fourth-generation (4G)

networks, also known as long term evolution-advanced (LTE-A) networks, support vir-

tually all forms of modern communications including voice, email, video, and data for

other applications without requiring the devices and users to be tethered to wired lines.

Technologies for 5G and future generations of connectivity will provide higher band-

width and lower latency than current-generation 4G technology. Most importantly, these

technologies are expected to enable fundamentally new applications that will transform

the way humanity lives, works, and engages with its environment [1]. Given the growth

trends of smart wireless phones and devices that can support advanced data intensive

applications such as video conferencing, we can anticipate major challenges to arise in

wireless communications such as increasing demand for data rates, spectrum crunch,

high energy consumption and environment impact [2]–[4]. As more and more essen-

tial medical, educational, safety and governmental services move online and ubiquitous

wireless access becomes the norm, the need for resolving these challenges becomes

increasingly pressing [5].

Currently, wireless networks contribute to around 2−2.5% of global green-house gas
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emissions, with the expected wireless traffic growth making the situation much worse.

This becomes one of the major challenges in meeting the green environment where

more efficient and environment friendly communications are achieved via wireless in-

frastructure implemented with low-carbon systems and possible ways of using and man-

aging energy harvested from renewable sources such as solar and ambient radio signals.

Energy efficiency of wireless networks refers to both user and network energy savings.

To prolong the users battery lifetime as well as to achieve green communications, an

appealing solution is to harvest energy from environmental energy sources such as solar

and wind. Powering communication nodes by wind or solar allows telecommunica-

tion networks to expand beyond the limits of the general power grid, but leads to many

challenges due to constant unavailability, limited space, implementation overhead, and

requirement of large scale infrastructure. Motivated by these challenges, recent research

specifically focuses on wireless energy harvesting (or wireless energy transfer) that en-

ables a more convenient wireless environment. However, one of the major drawbacks

of wireless energy transfer (WET) is the poor efficiency due to the path loss with the

transmission distance. This effect is much worse when we use omni-directional trans-

mit antennas. Using advanced energy beamforming techniques in multi-anntenna sys-

tems can improve the energy transfer efficiency significantly. By carefully shaping the

transmit waveform at each antenna, energy beamforming can control the collective be-

haviour of the radiated waveforms causing them to coherently combine at a specific

receiver. This means that, compared to single antenna omni-directional transmission,

using multi-antenna transmission with beamforming, energy transfer efficiency can be

further improved without additional bandwidth or increased transmit power. Motivated

by this phenomenon, This research focuses on beamforming techniques for wireless

powered communication networks. Specifically, we study different energy beamform-

ing schemes in order to achieve a given objective in the network performance and in-

vestigate on different beamforming schemes to improve the harvested energy at the

receiving end.
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1.2 Outline of the Thesis

The focus of this thesis is to investigate different beamforming schemes and energy

transfer policies for efficient wireless energy transfer. We focus on theoretical analysis

as well as the design of practical algorithms. This thesis is presented in two parts.

Figure 1.1 gives an overview of the thesis and the relationships between the chapters.

We present a chapter-by-chapter summary of the thesis below.

• In Chapter 2, we develop an analytical framework to design a beamforming vector

which maximizes the total energy harvested by all users in the network. Then, the

effect of the network size is discussed in terms of number of transmitting anten-

nas/users. Further, a comparison between the proposed total energy maximization

scheme and equally weighted scheme is given.

• The total energy maximization scheme discussed in Chapter 2 may introduce se-

vere unfairness among the energy levels harvested by each user. In some cases, the

user may not achieve an adequate level of energy in order to perform a given task.

In such cases, these users must not be considered in the optimization problem.

Hence, in Chapter 3 we reformulate the problem such that only active users (users

who are able to achieve their minimum energy requirements) will be considered

for total energy maximization. We show that the optimization problem is non-

convex and obtain approximate solutions using a gradient projection based algo-

rithm. We further show that when all the users are in reasonable radio conditions

and able to achieve their minimum requirements, the optimization problem can be

reformulated into a sub-problem such that the minimum energy constraints of all

users are achieved. We show that this optimization problem is non-convex and we

obtain the approximate solution using an interior-point method based algorithm.

We compare the performance of the proposed interior-point-based algorithm for

the sub-problem against the results obtained by using the CVX optimization tool-

box for the semidefinite-relaxed problem. As a performance benchmark for the
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general problem, we solve the sub-problem using CVX toolbox for all the subset

of users and then obtain the maximum total energy harvested.

• In multi-user networks, different nodes harvest different energy levels depending

on their locations. Thus, in order to introduce more fairness, the max-min crite-

rion is used in Chapter 4. In particular, we maximize the minimum energy level

among all users. This may guarantee that all other users harvest energy more than

the minimum level. We identify that this problem is NP-hard in general and we

use semidefinite relaxation techniques to solve the optimization problem approxi-

mately. Further, we investigate the use of multiple beamforming vectors instead of

a single beamforming vector with the max-min criterion. Then, we compare this

scheme with the single beamforming scheme, total energy maximization, equally

weighted).

• Chapters 2- 4 are merely for energy harvesting. In Chapter 5, we consider data

transmission as well. In particular, we have two phases: i) energy harvesting:

all the users harvest a certain amount of energy at downlink; and ii) data trans-

mission: all users transmit data using the harvested energy. We consider a time

division multiple access (TDMA) based system with maximum ratio combining

(MRC). We formulate an optimization problem in order to maximize the mini-

mum throughput among all users. We compare the amount of data transmitted by

each user with this scheme and the equally weighted scheme.

• In Chapter 6 we consider a point-to-point network with multi-antenna system. In

particular, we consider the problem in which the energy transmitter is required to

transmit energy towards the energy harvesting user such that the user is able to

harvest energy before a given deadline. By considering perfect yet causal channel

state information, we obtain the optimum energy transfer policy. Specifically, we

jointly optimize for the level of energy transmitted at each frame and the optimum

beamforming vector to be used. As a benchmark we compare the proposed policy
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Figure 1.1: Overview of the Thesis.

against the genie-aided method under different multi-antenna models and channel

fading. For the SISO Rayleigh case, we provide asymptotic analysis for both the

proposed energy transfer policy and the genie aided method.

• In Chapter 7, we extend the problem in Chapter 6 in order to consider the scenario

where the energy associated with channel estimation is not negligible. In this case,

we obtain the optimum energy transfer policy and show that it reduces to an all-or-

nothing threshold policy. We verify the analytical results by using Monte-Carlo

simulations.
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1.3 Background

This chapter provides a broad background on wireless energy transfer in communication

networks. More specific literature reviews can be found in the introduction sections in

each chapter.

1.3.1 Wireless Energy Transfer

Wireless energy transfer is the transmission of electrical power from a power source to

a consuming device over wireless medium (without using solid wires or conductors).

This concept was originally conceived by Nikola Tesla in the 1890s with successful

demonstration of lighting electric lamps wirelessly. While wireless energy transfer can

avoid the costly process of planning and installing power cables in buildings and infras-

tructure, it may have low energy transfer efficiency (i.e., a small fraction of the emitted

energy can be harvested at the receiver), which is one of main challenges in implemen-

tation [6]. Path loss has a significant impact on wireless energy transfer. However, this

can be mitigated by using free-space beaming and large aperture antennas. For example,

in 1969, a microwave beam was developed to power a hover platform which was in the

form of a helicopter [7]. This small helicopter which was capable of hovering at 50 feet

height, harvested energy from an RF source with a 270 W DC power supply operating

at 2.45 GHz [7]. Due to high power consumption of early electronic devices, wireless

energy transfer had not received much attention. The recent upsurge of research interest

is motivated by the widespread use of low-power devices and the tremendous success

of wireless sensor networks (WSNs) [6], [8].

1.3.2 Wireless Sensor Networks (WSNs)

Wireless sensor networks are composed of a large number of devices, called sensor

nodes, which are able to sense, process, and transmit information about the environment

in which they are deployed. These devices are usually distributed in a geographical

area to collect information for users interested in monitoring and controlling a given

phenomenon [9]. Some possible applications of WSNs are:
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• In health monitoring, it is anticipated that people will soon be able to carry a

personal body area network (BAN) with them that will provide users with infor-

mation and various reporting capabilities for medical, lifestyle, assisted living,

sports or entertainment purposes [10].

• Precision agriculture: where sensor nodes are deployed outdoors to monitor soil

conditions like temperature, moisture, and mineral content. In high value agricul-

tural sectors, the information collected from the sensors can be used to manage

the cultivation process to control pests and achieve high quality crops [10].

• Smart Buildings have the potential to become positive energy office buildings

that generate more energy than they consume. This can be achieved by drastically

decreasing the current power demand. One element in such a program is to turn

on heating and lighting only in those areas where they are needed. At present,

42% of the energy consumed is used for heating, ventilation, and air conditioning

(HVAC), and 23% is used for lighting. This situation calls for a large deployment

of sensors able to detect the presence or absence of human beings [10].

Moreover, WSNs can be used in environmental monitoring, habitat monitoring, seis-

mic detection, acoustic detection, industrial process monitoring, military surveillance,

terror threat detection, protection of critical infrastructure, intrusion detection, monitor-

ing of large crowds, and guidance in case of unexpected events [11].

1.3.3 Energy Harvesting in WSNs

WSNs research has predominantly assumed that sensor nodes are powered by a portable

and limited energy source such as batteries. Once the power supply of sensor is ex-

hausted, it can no longer fulfill its role unless the source of energy is replenished. This

can become an expensive and tedious task, or impractical for most scenarios [12]–[14].

Battery-powered WSNs also pose an environmental risk. This has led to the develop-

ment of innovative new solutions based on wireless energy harvesting techniques [15].
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For example, WSNs can be powered using ambient RF energy available through

public telecommunication services (e.g., GSM and WLAN frequencies). However, am-

bient RF signals have very low power density, e.g. for distances of 25 − 100 m from a

GSM base station, we may receive 0.1− 1.0 mW/m2 power density levels [10].

Alternatively, sensor nodes can be charged using a dedicated RF source, limiting the

transmission power levels according to international regulations. Such a commercial

system, produced by Powercast, is currently in the market [16]. In ideal conditions i.e.,

no reflections and aligned polarization, this system can harvest 15 mW at distance 30 cm

when the transmitted power is 2− 3 W at frequency 906 MHz.

1.3.4 RF Energy Harvesting in Wireless Communication Networks

There has been a recent growing interest in studying wireless powered communica-

tion networks (WPCNs), where energy harvested from ambient RF signals is used to

power wireless terminals in the network [17]. Thus, individual base stations (BSs) in

macro cells or small cells are now capable of becoming energy providers. Such a net-

work architecture is proposed in [18] in which stations called power beacons (PBs) are

deployed in an existing cellular network to recharge mobile nodes. Since RF signals

carry both energy and information at the same time, a joint investigation of simulta-

neous wireless information and power transfer (SWIPT) has recently drawn significant

attention [17]. Efficient SWIPT requires some fundamental changes in the design of

wireless communication networks. For example, the conventional criteria for evalu-

ating the performance of a wireless system are the information transfer rates and the

reception reliability. However, with SWIPT, we have to consider the trade-off between

the achievable information rates and the amount of harvested energy [6].
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Chapter 2

Total Energy Maximization in Multi-user Net-

works

In this chapter, we consider a multi-user multiple input single output (MU-

MISO) energy harvesting network with total energy maximization under a

transmit power constraint. Since the harvested energy depends on the net-

work size, i.e., number of transmit antennas and number of users, we discuss

their effects on maximum total harvested energy. Further, by using results

on the convergence of the maximum eigenvalue of certain large random ma-

trices, we study the total harvested energy for large networks. Moreover, we

study the distribution of the maximum total harvested energy from large net-

works and show that with appropriate scaling, this distribution approaches

the Tracy-Widom distribution of Type 2. We then give examples for two

network structures: i) where users are located as clusters; and ii) where

users are distributed uniformly around the power transmitter. We verify the

analysis using numerical and simulation results.
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2.1 Introduction

Wireless energy transfer (WET) is the transmission of electrical power from a power

source to a consuming device over a wireless medium. Although near-field WET tech-

niques such as inductive coupling and magnetic resonance coupling have already found

their way to the market, they are not suitable for remote charging [19]. Thus, far-

field WET has caught wireless researchers’ attention recently as this technique may be

a promising alternative to prolong the constrained lifetime of wireless networks, e.g.,

wireless sensor networks. These networks are highly energy constrained, and often the

lifetime of wireless sensor networks is limited by the battery life. Therefore, energy ef-

ficient communication techniques such as multiple-input multiple-output (MIMO) and

relaying have been introduced to extend the lifetime of wireless sensor networks [20].

However, these techniques may not help to avoid battery replacement or recharging.

Further, depending on applications, battery replacement and recharging may be a te-

dious, time consuming, expensive or even an impossible task [12], [21]. Therefore,

researchers have focused on WET in order to replenish the energy sources of wireless

networks [22]–[24]. However, one of the major challenges in WET is the poor effi-

ciency due to the path loss with the transmission distance. This effect is much worse

when we use omni-directional transmit antennas. Thus, energy beamforming has been

proposed as one of the promising techniques [22].

Energy beamforming can be applied in energy harvesting to improve received en-

ergy levels by shaping the transmit signals at each antenna such that they construc-

tively combine at the receiver. Thus, compared with omni-directional transmission,

beamforming can improve energy transfer efficiency without additional bandwidth or

increased transmit power [19]. Therefore, energy beamforming has drawn significant

attention in the research community recently.

Different energy beamforming schemes have been explored focusing only on energy

transfer, and both information and energy transfer in [24]–[28]. In [22], a multiple-input

multiple-output (MIMO) wireless network is considered with an energy harvesting re-
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ceiver (EH) and an information receiver (IR), when RF signals are transmitted from a

common transmitter. As a special case, for perfect channel state information (CSI), the

beamforming vector at the transmitter is determined to maximize the energy harvested at

EH when there is no IR. In [23], this result is extended for a multi-user scenario in order

to maximize the total harvested energy from the entire network by using multiple beam-

forming vectors. In [24], a multi-user MIMO network is also considered for weighted

sum of energy maximization by introducing a single bit feedback scheme which reduces

energy for channel estimation.

All these works provide optimization techniques for energy maximization for fixed

network sizes. However, it is interesting to explore how network size, i.e., number of

transmit antennas and number of energy harvesting users, affect the harvested energy.

Further, it is worth noting that sum-energy maximization requires eigen-analysis. To

the best of our knowledge, none has yet provided a rigorous analytical framework to

analyse the behaviour of total harvested energy in large networks. To fill this research

gap, this chapter makes the following contributions:

• We analyse the behaviour of maximum total harvested energy when the number

of transmit antennas increases while the number of users remains constant, and

vice-versa.

• We analyse the limit of the total harvested energy for large networks in which

both number of transmit antennas and users increase.

• We analyse the probability distribution of the maximum total harvested energy

from a large network.

We note that with more technology companies promising to provide systems so-

lutions for wireless charging, such analysis may be useful in gaining insights to the

solution being provided by these companies. For example, the WattUp R© transmitter,

which is a dedicated power transmitter, provided by Energous Solutions may be used

12



for charging remote controls, smoke detectors, toys or other gadgets in a small in-house

environment. Some interesting demonstrations of such setup has been presented [29].

If such a solution is to be deployed in a commercial environment, the distribution of

maximum total harvested energy may help to provide performance guarantees to the

customer. In this case, when such dedicated power transmitters are deployed to transfer

energy for multiple devices, the probability of total harvested energy being less than a

desirable threshold can be used as a confidence measure to the provided service.

The rest of this chapter is organized as follows. Section 2.2 describes the system

model. Section 2.3 formulates the total energy maximization problem, and presents the

effect of network size. Section 2.4 derives the probability distribution for maximum

total energy. Section 2.5 studies the asymptotic behaviour of maximum total harvested

energy for a large network. Section 2.6 presents numerical and simulation results fol-

lowed by concluding remarks in Section 2.7.

2.2 System Model

We consider multi-user multi-input single-output (MU-MISO) wireless communication

network as shown in Figure 2.1. This enables downlink WET. The network consists of

a power transmitter with M co-located antennas denoted Tx1, · · · ,TxM and K single-

antenna users denoted Rx1, · · · ,RxK . The frequency-flat quasi-static channel between

Rxi and Txj is hij . We assume that the transmitter has perfect channel state information

(CSI). As all antennas are co-located at the power transmitter, the distance between Rxi

and Txj is di. Further, wj denotes the weighting factor of Txj . The additive noise at Rxi

denoted by ni is a complex Gaussian random variable with zero-mean and unit-variance,

i.e. ni ∼ CN (0, 1). Thus, the received signal at Rxi can be given as

yi = ρi

M∑
j=1

hijwj + ni (2.1)
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Figure 2.1: MU-MISO communication network with WET.

where ρi is the path loss factor ρi = 1/
√
dαi and α is the path loss exponent. Then, the

received signal vector y is given by

y = DHw + n (2.2)

where y = [y1, · · · , yK ]T , D = diag(ρ1, · · · , ρK), H ∈ CK×M is the channel matrix

with hij at (i, j) position, w = [w1, · · · , wM ]T is the weight vector or the beamforming

vector, and n = [n1, · · · , nK ]T is the noise vector. The noise vector n at the receivers

is independent from the beanforming vector w. Therefore, we cannot control n by

changing w. In other words, we cannot change the noise power at the receivers by

adjusting the beamforming vector. Due to the additive nature of the noise, we simply

ignore the energy associated with noise as it does not affect the optimal beamformer.

Furthermore, considering the entire system, the total harvested energy by allK users

at a unit time can be given as

PT = ‖y‖2 = w†H†D2Hw, (2.3)

where † denotes the conjugate transpose. We assume that ‖w‖2 ≤ 1. Thus, weights

of the transmit antennas are designed in order to preserve this power budget of the
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transmitter.

2.3 Transmit Beamforming for Total Harvested Energy Maximiza-

tion

Based on the analytical model in Section 2.2, we maximize the total harvested energy PT

of the network by using energy beamforming at the transmitter [22]. Since the transmit

power is limited by the power budget, the optimization problem can be given as

max
w∈ CM

PT = w†H†D2Hw

subject to ‖w‖2 ≤ 1.

(2.4)

It is important to note that H†D2H is a Hermitian matrix. This problem can be solved

using the Courant-Fischer theorem [30]. A similar problem is also considered in [22],

[23]. Let the eigenvalues and corresponding eigen-vectors of the Hermitian matrix

H†D2H be λ1 ≥ · · · ≥ λM and v1, · · · ,vM , respectively. At the optimum solu-

tion, the maximum total harvested energy is given by the maximum eigenvalue λ1, and

the optimum beamforming vector is the corresponding eigen-vector (or the principal

eigen-vector) v1. In other words, if we design the beamforming vector as the principal

eigen-vector of H†D2H, we can harvest the maximum PT which is the largest eigen-

value of H†D2H. Further, the optimum solution depends on several parameters such as

the number of transmit antennas M and the number of users K. Thus, we discuss how

these parameters affect the harvested energy.

2.3.1 Effect of Number of Transmit Antennas M

In this section, we assume that all channels are independent and identically distributed

(i.i.d.) complex Gaussian random variables with zero-mean and unit-variance, i.e. hij ∼

CN (0, 1). We consider the effect of the number of transmit antennas M on the total

harvested energy PT by fixing the number of users K and their path loss factors ρi.

When there are M transmit antennas with K users, denoted as M ×K system, the total
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harvested energy, denoted as PT(M,K)
, can be calculated with the aid of (2.3) as

PT(M,K)
= E

[∣∣∣∣ K∑
i=1

ρi

M∑
j=1

hijwj

∣∣∣∣2]

=
K∑
i=1

ρi
2

M∑
j=1

E
[
|hijwj|2

]
,

(2.5)

where E[·] is the expectation operation, and the second equality comes because hijs are

independent. As discussed at the beginning of this section, maximum PT is achieved by

the utilization of the principal eigenvector, v1 = [v11, · · · , vM1]
T as the beamforming

vector. Thus, the maximum harvested energy of M ×K system Pmax
T(M,K)

can be given as

Pmax
T(M,K)

=
K∑
i=1

ρi
2

M∑
j=1

E[ |hijvj1|2]. (2.6)

If we consider a (M + 1) × K system, then the corresponding beamforming vector

is r = [r1, · · · , rM+1]
T . Following similar analysis as above, the harvested energy of

(M + 1)×K system can be given as

PT(M+1,K)
=

K∑
i=1

ρi
2

M+1∑
j=1

E[ |hijrj|2]

=
K∑
i=1

ρi
2

M∑
j=1

E[ |hijrj|2]

+
K∑
i=1

ρi
2E[ |hi(M+1)rM+1|2].

(2.7)

When we compare two systems,M×K and (M+1)×K, they have two different beam-

forming vectors v1 and r. Although, the beamforming vector r has an additional ele-

ment, both vectors should satisfy the transmit power constraint, i.e., ‖v1‖2 = ‖r‖2 = 1.

We consider a case where the additional element rM+1 of r is zero, i.e., the addi-
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tional transmit antenna does not transmit RF signal. Then, the rest of the elements

of r are chosen to be identical to v1, i.e. ri = vi1 for 1 ≤ i ≤ M . Then, we have

Pmax
T(M,K)

= PT(M+1,K)
. Since the maximum total harvested energy with the principle

eigen-vector is larger than total harvested energy of any other beamforming vector, we

have PT(M+1,K)
≤ Pmax

T(M+1,K)
. Therefore, we can claim that

Pmax
T(M,K)

≤ Pmax
T(M+1,K)

. (2.8)

This means that the total harvested energy increases with the number of transmit anten-

nas M . This scenario can also be interpreted as follows: when the number of transmit

antennasM is large, there is a high degree of freedom to change the beamforming vector

smoothly. Thus, the antenna array can be finely tuned to maximize the total harvested

energy.

2.3.2 Effect of the Number of Energy Harvesting Users K

In this section, we consider the effect of the number of users K on the total harvested

energy PT by fixing the number of transmit antennas M . For a M ×K system, the total

harvested energy is given in (2.6). If we consider a M × (K + 1) system in which K

users, say Rx1, · · · ,RxK , have similar path loss factors as in (2.6), and the additional

user, say RxK+1, has path loss factor ρ(K+1). However, we use the same beamforming

vector which is designed for the M ×K system at the transmitter, i.e., we introduce an

additional user to the M ×K system without changing the beamforming vector. Then,

the total harvested energy is given as

PT(M,K+1)
=

K+1∑
i=1

ρi
2

M∑
j=1

E[ |hijvj1|2]

= Pmax
T(M,K)

+ ρ(K+1)
2

M∑
j=1

E[ |h(K+1)jvj1|2].

(2.9)
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Since, the harvested energy by (K + 1)th user, ρ(K+1)
2
∑M

j=1 E[ |h(K+1)jvj1|2], is non-

negative, from (2.9), we have Pmax
T(M,K)

≤ PT(M,K+1)
. Further, as the total harvested energy

using principal eigen-vector always gives the maximum energy, we have PT(M,K+1)
≤ Pmax

T(M,K+1)
.

Therefore, we can claim that

Pmax
T(M,K)

≤ Pmax
T(M,K+1)

. (2.10)

This means that the total harvested energy increases with the number of energy harvest-

ing users K.

2.4 Distributions of the Maximum Total Harvested Energy

The solution for (2.4) is obtained using eigenanalysis of a Hermitian matrix H†D2H.

Thus, if the maximum total harvested energy is Pmax
T , the distribution of Pmax

T may

be obtained by using random matrix theory. Since the elements of the matrix DH are

independent complex Gaussian random variables, Pmax
T satisfies [31], [32]

(
Pmax
T −Mµr
M1/3σ

)
⇒ TW2 (2.11)

where TW2 denotes the Tracy-Widom distribution of Type 2 for Gaussian unitary en-

sembles (GUE) [33]. This is also known as the Tracy-Widom distribution with a Dyson

index of 2. Further, µr and σ can be obtained from

µr =
1

c

[
1 +

1

dM

∫
cλ

1− cλ
dHM(λ)

]
(2.12)

and

σ3 =
1

c3

[
1 +

1

dM

∫ (
cλ

1− cλ

)3

dHM(λ)

]
, (2.13)
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with dM ∈ (0,∞) and dM = M/K as M → ∞. Further, HM(λ) is the empirical

spectral distribution of D2, and c := c(D2,M,K) is the unique solution of

∫ (
cλ

1− cλ

)2

dHM(λ) = dM (2.14)

in [0, 1/λ1(D
2)).

This result holds when the highest distance between the transmitter and receivers is

finite and the shortest distance is nonzero, i.e., lim supλ1(D
2) <∞ and lim inf λK(D2) >

0.

Further, the cumulative distribution function (CDF) of TW2, F2(x) = P(X ≤ x),

can be given as [34], [35]

F2(x) := exp

[
− 1

2

∫ ∞
x

(s− x)u(s)2ds

]
(2.15)

where P(.) stands for the probability function, u(x) is the solution of the Painleve II

equation d2u
dx2

= 2u3 + xu with the boundary condition u(x) ∼ −Ai(x) as x → ∞.

Here, Ai(x) is the Airy function given by

Ai(x) ∼ e−(2/3)x
(3/2)

s
√

2πx1/4
. (2.16)

It is worth noting that F2(x) is known and tabulated, e.g., [36].

By using the results in [33], this analysis can also be extended to any channel model

which satisfies E[hij] = 0, E[|hij|2] = 1
M

and E[h2ij] = 0, where hi,js are independent

random variables. Therefore, this is a more general result. Since the Tracy-Widom

distribution has rarely been applied in wireless communication literature, this is also

a novel result which may be used to analyse the performance of multi-user wireless

networks. Next, we consider how this result can be applied for practical networks.

19



cluster 1

n1 users

cluster 2

n2 users

cluster l

nl users

cluster L

nL users

Power Transmitter

d1

d2

dl

dL

Figure 2.2: MU-MISO energy harvesting network with users clustered at different lo-
cations.

2.4.1 Examples

In this section, we consider two practical networks with a large number of users and

transmitting antennas. Then, we study the probability distribution of the total harvested

energy when the transmitter uses the optimum beamforming vector which is discussed

in Section 2.3.

2.4.1.1 Users Located as Clusters Around the Power Transmitter

As shown in Figure 2.2, we consider a network where a large number of K users are

located in a finite number of L clusters around the power transmitter. There are nl users

in the lth cluster (l = 1, · · · , L). We assume the distance between the power transmitter

and users in the same cluster is equal. Then, the path-loss matrix D2 has a finite number

of distinct values ρ2l ; l ∈ [1, L]. Hence, the continuous equations given in section 2.4 can

be transformed into discrete equations. This means that the integration can be replaced
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by a summation. Therefore, the maximum total harvested energy satisfies

(
Pmax
T −Mµs
M1/3σs

)
⇒ TW2 (2.17)

with

µs =
1

c

[
1 +

1

M

L∑
l=1

nl

(
cρ2l

1− cρ2l

)]
(2.18)

and

σ3
s =

1

c3

[
1 +

1

M

L∑
l=1

nl

(
cρ2l

1− cρ2l

)3
]
, (2.19)

where c ∈ [0, 1/max(ρ2l )] is the unique solution of

L∑
l=1

nl

(
cρ2l

1− cρ2l

)2

= M.

Hence, the probability of the maximum total harvested energy can be given as

Pr = F2

(
Pmax
T −Mµs
M1/3σs

)
. (2.20)

2.4.1.2 Users Uniformly Distributed Around the Power Transmitter

As shown in Figure 2.3, we consider a network where a large number of K users are

uniformly distributed around the power transmitter between radii R0 and R. The ith

user is located at distance di ∈ [R0, R]. The distribution of di, fdi(di), can be given as

fdi(r) =

{
2r

R2−R2
0
, if R0 ≤ r ≤ R.

0, otherwise.
(2.21)

When we use % = A0

(
r/d0

)−α transformation, where A0 is the reference path-loss at

a reference distance of d0, the distribution function of elements of the path-loss matrix
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Figure 2.3: MU-MISO energy harvesting network with uniformly distributed users.
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D2 can be obtained as

gP (%) =
2d0

αA
−4/α
0 (R2 −R2

0)
%

−(2+α)
α . (2.22)

Hence, the spectral distribution of the path-loss matrix D2 is given by,

GP (%) =
d20

A
−4/α
0 (R2 −R2

0)

[(
A
−4/α
0

R

d0

)2

− %−2/α
]
. (2.23)

When M,K → ∞, Pmax
T also satisfies (2.11) where µr and σ can be calculated by

using (2.13), (2.12) and (2.14) replacing HM(λ) by GP (%), with c ∈ [0, Rα
0 ). Hence,

the probability of the maximum total harvested energy can be given as

Pr = F2

(
Pmax
T −Mµr
M1/3σ

)
. (2.24)

The results (2.20) and (2.24) can be used to calculate the probability of Pmax
T in clustered

networks and uniformly distributed networks respectively. Numerical results for such

networks are given in section 2.6.

2.5 Asymptotic of the Mean

In this section, we consider the limit of the maximum total harvested energy when the

number of transmit antennas M and users K are large, i.e., we look at the behaviour of

the largest eigenvalue λ1 of the Hermitian matrix H†D2H when M,K →∞.

2.5.1 Users Equidistant from Transmitter

We use the theorem developed in [37],[38] which computes the limiting distributions

of the largest eigenvalue of a complex Gaussian sample covariance matrix with large

dimensions. That is, when elements of H ∈ CM,K are i.i.d. complex Gaussian random

variables with hi,j ∼ CN (0, 1), K → ∞, M = M(K) and K
M

= γ2 for some γ2 ∈

[0,∞), the largest eigenvalue λ1 of the Wishart matrix of the form SM = 1
M

H†H has
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limiting value λ1 →
(

1+γ
γ

)2
, almost surely. Using this result, the asymptotic behaviour

of the maximum total harvested energy when D2 = IK , where IK is the K×K identity

matrix, can be given as

Pmax
T

M
→
(

1 + γ

γ

)2

. (2.25)

This indicates that the maximum harvested energy converges to
(

1+γ
γ

)2
when K →∞.

Hence, if the ratio K/M = γ2 of a large system is known, the amount of harvested

energy can be estimated without any prior knowledge on CSI. However, this result holds

when D2 = IK or in other words all the users are located at an equal distance from the

power transmitter. This may not be the case in real networks. Thus, we next focus on

the case where D2 6= IK .

2.5.2 General Case

In this subsection, we further analyse the theorem used in Section 2.4 in order to obtain

the distribution of the Maximum total harvested energy and then states the asymptotic

of the mean of the maximum total harvested energy.

In [31], Theorem 1 gives the asymptotic behaviour of the largest eigenvalue of sam-

ple covariance matrix W = X†X where X is a n× p matrix with i.i.d. complex normal

rows with zero mean and Σp covariance matrix, i.e., {Xk}k=1,··· ,n ∼ CN (0,Σp). The

largest eigenvalue and the spectral distribution of Σp are λ1 and Hp, respectively. As-

suming that n/p (≥ 1) is uniformly bounded, lim supλ1 < ∞, lim inf λp > 0, and

lim supλ1c < 1, where c is the unique solution in [0, 1/λ1(Σp)) of the equation

c = c(Σp, n, p) :

∫ ( λc

1− λc

)2
dHp(λ) =

n

p
, (2.26)

then, the largest eigenvalue l1 of the Wishart matrix W follows Tracy-Widom dis-
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tribution for Gaussian unitary ensembles (TW2) [35], [39] such that

n, p→∞;
l1 − µ
σ
⇒ TW2

where

µ =
1

c

(
1 +

p

n

∫
λc

1− λc
dHp(λ)

)
, (2.27)

σ3 =
1

c3

(
1 +

p

n

∫ ( λc

1− λc

)3
dHp(λ)

)
. (2.28)

Further, when n → ∞, the largest eigenvalue l1 converges as l1/n → µ, almost

surely. In [32], this result is extended for n/p < 1 case. This is by showing that

[31] assumes n/p ≥ 1 only to be able to utilize Proposition 1.2 in [38], and proving

that the proposition is valid for n/p < 1. Therefore, the theorem above is valid for

n/p ∈ (0,∞).

It is worth noting that H†D takes the form of X with the covariance matrix Σp =

D2. This enables us to user these results to investigate the behaviour of maximum total

harvested energy for a large network size. Therefore, as M,K → ∞, maximum total

harvested energy PT,max for a large system converges as PmaxT

M
→ µ, almost surely.

2.6 Numerical and Simulation Results

This section provides numerical results to verify our analytical results obtained in Sec-

tions 2.3, 2.4 and 2.5. Our system model is as described in Section 2.2.

Based on the discussion in Section 2.3.1, Figure 2.4 shows the variation of Pmax
T

with number of transmit antennas M when the number of users K = 10. As we explain

in section 2.3.1, the maximum total harvested energy increases almost linearly when the

number of transmit antennas M increases. As a reference, we also consider the equal

gain transmitter ( i.e., beamforming vector u = 1√
M

[1, 1, ... , 1]T ). This beamformer

may be applied when the transmitter has no CSI. The total harvested energy from the

equal gain transmitter remains constant at 10 for any M . Thus, energy beamforming
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Figure 2.4: Variation of total harvested energy with number of transmit antennas.

scheme outperforms equal grain transmitter, and equality holds when M = 1.

Based on the discussion in Section 2.3.2, Figure 2.5 shows the variation of Pmax
T

with number of energy harvesting users K when the number of transmit antennas M =

20. With total energy maximization technique, Pmax
T increases nearly linearly, and with

the equal gain transmitter, it also increases but at a slower rate.

Next, we consider the distribution of the maximum total harvested energy as dis-

cussed in Section 2.4. We use independent and identically distributed complex Gaus-

sian channels with zero mean and unit variance, i.e., hi,j ∼ CN (0, 1), ∀ i, j. Path-loss

matrix D2 is generated according to the Section 2.4.1.

As discussed in Section 2.4.1.1, we consider a network where users are around

the power transmitter, in six equally populated clusters (L = 6) with path-loss of 1,

0.75, 0.5, 0.25, 0.125 and 0.025. We perform 104 channel realizations and obtain the

empirical distribution function of Pmax
T for K = M = 30, 60, and 90. We plot the

corresponding CDFs with Pmax
scaled in Figure 2.6a, where Pmax

scaled is obtained by scaling
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Figure 2.5: Variation of total harvested energy with number of users.

Pmax
T according to (2.20). We also plot the CDF of standard TW2. We notice that

the CDFs match tightly with TW2, especially in the tail. Furthermore, TW2 matching

improves when the network size increases.

As discussed in Section 2.4.1.2, we consider a network where users are uniformly

located around the power transmitter. We model the path-loss matrix D2 as given in

(2.23) with R0 and R to be 20 m and 200 m, respectively, with a path-loss exponent

of α = 3. We perform 104 channel realizations and obtain the empirical distribution of

Pmax
T scaled according to (2.24) forK = M = 30, 60, and 90. We plot the distributions

of Pmax
scaled and the CDF of standard TW2 in Figure 2.6b. Similar to the previous case, we

notice that the CDFs match tightly with TW2, especially in the tail. Furthermore, TW2

matching improves when the network size increases.

For the uniform network structure of size K = M = 90, we increase the transmit

power PTx from 32 dBm to 35 dBm, and calculate the probability of the maximum total

harvested energy being lower than a threshold of P th
T = −50 dBm. This can be calcu-
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lated by using (2.24) as P(x < P th
T ). We plot the probability against the transmit power,

and compare with the probability calculated from the standard TW2 in Figure 2.7. We

notice that the simulation results matches the theoretical results calculated from the

standard TW2 distribution.

We now discuss the limit of Pmax
T for large network sizes in Section 2.5.1. For ex-

ample, we calculate Pmax
T /M when M varies from 10 to 1000 maintaining K/M = 1.

We perform 50 channel realizations with hi,j ∼ CN (0, 1) and D2 = IK , and plot them

in Figure 2.8 (Pmax
T /M verses M ), which shows each realization. According to the

analysis, Pmax
T /M →

(
1+γ
γ

)2
= 4. It is important to note that simulated values also

approach 4 when M increases, (i.e., M → ∞). This is also illustrated by using cumu-

lative distribution functions (CDFs) of normalized Pmax
T /M (i.e., Pmax

T /(µM) where µ

is in (2.27)) in Figure 2.9. We use different M values such as M = 50, 100, 500, 1000

with γ2 = 1. CDFs become steeper while the means reach the theoretical value, i.e.,

Pmax
T /M = 4.

Next, we discuss the limit of Pmax
T for large network sizes in Section 2.5.2. For

example, we calculate Pmax
T /M when M varies from 10 to 1000 maintaining K/M =

1. We perform 50 channel realizations with hi,j ∼ CN (0, 1). The path loss matrix

D2 is obtained by placing users randomly with a radius r from the power transmitter

followed by % = r−α transformation. Then, we plot Pmax
T /M verses M in Figure 2.10,

which shows each realization. According to the analysis, Pmax
T /M → µ where µ =

1.663 is obtained as in Section 2.5.2. It is also important to note that the simulated

values approach 1.663 when M increases, (i.e., M → ∞). This is also illustrated by

using CDFs of normalized Pmax
T /M (i.e., Pmax

T /(µM) ) in Figure 2.11 for different M

values such as M = 50, 100, 500, 1000 with γ2 = 1. CDFs become steeper while the

means reach the theoretical value, i.e., Pmax
T /M = 1.663. When we compare Figure 2.9

and Figure 2.11 for two cases discussed in Section 2.5, we observe a fast convergence

of Pmax
T /M for D2 = IK compared with locating users uniformly around the power

transmitter. For example, when M = 50, the normalized mean for the case of D2 = IK
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clustered at different locations; and (b) uniformly distributed users
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is 0.9175 while for uniformly distributed users the normalized mean is only 0.8452.

2.7 Conclusion

In this chapter, we consider transmit energy beamforming for multi-user communication

networks. Specifically, we study the total harvested energy maximization scheme. We

analyse the effect of the network size, i.e., number of transmitters and receivers, on

the maximum total harvested energy. we analyse the distribution of the total harvested

energy from large networks. We conclude that, with proper scaling the distribution of

the total harvested energy follows the standard Tracy-Widom distribution of Type 2.

We further discuss the asymptotic behaviour of maximum total harvested energy. Since

the asymptotic behaviour does not depend on the particular realization of the channels

for infinite network size, this can be used as a CSI-invariant estimate of total harvested

energy from a network.
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Chapter 3

Energy Beamforming for Total Active User En-

ergy Maximization in MISO Networks

In this chapter, we study MU-MISO network and investigate on how to max-

imize the total energy harvested by the users that meet the minimum energy

requirements. We formulate the optimization and prove its non-convexity.

We then solve the convex approximated problem using a gradient projection

based algorithm. We compare the performance of the proposed algorithm

by using an exhaustive search algorithm using SDP.

3.1 Introduction

Wireless energy transfer undergoes significant path loss with the transmission distance.

In the state-of-the-art, in order to improve the end-to-end power transfer efficiency, re-

searchers’ efforts were focused on enhancing the transmit efficiency, the receive effi-

ciency, or both. To obtain higher transmit efficiency, the transmit antenna beamforming

can be utilized with multi-antenna systems [40].

Different beamforming schemes have been explored in the literature. In [22], a

MIMO wireless network is considered with an energy harvesting receiver and an in-

formation receiver, when RF signals are transmitted from a common transmitter. For
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perfect channel state information (CSI), the beamforming vector at the transmitter is

designed to maximize the energy harvested at the energy harvesting receiver with no

information receiver. In [23], this result is extended to a multi-user scenario in order to

maximize the total harvested energy from the entire network by using multiple beam-

forming vectors. In [24], a multi-user MIMO network is also considered for weighted

sum of energy maximization by introducing a single bit feedback scheme which re-

duces energy for channel estimation. In Chapter 2, we focused on beamforming scheme

to maximize the total harvested energy subjected to the transmit power constraint. How-

ever, this design may lead to unfairness in terms of the energy levels of individual users.

For example, while users near the power transmitter or with good channel quality har-

vest much more energy, users far away from the transmitter or with bad channel quality

harvest less energy. It is important to note that these users may not harvest their min-

imum required energy. This may lead the corresponding users to be inactive. In such

cases, including the energy harvested by such inactive users for the total harvested en-

ergy may be inaccurate. This is because such users may not find the harvested energy

levels useful. Therefore, in this chapter we focus on the maximizing the total energy

harvested by users who can achieve their minimum energy requirements.

The rest of this chapter is organized as follows. Section 3.2 formulates the total en-

ergy harvested by active users maximization problem. Section 3.3 describes the convex

approximation of the problem. Section 3.4 gives the gradient projection based algorithm

to obtain approximate beamforming algorithm. Section 3.5 discusses a special case of

the problem when all the users are able to achieve their minimum energy requirement.

Section 3.6 presents numerical results comparing the beamforming algorithm with CVX

based algorithm implemented using semidefinite relaxation (SDR) of the problem for

each subset of the users. Finally, concluding remarks is given in Section 3.7.
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3.2 Problem Formulation

In this section, we consider the MU-MISO wireless communication network discussed

in Section 2.2. We formulate the sum energy maximization problem of adequately

charged users subject to the total power budget at the transmitter. The objective function

is given by

PT =
K∑
i=1

ρ2w†h†ihiw1(ρ2w†h†ihiw − ηi) (3.1)

where 1(.) denotes the unit step function and ηi denotes minimum energy required by

the ith user. Therefore, the optimization problem can be formulated as

max
w∈CM

K∑
i=1

ρ2w†h†ihiw1(ρ2w†h†ihiw − ηi)

s. t. w†w ≤ 1.

(3.2)

We reformulate this problem as a minimization problem as

min
w∈CM

−
K∑
i=1

ρ2w†h†ihiw1(ρ2w†h†ihiw − ηi)

s. t. w†w ≤ 1.

(3.3)

The objective function in (3.3) is not smooth. Therefore, it is not continuously dif-

ferentiable. This is because the unit step function is piece-wise continuous. Further,

the objective function is non-convex. In order to prove the non-convexity, consider the

function fi(w) given as,

fi(w) = −ρ2w†h†ihiw1(ρ2w†h†ihiw − ηi). (3.4)

We choose w such that 1(ρ2w†h†ihiw−ηi) = 0, and α > 1 such that 1(α2ρ2w†h†ihiw−

ηi) = 1. Therefore, the function fi(w) in (3.4) takes the values 0 and −α2ρ2w†h†ihiw

at w and αw, respectively. This means that the function fi(w) transitions from dis-
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satisfying the minimum energy requirement to achieving adequate energy in the region

[w, αw]. By considering a scalar θ ∈ [0, 1], we have

fi (((1− θ(α− 1))w) =

− (1− θ(α− 1))2ρ2w†h†ihiw1((1− θ(α− 1))2 ρ2w†h†ihiw − ηi),
(3.5)

and

(1− θ)fi(w) + θfi(αw) = −α2ρ2w†h†ihiw. (3.6)

As α was chosen such that the unit step function transitions from 0 to 1 in the re-

gion [w, αw], for a subset of θ denoted as A, the unit step function in (3.5) becomes

zero. Therefore, from (3.5) and (3.6) we have fi (((1− θ(α− 1))w) > (1− θ)fi(w) +

θfi(αw) for θ ∈ A. This means that the definition of convexity is violated as a section

of the secant between w and αw lies below the graph of fi(w). As the objective func-

tion in (3.3) is the summation of such non-convex functions, the objective function is

non-convex.

3.3 Problem Solution

In this section, we approximate the problem in Section 3.2 as a convex optimization

problem and derive an algorithm to obtain approximate solution. In order to approxi-

mate the objective function using a convex function, we consider a certain beamforming

vector w and a scaling factor α ∈ [0, 1] similar to Section 3.2. By using the beamform-

ing vector αw, the ith user receives f(αw) = α2ρ2w†h†ihiw. Since the direction of the

beamforming vector is fixed along w, the function reduces to a quadratic equation of

the variable α. Figure 3.1 shows the harvested energy by the ith user given as f(αw),

Energy considering the minimum energy requirements given in (3.4), and the convex

approximation. It can be clearly seen from Figure 3.1 that the function with minimum

energy requirement is non-convex. We obtain the approximate function given in the

figure by using a line with gradient equal to the instantaneous gradient of the function
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Figure 3.1: Variation of energy harvested by the ith user using αw beamforming vector.

f(αw) at the point that achieves minimum energy requirement. Hence, the approxi-

mated convex function for (3.4) can be given as

fi(w) ≈


−ρ2w†h†ihiw, for ρ2w†h†ihiw > ηi

min

(
0, ηi − 2ρ

√
ηiw†h

†
ihiw

)
, otherwise.

(3.7)

The convex approximated optimization problem can be given as

min
w∈CM

−
K∑
i=1

fi(w)

s. t. w†w ≤ 1,

(3.8)

where f(w) is given in (3.7). We implement a gradient projection based algorithm to

solve the convex problem. First, we reformulate the problem such that the problem

can be solved in real domain. For this purpose, we re-write the complex beamforming
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vector w by using x ∈ R2M as given in (3.19), and the ith complex channel vector

by h̃i = [<(hi) =(hi)]. For presentation simplicity, we denote the matrix ρ2h̃T
i h̃i by

Qi ∈ R2M×2M . It is worth noting that Qi is a positive semidefinite matrix, i.e. Qi � 0

and with rank 1. Then the optimization problem can be given by

min
x∈R2M

−
K∑
i=1

fi(x)

s. t. xTx ≤ 1,

(3.9)

where fi(x) is given as

fi(x) ≈

 −xTQix, for xTQix > ηi

min
(

0, ηi − 2
√
ηixTQix

)
, otherwise.

(3.10)

3.4 Gradient Projection Based Algorithm

In this section, we adopt a well known gradient projection algorithm to solve the convex

optimization problem in (3.9). This algorithm has two main steps: i) takes a step towards

the steepest descent direction; and ii) projects the step onto the feasible region. This

means that in each iteration, it is required to solve a sub-problem given by

min
x∈X

‖x− z‖2, (3.11)

where, x is the next step and z is the point obtained from taking a step towards the steep-

est descent direction. In order to achieve efficiency of the algorithm, this sub-problem

must be easily solvable. Hence, such gradient projection algorithm may be efficiently

used for optimization problems with simple constraints such as bound constraint. Due

to the form of the constraint in problem (3.9), the optimum solution to the sub-problem

reduces to normalizing the point z, i.e., x∗ = z/‖z‖. Thus, a gradient projection based

algorithm is suitable to efficiently solve the optimization problem in (3.9). The subse-
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quent subsections discuss the algorithm in detail.

3.4.1 Projection Step

In this section, we discuss the projection step of the algorithm. Figure 3.2 shows the pro-

jection arc of the optimization problem. Since the total energy constraint is a Euclidean

norm ball, the feasible set is illustrated as a circle in the figure. In order to obtain the

next step, at a given point x, we get the steepest descent direction x − α∇f(x) where

α is a variable step length. Then, if the resultant point is in the exterior of the feasible

set, we project the point onto the feasible set such the Euclidean distance between the

in-feasible point and the projected result is minimized. The set of such points obtained

by using different α is known as the projection arc, x(α) illustrated in red in the figure.

As the feasible set is a unit norm ball, the projection arc can be given as

x(α) =

 x− α
∑K

i=1∇fi(x), for xTx ≤ 1
x−α

∑K
i=1∇fi(x)

‖x−α
∑K
i=1∇fi(x)‖

, otherwise,
(3.12)

where∇fi(x) is given by

∇fi(x) =


−2Qix, if xTQix > ηi

−2
√

ηi
xTQix

Qix, if 4xTQix < ηi

0, otherwise.

(3.13)

The projection arc, x(α), consists of all the possible next iterates parameterised by α.

Further, it is important to ensure that all the steps taken are along a descent direction

unless the algorithm has converged to the optimal point.

3.4.2 Descent Properties of the Algorithm

In this section, we show that every step taken until convergence is along a descent di-

rection. We consider any point in the feasible region as x̃ in Figure 3.2. As the feasible

set is closed and convex, the angle between x−α∇f(x)−x(α) and x̃−x(α) is always
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Figure 3.2: The projection arc for the optimization problem.
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greater than π/2. Therefore, we have

(x− α∇f(x)− x(α))T (x̃− x(α)) < 0. (3.14)

When x̃ = x, the inequality in (3.14) reduces to (x− α∇f(x)− x(α))T (x− x(α)) <

0. By rearranging the terms, we have

∇f(x)T (x (α)− x) ≤ − 1

α
‖x(α)− x‖2. (3.15)

This means that∇f(x)T (x (α)− x) < 0 for every x(α) 6= x. Therefore, x(α)− x is a

feasible descent direction for all α.

3.4.3 Selection of Step Length

In this section, we discuss the procedure for choosing the step length for each iteration.

In particular, we use the Armijo-like rule for choosing the step length. That is, at each

step, we search for a sufficient decrease by checking steps 1, β, β2, · · · along the descent

direction obtained for next step for β ∈ (0, 1). In other words, we obtain the smallest n

such that

f(x + βnd) ≤ f(x) + βn∇f(x)Td (3.16)

is satisfied. Here, the descent direction for next step d is given as d = x − x(α) for a

given α.

3.5 Special Case when all users satisfy the minimum energy re-

quirement

When all the users are in good radio conditions and/or the minimum energy require-

ment is low, all users may satisfy the minimum energy requirement. In such cases the

optimization problem can be reduced as
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Table 3.1:
Gradient projection algorithm for the optimization problem.

Select the parameters β ∈ (0, 1), α and τR.
Initialize x0.
Set k ← 0 and n← 0.

Repeat until
∥∥x+ − x

∥∥ ≥ τR
Compute d← x(α)− x using (3.12)
Set n← 0
Repeat until (3.16) does not hold

Set n← n+ 1
end
Set x+ ← x + βnd;
Set k ← k + 1;

end

max
w∈CM

w†H†D2Hw

s. t. ρ2w†h†ihiw ≥ ηi ∀i ∈ [1, K],

w†w ≤ 1.

(3.17)

This problem is a quadratically constrained quadratic program (QCQP). Since the ma-

trix H†D2H is positive semidefinite, the objective function denoted as f(w) is convex

as,

∇2f(w) = H†D2H � 0. (3.18)

However, the minimum energy requirement inequality constraints are not convex. This

is because the feasible set is the exterior of each ellipsoid given by ρ2w†h†ihiw/ηi = 1.

Hence, care should be taken when implementing the algorithm to solve the optimization

problem. The received energy at users is proportional to the transmit power. Therefore,

the constraint w†w ≤ 1 should be met with equality at the optimum.
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3.5.1 Algorithm

In this section, we implement an algorithm based on well known interior point methods.

First, we reformulate the problem such that the problem can be solved in real domain.

For this purpose we re-write the beamforming vector, x ∈ R2M as

x =

<(w)

=(w)

 (3.19)

where <(.) and =(.) denote the real and imaginary components. Similarly, the ith chan-

nel vector can be re-written as h̃i = [<(hi) =(hi)]. Furthermore, we re-write the

channel matrix H̃ ∈ R2K×2M as

H̃ =

<(H) −=(H)

=(H) <(H)

 . (3.20)

For presentation simplicity, we denote the matrix ρ2h̃T
i h̃i by Qi ∈ R2M×2M . It is

worth noting that Qi is a positive semidefinite matrix, i.e. Qi � 0 and with rank 1.

Furthermore, we denote H̃TD2H̃ =
∑K

i=1 Qi as QT ∈ R2M×2M . The optimization

problem can be reformulated using slack variables si, ∀i ∈ [1, K] as

min
x∈R2M ,si

− xTQTx

s. t. xTQix− si = ηi ∀i ∈ [1, K],

xTx = 1, si ≥ 0.

(3.21)

Since the linear independence constraint qualifications (LICQ) holds at a point x (proof

can be found in Appendix 3.8), the perturbed Karush-Kuhn-Tucker (KKT) conditions
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for the problem can be written as

−2

(
QT +

K∑
i=1

ziQi + yI

)
x = 0 (3.22a)

xTQix− ηi − si = 0 ,∀i ∈ [1, K] (3.22b)

xTx− 1 = 0 (3.22c)

Zs = µe (3.22d)

where zi and y are the Lagrange multipliers of the ith inequality constraint with zi ≥

0, and equality constraint, respectively. We define the diagonal matrix Z as Z =

diag ([z1, · · · , zK ]) and s = [s1, · · · , sK ]T with s ≥ 0, identity matrix as I and e =

[1, · · · , 1]T .

3.5.1.1 Computing the Direction

By applying the Newton’s method to the nonlinear system (3.22), in the variables x, s, y, z,

we have


−2A 0 −2x −2B

0 Z 0 S

2xT 0 0 0

2BT −I 0 0




px

ps

py

pz

 = −


−2Ax

Sz− µe

xTx− 1

xTQix− ηi − si

 (3.23)

where A =
(
QT +

∑K
i=1 ziQi + yI

)
and B ∈ R2M×K is defined as B = [xTQ1, · · · ,xTQK ]T .

The system (3.23) is known as the primal-dual system. Furthermore, by using

Σ = S−1Z (3.24)

we re-write the system in the symmetric form as
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−2A 0 2x 2B

0 Σ 0 −I

2xT 0 0 0

2BT −I 0 0




px

ps

−py
−pz

 = −


−2Ax

z− µS−1e

xTx− 1

xTQix− ηi − si

 . (3.25)

3.5.1.2 Handling Nonconvexity

The linear system (3.25) can be solved in order to obtain the next step p = (px,ps, py,pz).

However, due to the non-convexity of the problem discussed in Section 3.5, the direction

obtained by solving the linear system may not always be productive because it seeks to

locate only KKT points. Therefore, it can move towards a maximizer or other stationary

points. The step p is a descent direction if the sub-matrix−2A 0

0 Σ

 (3.26)

is positive definite on the null space of the constraint matrix2xT 0

2BT −I

 . (3.27)

In [41], Lemma 16.3 states that the positive definiteness condition holds if the inertia

of the primal-dual matrix in (3.25) is given by (2M +K,K + 1, 0), i.e., the matrix has

2M + K positive, K + 1 negative, and no zero eigenvalues. Therefore, we modify the

primal-dual matrix as 
−2A + δI 0 2x 2B

0 Σ 0 −I

2xT 0 0 0

2BT −I 0 0

 (3.28)

where δ ≥ 0 is chosen such that the required inertia is obtained. Table 3.2 gives an
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Table 3.2:
Inertia correcting Algorithm.

Factor (3.28) with δ = 0. Select δ > 0 and m > 1.

if the inertia of (3.28) is (2M +K,K + 1, 0)
stop;

else
while the inertia of (3.28) is not (2M +K,K + 1, 0)

Set δ ← mδ;
end

end

algorithm to select δ such that the required inertia is obtained. With this inertia modifi-

cation, we can compute the next direction by replacing the primal-dual matrix in (3.25)

with (3.28).

3.5.1.3 Updating Variables

Once the direction is obtained as in Section 3.5.1.2, we then obtain suitable step lengths.

By using the fraction to the boundary rule, we have

αs = max{α ∈ (0, 1] : s + αps ≥ (1− τ)s}, (3.29a)

αz = max{α ∈ (0, 1] : z + αpz ≥ (1− τ)z}, (3.29b)

with τ ∈ (0, 1). A typical value of τ is 0.995. The conditions in (3.29) allow us to

choose a step length such that the variables s, z do not approach to zero prematurely.

Now we compute the next iterate (x+, s+, y+, z+) as

x+ = x + αspx, s+ = s + αsps, (3.30a)

y+ = y + αzpy, z+ = z + αzpz. (3.30b)
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The barrier parameter µ is also needed to be updated. We fix µ for a series of iterations

until the KKT conditions in (3.22) are achieved to a certain accuracy. In other words, if

the error function is given by

E(x, s, y, z;µ) = max
{
‖2A‖, ‖xTQix− ηi − si‖,

‖xTx− 1‖, ‖Zs− µe‖
}
,

(3.31)

the barrier parameter is fixed for a series of iterations such that E(x, s, y, z;µ) > µ.

Once this condition is violated, we update the barrier parameter as µ+ = σµ for some

σ ∈ (0, 1).

3.5.1.4 Terminating Conditions

It can be clearly seen from Section 3.5.1.3 that the algorithm has two nested loops as

given in Table 3.3. Hence, we need two termination conditions for two loops. The inner

loop termination condition is given by E(x, s, y, z;µ) ≤ µ. Thus, the inner loop will

be terminated when the KKT conditions are satisfied with a certain accuracy. Next,

we update the barrier parameter according to Section 3.5.1.3. The outer loop must be

terminated when the algorithm has converged. Thus, we terminate the outer loop with

the condition
∣∣f(x+)− f(x)

∣∣ < τR, with τR � 1.

3.5.1.5 Initial Point

Since the optimization problem is nonconvex there may be more than one stationary

point. The Theorem 19.1 in [41] states that if the algorithm in Table 3.3 converges and

LICQ holds, the limit point satisfies the first-order optimal conditions. However, we

cannot guarantee the limit point given by the algorithm to be a global minimum. The

limit point may depend on the initial point and therefore the algorithm is not globally

convergent. By using the structure of the optimization problem, we initialize x with the

principal eigenvector of the matrix QT , i.e., x0 = v1. We choose the eigenvector v1

because when we relax the inequality constraints of the problem (3.21), we have
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Table 3.3:
MU-MISO Beamforming Algorithm.

Select the initial barrier parameter µ0 > 0 and parameters σ, τ,
and τR ∈ (0, 1).
Initialize (x0, s0, y0, z0) according to Section 3.5.1.5.
Set k ← 0.

Repeat until
∣∣f(x+)− f(x)

∣∣ ≥ τR
Repeat until E(xk, sk, yk, zk) ≥ µk

Correct inertia of primal-dual matrix with the algorithm
in Table 3.2;

Solve (3.25) to obtain the direction p = (px,ps, py,pz);
Compute (xk+1, sk+1, yk+1, zk+1) using (3.29) and (3.30);
Set µk+1 ← µk and k ← k + 1;

end
Choose µk ∈ (0, σµk);

end

min
x∈R2M

− xTQTx

s. t. xTx = 1.

(3.32)

The optimum of the problem (3.32) is the largest eigenvalue, λ1, which is obtained by

using the principal eigenvector of QT , i.e., x∗ = v1. This means that the total energy

harvested is maximized by using v1. Thus, x0 = v1 may be the best initial point we can

choose. This can also be seen as warm starting of the algorithm. We further initialize S

by S0 = I and from (3.22d) we have Z0 = µI. Therefore, from (3.22a) we initialize y

as y0 = −(1 + µ)λ1.

3.6 Numerical and Simulation Results

In this section, we obtain numerical results for the optimization problem to evaluate the

performance of the algorithm. We assume independent and identically distributed (i.i.d.)
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complex Gaussian channels with zero mean and unit variance, i.e.,hij ∼ CN (0, 1).

Further, we assume ρi = 1 and η = 0.7, ∀i ∈ [1, K].

Next, we consider networks consisting two transmit antennas (M = 2) and K =

2, 4, 6 and 8 single antenna users. We implement the algorithms given in Table 3.2 and

Table 3.1 and obtain the approximate solution x∗.

In order to verify and compare the results using a benchmark, we solve the optimiza-

tion problem using the CVX toolbox. However, in order to handle the non-convexity

of the problem we use SDR to approximately solve the problem. For this purpose, by

defining X = xx†, we rewrite the problem in (3.17) as

min
X∈CM×M

− Tr
(
H†HX

)
s. t. Tr

(
h†ihiX

)
≥ ηi ∀i ∈ [1, K],

Tr (X) = 1,

Rank (X) = 1, X � 0,

(3.33)

where Tr(.) denotes the trace operator. Although the non-convex minimum energy

constraints in (3.17) are transformed into linear trace constraints, the transformation

X = xx† requires the additional rank constraint which is non-convex. Thus, we relax

the problem by removing the rank constraint as

min
X∈CM×M

− Tr
(
H†HX

)
s. t. Tr

(
h†ihiX

)
≥ ηi ∀i ∈ [1, K],

Tr (X) = 1, X � 0.

(3.34)

In order to compensate for the relaxation, the solution obtained from the CVX toolbox,

Xopt is post-processed to obtain a rank one solution. This process is known as the

randomization. This allows us to generate a set of candidate vectors, and then, the
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best approximate solution can be selected from that set of candidate vectors [42]–[45].

We focus on three randomization techniques that are available in the literature: randA,

randB and randC [42], [43].

• randA: we calculate the eigen-decomposition of Xopt = UΣU†, where Σ is the

diagonal eigenvalue matrix U is the eigenvector matrix. Then we generate a set

of candidate vectors {wc} such that wc = UΣ1/2vc where vc ∈ CM is a vector of

independent random variables which are uniformly distributed on the unit circle

in the complex plane. This technique ensures that the trace constraint in (3.34) is

satisfied for any realization of vc.

• randB: we generate a set of candidate vectors {wc} such that [wc]i =
√

[Xopt]ii[vc]i.

• randC: we generate {wc} such that wc = UΣ1/2gc, where gc is a vector of zero

mean and unit variance complex circularly symmetric uncorrelated Gaussian ran-

dom variables such that E[wcw
†
c] = Xopt. The resulting {wc}must be normalized

to meet the power budget ‖wc‖2 = 1.

We generate 100 candidate vectors per randomization technique and the best solution of

these three randomization techniques, w∗c, can be selected such that it yields the largest

value for the objective function in (3.34).

3.6.1 Results for special Case

We use above technique to find the approximate solution using the CVX toolbox and

compare it against the results of the beamforming algorithm in Section 3.5.1. We gen-

erate 1000 channel matrices H for each network size, i.e., M = 2 and K = 2, 4, 6, 8,

and 10.

Figure 3.3 shows the times taken for the beamforming algorithm in Section 3.5.1

and the CVX together with randomization for each instant of the channel i for K =

2, 4, 6, 8 and 10, in shades of blue and red, respectively. The minimum time taken for

the beamforming algorithm for K = 2 to K = 10 is 0.2 ms to 6 ms while for the CVX
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Figure 3.3: The solving time for the two algorithms for different network sizes.

based algorithm the time taken is 0.17 s to 0.18 s. It can be clearly seen that the time

taken for the beamforming algorithm is much smaller than the time taken for the CVX

based algorithm.

Figure 3.4 illustrates the minimum Energy harvested by users for each instant of the

channel i for K = 2, 4, 6, 8 and 10, using the beamforming algorithm and the CVX

based algorithm, in shades of blue and red, respectively. For each network size, the

channel instances i are sorted such that the minimum energy harvested by using the

beamforming algorithm is in ascending order. It can be seen that the minimum energy

levels obtained using the two algorithms are approximately the same, with the mini-

mum energy level harvested using the beamforming algorithm slightly outperform the

CVX based algorithm. However, when the network size increases, e.g., K = 8 and 10,

the CVX result has not been able to match the beamforming algorithm. In these situa-

tions, the energy levels obtained by the CVX based algorithm is lower than the energy

level obtained using the beamforming algorithm, sometimes even below the minimum
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Figure 3.4: Minimum energy levels harvested by using the two algorithms.

threshold η = 0.2. For example at the channel instant i = 109, the minimum energy

levels obtained by the beamforming algorithm and the CVX based algorithm is 0.2 and

0.0805, respectively. The latter violates the minimum energy constraint. This is because

the randomization techniques have not been designed to ensure that all the solutions are

feasible. We can impose constraints such that the best candidate vector is in feasible

region. However, this may further decrease the efficiency of the CVX based algorithm.

Figure 3.5 shows the total energy harvested by using the two algorithms for 1000

channel instances with network sizes M = 2 and K = 2, 4, 6, 8 and 10. For each

network size, the channel instances i are sorted such that the total energy harvested by

using the beamforming algorithm (illustrated in shades of blue) is in ascending order.

The corresponding results for the CVX based algorithm is illustrated in shades of red.

It can be seen that most of the energy levels obtained from the two algorithms are ap-

proximately equal except for some finite occasions. These spurious results correspond

to the channel instances where the CVX based algorithm failed to satisfy the minimum

53



i

0 200 400 600 800 1000

T
o

ta
l 
H

a
rv

e
s
te

d
 E

n
e

rg
y

0

5

10

15

20

25

30

35

K=2

K=4

K=6

K=8

K=10

CVX, K=2

CVX, K=4

CVX, K=6

CVX, K=8

CVX, K=10

Figure 3.5: The total energy harvested by using the two algorithms.

energy constraints.

Figure 3.6 shows the time taken by the two algorithms averaged over the 1000 in-

stances with the number of users (network size with M = 2). The average time taken

for 2 users using the beamforming algorithm and the CVX based algorithm are, 6.32 mS

and 0.18 S, respectively. This means that in this case, the beamforming algorithm is ap-

proximately 29 times faster than the CVX base algorithm. Furthermore, it can be seen

that the average run time increases with the network size.

3.6.2 Results for General Case

In this section we focus on the general case of the problem where all users may not be

able to harvest their minimum energy requirement. We implement the algorithms given

in Table 3.1 and obtain the approximate solution x∗. In order to verify and compare the

results using a benchmark, we solve the optimization problem discussed in section 3.5

using the CVX algorithm for each and every subset of users. We consider the solutions
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obtained for each subset as the candidate solution set for the problem in concern. Then,

we choose the optimum solution as the maximum value from the candidate set and

consider the corresponding set of users as the active users. We name this method as the

exhaustive SDP algorithm.

Figure 3.7 shows the total energy harvested by the active users by using the two al-

gorithms for different number of users. We apply both algorithms for 1000 set of chan-

nel realizations. The solutions obtained for these realizations are sorted into ascending

order to achieve clarity of the figure. We note that the exhaustive SDP algorithm out-

performs the proposed algorithm. This is because the proposed algorithm merely gives

an approximate solution due to convex approximation of the objective function. When

K = 2, we can see that both algorithms have resulted in zero harvested energy for the

case when i < 65. This is because when the number of users is small, the probabil-

ity of at least one user may be able to achieve its minimum energy requirement is low.

Therefore, for 65 instances out of the 1000 considered, both users are inactive. Further,
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Figure 3.7: The total energy harvested by the active users for different number of users
for the two algorithms.

in case K = 2, we note that when 65 ≤ i < 125, the total energy harvested by the

active users is zero for the proposed algorithm while the exhaustive SDP algorithm pro-

duces a positive value. This is also because of the convex approximation. As the sudden

change in step function is replaced by a smooth approximation, the proposed algorithm

has converged at a point in the smooth transition. However, when we post process the

solution to obtain the users with minimum energy, both users are not active, Therefore,

the solution is zero. The same effect can be seen for the case K = 4 when 8 ≤ i < 27.

Figure 3.8 shows the execution times taken by the algorithms for different number

of users. We see that the execution times taken by the exhaustive SDP algorithm is

remarkably higher compared to the proposed algorithm.

3.7 Conclusions

In this chapter, we study the problem of maximizing the total energy harvested by users

satisfying the minimum energy constraint. We formulate the non-convex problem and
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approximately solve for the beamforming vector by using a gradient projection based

algorithm on the convexified problem. We identify that in good radio conditions and/or

low minimum energy requirements, all users may harvest their minimum energy re-

quirements. For this case, we obtain the optimum energy beamforming design such

that the total harvested energy of the network is maximized while the minimum energy

requirement of each user in the network is achieved. We implement an IPM based al-

gorithm to obtain the optimum beamforming vector. We verify and compare the results

of the algorithm by using the results obtained by performing SDR to the problem and

solving the SDP using CVX toolbox. These results indicate that the accuracy and the

speed of the beamforming algorithm outperforms the CVX based algorithm. For the

general problem, we solved the optimization problem discussed in section 3.5 for every

subset of the users, and obtained the maximum total harvested energy. This can be used

as a performance benchmark. These results indicate that the speed of the proposed al-
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gorithm outperforms the exhaustive SDP algorithm although the accuracy is affected by

the convex approximation.

3.8 Appendix

The channels hi,j can be modeled as continuous random variables. Therefore, the prob-

ability of the channel being a constant a where a ∈ C is zero, i.e., P[hi,j = a] = 0.

Since, Qi = ρ2h̃Ti h̃i, ∀i ∈ [1, K], the ith users channel matrix Qi consists of continu-

ous random variables. Therefore, P[alQl + anQn = 0] = 0 for al, an ∈ R, l, n ∈ [1, K]

and l 6= n. In other words, the users l and n have linearly independent channel matrices

almost surely (with probability one).

Considering the constraints of the problem given in (3.21), ci(x) = xTQix − si −

ηi = 0 ∀i ∈ [1, K], and cp(x) = xTx− 1 we have

∇ci(x) = 2Qix, ∀i ∈ [1, K] (3.35a)

∇cp(x) = 2x. (3.35b)

Since all the constraints are equality constraints, for a given feasible point x all the

constraints are in the active setA(x). As Qi ∀i ∈ [1, K] are lineally independent almost

surely, the gradients of the constraints given in (3.35) are linearly independent almost

surely. This means LICQ holds for any feasible point x almost surely.
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Chapter 4

Energy Beamformer Design for Minimum Har-

vested Energy Maximization.

In this chapter, we consider energy harvesting in a multi-user multi-input

single-output (MU-MISO) network, and investigate two energy beamform-

ing schemes which ensure fairness among the energy levels harvested by

all users in the network. In particular, we investigate how to maximize the

minimum harvested energy in the network by using i) a single beamforming

vector; and ii) multiple beamforming vectors. We solve these problems by

using semidefinite programming. The performance of different beamform-

ing techniques is discussed with the aid of numerical simulations.

4.1 Introduction

There has been a recent growing interest in studying wireless powered communication

networks (WPCNs), where energy harvested from radio frequency (RF) signals is used

to power wireless terminals in the network [17], [46]. This becomes a promising alterna-

tive for prolonging the lifetime of conventional battery powered wireless devices [17],

[22], [23], [47]. For instance, use of energy harvesting in wireless sensor networks

(WSNs) can mitigate the inconvenient or even in some cases infeasible battery replace-
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ment process [22], [23], [48]. However, harvested energy at the receiver may depend

on several parameters such as transmit power, wavelength, distance, efficiency of the

antennas, etc. Among them, a key concern in RF energy harvesting is the propagation

path loss with the transmission distance.

In information transmission, beamforming techniques are used to improve the re-

ceived signal-to-noise ratio (SNR) at the receiver. A similar concept can be applied

in energy harvesting, but to improve the received energy level. Although information

beamforming has been investigated extensively in the literature, energy beamforming

is still relatively new to the research community. Advanced energy beamforming tech-

niques can improve the energy transfer efficiency significantly [24]. By carefully shap-

ing the transmit waveform at each antenna, energy beamforming can control the col-

lective behaviour of the radiated waveforms causing them to coherently combine at a

specific receiver. Further, compared to single antenna omni-directional transmission,

using multi-antenna transmission with beamforming, energy transfer efficiency can be

further improved without additional bandwidth or increased transmit power [19].

Different beamforming designs have been explored to transmit RF energy towards

receivers with different information and/or energy requirements. In [49], a beamform-

ing design is proposed for a multi-antenna power transmitter to energize single-antenna

users. Then, users utilize all harvested energy to transmit their individual information to

a single-antenna sink based on the time-division-multiple-access (TDMA) scheme. For

perfect channel state information (CSI), the beamforming vector at the transmitter is de-

signed in order to maximize the sum-throughput. However, solutions are not in closed

form. Imperfect CSI is considered in [50]–[52] where optimizing time for channel state

estimation and energy transfer are discussed for different objectives. In [53], a multi-

user multi-input single-output (MU-MISO) network which has one information receiver

(IR) and multiple energy harvesting receivers (ERs) operating simultaneously is consid-

ered for i) maximizing the secrecy rate for the IR subject to individual harvested energy

constraints of ERs; and ii) maximizing the weighted sum-energy transferred to ERs
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subject to a secrecy rate constraint for IR. When there is no IR, the second optimization

problem reduces to a fair energy allocation scheme (weighted sum maximization) for

multiple ERs. For this problem, the optimum beamforming vector is obtained by using

eigen analysis. However, weighted sum maximization is not the only scheme that can

be used to achieve fairness. Hence, in this chapter, we focus on different schemes that

can achieve fairness among the energy levels of the users.

We study a WPCN with a fixed power supply which coordinates the wireless energy

transmissions to a set of distributed users. All users have rechargeable batteries that

are assumed to have no other energy sources. Unlike works on simultaneous wireless

information and power transfer (SWIPT) ([24]–[28]), which focused on the simultane-

ous energy and information transmissions to users, in this chapter, we consider a setup

where the transmitter broadcasts only wireless energy to all users. This set up can be ap-

plied for several applications: i) In sensor networks, the users transmit their independent

information using their individually harvested energy to a remote data centre [54]–[56];

ii) In “harvest-then-transmit” protocol, the transmitter (access point) first broadcasts

wireless energy to all users in the downlink, and then the users forward their informa-

tion to the access point (e.g., by TDMA) [57], [58]; and iii) In other wireless networks,

the energy harvesting users can support their own secondary network in cognitive radio

networks [59], or can act as cooperative/intermediate nodes in relay networks [60]–[62].

Therefore, it is an interesting problem to analyse how fairness can be achieved when

transmitter broadcasts only wireless energy to all users. To fill this research gap, in this

paper, we propose two energy beamforming designs for MU-MISO networks to achieve

fairness by using max-min criterion:

• Single beamforming vector which is used for the entire charging time to maximize

the minimum harvested energy among all users in the network.

• Multiple beamforming vectors which are used in different times to maximize the

minimum harvested energy among all users in the network.
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Further, our optimization problem which maximize the minimum harvested energy

can overcome the near-far problem with user locations. Different from [53], these beam-

forming designs achieve fairness without the need of knowing the weights to be used to

achieve fairness. Since there are more degrees of freedom with multiple beamformers,

in terms of time (use of different time slots) and space (use of different beamforming

vectors), the worst user achieves higher energy levels than in the single beamforming

case.

The rest of this chapter is organized as follows. Section 4.2 develops the proposed

approach to maximize the minimum harvested energy using a single beamforming vec-

tor. Section 4.3 extends the beamforming design for multiple beamforming vectors at

different times. Section 4.4 presents numerical and simulation results followed by con-

cluding remarks in Section 4.5.

4.2 Max-Min Fair Energy Beamforming

In this section, we consider the MU-MISO wireless communication network discussed

in Section 2.2. We use the max-min criterion to achieve fairness among users, i.e., this

criterion maximizes the minimum energy level of all users. However, this does not

guarantee that we maximize the total harvested energy. Thus, the energy harvesting

problem can be formulated as

max
w∈ CM

min
i∈[1,K]

Pi = ρ2ihiww†h
†
i

subject to ‖w‖2 ≤ 1.

(4.1)

The received energy at users is proportional to the transmit power. Therefore, the con-

straint ‖w‖2 ≤ 1 should be met with equality at an optimum. Hence, we re-write the

optimization problem in (4.1) as

max
w∈ CM

min
i∈[1,K]

Pi = ρ2ihiww†h
†
i

subject to ‖w‖2 = 1.

(4.2)
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A similar problem is considered to maximize the multicast channel capacity in [42],

[63]. For the special case of two transmit antennas (M = 2) a prune and search al-

gorithm (PASA) is developed to find the global optimal beamforming vector in [63].

However, due to the complexity of this optimization problem, it cannot be solved ana-

lytically for a closed form solution. Thus, we consider the special case of two transmit

antennas and two energy harvesting users (Rx1 and Rx2), i.e., M = K = 2. This may

help for a better understanding of the general problem (M,K > 2).

4.2.1 Special Case (M=K=2)

From Pi = ρ2i ‖hiw‖2 = ρ2ihiww†h
†
i , we can notice that the energy harvested by Rxi

is the square of the vector projection of the channel vector hi onto the beamforming

vector w. Hence, to obtain the optimum solution, w must be selected such that the

minimum vector projection of hi onto w is maximized. When M = K = 2, consider

the user with smaller channel norm. If it so happens that the magnitude on the inner

product of the other user’s channel with the smaller channel is bigger than the norm

of the smaller channel, then the optimal beamforming vector must simply be in the

direction of the smaller channel. Otherwise, the beamforming vector should be rotated

to the point where the projections of both vectors onto the beamformer are equal (and

so the harvested energy is equal). Unfortunately this simple reasoning does not extend

to the general case.

4.2.2 General Case (M,K>2)

Although, this problem can be solved simply for M = K = 2, it may be difficult to

solve in closed form for the general case. Further, when we increase the number of users

K, the computational complexity also increases (e.g. we need longer computation time),

because the general case is an NP-hard optimization problem [42], [63]. Therefore, we

find an approximate solution by using a relaxed problem. Further, a similar problem is

analysed in [42] in which a two-step approach has been proposed to formulate a problem

which can be solved using semidefinite programming. Thus, we define our problem as
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follows. In the first step, the original problem is reformulated as

max
X∈CM×M

min
i∈[1,K]

Tr(XQi)

s. t. Tr(X) = 1,

X � 0,

Rank(X) = 1,

(4.3)

where Tr(.) is the trace operator, Qi and X are defined as Qi := ρ2ih
†
ihi and X :=

ww† respectively. By relaxing the non-convex rank constraint, Rank(X) = 1, and

introducing an additional variable t ∈ R, the relaxed problem can be given as

min
X∈ CM×M , t∈R

− t

subject to Tr(XQi) ≥ t,∀i ∈ [1, K],

Tr(X) = 1,

X � 0.

(4.4)

This problem can be solved using standard semidefinite program solvers such as CVX [64].

Since the rank constraint is removed, the solution Xopt may not be rank one in general.

Therefore, as the second step, the solution is post-processed to achieve a rank-one so-

lution. This process is known as randomization. This allows us to generate a set of

candidate vectors from which the best approximate solution can be selected ([42]–[45]).

4.3 Max-Min Fair Multiple Beamforming

In Section 4.2, we obtained an approximate beamforming vector such that the minimum

harvested energy is maximized. This beamforming vector is used to deliver energy to

all users for the entire charging time Tc. We now extend this problem by allowing use

of multiple beamforming vectors within Tc. As shown in Figure 4.1a, each beamfom-

ing vector is used for time duration Tc/r where r denotes the number of beamforming

vectors used. Therefore, the extended optimization problem can be given as
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Figure 4.1: Time-slot allocation for multiple beamforming scheme using (a) equal du-
rations; and (b) different durations.

max
{vl}

min
i∈[1,K]

Pi =
r∑
l=1

ρ2ihivlv
†
lh
†
i

subject to
r∑
l=1

‖vl‖2 = 1.

(4.5)

The constraint
∑r

l=1 ‖vl‖2 = 1 ensures that the power budget at the transmitter is

met. We solve this problem by using a similar approach to that used in Section 4.2.2.

We define Y ∈ CM×M as Y :=
∑r

l vlv
†
l .

It is important to note that Y is a matrix with rank min(r,M). For the case of

r > M , the set of beamforming vectors {vl} are no longer linearly independent to each

other. Hence, without loss of generality we can assume that r ≤M . Then, we transform

problem in (4.5) to a SDP which is given as

max
Y∈CM×M

min
i∈[1,K]

Tr(YQi)

subject to Tr(Y) = 1,

Y � 0.

(4.6)

Note that we do not need a rank constraint in (4.6) as we can select r to be equal to

the rank of the optimal Y. Therefore, Yopt can be obtained by solving the following
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Figure 4.2: Energy harvested by each user for two energy harvesting schemes.

problem:

min
Y∈ CM×M , t∈R

− t

subject to Tr(YQi) ≥ t,∀i ∈ [1, K],

Tr(Y) = 1,

Y � 0.

(4.7)

The beamforming vectors {vl} can be obtained by eigen-decomposition of Yopt. In

order to meet the power budget, i.e.,
∑r

l=1 ‖vl‖2 = 1 , the beamforming vectors {vl}

must be normalized by their corresponding eigenvalues. Hence, the transmitted power

during each time sub-slot is different and is given by the corresponding eigenvalue.

Another protocol which can be used to achieve multiple beamforming is to utilize

different beamforming vectors, for different durations as shown in Figure 4.1b. In this

scenario, the beamforming vectors wl and the corresponding times λl are the eigen-

vectors and the corresponding eigenvalues of Yopt respectively.

4.4 Numerical and Simulation Results

In this section, we provide numerical results based on analysis in Sections 4.2 and 4.3,

and verify them using simulations. We assume independent and identically distributed

(i.i.d.) complex Gaussian channels with zero-mean and unit-variance, i.e., hij ∼ CN (0, 1).

Next, we consider a network consisting ten transmit antennas (M = 10) and twenty

energy harvesting users (K = 20). For a particular channel realization, we solve the
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Figure 4.3: Energy harvested by each user by single beamforming (rank-1) and multiple
beamforming (3 vectors).

optimization problem in (4.3) using the CVX toolbox. In order to obtain the optimum

beamforming vector wopt, we use randc randomization process [42]. In this method, we

calculate the eigen-decomposition of Xopt = UΣU†, and generate 10, 000 candidate so-

lutions for wc = UΣ1/2vc, where vc ∈ CM is a vector of zero-mean and unit-variance

complex circularly symmetric uncorrelated Gaussian random variables. It is important

to note that ‖wc‖2 depends on the particular realization of vc. Hence, it is crucial to

normalize the set of candidate vectors {wc} in order to satisfy the power budget at the

transmitter. Then, we choose wopt that yields the largest minimum harvested energy.

We sort users in descending order according to the amount of harvested energy by each

user. We calculate the harvested energy of each user by using both max-min fair energy

beamforming scheme and total energy maximization scheme. Then, we plot these en-

ergy levels according to the sorted order in Figure 4.2. The harvested energy for each

user with the total energy maximization scheme varies between 0.2 and 7.1, and with

the harvested energy using the max-min fair beamforming varies between 0.7 and 3.2.

Then, the minimum energy level with max-min fair beamforming, i.e., 0.7, is signifi-

cantly improved more than three times with comparing the minimum energy level har-

vested with total energy maximization, i.e., 0.2. Therefore, max-min fair beamforming

introduce more fairness among the energy levels of users.

Now, we consider multiple beamforming vectors as discussed in Section 4.3, and

compare the results with a single beamforming vector. For a particular realization of the
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channel matrix, we use the CVX toolbox to obtain the optimum solution Yopt (which

in this case has an effective rank of three after neglecting eigenvalues less than 10−5).

Figure 4.3 shows the energy harvested by each user with the three beamforming vectors

(energy harvested by each beamforming vector shown in different shades are stacked

together in one bar). For comparison, we also plot the energy harvested by each user

with rank-1 beamforming (i.e., a single beamforming vector). The minimum harvested

energy in multiple beamforming and single beamforming are 1.5 and 0.8, respectively.

Thus, utilization of multiple beamforming vectors outperforms single beamforming vec-

tor. According to this example, it has almost 100% energy improvement.

In order to compare the performance of different schemes, i.e., i) equal gain trans-

mission; ii) max-min fair single beamforming; and iii) max-min fair multiple beam-

forming, we consider a network with M = 10 and K = 20. Therefore, the chan-

nel matrix is H ∈ C10×20. For equal gain transmission, the beamforming vector is

w = 1√
M

[1, 1, · · · , 1]. Equal gain transmitters can be utilized when CSI is not known.

Since we have already compared the user who has minimum energy level for a partic-

ular realization of the channel, now we compare the average energy level of the users.

We consider 10, 000 channel realizations in the simulation.

Figure 4.4 shows the average energy harvested per user for three different beam-

forming techniques. The average harvested energy varies from 3.61 to 0.05 with equal

gain transmitter and from 3.88 to 0.82 with max-min fair energy beamforming. These

results show that max-min fair beamforming outperforms equally weighted transmis-

sion in terms of fairness among users and average energy per user. The average energy

harvested using max-min fair multiple beamforming varies from 2.80 to 1.57. It can

be seen that 13 users (out of all 20) harvest similar energy levels. This demonstrates

the high fairness achieved by multiple beamforming when compared with both equal

gain transmission and max-min fair beamforming. The reason behind obtaining better

results for multiple beamforming compared with single beamforming is that the ran-

domization process moves the solution away from the optimum point. Thus, solution
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Figure 4.4: Average energy harvested for three schemes.

for single beamforming is approximate. However, with multiple beamforming we are

able to obtain the exact solution leading to better results compared to single beamform-

ing scheme.

4.5 Conclusion

In this chapter, we study transmit energy beamforming designs for a MU-MISO com-

munications system with energy harvesting capability. We design beamforming vectors

to maximize the energy level of the minimum harvested user. Such schemes provide

fairness among users in the network. We propose a beamforming design which utilizes

multiple beamforming vectors for max-min energy beamforming. We formulated the

design problem under the transmit power budget and solved the problem using SDP.

Such beamforming designs can be used practically in slowly changing wireless envi-

ronments.
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Chapter 5

Beamforming for Wireless Energy Harvesting

Networks with Throughput Fairness

In this chapter, we consider a multi-user multi-input single-output (MU-

MISO) wireless communication network. A harvest-then-transmit protocol

is considered where a hybrid-access point (H-AP) with a co-located an-

tenna array transfers energy to all users via the downlink (DL), and then all

users transmit their individual information back to the H-AP via the uplink

(UL) by using a time-division-multiple-access (TDMA) scheme. We pro-

pose two energy beamforming schemes which ensure the throughput fair-

ness among all users. In particular, we investigate how to maximize the

minimum throughput of the network by using: i) a single beamforming vec-

tor; and ii) multiple beamforming vectors. Further, we analyse the optimal

time allocations for the DL and UL transmissions. Instead of a co-located

multi-antenna H-AP, we also consider distributed single-antenna H-APs, in

which individual transmit power constraints are assumed for each antenna.

We compare the performance of different beamforming schemes and net-

work scenarios by using numerical examples.
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5.1 Introduction

Wireless energy transfer has gained a significant research interest during the past few

years, especially, in far-field energy transfer which can be utilized in wireless commu-

nication networks. This technology greatly benefits the advancement of wireless sensor

networks [65]. At sensor nodes, energy is scarce, and replenishment of energy may be

an expensive or impossible task [13], [21], [66]. For example, we can consider per-

sonnel health monitoring systems in wireless body area networks in which bio-signals

are acquired using implanted invasive sensors and wearable non-invasive sensors. Since

battery replacement is difficult for implanted sensors, energy harvesting techniques may

be a desirable technique to maintain a quality service of health care systems [67]–[69].

For such networks, a protocol called harvest-then-transmit allows sensors to first harvest

energy from a dedicated power transmitter via the downlink (DL), and then to transmit

individual information to a sink via the uplink (UL) [17], [49], [50], [52], [70], [71].

One of the major challenges in wireless energy transfer is propagation path-loss

with transmission distance, which has a worse impact on a network with a single omni-

directional antenna. However, the path-loss effect can be mitigated by using multi-

antenna arrays together with beamforming which does not need additional bandwidth

or increased transmit power [19], [22], [51]. A properly designed beamforming vector

allows shaping of the transmit waveform at each antenna such that transmit signals can

be coherently combined at the receiver in order to acquire adequate energy levels for

the successful information communications. However, in multi-user networks, beam-

forming vectors may be designed in order to ensure that each user can communicate

with a fair throughput rate. This may also be called throughput fairness, e.g., maximiza-

tion of minimum throughput [70]. Such energy beamforming is especially important in

the harvest-then-transmit protocol because the UL throughput depends on the harvested

energy levels via the DL [17], [50].
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5.1.1 Related Work

Energy harvesting in a multi-user single-input single-output (SISO) network is consid-

ered in [17]. All users harvest energy from a hybrid-access point (H-AP)1, and transmit

information back to the H-AP using a time division multiple access (TDMA) scheme.

The sum throughput is maximized by jointly optimizing the time allocations for the DL

and the UL transmissions for a given total time constraint. This optimization can re-

sult in a severe throughput unfairness among users because users located far from the

H-AP not only harvest low energy levels via the DL but also undergo worse path-loss

in the UL compared to users located closer to the H-AP. This effect is called as the dou-

bly near-far effect. Therefore, the common throughput is maximized by assuming that

each user has same rate regardless of their distances from the H-AP. Instead of multi-

user single-antenna transmission [17], a network with multi-antenna power transmitter

and a single-antenna energy harvesting receiver is considered in [50]. The harvested

energy is maximized by balancing the time for channel estimation and the time used for

energy transfer. An optimal energy beamforming scheme is derived when we use: i)

a fixed preamble length obtained by solving an offline optimization; and ii) a variable

preamble length obtained online by solving a dynamic program.

A multi-antenna power transmitter and multiple single-antenna users are considered

in [49]. Utilizing the harvested energy, the users transmit information to a dedicated

information sink using a TDMA scheme. This work shows that the sum throughput can

be improved by using multi-antenna transmission with energy beamforming, compared

to a single antenna power transmitter used in [17]. The sum throughput is maximized

by optimizing the joint time allocation for the UL and DL transmissions, and energy

beamforming by assuming perfect and imperfect channel state information (CSI) at the

transmitter.

In [70], a multi-user multi-input single-output (MU-MISO) network is considered

1Since the access point serves as a power transmitter and an information receiver, we call it a hybrid-
access point (H-AP).
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when users transmit information simultaneously. The minimum throughput among all

users is maximized by a joint design of the DL and UL time allocations, the DL energy

beamforming, the UL transmit power allocation, and receive beamforming for minimum

mean square error (MMSE) and zero forcing (ZF) receivers. A two-step approach is

used to solve nonconvex optimization problems: i) for a given set of DL and UL times,

the minimum throughput is maximized with respect to the UL power allocation, and

transmit/receive beamforming vectors; and ii) the optimal UL and DL time allocations

are obtained by one-dimensional search for the UL and DL time allocations. The search

for optimal UL and DL time allocations is exhaustive. Thus, a suboptimal solution is

proposed when the number of users is no larger than the number of antennas at the

H-AP. This is one limitation and a drawback of this paper.

5.1.2 Motivation

A single-user network is one of the simplest networks for which to design energy beam-

forming vectors because all transmit power can be focused on the single user. However,

future wireless networks consist of multiple users. Since a single-user beamforming

vector may not be readily used in multi-user networks, it is required to design different

beamforming schemes for multi-user networks [17], [49]. One such scheme is sum-

throughput maximization, e.g. [17], [49], however, due to the doubly near-far effect,

this scheme causes unfairness for the far users in terms of throughput [17]. Therefore, it

is crucial to design schemes which allow sufficient energy harvesting for distant users.

This problem can be addressed by maximizing the minimum throughput. The litera-

ture on maximizing the minimum throughput resorts to suboptimal solutions because

the network size limits the capability of finding efficient optimal solutions [70]. In real-

ity, not all communication networks satisfy the network size constraints posed in [70].

Thus, in this research, we focus on obtaining optimal solutions for MU-MISO networks

without posing any constraints of the network size. We use the TDMA scheme for the

UL information transmission which mitigates the user interference. Therefore, the opti-

mal solutions can be achieved for MU-MISO networks without any network limitations
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nor exhaustive search for the UL and DL time allocations.

5.1.3 Contribution

In Chapter 4, we obtain fair beamforming schemes for energy harvesting, in which we

maximize the minimum harvested energy in a MU-MISO network with the total transmit

energy constraint. We also propose single beamforming and multiple beamforming

schemes. However, we merely focus on the harvested energy, but not for the information

transmission.

This chapter proposes beamforming schemes for the harvest-then-transmit protocol.

We maximize the minimum throughput of all users by jointly optimizing the beamform-

ing vectors and the DL and UL time allocations. We use the TDMA scheme in UL to

avoid the user interference. This chapter provides three main contributions:

• We propose two energy beamforming schemes: i) a single beamforming scheme;

and ii) multiple beamforming scheme. For both schemes, we solve the optimiza-

tion problem by using semidefinite programming (SDP).

• We provide an analytical framework to calculate the optimal DL and UL time

allocations which is a novel result.

• We consider distributed single-antenna H-APs, and design single and multiple

beamforming vectors by maximizing the minimum throughput when each H-AP

has an individual transmit power constraint.

Our performance comparison shows that utilization for distributed single-antenna H-

APs outperforms the centralized multi-antenna H-AP.

The rest of this chapter is organized as follows. Section 5.2 discusses the system

model for the multi-user energy harvesting networks. Section 5.3 and Section 5.4 de-

velop the optimizing framework for co-located and distributed antenna systems, respec-

tively. Section 5.6 presents numerical and simulation results, followed by concluding

remarks in Section 5.7. Related proofs are provided in the Appendix 5.8.
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Figure 5.1: (a) MU-MISO network with co-located multi-antenna H-AP; and (b) TDMA
scheme used for energy and information transfer.

5.2 System Model

We consider a wireless powered communication network with K single antenna users

connected to a H-AP which consists of M co-located antennas as shown in Figure 5.1a.

The users denoted by Ui, i = 1, · · · , K, harvests energy from the signals transmitted

from the H-AP via the DL transmission. Then, each user transmits its individual in-

formation back to the H-AP via the UL transmission utilizing all the harvested energy,

which is the harvest-then-transmit protocol. Figure 5.1b shows the TDMA scheme used

for the UL information transfer. All users harvest energy for a period of TDL = βT , and

then each Ui transmits information back for a period of TUL,i = (1− β)T/K.

Further, we make the following assumptions. The H-AP and all the users are op-
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erating in the same frequency band. The users have no other energy sources2. Both

DL and UL transmissions take place within a coherence time. Thus, the fading channel

between ith user, Ui, and jth antenna of the H-AP, Bj , denoted as hij is same for both

UL and DL transmissions. Since the distance between Ui and Bj is dij , the distance

dependent path-loss factor is ρij = 1/
√
dαij where α is the path-loss exponent. For a

co-located H-AP, we have ρi = ρi,j, ∀j. Thus, the effective channel between Ui and Bj

including path-loss fading can be given as γij = ρijhij . Further, the H-AP has perfect

CSI knowledge.

5.2.1 Downlink Energy Harvesting

The DL transmission is only for energy harvesting. The received signal at Ui can be

given as

yi = Γiwsi + ni (5.1)

where the effective channel vector is Γi = [γi1, · · · , γiM ], the beamforming vector of the

H-AP is w = [w1, · · · , wM ]T , a random transmit signal is si, and the received additive

white Gaussian noise is ni. Since this noise is independent from the beamforming vector

w, we cannot improve the power of the received signal yi by adjusting the beamforming

vector. Hence, we can neglect the noise term as it does not affect the objective function.

Thus, the harvested energy by Ui can be given as

Ei = ‖yi‖2TDL = ηiβTw†Γ†iΓiw, (5.2)

where ηi is conversion efficiency of Ui, which accounts for the energy consumption

for processing and running the circuitry, and † denotes the conjugate transpose. This

harvested energy is used for the information transmission.

2Although, the formulation of the problem presented assumes zero initial energy at all users, the
problem can be altered to handle initial energy conditions by changing the objective function in (5.7) to
Tr(Qi)

[
Tr(XQi) + ei

]
where ei denotes the initial energy of the ith user.
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5.2.2 Uplink Information Transfer:

The UL transmission is only for the information transfer. After the energy harvesting

period, the users subsequently transmit their information back to the H-AP. Due to the

very low energy transfer efficiency in WET, the amount of energy harvested by each user

may be very low. Therefore, it is highly likely that the users may have more information

to be transmitted than what the harvested amount of energy allow them to transfer.

Therefore, it is reasonable to assume that all the harvested energy is utilized by the

subsequent information transmission. Then, the average transmit power of Ui can be

given as

Psi =
Ei
TUL,i

= ηiK

(
β

1− β

)
w†Γ†iΓiw. (5.3)

Assuming the received noise power at the H-AP to be additive white Gaussian with zero

mean and unit variance, i.e., ni ∼ CN (0, 1), and that H-AP uses the maximum ratio

combining (MRC), the signal-to-noise-ratio (SNR) due to Ui transmission is ΓiΓ
†
iPsi .

Therefore, the achievable throughput of Ui is

Rsi =
(1− β)

K
log2

[
1 +

Kβ

1− β
ηiw

†(ΓiΓ
†
i

)
Γ†iΓiw

]
. (5.4)

It is worth noting that the users with weak channels, i.e., small Γi, may have low

throughput while the users with strong channels may achieve high throughput. For

example, we consider a user located far away from all M antennas of the H-AP. Due

to distance-dependent path-loss, the far user harvests less energy as (5.2), and the far

user requires more transmit power for sufficient SNR. Both these factors are taken into

account in (5.4). This is known as the doubly near-far effect.

5.3 Maximization of the Minimum Throughput

In this section, we consider maximizing the minimum throughput among all users. This

optimization problem, called as the max-min problem, can be formulated as
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max
w, β

min
i∈[1,K]

Rsi

s. t. ‖w‖2 ≤ 1,

β ∈ [0, 1]

(5.5)

where Rsi is the throughput of Ui in (5.4). The constraint ‖w‖2 ≤ 1 ensures that the

total transmit power at the H-AP is within its power budget. This constraint is important

as we cannot supply infinite transmit power, and must be met with an equality for the

optimum solution, i.e., ‖w‖2 = 1. Since equal time durations are allocated for all

users, the problem can be solved in two stages: i) by keeping the energy harvesting time

factor β constant, we find the optimum beamforming vector in order to maximize the

minimum throughput; and ii) for the given beamforming vector, we find the optimum

energy harvesting time factor β∗.

5.3.1 Optimum Beamforming Vector

As the first stage, we solve the optimization problem with respect to the beamforming

vector w, while keeping the energy harvesting time factor β constant. Since the function

log2(1 + ax) is a monotonically increasing function with x for any positive constant a,

we can rewrite (5.5) for a given β as

max
w

min
i∈[1,K]

Si = ηiw
†(ΓiΓ

†
i

)
Γ†iΓiw

s. t.‖w‖2 = 1.

(5.6)

In general, this is a NP-hard optimization problem [42], [63]. Therefore, we find an

approximate solution by using a relaxed problem. A similar problem is analysed in [42]

in which a two-step approach is proposed to find an approximate solution by using

semidefinite programming (SDP). To apply the similar technique, we can define the

above problem as follows.
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In the first step, the original problem (5.6) can be given as

max
X∈CM×M

min
i∈[1,K]

Tr(Qi)Tr(XQi)

s. t. Tr(X) = 1,

X � 0,

rank(X) = 1,

(5.7)

where Tr(.) denotes the trace function, Qi =
√
ηiΓ

†
iΓi and X = ww†. By relaxing the

nonconvex rank constraint, i.e. rank(X) = 1, and introducing an additional variable

t ∈ R, the relaxed problem can be given as

min
X∈ CM×M , t∈R

− t

s. t. Tr(Qi)Tr(XQi) ≥ t, ∀i ∈ [1, K],

Tr(X) = 1,

X � 0.

(5.8)

This problem can be solved by using standard SDP solvers such as CVX [64]. Since the

rank constraint is removed, the solution for X, Xopt, may not be rank one in general.

Thus, the second step rectifies this issue.

In the second step, the solution Xopt is post-processed to achieve a rank-one solution.

This process is called as randomization. This allows us to generate a set of candidate

vectors, and then, the best approximate solution can be selected from that set of candi-

date vectors [42]–[45]. Three randomization techniques are available in the literature:

randA, randB and randC [42], [43], [72], [73].

• randA: we calculate the eigen-decomposition of Xopt = UΣU†, where Σ is the

diagonal eigenvalue matrix U is the eigenvector matrx. Then we generate a set of
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candidate vectors {wc} such that wc = UΣ1/2vc where vc ∈ CM is a vector of

independent random variables which are uniformly distributed on the unit circle

in the complex plane. This technique ensures that the trace constraint in (5.8) is

satisfied for any realization of vc.

• randB: we generate a set of candidate vectors {wc} such that [wc]i =
√

[Xopt]ii[vc]i.

• randC: we generate {wc} such that wc = UΣ1/2gc, where gc is a vector of zero

mean and unit variance complex circularly symmetric uncorrelated Gaussian ran-

dom variables such that E[wcw
†
c] = Xopt. The resulting {wc}must be normalized

to meet the power budget ‖wc‖2 = 1.

The best solution of these three randomization techniques, w∗c, can be selected from

the set of candidate vectors {wc} such that it yields the largest value for the objective

function, Si, in (5.6).

5.3.2 Optimum Energy Harvesting Time

We denote the optimum value for the objective function in (5.6) as Si∗ where i∗ is the

corresponding user. With the aid of (5.5), for a known Si∗ , we can find the optimum

energy harvesting time factor β∗ as

β∗ = arg max
β∈[0,1]

(1− β)

K
log2

[
1 +

βK

(1− β)
Si∗

]
. (5.9)

This objective function has the form f(x) = (1 − x)ln
[
1 + bx

1−x

]
. We note that when

x → 0 the function f(0) → 0, and when x → 1 the function f(1) → 0. Further,

f(x) > 0 for x ∈ (0, 1). Since the second derivative of the function f(x) which

is f ′′(x) = −b2
(1−x)[1+(b−1)x]2 is negative for x ∈ (0, 1), the function f(x) is a concave

function. Hence, the objective function has only one maximum in [0, 1] and the optimum

value β∗ can be given as
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β∗ =
1

(KSi∗ − 1)

 KSi∗

1 +W
(
KSi∗ − 1

e

) − 1

 (5.10)

whereW(.) denotes the LambertW function [74]. Proof is given in Appendix 5.8.

With the beamforming vector design in Section 5.3.1 and the energy harvesting time

factor design discussed in this subsection, an approximate solution for the maximization

of the minimum throughput is then achieved by using the optimum beamforming vector,

w∗c, and the optimum energy harvesting time factor β∗.

5.4 Utilizing Multiple Beamforming Vectors

In Section 5.3, we obtain a beamforming vector w∗c, such that the minimum throughput

is maximized. In this section, we extend the problem by allowing the H-AP to use

multiple beamforming vectors within a coherence time. We subdivide the DL energy

harvesting time into N sub-time slots in which different beamforming vectors are used

at the H-AP, i.e., the beamforming vector in the nth sub-time-slot is wn, n ∈ [1, N ]. We

investigate whether we can further improve the minimum throughput.

With N beamforming vectors, the average transmit power of Ui can be given as

Pmi = ηiK

(
β

1− β

) N∑
n=1

w†nΓ
†
iΓiwn. (5.11)

After MRC at the H-AP, the SNR due to Ui transmission is ΓiΓ
†
iPmi . Therefore, the

achievable throughput of Ui is

Rmi =
(1− β)

K
log2

[
1 + ηiK

(
β

1− β

) N∑
n=1

w†n
(
ΓiΓ

†
i

)
Γ†iΓiwn

]
. (5.12)

Thus, the problem of maximization of the minimum throughput can be given as
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max
{wn}, β

min
i∈[1,K]

Rmi

s. t.
N∑
n=1

‖wn‖2 = 1,

β ∈ [0, 1].

(5.13)

This problem can be solved by using the similar approach applied in Section 5.3. We

define Y ∈ CM×M such that Y =
∑N

n=1 wnw
†
n. The sum of positive semidefinite

matrices results in another positive semidefinite matrix, thus, Y � 0 [75], [76]. It is

worth noting that unlike Xopt in Section 5.3, the optimum solution Yopt will no longer

need to be rank 1. Moreover, Yopt is a matrix with rank min(N,M). For N > M , the

set of beamforming vectors wn is no longer linearly independent to each other. Without

loss of generality, we thus assume that N ≤M . We reformulate the problem as

max
Y∈CM×M

min
i∈[1,K]

Tr(Qi)Tr(YQi)

s. t. Tr(Y) = 1,

Y � 0

(5.14)

which can be solved by using SDP because it is a similar problem as (5.7), but without

the rank constraint. Thus, the optimum matrix Yopt can be obtained by using the CVX

toolbox as used in Section 5.3. A randomization technique is no longer required as

the rank of Yopt is no longer restricted to be 1. Hence, this is an exact solution. The

optimum beamforming vectors can be obtained using eigen-decomposition of Yopt. We

denote non-zero eigenvalues and corresponding eigenvectors of Yopt as δ1 ≥ δ2 ≥ · · · ≥

δN and q1,q2, · · · ,qN , respectively.

The sub-slots for different beamforming vectors can be chosen in two ways:

• Equal time division: The DL time TDL can be equally divided into N sub-slots

as given in Figure 5.2a. In this case, beamforming vector to be used in the nth
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Figure 5.2: Sub-slot allocation for multiple beamforming using (a) equal time division;
and (b) unequal time division.

sub-slot is given by
√
δnqn. Since the eigenvectors are orthonormal, the factor

√
δn controls the amount of energy transmitted during the nth sub-slot. Hence,

the power budget at the H-AP is met, i.e. Tr(Yopt) =
∑N

n=1 δn = 1.

• Unequal time division: The DL time TDL can be divided into different time dura-

tions according to the eigenvalues as given in Figure 5.2b. We do not need to scale

the eigenvectors because the duration of the sub-slot ensures the power budget.

As we have obtained the optimum beamforming vectors, the optimum energy har-

vesting time factor, βopt can be calculated as in Section 5.3.

5.5 Beamforming for Distributed Antenna System

In this section, we extend these proposed schemes such that they can be applied for:

i) multiple single-antenna H-APs; and ii) a distributed antenna array with a single H-

AP as shown in Figure 5.3. We assume that all antennas corporate with each other

in order to decode the received information in UL transmission. Unlike the previous

case, since Bjs are placed in different locations, each antenna may have a different

power constraint. Hence, we formulate the problem for maximization of the minimum
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throughput as follows. It is important to note that we have to control the individual

transmit power constraints, i.e. the transmit power constraint of Bj is φj, ∀j. Then, the

optimization problem can be given as

max
w, β

min
i∈[1,K]

Ri

s. t. ‖w‖2 ≤ 1,

|wj|2 ≤ φj, ∀j,

β ∈ [0, 1],

(5.15)

whereRi is the throughput of ith user in (5.4). We use a similar approach as Section 5.3,

i.e., we reformulate the problem as an SDP, solve the relaxed problem without the rank

constraint and then post-process the solution using randomization techniques to find the

best beamforming vector. The problem can be formulated as an SDP which is given as

max
X∈CM×M

min
i∈[1,K]

Tr(Qi)Tr(XQi)

s. t. Tr(X) = 1,

[X]jj ≤ φj ∀j,

X � 0.

(5.16)

When we relax the rank constraint in (5.16), the optimum solution for X, Xopt,

may not be rank one in general. Hence, a randomization technique must be applied for

the single beamforming scheme. However, it is important to ensure that none of the

constraints are violated during the randomization process.

• In randA, as each element of {vc} is drawn from a uniform distribution on the unit

circle, the total transmit power constraint is not violated. However, as randA in-

volves linear combination of eigen-vectors, the individual power constraints may

not be satisfied. Therefore, all the candidate vectors generated using randA may

not qualify as the beamforming vector.
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• In randB, we only use the diagonal elements of Xopt. Each diagonal element is

multiplied by the corresponding element of {vc}, i.e., [wc]i =
√

[Xopt]ii[vc]i.

Hence, both total and individual power constraints are maintained. This enables

us to use randB to obtain the best beamforming vector without further checking

nor processing of the candidate set.

• In randC, unlike the other two randomization techniques, a vector of zero mean,

unit variance complex circularly symmetric uncorrelated Gaussian random vari-

ables gc is used. Since each element of gc is not restricted to be unit magnitude,

randC may fail to satisfy both individual power constraints and the total power

budget of the H-AP. The latter however, can be easily fixed by normalizing the

candidate set as discussed previously in this chapter.

Similar to the co-located H-AP, utilizing multiple beamforming vectors ensure that

the optimum throughput is achieved. Since the optimum solution Xopt is Hermitian

semidefinite, each diagonal element of Xopt is given by the linear combination of energy

transmitted in N sub-slots by the corresponding element of the beamforming vectors,

i.e., [Xopt]ii =
∑N

n=1 δn|[qn]i|2. Therefore, the individual transmit power constraints

is maintained during all sub-slots of the DL transmission. Hence, the equal sub-slot

allocation scheme shown in Figure 5.2a can be directly applied for the distributed H-

AP. However, unequal sub-slot duration scheme shown in Figure 5.2b might cause some

antennas to transmit high power which violates the individual constraints in a short

duration of time. Thus, we recommend using the equal sub-slot duration scheme for

distributed H-AP with individual power constraints.

After the optimum beamforming vector(s) are chosen, optimization over the energy

harvesting time can be done the same way as for the co-located H-AP using (5.10).

However, all M antennas of the H-AP will have to corporate with each other to decode

the information. This, requires each antenna to communicate with a central processor.

This procedure is beyond scope of this research.
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Figure 5.3: Wireless powered communication network with distributed antenna array
for H-AP.

5.6 Simulation Results

In this section, we provide numerical examples to compare the beamforming schemes

for two networks: i) a network with a co-located H-AP; and ii) a network with a dis-

tributed antenna system, which are discussed in Section 5.3 and Section 5.4, respec-

tively. As a benchmark, we use an equal-gain transmitter at the H-AP, i.e., the beam-

forming vector at the transmitter is weq = 1√
M

[1, 1, · · · , 1]T . This equal-gain beam-

forming vector can be used when the CSI is not available at the H-AP. For simulations,

we use following parameters. The network consists of one hundred energy harvesting

users (K = 100) with a H-AP (for both co-located and distributed) which has nine-

teen transmitting antennas (M = 19). The perfect RF-DC conversion is possible for all

users, i.e., ηi = 1,∀ i. The total transmit power is 10 W (40 dBm). The noise power

σ2 =−100 dBm. The communication bandwidth is 25 MHz at frequency fc =900 MHz.

86



5.6.1 Network with a co-located H-AP

In this case, the slow and fast fading are modelled as follows:

• The slow gain depends on the distance dependent path-loss as

ρ2i = A0

(
di
d0

)−α
(5.17)

where A0 = 10−3 is the reference path-loss at a reference distance of d0 = 1 m

with a path-loss exponent α = 3 [70], and di is the distance between the ith user

and the H-AP. All users are uniformly placed on a disc which has radii between

20 m to 200 m from the co-located H-AP. Thus, d2i is assumed to be a uniform

random variable between 400-40 000 m2. The angle of the user (with reference to

x-axis) is ϕi which is also a uniform random variable between 0-2π radians.

• Since the fast fading may have line-of-sight (LOS) and non-line-of-sight (NLOS)

components, it is modelled as a Rician channel which can be given as

hi =

√
KR

1 +KR

hLOSi +

√
1

1 +KR

hNLOSi (5.18)

where KR = is the Rician factor, and hLOSi ∈ CM and hNLOSi ∈ CM represent

the LOS and NLOS components from the co-located transmitter to the ith user,

respectively. Further, hLOSi ∈ CM follows the far-field uniform linear antenna

array model as hLOSi = [1, ejθi , ej2θi , · · · , ej(M−1)θi ] with θi = 2πdtfcsin(ϕi),

where dt is the distance between two adjacent antenna elements of the H-AP

which is at half wavelength, and hNLOSi ∈ CM is a vector of independent and

identically distributed (i.i.d.) random variables with hNLOSi,j ∼ CN (0, 1), ∀ i, j.

For the maximization of the minimum throughput using a single beamforming vec-

tor in Section 5.3, we solve the relaxed problem in (5.8) using the CVX toolbox in

MATLAB for Rayleigh fading channels (KR = 0) and Rician fading channels with
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Figure 5.4: Variation of throughput for the minimum throughput user with β.

KR = 3. We generate a set of 1000 candidate vectors for {wc} using each randomiza-

tion technique (randA, randB and randC ). The best beamforming vector among all three

sets of candidate vectors is chosen according to the criteria given in Section 5.3. For the

maximization of the minimum throughput using multiple beamforming vectors in Sec-

tion 5.4, we solve the SDP in (5.14) and the beamforming vectors are obtained using

eigen-decomposition. For the equal-gain beamforming vector, we use the beamforming

vector weq = 1√
19

[1, 1, · · · , 1]T at the H-AP.

Figure 5.4 shows the variation of the throughput of the minimum throughput achiev-

ing user with the multiple beamforming scheme versus the energy harvesting time β. We

consider single channel realization for each channel - Rayleigh fading channel (KR = 0)

which is in solid lines, and Rician fading channel with KR = 3 which is in dotted line.

As shown in the figure, the throughput is a concave function with respect to β, which is

also proven in Section 5.3.2. When β = 0, the throughput is zero because no energy can

be harvested, and thus the user has no energy for the information transmission. When

88



Ranked user i

0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t,
 R

 (
k
b
p
s
)

10-2

10-1

100

101

102

103

Single Beamformer, K
R

=0

Multi Beamformer, K
R

=0

Equal Gain Beamformer, K
R

=0

Single Beamformer, K
R

=3

Multi Beamformer, K
R

=3

Equal Gain Beamformer, K
R

=3

Equal Gain

Beamformer

Single

Beamformer

Multiple

Beamformer

Figure 5.5: Average throughput of each user with a co-located H-AP network.

β = 1, the throughput is also zero because the entire time is used only for the energy

harvesting, and thus no time is available for the information transmission. Since the

throughput is a concave function, by proper selection of β, we can find an optimal β

value, βopt, which maximizes the throughput, Ri∗,opt. This means that we can maxi-

mize the minimum throughput. In these particular examples, βopt = 0.81 and Ri∗,opt =

3.18 kbps for KR = 0; and βopt = 0.79 and Ri∗,opt = 3.80 kbps for KR = 3. In the rest

of this section, we calculate the throughput for the optimal β value.

Now, we compare the three schemes, i.e., single beamforming vector, multiple

beamforming vectors and the equal-gain beamforming vector. First, we find the opti-

mum energy harvesting time, βopt, for each scheme for a particular channel realization as

(5.10). Then, we sort the users according to the descending order of their corresponding

throughput, and find the average throughput over 1000 channel realizations. Figure 5.5

shows the average throughput versus ranked users i. The ith ranked user means that the

user with ith highest throughput in all realizations. Thus, i = 1 and i = 100 represent
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Rayleigh Channels, KR = 0 Rician Channels, KR = 3
Scheme Max (kbps) Min (kbps) Max

Min Max (kbps) Min (kbps) Max
Min

Single 103 0.66 156 116 0.832 140
Multiple 186 2.49 75 197 2.72 72

Equal gain 25.7 0.038 676 14.7 0.013 1131
Table 5.1: The average throughput of the three schemes for co-located H-AP network.

the user with the highest and the lowest throughput, respectively, which are tabulated in

Table 5.1 for three beamforming schemes and two fading channels.

We have following observations based on Figure 5.5:

• For single and multiple beamforming techniques, the Rician fading outperforms

the Rayleigh fading while for equal-gain beamforming, the Rayleigh fading out-

performs the Rician fading. This happens because the Rayleigh fading is scattered

in the region while the Rician fading has a dominant LOS component. Therefore,

the beams can be focused towards the dominant LOS component which leads to

better performance in Rician fading compared to Rayleigh fading with optimally

designed single and multiple beamforming vectors. However, for the equal-gain

beamforming, the beam pattern is fixed and we may not be able to tune the beam

towards the dominant LOS component. Hence, a rich scattered Rayleigh fading

may outperform the Rician fading.

• Since the focus of this paper is on minimum throughput, we compare the mini-

mum throughput of three beamforming techniques with Rician channel. The mul-

tiple beamforming outperforms both single beamforming and equal-gain beam-

forming by approximately 3 times and 209 times, respectively. Further, the sin-

gle beamforming outperforms the equal-gain beamforming by approximately 64

times.

• We also tabulate the ratio between highest and lowest throughput in Table 5.1,

which may also be a measure to indicate the fairness among users. The multiple

beamforming technique has a lower ratio compared to the other two schemes.
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Figure 5.6: Beam patterns for the co-located H-AP network with pure LOS model: (a)
single beamforming; and (b) equal-gain beamforming.
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Since the user throughput depends on its available energy (or harvested energy),

it is interesting to see how the energy beam pattern is distributed from the transmit-

ter. Figure 5.6 illustrates the beam patterns of the single and equal-gain beamforming

techniques for a pure LOS channel model for a particular realization of user locations.

Users are denoted with small (red) stars, and the user with minimum throughput is a

green star which is also labelled separately. As shown in Figure 5.6a, beam pattern

is spread according to the user distribution and their distances which facilitates a fair

energy harvesting among users, e.g., many more edged-users may harvest more energy

than some of inside users. As shown in Figure 5.6b, beam pattern is not spread accord-

ing to the user distribution and their distances, however we see strong main lobes and

weak side lobes. Thus, users may harvest energy more unevenly. For example, there

is a cluster of users at the north-west corner, however, no any stronger energy lobe is

focused to that direction.

Figure 5.7 illustrates the beam patterns used in the multiple beamforming scheme

for a pure LOS channel model for a particular realization. For this particular realization,

the rank of the optimum beamforming matrix Xopt is three. Thus, three distinct beam-

forming vectors are used in three sub-slots as shown in the figure. Here, we use the

unequal time division to obtain the time duration for each sub-slot. This means all three

beamforming vectors have unit power and the time duration of the sub-slot is determined

by the corresponding eigenvalue. As shown in Figure 5.7a, the first beamforming vector

which corresponds to the largest eigenvalue tends to spread the beam pattern according

to user distribution and their distances which facilitates a fair energy harvesting among

users. In the next sub-slots, which are illustrated in Figure 5.7b and Figure 5.7c, we

see more defined lobes compared to the first beamforming vector. This is because these

beamforming vectors further improves the users who harvest less energy from the first

sub-slot. Hence, these beam patterns are more focused towards some users.
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Figure 5.7: For pure LOS model multiple beamforming scheme’s beam patterns used
for : (a) the 1st sub-slot; (b) the 2nd sub-slot ; and (c) the 3rd sub-slot.
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5.6.2 Network with a Distributed Antenna System

In this case, we uniformly locate 19 antennas of the H-AP in a circular region with

radius of 200 m to form a cellular structure. Similar to the previous case, all users

(K = 100) are uniformly located on a disc which has radii between 20 m to 200 m

from the center. Thus, the maximum distance between a user and the closest antenna is

57.7 m (which may be 200 m in the co-located H-AP). The slow fading and fast fading

are modelled as (5.17) and (5.18), respectively, with ρi, di, hi, hLOSi , hNLOSi replaced

by ρij, dij, hij, hLOSij , hNLOSij , respectively. Note that subscript ij represents the pa-

rameter between the jth antenna of the H-AP to the ith user. Further, A0 = 10−3,

d0 = 1 m, α = 3, hNLOSi,j ∼ CN (0, 1), and hLOSij = ejθij with θij = 2π
λ

rem(
dij
λ

) where

rem(.) is the remainder of a division. We can calculate the distance dij for each real-

ization. We set individual transmit power constraints to be equal to 1/
√

19 such that

it can be compared with the equal-gain transmitter. Similar to the previous case, we

sort the users according to the descending order of their corresponding throughput, and

find the average throughput over 1000 channel realizations of Rayleigh fading channels

(KR = 0) and Rician fading channels with KR = 3. To compare the three schemes,

we first find the optimum energy harvesting time, βopt, for each scheme for a particular

channel realization as (5.10). Then, we sort the users according to the descending order

of their corresponding throughput, and find the average throughput over 1000 channel

realizations.

For the maximization of the minimum throughput using a single beamforming vec-

tor, we solve the problem in (5.16) without the rank constraint by using the CVX toolbox

in MATLAB. We generate a set of 1000 candidate vectors for {wc} using randB. The

best beamforming vector in the set of candidate vectors is chosen according to the cri-

teria given in Section 5.3. For the maximization of the minimum throughput by using

multiple beamforming vectors, we solve the SDP in (5.16) without the rank constraint

and the beamforming vectors are obtained using eigen-decomposition. For the equal-

gain beamforming vector, we use the beamforming vector weq = 1√
19

[1, 1, · · · , 1]T at
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Figure 5.8: Average throughput of ranked users with a distributed H-AP network.

Rayleigh Channels, KR = 0 Rician Channels, KR = 3
Scheme Max (kbps) Min (kbps) Max

Min Max (kbps) Min (kbps) Max
Min

Single 488 8.27 59 1169 60.0 19
Multiple 742 21.3 35 1170 60.02 19

equal-gain 137 0.62 221 947 35.7 27
Table 5.2: Throughput values obtained from the three schemes for the distributed H-AP
network.

the H-AP.

Figure 5.8 shows the average throughput versus ranked users i, and the highest and

the lowest throughput are tabulated in Table 5.2 for three beamforming schemes over

two fading channels. For all three beamforming schemes, the Rician fading outper-

forms the Rayleigh fading because the beam patterns for all elements of the distributed

H-AP are distributed in the area which may improve the dominant LOS component.

Unlike, for the co-located H-AP, in distributed H-AP networks Rician fading outper-

forms Rayleigh fading for the equal-gain beamforming because for distributed H-AP

equal-gain beamforming evenly distributed power in the area rather than focusing the
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Figure 5.9: Beam patterns for the distributed H-AP network with pure LOS model: (a)
single beamforming; and (b) equal-gain beamforming.
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Figure 5.10: The outage probability of the minimum throughput user for co-located and
distributed H-AP.

beams to a specific direction in co-located network. The multiple beamforming outper-

forms both single beamforming and equal-gain beamforming by approximately 3 times

and 34 times, respectively. Further, the single beamforming outperforms the equal-gain

beamforming by approximately 13 times. We also tabulate the ratio between highest

and lowest throughput in Table 5.2. The multiple beamforming technique has a lower

ratio compared to the other two schemes.

For Rician fading, the minimum throughput achieved by the single beamforming

and multiple beamforming are almost the same. This implies that the optimum solution

Xopt has its maximum eigenvalue to be almost 1. Therefore, the approximated rank of

Xopt is one. Further, these two schemes outperforms the equal-gain beamforming by

approximately 1.7 times.

Figure 5.9 illustrates the beam patterns of the single and equal-gain beamforming

techniques for a pure LOS channel model for a particular realization of user locations.
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Users are denoted with small (red) stars, and the user with minimum throughput is a

green star which is also labelled separately. As shown in Figure 5.9a, the antenna ele-

ments located at higher user density areas have large radii of beams with single beam-

forming. However, as shown in Figure 5.9b, the radii of all antenna elements are equal

with equal-gain beamforming because the transmit power is equally divided for the an-

tenna elements. Although for LOS models, the equal-gain beamforming may achieve

the fairness, it can be further improved by a properly designed beamforming vectors

such as the proposed single beamforming scheme. However, when the number of users

is infinitely large, i.e., K → ∞, the users may distribute uniformly over the region,

beamforming vectors for single beamforming and the equal-gain beamforming schemes

may be the same. Thus, they may have similar performance for a largeK. This explains

the reason for the Xopt to be approximately rank one for Rician channels.

Figure 5.10 shows the outage probability of the minimum throughput of the multi-

ple beamforming scheme for a network over Rayleigh fading channels (in solid lines)

and Rician fading channels with KR = 3 (in dashed lines) for 1000 realizations. For

Rayleigh fading channels, the outage probabilities of the user with minimum through-

put at R =2.90 kbps are 90% and 0% for the co-located H-AP and distributed H-AP,

respectively. For Rician fading channels, those values are 73% and 0% for the co-

located H-AP and distributed H-AP, respectively. Moreover, if we expect only 10%

outage probability, the maximum possible minimum user’s throughput of the co-located

H-AP and distributed H-AP are 2.35 kbps and 41.6 kbps, respectively, over Rician fad-

ing channels. Thus, the distributed network can improve the performance significantly,

which is almost 18 times higher than the co-located H-AP. As shown in the figure, we

may also have a significant benefit of the LOS component with the distributed network.

For example, at 10% outage probability, the throughput difference between Rayleigh

and Rician fading channels is 0.29 kbps for the co-located H-AP network, however, this

value is 37.2 kbps for the distributed network, This means that the LOS component has

a significant impact on the minimum user’s throughput with the distributed network.
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5.7 Conclusion

This paper studies two MU-MISO networks for the DL energy harvesting and the UL

information transfer with: i) a co-located multi-antenna H-AP; and ii) distributed single

antenna H-APs. We consider two energy beamforming schemes using: i) a single beam-

forming vector; and ii) multiple beamforming vectors; which maximizes the minimum

throughput of the UL information transfer. Further, we derive the optimum energy har-

vesting time required for the DL transmission. These optimization problems are solved

in two stages: i) beamforming vectors are obtained by using SDP; and ii) for the given

beamforming vector, the optimum energy harvesting time for DL is obtained. Numerical

results show that multiple beamforming scheme outperforms both single and equal-gain

beamforming schemes for both networks. Further, utilization of distributed single an-

tenna H-APs improves the throughput fairness among users compared to utilization of

a co-located multi-antenna H-APs.

5.8 Appendix

We can write the Lagrangian function L of (5.9) as

L(β, λ1, λ2) =
(1− β)

K
log2

[
1 +

βK

(1− β)
Si∗,opt

]
+ λ1β + λ2(1− β)

where λ1 and λ2 are Lagrange multipliers. Since log2(x) = ln(x)/ ln(2), we have

L(β, λ1, λ2) =
(1− β)

K ln(2)
ln

[
1 +

βK

(1− β)
Si∗,opt

]
+ λ1β + λ2(1− β).

By using partial differentiation, we solve the optimization problem of L(β, λ1, λ2) with

respect to β, λ1and λ2, which are given as

∂L

∂β
=

KSi∗,opt(
1− β(1−KSi∗,opt)

) − ln

(
1 +

β

(1− β)
KSi∗,opt

)
+ λ1 − λ2 = 0
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∂L

∂λ1
= β = 0

∂L

∂λ2
= β = 1.

It is important to note: i) if β = 0, there is no time allocation for the DL transmission

then we cannot transmit information to the receiver as no energy harvesting is possible.

and ii) if β = 1, the entire time is used for energy harvesting in DL transmission then

we cannot transmit information to the receiver as no time left for the UL transmission.

Thus, we can consider the equation

∂L

∂β
=

KSi∗,opt(
1− β(1−KSi∗,opt)

) − ln

(
1 +

β

(1− β)
KSi∗,opt

)
= 0.

Which can be rearranged as ZeZ =
KSi∗,opt−1

e
where

Z =
KSi∗,opt

1− βopt(1−KSi∗,opt)
− 1.

Hence, the optimum value βopt can be derived as

βopt =
1

(KSi∗,opt − 1)

 KSi∗,opt

1 +W
(
KSi∗,opt − 1

e

) − 1


where the equality comes from properties of the LambertW functionW (·), i.e., w(z) =

W (p) is the solution of the equation w(z)ew(z) = p [74].

100



Part II

Opportunistic Energy Transmission in

Point-to-point Networks
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Chapter 6

Opportunistic Energy Transfer in Point-to-Point

Networks

This chapter considers a point-to-point network with an energy transmitter

and an energy harvesting (EH) user which has a constraint on EH time.

We study an opportunistic energy transfer scheme for a block-faded frame

structure. In particular, the amount of energy to be transmitted at each

frame and the transmit beamforming vector is determined in order to max-

imize the expected total harvested energy when only the past and present

channels are known. We investigate this problem for the case where the en-

ergy associated with channel estimation is negligible. We completely solve

the optimization problem, and find the optimum threshold of each frame,

optimum beamforming vector to be used, and the maximum expected total

harvested energy of the network. Further, we discuss special cases of the

problem such as utilizing different multi-antenna models and channel mod-

els. For these scenarios, we compare the performance of the opportunistic

energy transfer scheme with respect to the performance benchmarks pro-

vided by the genie-aided energy transfer schemes.
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6.1 Introduction

Wireless sensor networks (WSNs) are widely used for sensing in smart environments.

These networks are typically battery operated, and highly energy constrained [77]. With

the advancement of low power circuitry and development of radio frequency (RF) en-

ergy harvesting circuits, significant research attention has been drawn to Wireless En-

ergy Transfer (WET) [19].

Various opportunistic energy transfer schemes are considered in literature for relay

networks [78] and cognitive radio networks [27], [79]. However, point-to-point network

is the focus of this chapter. Such a network is considered in [80], and two objectives,

namely i) maximizing the throughput by a deadline; and ii) minimizing the transmission

completion time, are considered. Energy allocation over a finite horizon is considered

based on channel conditions and time varying energy sources in [81]. The throughput

is maximized by considering causal and non-causal channel state information (CSI).

Similar network is considered in [82], in which transmitter is equipped with finite-sized

data and energy buffers. The power allocation strategies are considered in order to max-

imize the long term-average throughput subject to data and energy constraints. Another

design of online transmission strategies for slotted energy harvesting is considered in

[83]. This work focuses on minimizing the gap between the maximum rate obtained

using offline and online policies. These works mainly focus on maximizing throughput.

However, in some applications, the sensor nodes may be highly restricted to perform

the EH before a given time (i.e., a time deadline) in order to perform a specific task. In

such situations maximizing the harvested energy with time constraints may be at high

importance. To the best of our knowledge such a problem has not been studied in the

literature. Therefore, this chapter focuses on finite horizon WET with transmit energy

constraints.

This chapter considers a wireless network with an energy-constrained transmitter

and a time-constrained EH user. We study the problem of maximizing the expected

total harvested energy over a finite horizon with causal CSI. We formulate the general
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problem in order to handle multi-antenna networks with a general channel distribution.

We also analyse the genie-aided scheme as a benchmark.

The rest of this chapter is organized as follows. Section 6.2 discusses the system

model for the point-to-point network. Section 6.3 formulates the optimization problem

followed by the solution in Section 6.4. Section 6.5 disuses various special cases of the

problem in which the general optimization problem can be applied. Section 6.6 presents

numerical results followed by the concluding remark in Section 6.7.

6.2 System Model

This section describes the network model and the corresponding analytical model for a

point-to-point wireless network used for EH.

6.2.1 Network Model

We consider a point-to-point wireless network as shown in Figure 6.1a. The network

consists of a power transmitter with M co-located antennas, and a energy harvesting

user with K co-located antennas. The power transmitter has a fixed energy source

with a maximum available energy level P which can be used up to N time frames.

This means that power transmitter can transmit all P energy to the EH user by using

maximum N frames. Then, the EH user can harvest energy within those time frames

which are indexed from j = N − 1 to j = 0 in Figure 6.1b. It is important to note that

the indexing of the frames is in the descending order, so that the frame index reveals

the number of frames remaining for the future. We denote the block fading channels

at the jth frame between mth transmit antenna Txm and kth receiving antenna Rxk by

hm,kj . We denote the channel matrix at the jth frame by Hj ∈ CM×K which has hm,kj at

(m, k)th position.

Since we consider an opportunistic wireless energy transfer, the energy transmitter

should know the channel matrix Hj before energy transfer to the EH user. We assume

perfect channel estimation is carried out at EH user. Since the EH user does not have

any energy source, at the beginning of each frame, the energy transmitter transmits
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Figure 6.1: (a) A point-to-point SISO wireless network for EH; and (b) Frame structure
for the energy transfer protocol.
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et amount of energy towards EH user for the channel estimation. In this chapter, we

assume that the energy associated with channel estimation is negligible, i.e. et = 0.

Using that received signal, the EH user estimates the channel matrix Hj , and calculates

the transmit energy required for energy transfer within the same frame denoted as, ρj

and the normalized beamforming vector which can be used to focus the energy beam

towards the EH user for maximum harvested energy. Then, the EH user informs this

information to Tx during the feedback phase. We assume that the energy associated in

the feedback phase is negligible, i.e., er = 0, and the EH user is sufficiently charged

to perform the feedback. Then, the energy transmitter transmits, ρj amount of energy

using the beamforming vector provided by the EH user.

6.2.2 Analytical Model

Since the energy level for each set ofN frames at Tx is limited to P , the available energy

at Tx at the beginning of frame j which depends on all the transmit energy of previous

frames, can be given as Pj,(available) = P −
∑N−1

i=j+1 ρi. Then, the energy transmitted at

the frame j, ρj also depends on the energy transmitted at the previous frames. Although,

this ρj may be a function of all previous channel matrices, i.e., ρj(HN−1, · · · ,Hj−1),

we use ρj for the sake of simplicity.

Ej = ηjρjw
†
jH
†
jHjwj + σ2

nj
(6.1)

where, wj ∈ CM denotes the normalized beamforming vector, σ2
nj

is the energy as-

sociated with received noise, ηj is the energy conversion efficiency, and † denotes the

conjugate transpose. Hence, the total energy harvested at the end of N frames is given

by

ET =
N−1∑
j=0

ηjρjw
†
jH
†
jHjwj + σ2

nj
. (6.2)

We assume that the energy associated with noise is negligible, i.e., σ2
nj

= 0. It is

important to note that the energy conversion efficiency, ηj accounts for the energy con-
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sumed for processing and running the circuitry [19]. This may depend on the circuitry

of the user, and can be considered to be time invariant, i.e., ηj = η ∀j. Therefore, we

have ET = η
∑N−1

j=0 ρjw
†
jH
†
jHjwj . For presentation simplicity, we assume perfect en-

ergy conversion efficiency, i.e., η = 1. Then, the expected total harvested energy for N

frames can be given as

ẼT =
N−1∑
j=0

EHj

[
ρjw

†
jH
†
jHjwj

]
, (6.3)

where EHj
(.) is the expectation operation with respect to Hj . We can achieve maximum

harvested energy within N frames by maximizing R̃T . This can be done by optimizing

the energy transfer, ρj and the normalized beamforming vector, wj to be used at each

frame, based on the past and present channel knowledge only, i.e., Hi i ∈ [N − 1, j].

However, knowledge of the future channels, i.e., Hi i ∈ [j − 1, 0], are unknown. This

procedure may be called as opportunistic energy transfer which is discussed in detail in

the next section.

6.3 Problem Formulation

In this section, we study the problem of maximizing the expected total harvested energy

during given N frames under the total transmit energy constraint. Specifically, we opti-

mize the amount of energy to be transmitted in each time frame, i.e., ρj , ∀j ∈ [0, N−1].

This optimization problem can be formulated as

max
ρj , wj∈CM , ∀j∈[0,N−1]

E

[
Etotal =

N−1∑
j=0

ρjw
†
jH
†
jHjwj + σ2

nj

]

s. t.
N−1∑
j=0

ρj ≤ P,

ρj ≥ 0 ∀j ∈ [0, N − 1].

(6.4)

It is worth noting that we cannot increase the energy associated with noise σ2
nj

by
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varying transmit energy ρj nor the beamforming vector wj . Hence, without changing

the objective we can simply disregard all σ2
nj

s. Further, we note at the optimum point the

total transmit energy constraint should be met with an equality. Because otherwise the

ρjs can be scaled such that the equality condition is met. However, this will contradict

the optimality. Hence, the optimization problem reduces to

max
ρj , wj∈CM , ∀j∈[0,N−1]

E

[
Etotal =

N−1∑
j=0

ρjw
†
jH
†
jHjwj

]

s. t.
N−1∑
j=0

ρj = P,

ρj ≥ 0 ∀j.

(6.5)

We note that ρjs are sequential. Thus, the optimization problem in (6.5) needs to be

reformulated to obtain a recursive formula.

6.4 Optimum Solution

In this section, we consider the problem in (6.5) and reformulate the problem such that

it can be solved recursively. We denote the optimum value of the objective function

in (6.5) as RN−1(P ). Hence, the optimization problem can be reformulated as

RN−1(P ) = max
ρN−1, wN−1∈CM

E
[
ρN−1w

†
N−1H

†
N−1HN−1wN−1

]
+RN−2(P − ρN−1)

s. t. 0 ≤ ρN−1 ≤ P

(6.6)

It is worth noting that the problem in (6.6) has the recursive structure and the num-

ber of decision variables has reduced to two, which are the energy transmitted and the

beamforming vector used at the frameN−1, i.e., ρN−1 and wN−1. Since the beamform-

ing vector, wN−1 represents the proportions of the transmit energy to be distributed over

the transmit antennas, wN−1 is independent form the total transmit energy of all anten-

nas at the frame N − 1, ρN−1 and the beamforming vectors used and the total transmit

108



energy at the other frames. Thus, we can solve for the optimum beamforming vector,

w∗N−1 independent form ρj, ∀j ∈ [0, N − 1] and wj, ∀j ∈ [0, N − 2]. In order to solve

for the optimum beamforming vector, we consider the problem

max
wj∈CM

E
[
w†jH

†
jHjwj

]
s. t. ‖wj‖2 = 1.

(6.7)

We note that the harvested energy is non-negative. Thus, we can simply omit the expec-

tation function, E(.) without changing the objective function. Therefore, the problem

can be reduced to
max

wj∈CM
w†jH

†
jHjwj

s. t. ‖wj‖2 = 1.

(6.8)

This is a well studied problem for which the optimum beamforming vector is given

by w∗j = v1(H
†
jHj) and the optimum harvested energy is given by λ1(H

†
jHj), where

λ1(A) and v1(A) denotes the principle eigenvalue and the corresponding eigen-vector

of a matrix A, respectively, [22], [84], [85]. Hence, the problem in (6.6) can be given

as

RN−1(P ) = max
ρN−1

E
[
ρN−1λ1(H

†
N−1HN−1)

]
+RN−2(P − ρN−1)

s. t. 0 ≤ ρN−1 ≤ P

(6.9)

Theorem 1 gives the optimum policy and the optimum harvested energy for the

problem in (6.8).

Theorem 1. When the channel estimation energy is negligible (et = 0), the optimum

expected total harvested energy using N frames over block faded i.i.d. channels is

RN−1(P ) = P

N−1∑
j=0

cj (6.10)
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where,

cj =



∞∫
0

xf(x)dx, j = 0

∞∫
∑j−1
i=0 ci

(
x−

∑j−1
i=0 ci

)
f(x)dx, j > 0

(6.11)

and f(x) denotes the probability density function (PDF) of the largest eigenvalue of the

matrix H†H. Furthermore, the optimum transmit energy at the jth frame is given by

ρ∗j =

 P, λ1(H
†
jHj) ≥ Rj−1(P ),

∑N−1
i=j+1 ρi = 0,

0, otherwise
(6.12)

Proof. We use method of induction to prove Theorem 1.

Base Case: For one frame (N = 1), the problem in (6.6) reduces to

R0(P ) = 1
ρ0,w0∈CM

E
[
ρ0w

†
0H
†
0H0w0

]
s. t. 0 ≤ ρ0 ≤ P.

By using the optimum beamforming vector discussed in Section 6.4, the above problem

can be given as

R0(P ) = max
ρ0

∫ ∞
o

ρ0xf(x)dx

s. t. 0 ≤ ρ0 ≤ P.

where f(x) denotes the probability density function (PDF) of λ1(H
†
0H0). Clearly, the

optimum transmit energy ρ∗0 is P . In other words, if there is only one frame to transmit

energy, all the energy will be transmitted in that frame regardless the quality of channel.

Therefore, R0(P ) = Pc0, where c0 =
∫∞
0
xf(x)dx. It is worth noting that c0 is the

mean of the largest eigenvalue distribution, λ1(H†H).

Inductive hypothesis: Assume that the solution in (6.10) is true for N = n + 1.
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Then, we have

Rn(P ) = P
n∑
j=0

cj. (6.13)

where, the terms cj and ρ∗j are given by (6.11) and (6.12), respectively.

Inductive Step: Consider the case of N = n + 2. The objective function in (6.9)

can be written as
Rn+1(P ) = max

ρn+1

E
[
ρn+1λ1(H

†
n+1Hn+1)

]
+Rn(P − ρn+1)

s. t. 0 ≤ ρn+1 ≤ P

By substituting (6.13) we have

Rn+1(P ) = max
ρn+1

E
[
ρn+1λ1(H

†
n+1Hn+1)

]
+ E

[
(P − ρn+1)

n∑
j=0

cj

]
s. t. 0 ≤ ρn+1 ≤ P.

By rearranging the terms and using E[g(x)] =
∫
g(x)f(x)dx, we get

Rn+1(P ) = max
ρn+1

∞∫
0

ρn+1

(
x−

n∑
j=0

cj

)
f(x)dx+ P

n∑
j=0

cj

s. t. 0 ≤ ρn+1 ≤ P.

In order to maximize the total expected harvested energy, it is clear that ρn + 1 must

be zero if λ1(H
†
n+1Hn+1) <

∑n
j=0 cj , and ρn + 1 = P otherwise. Therefore, it can be

given as

Rn+1(P ) = P

∞∫
∑n
j=0 cj

(
x−

n∑
j=0

cj

)
f(x)dx+ P

n∑
j=0

cj
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It is worth noting that
∞∫

∑n
j=0 cj

(
x−

∑n
j=0 cj

)
f(x)dx = cn+1 as given in (6.11). Hence,

we can see that

Rn+1(P ) = P
n+1∑
j=0

cj

where,

cj =



∞∫
0

xf(x)dx, j = 0

∞∫
∑j−1
i=0 ci

(
x−

∑j−1
i=0 ci

)
f(x)dx, j > 0

(6.14)

Based on the rule of induction, Theorem 1 is true for all N > 0. This completes the

proof.

This means, the optimum transmit energy at each frame is given by a threshold

policy. Specifically, at the time frame j, if the eigenvalue λ1(H
†
jHj) is greater than the

threshold γj given by

γj =

j−1∑
i=0

ci, (6.15)

all the available energy ρ∗j = P will be transmitted at the jth frame using the optimum

beamforming vector, v1(H
†
jHj).

If we are able to foresee all the channels matrices, it is obvious that by choosing

the frame j∗ that yields the largest λ1(H
†
jHj), i.e. j∗ = arg maxj λ1(H

†
jHj), we can

maximize the expected harvested energy. Unfortunately, we do not have the luxury of

seeing into the future. Therefore, we will use this method (addressed as genie aided

method hereafter) as an upper bound of the proposed algorithm.

6.5 Special Cases of the Problem

In this section, we study the opportunistic energy transfer problem in scenarios where

we assume Rayleigh fading channels for MIMO, multi-input single-output (MISO), and

single-input single-output (SISO) networks.
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6.5.1 Point-to-point MIMO Network with Rayleigh fading

In this section, we analyse the opportunistic wireless transfer problem for a point-to-

point MIMO network with Rayleigh faded channels. We assume the block fading chan-

nel at the jth frame between mth transmit antenna Txm and kth receiving antenna Rxk,

denoted by hm,kj to be a complex Gaussian random variable with zero mean and unit

variance, i.e., hm,kj ∼ CN (0, 1). Hence, the matrix H†H is in the form of a Wishart ma-

trix. The properties of of the eigenvalues of Wishart matrices is a well studied problem,

and the PDF of the largest eigenvalue is given in [86] as

f(x) =
1∏K

i=1(K − i)!(M − i)!
d

dx
det(S(x)) (6.16)

where S(x) is K ×K Hankel matrix with [S(x)]k,l at the (k, l)th position with

[S(x)]k,l = γ(M −K + k + l − 1, x) (6.17)

and γ(t, x) denotes the lower incomplete gamma function which can be given by γ(t, x) =∫ x
0
u(t−1)e−udu.

6.5.2 Point-to-point MIMO Network with Rician Fading

Practically, wireless energy transfer in limited to short range transmission (few meters)

due to the path loss. Therefore, a significant line of sight component may exist in the

wireless channels. This means it is acceptable to assume Rician faded channels. In this

section, we model the channel matrix as

H =

√
KR

1 +KR

+

√
1

1 +KR

HN (6.18)

where, KR denotes the Rician factor and the non-line of sight (NLOS) components of

the channel matrix is given by HN ∈ CM,K , which can be models as i.i.d. complex

Gaussian random variables with zero mean and unit variance, i.e., hNm,k ∼ CN (0, 1). In
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this case, the PDF of λ1(H†H) is given in [87] as

f(x) =
e−λ1 × |Ψ(x)|Tr (Ψ−1(x)Φ(x)) U(x)

Γ(t− s+ 1)λs−11

s−1∏
k=1

Γ(t− k)Γ(s− k)

(6.19)

where, s = min(M,K), t = max(M,K), λ1 = stKR, U(.) is the unit step function,

Tr(.) and |.| denotes the trace function and the determinant, respectively. The s × s

matrix Φ(x) has the (i, j)th element given as

[Φ(x)]i,j = xt−i e−x 0F1 (t− s+ 1;xλ1) (6.20)

where, 0F1(.; .) is the generalized hyper-geometric function given by pFq(a1, · · · , ap; b1, · · · , bq; z)

with p = 0 and q = 1 [88]. The s× s matrix Ψ(x) has the (i, j)th element given as

[Ψ(x)]i,j =

∫ x

0

yt−ie−y0F1 (t− s+ 1; yλ1) dy. (6.21)

For the elements other than the first column, i.e. i = 1, · · · , s and j = 2, · · · , s, the

equation in 6.21 reduces to [Ψ(x)]i,j = γ(t− s+ i+ j − 1, x).

6.5.3 Point-to-point MISO Network with Rayleigh Fading

In this section, we analyse the opportunistic wireless transfer problem for a point-to-

point MISO network with Rayleigh faded channels. In other words, the network consists

of a power transmitter with M antennas and a single antenna user. In this case, the

channel matrix at the frame j, Hj reduces to a vector hj . Therefore, the optimum

beamforming vector discussed in Section 6.4, i.e., w∗j = v1(H
†
jHj) will be equal to

the normalized channel vector, h̃j = hj/‖hj‖. By using the optimum beamforming

vector, w∗j = h̃j , we can harvest ‖hj‖2 amount of energy at the frame j. It is well

known that the PDF of ‖hj‖2 is given both by the chi-squared distribution with 2M

degrees of freedom, and Gamma distribution with shape and scale parameters of M and
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1 respectively ,i.e., ‖hj‖2 ∼ Γ (M, 1). Therefore, we have

f(x) =
1

Γ(M)
xM−1e−x. (6.22)

The PDF in (6.22) can also be derived from (6.16) and (6.17) by substituting K = 1.

By substituting the PDF in (6.22) to the optimum solution given in (6.10) and (6.11),

we obtain the optimum harvested energy using N frames for a point-to-point MISO

network with Rayleigh faded channels as

RN−1(P ) = P
N−1∑
j=0

cj (6.23)

where, c0 = M and

cj =
1

Γ(M)

[
Γ

(
M + 1,

j−1∑
i=0

ci

)
− Γ

(
M,

j−1∑
i=0

ci

)
j−1∑
i=0

ci

]
, j > 0 (6.24)

and Γ (t, x) denotes the upper incomplete gamma function which can be given by Γ (t, x) =∫∞
x
u(t−1)e−udu.

6.5.4 Point-to-point SISO Network with Rayleigh Fading

In this section, we analyse the opportunistic wireless transfer problem for a point-to-

point SISO network with Rayleigh faded channels. In this case, the channel matrix at

the frame j, Hj reduces to a scalar hj . As there is only one transmitting antenna, there is

no beamforming vector. Therefore, we can harvest |hj|2 amount of energy at the frame

j. It is well known that the PDF of |hj|2 is given both by the exponential distribution,

i.e. f(x) = e−x. By substituting the PDF to the optimum solution given in (6.10) and

(6.11), we obtain the optimum harvested energy using N frames for a point-to-point
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MISO network with Rayleigh faded channels as

RN−1(P ) = P

N−1∑
j=0

cj (6.25)

where c0 = 1 and cj = e−
∑j−1
i=0 ci . The optimum transmit energy at frame j is

ρ∗j =

 P −
∑N−1

i=j+1 ρi, |hj|2 ≥ γj,

0, otherwise.
(6.26)

where γj is the threshold at frame j given as

γj =

j−1∑
i=0

ci. (6.27)

6.5.4.1 Genie-aided Energy Transfer for SISO Network with Rayleigh fading

For a performance comparison, we consider an energy transfer scheme with non-causal

channel state information. This scheme is addressed as the genie-aided energy trans-

fer scheme hereafter. If the energy transmitter knows all channel gains hjs, ∀j =

0, · · · , N −1, energy transmitter may transmit all P energy at the frame with maximum

channel gain. We denote that frame index as j∗ where j∗ = arg maxj
(
|hN−1|2, · · · , |h0|2

)
.

Then, the expected harvested energy using N frames can be given as

ẼG = PEhj∗
[
|hj∗|2

]
= P

∫ ∞
0

xf|hj∗ |2(x)dx

= P

∫ ∞
0

xNPe−x(1− e−x)N−1 = P
N∑
n=1

1

n
.

(6.28)

6.5.4.2 Asymptotic Analysis

In this section, we analyse the asymptotic behaviour of the optimum harvested energy

for both opportunistic and genie-aided energy transfer schemes for SISO network with
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Rayleigh fading, when the number of frames becomes infinitely large, i.e., N → ∞.

Theorem 2 gives the maximum expected total harvested energy convergence with N .

Theorem 2. Without channel estimation energy (et = 0), the optimum expected total

harvested energy converges with N →∞ as

For the opportunistic energy transfer:

lim
N→∞

RN−1(P ) = P ln(N) (6.29)

For genie-aided energy transfer:

lim
N→∞

RN−1(P ) = Pγ + P ln(N) (6.30)

where γ is the Euler-Mascheroni constant (γ = 0.5772...)[89].

Proof. Define a sequence UN as UN ,
∑N

j=0 cj − ln(N). The term UN+1 − UN can be

give by

UN+1 − UN = cN+1 − ln(N + 1) + ln(N). (6.31)

By using the mean value theorem, we have ln(N+1)−ln(N) = 1
N+θ

,where, 0 < θ < 1.

Therefore, (6.31) can be written as

UN+1 − UN = cN+1 −
1

N + θ
. (6.32)

The term cN+1 = e−
∑N
j=0 cj can also be given in a recursive formula as cN+1 = cNe

−cN .

As c0 = 1 and 0 < e−x ≤ 1 for x ≥ 0, by using this recursive structure of cN , it can be

shown that cN is a decreasing function which converges to zero, i.e., limN→∞ cN = 0.

Therefore, limN→∞ UN+1 − UN = cN+1 − 1
N+θ

= 0. In other words, the function UN

converges. Furthermore, by computing UN for large N , we can show that the function

UN converges to zero for large N . Therefore, for opportunistic energy transfer, the

expected harvested energy for large N converges as in (6.29).
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For the genie aided method, the maximum expected total harvested energy is given

as ẼG = P
∑N

n=1 1/n. The definition of Euler-Mascheroni constant is given as γ =∑N
n=1 1/n− ln(N) with N → ∞ [89], [90]. Hence, RN−1(P ) for genie aided method

converges as (6.30). This completes the proof.

By comparing (6.29) and (6.30), we can see that the cost of not being able to foresee

the future is γ for large N .

6.6 Numerical and Simulation results

This section provides numerical results to verify the analysis and to discuss the perfor-

mance. We focus on the special cases of the problem given in 6.5. Recall that the energy

conversion efficiency η = 1, and energy associated with noise is negligible. Further, we

have normalized energy (P = 1) in this section.

6.6.1 Point-to-point MIMO Network with Rayleigh fading

In this case, we generate N channel matrices, Hj with elements h ∼ CN (0, 1) and

obtain the maximum eigenvalue of each matrix λ1
(
H†jHj

)
. We then sequentially com-

pare the maximum eigenvalue λ1
(
H†jHj

)
with the threshold obtained by using (6.15)

and Section 6.5.1, and obtain the optimum energy transfer ρ∗ in (6.12). Then we cal-

culate the total harvested energy in all N frames. For the genie-aided energy transfer

scheme, we choose the frame j∗ with the largest value for λ1
(
H†jHj

)
among the N

frames, and transmit all the energy available at that frame.We average the harvested

energy from each scheme by using 106 set of channel realizations.

Figure 6.2 shows the variation of the expected harvested energy with the number

of frames for opportunistic energy transfer and Genie-aided energy transfer when the

number of receiving antennas is fixed at K = 3 and the number of transmitting anten-

nas M = 3 and 6. For both M = 3 and M = 6 cases, the analytical results for op-

portunistic energy transfer scheme obtained using Theorem 1 and section 6.5.1 match

closely with the simulation results which verifies our analysis. The genie-aided scheme
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Figure 6.2: The variation of expected harvested energy with the number of frames for
MIMO Network with Rayleigh fading.

outperforms the opportunistic energy transfer scheme. Further, we note that when the

number of transmitting antennas is increased to M = 6, the expected harvested energy

is higher compared to M = 3 case. This is because with higher degree of freedom,

the beamforming vector can be finely tuned in order to obtain the maximum energy

possible.

6.6.2 Point-to-point MIMO Network with Rician Fading

In this case, we generate N channel matrices, Hj as given in (6.18) and obtain the

maximum eigenvalue of each matrix λ1
(
H†jHj

)
. We then sequentially compare the

maximum eigenvalue λ1
(
H†jHj

)
with the threshold obtained by using (6.15) and Sec-

tion 6.5.2. and obtain the optimum energy transfer ρ∗ in (6.12). Then we calculate the

total harvested energy in all N frames. For the genie-aided energy transfer scheme, we

choose the frame j∗ with the largest value for λ1
(
H†jHj

)
among the N frames, and

transmit all the energy available at that frame. We average the harvested energy from
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each scheme by using 106 set of channel realizations.

Figure 6.3 shows the variation of the expected harvested energy with the number

of frames for opportunistic energy transfer and Genie-aided energy transfer when for a

network with M = 2 transmitting antennas and K = 2 receiving antennas for Rician

factor KR = 1 and 3. For both KR = 1 and KR = 3 cases, the analytical results for

opportunistic energy transfer scheme obtained using Theorem 1 and section 6.5.2 match

closely with the simulation results which verifies our analysis. The genie-aided scheme

outperforms the opportunistic energy transfer scheme. Further, we note that KR = 3

case slightly outperforms the KR = 1 case when the number of frames N is low, and

then for higher number of frames, the KR = 1 case outperforms KR = 3 case. This

is because the channel matrices are normalized to have unit energy. Which means for

KR = 1 case, the mean energy of each channel is low compared to the KR = 3 case,

and the variance of KR = 1 case is higher compared to the KR = 3 case. Therefore,

the pdf of maximum eigenvalue for KR is widely spread compared to the KR = 3

case. As the opportunistic energy transfer scheme benefits from the randomness of the

channels, the effect of high line-of-sight components is overshadowed by the spread of

the distribution of non-line-of-sight component.

6.6.3 Point-to-point MISO Network with Rayleigh Fading

In this case, we generate N channel vectors, hj with elements h ∼ CN (0, 1) and ob-

tain ‖hj‖2 for each frame. We then sequentially compare the ‖hj‖2 with the threshold

obtained by using (6.15) and Section 6.5.3, and obtain the optimum energy transfer ρ∗

in (6.12). Then we calculate the total harvested energy in all N frames. For the genie-

aided energy transfer scheme, we choose the frame j∗ with the largest value for ‖hj‖2

among the N frames, and transmit all the energy available at that frame. We average the

harvested energy from each scheme by using 106 set of channel realizations.

Figure 6.4 shows the variation of the expected harvested energy with the number

of frames for opportunistic energy transfer and Genie-aided energy transfer when the

number of transmitting antennas M = 3 and 6. For both M = 3 and M = 6 cases, the
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analytical results for opportunistic energy transfer scheme obtained using Theorem 1

and section 6.5.3 match closely with the simulation results which verifies our analysis.

The genie-aided scheme outperforms the opportunistic energy transfer scheme. Further,

we note that when the number of transmitting antennas is increased to M = 6, the

expected harvested energy is higher compared to M = 3 case. This is because with

higher degree of freedom, the beamforming vector can be finely tuned in order to obtain

the maximum energy possible.

6.6.4 Point-to-point SISO Network with Rayleigh Fading

In this case, we sequentially compare |hj|2 with γj in (6.27) and obtain optimum energy

transfer ρ∗j in (6.26). Then, we calculate the total harvested energy in all N frames. For

the genie-aided energy transfer scheme, we choose the frame j∗ with maximum |hj|2

among the N frames, and transmit all the energy available at that frame. For equal

energy transfer, we transfer P/N amount of energy in each frame. For the random

energy transfer, we transfer all the energy available in a randomly selected frame j ∈

{0, N − 1}. We calculate the average total harvested energy by using 106 set of channel

realizations.

Figure 6.5 shows the variation of the expected harvested energy with the number

of frames under four schemes. The analytical results for opportunistic and genie-aided

energy transfer schemes in (6.25) and (6.28) match closely with the simulation results

which verifies our analysis. The genie-aided scheme outperforms all other schemes,

and optimum energy transfer scheme outperforms equal and random energy transfer

schemes which have harvested energy as one. Compared to equal and random energy

transfer schemes, the gain of expected harvested energy is approximately 4 times and

3.5 times for genie-aided energy transfer scheme and optimum EH scheme, respectively,

at N = 30.

Figure 6.6 shows the variation of tern RN−1(P )− ln(N) with the number of frames

N . When N increases, the simulated values approach to γ and 0 for the genie-aided and

the optimum energy transfer schemes, respectively. This verifies Theorem 2.
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Figure 6.7 shows the variation of the outage probability of expected harvested en-

ergy with the transmit energy when the harvested energy threshold (ETh) is 10dBm.

We calculate the outage probability as P
(
ẼT < ETh

)
. The Outage probabilities of

genie-aided scheme improve as order N , i.e., order 1,2, and 3 for N = 1, 2, and 3,

respectively, because genie-aided scheme makes the decision based on N independent

statistics which helps for the diversity gain. Outage probabilities of optimum energy

transfer scheme improve as order one irrespective of N , because its transmission is

based on current frame only. However, it helps to provide an array gain, i.e., outage

probability of approximately 0.1 is achieved with P = 20, 18, and 16dBm for N=1,2,

and 3, respectively. Outage probabilities of all other cases improve also as order one,

but without any array gain.
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6.7 Conclusions

This chapter considers a point-to-point multi-antenna network with an energy con-

strained power transmitter and an energy receiver which has strict deadline on time.

We derive the optimum energy transfer scheme for a general channel model in which

we jointly optimize for the beamforming vector and the energy levels to be transmitted

at each frame. We show that the optimum policy reduces to an all-or-nothing thresh-

old policy. We derive the opportunistic energy beamforming scheme for special cases of

multi-antenna systems and channel models. We also derive the maximum expected total

harvested energy using the genie-aided scheme for performance comparison. For SISO

Rayleigh channels, by analysing the asymptotic behaviour of two schemes, we show

that the advantage of non-causality can be given by the Eular-Mascheroni constant.
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Chapter 7

Opportunistic Energy Transfer in Point-to-Point

Networks with Channel Estimation Energy

In previous chapters, we focused on the opportunistic energy transfer prob-

lem for a point-to-point network by neglecting the energy associated with

channel estimation. However, this may not be the case in reality due to low

efficiency of wireless energy transfer. Furthermore, such channel estima-

tions are performed in each frame until the power transfer occurs. This

may require significant energy for the channel estimation. Therefore, in this

chapter, we investigate a similar problem by considering the energy asso-

ciated with channel estimation at the beginning of each frame. We solve

the optimization problem, and find the optimum threshold of each frame,

optimum beamforming vector to be used, and the maximum expected total

harvested energy of the network.

7.1 Introduction

Wireless energy transfer enables energy constrained wireless nodes to prolong their life

span without resorting to exhaustive battery replacements. However, wireless energy

transfer undergoes severe propagation losses with the transmission distance [19]. To
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improve the energy harvesting capability, advance signal processing techniques such as

energy beamforming can be used. For this purpose, it is crucial to learn the channel state

information such that the energy transfer scheme can be optimized to enhance the har-

vested energy levels. Conventionally, a training sequence is required to perform channel

estimation (CE) before transferring energy [91]. However, such channel estimation is

also energy consuming. Thus, it is important to consider the cost of energy associated in

the channel estimation phase when designing energy efficient energy transfer schemes.

This is the focus of this chapter.

In [92], a point-to-point energy transfer system is considered in order to obtain a

received power-based channel estimation scheme. In the proposed scheme, the receiver

measures the received power of the RF signal, that is sent by the transmitter with various

beamforming weights. Then, the transmitter calculates the channel gains based on the

received power measurements reported by the receiver. This allows simple circuitry

compared to the symbol-based schemes.

In Chapter 6, We focus on point-to-point networks with an energy transmitter equipped

with a limited energy resource and an energy receiver with a strict deadline to achieve

energy harvesting. We assumed the energy associated with channel estimation in negli-

gible. However, this may not be the case in practise. Especially, as channel estimation

in carried out in every frame until all the energy is transferred to the user. Therefore,

in this chapter, we reformulate the problem to consider the energy consumed in channel

estimation.

The rest of this chapter is organized as follows, Section 7.2 provides the system

model for the point-to-point network. Section 7.3 formulates the optimization problem

by considering the energy utilized for channel estimation is significant. We prove that

the optimum energy transfer policy reduces to an all-or-nothing threshold policy and

then obtain the optimum policy in Section 7.4. We apply the general opportunistic en-

ergy transfer to SISO Rayleigh channels in Section 7.5. Section 7.6 gives the numerical

results for SISO Rayleigh channels followed by the concluding remark in Section 7.7.
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Figure 7.1: (a) A point-to-point SISO wireless network for EH; and (b) Frame structure
for the energy transfer protocol.

7.2 System Model

This section describes the network model and the corresponding analytical model for a

point-to-point SISO wireless network used for EH.

7.2.1 Network Model

We consider a point-to-point wireless network as shown in Figure 7.1a. The network

consists of a power transmitter with M co-located antennas, and an energy harvesting

user withK co-located antennas. The power transmitter has a fixed energy source with a

maximum available energy level P which can be used up to N time frames. This means

that power transmitter can transmit all P energy to the EH user by using maximum

N frames. Then, the EH user can harvest energy within those time frames which are
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indexed from j = N−1 to j = 0 in Figure 7.1b. It is important to note that the indexing

of the frames is in the descending order, so that the frame index reveals the number of

frames remaining for the future. We denote the block fading channels at the jth frame

between mth transmit antenna Txm and kth receiving antenna Rxk by hm,kj . We denote

the channel matrix at the jth frame by Hj ∈ CM×K which has hm,kj at (m, k)th position.

Since we consider an opportunistic wireless energy transfer, the energy transmitter

should know the channel matrix Hj before energy transfer to the EH user. We assume

that perfect channel estimation is carried out at EH user. Since the EH user does not

have any energy source, at the beginning of each frame, the energy transmitter transmits

et amount of energy towards EH user for the channel estimation. We denote the total

energy transmitted by Tx in frame j as ρj , which includes both energy transmitted for

channel estimation and harvesting. Using that received signal, the EH user estimates

the channel matrix Hj , and calculates the transmit energy required for energy transfer

within the same frame, ρj − et and the normalized beamforming vector which can be

used to focus the energy beam towards the EH user for maximum harvested energy.

Then, the EH user informs this information to Tx during the feedback phase. We assume

that the energy associated in the feedback phase is negligible, i.e., er = 0, and the

EH user is sufficiently charged to perform the feedback. Then, the energy transmitter

transmits, ρj amount of energy using the beamforming vector provided by the EH user.

7.2.2 Analytical Model

Since the energy level for each set ofN frames at Tx is limited to P , the available energy

at Tx at the beginning of frame j which depends on all the transmit energy of previous

frames, can be given as Pj,(available) = P −
∑N−1

i=j+1 ρi. Then, the energy transmitted at

the frame j, ρj also depends on the energy transmitted at the previous frames. Although,

this ρj may be a function of all previous channel gains, i.e., ρj(HN−1, · · · ,Hj−1), we

use ρj for the sake of simplicity. We denote the state of energy availability at frame j as

sj , where sj = 1 if there is energy available at the frame j, i.e., P −
∑N−1

i=j+1 siρi > 0,
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and sj = 0 if the energy source has run out. Therefore, sj can be given as

sj = U

(
P −

N−1∑
i=j+1

siρi

)
(7.1)

where U(·) denotes the unit step function. The importance of sj lies in the case of

ρj < et which means that the leftover energy at frame j is not sufficient for the channel

estimation. In such situations, the state sj sets to zero in order to ensure non-negativity

of the harvested energy.

The harvested energy at the frame j can be given as

Ej = ηjsj (ρj − et) w†jH
†
jHjwj + σ2

nj
(7.2)

where, ηj is the energy conversion efficiency, and σ2
nj

is the energy associated with

received noise. Without loss of generality, we assume perfect energy conversion effi-

ciency, i.e., ηj = 1, and the energy associated with noise is negligible, i.e., σ2
nj

= 0.

Then, the expected total harvested energy for N frames can be given as

ẼT =
N−1∑
j=0

EHj

[
sj (ρj − et) w†jH

†
jHjwj

]
, (7.3)

where EHj
(.) is the expectation operation with respect to Hj . We can achieve maximum

harvested energy within N frames by maximizing ẼT . This can be done by optimizing

the energy transfer at each frame, ρj based on the past and present channel knowledge

only, i.e., Hi i ∈ [N − 1, j]. However, knowledge of the future channels, i.e., hi

i ∈ [j − 1, 0], are unknown. This procedure may be called as opportunistic energy

transfer which is discussed in detail in the next section.
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7.3 Opportunistic Energy Transfer

In this section, we maximize the expected total harvested energy over N time frames

with the transmit energy budget P . In particular, we optimize the amount of energy to

be transmitted in each frame, i.e., ρj , ∀j ∈ [0, N − 1]. In general, the corresponding

optimization problem can be given as

max
ρj ,sj

ẼT ==
N−1∑
j=0

EHj

[
sj (ρj − et) w†jH

†
jHjwj

]
(7.4a)

s. t.
N−1∑
j=0

sjρj ≤ P, (7.4b)

ρj ≥ et ∀j = {j; j ∈ [0, N − 1], sj 6= 0}, (7.4c)

where (7.4b) is for total transmit energy constraint, and (7.4c) is to ensure that the

available energy is adequate for channel estimation when sj 6= 0. We note that ρjs are

sequential. Thus, the optimization problem in (7.4) needs to be reformulated to obtain

a recursive formula.

7.4 Optimum Solution

In this section, we consider the problem in (7.4) and reformulate the problem such that

it can be solved recursively. We denote the optimum value of the objective function

in (7.4) as RN−1(P ). Hence, the optimization problem can be reformulated as

RN−1(P ) = max
ρN−1, wN−1∈CM

E
[
sN−1 (ρN−1 − et) w†N−1H

†
N−1HN−1wN−1

+RN−2(P − ρN−1)
]

s. t. sN−1et ≤ ρN−1 ≤ P

RN−1(P ) ≥ 0.

(7.5)
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It is worth noting that the problem in (7.5) has the recursive structure and the num-

ber of decision variables has reduced to two, which are the energy transmitted and the

beamforming vector used at the frameN−1, i.e., ρN−1 and wN−1. Since the beamform-

ing vector, wN−1 represents the proportions of the transmit energy to be distributed over

the transmit antennas, wN−1 is independent form the total transmit energy of all anten-

nas at the frame N − 1, ρN−1 and the beamforming vectors used and the total transmit

energy at the other frames. Thus, we can solve for the optimum beamforming vector,

w∗N−1 independent form ρj, ∀j ∈ [0, N − 1] and wj, ∀j ∈ [0, N − 2]. In order to solve

for the optimum beamforming vector we consider the problem

max
wj∈CM

E
[
w†jH

†
jHjwj

]
s. t. ‖wj‖2 = 1.

(7.6)

We note that the harvested energy is non-negative. Thus we can simply omit the expec-

tation function, E(.) without changing the objective function. Therefore, the problem

can be reduced to
max

wj∈CM
w†jH

†
jHjwj

s. t. ‖wj‖2 = 1.

(7.7)

This is a well studied problem for which the optimum beamforming vector is given

by w∗j = v1(H
†
jHj) and the optimum harvested energy is given by λ1(H

†
jHj), where

λ1(A) and v1(A) denotes the principle eigenvalue and the corresponding eigen-vector

of a matrix A, respectively [22], [84], [85]. Hence, the problem in (7.5) can be given

as

RN−1(P ) = max
ρN−1

E
[
sN−1 (ρN−1 − et)λ1(H†N−1HN−1) +RN−2(P − ρN−1)

]
s. t. sN−1et ≤ ρN−1 ≤ P

RN−1(P ) ≥ 0.

(7.8)
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We solve the problem using Theorems 3 and 4. In Theorem 3, we prove that the

optimum policy for opportunistic energy transfer reduces to an all-or-nothing threshold

policy. By using Theorem 3, we give the optimum policy and the optimum harvested

energy in Theorem 4.

Theorem 3. When the channel estimation energy is significant the optimum policy for

opportunistic energy transfer is given by an all-or-nothing threshold policy.

Proof. We consider the scenario where the expected energy harvested by using j frames

with ρj level of transmit energy can be given as

Ẽj(ρj) = sj(ρj − et)C (7.9)

where C is a positive constant. We now consider a set of j + 1 frames with P energy

level. In such case, the optimization problem in (7.8) can be given as

Rj+1(P ) = max
ρj+1

E
[
sj+1 (ρj+1 − et)λ1(H†j+1Hj+1) + sj(P − ρj+1 − et)C

]
(7.10a)

s. t. sj+1et ≤ ρj+1 (7.10b)

ρj+1 ≤ P (7.10c)

Rj+1(P ) ≥ 0. (7.10d)

There are three feasible regions for this problem: i) constraint (7.10b) is active; ii)

constraint (7.10c) is active; or iii) none of the constraints are active. Next we consider

the problem for each case.

Case I: When constraint (7.10b) is active

In this case we have, sj+1et = ρj+1 which means there will be no energy harvesting

in frame j + 1. When sj+1 = 1, this may only occur for a subset of Hj+1 in which the

channel is considerably poor. For this subset of channel matrices we have

λ1

(
H†j+1Hj+1

)
≤ T1 (7.11)
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where T1 denotes a certain threshold used to consider whether the channel is poor. In this

case, (7.10a) can be given asRj+1(P ) =
∫ T1
0
m(x)f(x)dx where f(x) is the probability

density of λ1(H
†
j+1Hj+1) and m(x) is given by

m(x) = (P − 2et)C (7.12)

.

Case II: When constraint (7.10c) is active

In this case we have, ρj+1 = P which means all the available energy will be trans-

mitted in frame j + 1. Therefore, energy available for the rest of j frames is zero, i.e.,

sj = 0. This may only occur for a subset of Hj+1 in which the channel is considerably

good. For this subset of channel matrices we have

λ1

(
H†j+1Hj+1

)
≥ T2 (7.13)

where T2 denotes a certain threshold used to consider whether the channel is good. In

this case, (7.10a) can be given as Rj+1(P ) =
∫ T1
0
l(x)f(x)dx where l(x) is given by

l(x) = (P − et)x. (7.14)

Case III: When none of the constraints are active

In this case, energy transfer occurs in both frame j + 1 and in rest of the j frames.

Therefore sj+1 = sj = 1 and the objective function in (7.10) reduces to

Rj+1(P ) = max
ρj+1(x)

∫ T2

T1

[
(ρj+1(x)− et) (x− C) + (P − ρj+1(x)− et)C

]
f(x)dx

(7.15)

Here, we denote ρj+1(x) = ρj+1 in order to represent the dependence of the transmit
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energy ρj+1 on the channel instance, x. Now we consider the function g(x) as,

g(x) = (ρj+1(x)− et) (x− C) + (P − ρj+1(x)− et)C (7.16)

for the set T1 ≤ x ≤ T2. Then from (7.15) we have Rj+1(P ) = max
ρj+1(x)

∫ T2
T1
g(x)f(x)dx.

Now we consider two sub-cases: a) when g(x) > l(x); and b) when g(x) > m(x).

Case III-a: When g(x) > l(x)

In this sub-case, for the given instance of x, the energy harvested by transmitting

energy in both frame j + 1 and other j frames is greater than energy harvested using

transmitting all available energy at frame j + 1. By using (7.14) and (7.16), we have

x <
P − 2ρj+1(x)

P − ρj+1(x)
C (7.17)

where the denominator, P − ρj+1(x) 6= 0 in T1 < x < T2 region as both frames should

transmit energy.

Case III-b: When g(x) > m(x)

In this sub-case, for the given instance of x, the energy harvested by transmitting

energy in both frame j + 1 and other j frames is greater than energy harvested using

transmitting all available energy in the last j frames. By using (7.12) and (7.16), we

have

x > 2C (7.18)

because, ρj+1(x) 6= et in T1 < x < T2 region as both frames should transmit energy.

For the subset of instances of x where both sub-cases are true, the energy harvested

by transmitting energy in both frames will be higher than the energy harvested by trans-

mitting all energy in j + 1 frame or the rest for j frames. In this case, the subset of

of x should satisfy both (7.17) and (7.18). Since, et < ρj+1(x) < P in the region

T1 < x < T2, these two conditions are contradicting. Therefore, the subset of chan-

nels in which the energy harvested by transmitting energy in both frames is greater than
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transmitting all the energy in either frame j + 1 or the rest of the j frames, is empty.

Furthermore, we have T1 = T2. In other words, the optimum policy for opportunistic

energy transfer reduces to an all-or-nothing threshold policy regardless of the distribu-

tion of channels. This completes the proof.

According to Theorem 3, the optimum policy is an all-or-nothing threshold pol-

icy which is similar to the problem discussed in Chapter 6. Hence, the user may only

be required to send feedback once. This is because for frames that do not exceed the

threshold the user may remain idle in the feedback phase and only transmit feedback

for the frame that exceeds the threshold. Channel estimation on the other hand must

be performed at every frame. Therefore, the total energy spent on channel estimation,

et may be considerably large compared to the energy utilized for the feedback phase,

er. Furthermore, for a point-to-point SISO network, only one bit is required to send as

feedback to let the energy transmitter know to transmit energy or not. This is because

the user is not required to inform the energy transmitter regarding the optimum beam-

forming vector to be used as there is only one antenna. This effect further justifies the

assumption of negligible feedback energy, i.e., er = 0. We now use the Theorem 3 to

obtain the optimum policy for opportunistic energy transfer.

Theorem 4. With channel estimation energy (et > 0), the optimum expected total har-

vested energy using N frames over block fading i.i.d. channels is

RN−1(P ) = sN−1(P − et)
[
GN−1(P ) + γN−1(P )F (γN−1(P ))

]
(7.19)

and the optimum threshold for frame j is

γj(P ) =
P − 2et
P − et

[
Gj−1(P − et) + γj−1(P − et)F (γj−1(P − et))

]
(7.20)

where,

Gj(P ) =

∫ ∞
γj(P )

xf(x)dx, (7.21)

136



with f(x) and F (x) are the probability density function and the cumulative distribution

function of λ1
(
H†H

)
, respectively.

Proof. We use method of induction to prove Theorem 4.

Base Case: For one frame (N = 1), problem in (7.8) can be given as

R0(P ) = max
ρ0(x)

∫ ∞
0

(ρ0(x)− et)xf(x)dx

s. t. s0et ≤ ρ0(x) ≤ P.

(7.22)

It is obvious that the optimum transmit energy ρ∗0(x) is P , i.e., all the available energy is

transmitted in the same frame regardless of the channel condition. Therefore, R0(P ) =

s0(P − et)G0(P ) with threshold γ0(P ) = 0. It is worth noting that the energy harvested

using 1 frame, R0(P ) is in the form of (7.9).

Inductive hypothesis: Assume that the solution in (7.19) is true for N = n. Then,

we have

Rn−1(P ) = sn−1(P − et)
[
Gn−1(P ) + γn−1(P )F (γn−1(P ))

]
(7.23)

where the optimum thresholds are given by (7.20). We note that (7.23) takes the form

of (7.9) for a given P .

Inductive Step: Consider the case N = n + 1. The optimization problem in (7.8)

can be given as

max
ρn

Rn(P ) = E
[
sn(ρn − et)λ1

(
H†nHn

)
+Rn−1(P − ρn)

]
s. t. snet ≤ ρn ≤ P.

(7.24)

Since (7.23) takes the form of (7.9), we can use Theorem 3 to show that the optimum

policy reduces to an all-or-nothing threshold policy. Therefore, we have two cases:

i) ρn = et for λ1
(
H†nHn

)
< γn(P ) which leads to sn−1 = 1; and ii) ρn = P for

λ1
(
H†nHn

)
> γn(P ) which leads to sn−1 = 0, where γn(P ) is the threshold at frame
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n. Thus, the objective function of (7.24) can be given as

Rn(P ) = sn

∫ γn(P )

0

(P − 2et)
[
Gn−1(P − et)

+ γn−1(P − et)F (γn−1(P − et))
]
f(x)dx

+ sn

∫ ∞
γn(P )

(P − et)xf(x)dx.

(7.25)

By using Leibniz integral rule we have

∇γn(P )Rn(P ) = sn(P − 2et)
[
Gn−1(P − et)

+ γn−1(P − et)F (γn−1(P − et))
]
f(γn(P ))

− sn(P − et)γn(P )f(γn(P )).

(7.26)

Assuming the functionRn(P ) to be a quasi-concave function, the Kuhn-Tucker-Lagrange

(KTL) conditions [93] for the problem in (7.24) can be given as

(1 + λ)∇γn(P )Rn(P ) ≤ 0 (7.27a)

γn(P )(1 + λ)∇γn(P )Rn(P ) = 0 (7.27b)

λγn = 0 (7.27c)

Rn(P ) ≥ 0, γn(P ) ≥ 0, λ ≥ 0. (7.27d)

By solving this system of equations for γn(P ) and Rn(P ), we have (7.19) and (7.20)

for N − 1 = n. Based on the rule of induction, Theorem 4 is true for all N > 0. This

completes the proof.

This means that the optimum transmit energy at each frame is given by a threshold

policy. Specifically, at the time frame j, if the eigenvalue λ1(H
†
jHj) is greater than the

expected harvested energy from the remaining frames by using available energy after

channel estimation at frame j, all the available energy ρ∗j = P will be transmitted at the
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jth frame using the optimum beamforming vector, v1(H
†
jHj).

If we are able to foresee all the channels matrices, it is obvious that by choosing

the frame j∗ that yields the largest λ1(H
†
jHj), i.e. j∗ = arg maxj λ1(H

†
jHj), we can

maximize the expected harvested energy. Unfortunately, we do not have the luxury of

seeing into the future. Therefore, we will use this method (addressed as genie aided

method hereafter) as an upper bound of the proposed algorithm.

7.5 For SISO Rayleigh Channels

For SISO Networks with Rayleigh distributed channels, the Theorem 4 reduces to

RN−1(P ) = sN−1(P − et)
[
γN−1(P ) + e−γN−1(P )

]
(7.28)

where the optimum thresholds are

γj(P ) =

 P−2et
P−et

[
γj−1(P − et) + e−γj−1(P−et)

]
, P > 2et

0, otherwise.
(7.29)

Now we analyze the behaviour of RN−1(P ). The function in (7.28) has the form of

f : R+ → R+ with f(x) = a (1− e−x) + b (1 + x) e−x where a, b ∈ R. Then, we have

∇f(x) = (a− bx) e−x. As e−x > 0 for x ∈ R+, we have the following three cases. i)

the function f(x) is strictly increasing when bx < a because ∇f(x) > 0; ii) the unique

stationary point of f(x) is obtained when bx = a; and iii) the function f(x) is strictly

decreasing when bx > a because ∇f(x) < 0. This proves that the function f(x) has

a unique maximum. Furthermore, we note that strictly increasing/ decreasing functions

are quasi-concave. Therefore, the function f(x) is quasi-concave. This means Rn(P )

is quasi-concave. Thus, the quasi-concavity assumption for RN−1(P ) holds for SISO

Rayleigh distributed channels.
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7.6 Numerical and Simulation Results

This section provides numerical results to verify the analysis and to discuss the perfor-

mance for SISO Rayleigh distributed channels, i.e., hj ∼ CN (0, 1). Recall that the

energy conversion efficiency η = 1, and energy associated with noise is negligible.

Further, we have normalized energy (P = 1) unless otherwise specified.

In frameN−1, we compare |hN−1|2 with γN−1(P ) in (7.29) and obtain the optimum

energy transfer ρ∗N−1 in (7.29). If ρ∗N−1 = et, we update the available energy at next

frame (N − 2) as P(N−2,available) = 1− et. This procedure is repeated for all frames N .

For the genie aided energy transfer scheme, we calculate energy available for harvesting

at frame j as Pj,(available) = 1− (N − j − 1)et and choose the frame j∗ with maximum

(Pj,(available)− et)|hj|2 among the N frames, and transmit available energy Pj∗,(available)

at this frame. For the equal energy transfer, we transfer P/N − et amount of energy in

each frame. For the random energy transfer, we transfer all the energy available, P − et
in a randomly selected frame j ∈ {0, N − 1}. We calculate the average total harvested

energy by using 105 set of channel realizations. Figure 7.2 shows the variation of the

thresholds, γj(P ) for each frame with N = 10 and et = 0, 0.01P, 0.05P and 0.10P .

For a given frame number, the threshold reduces when et increases because the energy

available for the future frame reduces significantly with large et. Therefore, harvesting

at the current frame which may have a worse channel gain may result in large amount of

harvested energy than harvesting in the future frame which may have a better channel

gain but with low available energy. Furthermore, the threshold γ0(P ) = 0 for all cases

of et because all available energy must be harvested at the last frame regardless of the

channel. The threshold γ1(P ) = 0 for frame 1 with et = 0.10P demonstrates the

effect of Rn(P ) ≥ 0 constraint in (7.24). As the available energy P1,(available) = 2et, all

available energy must be transmitted at frame 1 regardless of the channel quality. Hence

the threshold γ1(P ) is zero.

Figure 7.3 shows the variation of expected harvested energy with the number of

frames N for four schemes when et = 0.10P . When N = 1, the expected harvested
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Figure 7.2: Threshold of frame j, γj(P ), with frame index j for different et values when
N = 10.

energy from all four schemes is 0.9. As there is only one frame, all the energy available,

1 − et = 0.9, is transmitted in all four schemes. The harvested energy converges from

1 to 1.67 and from 1 to 1.50 for genie-aided and optimum energy transfer schemes,

respectively, because no energy is available even for channel estimation when N > 10

at et = 0.10P . The harvested energy with the equal energy transfer scheme drops

to zero because the energy utilized for energy transfer decreases as all the frames are

used. When N = 10, all the energy is utilized for channel estimation leaving no energy

for energy transfer. Thus, the expected harvested energy for N = 10, E9(P ) is zero

for equal energy transfer scheme. The expected harvested energy with random energy

transfer scheme remains constant at 0.9 because only one frame is utilized for energy

transfer. Thus, the random energy transfer scheme outperforms the equal energy transfer

scheme.
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7.7 Conclusion

This chapter considers a point-to-point network with an energy constrained power trans-

mitter and an energy receiver which has strict deadline on time. We obtain an oppor-

tunistic optimum energy transfer scheme together with optimum beamforming scheme

to maximize the expected total harvested energy when the energy associated with chan-

nel estimation at each frame is significant. We show that the optimum policy is a thresh-

old policy. We compare the performance using genie-aided energy transfer, equal energy

transfer and random energy transfer schemes. We observe that the thresholds for each

frame reduces with large channel estimation energy.
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