
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

January 2008

Preliminary Investigations of a Stochastic Method
to solve Electrostatic and Electrodynamic Problems
Sethu Hareesh Kolluru
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Kolluru, Sethu Hareesh, "Preliminary Investigations of a Stochastic Method to solve Electrostatic and Electrodynamic Problems"
(2008). Masters Theses 1911 - February 2014. 191.
Retrieved from https://scholarworks.umass.edu/theses/191

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/191?utm_source=scholarworks.umass.edu%2Ftheses%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


PRELIMINARY INVESTIGATIONS OF A STOCHASTIC
METHOD TO SOLVE ELECTROSTATIC AND

ELECTRODYNAMIC PROBLEMS

A Thesis Presented

by

SETHU HAREESH KOLLURU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2008

Electrical and Computer Engineering



PRELIMINARY INVESTIGATIONS OF A STOCHASTIC
METHOD TO SOLVE ELECTROSTATIC AND

ELECTRODYNAMIC PROBLEMS

A Thesis Presented

by

SETHU HAREESH KOLLURU

Approved as to style and content by:

Ramakrishna Janaswamy, Chair

Marinos Vouvakis, Member

Weibo Gong, Member

C.V. Hollot, Department Head
Electrical and Computer Engineering



This thesis is dedicated to my mother for her love and support.
Mom, you have given me so much, thanks for your faith in me, and for taking

my pain during tough times.



ACKNOWLEDGMENTS

Thanks to my advisor, Prof. Ramakrishna Janaswamy for giving me the opportunity

to work with him. It has been an honor to work with him and my acknowledgments for

his intellectual support and continuous encouragement through my studies. This thesis was

made possible by his patience and persistence.I believe that one of the main gains of this

2-years program was working with Prof.Janaswamy and gaining his trust and friendship.

Thanks to Prof.Weibo Gong for agreeing to be on my thesis committee inspite of his

busy schedule. Prof.Marinos Vouvakis, thanks for your advice and for motivation you have

given me and for acting as a mentor to me.

Thanks to my course advisors, Prof.Dan Schaubert, Prof.Paul Siquera and Prof.Robert

Jackson.

Thanks to my colleagues at the Antennas & Propagation Lab, both graduated and current

who helped me with guidance, support and advice.

Thanks also to my brother, family and friends, who supported me in the past two years,

and for many, much longer than that.

And finally special thanks to my mother, Rajeswari, who suffered through each step

along with me, I acknowledge a debt, an appreciation, that extends beyond any words at my

command.

This work was funded in part by the US Army Research Office under ARO grant

W911NF-04-1-0228 and by the Center for Advanced Sensor and Communication Anten-

nas, University of Massachusetts at Amherst, under the US Air Force Research Laboratory

Contract FA8718-04-C-0057.

Thanks to everyone who had a part in this effort.

iv



ABSTRACT

PRELIMINARY INVESTIGATIONS OF A STOCHASTIC
METHOD TO SOLVE ELECTROSTATIC AND

ELECTRODYNAMIC PROBLEMS

SEPTEMBER 2008

SETHU HAREESH KOLLURU

B.Tech., ACHARYA NAGARJUNA UNIVERSITY

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ramakrishna Janaswamy

A stochastic method is developed, implemented and investigated here for solving Laplace,

Poisson’s, and standard parabolic wave equations. This method is based on the properties of

random walk, diffusion process, Ito formula, Dynkin formula and Monte Carlo simulations.

The developed method is a local method i.e. it gives the value of the solution directly at

an arbitrary point rather than extracting its value from complete field solution and thus

is inherently parallel. Field computation by this method is demonstrated for electrostatic

and electrodynamic propagation problems by considering simple examples and numerical

results are presented to validate this method. Numerical investigations are carried out to

understand efficacy and limitations of this method and to provide qualitative understanding

of various parameters involved in this method.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

It is rare for real-world electromagnetic problems to admit analytical solutions for the

multitude of irregular geometries designed under various constitutive relations of media and

boundary conditions. Whenever a problem with such complexity arises, numerical solutions

must be employed. Of these numerical methods, methods like finite difference (FDM), finite

element (FEM) and boundary element (BEM) have been applied successfully to solve a wide

variety of EM problems. However, these methods require extensive preprocessing to cast a

particular problem in the required format for computation; the numerical algorithms used

for the solution are not always stable. The computer codes used are relatively complex and

the only possible output of these methods is the field solution even if the solution is needed

at a single point or a small set of points of the solution domain [11]. Therefore all these

methods discussed above can be cast under global methods.

An alternative technique to these traditional numerical methods, referred as local method

that provides efficient solutions for the relevant problems is investigated in this thesis. The

method is local because it delivers the solution at a single point directly rather than extract-

ing it from the field solution. Solutions to the deterministic partial differential equations can

be obtained based on probabilistic interpretation to these differential equations. These meth-

ods are based on random walk, mean value theorem for differential equations, properties of

diffusion processes, Ito formula, Dynkin formula and Monte Carlo simulations. Algorithms

designed using this local method have attractive features like [11] :

• Simple to program: Unlike traditional numerical methods like FDM, FEM and BEM,

computer codes are extremely simple.

• Always Stable: The method is stable irrespective of the input parameters chosen to

obtain the numerical results.
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• Accurate: Desired accuracy can be obtained by appropriate choice of parameters in-

volved in this method.

• Local: Solution at an arbitrary point can be obtained without having to obtain the

complete field solution. Therefore this method is inherently parallel.

• No meshing: There is no need to discretize the domain or boundary.

With advantages listed as above, this stochastic method may be good alternative method

to the global methods for field computations. However, this method has not been fully ex-

plored yet. Initial efforts for successful demonstration of this method are discussed in next

section. Field computation by this stochastic method for electrostatic and electrodynamic

problems might provide some insight into the efficacy and limitations of this method. Pre-

liminary investigations need to be carried out to identify and understand various parameters

involved in this method.

1.2 Brief Literature Survey

The relationship between partial differential equations and Brownian motion was ob-

served a long time ago in 1920′s by Wiener et al [13] and Courant et al [14]. Feynman

[16] represented solutions of Schrodinger equation by heuristically introducing path inte-

grals which didn’t admit probabilistic interpretation. Kac [10] adapted Feynman’s formula

to the heat conduction equation which was solved by means of rigorously justified Wiener

integration in a functional space with a clear probabilistic sense. Early research on solving

Helmholtz equation using Feynman’s path integrals centered on the calculation of the classi-

cal wedge diffraction coefficients, which were obtained previously using Keller’s geometrical

theory of diffraction [5]. Following the work by Keller and McLaughlin [6], who were the

first to suggest using the path integral to derive diffraction coefficients for the perfectly con-

ducting wedge, there have been a number of variations and improvements on the original

wedge diffraction solution scheme. A rigorous discussion of stochastic differential equations,

stochastic integrals and Ito formula can be found in the literature on stochastic process [4]

and [7]. Lately, [1] has looked at application of random walk methods of wave propaga-

tion, where the transport amplitude is obtained stochastically after having found eikonal by

some other means. In [11] efforts to solve Helmholtz equation have been successful only at

low wavenumbers. A part of the material presented in the following thesis for explanatory

purpose is taken from [8], [11] and [15].
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1.3 Thesis Objectives

For this thesis, we propose to

• develop, formulate and investigate a stochastic method that is used to obtain local

solutions for Laplace, Poisson’s and parabolic wave equation.

• implement and demonstrate the stochastic method for simple electrostatic and elec-

trodynamic propagation problems.

• conduct numerical experiments to understand effect of various parameters like time

step and number of realizations on the accuracy of the solution.

1.4 Thesis Outline

This thesis is organized as follows. In chapter 2, a stochastic method which involves

constructing either random walk or Brownian motion process is introduced. This method

is used to solve Laplace equation to obtain potential inside a rectangular region when the

potential on its walls is given. Numerical investigations carried out to verify this method

and to understand the effect of parameters like time step and number of realizations are

documented. Comparisons of the accuracy and time taken by the random walk and Brownian

motion approaches are also presented.

In chapter 3, a stochastic method which is very similar to the one used in previous chap-

ter is formulated to solve Poisson’s equation in order to find potential inside a parallel plate

waveguide with a square cylindrical charge distribution. The theoretical considerations sup-

porting this stochastic method are relatively complex and involve concepts of random process

and stochastic integration such as Ito process and properties of Ito diffusion process. Some of

the details are discussed in this chapter. Favorable comparisons for potential calculations are

followed by the numerical results, that are carried out to understand the effect of parameters

like time step and number of realizations on accuracy of the solution.

Chapter 4 discusses the stochastic approach to solve parabolic wave equation with Dirich-

let boundary condition and its validation for the problem of computing field inside a parallel

plate waveguide with perfectly conducting walls on the top and bottom. Need and the idea

of analytic continuation in the context of this problem are also presented here.

In Chapter 5, a stochastic method is developed to obtain local solution of parabolic wave

equation with impedance boundary condition. This stochastic approach is used to solve sim-

ilar problem solved in previous chapter i.e. computing field inside a parallel plate waveguide
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with impedance walls on the top and bottom. Numerical results with the discussion about

the field calculations using this stochastic method are presented. This chapter concludes

with the discussion on the effect of parameters like marching step and time step on the

accuracy of the stochastic solution.
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CHAPTER 2

SOLUTION OF LAPLACE EQUATION

The problem under consideration in this chapter is the solution of Laplace equation in

two dimensions, in an area bounded by rectangular grid, given the value of the potential

function at all points on the boundary. The equation satisfied by the potential at all interior

points is given by Laplace equation

∂2ψ

∂2x
+

∂2ψ

∂2y
= 0 (2.1)

The standard method is to divide the area into small squares by using a grid system, and

transform the partial differential equation into a set of finite difference equations, which can

be solved by the Gauss-Siedel iterative method, or some such procedure. This method is

suitable when the value of potential is required throughout the area; but when the value

of potential is required at only one point, the same amount of computation still has to be

done in this method. In the latter case, an alternate approach is to use the method that

employs random walk. Investigations on Random Walk method (RW) that can be used to

solve Laplace equation is the topic of this chapter.

This chapter is organized as follows. In section 1, an outline of random walk method

is presented followed by its proof using mean value theorem. In section 2 algorithm that

employs random walk to obtain solution of Laplace equations with Dirichlet boundary con-

ditions is formulated. Numerical experiments conducted to find the potential inside a rect-

angular box are presented to verify the proposed method and to understand the behavior of

various parameters involved in this method.

In section 4, it is demonstrated that random walk behaves as a continuous stochastic pro-

cess called Brownian motion process if the grid size is reduced to 0. Properties of Brownian

motion process including proof that escape probability of a particle exhibiting such process

satisfies Laplace equation is presented in section 5. Algorithm employing Brownian motion

that provides solution to Laplace equation is discussed in section 6 and numerical results are

presented to understand how various parameters behave when we move from discrete space
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domain to continuous space domain. this chapter conludes with comparative study between

algorithms employing random walk and Brownian motion process to solve Laplace equation.

2.1 The Random Walk Method: Basic Idea

A random walk is the path traced by a particle starting from a fixed point and making

constant jumps; however the direction of the jump is decided at random [3].

Figure 2.1. Random walk on a 2D grid

Let us suppose that the value of ψ is required at the point A. The method to obtain ψ

by random walk operates as follows. Starting from A, the marker is made to move to one of

the four adjacent points by moving in one of the four directions up, down, left or right. The

direction chosen is random and such that each direction is equally likely. The probability

of a move in any one of the directions is therefore 1/4. The choice of direction must be

made dependent upon some suitable distribution. This distribution would be simulated by

computer which would generate internally a random integer in the range 0 to 3 inclusive.

Having made one such move, the process is repeated until the marker reaches a point

on the boundary. At this stage, the value of ψ at this point on the boundary, V1 say, is

noted. The whole random walk process is repeated, starting from A again, terminating at

the boundary. The value of ψ at the end-point, V2, is noted. By this means, a sequence Vi

is generated. It will be shown that, if ψA denotes the value of ψ at A, then
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ψA = lim
n→∞

[∑n
i=1 Vi

n

]
(2.2)

This states that the mean value of the end-point potentials Vi tends to ψA as the number

of random walks tends to infinity. What this means is an approximation to ψA can be

obtained by repeating the process for sufficiently large number of times.

2.1.1 Proof

Part 1: The Deterministic part Let D represent the region inside rectangular box

and B represent the boundary of the box. Let S be the total region consisting of both D and

B. In what follows, (p, q) ∈ S denotes any point, (i, j) ∈ D any interior point and (r, s) ∈ B

any boundary point. Consider a point (i, j), and let its potential be ψi,j.

D

B

S

Figure 2.2. 2D Grid inside a rectangular box

As we know inside the box, potential ψ, satisfies Laplace Equation given by:

∂2ψ

∂2x
+

∂2ψ

∂2y
= 0

At all interior points, using Taylors series and neglecting higher order terms,

ψi,j =
1

4
(ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1)

At all points on the four walls of the box,

ψr,s = Vr,s

where Vr,s represents the (known) values of ψ at the boundary point (r, s)
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It can be seen clearly that the potential at a point is the average of the potential value

at the four neighboring points.

Part 2: The Stochastic part Let P r,s
i,j be the probability of ultimate absorption at the

boundary point (r, s), starting from the interior point (i, j), and executing a random walk

of the type already described. Suppose that a reward Vr,s, is associated with absorption at

(r, s), and let Ep,q be the expected reward starting from the point (p, q), i.e. the average

reward over a large number of trials.

Consider absorption at boundary, starting from (i, j). This can occur in one of four ways,

(i) a first move to (i + 1, j),and then absorption at (r, s) from there,

(ii) a first move to (i− 1, j),and then absorption at (r, s) from there,

(iii) a first move to (i, j + 1),and then absorption at (r, s) from there,

(iv) a first move to (i, j − 1),and then absorption at (r, s) from there.

It follows, by the elementary laws of probability, that

P r,s
i,j =

1

4
P r,s

i+1,j +
1

4
P r,s

i−1,j +
1

4
P r,s

i,j+1 +
1

4
P r,s

i,j−1

Multiplying by reward Vr,s

Vr,sP
r,s
i,j =

1

4
Vr,sP

r,s
i+1,j +

1

4
Vr,sP

r,s
i−1,j +

1

4
Vr,sP

r,s
i,j+1 +

1

4
Vr,sP

r,s
i,j−1

Finally, summing each term over all possible values of (r,s),

∑
r,s

Vr,sP
r,s
i,j =

1

4

∑
r,s

Vr,sP
r,s
i+1,j +

1

4

∑
r,s

Vr,sP
r,s
i−1,j +

1

4

∑
r,s

Vr,sP
r,s
i,j+1 +

1

4

∑
r,s

Vr,sP
r,s
i,j−1

From the definition of expectation, it follows that

∑
r,s

Vr,sP
r,s
i,j = Ei,j

with similar expressions for the terms on the right-hand side. Therefore, the equation can

be re-written

Ei,j =
1

4
Ei+1,j +

1

4
Ei−1,j +

1

4
Ei,j+1 +

1

4
Ei,j−1

This is true for all interior points. As regards boundary points,

Er,s = Vr,s

since the random walk in this case is null.
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Relating part 1 and part 2 : Harmonic Function and Uniqueness Principle

A function fi,j defined on S is harmonic if, at all points of D, it satisfies the averaging

property

fi,j =
1

4
fi+l,j +

1

4
fi−1,j +

1

4
fi,j+1 +

1

4
fi,j−1

As we can see, potential ψi,j and expectation Ei,j are harmonic functions on S having same

values on boundary. We are going to use the following two principles to show the relation

between them [3].

• MAXIMUM PRINCIPLE: A harmonic function fi,j defined on S takes on its maximum

value M and its minimum value m only on the boundary.

• UNIQUENESS PRINCIPLE: If fi,j and gi,j are two harmonic functions on S such that

fi,j = gi,j on B, then fi,j = gi,j for all points (i, j).

As potential ψ and expectation E are two harmonic functions with same values on boundary,

we can conclude that ψ = E

Here we have shown how the solution of a deterministic equation (Laplace) is related a

stochastic process (Random walk).

2.2 Algorithm

Having understood how the Laplace equation can be solved using random walk method,we

proceed further and write the algorithm for this method.

1. Start

2. Set initial point of the random walk (This is the point where the solution is to be

obtained)

3. Perform next step in the random walk

4. Is boundary reached?

If No : Repeat step 3

If Yes : Proceed to next step

5. Record the potential at the boundary

9



6. Is N.O of Realizations completed?

If No : Repeat from Step 2

If Yes : Proceed to Next step

7. Calculate the mean potential using eqn 2.2

8. Stop

2.3 Numerical Experiments

In this section, we present results from the numerical experiments on the algorithm.

2.3.1 Problem Setup

The problem of interest is to find the potential at any arbitrary point inside a rectangular

box of infinite extent in the z-direction with conducting walls and potentials as specified in

the Figure 2.3. The square box considered here is of unit dimension. This problem can be

classified as electrostatic, interior, elliptic, Dirichlet and deterministic.

-

6

X

Y

0

0

0π

Figure 2.3. Rectangular box with perfectly conducting walls

2.3.2 Analytical Solution

The analytical solution to the problem specified is obtained by solving Laplace equa-

tion.The Laplace equation for a homogeneous region is given by

∂2ψ

∂2x
+

∂2ψ

∂2y
= 0
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where ψ -potential.

This Partial Differential Equation(PDE) can be solved by reducing it to a set of Ordinary

Differential Equations (ODE).The easiest way to reduce a partial differential equation to a

set of ordinary ones is by separating the variables.

Let ψ(x, y) = X(x)Y (y)

⇒ ∂2ψ

∂2x
+

∂2ψ

∂2y
=

1

X

∂2X

∂2x
+

1

Y

∂2Y

∂2y
= 0

Since x and y are independent, and for this to be true each term must be a constant and

therefore

∂2X

∂2x
= +k2X

∂2Y

∂2y
= −k2Y

So the general solutions have the form

X = A cosh(kx) + B sinh(kx)

Y = C cos(ky) + D sin(ky)

with only four of the five constants A,B, C, D, k independent.

The approach is to choose the value of the constants in the general solution above such

that the specified boundary conditions are met. Since the principle of superposition applies

to solutions of Laplace equation, let ψ1 be the solution when V2 = V3 = V4 = 0 and V1 6= 0

and ψ2, ψ3, ψ4 be the solutions when only potential V2 6= 0, V3 6= 0, V4 6= 0 respectively. The

solution

ψ(x, y) = ψ1(x, y) + ψ2(x, y) + ψ3(x, y) + ψ4(x, y)

Finding ψ1(x, y)

Left Boundary

ψ1(0, y) = XY |x=0 = A(C cos(ky) + D sin(ky))

As ψ1(0, y) 6= 0 ⇒ A 6= 0

Bottom Boundary

ψ1(x, 0) = 0 = XY |y=0

⇒ C(A cosh(kx) + B sinh(kx)) = 0

⇒ C = 0 or A = B = 0

Choose C = 0
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Top Boundary

ψ1(x, b) = 0 = XYy=b

⇒ X(D sin(ky)) = 0

⇒ k = nπ/b where n = 0,±1,±2,±3...

Right Boundary

ψ(a, y) = 0 = XYx=a

⇒ (D sin(
nπ

b
))(A cosh(

nπa

b
) + B sinh(nπa/b)) = 0 and as D 6= 0

⇒ A

B
= − tanh(

nπa

b
)

Therefore

ψ1(0, y) = V1 = AD sin(
nπy

b
)

Let ψ1(0, y) =
∞∑

n=1

An sin(
nπy

b
)

⇒ An =
2

a

∫ b

0

V1(y) sin(
nπy

b
)dy

Thus

ψ1(x, y) =
∞∑

n=1

An sin(
nπy

b
)(cosh(

nπx

b
)− coth(

nπa

b
) sinh(

nπx

b
))

ψ2(x, y) =
∞∑

n=1

Bn sin(
nπx

b
)(cosh(

nπx

a
)− coth(

nπb

a
) sinh(

nπy

a
))

ψ3(x, y) = ψ1(a− x)

ψ4(x, y) = ψ2(b− y)

The final solution is

ψ(x, y) = ψ1(x, y) + ψ2(x, y) + ψ3(x, y) + ψ4(x, y) (2.3)

2.3.3 Experimental Setup

In order to solve this problem using random walk approach, the first step is to divide

the region into a set of parallel and perpendicular lines so as to form a rectangular grid. In
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the next step we pick each point on the grid and apply the algorithm. After we are done

with a point, we proceed to another point and solve for potential at that point. As we can

see, the potential at a point can be determined without the knowledge of the potential at

the neighboring points. Therefore, the solution at different points can be obtained using

different processors. However, in the discussion below, we obtained the solution serially at

one point after one another.

There are two distinct sources of error here,

(i) an error due to grid being too coarse.

(ii) an error due to the limited number of random walks.

The first error comes from approximation made using Taylor’s series (it is the same

approximation seen in Finite Difference Method). The second error arises from running the

simulations with a limited number of simulated random walks. Therefore the parameters

influencing the accuracy are

(i)The grid size, h

(ii)The number of simulated random walks (called realizations), N

We expect the accuracy to increase with decrease in grid size and increase in number of

realizations.

Our goals in this experiment are

(i) to test whether the error follows the trend discussed above or not.

(ii) what set of parameters is to be chosen to obtain accurate results in small amount of

time.

2.3.4 Results and Discussion

The electrostatic potential distribution inside the rectangular region, where the potential

on the left wall is specified as π volts and the potential on other walls is specified as 0 volts,

is shown in Figures 2.4 and 2.5. A comparision of the analytic solution and solution by

random walk method (RW) shows a good agreement between these two.

Figure 2.6 shows the contours of electrostatic potential obtained by analytical solution

(red) and random walk method (blue), when grid size h = 0.5. Figures 2.7, 2.8, 2.9 and 2.10

show the contours for different grid size h = 0.4, 0.3, 0.2 and 0.1 respectively. These set of

figures depict how the RW solution approaches analytical solution with increase in number

of realizations and decrease in grid size.

For the sake of completeness, time taken by the random walk method to complete, say

N number of realizations on a grid size h, for different values of N and h is presented in the
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Figure 2.4. Analytical Solution
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Figure 2.5. RW Solution —
N = 2000 and h = 0.1

Figure 2.11. It can be observed from the figure that time taken by the random walk method

increases with increase in number of realizations and decrease in grid size. These results are

presented to support our prediction by intuition and give the reader a sense of how fast this

algorithm is.

The time taken to complete N realizations on a grid of size h = 0.1 is plotted as a

function of N . From the Figure 2.12, it can be said that if the number of realizations is

doubled, keeping grid size constant, then time taken by RW algorithm also increases by 2.

Figure 2.13 how the time taken to complete N = 10, 000 realizations on a grid of size

h varies as a function of h. The curve tells us that if the grid size is halved, keeping

N = 10, 000 same, the time taken by RW algorithm increases 4 times. For example, for

h = 0.2 and N = 10, 000, it takes about 0.75 seconds and for h = 0.1 and N = 10, 000, it

takes about 3 seconds.

Experimental Error Analysis: As a measure of the performance of this method, an

L2 error norm is constructed as

ε =
100

|ψmax|

√√√√
(

1

M

M∑
i=1

(ψn
i − ψe

i )
2

)

where ψe
i is the exact analytical solution, ψn

i is the RW solution and M is the number of

randomly choosen points in the domain where the unknown ψ is evaluated.
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Figure 2.6. RW solution as a function of number of realizations :::: h=0.5
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Figure 2.7. Random walk solution as a function of number of realizations :::: h=0.4
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Figure 2.8. Random walk solution as a function of number of realizations :::: h=0.3
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Figure 2.9. Random walk solution as a function of number of realizations :::: h=0.2
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Figure 2.10. Random walk solution as a function of number of realizations :::: h=0.1
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Figure 2.11. Time taken by the RW method to complete, N number of realizations on a
grid size h
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Figure 2.12. Time taken by RW algorithm as a function of number of realizations, N
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Figure 2.13. Time taken by RW algorithm as a function of grid size,h

Figure 2.14 indicates how the L2 error varies as a function of number of realizations for

different values of grid size. The L2 error decreases as we decrease the grid size for a given

number of realizations. For a given grid size, the error decreases with increase in number

of realizations up to certain number of realizations and it gets saturated beyond that. For

example, for grid size h = 0.1, the accuracy improves by increasing number of realizations

up to N = 2, 000 and the L2 error curve stays flat beyond N = 2, 000.

Figure 2.15 indicates how the L2 error varies as a function of grid size for different values

of number of realizations. This also depicts that accuracy increases with increase in number

of realizations and decrease in grid size.

Figure 2.16 depicts how L2 error decreases with increase in number of realizations, with

grid size 0.1. In Figure 2.17, normalized L2 error is plotted as function of number of realiza-

tions. The four curves drawn in blue show the normalized values of N−1/4, N−1/3, N−1/2 and

N−1 (labeled as 1, 2, 3 and 4 respectively) as a function of number of realizations N . It can

be observed that curve showing normalized L2 error overlaps with that of N−1/2, showing

that error is inversely proportional to
√

N , where N is number of realizations, for small

values of number of realizations. Therefore statistical error in random walk solution retains

O(N−1/2) behavior expected in Monte Carlo simulations.

Figure 2.18 and 2.19 show the variation of L2 error and normalized L2 error as a function

of grid size for N = 10000. The green curve in figure 2.16 is a straight line with slope 2.1.

It can be observed from the figure how close the error curve and straight line for different
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Figure 2.14. L2 error variation with number of realizations for different grid sizes
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values of grid size are. From this plot we can conclude that L2 error is directly proportional

to grid size.
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Figure 2.18. L2 Error vs grid
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Figure 2.19. Normailzed L2 er-
ror varying linearly with grid size

To summarize, normalized L2 error is directly proportional to grid size h and inversely

proportional to
√

N

ε �
(

h√
N

)

.

As a final exercise, we would like to answer the question, for a given accuracy, what

set of parameters is to be chosen to obtain the solution with desired accuracy in minimum
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amount of time i.e to obtain solution with 2.5% L2 error, there will be many combinations

of grid size h and number of realizations N . But which set of parameters we should choose,

to obtain results in time as small as possible.

Figure 2.20 shows the number of realizations for a given grid size to obtain results with

an accuracy 2.5%. For grid size h = 0.1, we need about 2, 200 realizations, where as for

h = 0.05, we need only 600 realizations (about one-fourth of that for h = 0.1).

Figure 2.21 shows how much time it takes to get 2.5% L2 error for a given grid size. In

other words, how much time it takes to complete number of realizations shown in previous

figure for a given grid size. It can be observed from this figure, for all grid size the algorithm

takes about same time of 0.63 sec. The reason for same time for all grid sizes is, because

ε is directly proportional to h and inversely proportional to
√

N , whereas time taken to

complete a given number of realizations N for a given grid size h is directly proportional to

N and inversely proportional to
√

h. It can concluded the time taken to obtain a solution

with given accuracy for different values of grid sizes to be very close to each other and

the fluctuations can be accounted to the random nature of the stochastic process we are

simulating. Therefore the best in time we can do with random walk to obtain solution to

Laplace equation for the given problem with 2.5% L2 error is 0.62 seconds.

The conclusion of this experiment is to obtain a solution with a given L2 error, choose

a grid size h using Figure 2.14. For example, for ε = 2.5% , h = 0.5 is a bad choice, as

smallest error possible is about 12% for that case. Sizes h < 0.1 are good for this case. Once

this is chosen, we can obtain the result with different accuracy by varying the number of

realizations.

2.4 Brownian Motion Process: Continuous analog of random walk
process

In the last section, investigation on how a random walk in a plane can be used to solve

Laplace equation in 2D has been done. The question to ask is what will be the case if the

point where the solution is needed is not on the grid chosen or how does the random walk

behave as grid size shrinks to 0. If (x(t), y(t)) represents the position of the particle at time

t, then how do we obtain (x(t), y(t)), if the starting point (x(0), y(0)) is known. These are

the issues that will be investigated here [4].

The length of the space step between two points is h. The distance over which the particle

moves in n steps becomes proportional to h. Let ∆t represent discrete time step at which
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Figure 2.20. Number of realizations required to get L2 error = 2.5% as a function of grid
size

the jumps take place. i.e if the random walk starts at t = 0, the next jump takes place at

∆t, next one at 2∆t and so on. Here h and ∆t are parameters that can be varied. Suppose

if h and ∆t are simultaneously varied such that the particle will move, on the average, the

same distance in the same period of time. For example, if we increase h alone, the distance

that the particle moves in each time step increases. So, if the number of jumps made by

the particle is decreased properly, then it is possible to maintain the average distance that

the particle moves to be the same. The transition frequency, i.e number of times particle

jumps in a unit time, should decrease. So ∆t also has to increase. Thus in general, if h

increases, ∆t should increase and if h decreases, ∆t should decrease. In the limit as h → 0,

a continuous random walk will result.

In order to find a proper relation between the shrinking parameter h and growing tran-

sition frequency ( or may be ∆t) and to obtain the limiting distribution of the particle

displacement in time t, central limit theorem is to be applied. Let us assume that vector

ξi(i = 1, 2, ....) represents the jump at ith time step. For 2D,

ξi = +hâx or − hâx or + hây or − hây

ξi represents a random variable that are mutually independent, identically distributed

and have zero expectations and finite second moments.

CENTRAL LIMIT THEOREM: Let X1, X2, ... be independent, identically distributed

random variables withe finite mean µ and finite variance σ2. If Yn is defined by
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Figure 2.21. Time taken to obtain L2 error = 2.5% for different grid sizes.

Yn :=
1√
n

n∑
i=1

(
Xi − µ

σ

)
(2.4)

Then, Yn converges as n → ∞ to a normal distribution with zero expectation and same

matrix of second moments as that of the random vectors ξi

As ξi denotes displacement in the ith step of the particle executing a walk, expectation

and variance are given by

E{ξi} = 0

E{ξ2

i } = 1/l

where l denotes the dimension of the walk.

The displacement of the particle in n steps during a random walk with parameter h is

given by

Yn := h(ξ1 + .... + ξn) (2.5)

Comparing eqn(2.4) and eqn(2.5), it can be seen that for a reasonable limiting distribu-

tion, the parameter h must be of the order 1/
√

n. As the number of steps is of the order of

1/h2 (as the random walk here is 2 dimensional), the interval between successive jumps of

the particle is equal to h2/l(the coefficient l is introduced to simplify the relation).
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Consider a time t, at which the particle has executed n steps and thus:

t = n×∆t ⇒ t = n× h2/l ⇒ n = lt/h2

The position of the particle at time t in this random walk is denoted by

x(t)− x(0) = h(ξ1 + .....ξn) =

√
lt

n
(ξ1 + .....ξn)

As it can be noticed the vector x(t)− x(0) is derived from the vector 2.4 by multiplying

by a constant
√

lt. In the limit as h → 0 the increment x(t)−x(0) has a symmetrical normal

distribution with a variance equal to 1/l ∗ (
√

lt)2 = t in any direction.

Therefore the probability density function

p(t, x) =
1

(2πt)l/2
exp(−x2/2t) (2.6)

p(t, y) =
1

(2πt)l/2
exp(−y2/2t) (2.7)

Once initial point (x(0), y(0)) is known, (x(t), y(t)) can be obtained using above pdf’s.

Thus, a random walk on a grid goes over in the limit to a continuous process for which

the random displacement of the particle during a time t has the density given by eqn(2.6).

The mathematically correct formulation of the corresponding stochastic process has come to

be known as Wiener process or Brownian motion process.

Hereafter we will be using only x(t). Whatever applies to x(t) also applies to y(t).

2.5 Brownian Motion Process or Wiener Process : Definition and
Properties

Let W(t); t ≥ 0 be Brownian motion process taking values in Rd (d-dimensional real

space). The process starts at an arbitrary point x ∈ Rd and is characterized by stationary

independent increments, that is, the increments of W over non-overlapping time intervals

are independent and their statistics depend only on the duration of the time increment [11].

Specifically,

(1) the increment W(t) −W(s) of W during the time interval (s, t), s < t, is an d-valued

Gaussian vector with mean zero and covariance matrix I(t−s), where I denotes the identity

matrix and

(2) the increments W(t) − W(v) and W(u) − W(s), s < u ≤ v < t, are independent.

Properties The Wiener process W(t) is characterized by three facts:
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1. W(0) = 0

2. W(t) is almost surely continuous

3. W(t) has independent increments with distribution W(t) − W(s) ∼ N (0, t − s) for

(0 < s < t).

where N(µ, σ2) denotes the normal distribution with expected value µ and variance σ2. The

condition that it has independent increments means that if 0 < s1 < t1 < s2 < t2, then

W(t1)−W(s1) and W(t2)−W(s2) are independent random variables.

For W(t) a Wiener process, W(0) = 0 and W(t) has independent increments. It can be

showed that this process W(t) also satisfies Markov property. Mathematically, if X(t), t > 0,

is a stochastic process, the Markov property states that

Pr
[
X(t + h) = y |X(s) = x(s),∀s ≤ t

]
= Pr

[
X(t + h) = y |X(t) = x(t)

]
, ∀h > 0.

2.6 Algorithm

In this section, we describe the algorithm that can be applied to solve Laplace equation

using Brownian motion.

1. Start

2. Set initial point (x(0), y(0)) of the Brownian motion or Wiener process (This is the

point where the solution is to be obtained)

3. Perform next step using Brownian Motion Process

x(t + ∆t) = x(t) + pick a random number from
√

2N(0, ∆t)

y(t + ∆t) = y(t) + pick a random number from
√

2N(0, ∆t)

where N(µ, σ2) represents a normal distribution function with mean µ and variance

σ2.

4. Is boundary reached?

If No : Repeat step 3

If Yes : Proceed to next step

5. Record the potential at the boundary
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6. Is number of realizations completed?

If No : Repeat from Step 2

If Yes : Proceed to Next step

7. Calculate the mean potential according to eqn (2.2)

8. Stop

2.7 Numerical Experiments

2.7.1 Problem setup and Analytical solution

We look at the same problem of finding the potential at a point inside a rectangular box

with potential specified along the walls. This would facilitate us to draw comparisons between

discrete and continuous stochastic processes, we have discussed so far. The analytical solution

is same as presented in section [2.3.2].

2.7.2 Experimental Setup

The first step is to start with the point, where the solution is needed and apply the

algorithm employing Brownian motion to obtain the potential at that point. After we are

done with a point, we proceed to another point and solve for potential at that point. As in

the discrete case, the potential at a point can be determined without the knowledge of the

potential at the neighboring points. So the solution at different points can be obtained using

different processors. However, in the discussion below, we obtained the solution serially at

one point after one another.

The parameters that influence the performance of this method most are:

(i)The time step, ∆t

(ii)The number of simulated random walks (called realizations), N

The effect of the number of realizations N has already been investigated. The more the

number of realizations the better the accuracy. From the relationship ∆t = (∆x)2/2, it can

be established that smaller the ∆t, the better is the accuracy. The reason can be traced

back to Taylor’s series.

We set forth to see how the variation of these parameters effects the accuracy of the

solution and time taken to obtain the solution, for a given accuracy.
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2.7.3 Results and Discussion

To validate the approach using Brownian motion process, we are going to obtain the

electrostatic potential distribution inside a rectangular box for the same problem we have

solved in the previous section. The solution obtained by the Brownian motion process is

presented here. Note that numerical solution for this problem has been presented before in

[15]. The potential distribution inside the rectangular region obtained by analytical solution

and Brownian motion process are shown in Figures 2.22 and 2.23 respectively. A comparison

of the analytical solution and solution by Brownian motion process shows a good agreement

between these two.
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Figure 2.22. Analytical Solu-
tion
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Figure 2.23. Brownian motion
solution: N=4000 and ∆t = 0.1

Figure 2.24 shows the contours of electrostatic potential obtained by analytical solution

(red) and random walk method (blue), when ∆t = 1. Figures 2.25, 2.26, 2.27 and 2.28

show the contours for different grid size ∆t = 0.1, 0.01, 0.001 and 0.0001 respectively. These

set of figures depict how the Brownian motion solution approaches analytical solution with

increase in number of realizations and decrease in time step.

For the sake of completeness, time taken by the Brownian motion method to complete, say

N number of realizations with time step ∆t, for different values of N and ∆t is presented in

the Figure 2.29. It can be observed from the figure that time taken by the Brownian motion
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Figure 2.24. Brownian motion solution as a function of number of realizations:::: ∆t = 1
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Figure 2.25. Brownian motion solution as a function of number of realizations:::: ∆t = 0.1
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Figure 2.26. Brownian motion solution as a function of number of realizations:::: ∆t = 0.01
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Figure 2.27. Brownian motion solution as a function of number of realizations :::: ∆t =
0.001
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Figure 2.28. Brownian motion solution as a function of number of realizations:::: ∆t =
0.0001
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process increases with increase in number of realizations and decrease in time step. These

results are presented to support our prediction by intuition.

Figure 2.29. Time taken by the Brownian motion method to complete, N number of
realizations with time step ∆t

The time taken to complete N realizations with time step ∆t = 0.01 is plotted as a

function of N in the figure 2.30. It can be said that if the number of realizations is doubled,

keeping ∆t constant, then time taken by algorithm also increases by 2.

Figure 2.31 how the time taken to complete N = 10, 000 realizations as a function of ∆t.

If ∆t is increased 10 times, keeping number of realizations the same, the time taken decreases

10 times. For example, when ∆t = 10−4, time taken to complete 10, 000 realizations is about

50 sec, whereas for ∆t = 10−3, it is only about 5 sec. Therefore, for a constant number of

realizations time taken by the Brownian motion process is inversely proportional to ∆t.

(This is also what we expect from the relationship ∆t = ∆x2

2
, as we have already established

that time taken is inversely proportional to ∆x2 in the random walk case)
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Figure 2.30. Time taken by Brownian motion algorithm as a function of number of real-
izations, N
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Figure 2.31. Time taken by Brownian motion algorithm as a function of time step,∆t
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Experimental Error Analysis Here again we use an L2 error norm as a measure of

performance.

ε(%) =
100

|ψmax|

√√√√
(

1

M

M∑
i=1

(ψn
i − ψe

i )
2

)

where ψe
i is the exact analytical solution, ψn

i is the Brownian motion solution and M is the

number of randomly chosen points in the domain where the unknown ψ is evaluated.
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Figure 2.32. L2 error variation with number of realizations for different ∆t

Figure 2.32 indicates how the L2 error varies as a function of number of realizations for

different values of time step. The L2 error decreases as we decrease the ∆t for a given number

of realizations. For a given ∆t, the error decreases with increases in number of realizations

up to certain number of realizations and it gets saturated beyond that. For example, for grid

size ∆t = 0.001, the accuracy improves by increasing number of realizations up to N = 2000

and the L2 error curve stays flat beyond N = 2000.

Figure 2.33 indicates how the L2 error varies as a function of ∆t for different values of

number of realizations. This also depicts that accuracy increases with increase in number

of realizations and decrease in ∆t. When ∆t is changed from 10−2 to 10−1 i.e increased 10

times, the error changes from 2% to 6%, which is about 3 times (
√

10 = 3.16). Therefore

L2 error increases with ∆t as proportional to
√

∆t. (This is also what we expect from the
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Figure 2.33. L2 error variation with ∆t for different values of N

relationship ∆t = ∆x2

2
, as we have already established that L2 error is directly proportional

to ∆x in the Random walk case )

As a final exercise, we would like to answer the question, for a given accuracy, what set of

parameters is to be chosen to obtain the solution with desired accuracy in minimum amount

of time i.e say, to obtain solution with 2.5% L2 error, there will be many combinations of

∆t and number of realizations N . But which set of parameters we should choose, to obtain

results in time as small as possible.

Figure 2.34 shows what should be number of realizations for a given grid size to obtain

results with accuracy 2.5%. When ∆t = 0.005, we need about 2000 realizations, where as

for ∆t = 0.001, we need only 400 realizations (about one-fifth of that for ∆t = 0.005).

Figure 2.35 shows how much time it takes to get 2.5% L2 error for a given ∆t. In other

words, how much time it takes to complete number of realizations shown in previous figure

for a ∆t. It can be observed from this figure, for all ∆t the algorithm takes about same time

0.4 sec. The reason for same time is the same as that in random walk case.

The conclusion of this experiment is to obtain a solution with a given L2 error, choose a

∆t using Figure 2.32. For example, for ε = 2.5%, ∆t = 0.1 is a bad choice, as smallest error

possible is about 8% for that case, however ∆t 0.001 are good for this case. Once this is

chosen, we can obtain the result with different accuracy by varying number of realizations.
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Figure 2.34. Number of realizations required to get L2 error = 2.5% as a function of ∆t
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Figure 2.35. Time taken to obtain L2 error = 2.5% for different ∆t

We can conclude this chapter by comparing the time taken to obtain solution with a

given accuracy by random walk and Brownian motion process. We have already observed

that to obtain solution with 2.5% L2 error, the best we can do in time with random walk

is about 0.6 seconds and the best we can do with Brownian motion process is 0.4 seconds.

Figure 2.36 shows the time taken to obtain solution with a given accuracy using random

walk and Brownian motion process. For all accuracies, it can be observed that time taken

by Brownian motion process is slightly smaller compared to that of Random walk method.

Therefore Brownian motion process will be used through the rest of my thesis to carry out

investigations on the stochastic method to solve Poisson’s and parabolic wave equations,

which are the topics of following chapters.
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Figure 2.36. Time taken to obtain solution with different L2 error using both Random
walk and Brownian motion
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CHAPTER 3

SOLUTION OF POISSON’S EQUATION

In chapter 1, a stochastic method which involves constructing either random walk or

Brownian motion process is introduced. This method was used to obtain local solution to

Laplace equation and numerical investigations were carried out to verify this method and

to understand various parameters involved in the method. The theoretical considerations

supporting this stochastic method are relatively complex and involve concepts of random

process and stochastic integration such as Ito process and properties of Ito diffusion process.

Some of the details are presented in this chapter, but for an elaborate explanation see

references [11], [1], [4] and [7].

In this chapter, a stochastic method which is very similar to the one used in previous

chapter is formulated to obtain local solution of Poisson’s equation with Dirichlet boundary

conditions and is investigated. This chapter is organized as follows. Ito’s formula, which

is an extension of change of variable formula in classical calculus is given in Section 3.1.

In section 3.2, a relationship is established between the value of unknown function in the

Poisson’s equation, the boundary conditions and expectation depending on the sample paths

of Brownian motion process. This derivation is based on properties of Brownian motion

process and Ito’s formula. An algorithm to obtain the local solution of Poisson’s equation

using this stochastic method is presented in section 3.3. Numerical experiments performed

to verify the developed method and understand key parameters involved in the method are

discussed in last section.

3.1 Ito Formula

Ito’s formula extends the change of variable formula from classical calculus to stochastic

integrals with stochastic integrators satisfying special properties [9].
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One Dimensional case

If X is a random process with special properties [9], then the integral and differential form

of Ito’s formula are:

f(X(t))− f(X(0)) =

∫ t

0

f ′(X(s))dX(s) +
1

2

∫ t

0

f ′′(X(s))d[X, X](s) (3.1)

df(X(t)) = f ′(X(s))dX(s) +
1

2
f ′′(X(s))d[X, X](s) (3.2)

Multi Dimensional case

If X is a vector of d dimensions [9] and f : Rd → d has continuous second order, then the

integral and differential form of Ito’s formula are:

f(X(t))− f(X(0)) =
d∑

i=1

∫ t

0

∂f

∂xi

(X(s))dXi(s) +
d∑

i=1

1

2

∫ t

0

∂2f

∂xi∂xj

(X(s))d[Xi, Xj](s) (3.3)

df(X(t)) =
d∑

i=1

∂f

∂xi

(X(s))dXi(s) +
d∑

i=1

1

2

∂2f

∂xi∂xj

(X(s))d[Xi, Xj](s) (3.4)

3.2 Local solution of Poisson’s equation

3.2.1 Evaluating expectation of sample paths of Brownian motion process

Let us consider Brownian motion process, a diffusion processes which we have discussed

in the last chapter. Let W(t); t ≥ 0 be Brownian motion process taking values in Rd. The

process starts at an arbitrary point x ∈ Rd and is characterized by stationary independent

increments, that is, the increments of W over non-overlapping time intervals are independent

and their statistics depend only on the duration of the time increment [11].

Consider a function u : Rd → R with continuous partial second derivatives. Infinitesimal

generator of the process W (t) i.e average rate of change of u(W(t)) at t = 0 given that

W(0) = x is

A u(x) = lim
t→0

Ex{u(W(t))} − u(x)

t
(3.5)

Here, Ex[ ]=E[ |W(0) = x]. Considering the Ito formula

f(X(t))− f(X(0)) =
d∑

i=1

∫ t

0

∂f

∂xi

(X(s))dXi(s) +
d∑

i=1

1

2

∫ t

0

∂2f

∂xi∂xj

(X(s))d[Xi, Xj](s)
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Replacing f by u and X(t) by W(t) and using

d[Wi, Wj] = ds ∀i = j

d[Wi,Wj] = 0 otherwise

in the Ito formula, we get

u(W(t))− u(W(0)) =
d∑

i=1

∫ t

0

∂u

∂Wi

(X(s))dWi(s) +
d∑

i=1

1

2

∫ t

0

∂2u

∂W 2
i

(X(s))ds (3.6)

Taking the expectation of the Ito formula applied to the function u(W(s)), conditional on

W(0) = x, gives

Ex{u(W(t))} − u(W(0)) = Ex{
d∑

i=1

∫ t

0

∂u

∂Wi

(X(s))dWi(s)}+ Ex{
d∑

i=1

1

2

∫ t

0

∂2u

∂W 2
i

(X(s))ds}

It can be shown that expectation of first term on the right hand side is zero. The equation

becomes

Ex{u(W(t))} − u(W(0)) = Ex{
d∑

i=1

1

2

∫ t

0

∂2u(W(s))

∂W 2
i

ds}

This formula can be generalized by replacing t with a random time. For example, let G

be a bounded open subset of Rd and suppose that the Brownian motion W starts at x ∈ G.

Define

τ = inf{t ≥ 0 : W(t) /∈ G,W(0) = x ∈ G} (3.7)

to be the time when W, starting at x ∈ G, leaves this set. The time τ is a random variable

because its value depends on the particular sample of the Brownian motion. The averaged

Ito formula with t replaced by τ becomes [11]

Ex{u(W(τ))} − u(x) =
1

2
Ex{

∫ τ

0

O2u(W(s))ds} (3.8)

This equation is essential for obtaining local solutions of the Laplace and Poisson’s equation.

3.2.2 Local solution of Laplace and Poisson’s equation

Let u : Rd → R be the solution of the Poisson equation

O2u(x) + p(x) = 0 x ∈ G (3.9)

u(x) = g(x) x ∈ ∂G

satisfying the Dirichlet boundary conditions. where p and g are specified functions.
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Suppose that the objective is to find the local solution of Equations 3.9 at an arbitrary

point x of the domain of definition G. Because u has continuous second-order partial deriva-

tives, Equation 4.6 applies and gives

Ex{u(W(τ))} − u(x) =
1

2
Ex{

∫ τ

0

p(W(s))ds}

because u(W(τ)) ∈ ∂G so that it is equal to the boundary value g(W (τ)) and W(s) ∈ G for

s ∈ (0, τ) so that O2u(W(s)) = p(W(s)) by Equation 3.9. Hence, the value of the unknown

function u at x ∈ G is [11]

u(x) = Ex[g(W(τ))] +
1

2
Ex{

∫ τ

0

p(W(s))ds} (3.10)

The right-hand side of Equation depends on expectations of known functions, the functions

g and p and samples of the Brownian motion W in the time interval (0, τ). Generally, these

expectations cannot be obtained analytically. However, they can be estimated by Monte

Carlo simulation as demonstrated in the following sections.

If p = 0 in Equation 3.9 , the equation considered for solution is a Laplace equation and

the local solution of this equation is given by

u(x) = Ex[g(W(τ))] (3.11)

that is, Equation 4.6 with p=0. This is the equation that is evaluated to obtain local solution

to Laplace equation with Dirichlet boundary condition in the previous chapter.

3.3 Algorithm

The algorithm that can be used to obtain local solution of Poisson’s equation using

Equation (4.6) can be specified in the following way.

1. Set the initial point of the Brownian motion process to the point where the value of u

in Equation (3.9) is to be found.

2. Start Brownian motions and continue according to Equations (3.12) and (3.13)

x(t + ∆t) = x(t) + Pick a random number with distribution
√

2N(0, ∆t) (3.12)

y(t + ∆t) = y(t) + Pick a random number with distribution
√

2N(0, ∆t) (3.13)

3. Note the time spent by the Brownian motion inside the source before exiting domain

G
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4. Is boundary reached?

If Yes: Stop the Brownian motion and proceed to next step

If No: proceed to step 3

5. Record the potential at the boundary.

6. Is number of realizations completed?

If No: Repeat step 2

If Yes: Proceed to next step

7. Find the value of u(x, y) as given by Equation (4.6)

3.4 Numerical Experiments

3.4.1 Problem setup

The problem of interest is to find the potential between two parallel plates located at

y = 0 and y = a, which are infinite in extent along x-axis and z-axis, given a charge

distribution in its interior. Its cross section is shown in Figure 3.1. A square cylindrical

charge distribution with its axis along z-axis is present at x = 0, y = b. The geometry of

interest is inside the rectangle defined by x = −a, x = +a, y = 0, y = +a. The dimension

of the square cylinder is as shown given by h × h. This is an electrostatic, deterministic,

interior boundary value problem.

-6 x
y

-¾

6

?

6

?

h

2a

a

Figure 3.1. Two parallel plates with a square cylinder charge distribution
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3.4.2 Analytical Solution

The analytical solution to the problem specified is obtained by solving Poisson’s equation.

The Poisson’s equation for a homogeneous region is given by

∇2ψ = −ρv

ε
(3.14)

where ψ - potential, ρv - volume charge density, ε - permitivity of the medium. However in-

stead of solving the Poisson’s equation directly for the square cylindrical charge distribution,

potential as a function of (x, y) is first found for a line source and this expression is used to

evaluate the analytical solution of the current problem using linear superposition.

The potential at any point (x, y) due to a line source present at (x0, y0) of linear charge

density ρl is given by [17]

ψl(x, y; x0, y0) =
ρl

2πε
tanh−1


 sin(πy0

a
) sin(πy

a
)

− cos(πy0

a
) cos(πy

a
) + cosh

(
π(x−x0)

a

)

 (3.15)

The potential as a function of (x, y) for a square cylindrical charge distribution with bound-

aries given by x = xs1, x = xs2, y = ys1 and y = ys2, is obtained by integrating the

Equation (3.15) from xs1 to xs2 along x-axis and from ys1 to ys2 along y-axis as shown

below.

ψ(x, y) =
1

h2

∫ xs2

xs1

∫ ys2

ys1

ψl(x, y; x0, y0)dx0dy0 (3.16)

As it is difficult to evaluate this integral in a closed form, we compute it numerically using

MATLAB.

3.4.3 Results and Discussions

Figure 3.2 shows the average number of jumps made by a particle undergoing Brownian

motion as a function of its starting point. For example, it can be observed that a particle

starting at (−0.5, 0.5) makes about 140 jumps on average for each realization before reaching

the boundary. The Brownian motion process is generated with ∆t = 0.0001 and N = 10, 000

realizations are used here.

Number of jumps made by a particle starting its Brownian motion close to the boundary

will be smaller than that made by a particle starting its Brownian motion relatively farther

to the boundary. This trend is shown in the Figure 3.2. Moreover as the boundaries are

parallel to x-axis, we expect the particles starting their motion on same y-coordinate, to
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make same number of jumps on average. This is also shown in the figure as the same color

areas are also parallel to x−axis. Thus, it can be observed from the Figure 3.2 average

number of jumps is high for Brownian motions originating along the center i.e y = 0.5 and

it decreases as we move closer to the boundary.
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Figure 3.2. The average number of jumps in Brownian motions originating at (x, y)

The electrostatic potential distributions ψ(x, y) obtained using analytical and stochastic

solution are plotted in the Figure 3.3 and Figure 3.4 respectively.A comparison of the analytic

solution and stochastic solution shows a good agreement between these two.

Figure 3.5 shows the contours of electrostatic potential obtained by analytical solution

(red) and stochastic solution (blue), when ∆t = 0.1. Figures 3.6, 3.7 and 3.8 show the

contours for different time steps ∆t = 0.01, 0.001 and 0.0001 respectively. These set of

figures depict how the stochastic solution approaches analytical solution with increase in

number of realizations and decrease in time step.

Similar to the error analysis in the previous chapter, as a measure of the performance of

this method, an L2 error norm is constructed as shown below.

ε =
100

|ψmax|

√√√√
(

1

M

M∑
i=1

(ψn
i − ψe

i )
2

)

where ψe
i is the exact analytical solution, ψn

i is the stochastic solution and M is the number

of randomly chosen points in the domain where the unknown ψ is evaluated.
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Figure 3.3. Analytical Solution
potential ψ(x, y)
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Figure 3.4. Stochastic Solution
potential ψ(x, y)

Figure 3.9 indicates how the L2 error varies as a function of number of realizations for

different values of time step ∆t. For a given time step ∆t, the error decreases with increase

in number of realizations. The L2 error decreases as we decrease the time step ∆t for a given

number of realizations. Figure 3.10 indicates how the L2 error varies as a function of time

step for different values of number of realizations. This also depicts that accuracy increases

with increase in number of realizations as well as decrease in time step ∆t.

For the sake of completeness, time taken by the stochastic method to complete, say N

number of realizations using time step ∆t, for different values of N and ∆t is presented

in the Figure 3.11. It can be observed from the figure that time taken by the stochastic

solution increases with increase in number of realizations as well as decrease in time step.

It has already been shown is figure 3.9that for the case using N = 10, 000 and ∆t = 0.0001,

we obtain a stochastic solution with an error ε = 3%. Therefore, from figure 3.11to obtain a

solution with ε = 3%, it takes about 350 seconds. These results are similar to those presented

in the previous chapter and give the reader a sense of time taken to obtain stochastic solution

for this problem.
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Figure 3.5. Stochastic solution as a function of number of realizations :::: ∆t=0.1
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Figure 3.6. Stochastic solution as a function of number of realizations :::: ∆t=0.01
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Figure 3.7. Stochastic solution as a function of number of realizations :::: ∆t=0.001
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Figure 3.8. Stochastic solution as a function of number of realizations :::: ∆t=0.0001
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Figure 3.9. L2 error variation with number of realizations for different ∆t

Figure 3.10. L2 error variation with time step ∆t for different values of N
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Figure 3.11. Time taken by the stochastic method to complete, N number of realizations
using time step ∆t
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CHAPTER 4

SOLUTION OF PARABOLIC WAVE EQUATION WITH
DIRICHLET BOUNDARY CONDITION

In this chapter, the stochastic method is used to obtain local solution of an electrodynamic

problem. The problem under consideration is problem of propagation of time harmonic

waves inside a parallel plate waveguide with perfectly conducting walls boundaries at the

top and bottom. A brief theory in the context of this problem is presented here and this

approach is validated by favorable comparisons between stochastic and analytical solutions.

The stochastic approach to obtain solution to this problem has originally been presented in

[15].

The class of partial differential equations considered in this chapter are

d∑
i=1

αi(x)
∂u(x)

∂xi

+
1

2

d∑
i,j=1

βij(x)
∂2u(x)

∂xi∂xj

= 0 (4.1)

in which α = {αi} and β = {βij} are smooth functions of x. These equations are defined

in an open bounded subset G of Rd, where d is the dimension of the region R and satisfy

Dirichlet boundary conditions. To obtain local solution of this class of partial differential

equations, the Brownian motion process, which was considered in the previous chapter is

itself not sufficient. For the reasons which we will be explained later, we need to consider a

special type of diffusion process called Ito process.

4.1 Ito process and Local solution by stochastic method

Let X(t) ∈ Rd, t ≥ 0, be an Ito diffusion process defined by [8]

X(t) = X(0) +

∫ t

0

a(X(s))ds +

∫ t

0

b(X(s))dW(s) (4.2)

where the d by 1 and d by db matrices a and b give the drift and the diffusion coefficients

of X respectively, and the Brownian motion process W consists of db independent standard
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Brownian motion processes. It can also be stated that X defined by Equation (4.2) is the

solution of the stochastic differential equation.

dX(t) = a(X(t))dt + b(X(t))dW(t) (4.3)

It can be proved that the infinitesimal generator A of the Ito process X defined by

A u(X) = lim
t→0

Ex[u(X(t))]− u(x)

t

is equal to

A u(X) =

[
d∑

i=1

∫ t

0

ai(X(s))
∂

∂xi

+
d∑

i,j=1

1

2

∫ t

0

(b(X(s)b(X(s)))i,j
∂2

∂xi∂xj

]
u(X(s))(4.4)

This generator has the same functional form as the left hand side of the Equation (4.1)

and coincides with for α = a and β = bb’. Therefore Ito process is chosen to obtain local

solution of the partial differential equations of general form of Equation (4.1).

If u : Rd → R is the solution of the partial differential equation

A u(x) + p(x) = 0 x ∈ G (4.5)

u(x) = g(x) x ∈ ∂G

satisfying the Dirichlet boundary conditions, where p and g are specified functions, the

objective is to find the local solution of Equations (4.5) at an arbitrary point x of the

domain of definition G. If τ denotes the first exit time from domain G

τ = inf{t ≥ 0 : X(t) /∈ G,X(0) = x ∈ G}

It can be shown that the value of the unknown function u at x ∈ G is [9]

u(x) = Ex[g(X(τ))] +
1

2
Ex{

∫ τ

0

p(X(s))ds} (4.6)

The right-hand side of equation depends on expectations of known functions, the functions

g and p and samples of the Ito process X in the time interval (0, τ). As mentioned before,

in general, these expectations cannot be obtained analytically and so they can be estimated

by Monte Carlo simulation.

If p = 0 in Equation (4.5), the equation considered for solution is a diffusion equation

and the local solution of this equation is given by

u(x) = Ex[g(X(τ))] (4.7)

that is, Equation (4.6) with p=0.
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4.2 Local solution of parabolic wave equation

In this section, we would like to obtain local solution of standard parabolic wave equation

given by

∂u

∂x
=

i

2k0

∂2u

∂z2
(x, z) ∈ G (4.8)

u(x, z) = g(x, z) (x, z) ∈ ∂G

with Dirichlet boundary conditions. We would like to compare Equation (4.8) with those

of form given by Equation (4.1), however Equation (4.8) has coefficients which are complex

numbers. Therefore the corresponding Ito process to be used to obtain local solution of

this PDE will also be complex valued. Alternatively, we can say heuristically, absorb the

imaginary term i in the coefficient of the partial differential equation into the coordinates or

axis so that the problem of interest is defined in complex space (x, z = ξ+iη). The Ito process

has two components, the drift component is only along x direction and diffusion component

is only along z direction. This problem has been treated in [15] and the differential paths of

z(s) and x(s) are given by the stochastic differential equations

dz(s) =
i√
k0

dW (s) z(0) = ξ (4.9)

dx(s) = −ds x(0) = x (4.10)

Analytic Continuation In order to solve the boundary value problem defined by the

Equation (4.8), we need to augment the random paths given by (4.9) by Dirichlet boundary

condition.

Let Gc and ∂Gc be a domain and its boundary in a complex space C2 satisfying,

Gc ∩R2 = G (4.11)

∂Gc ∩R2 = ∂G (4.12)

so that intersection of Gc and ∂Gc with real space R2 coincide with the domain G and the

boundary ∂G of the Dirichlet problem given by (4.8). Assuming gc(x, z) is the value of

u(x, z) on the boundary ∂Gc, such that gc(x, z) is extension of g(x, z) from real space to

complex space. The local solution can be obtained by the formula [1]

u(x) = Ex[gc(X(τ))] (4.13)

which is identical to (4.6) except that paths are in complex space.
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As can be observed, to obtain local solution of the parabolic wave equation, one need

the value gc(x, z) on the boundary ∂Gc, where as boundary value g(x, z) is given only on

∂G. However the above formula can still be used because in some cases there is a unique

extension of the analytic boundary value g(x, z) from real space ∂G to complex space ∂Gc

[1]. This is demonstrated in the example problem solved in the next section.

Having formulated how to obtain local solution of Dirichlet problem of Equation (4.8),

let us demonstrate how this method can be used with an example[15].

4.3 Numerical Experiments

4.3.1 Problem Definition

In this section, we would like to consider a problem where an equation of form (4.8) needs

to be solved for an unknown function whose values are given on boundary.

-

6
6

?

L

x

ξ

Figure 4.1. Parallel plate waveguide with conducting walls

Consider propagation of time harmonic waves inside an infinite parallel plate waveguide

with PEC boundaries at z = 0 and z = L. Assuming paraxial propagation, the reduced field

u(x, z) = v(x, z)exp(−ik0x), where v(x, z)satisfies the Helmholtz equation in 2D.

∂u

∂x
=

i

2k0

∂2u

∂z2
(x, z) ∈ G (4.14)

u(x, 0) = 0 = u(x, L)

u(0, z) = u0(z)
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4.3.2 Analytical Solution

In order to propagate solutions of the standard parabolic wave equation satisfying Dirich-

let boundary condition, the appropriate transform is the Fourier sine transform. However

continuous sine transform doesn’t match the boundary condition at the top boundary z = L.

Therefore a discrete sine transform matching the boundaries at the top and bottom boundary

is considered [15]:

U(x,m∆p) =
N−1∑
n=1

u(x, n∆z)sin
(mnπ

N

)

u(x, n∆z) =
2

N

N−1∑
m=1

U(x, m∆p)sin
(mnπ

N

)

Given u(0, z) = u0(z)

U(0,m∆p) =
N−1∑
n=1

u(0, n∆z)sin
(mnπ

N

)

U(x, m∆p) = U(0,m∆p)e
iλmx
2k0 where λm =

cos(πm
N )−1

(∆ξ)2

u(x, n∆z) =
2

N

N−1∑
m=1

U(x,m∆p)sin
(mnπ

N

)

This gives the field at advanced range x and height z. This result is used in analytic

continuation of data and also to compare results obtained stochastically.

4.3.3 Solution Setup

Local solution of the Equation (4.14) is given by

u(x) = Ex[gc(X(τ))] (4.15)

Here, the unknown function u is a function of z = ξ + iη and x. Given u(0, z = ξ + 0) = u0

along a line and u(x, z = ξ + iη = 0) = u(x, z = ξ + iη = L) = 0 along top and bottom

lines. However we need the values u(0, z = ξ + iη) along the source plane and u(x, iη) and

u(x, L + iη) along top and bottom planes. These are obtained using analytic continuation:
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u(0, z = ξ + iη) =
2

N

N−1∑
m=1

U(0,m∆p)sin
(mπz

L

)
(4.16)

u(x, 0 + iη) =
2i

N

N−1∑
m=1

U(x,m∆p)sinh
(mηπ

L

)
(4.17)

u(x, L + iη) =
2i

N

N−1∑
m=1

(−1)mU(x,m∆p)sinh
(mηπ

L

)
(4.18)

Figure 4.2. Random paths generated by Ito process

4.3.4 Algorithm

1. Start random process at (x, ξ) according to Equations

dz(s) =
i√
k0

dW (s) z(0) = ξ

dx(s) = −ds x(0) = x

2. If it hits bottom or top boundaries, stop the random motion and use the values given

by Equation (4.18) and (4.17) in Equation (4.15) to obtain the expectation.

3. If it doesn’t hit any boundaries, continue till it hits the boundary x = 0 i.e the

source plane. Terminate the random motion and use Equation (4.16) to obtain the

expectation.
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4. Repeat the same procedure for all points, where solution is required

4.3.5 Validation and Results

The results are computed for Gaussian initial field with peak at ξ = Ht and standard

deviation σξ. The Figure 4.3 depicts how well the analytic and stochastic solutions compare

with each other. As presented in the last chapter, a careful choice of ∆t and number of

realizations, N will result in favorable comparisons.
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Figure 4.3. Field at range 50λ from source plane
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CHAPTER 5

SOLUTION OF PARABOLIC EQUATION WITH IMPEDANCE
BOUNDARY CONDITIONS

In previous chapters, a stochastic method to obtain local solution of second order partial

differential equations was demonstrated by considering simple examples. In all the problems

we have considered so far, value of unknown function u is specified on the boundary (Dirichlet

boundary condition). To reiterate the procedure to obtain local solution of such problems:

Figure 5.1. Dirichlet boundary
condition

Figure 5.2. Impedance bound-
ary condition

• Start a diffusion process X with generator coinciding with the differential operator

of the PDE under consideration, for example, parabolic wave equation, at the point

where the solution is needed.

• Continue the process till it hits the boundary.

• Once it hits the boundary, as we know the value of u at this point on the boundary,

terminate the process and use this boundary value to obtain expectation using Monte

Carlo algorithm.
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But for the problems in which unknown function is not specified at boundaries, this

method obviously will not work. In this last chapter, we would like to look at such problems,

where u is specified only on a subset of the boundary and is given by either Neumann

boundary condition or impedance boundary condition on the rest of it. The outline of the

procedure used to solve such problems discussed in this chapter is as follows

• Start a diffusion process X with generator coinciding with the differential operator of

the PDE under consideration at the point where the solution is needed

• Sample paths can be divided into two groups as shown in figure 5.2. (∂G1 is the region

on the boundary where unknown function u is specified and ∂G2 is the region on

the boundary where u is given by either Neumann boundary condition or impedance

boundary condition )

– Sample paths that reach ∂G1 for the first time before reaching ∂G2.

As the value of unknown function u is known on the boundary ∂G1, we terminate

them and use the boundary value to obtain the expectation.

– Sample paths that reach ∂G2 for the first time before reaching ∂G1.

In this case, the value of unknown function u is not known on ∂G2, but is given

by impedance boundary condition. Therefore, now

∗ Reflect X at the point 1, where it hits the boundary by a selected amount

in a direction that is consistent with the boundary condition at that point to

point 2, as shown in figure 5.2.

∗ Restart the diffusion process from point 2 and find the point where it hits

∂G1.

∗ If it hits ∂G2 again, repeat the above procedure until it hits ∂G1, but keep a

record of the point where it hits ∂G2.

∗ Here a relationship needs to be established between unknown function u,

boundary condition and expectation depending on the sample paths using

formula, which is called as extended form of Feynman-Kac formula.

• Compute the expectation using Monte Carlo simulations to obtain the value of un-

known function.

This chapter is organized as follows. It begins with Feynman-Kac formula which is needed

to solve problems with impedance boundary condition using stochastic method. Next, the
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model problem we are trying to solve in this chapter is defined and its analytical solution

is presented. This is followed by the discussion about local solution in the context of this

problem. In the next section, an outline of the algorithm using this approach is given.

This chapter concludes with the discussion about the results obtained using this stochastic

method.

5.1 Feynman-Kac Formula

Consider a boundary value problem with the unknown function u formulated in a domain

G with the boundary ∂G = ∂G1 ∪ ∂G2 as shown in the figure 5.2. Here u : Rd → R is the

solution of the partial differential equation satisfying

d∑
i=1

αi(x)
∂u(x)

∂xi

+
1

2

d∑
i,j=1

βij(x)
∂2u(x)

∂xi∂xj

+ q(x)u(x) = 0 x ∈ G (5.1)

u(x) = g(x) x ∈ ∂G1

d∑
i=1

∂u(x)

∂xi

+ b(x)(u(x)) = 0 x ∈ ∂G2

where αi, βij and q are defined inside G, while g and b are specified on ∂G and let A be

A u(x) =
d∑

i=1

αi(x)
∂u(x)

∂xi

+
1

2

d∑
i,j=1

βij(x)
∂2u(x)

∂xi∂xj

Bu(x) =
d∑

i=1

∂u(x)

∂xi

In order to obtain local solution to this problem using stochastic method, random motions

are to be defined on the closure G∪∂G whose behavior inside G corresponds to the operator

LG = A and whose behavior on the boundary ∂G2 corresponds to the first-order operator

L∂G = B. Since both operators LG and L∂G are particular cases of the general second-order

operator discussed in the previous chapter, it is natural to expect that inside G the random

motion should be a Brownian motion with a drift, and on the boundary ∂G2, it should be

a deterministic motion. The random motions of this type are called random process with

reflection or reflected diffusion process.
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It has been shown that the solution to this problem i.e value of the unknown function u

at x ∈ G is [2]

u(x) = Ex

[∫ τ

0

g(X(t))e(
∫ t
0 q(X(s))ds+b(X(s))dλs)dλt

]
(5.2)

The right-hand side of equation depends on expectations of known functions, the functions g,

q and b and samples of the reflected diffusion process X, in the time interval (0, τ). Therefore

the local solution can be obtained by Monte Carlo simulations. Here, λt is a continuous non-

decreasing stochastic process, called local time process increasing only at the intervals where

X(t) touches the boundary ∂G2 by one. A brief discussion about reflected diffusion process

and local times in the context of the problem under consideration is given below.

5.2 Parabolic wave equation with impedance boundary condition

5.2.1 Problem Definition

-

6
6

?

L u = u0(ξ)

x

ξ

∂u
∂ξ

+ q(x)u = 0

∂u
∂ξ

+ q(x)u = 0

∂u
∂x

= i
2k0

∂2u
∂ξ2

Figure 5.3. Parallel plate waveguide with impedance walls

We will consider a problem of propagation of time harmonic waves inside an infinite

parallel plate waveguide with impedance walls.This model problem approximately describes

propagation over an impedance ground plane with a periodic boundary condition enforced

at the top plate, considering paraxial propagation and neglecting back scattering.
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The reduced field u(x, ξ) = v(x, ξ)exp(−ik0x) satisfies parabolic wave equation

∂u

∂x
=

i

2k0

∂2u

∂ξ2
(x, ξ) ∈ G (5.3)

u(0, ξ) = u0(ξ)

where v(x, z) is the true field, k0 is wavenumber and u0 is known initial field.

The unknown u is given by the following impedance boundary condition at top boundary

ξ = L and bottom boundary ξ = 0.

∂u

∂ξ
+ q(x)u = 0 at ξ = 0 and ξ = L (5.4)

5.2.2 Analytical Solution

The analytical solution to this model problem can be obtained by applying Discrete

Mixed Fourier Transform. The algorithm to obtain solution at range R, given the initial

field is discussed below [12].

1. Start with solution u(x, n∆ξ) where n = 0, 1, ...N and L = N∆ξ at range x = 0

2. Compute Discrete Mixed Fourier Transform of this discretized solution. The discrete

MFT of u(x, n∆ξ) is given by

U(x, 0) = A

N∑
n=0

rnu(x, n∆ξ)

U(x,m∆p) =
N−1∑
n=1

u(x, n∆ξ)

[
q sin

(mnπ

N

)
− sin(πm

N
)

∆ξ
cos

(πmn

N

)]
m = 1, ...N − 1

U(x, N∆p) = A

N∑
n=0

(−r)N−nu(x, n∆ξ)

where the prime superscript on the sum indicates that the first and last terms are

weighted with coefficient 1
2

and the following quantities are needed to complete the

definition of transform

A =
2(1− r2)

(1 + r2)(1− r2N)

Here r and r−1 are the roots of the quadratic equation r2 + 2rq∆ξ − 1 = 0

When q has a positive real part (vertical polarization), the desired root is

r =
√

1 + (q∆ξ)2 − q∆ξ, while for a negative real part (horizontal polarization)

r = −
√

1 + (q∆ξ)2 − q∆ξ
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3. Advance the DMFT function to range x + ∆x using the system of equations

U(x + ∆x, 0) = exp

{
i∆x

2k∆ξ2

(r − 1)2

r

}
U(x, 0)

U(x + ∆x, m∆p) = exp

{
i∆x

k∆ξ2

(
cos

πm

N
− 1

)}
U(x,m∆p)

U(x + ∆x,N∆p) = exp

{
− i∆x

2k∆ξ2

(r + 1)2

r

}
U(x,m∆p)

4. Compute inverse discrete mixed Fourier transform which is given by

u(x, n∆ξ) = rnU(x, 0) +
2

N

N−1∑
m=1

U(x,m∆p)




q sin
(

mnπ
N

)− sin(πm
N

)

∆ξ
cos

(
πmn
N

)

q2 +
(

sin(πm
N

)

∆ξ

)2




+ (−r)N−nU(x,N∆p)

This gives the field at advanced range x = R and height ξ. This result is used in

analytic continuation of data and also to compare results obtained stochastically.

5.3 Local Solution of parabolic wave equation with impedance
boundary condition

In this section, the procedure to obtain local solution of this problem using a stochastic

method is discussed. Most of the steps for this problem coincide with those of the Dirichlet

problem described in the previous chapter and considered in [15]. In order to obtain a local

solution to this problem, we need to generate random motions in complex space (x, z =

ξ + iη). Start random processes, x(s) and z(s), at x(0) = x and z(0) = ξ respectively and

continue the random processes according to the stochastic differential equations given below:

dx(s) = −ds (5.5)

dz(s) =

√
i

k0

dW (s) (5.6)

In the previous chapter, to obtain local solution, we terminated the random process at the

first exit time τ from the domain G

τ = inf{t ≥ 0 : (x(t), z(t)) /∈ G, (x(0), z(0)) = (x, ξ) ∈ G}
and obtained the local solution by using the following equation

u(x, z) = Ex[gc(x(τ), z(τ))] (5.7)

where gc(x, z) is analytically continued boundary as explained in the previous chapter.
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Analytical continuation of field on the source plane, x = 0 :

The value of u is given only along the line, x = 0, z = 0 + iη. To obtain the field on the

entire source plane, the expression for u(x, ξ) given in eqn 5.8 can be analytically continued

to complex space by writing z = ξ + iη as shown in eqn 5.9.

u(x, ξ) = rnU(x, 0) +
2

N

N−1∑
m=1

U(x,m∆p)




q sin
(

mπξ
L

)− sin(πm
N

)

∆ξ
cos

(
πmξ

L

)

q2 +
(

sin(πm
N

)

∆ξ

)2




+ (−r)N−nU(x,N∆p) (5.8)

u(x, z = ξ + iη) = rnU(x, 0) +
2

N

N−1∑
m=1

U(x,m∆p)




q sin
(

mπz
L

)− sin(πm
N

)

∆ξ
cos

(
πmz

L

)

q2 +
(

sin(πm
N

)

∆ξ

)2




+ (−r)N−nU(x,N∆p) (5.9)

Thus the value of intial field u along the source plane (0, z = ξ + iη) can be obtained by

analytical continuation.

If the value of u on the top plane ξ = L and bottom plane ξ = 0 is known as well, we

would have used eqn (5.7) to obtain local solution. However, on the top and bottom planes,

u is given by the boundary condition (5.4). Therefore, the value of u(x, z) in the right hand

side of equation (5.7) is not known at all points (x(τ), z(τ)), to compute the expectation.

An alternative approach to obtain local solution of this problem is discussed below.

• The sample paths of the random process starting at (x, ξ) can be divided into two

groups as shown in figure 5.4.

1. Sample paths that reach source plane x = 0, before reaching top or bottom

planes. As we know that value of u on source plane, we terminate them and its

contribution to the expectation will be this value of u on source plane.

2. Sample paths that reach either top plane or bottom plane before reaching source

plane. Since the boundary values on the top and bottom planes are not known,

we cannot terminate these paths. These sample paths must be modified such that

they obey impedance boundary condition as given by (5.4).

• On the bottom plane given by z = 0, the unknown function u is given by ∂u
∂z

+ q(x)u =

0. Therefore, modify the random process on this plane, such that the infinitesimal
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Figure 5.4. Two types of sample paths

Figure 5.5. Reflections at impedance wall on bottom plane
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generator of the random process matches with ∂u
∂z

+ q(x)u = 0 as shown in figure 5.5.

On the bottom plane, the random motion is governed by

dz(s) = +ds (5.10)

dx(s) = 0 (5.11)

Notice that only real part of z(s) is changing.

• Once the particle is inside the waveguide, restart the random motion according to the

Equations (5.5) and (5.6). If the particle reaches the bottom plane again, repeat the

process as discussed above until it reaches the source plane.

• Once the particle reaches source plane, as the value of u is known, terminate the

random motions. However this value cannot be used to obtain u at point a as given

by (5.7) because Ito formula presented in the last chapter, which is used to obtain the

expectation, is valid only for twice differentiable functions and u(x(s), z(s)) is not a

twice differentiable function as x(s) and z(s) are reflected diffusion processes. Therefore

a modified form of Ito formula needs to be used to obtain the expectation and thus we

will be using the extended Feynman-Kac formula given by Equation (5.2).

• The contribution of this sample path to the expectation is given f0e
(q(p)+q(r))

• If the random motion reaches the top plane, perform a similar process. On the top

plane, the unknown function u is approximately given by ∂u
∂z

+ q(x)u = 0, which can

also be written as −∂u
∂z
− q(x)u = 0 as shown in figure 5.6. Inside the region, the

random motion is governed by

dz(s) = −ds (5.12)

dx(s) = 0 (5.13)

• Once the particle is inside the waveguide, restart the random motion according to

the Equations (5.5) and (5.6). If the particle reaches the top plane again, repeat the

process as discussed above until it reaches the source plane. The contribution of this

sample path to the expectation is given f0e
(−q(p)−q(r))

• The contribution in the case where random motion reaches both bottom and top planes

as shown in figure 5.7 is f0e
(q(1)−q(2))
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Figure 5.6. Reflections at impedance wall on top plane

5.4 Algorithm

The algorithm that can be used to solve this problem is given by

1. Initialize

counter NOOFHITS TOP ← 0

counter NOOFHITS BOTTOM ← 0

variable representing contribution from each sample path ANSWER ← 0

2. Start random motion at (x, ξ)

3. Continue random motion inside G according to the following stochastic differential

equations

dx(s) = −ds

dξ(s) =
1

2k0

dW (s)

dη(s) =
1

2k0

dW (s)
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Figure 5.7. Reflections at impedance walls on top and bottom planes

4. If it hits top plane, random motions are given by

dx(s) = 0

dξ(s) = −ds

dη(s) = 0

Update counter NOOFHITS TOP

5. If it hits bottom plane, random motions are given by

dx(s) = 0

dξ(s) = +ds

dη(s) = 0

Update counter NOOFHITS BOTTOM

6. Once it hits source plane at z = ξ0 + iη0, note f(ξ0 + iη0)

7. Update ANSWER
ANSWER ← ANSWER + f(ξ0 + iη0) X eq(NOOFHITS BOTTOM−NOOFHITS TOP )

8. Repeat this procedure for large number of realizations to obtain accurate result.

9. Compute expectation of the contribution from each sample path, which is the desired
solution at the point (x, ξ).
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5.5 Numerical Experiments

5.5.1 Experimental Setup

In all the computations performed in this chapter, frequency of f = 300 MHz, which

is equivalent to λ = 1m, is used. The height of waveguide is taken to be L = 24λ and a

Gaussian initial field with peak at ξ = Ht = 12λ and standard deviation σξ = 3λ is applied

at source plane, x = 0. The boundary condition on the top and bottom planes are given by
∂u
∂z

+ q(x)u = 0, where q = jωε0Zs and Zs =
√

µ
ε

and ε = εrε0 + j σ
ω
. The electrical constants

of the boundaries are taken to be εr = 80 and σ = 4S/m. All of the results presented here

are obtained using 105 realizations.

To find the field along the line x = R (R is called range) and z = ξ + i0, start random

motions at a given point (R, ξ) and generate random motions in complex space (x, z = ξ+iη)

and obtain the expectation using the algorithm described in the previous section.

5.5.2 Results and Discussion

5.5.2.1 a)What is marching algorithm? Why is it needed here? Determining
good marching step for this problem

These are the questions we are trying to answer in this section using numerical results.

Figures 5.8, 5.9 and 5.10 show the real (red) and imaginary (green) parts of analytical

solution (solid line) and the stochastic solution (shown with ∗) computed using the algorithm

discussed above at a distance of R = 10λ, 20λ......100λ from source plane. It can be observed

that stochastic solutions show a good match with analytical solution until R = 50λ, and

beyond this range, the stochastic solutions begin to blow up.

The reason for this is explained below. If range R is increased, then the number of

possible sample paths also increases. Therefore more number of realizations are needed to

obtain good match between stochastic and analytical solutions. In addition to this, the

farther the range R (where the random motions are started) , the more is that probability

that these random motions hit the source plane x = 0 at large distances along η axis. From

the analytic continuation expression which is used to obtain the field on this source plane at

any given point (x = 0, z = ξ + iη), it can be observed that the field increases exponentially

with η. If the random motions hit at large distances along η axis, there is a good chance

that very large values are used in the expectation calculations. If not enough realizations

are used, there is a good chance that stochastic solution jump from very small value to

very large value or vice versa in just one realization. Therefore, to obtain good agreement
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between stochastic and analytical fields, at large values of range, more number of realizations

are needed, which will take more time.

To obtain field at large distances, say R = 1000λ, direct computation of field by using

the procedure discussed above obviously will take very large amount of time. An alternative

procedure is outlined here

1. Start computing the field at a distance, say at R = 50λ, where the stochastic solution

shows good match with analytical solution.

2. Using this stochastic solution at 50λ as the initial field, compute the field at R =

100λ by using the algorithm discussed above and using this field at 100λ, obtain the

stochastic solution at R = 150λ and so on.

Therefore to overcome the problem mentioned above, the marching algorithm is used.

Having understood why a marching algorithm is needed, we proceed further to answer the

question, what is a good marching step (Mstep) in this case. For obvious reasons, we don’t

want smaller Mstep. On the other hand it shouldn’t be large that large exponential values

are encountered in the expectation calculations as discussed above. From figures 5.8, 5.9

and 5.10, it can be observed that stochastic solutions until R = 50λ show good match with

analytical solutions. The above problem seems to creep in when field is computed at ranges

greater than R = 60λ. Therefore in all the computations performed from here on, marching

step Mstep = 50λ will be used.

5.5.2.2 b) Field at a given range from the aperture source

Figures 5.11 to 5.17 show the real (red) and imaginary (blue) parts of analytical solution

(solid line) and the stochastic solution (line with ∗) at the range from R = 50λ to R = 1600λ

in steps of R = 50λ. These are computed using marching algorithm with marching step

Mstep = 50λ and ∆t = 0.1λ. A good agreement is seen between the analytical and stochastic

solution until R = 1200λ. Beyond this range R = 1200λ the stochastic solutions do not

compare well with analytical solution. The reason for this is explained below.

To reiterate the marching algorithm, in order to obtain solution, say at R = 250λ, as

a first step compute the solution at the R = 50λ, stochastically. This stochastic solution,

however accurate it might be, is always an approximation to the true field at this range (A

very good agreement between the stochastic and analytical solution implies the error is very

very small, nevertheless it will not be 0). If this (approximate) computed field, which lets

say is 99.9% accurate, is used to compute the stochastic solution at the next step, then this
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stochastic solution will include error which is caused not only by stochastic algorithm but

also by the approximation of initial field. If this solution is used again as initial field to

compute the field at the next step, the error due to the approximation increases. Therefore,

if marching algorithm is used, then the error due to approximation of true field by the

stochastic solution at the previous step propagates with marching. Therefore at large values

of range, approximation error is large as more number of marchings are done and hence the

stochastic solutions at these ranges do not compare well with the analytical solutions.

5.5.2.3 c) Stochastic solutions with different values of ∆t

To support the above discussion, we present the following analysis. Figures 5.18, 5.19,

5.20 and 5.21 show the real and imaginary parts of analytical and stochastic solution at

ranges R = 250λ,R = 500λ,R = 750λ and R = 1000λ. Each of these figures includes four

subfigures, three of which show the comparison between analytical solution and stochastic

solution computed with ∆t = 0.1λ, ∆t = 0.25λ and ∆t = 0.5λ respectively. The fourth

subfigure shows the stochastic solution computed at the given range, when a true analytical

field is used at the previous step instead of stochastic solution.

It has already been concluded in the previous chapters that the accuracy of the solution

increases with decrease in ∆t. Therefore, we expect the stochastic solution computed with

∆t = 0.1λ to be more accurate among these three cases, followed by ∆t = 0.25λ case.

So, at each step, as the stochastic solution using ∆t = 0.1λ is more accurate than other,

the approximation error for this will be smaller that other two. If marching algorithm is

employed for these three cases, we expect the stochastic solution computed with larger ∆t

to show unfavorable comparisons with analytical solution at small ranges compared to that

of smaller ∆t case.

Even though figure 5.18 shows good agreement between stochastic and analytical solu-

tion for all cases, it can be observed from figure 5.19, the accuracy is better for the case

∆t = 0.1λ followed by ∆t = 0.25λ. From figure 5.20, it can be observed that at range

R = 750λ, stochastic solution with ∆t = 0.5λ is worse than the other two. Figure 5.21

shows that at range R = 1000λ, stochastic solution with ∆t = 0.25λ also does not show good

agreement with analytical solution. However, the solution at range R = 1000λ computed

using one marching step (i.e using true field at the previous step), shows better comparisons

to that of the stochastic solution with ∆t = 0.1λ. From this experiment, it can be concluded

that decreasing ∆t can increase the maximum range at which the stochastic solution com-

puted using marching algorithm still exhibits favorable comparisons with analytical solution.
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However, an agreeable solution may not be obtained for large ∆t, even when range is small

enough.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

A stochastic method based on properties of diffusion process, Ito formula, Dynkin for-

mula, Feynman-Kac functional and Monte Carlo simulations that can be used to obtain

local solution of electromagnetic problems was studied with the objective of understand-

ing the efficacy and limitations of it. Field computation by this method was demonstrated

for electrostatic and electrodynamic propagation problems by considering simple problems.

Numerical investigations were carried out to understand the effect of various parameters

involved in this method. To summarize:

As the first step, the stochastic method was applied to solve Laplace equation to obtain

the potential inside a rectangular region when the potential on the walls was given. The

stochastic method which involves constructing either random walk or Brownian motion pro-

cess was discussed and favorable comparisons between analytical and stochastic solutions

were presented for both cases.

The parameters that effect the accuracy and time taken by the algorithm most, for

random walk method, are grid size and number of realizations and, for Brownian motion

process, are time step and number of realizations. It has been observed that accuracy

increases with increase in number of realizations as well as decrease in either grid size or

time step for the respective methods. It has been reported that with a choice of grid size

h = 0.01 and number of realizations N = 2000, stochastic solution with an L2 error ε = 1%

can be obtained in about 4 seconds. For Brownian motion process, a choice of ∆t = 0.001

and number of realizations N = 2500 is adequate to obtain the solution with an L2 error

ε = 1% in about 3.5 seconds. For a given accuracy, time taken by Brownian motion process

was slightly small compared to that using random walk method.

Local solution to Poisson’s equations was also obtained for the problem of finding po-

tential between two parallel plates with square cylindrical charge distribution at the center.

The effect of time step and number of realizations on accuracy and time taken to obtain the

solution showed a similar trend as previously mentioned i.e. accuracy increases with increase
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in number of realizations as well as decrease in time step. It has been concluded that with

time step, ∆t = 0.0001 and number of realizations, N = 10, 000, a stochastic solution can

be obtained with an accuracy of ε = 2% in about 350 seconds.

To demonstrate this method for the electrodynamic case, a parabolic wave equation that

is encountered in wave propagation problem over terrain was considered. As the stochas-

tic method involves constructing a complex valued wiener process, analytical continuation

methods have been used for field computations. This approach was validated first for the

propagation problem inside an infinite parallel plate waveguide with perfectly conducting

boundaries at the top and bottom.

Finally, a stochastic method was developed for the problem of propagation of time har-

monic waves inside a parallel plate waveguide with impedance boundaries at the top and

bottom. A brief theory in the context of obtaining local solution to the parabolic wave

equation with impedance boundary conditions was discussed. Instead of computing the field

at a given range in a single step, a marching algorithm was used with an optimum marching

step of Mstep = 50λ.

Field computations using this marching algorithm with marching step Mstep = 50λ and

∆t = 0.1λ has resulted in good agreement between the analytical and stochastic solution until

R = 1200λ. This is because, at large values of range, approximation error due approximation

of true field by the stochastic solution at each step is large as more number of marchings

are done and hence the stochastic solutions at these ranges do not compare well with the

analytical solutions. Experiments were carried out to the effect of ∆t on this maximum range

at which stochastic solutions are still accurate. It has been observed that decreasing ∆t can

increase the maximum range at which the stochastic solution computed using marching

algorithm still exhibits favorable comparisons with analytical solution.

As mentioned above, analytical solutions were used to provide us with boundary condi-

tions on analytically continued boundaries in the complex plane. For the simple problems

considered here within the scope of the thesis, as the focus is on demonstrating the ideas

of stochastic method, this approach was used. In more general case, other approaches may

have to be found for specifying boundaries on the analytically continued boundaries.

Application of the stochastic method developed here which involves constructing a com-

plex valued Wiener process with reflections, to solve problems with material boundaries at

the top and bottom and problems with rough surfaces might provide more insight into re-

flection approach at impedance boundaries. Numerical investigations on this method for
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more complex problems may help understand the usability of this method for more practical

problems.
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