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Abstract

Internal combustion engines have undergone a series of increasingly stringent regulations due
to their environmental and energy impacts. The inherently conflicting constraints imposed
on the engine performance, i.e. exhaust emission reduction with improved fuel efficiency,
have been challenging the control to meet the tightening regulations.

In the conventional practice of the engine industry, most of the engine parameters that
affect the emissions and the efficiency, such as fuel injection, ignition timing, boost pressure
and EGR, are determined from look-up tables calibrated around each operating point in
an experimental environment. In order to have better real-time performance and be more
robust to disturbances, it is proposed to develop a control method that can further adjust input
values based on real-time plant output and/or plant state. A difficulty in implementing this
method is the practicality of sensors (high price, conflict with the need of customers). In this
thesis a soft sensor is used to infer emissions and fuel efficiency through state estimation
from an off-line determined model and from on-line measurements of energy output. Here
it is proposed to optimize, in real time, the model parameters to improve the local validity
of the model by considering how well the model works to estimate the energy output. The
assumption is that a better set of model parameters, a better model, will estimate emissions
and the efficiency better. Given the operating point and the optimized model, in a subsequent
control action those engine parameters that influence emissions and fuel efficiency will be
selected so as to further reduce emissions and improve efficiency at the given operating
conditions.

Extremum seeking (ES), an on-line optimization method, is a robust (model-free) ap-
proach for system optimization. One noticeable weakness of ES is its slow convergence
speed. Furthermore, the working performance of ES degrades when a time delay is present
in the closed loop. Here it is proposed to use ES despite the presence of time delay in the
actuatory/sensory environment, because it is possible to design a prediction-like control law
to overcome the issues of time delay regarding the closed-loop stabilization scheme.
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Motivated by the engine application and ES theory development, this work focuses on
extending ES to have better convergence performance and to deal with delay in the context
of specific engine optimization problem. Specifically, this work

1. analyses the effect of delay on the working of ES (stability and convergence aspects);

2. proposes a supervisory controller to improve ES convergence performance using the
available ES tuning parameters;

3. utilizes ES to identify the time delay in a system, and removes the negative delay
influence from the closed-loop stabilization scheme.

Please note that there are a number of ES algorithms in the literature and the proposed
method can be used for different types of ES techniques. Here in this thesis, a standard ES
algorithm whose performance properties are very well known in the literature is utilised as
an example to illustrate the proposed method.



Table of contents

1 Introduction 1

2 Problems from engine project 5
2.1 Overiew of engine project . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Extremum seeking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Gradient algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Extremum seeking . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Application to the project . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Delay identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Engine project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Brief literature review . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Research gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Work of the thesis 33
3.1 The effect of delay on the ES . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Convergence improvement for the ES . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Proposed diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Operation principle . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Simulation example . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Application in model calibration problem . . . . . . . . . . . . . . 49

3.3 Delay identification using the ES . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Structure of the scheme . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Identification design . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.3 Simulation example . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Summary of Work 63
4.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



viii Table of contents

4.2 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 65



Chapter 1

Introduction

Internal combustion (IC) engines are described by highly nonlinear multi-input-multi-output
dynamic equations. Among the outputs of an IC engine, fuel (thermal) efficiency and exhaust
emissions are required to meet stringent regulations that set upper thresholds for emissions
and lower threshold for fuel efficiency for different on-road operating conditions.

The main inputs/outputs for a certain type IC engine are shown in Figure 1.1. Given

Fig. 1.1 Some inputs/outputs for a certain IC engine

the stringent nature of the regulations, engines come with sensors that can assist control
strategies in measuring exhaust emissions and in measuring fuel efficiency by way of mea-
suring a pressure or temperature. The extra cost for the relatively expensive sensors may be
prohibition from the perspective of customers. For this reason, it is currently not viable to
regulate the real-time performance of the engines by deploying the sensors to help measure
in real-time the efficiency and the emissions.

There is another issue with regard to the measurement of the outputs. Even if some
sensors would be deployed in product engines in the near future, the corresponding measure-
ments, as is shown in Figure 1.2, would have variable time delay because the unmeasured
substances (NOx, CO, fume, etc.) need to go a certain way before reaching the sensors. The
velocity of the transmission of mass depends on the variable conditions like pressure and
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Fig. 1.2 Cause of delay - transmission of mass

temperature, which results in the variability of delay time. This variable time delay is roughly
the same operating time of 50 ∼ 150 engine cycles, which not only slows down each of the
control responses but also causes more troubles to the design of the control law due to its
variability.

Although the sensors could not be currently installed in product engines as customers are
unwilling to afford the cost of the sensors, these sensors are utilized in experimental engines
in a laboratory environment, which leads to two different ways to calibrate the performance
of IC engines.

There are currently two different ways [1] to optimize the performance of IC engines,
i.e. off-line calibration with gain scheduling (e.g. [14–18, 22, 23]) and on-line calibration
(e.g. [19–21]). Off-line calibration is about off-line, model based [1] or non-model based
[14–18, 22, 23], experiments to obtain the optimal or near-optimal values of control inputs
for each operating point. The operating points are typically defined by engine speed and
engine load. These experimentally obtained control input values for each operating point then
populate a look-up table which is stored in the engine control unit (ECU). When the engine
is operated in real time (on-road operation), the control process for the engine is shown in

Fig. 1.3 Basic diagram of the real-time operation of a product engine

Figure 1.3. First, the current operating point (defined by engine speed and engine load) is
detected and passed to the ECU. Then, based on the experimentally constructed look-up
tables stored in the ECU, the corresponding input values to the engine for this operating point
are obtained and the ECU will give the corresponding inputs to the plant.
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One of the advantages of this calibration method is the simplicity of the control structure
in real time (Figure 1.3). Moreover, in calibration conditions, the sample time for the sensors
can be slow so that it is much easier to measure in calibration conditions than in real time
operation. Besides, it will not have any influence on the real time operation of product engines
if the experimental calibration process is long. However, good performance of the engine
demands a high density of operating points that requires a large amount of experiments to
be carried out, which is expensive. In addition, because the input values are obtained in an
experimental environment, disturbances or deviations from on-road operating environment
that are not adequately captured in the look-up table will lead to undesired engine perfor-
mance. Also, aging and performance degradation of the engine cannot be easily accounted for.

In on-line calibration, non-model based optimization methods like extremum seeking
(ES) are considered (see e.g. black-box ES [25–34] and grey-box ES [19, 21, 35]). The basic

Fig. 1.4 Basic diagram of on-line optimization

diagram is shown in Figure 1.4. Extremum seeking, an on-line optimization method, is able
to find near optimal inputs using on-line measurements of input and output signals for a large
class of systems, without relying on a precise model. Therefore, ES is a robust (model-free)
optimization approach for input design. Taking into account the fact that engine operation
is a complex and highly nonlinear process, ES is an attractive idea for automotive engine
performance optimization and it has been utilized in automotive engine management with
a view to adjusting parameters that drive designed cost function to its minimum/maximum.
For example, ES was utilized to tune PID controller parameters on-line in order to regulate
engine combustion timing position [16]. Nonlinear programming based ES was used in
automotive engine calibration for multi-input cases [14]. In [17], gasoline engine speed
control was implemented via ES to find the optimal starting speed. The complex HCCI
engine combustion timing control problem was addressed in [18] by controlling the intake
air temperature and using the cylinder pressure measurement as feedback. ES algorithms
were used to find an optimal set point (for maximizing the engine efficiency) as well as the
optimal controller-parameters. Corti et al [22] applied ES to control gasoline engine spark
timing and air-fuel ratio to optimize a cost function based on the indicated torque, exhaust
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temperature and knock intensity. ES has also been used for online tuning in flex-fuel [21]
and compressed natural gas (CNG) engines [20].

However, as an on-line calibration method, ES is slow in terms of convergence when
optimizing a nonlinear plant with unknown dynamics. ES works for steady state input-output
map optimization. It has to wait for sufficiently long so that the transient process of the plant
output dies away, which is implemented by tuning parameters of ES appropriately so that the
dynamic process of the system is always faster than the updating of ES process (time scale
separation [8]). In on-line calibration process, most existing ES algorithms are used directly
in control loops without requiring the knowledge of plants as ES is a model-free method; the
corresponding convergence performance of ES is not desirable. In general, ES optimization
processes are in the order of minutes, during which the engine operating condition is kept rel-
atively constant. Thus, this method is ineffective when operating conditions change quickly
during acceleration and deceleration phases, which is rather the norm for city driving.

During the past decades, regulatory constraints being imposed on engine emissions and
fuel efficiency are getting increasingly stringent, which is challenging the conventional con-
trol practice for IC engines to meet the tightening regulations. Recently, a non-conventional
combustion mode, called low temperature combustion (LTC), is proposed for car engines.
The fundamental mechanism of low temperature combustion is to limit the in-cylinder com-
bustion temperature below the NOx formation threshold. Its inherent drawback is that LTC
affects overall efficiency in a negative manner. There exist possibilities to achieve LTC for
both spark ignition (SI) engines and compression ignition (CI) engines. However, considering
the fact that CI engines produce more emissions and has higher thermal efficiency, LTC is
more suitable for CI engines. Besides, the after-treatment system for a CI engine is complex,
which needs a minimum of pollutant formation during the combustion process.

In this thesis, we investigate two theoretical problems motivated by a diesel engine
optimization project. The diesel engine (CI engine) project is about regulating the in-cylinder
combustion temperature (inner state of the engine) to achieve low temperature combustion
mode. The engine project will be discussed in Chapter 2. The two theoretical problems
discussed in this thesis are about convergence shortening for ES and time delay identification.
Since the sample-data structure and discretization design in the engine project are finished by
the collaborators [24], the contribution of this thesis is that it provides a theoretical method
for a general continuous time problem, and this engine management project becomes a
discrete time application and verification of this general method.



Chapter 2

Problems from engine project

2.1 Overiew of engine project

The diagram of the engine optimization project is shown in Figure 2.1. Here let me first

Fig. 2.1 Diagram of the engine project

explain the main idea of this engine project before explaining the corresponding symbol
(IMEP), engine model, extremum seeking and delay identification. In this project, a soft sen-
sor is used to infer the emission and fuel efficiency through state estimation from an off-line
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determined model and from on-line measurements of energy output (IMEP). It is proposed
to refine, in real time, the model parameter to improve the local validity of the model by
considering how well the model works to estimate the energy output. The assumption is that
a better set of model parameters, a better model, will estimate the emission and the efficiency
better. Given the operating point and the improved model, in a subsequent control action
those engine parameters that influence emissions and fuel efficiency are selected so as to
further reduce emissions and improve efficiency at the given operating conditions.

The reference efficiency and NOx amount are set according to the regulatory efficiency
and emission requirements. The sensor output, indicated mean effective pressure (IMEP), an
indicator for engine load, is calculated as below:

IMEP =
Engine work per cycle

Cylinder displacement volume
(2.1)

Engine work is measured by sensors. The cylinder displacement volume is an intrinsic engine
parameter. Since the engine model is constructed using pressure, temperature and volume,
without entropy, the in-cylinder pressure–volume diagram (Figure 2.2) is utilized to illustrate
diesel engine in-cylinder combustion process. The shadowed area in Figure 2.2 (abcda)

Fig. 2.2 Combustion process (P-V diagram) of diesel engine

repeats the work in each four-stroke engine cycle. The cylinder displacement volume is the
difference between cylinder maximum volume V1 and cylinder minimum volume V2. For
details of diesel cycles, please refer to [2, 3].

The engine model is provided by [24]; the model in [24] is briefly described for com-
pleteness, as follows.
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State equation:[
T̂ (θk)− T̂ (θk−1)

P̂(θk)− P̂(θk−1)

]
=

[
A · [Qhr(θsoc)−Qht −WPV ]

P̂(θk−1) ·
[
( T̂ (θk)

T̂ (θk−1)
)

gamma
gamma−1 −1

] ]
(2.2)

Output equation:

IMEP(engine cycle) =
EVO

∑
IVC

P̂(θk) · (V (θk)−V (θk−1)

Vd
(2.3)

NOx(engine cycle) =
EVO

∑
IVC

f (T̂ (θk−1)) (2.4)

E f f (engine cycle) =
cycle

∑
P̂(θk) · (V (θk)−V (θk−1)

m f uel ·LHV
(2.5)

Parameters in state equation (2.2) are in discrete crank angle θk domain.

θk engine crank angle degree, k ∈ N ranging from 1 to 720

T̂ (θk) in-cylinder temperature estimate at crank angle (θk)

P̂(θk) in-cylinder pressure estimate at crank angle (θk)

A specific ratio, calculated by euqation (6) in [24], a constant

gamma specific heat ratio

θSOC ∈ [θIVC,θEVO] crank angle location at the start of combustion

IVC intake valve closing crank angle

EVO exhaust valve opening crank angle

Qhr combustion heat release amount parameterized by θSOC

Qht cylinder wall heat transfer amount

WPV piston work amount for each crank angle resolution

Vd in-cylinder displacement volume

m f uel cyclic fuel injection amount

LHV lower heating value

Eff fuel efficiency

NOx formation and in-cylinder temperature relationship Equation (2.4) is represented by
a simplified Zeldovich thermal NOx mechanism. For details of the model, please refer to [24].

Engine crank angle domain [2, 3] is illustrated in Figure 2.3. The crankshaft angular
velocity at time:

ωr(t) = 2π · rpm/60 (2.6)
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Fig. 2.3 Piston motion geometry

where engine rotation speed rpm is the number of revolutions per minute. The relation
between crank angle (θ ) domain and time (t) domain:

θ =
∫ t1

t0
ωr dt (2.7)

where θ is the current crank angle value, t0 is the starting time (the time when piston starts at
top dead centre TDC and where we set θ to be zero) and t1 is the current time value. For each
four-stroke engine cycle (unit one in engine cycle domain), the overall crank angle change is
720 degrees while the time duration (t1 − t0, 720 =

∫ t1
t0 ωr dt) varies from cycle to cycle since

the angular velocity ωr varies from cycle to cycle.

Here is a simplified structure of the engine plant, as illustrated in Figure 2.4. The
mathematical description of the plant and the model are formulated in crank angle ( j) -
engine cycle (n) domain, as are shown in Equation (2.8) - (2.13).

Fig. 2.4 Engine plant diagram
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Engine plant in crank angle ( j) - engine cycle (n) domain:

x( j+1) = f (x( j),u( j−Din),θs(λ ),λ ), x(0) = x0, x ∈ R2, j ∈ N,θs ∈ [θ ,θ ],

λ ∈ R,u ∈ Rl, l ∈ N+ (2.8)

y(n) =
τ=n·T

∑
τ=1+(n−1)·T

h(x(τ)) , y ∈ R3,n ∈ N+,τ ∈ N+, T = 720 (2.9)

Sensor output:

ζ1(n) = y1(n), ζ1 ∈ R (2.10)

y2(n) ∈ R, y3(n) ∈ R are unmeasurable (2.11)

where
the states x represent in-cylinder temperature and pressure;
plant outputs y represent IMEP, NOx emission and E f f fuel efficiency;
j is the crank angle indicator and n is engine cycle number;
λ is the engine rotation speed and u is the control input;
Din is the unknown delay time that varies according to different engine rotation speed λ ;
θs is an unknown variable parameterized by λ and it has a known data range due to the

physical structure of engine cylinder. This parameter can be measured.

Engine model:

x̂(m+1) = f̂ (x̂(m),u(m), θ̂ ∗(λ ),λ ), x̂(0) = x̂0, x̂ ∈ R2, m ∈ [0,719]

θ̂ ∈ [θ ,θ ],λ ∈ R,u ∈ Rl, l ∈ N+ (2.12)

ŷ =
τ=720

∑
τ=1

ĥ(x̂(τ)) , ŷ ∈ R3,τ ∈ N+ (2.13)

This engine model is just a mapping, rather than an ongoing cycle-by-cycle process as
Equation (2.8, 2.9). The engine-cycle based model (or called event-based model in [13, 24])
has been calibrated off-line with experimental data; the corresponding validation results are
presented in [24].

The engine model is constructed based on the engine mechanism, but it is different
from the real engine plant. When given the same inputs to both the plant and the model,
their outputs could be very close to each other, but inside the plant and the model, they
could be quite different. The value of the parameter θs in the plant (2.8) can be measured.
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However, the corresponding parameter θ̂ ∗ in the model (2.12) could be quite different from
the measured value of θs. Thus, when the engine is operated in reality, this model needs to be
calibrated with on-line measurement of the plant output to identify the unknown parameter
θ̂ ∗ in the model (θ̂ ∗is the same as the parameter θsoc in (2.2)).

Assumption 2.1.1
Given the continuous model, for any control input u belonging to the possible control input
range, and for any feasible engine speed λ , there exists only one θ̂ ∗ in known set [θ ,θ ] such
that |y1 − ŷ1(θ̂)|min is achieved.

Explanation for Assumption 2.1.1
Since engine operation is cyclic and as is shown from (2.8), (2.9), (2.12) and (2.13), the
output is a summation of function of states over a whole cyclic period and states are related
to state initial conditon, control input u, engine speed λ and the unknown parameter θ̂ . When
the initial condition, control input and engine speed are given, the relationship among model
output ŷ and the parameter θ̂ is:

ŷ = g(θ̂) (2.14)

where g is a continuous nonlinear static mapping. Suppose ymea is the measured y1 output
value from the engine plant, Assumption 2.1.1 means that there exists only one θ̂ ∗ ∈ [θ ,θ ]

such that
θ̂ → θ̂

∗ ⇒ |ŷ1 − ymea| → |ŷ1 − ymea|min

|ŷ1 − y1|min is related to the closeness of intial condtions (∥x̂0 − x0∥, where x̂0 is pre-defined
from experimental data) and closeness between the model and the plant (Assumption 2.1.2),
both of which are validated by the collaboration group [24].

Assumption 2.1.2
When |θ̂ − θ̂ ∗| is small enough, ||ŷ−y(n0)|| & ||x̂(m)−x( j)|| (n0,m, j ∈N+,m∈ [1,720], j ∈
[1+720 · (n0 −1),720 ·n0]) are within permissible tolerance.

Explanation for Assumption 2.1.2
Assumption 2.1.2 means that after finishing the model calibration, a precise model (precise
enough for control design) is obtained.

Here is the explanation why the variable input delay should be known to achieve the
corresponding feedback control regulation. Suppose the engine speed changes from λ0 to λ1,
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as is shown in Figure 2.5. The speed is detected at the n1th engine cycle and the input values

Fig. 2.5 Explanation for the effect of delay

to the engine are calculated from the engine model. But due to the existence of variable
input delay Din and fixed computational time Dc, the input values calculated for the n1th
engine cycle will affect the engine at n2th cycle, which may not lead to the desired engine
performance meeting the requirements. Thus, on-line identifying the variable time delay and
compensating it in the control would be helpful to get a better engine performance.

The on-line optimization process is:

1. A driver gives instruction to accelerate or decelerate, and the engine speed λ changes;
the corresponding θ̂ ∗ changes.

2. Mode detector gives the current speed value λ to engine control unit (ECU) where the
engine model is stored; output sensor feedback the plant output y1 (the output without
delay) as a calibration reference to ECU.

3. Extremum seeking begins to minimize the error between ŷ1 and y1 by driving θ̂

converging into a small neighborhood of θ̂ ∗.

4. When the on-line model calibration process finishes, ∥ŷ−y∥ & ∥x̂−x∥ (in Assumption
2.1.2) are within permissible tolerance; Extremum seeking then begins to identify the
input delay utilizing the calibrated model.

5. When the on-line optimization process is done, ŷ, x̂, D̂in are obtained, all of which are
suitable approximation for the corresponding real values. The corresponding feedback
control law is:

u = u
(
x̂(1), x̂(2), ..., x̂(720), D̂in, λ

)
(2.15)



12 Problems from engine project

During Step 1,2 and 3, the feedback control input u are fixed in order to calibrate the model.
Step 3 is the model calibration process and during the process, only θ̂ estimation loop is
working while delay identification D̂in loop does not work. When the model calibration
process finishes (from Step 4), θ̂ estimation loop stops working and delay identification loop
stops to work. The control input u begin to change from Step 4 in order to identify the delay
and implement the feedback control.

Challenges

There are two main challenges for designing the on-line optimization process.

• Taking into account engine’s operation in reality, this on-line optimization process
(model calibration & delay identification) is supposed to finish as quickly as possible,
which is closely related to the convergence speed of extremum seeking.

• Since the delay identification and feedback stabilization are working simultaneously
and delay D̂in is one of the parameters of the feedback control law (2.15), it is both
interesting and essential to design the delay identification process so that this parameter
updating process does not affect the stability of the feedback control system (plant +
feedback controller).

The four different domains in this project is explained in Figure 2.6. T0 represents the

Fig. 2.6 Explanation for differnet domains

operation time for one engine cycle, which is variable (depending on the variable engine
speed). The model calibration process (ES+model) is in computer domain. Nc is the number
of iterative calculation, which depends on the computational capacity of the ECU.
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2.2 Extremum seeking

2.2.1 Gradient algorithm

Optimization [4] deals with problems including optimality conditions and algorithms. Here
let us have a look at a simple case with the fundamental optimality conditions and the widely
used gradient algorithm.

Let us consider a single-input-single-output (SISO) smooth static mapping case.

Assumption 2.2.1 There exists a unique θ ∗ maximizing Q(θ ) and the following holds:

Q′(θ ∗) = 0 , θ
∗ ∈ R (2.16)

Q′(θ ∗+ζ )ζ < 0 , ∀ζ ∈ R−{0} (2.17)

Problem Find θ ∗ with known Q′ (the first derivative of Q).

Fig. 2.7 SISO smooth static mapping Q(θ )

When solving this kind of optimization problem, gradient driven alogrithms use gradient
information (current gradient, or an estimate of current gradient) and the updating law of
these algorithms in continuous time is of the form:

˙̂
θ = δ ·Q′(θ̂) (2.18)

or in iteration format
θ̂(k+1) = θ̂(k)+δ ·Q′(θ̂(k)) (2.19)

where δ > 0 is the updating step size and Q′ refers to the gradient information (current
gradient). When searching for a minimun, the sign of δ in (2.18) and (2.19) needs to be
changed from positive to negative.
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It has been proved [11, 12] that for the updating law (2.19), as long as the step size δ is
smaller than a threshold δ̄ which is related to the mapping Q, θ̂ will converge into a small
neighborhood of θ ∗, the size of which depends on the step size δ and the mapping Q. The
smaller the step size, the smaller the final residual oscillation and the longer the converging
time. As for the continuous time updating law (2.18), θ̂ converges to θ ∗ without any residual
oscillation.

2.2.2 Extremum seeking

Extremum seeking (ES) is an on-line optimization technique. It is a way of implementing
gradient-driven algorithms [4] like gradient method or Newton’s method, without having
an explicit knowledge of the gradient information or dynamics of the plant. The existing
literature regarding extremum seeking can be classified into three categories: adaptive ES
[5], numeric ES [6] and stochastic ES [7]. Here we focus on the perturbation-based adaptive
extremum seeking [5, 29]. In the ES scheme, there are two things that need to be determined,
i.e. how the ES scheme gets the gradient information and what the step size is in the ES.

Static plant

Let us first consider the same single-input-single-output smooth static mapping Q. A basic
diagram of perturbation-based single-input-single-output extremum seeking scheme [25, 29]
is shown in Figure 2.8.

Problem Given Assumption 2.2.1 in Section 2.2.1, find θ ∗ without knowing Q or Q′, but
given the ability to measure Q(θ) for any given θ .

Fig. 2.8 ES for static plant
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The algorithm in Figure 2.8 can be expressed as:

y = Q(θ) = Q(θ̂ +asinωt) (2.20)

ζ = b · sinωt · y = bsinωt ·Q
(
θ̂ +asinωt

)
(2.21)

˙̂
θ = δ ·ζ = δ ·bsinωt ·Q

(
θ̂ +asinωt

)
(2.22)

where a and b are the amplitudes of the dither, ω is the frequency of the dither and δ is the
gain of the integral action.

Introduce the change of coordinates, θ̃ = θ̂ −θ ∗ and Equation (2.22) becomes:

˙̃
θ = ˙̂

θ = δ ·bsinωt ·Q
(
θ̃ +θ

∗+asinωt
)

(2.23)

Existing theorem [29]

Under the Assumption 2.2.1, the solution of System (2.23) with parameter (a, bδ

ω
) is semi-

globally practically asymptotically (SPA) stable.

Heuristic explanation

By using Taylor series expansion for Q(θ̂ +asinωt), it leads to

Q(θ̂ +asinωt)

= Q(θ̂)+Q′(θ̂) ·asinωt +
1
2
·Q′′(θ̂) · (asinωt)2 +O(a3)

(2.24)

Substituting (2.24) into (2.22) yields

˙̂
θ = δ ·

[
Q(θ̂) ·bsinωt +ab ·Q′(θ̂) · (sinωt)2 +

a2b
2

·Q′′(θ̂) · (sinωt)3 +O(a3b)
]

(2.25)

We can re-write (2.25) into a new time scale σ = ω · t:

dθ̂

dt
=

dθ̂

dσ
· dσ

dt
= ω · dθ̂

dσ
= δ ·

[
Q(θ̂) ·bsinσ +ab ·Q′(θ̂) · (sinσ)2]

+ δ ·
[

a2b
2

·Q′′(θ̂) · (sinσ)3 +O(a3b)
] (2.26)

dθ̂

dσ
=

δ ·b
ω

·
[

Q(θ̂) · sinσ +a ·Q′(θ̂) · (sinσ)2 +
a2

2
·Q′′(θ̂) · (sinσ)3 +O(a3)

]
(2.27)
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After a transformation of coordinates, the ES description (2.27) is in standard form to apply
averaging techniques [8, 9].

Averaging

The fundamental idea for using averaging techniques [8, 9] to get stability result is as follows.

• the averaged system is simpler for analysis than the original system (motivation);

• get the stability result of the averaged system;

• guarantee the closeness between the averaged system and the original one to obtain the
stability result of the orignal system.

Let us introduce the averaged system for Equation (2.27), that is,

dθ̂av

dσ
=

δb
ω

·
[

Q(θ̂av) ·
1

2π

∫ 2π

0
sinσ dσ +a ·Q′(θ̂av) ·

1
2π

∫ 2π

0
(sinσ)2 dσ

]
+

δb
ω

·
[

a2

2
·Q′′(θ̂av) ·

1
2π

∫ 2π

0
(sinσ)3 dσ +O(a3)

]
=

δb
ω

·
[

a ·Q′(θ̂av) ·
1

2π

∫ 2π

0

1− cos2σ

2
dσ +O(a3)

]
=

abδ

2ω
· [Q′(θ̂av)+O(a2)] (2.28)

Transform (2.28) into the original t time coordinate:

dθ̂av

dt
=

dθ̂av

dσ
· dσ

dt
= ω · dθ̂av

dσ
= ω · abδ

2ω
· [Q′(θ̂av)+O(a2)] (2.29)

Equation (2.29) shows that there exists a∗ depending on the mapping Q such that when
a < a∗, the term Q′(θ̂av) in (2.29) dominates over O(a2), and (2.29) can be approximated as:

dθ̂av

dt
=

a ·b ·δ
2

·Q′(θ̂av) (2.30)

which is asymptotically stable (please see [29] for the supporting evidence regarding the
conclusion from Equation (2.29) and (2.30)). Next step is to check the closeness between the
original system (2.27) and the averaged one (2.29).

Given parameter a in Equation (2.27), the terms in the bracket are always bounded.
By tuning δb

ω
> 0 sufficiently small, dθ̂

dσ
could be sufficiently small and θ̂ changes slowly
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compared with sinσ . Therefore, the evolution of θ̂ in (2.27) can be approximated by the
evolution of its averaged system (2.29).

As mentioned at the beginning of Section 2.2.2, ES is a way of implementing gradient
driven optimization algorithm; it is clear from the deduction that ES obtains the gradient
information by using the demodulation of dither signals, and the step size in this ES scheme
is a·b·δ

2 .

To sum up for the static case, there exists a∗ > 0 such that for any 0 < a < a∗, there exists
(δb

ω
)∗(a)> 0 such that when 0 < δb

ω
< (δb

ω
)∗, the stability of the ES scheme is guaranteed.

In other words, θ̂ will converge into a small neighborhood of θ ∗ (due to the averaging error
and the approximation from Equ.(2.29) to Equ.(2.30)), the convergence speed of which
depends on a,b,δ and the mapping Q. The smaller the parameters (a,b,δ ), the slower the
convergence speed and the longer the convergence time. Please see [29] for details of the
supporting evidence for the statement.

Dynamic plant

For the dynamic plant case, there are detailed ES stability proofs (local stability [25], non-
local stability [29]). The difference between the dynamic case and the static case is that
singular perturbation technique [8] is used in order to handle the dynamics of the plant.
The main idea of singular perturbation in the context of ES is that the tuning parameter ω ,
frequency of dither signal, should be sufficiently small so that when the dither signal changes
slowly enough, the dynamic plant can be approximated as a static mapping, or in other words,
the dynamics of the plant is always faster than the updating of ES. When the dynamic plant is
approximated as a static mapping, the rest of the proof is the same as the static proof (Taylor
expansion & averaging).

The tuning guidelines for the dynamic case (in sequence) are:

1. a is sufficiently small so that Euqation (2.30) is an acceptable approximation;

2. b·δ
ω

> 0 is sufficiently small (closeness between original system and the averaged
system); δ is the gain of integral section and b is the amplitude of dither signal;

3. ω , frequency of dither signal, is sufficiently small compared to the dynamics of the
plant (implementation of singular perturbation).
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Please note that the ES scheme discussed here is used for searching a maximum; for searching
a minumum, the sign of integral gain needs to be changed from "δ " to "−δ " (δ > 0).

Multi-variable ES

For multivariable optimum searching (θ ∗ = [θ ∗
1 , · · · ,θ ∗

m]
T , m ∈ N, m ≥ 2), the references

[5, 26] gives the tuning guideline for multivariable extremum seeking. Compared with SISO
ES case, an additional requirement is added, that is, dither frequencies should satisfy:

ωi ̸= ω j and ωi +ω j ̸= ωk

for all i, j,k ranging from 1 to m, which is the requirement of P.E. condition [39–42].

2.2.3 Example

Let us illustrate the principle and tuning of ES via a system with a unique global maximum.
Consider a system (the example is adapted from the example in [29]):

ẋ1 =−x1 +u2
1 +4u1 x1(0) = 2 (2.31)

ε ẋ2 =−x2 +2u2 ε = 0 (2.32)

y =−(x1 +4)2 − (x2 −2)2 (2.33)

It is clear that when [x1, x2]
T = [−4, 2]T , y reaches its global maximum y∗ = 0. Let control

input u = [u1, u2]
T = [θ1, θ2]

T , we have [θ ∗
1 , θ ∗

2 ]
T = [−2, 1]T and y∗ = 0. The initial value

is [θ1, θ2]
T = [0, 0]T , which is away from θ ∗. The structure of the ES scheme is shown in

Figure 2.9.
This example is interesting in that the plant is a multi-variable ES case, consisting of

both dynamic example and static example. The state x1 can be treated as the dynamic ES
case while the state x2 is regarded as static ES case. By observing the convergence difference
between x1 and x2, we can illustrate the difference bewteen static ES case and dynamic ES
case, i.e., the convergence time for the static case can always be shortened by a better set
of tuning parameters while the convergence time for the dynamic case is always limited by
the uncertainty of the dynamics of the plant (black-box) which results in the conservative
adaptation of the ES scheme. Let us follow the tuning strategy (in sequence), as is mentioned
in Chapter 3.1.2 and the specific values are shown in Table 2.1.

1. set a1, a2 sufficiently small (a1 < a∗1 & a2 < a∗2);

2. make b1·δ1
ω1

and b2·δ2
ω2

sufficiently small;
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Fig. 2.9 Multi-variable ES structure

3. Choose ω1 sufficiently small (ω1 < ω∗
1 ) and ω2 ̸= ω1.

Parameter Value Unit

ω1 0.1 rad/sec

ω2 50 rad/sec

a1, a2 0.1 N/A

δ1 0.1 N/A

δ2 0.5 N/A

b1, b2 1 N/A

Table 2.1 Table of ES parameters

The corresponding results are shown in Figure 2.10.

As is shown in Figure 2.10, plant output literally reaches its optimum y∗ and [θ1, θ2]
T

converges into a small neighborhood of θ ∗. For the convergence performance of the static
case (state x2), we could shorten the convergence by increasing δ2 from 0.5 to 5 and ω2 from
50 to 500. The corresponding results are shown in Figure 2.11. In Figure 2.10, ES takes
around 20 seconds to drive the state x2 into a small neighborhood of its optimality whereas
for the plant, ES takes around 5 seconds (shown in Figure 2.11) to drive the state x2 into a
small region of its optimality from the same intial condition.
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As is shown in Figure 2.11, the convergence speed of ES for static case can be increased
by increasing step size and dither frequency, provided that b2δ2

ω2
is still sufficiently small. For

the dynamic case (state x1), since ω1 is limited by ω∗
1 (singular perturbation), step size a1b1δ1

2
is also restricted by the value of b1δ1

ω1
. If forcibly increase the step size for the state x1 like

increasing δ1 or b1, ES bcomes unstable and the system blows up. An example is shown in
Figure 2.12, when increasing δ1 from 0.1 to 1 and ω2 from 0.1 to 1.

Fig. 2.10 Convergence result of the ES process
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Fig. 2.11 Convergence result of the ES process
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Fig. 2.12 Result of the unstable ES process
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2.2.4 Application to the project

Based on the model (2.12, 2.13) and Assumption 2.2.1, this on-line model calibration problem
is a static-mapping minimization problem.The fundamental structure of black-box extremum
seeking for searching local optimum (e.g. [25, 29]) is shown in Figure 2.13.

Fig. 2.13 Fundamental structure of the ES

The inputs & outputs of the cost function which depends on the engine plant may be measured
but no analytical expression of the engine is available. The design of a black-box extremum
seeking consists of designing an estimator of derivatives and an appropriate optimization
algorithm.

This project utilizes the discrete type, perturbation based extremum seeking scheme
[25, 28–31]. The structure of the extremum seeking scheme is illustrated in Figure 2.14.

Fig. 2.14 Structure of ES scheme
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The cost function is designed as below:

J(θSOC(K)) = (
Model IMEP(K)−Measured IMEP

Normalized IMEP
)2 (2.34)

where the parameter K means the Kth iteration of ES in computer (ECU) domain. Normalized
IMEP is a constant used for normalizing the cost function. Measured IMEP is an averaged
IMEP value over the last 10 engine cycles. During each 10-engine-cycle time interval, ES
can have 40 calculation cycles in the ECU [24].

Due to the feature of this project, that is, engine control unit (ECU) is discrete controller
and all computational tasks including ES algorithm are implemented in the ECU, discrete
type extremum seeking is utilized for this project.

The tuning parameters of this ES optimization scheme are ω1 (frequency of the per-
turbation signal), a1,b1 (amplitude of the perturbation signal) and δ1 (gain of the integral
action). The initial condition of θSOC, used for ES updating calculation, is pre-defined from
experimental data for each operating point . It forms part of the off-line determined data
look-up table. The range of θ̂ ∗ is due to the physical structure of engine cylinder, please see
the explanation for the engine model in Chapter 2.1.

In order to achieve the control objective of the project, it is supposed to develop an
ES method that can track the quick change of the parameter θSOC. In particular, we need
to establish a time-scale separation as describled in Figure 2.15: the ES dynamics are
sandwiched in between the faster regular engine dynamics and the slower variation of the
engine parameter.

Fig. 2.15 Time-scale design in the engine project
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Normal tuning practice

In order to guarantee ES stability and have small residual oscillation, the normal practice for
ES tuning is to keep a1 (dither amplitude) and a1 ·b1 ·δ1 sufficiently small, as the collabora-
tion group did in [24]. The result in [24] is shown in Figure 2.16 & Figure 2.17.

Figure 2.16 and Figure 2.17 show the model calibration process for 8 operating points,
with each operating point having different plant output measurement y1. As is seen from
Fig. 2.16, model output ŷ1 (IMEP) cannot follow the engine measurement value y1 and ES
cannot finalize model calibration process in 40 searching cycles for each operating points.
Based on this normal practice and their choices, ES needs 2000∼4000 cycles of iteration
(25 seconds to 50 seconds in reality) to finalize the calibration process for each of the
experimental engine’s operating points, as is illustrated in Figure 2.17.

Deficiency

Considering the real engine operation process, the model calibration convergence speed for
this normal tuning practice (results in [24]) is too slow to be applied in reality. A method that
can shorten the ES convergence duration is essential to this engineering project.

Fig. 2.16 Model calibration simulation result (40 searching cycles for each operating point)
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Fig. 2.17 Model calibration simulation result (4000 searching cycles for each operating point)

Existing improvement method

A existing method for shortening ES convergence duration is to use annealing-like algorithms,
such as exponentially decaying dithering method, which could have faster convergence and
smaller residual oscillation.

Fig. 2.18 Exponentially decaying dithering result (40 searching cycles)
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The fundamental principle of this method is to start with a larger dithering amplitude a to get
a reatively larger step size a·b·δ

2 and faster convergence (cf. Chapter 2.2.2) and end up with a
smaller dithering amplitude a to have a smaller residual oscillation. The corresponding ES
convergence result is shown in Figure 2.18.

As is shown in Figure 2.18, model output IMEP can follow the engine measurement
IMEP value within 40 ES cycles (half a second); the improved ES performance is much
better than the original result in the paper, which helps reduce the overall control response
from minutes to seconds.

Deficiency

This existing method, however, has bad convergence performance when there exists a rel-
atively flat area in the cost function map, which often happens in practice. For example,

Fig. 2.19 Cost function map with flat area

Figure 2.19 is a cost function map for one of experimental engine’s operating points (operat-
ing condition: Speed 1489 rpm, IMEP 9.6 bar, Torque 81.1 Nm, MAF 6.09 g/s, BSFC 85.8
g/kw-hr, Fuel Flow Rate 24.3 mg/cycle, EGR 50.3 C, Boost Pressure 1.019 bar, BMEP 20.39
bar). When using the exponentially decaying dithering method for this kind of operating
condition where there exists a relatively flat area in the cost function map, the corresponding
ES convergence process is illustrated in Figure 2.20.

As is shown in Figure 2.20, when using the decaying method for eight randomly select
operating points whose cost function maps have a flat area (the eight operating points are
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Fig. 2.20 Exponentially decaying dithering result for cost function map with flat area
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all around the same speed 1500 rpm, thus their θ̂ ∗ are literally the same), θ̂est only reaches
somewhere between 185.5 degree and 187.5 degree, while the θ̂ ∗ is between 178 degree and
179 degree (cf. cost function map Fig. 2.19 which is also obtained from around 1500 rpm).
The method brings an error of 7 to 9 degrees, causing a big deviation for ŷ2 (NOx) and ŷ3

(Eff). Since y2, y3 cannot be measured on-line in product engines, which is the reason why
|y2 − ŷ2| and |y3 − ŷ3| are not incorporated into the cost function, the existing method needs
further improving in order to have better convergence performance.

Cause of deficiency

The reason why the existing improvement method does not work for this case is that ES is
an implementation of gradient-driven algorithm. When there exists a flat area in the cost
function map, the gradient information within that area is so weak that ES does not have
adequate "energy" to drive the parameter further quickly. Considering ES updating Equation
(2.30), the updating of θ̂ goes vey slowly when the cost function gradient is vey small,
and the overall convergence of ES becomes quite slow within the flat area, as is shown in
Figure 2.20 that θ̂est stays almost constant when ζ approaches zero (θ̂ enters into the flat
area in Figure 2.19).

One problem is to find a method that improves the convergence of the ES for the nonlinear
mapping case. This will be explained in Section 3.2.
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2.3 Delay identification

2.3.1 Engine project

A noticable issue for the engine control design is the presence of input time delay (exhaust
gas recirculation (EGR) delay (transmission of gas) or injection lag (transmission of fluid)).
Although the delay time in the engine is subtle in time domain, the delay would be noticable
in engine cycle domain since engine operation for each cycle is faster compared to the delay
time, as is shown in Figure 2.5 in Section 2.1. There are existing methods with regard to
compensate time delay for control purpose, but the time delay in IC engine varies according to
different operating conditions. The current engine industry use the method of tabulating delay
time for different operating points. However, due to the huge amount of operating conditions
in reality, off-line tabulating method can be both consuming and inadequate. Furthermore,
an inexact off-line approximation of delay time could cause troubles to a dynamic plant in
terms of stability and oscillations [49, 54]. How to get the value of time delay efficiently and
accurately would be a topic of interest for both engine industry and theory development.

2.3.2 Brief literature review

There are many articles in the literature (e.g. [43–48, 50–53, 55–68]) with regard to delay
identification in the area of control engineering. This problem has drawn considerable at-
tention in the last three decades, since for a large class of systems, like systems in biology,
chemistry, physics, economics, population dynamics, as well as in engineering sciences, time
delay is either included in their inner dynamics or introduced by sensors or actuators. The
early approaches of control engineering, for the sake of simplicity, assume that the delay time
is either priori known or approximated. The corresponding delay compensation method is
then utilized for designing the feedback control law. An example of the delay compensation
diagram is shown in Figure 2.21. One of the assumptions is that D̂ ≈ D. However, an inexact

Fig. 2.21 An example of delay compensation scheme

off-line approximation of time delay in a system may cause undesired performance of the
closed loop scheme in terms of stability and oscillation, as is dicussed in the two overview
papers [49, 54] regarding delay effects on stability and time-delayed systems. Therefore,
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on-line identification of time delay becomes a topic of interest for a wide range of researchers
and engineers. An example of delay identification scheme is illustrated in Figure 2.22.

Fig. 2.22 An example of delay identification scheme

According to [68], the existing literature with regard to delay identification problem can
be classified based on

(1). the type of model: continuous-time model or discrete-time model.

(2). the type of solution: linear methods based on the solution of a set of linear equations,
or non-linear methods based on an optimization procedure.

(3). the type of data processing: batch-type or recursive algorithm.

The existing literature introduced and designed many different methods to on-line identify
the delay in a system, such as identifying the delay by a rational transfer function (Pade
approximation) [44, 45], using basic linear regression to identify delay [61], utilizing Leven-
berg–Marquardt algorithm (damped least-squares) to estimate delay in a nonlinear system
[51], estimating the delay through correlation function analysis [53], using cross-correlation
technology to identify delay in the presence of colored noise [47], designing a complex
regression vector and utilizing gradient algorithm to deal with delay identification problem
[68], etc.

2.3.3 Research gap

Although many efforts have been devoted into this research area during the past, there are,
however, two gaps in the literatue regarding time-delayed system and time delay identifica-
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tion, both of which are what we will solve in the rest of this chapter.

The first research gap is that there is few literature regarding time-delayed system that
has considered combining delay identification process and closed-loop control scheme to
work simultaneously. Since delay identification process is always characterized by fast
transient variation and oscillation of the identification parameter D̂ (cf. Fig. 2.22), which
will cause undesired performance of the closed loop scheme (e.g. u(t) = u f (y(t + D̂))) in
terms of stability and oscillation, the system stabilization process is normally separated from
the identification process. The stabilization control law begins to work only after the delay
identification process finishes, which is similar to a 0−1 switch process. In the literature,
there is one paper [57] that has considered making delay identification process and feedback
stabilization scheme work simultaneously. However, the paper [57] only considers using
Smith predictor as the control scheme and the corresponding controller parameters are tuned
by trial-and-error. In other words, even if the parameter value of the Smith controller tuned
by trial-and-error in [57] works for a large range of possible delay time and for a large class
of plants, there is no design guideline for a general feedback control law, like the control
law in this engineering project u = u(x̂, D̂,λ ), that can make closed stabilization loop work
simultaneously with delay identification process.

The second observation is that few papers in the literature consider delay identification
with extremum seeking. In the literature, least-square (linear regression, damped least-
squares, etc.) is very popular as the optimization scheme (cf. Fig. 2.22) in delay identification
problem while no one has ever used extremum seeking to solve the identification problem.
Since extremum seeking and least-square are essentially the same, both of which are gradient-
driven algorithm, extremum seeking should at least have the same optimization effect as
least-square, or could even be better if considering the improvement method we proposed in
the former subchapter regarding shortening convergence duration of the ES.

In order to fill these two gaps, the work in Chapter 3.3 utilizes extremum seeking method
to on-line identify the time delay in a system and proposes a general design guideline
that makes a general stabilization controller works simultaneously with the unknown delay
identification process and that the identification process has little influence on the overall
closed-loop control scheme in terms of stability and oscillation.



Chapter 3

Work of the thesis

3.1 The effect of delay on the ES

For perturbation-based adaptive ES, there are articles [25, 29] in the literature that proved the
stability of the ES. Recently, several papers [36–38] proposed delay compensation method
for the ES when a time delay is present in the closed loop of the ES. Between these two
stages, there are few papers that have analysed the effect of delay on the working of the ES.
Here is the mathematical explanation about the effect of delay on the working of the ES
in terms of stability and convergence. Consider a smooth single-input-single-output static
system Q(θ) with an unknown time delay D.

Problem Given Assumption 2.2.1, find θ ∗ in the presence of unknown output delay
D, from only measurements of y(t) and θ(t).

Diagram of the ES

Fig. 3.1 ES for static mapping with output delay section
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A simple diagram of the ES scheme with time delay is shown in Figure 3.1. It indicates
that the closed loop dynamics satisfy:

y = Q(θ(t −D)) = Q
(
θ̂(t −D)+asin(ω(t −D))

)
(3.1)

ζ = bsin(ωt) · y = bsin(ωt) ·Q
(
θ̂(t −D)+asin(ω(t −D))

)
(3.2)

˙̂
θ = δ ·ζ = δ ·bsin(ωt) ·Q

(
θ̂(t −D)+asin(ω(t −D))

)
(3.3)

where a,b are the amplitudes of the dither, ω is the frequency of the dither and δ is the gain
of integral action.

Result (adapted from [29])
Given any mapping Q (meeting Assumption 2.2.1) and unknown delay D, there exists posi-
tive ω∗ (ω∗D = π

2 ) such that for any 0 < ω < ω∗, there exists a∗(ω)> 0 such that for any
0 < a < a∗, there exists (δ ·b)∗(a) such that when 0 < (δ ·b)< (δ ·b)∗, the stability of ES
for the delayed system is guaranteed.

The following analysis gives a more complete understanding of the result. It can be seen
from the analysis that compared with the undelayed case discussed in Section 2.2.2, the
convergence of ES is longer for the same system with an extra unknown time delay because
the time delay further restricts the value of the ω & δ ·b, which decreases the updating step
size abδ

2 in time t domain and thus prolongs the convergence of ES.

Analysis
By using Taylor series expansion for Q(θ̂(t −D)+asin(ω(t −D))), it leads to

Q(θ̂(t −D)+asin(ω(t −D)))

= Q(θ̂(t −D))+Q′(θ̂(t −D)) ·asin(ω(t −D))+
1
2
·Q′′(θ̂(t −D)) · (asin(ω(t −D)))2

+O(a3) (3.4)

Substituting (3.4) into (3.3) yields

˙̂
θ = δ ·bsin(ωt) ·

[
Q(θ̂(t −D))+a ·Q′(θ̂(t −D)) · sin(ω(t −D))

]
+δ ·bsin(ωt) ·

[
a2

2
·Q′′(θ̂(t −D)) · (sin(ω(t −D)))2 +O(a3)

]
(3.5)

We can re-write (3.5) into a new time scale σ = ω · t:
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dθ̂

dt
=

dθ̂

dσ
· dσ

dt
= ω · dθ̂

dσ
= δ ·ζ = δ ·bsinσ ·Q(θ̂(σ −ωD)+asin(σ −ωD))

i.e.
dθ̂

dσ
=

δ

ω
·bsinσ ·

[
Q(θ̂(σ −ωD))+a ·Q′(θ̂(σ −ωD)) · sin(σ −ωD)

]
+

δ

ω
·bsinσ ·

[
a2

2
·Q′′(θ̂(σ −ωD)) · (sin(σ −ωD))2 +O(a3)

] (3.6)

By using trigonometric identity for sinσ , it leads to

sinσ = sin[(σ −ωD)+ωD]

= sin(σ −ωD)cosωD+ cos(σ −ωD)sin(ωD)
(3.7)

Substituting (3.7) into (3.6) yields

dθ̂

dσ
=

δb
ω

· cosωD ·
[
Q(θ̂(σ −ωD))sin(σ −ωD)+a ·Q′(θ̂(σ −ωD)) · (sin(σ −ωD))2]

+
δb
ω

· cosωD ·
[

a2

2
·Q′′(θ̂(σ −ωD)) · (sin(σ −ωD))3 +O(a3)

]
+

δb
ω

· sinωD ·
[
Q(θ̂(σ −ωD))cos(σ −ωD)+a ·Q′(θ̂(σ −ωD)) · sin(σ −ωD)cos(σ −ωD)

]
+

δb
ω

· sinωD ·
[

a2

2
·Q′′(θ̂(σ −ωD)) · (sin(σ −ωD))2 cos(σ −ωD)+O(a3)

]
(3.8)

Next, let us look at the averaged system of Equ.(3.8):

dθ̂av

dσ
=

δb
ω

·
[

cos(ωD) · 1
2π

∫ 2π

0
[ · ] dσ + sin(ωD) · 1

2π

∫ 2π

0
[ · ] dσ

]
(3.9)

Applying trigonometric identities to (3.9), it leads to

dθ̂av

dσ
=

abδ

2ω
· cos(ωD) ·

[
Q′(θ̂av(σ −ωD))+O(a2)

]
(3.10)

Apply Talyer expansion for Q′(θ̂av(σ −ωD)), it leads to

Q′(θ̂av(σ −ωD)) = Q′(θ̂av(σ))+Q′′(θ̂av(σ)) · (θ̂av(σ −ωD)− θ̂av(σ))

+O(θ̂av(σ −ωD)− θ̂av(σ))2
(3.11)
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Consider Equation (3.9), for any given mapping Q, delay D and ω,a > 0,

θ̂av(σ −ωD)− θ̂av(σ) = O(
δb
ω

·ωD) = O(Dδb) (3.12)

Substituting (3.12) into (3.11) yields

Q′(θ̂av(σ −ωD)) = Q′(θ̂av(σ))+Q′′(θ̂av(σ)) ·O(Dδb)+O(Dδb)2 (3.13)

That is, for any given delay D, mapping Q and frequency ω , there exists a∗ > 0 such that for
any 0 < a < a∗, there exists (δb)∗(a), such that

Q′(θ̂av(σ −ωD))+O(a2)≈ Q′(θ̂av(σ)) (3.14)

Therefore, Equation(3.10) can be approximated as:

dθ̂av

dσ
=

abδ

2ω
· cos(ωD) ·Q′(θ̂av(σ)) (3.15)

Transform (3.15) into the orignal t time coordinate:

dθ̂av

dt
=

dθ̂av

dσ
· dσ

dt
=

abδ

2
· cos(ωD) ·Q′(θ̂av(t)) (3.16)

Providing that 0 < ωD < π

2 , the system (3.16) is asymptotically stable.

The next step is to check the closeness between the orignal system (3.8) and the averaged
system (3.9). Regarding the original system (3.8), given Q,D,ω,a, the terms in the brackets
are always bounded. Thus, we can always keep the two systems as close as possible by
tuning δb

ω
as small as possible. In other words, given Q,D,ω & a, there exists (δ ·b)∗ such

that when 0 < (δ · b) < (δ · b)∗, the original system can be approximated by its averaged
system.

To sum up, given any mapping Q (meeting Assumption 2.2.1) and unknown delay D,
there exists positive ω∗ (ω∗D = π

2 ) such that for any 0 < ω < ω∗, there exists a∗(ω) > 0
such that for any 0 < a < a∗, there exists (δ ·b)∗(a) (meeting the averaging approximation
(3.9) and the approximation (3.14)) such that when 0 < (δ ·b)< (δ ·b)∗, the stability of ES
for the delayed system is guaranteed.
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3.2 Convergence improvement for the ES

Let us consider a general continuous-time SISO nonlinear static mapping case and this model
calibration problem is a discrete-time application of this general continuous-time case. The
problem formulation is as follows.

Problem Find θ ∗ under the given Assumption 2.2.1 and known range θ ∗ ∈ [θ , θ ], without
knowing Q or Q′.

3.2.1 Proposed diagram

The proposed structure of the ES is shown in Figure 3.2.

Fig. 3.2 ES with controller

Compared with the ES diagram mentioned in the former sub-chapter, this ES strucutre
has three extra parts, i.e. high-pass filter, low-pass filter and a controller. There are local [25]
and non-local [29] stability proof for the ES structure with low-pass and high-pass filters.
The reason why we use the ES structure with filters is that the effect of environmental noise
can be kept small.

My contribution is that a controller is added to the ES. The fundamental structure of the
proposed diagram (Fig. 3.2) is shown in Figure 3.3.
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Fig. 3.3 Fundemantal structure

The output ˙̂
θ is the estimate of convergence speed of ES. The purpose of the controller is to

regulate the output ˙̂
θ to a neighborhood of the reference convergence speed ˙̂

θre f erence. The
final error bound | ˙̂

θ − ˙̂
θre f erence| depends on the design of the look-up table in the controller

(Step 2), but this scheme could help improve the convergence performance of the ES.

3.2.2 Operation principle

The algorithm in the controller is illustrated in Figure 3.4.

Fig. 3.4 Diagram of the algorithm

1. Observe current gradient information of the cost function, i.e. Q′(θ).

2. Give instructions to increase or decrease dither frequency ω & amplitude b or frequency
ω & integral action gain δ based on the observed gradient information and contsructed
look-up table.

3. Check validity. Decide whether the current value of θ̂ is an acceptable estimate of
θ ∗, i.e., whether θ̂ has converged into a suitable small neighborhood of θ ∗. If yes,
exponentially decreasing the dither amplitude a and ES process ends; otherwise, go to
Step 1.

As it has already discussed in the Chapter 2.2.2,

y = Q(θ̂ +asinωt)

= Q(θ̂)+Q′(θ̂) ·asinωt +
1
2
·Q′′(θ̂) · (asinωt)2

+
1
6
·Q′′′(θ̂) · (asinωt)3 +O(a4)

(3.17)
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after well-designed high-pass filter (ωh ≤ ω/2), the signal is

Q′(θ̂) ·asinωt − a2

4
·Q′′(θ̂) · cos2ωt +

1
6
·Q′′′(θ̂) · (asinωt)3 +O(a4)

after demodulation, the signal is

ab ·Q′(θ̂) · (sinωt)2 − a2b
4

·Q′′(θ̂) · sinωt cos2ωt +
a3b
6

·Q′′′(θ̂) · (sinωt)4 +O(a4b)

=
ab
2
·Q′(θ̂) · (1− cos2ωt)− a2b

4
·Q′′(θ̂) · sinωt cos2ωt

+a3b ·Q′′′(θ̂) · ( 1
16

− cos2ωt
12

+
cos4ωt

48
)+O(a4b)

after the low-pass filter (ωl < ω), the signal is

ζ =
ab
2
· [Q′(θ̂)+

a2

8
Q′′′(θ̂)+O(a3)] (3.18)

which shows that ζ is a good estimate of the gradient as long as dither amplitude a is small
enough, i.e.

ζ ≈ ab
2
·Q′(θ̂) (3.19)

Step 1: Observe the gradient Q′(θ̂)

As is shown in the deduction, ζ contains the gradient information. The controller will first
process ζ (t) signal before accepting it as the gradient vaule.

ζp(t) =
1
T

∫ t

t−T
ζ (τ)dτ (3.20)

where T can be chosen as 4 ∼ 8 integer times the period of the dither signal. There are two

Fig. 3.5 ζ signal
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Fig. 3.6 ζp signal

reasons why ζ signal is averaged during a fixd-size (multi-period) moving window. Firstly,
ES uses averaging technique when analysing its stability, and if ES signals are observed
during each dithering period, signals are actually dithering within each period, so is ζ signal.
Secondly, in the context of the averaging analysis, the averaged gradient is taken over one
period only. But in the presence of measurement noise, the gradient information taken over
a very short period may not be as effective as the information obtained from a relatively
long period, which is reflected from empirical study. Therefore, the gradient information is
acquired over multiple periods in this case. The value of T in Equation (3.20) can be chosen
based on the specific application. An example of the comparison between ζ signal and ζp

signal is shown in Figure 3.5 and 3.6.

Step 2: Adjust θ̂ updating speed

Based on the current value of ζp(t), dither amplitude b or integral gain δ is adjusted with
a view to having a better updating speed of the parameter θ̂ . Going back to Equation (3.19)
and the ES structure in Fig. 3.2, the updating law of parameter θ̂ is:

˙̂
θ = δ ·ζ ≈ abδ

2
·Q′(θ̂) (3.21)

Given δ ,a,b, the smaller the gradient Q′(θ̂), the smaller the ζ or ζp and the slower the
parameter updating speed ˙̂

θ . Therefore, when ζp is beyond an ideal range which shows the
gradient is smaller or larger than expection, parameter b or δ can be adjusted in order to have
a suitable θ̂ updating speed.

Based on Equation (3.21), the bound of the updating speed can be estimated. As is
discussed,

ζp ≈ ζ ≈ ab
2
·Q′(θ̂) (3.22)
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When ζp is calculated between [ζ ,ζ ], according to Equation (3.21), ˙̂
θ ∈ [ζ ·δ , ζ ·δ ]. Thus, if

there is a desired parameter updating speed ˙̂
θd , we can choose a new ωn = ε ·ω and bn = ε ·b,

or ωn = ε ·ω and δn = ε ·δ such that

ε ·ζ ·δ < ˙̂
θd < ε ·ζ ·δ (3.23)

which shows that the updating speed ˙̂
θ is now adjusted into a vicinity of the ideal speed ˙̂

θd .

The design guideline mentioned above is practical. For an engineering project, there is
always a convergence duration limit set by the reality and the length of the parameter range∣∣θ −θ

∣∣ is normally known. Therefore, we can have an ideal updating speed ˙̂
θd based on the

information about the length and time limit. All the other information (a,b,δ ,ζp) is known
(a,b,δ are defined from normal tuning practice and current ζp is on-line calculated), thus
ε is obtained from inequality Equations (3.23). The corresponding ε value for each bound
[ζ , ζ ] can be stored in the controller part, similar to the relationship of engine look-up table
and engine control unit.

The look-up bound of ε could be designed in a very simple way. For example, for this
engineering project, we only need to design two bound range for ε , one for the normal part,
the other one for the flat area in the cost function. There is a design example for a general
case in Chapter 3.2.3, explaining the design procedure and parameter setting.

Step 3: Check validity of θ̂

When the measured value of ζp approaches zero, there are two possiblilities, i.e.

• θ̂ converges into a very small neighborhood of θ ∗,

• or θ̂ goes into a flat area where the gradient within the area is very small.

How to discriminate these two cases is the thing Step 3 will discuss.

Case 1:
When θ̂ has converged into a very small neighborhood of θ ∗, what will happen if b is
increased to some extent?

Let us go back to Assumption 2.2.1 and the updating law (3.21). According to the
assumption, when θ̂ = θ̂ ∗+∆θ (∆θ > 0,∆θ ≈ 0), Q′(θ̂) < 0; based on the updating law
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˙̂
θ = abδ

2 ·Q′(θ̂), ˙̂
θ < 0 and θ̂ will go to the left side of θ̂ ∗. When θ̂ = θ̂ ∗−∆θ (∆θ >

0,∆θ ≈ 0), Q′(θ̂)> 0; based on the updating law, ˙̂
θ > 0 and θ̂ will go to the right side of

θ̂ ∗. When θ̂ has converged into a very small neighborhood of θ ∗, θ̂ will oscillate around θ̂ ∗,
which is commonly known in the literature.

When b is increased to some extent, according to the updating law, | ˙̂
θ | will be bigger,

which will incur larger range of oscillation around θ̂ ∗; ζ will also oscillate around 0 with
larger oscillation amplitude. An example is shown in Figure 3.7.

Fig. 3.7 larger oscillation with increased b

Case 2:
When θ̂ goes into a flat area where the gradient within the area is very small, what will
happen if b is increased to some extent?

Fig. 3.8 convergence comparison between un-increased and increased b or δ
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When increasing b to some extent, the updating speed ˙̂
θ will be increased to some extent,

which accelerates the ES convergence process. An example is shown in Figure 3.8.

If θ̂ has not converged into a small neighborhood of θ̂ ∗, the ES convergence process will
go on until θ̂ goes into a small neighborhood of θ̂ ∗. However, due to the existence of the flat
area where the gradient is very small, ES convergence duration will be quite long since ES is
gradient-driven method and ES convergence speed will be slow if the gradient information is
weak. Or according to the updating law (3.21), when |Q′(θ̂)| is small, the updating speed ˙̂

θ

will be small, which causes longer convergence time.

Check validity of θ̂

As is clearly compared between these two cases, when the measured value of ζp ap-
proaches zero, we could make a distinction between the two cases by increasing dither
amplitude b.

• If the oscillation amplitude of θ̂ or ζ is larger while the averaged θ̂ and ζ values
over integer times dithering period are still the same, θ̂ has converged into a small
neighborhood of θ̂ ∗.

• If the oscillation amplitudes of θ̂ and ζ do not change too much while the averaged
θ̂ value goes on moving, θ̂ is now in a flat area and it has not converged into a small
neighborhood of θ̂ ∗.

The method [5] to detect oscillation amplitude is

ζ = amsin(ωut)−→ (·)2 −→ lowpass f ilter or average −→ 2
√

2 · (·)−→ am

where am > 0 is the unknown oscillation amplitude, and ωu > 0 is the oscillation frequency.

The improvement method is to improve the existing ES tuning methods. In other words,
the improvement method consists of normal tuning practice (for the initial value of the ES
tuning paramters) and the controller design. As long as the initial value guarantees the
stability of the ES, the proposed method is correct since the stability of the ES has not been
changed as the value of the parameter (a, δb

ω
) has never been changed (cf. Chapter 2.2.2

Extremum seeking).
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3.2.3 Simulation example

Let us illustrate the method with a simple example.

Cost function Q(θ):

Q(θ) =

{
0−1∗ (θ −10)2 , if |θ −10| ≥ 6

−36−0.01∗ |θ −10|+0.06 , if |θ −10|< 6
, θ ∈ [0,20]

Fig. 3.9 Cost function map

Improvement Design = Normal Tuning Practice (existing) + Controller Design (contribution)

Normal tuning practice

Based on the normal ES tuning practice, the parameters for this case are tuned as below:

Parameter Value Meaning

a0 0.5 dither signal amplitude a

b0 2 dither signal amplitude b

ω 50 dither signal frequency, rad/sec

δ0 0.1 integral section gain

ωh 30 high-pass filter cutoff frequency, rad/sec

ωl 5 low-pass filter cutoff frequency, rad/sec

Table 3.1 ES parameter value table
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Here is the result for the normal tuning practice, as is shown in Figure 3.10.

Fig. 3.10 ES result for normal tuning practice

As is shown from the result, when θ̂ goes into the flat area, the convergence speed is very
slow; θ̂ stays around 4.5 and its further convergence is almost invisible.

Controller design

Suppose the maximum convergence speed ˙̂
θmax is 4, which is evaluated from specific

project requirements. The parameter ε can be decided as:

ε =

{
1 , if |ζp| ≥ 0.1

400 , if |ζp|< 0.1

since when |ζp|< 0.1, |ε ·δ ·ζp|< 400 ·0.1 ·0.1 = 4 = ˙̂
θmax, which meets the requirement.

Please note that there is a difference between increasing b and δ .

• When using bn = ε · b0, considering Equation (3.19), ζp is also increased; thus ζp

signal needs to be divided by the corresponding ε value before accepting it to give
instructions to adjust parameter value.

• If δ is chosen to be changed, i.e. δn = ε · δ0, there is no need to do any further
processing before accepting ζp signal to give instructions, since parameter δ is totally
decoupled with the gradient signal ζ in the proposed structure (Fig. 3.2).
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Result of improvement design

We still use the same initial tuning parameter vaules obtained from normal tuning practice
part, and the designed controller part is incorporated into ES. Here is the result obtained from
this improvement method, as is shown in Figure 3.11.

Fig. 3.11 ES result for improvement method

As is shown from the result, θ̂ has converged into a small neighborhood of θ ∗;

How about the case without the flat area? what is the convergence result when applying
this improvement method to a cost function map where there is no flat area? Let us still
consider this example but the flat area is removed at this time; thus the cost function is:

Q(θ) = 0−1∗ (θ −10)2 , θ ∈ [0,20]

Fig. 3.12 Cost function map
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Here are the results using the same improvement method with the same parameter values,
as are shown in Figure 3.13, 3.14 and 3.15.

Fig. 3.13 Convergence result - θ̂ signal

Fig. 3.14 Convergence result - ζ signal

Fig. 3.15 Convergence result - θ signal
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As is shown from the results, the method not only drives θ̂ into a small neighborhood of θ ∗,
it also double checks the validity of θ̂ and exponentially decreases the amplitude of dither
signal so that the residual oscillation dies away.

The optimization process for this case is:

• At the beginning, ES is converging based on the normal tuning practice.

• Step 1: Smooth ζ signal and detect the current value of the smoothed ζ signal (ζp(t)).

• Step 2: When ζp(t) is below the designed threshold 0.1, ε is changed from 1 to 400;
as is clearly shown in the figures, there is a sudden jump in θ̂ , θ and ζ signal.

• Step 3: If the averaged θ̂ & ζ do not have obvious change while the oscillation
amplitude of θ̂ or ζ has obviously increased, which shows θ̂ has converged into a
small neighborhood of θ ∗, the controller will give instructions to change ε back to 1
and to decrease the dither amplitude a. Then ES optimization process finishes.

In Step 3, the checking time and the final decaying rate are what we can design. Normally
this checking time is 4∼10 integer times the dither period (dither period is known since ω

value can be passed to the controller), and the checking time is actually very short since ω is
normally a large value. In this case, in order to give a better view of this overall process, I
manually prolonged the checking duration and chose a very small exponentially decaying
rate so that both the checking process and amplitude decaying process are clearly viewed in
Figure 3.14 and 3.15.

To sum up, the fundamental idea of this improvement method is to adjust parameter
updating speed based on the gradient information of the black-box plant. The analysis shows
that this proposed method is able to improve traditional ES performance by further driving
the objective parameter θ into an acceptable neighborhood of the optimal value θ ∗ and thus
helps shorten ES convergence duration. The simulation example illustrates the designing
process of the proposed ES scheme, and the corresponding result shows the operating process
of the design and verifies the validity of the method.
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3.2.4 Application in model calibration problem

Here is the result using the improvement method, as is shown in Figure 3.16.

Fig. 3.16 Convergence result of the improvement method

Compared with the former result in Figure 2.20, the improvement method makes θ̂est

arrive at somewhere between 178∼179 degree while the former method can only drive the
parameter to somewhere between 185∼187 degree. The comparison of the results shows
that the improvement method is more effective and it succeeds in making the parameter
converge into a small neighborhood of the optimal value θ̂ ∗, which verifies the validity of the
method. (θ̂ ∗ lies in somewhere between 178∼179 degree, cf. Fig. 2.19, and all the eight θ̂ ∗

are literally the same since the eight operating points are randomly selected from the same
engine speed 1500 rpm.)
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3.3 Delay identification using the ES

3.3.1 Structure of the scheme

The overall diagram is shown in Figure 3.17.

Fig. 3.17 Overall diagram

The controller output is
u(t) = φ(ud,u f ) (3.24)

where ud is the excitation input for the delay identification process:

ud = φ1(t) (3.25)

u f is the corresponding stabilization control law:

u f = φ2(x̂(t + D̂)) (3.26)

Assume the prediction-like control law (3.26) has been designed. The targets are

• identifying the time delay D, i.e. making D̂ → D;

• designing function φ in (3.24) that makes the parameter (time delay) updating process
have no influence on the simultaeous working process of the feedback stabilization
scheme in terms of stability and oscillation.

Please note that the design for the specific control law (3.26) is not of concern in this thesis.
Let us first finish the task of delay identification for this case.
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3.3.2 Identification design

A successful identification design normally depends on five factors [10]; the current progress
of the actuator delay identification problem is shown in Table 3.2.

Factor Current status

Construction of model Model has been designed and calibrated

Available information of plant Corresponding plant output can be measured

Excitation signal Unfinished

Criterion to be optimized Unfinished

Optimization algorithm Unfinished

Table 3.2 System identification factors and current status of the problem

In order to give a better view of the problem and design method, let us use a simplified
problem to illustrate the overall idea.

Simplified Problem 1

Consider a monotonic (continuously increasing or decreasing) signal um(t) and its delayed
signal um(t −D) with time delay D. The identification scheme is shown in Figure 3.18.

Fig. 3.18 The diagram of delay identification for monotonic signal

Statement Considering the cost function J(D̂, t) = |um(t − D̂)− um(t −D)|, there exists
only one equilibrium (D̂ = D > 0) that makes J = 0; and for any feasible t, when D̂ is
approaching D from any side of D (D− or D+), the cost function J(D̂, t) → 0.
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Proof

Suppose ∃ t,D2 ̸= D =⇒ J(D2, t) = 0.
∵ um(t) is monontonic with respect to t ∴ um(t −D2) = um(t −D)

∵ um(t) is monontonic with respect to t ∴ t −D2 = t −D
=⇒ D2 = D, which is contradictory the the assumption "∃ D2 ̸= D =⇒ J = 0".
Thus, there exists only one equilibrium D̂ = D that makes J(D̂, t) = 0.

Suppose um(t) is monotonically increasing with respect to t and D̂1 < D̂2 < D.

J(D̂1, t)− J(D̂2, t) = |um(t − D̂1)−um(t −D)|− |um(D̂2)−um(t −D)|
= um(t − D̂1)−um(t −D)− [um(t − D̂2)−um(t −D)]

= um(t − D̂1)−um(t − D̂2)> 0

which shows that when um(t) is a monotonically increasing signal and D̂ is approaching D
from the left side, the cost function J(D̂, t) is monotonically decreasing to 0 with respect to D̂.

So it is the same with the proof for the other three cases:

• um(t) is monotonically increasing and D̂ is approaching D from the right side;

• um(t) is monotonically decreasing and D̂ is approaching D from the left side;

• um(t) is monotonically decreasing and D̂ is approaching D from the right side;

Therefore, for any feasible t, when D̂ is approaching D from any side of D (D− or D+), the
cost function J(D̂, t) → 0.

Q.E.D.

Problem formulation

So it comes to the question of identifying the time delay D for this case. If just considering
the cost function J with respect to D, it is a simple minimization problem which can be easily
solved using SISO ES for static mapping case. However, the cost function J(D, t) is also
influenced by the parameter t. Please note the parameter t does not change the sign of ∂J

∂D ;
when D̂ is approaching D from either side, J is decreasing to 0. What the parameter t changes
is the cost function value, that is, the value of ∂J

∂D . The problem for this case is formulated as
next.
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Assumption 3.3 Consider a smooth, monotonic signal. There exists a unique D∗ minimizing
J(D, t) and the following holds:

J(D∗, t)< J(D∗+ζ , t) , ∀ζ ∈ R−{0}, t ∈ R (3.27)

∂J(D∗+ζ , t)
∂ (D∗+ζ )

·ζ > 0 , ∀ζ ∈ R−{0}, t ∈ R (3.28)

Problem Find D∗.

Method Gradient algorithm: ˙̂D =

{
−δ · ∂J(D̂, t)

∂ D̂
, D̂ ̸= D∗

0 , D̂ = D∗ , ∀ t ∈ R, δ > 0

Stability analysis

Construct Lyapunov function
V = (D̂−D∗)2 (3.29)

where V > 0 ∀D̂ ̸= D∗ and V = 0 ⇐⇒ D̂ = D∗.

Then for any D̂ ̸= D∗,

V̇ = 2 · (D̂−D∗) · ˙̂D = 2 · (D̂−D∗) · (−δ · ∂J(D̂, t)
∂ D̂

)

=−2δ · (D̂−D∗) · ∂J(D̂, t)
∂ D̂

(3.30)

Let ζ = D̂−D∗, and take it into Equation (3.30), which leads to

V̇ =−2δ · ∂J(D∗+ζ , t)
∂ (D∗+ζ )

·ζ (3.31)

where V̇ < 0 ∀ζ ̸= 0, and V̇ = 0 ⇐⇒ ζ = 0 (D̂ = D∗).

According to Lyapunov theory [8], the system is asymptotically stable and Lyapunov function
V will converge to 0, that is, D̂ converges to D∗.

Extremum seeking

Extremum seeking is a way of implementing the gradient algorithm, as is proved in
[25, 29], or as is discussed in the former Chapter 2.2. Therefore, if considering the assumption
that ∂J

∂ D̂
exists except for one point D∗, ES can at least drive the parameter D̂ into a small

neighborhood of D∗, and the delay time for this case is thus identified.
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Problem 2

Based on the simplified problem one, let us consider a further problem. Here is a linear
time-invariant system

ẋ = Ax+Bu(t −D), x(t0) = x0, x ∈ Rn,n ∈ N+

y =Cx, y ∈ R
(3.32)

with controllable (A,B), observable (A,C) and stable A. The plant states are unknown while
the output can be measured.

Here is an observer (3.33) with exact matrixes Â = A, B̂ = B and Ĉ =C.

˙̂x = Ax̂+Bu(t − D̂), x̂(t0) = x̂0, x̂ ∈ Rn,n ∈ N+

ŷ =Cx̂, ŷ ∈ R
(3.33)

The structure of the delay identification scheme is shown in Figure 3.19.

Fig. 3.19 Structure of ES for the delay identification

The cost function for extremum seeking (criterion to be optimized) is:

J = |ŷ(t)− y(t)| (3.34)

The only remaining factor in Table 3.3 that waits designing is the excitation input. In
order to give a better view of the excitation design, let us do a comparison between Problem
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1 and Problem 2.

Factor Current status
Construction of model Model is accurate
Available information of plant Plant output can be measured
Excitation signal Unfinished
Criterion to be optimized Equation (3.34)
Optimization algorithm Extremum seeking

Table 3.3 System identification factors and current status

Comparison with Problem 1

The fundamental idea of delay identification for this LTI case is still the same as the
Problem 1: there is a monotonic output signal from the model and there is the corresponding
delayed monotonic output signal from the plant; optimization method like ES or least-square
can be utilized to identify the delay by minimizing the absolute error between the two output
signals, since there exists only one equilibrium D̂=D that makes the absolute error minimum,
as it is proved in Problem 1. There are many papers in the literature that utilizes least-square
as the optimization method to identify the delay and few has ever used extremum seeking
with regard to delay identification, we will use ES to illustrate the idea.

In Problem 1, the signal is static (the input - output relationship is a static mapping) while
in Problem 2, the output signal is a dynamic signal, the dynamics introduced by LTI system.
For the static signal case (Problem 1), it is shown that D̂ can converge into a suitable small
neighborhood of D by utilizing ES optimization method. So the barrier of extending from
Problem 1 to Problem 2 is the dynamics introduced by the system.

Handling dynamics

In order to have an good approximation of the steady state input-output mapping, singular
perturbation technique [8] is utilized to handle the dynamics of the system in Problem 2. The
fundamental idea is time-scale separation [8]: As long as the input to the plant changes slowly
enough compared to the dynamics of the plant, the relationship between plant input and plant
output can be approximated as a static mapping, i.e. steady state input-output mapping. Thus,
The dynamics of the plant can be handled and Problem 2 can be approximated as Problem 1.
For detailed proof of this technique, please refer to [8].
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Excitation signal

The excitation signal for Problem 2 is the control input to both the plant and model.
Theoretically speaking, the control input (excitation signal) can be designed as:

ud = u0 + ks · t , ks ̸= 0 (3.35)

where u0 is the initial control input value and ks is the slope which is the tuning parameter.

In terms of the input to steady-output relationship of a LTI system, a monotonic input
signal to the system will produce a monotonic steady-output signal (superposition principle).
In order to handle the dynamics of the output signal, the input signal is supposed to change
slowly enough compared with the dynamics of the system, so that the input-output relation-
ship can be approximated as a static (input to steady-output) mapping. This task is achieved
by tuning the parameter ks in Equation (3.35). That is, as long as the absolute value of ks is
sufficiently small, the change of the input signal can be sufficiently slow compared with the
dynamics of the system, and the input to output relationship can be approximated as a static
mapping, thus transforming Problem 2 into Problem 1.

In reality, the control input (excitation signal) is always within a bound and thus it can be
designed as:

ud = u0 + ka · sin(ωst) , ka,ωs > 0 (3.36)

where u0 is the initial control input value and ka,ωs are the tuning parameters.

Compared with the control input (3.35), the input (3.36) is bounded and the corresponding
parameter ka can be adjusted so that the control input meets the boundness requirement set
by the real operation condition. The tuning parameter ωs in (3.36) is used for implementing
singular perturbation technique; when ωs is small enough, the change of the input (3.36)
can be sufficiently slow compared with the dynamics of the system, and the input to output
relationship can be approximated as a static mapping.

There maybe some arguments that the excitation input (3.36) is not correct since it causes
mutiple equilibriums for the delay identification, that is,

D̂ = D+n · 2π

ωs
, n ∈ Z (3.37)
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However, each equilibrium has its own domain of attraction. Considering the phase shift of a
periodic signal, it is easily seen that the domain of attraction for each equilibrium is

D̂ → D , if initial D̂ ∈ (D− π

ωs
, D+

π

ωs
)

Please note ωs is a small value in order to implement singular perturbation technique, that is
to say, (D− π

ωs
, D+ π

ωs
) is a very large range. In reality, there is some information, more

or less, regarding an inexact off-line approximation of delay, which serves as the initial
condition D̂(t0) for the delay identification process. Few engineer in reality will choose a
nonsense initial estimate value of delay that deviates far from its real value in order to make
the delay identification scheme unsuccessful.

Time-scale design

A very important point of this identification design is the time-scale separation that guaran-
tees an acceptable extension from Problem 1 to Problem 2. During the delay identification
process, there are three different changing process that stays in different time scales. The
time-scale design of the overall identification process is shown in Table 3.4.

Process Time scale

Dynamics of system (plant and model) Fast

Extremum seeking scheme Medium

Change of excitation input Slow

Table 3.4 Design of time-scale for each process

Tuning guideline

Regarding the ES structure in Figure 3.19 and choosing the excitation input signal (3.35) for
theoretical analysis, the tuning guidelines of ES and excitation signal (3.35) are:

Excitation signal
Given (A,B), ∃ |ks|∗ ⇒ |ks| ⇒ ks (3.38)

• Tuning guideline (3.38) means that given the matrixes (A,B) of a dynamic system
describled in Problem 2, there exists a maximum |ks|∗ such that as long as |ks|< |ks|∗,
the change of control input is always slow enough compared with the dynamics of the
system, meeting the requirement of time-scale separation in Table 3.4.
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Extremum seeking

Given (A,B), ∃ (a ·b ·δ )∗ ⇒ 0 < abδ < (abδ )∗ ⇒ abδ (3.39)

∃ a∗ ⇒ 0 < a < a∗ ⇒ a ⇒ (
δb
ω

)∗(a)⇒ 0 <
δb
ω

< (
δb
ω

)∗(a)⇒ δb
ω

(3.40)

Given abδ , a &
bδ

ω
⇒ bδ & ω (3.41)

• Tuning guideline (3.39) guarantees that given the matrixes (A,B), there exists a maxi-
mum step size of the ES (a·b·δ

2 )∗ such that as long as (abδ )< (abδ )∗, the updating of
ES process is always slow enough compared with the dynamics of the system. It makes
little difference to the stability of the overall scheme whether ES is in the medium
time-scale or slow time-scale, as long as ES updating is always slow enough compared
with the dynamics of the system. However, with guaranteed stability, we always desire
a shorter convergence of the process, which is the reason why we put ES updating in
the medium time-scale so that the overall identification process finishes as quickly as
possible.

• Tuning guideline (3.40) is a standard ES tuning, as is discussed in Chapter 2.2.2. There
exists a∗ > 0 and 0 < a < a∗ in order to do the Approximation (2.30). Given a, there
exists (bδ

ω
)∗(a) such that 0 < (bδ

ω
) < (bδ

ω
)∗(a), which is required for the averaging

technique.

• Tuning guideline (3.41) is the last sequence. Based on the given value of abδ , a & bδ

ω

respectively set in (3.39) and (3.40), we could get the value of b ·δ & ω . Pick δ and
then choose b value or pick b and then choose δ value. Thus, the setting for all tuning
parameters finishes.

By this stage, all the five factors of the identification design are finished and the delay
identification task is done. The next step is to design a guideline that makes the delay
identification process have no influence on the simultaneous working process of the closed-
loop control scheme in terms of stability and oscillation.

Simultaneous working design

Once the delay identification task is finished, the next task for us is to design the simultaneous
working principle to guarantee the simultaneous working process of the identification and
stabilization process.
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Assume a general prediction-like control law u f = φ2(x̂(t + D̂)) is constructed. When
the parameter D̂ is updating simultaneously which is normally characterized by fast transient
variation and oscillation, the control input u f (x̂, D̂) is also oscillating and fast varying, which
could cause undesired performance of the overall closed-loop scheme in terms of stability
and oscillation. Furthermore, during the delay identification process, the regulation control
input u f will disrupt the identification input (excitation signal ud), since these two processes
use the same controller in Figure 3.17. It would be interesting and essential to know how
to handle the simultaneous working process of the two parts and make the two working
processes in harmony with each other.

Here is the design to achieve the goal. Since the overall closed-loop controller has two
tasks to fulfil, i.e., feedback stabilization and delay identification, the corresponding changing
law of the controller can be designed as:

u = (1−λu) ·u f
(
x̂, D̂

)
+λu ·ud (3.42)

where
λu = 1− 1

1+α · |ŷ− y|
, α > 0 (3.43)

The first part of the control law (3.42) is for feedback stabilization, the second part for delay
identification.

λu is an adaptively varying coefficient that guarantees the asymptotical separation of the
two working processes. It has two roles:

• ensuring the delay identification process starting first;

• making the delay identification process fade away by itself; when the identification
process finishes, the excitation signal (control input for identifying the delay) vanishes.

The control process is: at the beginning (the control input begins to change), λu ≈ 1 due
to the existence of error between ŷ and y; at this time, the control input λu ·ud dominates over
(1−λu) ·u f and the error between ŷ and y starts to decrease. During the delay identification
porcess, D̂ is approaching the real delay D and |ŷ− y| is minimizing. When |D̂−D| is below
a threshold, that is, |ŷ− y| is below a threshold, λu starts to decrease sharply and just after a
very short time, (1−λu) ·u f dominates over λu ·ud and the system starts to be stabilized.

α is a tuning parameter; the larger the parameter α , the better the accuracy of delay
identification, and the longer the identification process. Given the system (plant and model)
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and the control input, there exists a monotonically increasing function Fd such that |ŷ− y|=
Fd(|D̂−D|). When α · |ŷ− y| is below a fixed threshold ηth (around 2.5 in Equation (3.43)),
λu begins to decrease sharply and delay identification input begins to vanish. We can always
play with the parameter α , based on the relation |ŷ− y| = Fd(|D̂−D|) < ηth

α
, so that the

bound of |D̂−D| can be adjusted. The larger the parameter α , the smaller the bound of
|D̂−D|, and the longer the identification process.

Application in the engine problem

The engine model, after calibration, is a fixed non-linear model. The feedback regulation
design is to linearize the model around each operation point, thus the model being a linearized
fixed model (linear time-invarient). Based on the Assumption 2.1.2 in Chapter 2.1, the model
can approximate the engine plant with sufficient accuracy, and the engine problem becomes
a close approximation of Problem 2.

Problem 2 is an approximation of the real engine actuator delay identification problem.
In the problem, the model is assumed to be 100% accurate (i.e. Â = A, B̂ = B, Ĉ =C), and
there exists error in reality due to this ideal approximation. A further problem extending
from this work is that what the bound of identification error |D̂−D| is when there exists an
upper error bound between the model and plant.
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3.3.3 Simulation example

Let us illustrate the method with a simple example.

Set A = Â =

[
−2 0
0 −1

]
, B = B̂ =

[
1
2

]
, C = Ĉ =

[
1
1

]
.

Controllable matrix Qc =

[
1 −2
2 −2

]
, the rank of which is full, i.e., controllable.

Observable matrix Qb =

[
1 1
−2 −1

]
, the rank of which is full, i.e., observable.

Initial condition for plant states xo =

[
10∗ rand +5
10∗ rand +5

]
, and observer states x̂o =

[
2∗ rand
2∗ rand

]
.

Plant input delay D is set as follows: the delay will change after each 15-second period,
imitating the change of operating conditions; D = 20 for the first 15 seconds and D = 25 for
the next 15 seconds, the total simulation time is 30 seconds for convenience. Initial condition
for delay identification D̂ = 10∗ rand.

Based on the structure in Figure 3.19 and the tuning guideline mentioned in the former
Chapter 3.3.2, all the other parameters in the simulation are tuned as below:

Process Parameter Value Meaning

a 0.5 dither signal amplitude a

b 1 dither signal amplitude b

ES ω 150 dither signal frequency, rad/sec

δ 0.5 integral section gain

Ts 0.01 discrete sampling time, sec

u0 0 initial condition of input

ud = u0 + ka sin(ωst) ka 100 amplitude of excitation signal

ωs 0.01 frequency of excitation signal, rad/sec

u f = D̂ u f D̂ example to illustrate the separation

Separation design α 1 tuning parameter in (3.43)

Table 3.5 Table of relevant parameters



62 Work of the thesis

Here is the corresponding result, as is shown in Figure 3.20.

Fig. 3.20 Convergence result of the overall process

As is shown from the result, the delay time is identified accurately and the identification
process fades away by itself, which have little influence on the simultaneous working process
of the stabilization control in terms of stability and oscillation.



Chapter 4

Summary of Work

4.1 Contribution

1. illustrated the effect of delay on the working of ES (stability and convergence aspects).

2. Proposed a controller looking at ES convergence performance and adjusting the right
ES tuning parameters to improve the convergence performance of ES. Note that in our
proposed method, the parameter a (amplitude of dither on the left side) has never been
increased during ES operation process, and it is supposed not to be increased in order
to guarantee ES stability and keep the approximation error small.

3. Extended ES to the area of delay identification, utilized singular perturbation technique
to design excitation signal and comed up with an asymptotically separation method
that makes the delay identifcation process fades away by itself, causing little influence
on the corresponding feedback stabilization control in terms of stability and oscillation.

4.2 Extension

1. The proposed ES improvement method can be extended from SISO ES to multivariable
ES case.

2. Relax the assumption that the model is 100% accurate. A further interesting problem
extending from this work is to investigate the relationship between the upper error
bound of the model and the upper bound of identification error |D̂−D|.
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