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Abstract

This thesis studies the phase ambiguity issues and practical solutions when radio waves

are used to measure distance and time with applications to the localization problems in

a wireless sensor network. The work involves theory extension and algorithm develop-

ment.

Inter-sensor measurements, such as phase of arrival, time of arrival and angular of ar-

rival from sensors with known locations to a free sensor node, are often used as an effec-

tive and convenient means for sensor node localization or related parameters in wireless

sensor networks. Fundamentally, all of these measurements devolve to the signal , which

is always wrapped to be within [−π, π]. In most practical applications, one need to un-

wrap the signal phases in order to calculate the distance between sensors. Signal with a

wrapped phase is also known as phase ambiguity in literature. Resolving phase ambigu-

ity problem requires to solve a congruence equation on integers and is traditionally ad-

dressed by the Chinese Remainder Theorem(CRT). However, the solution efficiency and

robustness in practical algorithm development, in particular, when measurement noise

is involved, become the major issues, and these have dominated the research discussion

and direction in recent research literature.

In the thesis, the phase ambiguity problem is described with an application back-

ground of sensor localization in a wireless sensor network. The solutions, especially, the

statistical solutions under the frameworks of both the Chines Remainder Theorem and

lattice theory are discussed. The research starts from the investigation of a closed-form

CRT algorithm and an modified CRT algorithm for resolving signal phase ambiguity

in the presence of measurement noise is developed. It is analytically shown that the

probability of success rate for integer reconstruction can be improved with slightly more

iii



computational complexity. In the consequent study, research is done in the lattice theory

approach, and it is shown that a stochastic phase ambiguity problem can be well and

fits well into the framework of lattice theory. A new condition for the relaxation of the

crucial condition in the early lattice algorithm is derived, which enables the development

of the efficient lattice-based algorithm with more flexibility on the selection of parame-

ters. Meanwhile, a fast iterative lattice algorithm using the concept of a Voronoi cell is

proposed when the parameters are selected arbitrarily. It is also demonstrated that by

taking into account the available variations of lattice structures and bases, an estimator

with multiple candidate hypothesis represented by lattice points is proposed aiming at

increasing the probability of successful reconstruction for different application situations.

Several enhanced alternative algorithms, which are shown to be more efficient, are also

developed.

In parallel with the solutions of key issues of signal phase ambiguity, the major tech-

niques and algorithms for sensor localization in wireless sensor networks are presented.

As an application example, a robot finding an object’s location based on a wireless local-

ization model, where localization noise depends on the distance between the robot and

object, is formulated and analyzed in this thesis. This work demonstrates the importance

of the analytical method, system modelling and statistical signal processing techniques

presented in this thesis. In particular, in this thesis, two cases, static case and dynamical

case, in the finding location problem are considered. It is shown that, by using statistical

tools, the maximum likelihood estimator (MLE) is consistent in both cases under some

mild conditions, which provide crucial information about the asymptomatic behaviour

of the MLE under the complex situation.
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Chapter 1

Introduction

1.1 Background of Wireless Sensor Network

In the last few decades, due to the advances in processor technologies, wireless commu-

nications and accurate sensors that led to the development of small, low cost and power

efficient sensor nodes, we have witnessed huge progress in Wireless Sensor Network

(WSN) techniques. WSN has numerous applications in real life, from environmental

monitoring, disaster monitoring, safety, security and smart grid to intelligent buildings,

smart cars, human tracking and entertainment. The main applications are shown in Fig.

1.1.

WSN

Traffic control
Surveillance

Smart grid

Environmental 
monitering

Health care and 
medical 

application

Smart vhicle

Civil 
infrastructure

Surveillance Wildlife 
monitoring

Industrial 
application

Figure 1.1: The possible applications of WSN

One of the main jobs of WSN is to collect physical data using various built-in sensors

and transmit the information to central server for processing via wireless communica-

tion. Some WSN nodes has computing ability and can process the collected information

locally. In the fields of WSN, the main research topics can be categorised under four
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headings:

1. Sensor localization. In many applications of WSN, the sensor nodes are deployed

randomly in a certain area or the sensor nodes are movable. Therefore, before using

the sensed data provided by nodes, the positions of those nodes need to be deter-

mined, so as to enhance the value of the data. The Global Positioning System(GPS)

is a possible method to obtain the sensor position, however in large scale networks

or areas such as forests or indoors, the GPS is often not available because of higher

cost or low signal strength. Thus, the ability to self-localize is highly desirable. One

of the widely used strategies to achieve self-localization is to allow some sensors,

called anchors, to have their position information at all times via GPS or manual de-

ployment, and to localise other sensor nodes by the use of distance measurements,

geometrical arguments and signal processing.

2. Energy management. In WSN, typically the sensor nodes are low cost and driven

by batteries. When they are deployed in inaccessible regions, such as mountainous

areas or hazardous environments, one of the main issues is the life of sensors which

is largely dependent on the life of batteries. Therefore, in order to improve the

performance of the WSN, the optimization of energy usage is of importance.

3. Routing and communication. Design of a priority routing protocol, aiming to max-

imize communication ability and battery life, is a crucial challenge in WSN.

4 Sensor deployment. Coverage and connectivity are the main requirements for the

deployment of a WSN. To cover a maximum area using a limited number of sensors,

the sensors should be widely spread, but this leads to communication problems.

1.2 Main Localization Techniques in Wireless Sensor Network

Among the research topics of WSN, sensor localization is crucial as it has great influence

on the availability of sensor data. In general, the WSN localization algorithms estimate

the locations of sensors with initially unknown location information by using positional

knowledge of the anchors and inter-sensor measurements such as distance and bearings
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information[2, 3]. Another similar scenario is to use sensor(or robot) to localize a static

target. This case is very similar to the sensor localization using distance, and will be

discussed later, if the unknown sensor is viewed as the static target and unable to com-

municate with anchors.

Generally speaking, the sensor localization techniques can be classified into two cat-

egories, i.e. range-based algorithm an range-free algorithm.

1. Range-based algorithm. In the range-based algorithm, the methodologies used to

estimate the location of unknown sensors rely on the geometric properties of the

sensors, such as triangulation and trilateration. The sensor measurements used to

estimate the unknown location of sensors can be classified into two main types:

1) Angle information or angle-of-arrival (AOA). Angular measurements are also

referred to as bearings measurement. AOA is the angle between the propaga-

tion direction of an incident wave and some reference direction. The angle is

presented in degree, (◦), in clockwise direction and the 0◦ is generally defined

as the North. Directional antennas or sensor arrays are usually used to obtain

the measurement of AOA via calculating the phase difference between sensor

array.

2) Distance information. The distance measurement is defined as the relative

distance between the anchor and unkonwn sensor which could be obtained via

various techniques including phase measurements[4], one-way propagation

time measurements, round-trip propagation time measurements[5, 6], time-

difference of arrival (TDOA) and radio signal strength indicator (RSSI)[7], etc..

As shown in Fig. 1.2, suppose that the unknown sensor is the emitter and the sensor

1, 2 and 3 are receivers, then angles θ1, θ2 and θ3 are the measurements of AOA and

the distance d1, d2 and d3 are the measurements.

2. Range-free algorithm. In range-free localization, the positions of unknown sen-

sors in the network are estimated using the network topology and the proximity

relationship among nodes. The related algorithms include map-based algorithm,
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unknown sensor

anchor 2 anchor 3

anchor 1

θ1

θ2
θ3

d2

d1

d3

Figure 1.2: The angle and distance measurement of WSN

Distance Vector hop (DV-hop) localization, amorphous localization and Approxi-

mate Point in Triangulation (APIT). Range-free algorithms require less hardware,

therefore, are more easily implemented and of lower cost. However, their accu-

racy is generally worse than range based localization. Range-free localization has

attracted much research interest in recent decades [8–10].

The Fig.1.3 illustrates the main categorizations of self-localization in networks, along

with examples of the forms of measurements combined with possible localization algo-

rithms.

1.3 Problem Statement

1.3.1 The Phase Ambiguity Problem

In range-based algorithms, a key issue is how to obtain the distance information between

the sensor and anchor. One of the widely used approaches is to measure the phase

or phase difference[11, 12], of the arrived signal. This approach is easily implemented

and has relatively high accuracy. Examples of localization schemes or algorithms using

phase measurment include Radio Interferometric Positioning System (RIPS)[13], Radio

Frequency IDentification (RFID)[14], mobile sensor localization[15] and acoustic local-

ization[16].
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Self localization

Range based 
algorithm

Range-free based 
algorithm

AOARSSIPhase

General classifications of
 algorithms 

Measurements (examples) Data base Hop count

Trilateration
algorithm

Triangular
algorithm

Map-based
Localization

Multi-hop 
localization

Localization algorithm (examples)

Figure 1.3: The taxonomy of sensor localization algorithm[1]

In general, phase measurements are obtained by measuring the arrived phase of the

received signal or the difference between phases of two arriving signals. Then the relative

distance can be calculated using the relationship between the phase and distance.

There are some issues in the phase-related localization algorithm, such as phase noise

[17], time/frequency synchronization[18, 19], phase ambiguity[13, 15, 20, 21] and multi-

path channel[22,23]. Among these problems, phase ambiguity has the most influence on

the localization accuracy since the phase measurement is limited the the range [−π, π] ,

i.e. wrapped by 2π, and then the true distance between the anchor and unknown sen-

sor cannot be calculated directly. Fig.1.4 shows an example of phase ambiguity in sensor

localization using a pure sinusoidal signal. In Fig.1.4, suppose that sensor A transmits a

pure sine signal with wavelength λ and sensor B measures this signal in order to deter-

mine the distance r between them. However, sensor B can only measure the phase offset

of this signal, i.e. φ, and does not know how many wavelengths are involved in this

transmission. Therefore, the distance between A and B can not be determined exactly.

This phenomenon can be formulated mathematically as follows:

r = nλ + φ (1.1)
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λ

?λ

 

Φ

r=nλ+Φ
A B

Figure 1.4: The example of phase ambiguity

where r is the true distance to be determined, n ∈ Z is an unknown number. It can be

noticed that, in Eq.(1.1), different values of n will result in different values of distance

with the same phase measurement φ. As a result, the phase measurement can not be

used directly in localization algorithms because the true distance has numerous possible

values. In consequence, efficient unwrapping or disambiguation techniques are required

to ascertain the true distance before the localization algorithm can be implemented.

In order to solve the unknown distance r, or equivalently n, multiple phase measure-

ments are obtained by using distinct wavelengths and therefore, a system of congruence

equations can be constructed as


r = n1λ1 + φ1
...

r = nmλm + φm

(1.2)

where n1, · · · , nm are unknown ambiguous integers, λ1, · · · , λm are distinct wavelengths

and φ1, · · · , φm are phase measurements. A crucial concept in resolving the ambiguous r

is the maximum unambiguous distance within which r can be ascertained uniquely from

equation (1.2). This distance is the least common multiplier (LCM) of the wavelengths

used:

r < LCM(λ1, · · · , λm) (1.3)

In the ideal case, i.e the noise-free case, the well-known Chinese Remainder Theorem
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(CRT) is good enough to resolve Eq.(1.2). However, in the real world, the phase measure-

ments are contaminated by noise and, as a result, the conventional CRT is inapplicable

since it is sensitive to noise[24] in the sense that a small error in measurement will lead to

large deviation in estimation since the round operation is directly used in estimating the

integer φi from noisy measurement.

Therefore, the algorithms which can efficiently estimate the distance from the noisy

phase measurements are preferable. In general, there exist three frameworks to do so, i.e.

1. Search-based algorithms. The search-based algorithms compute all the possible

values of unknown distance by searching over the space of the ambiguous integers.

In general, the space of the ambiguous integers is huge and the searching process is

time-consuming. The search-based algorithms are widely used in the case that the

number of wavelengths used is small or the unknown distance is limited to a small

region as it is easy to be implemented and understood.

2. CRT-based algorithm. The CRT-based algorithm is derived from modified CRT. It

is shown to be more robust to noise than conventional CRT and has closed-form

under mild conditions. The CRT-based algorithm is proved to have the same per-

formance with the search-based. Some improvements to this algorithm were pre-

sented to solve ambiguity problem in different practical situations.

3. Lattice-based algorithm. Another candidate algorithm to solve the problem is

based on lattice theory. In lattice theory, the objects of interest are discrete points

arranged in a specific pattern in Euclidean space, and with surroundings that have

identical features. The key idea of lattice-based algorithms in resolving ambiguity

is to reformulate Eq.(1.2) as a closest vector (point) problem (CVP) in lattice theory.

With some conditions, this CVP can be solved efficiently. The conventional lattice-

based algorithm has the same computation complexity and performance with the

CRT-based algorithm. However, because lattice structure can be easily visualized in

low dimensions, and lattices have many good properties, lattice-based algorithms

have a potential for adaptation to fit more situations.

One major focus of this thesis seeks to make contributions to resolve the ambiguous
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distance from noisy phase measurements efficiently under different situations.

1.3.2 Find a Location When Noise Is Distance Dependent

The second major focus of this thesis is the theoretical analysis of static target localisation

using a sensor on a moving platform. As mentioned above, localizing an target is akin

to the localization of unknown sensor in a WSN, so the analysis of the former might help

with understanding of the estimation problem.

Consider a specific scenario where a robot equipped with distance sensor along the

real line and tries to track and reach the position of a fixed target, e.g. a door. An examples

of position localization of robot in 1D case is shown in Fig. 1.5.

Figure 1.5: Illustration of position localization of robot

Suppose that the accuracy of the distance measurement is dependent on the relative

distance between the robot and target, i.e. the closer the robot is to the target the bet-

ter, the accuracy of the measurement. This noise model is found in many applications,

in particular, in radar, sonar and lidar. A standard approach to estimation in these cir-

cumstances is to use Maximum Likelihood Estimation (MLE), or Maximum A Posteriori

(MAP), the posterior mean, or some other standard statistical estimator. Assume that

the robot moves to its estimated location of the target after each measurement and then

performs another measurement. The question we address is whether this process con-

verges, ultimately, so that the robot reaches the target. This seemingly simple problem

is much more difficult than it seems. A proof of convergence in these circumstances is

challenging. Mathematically this problem corresponds to the consistence of the estima-

tor. A natural question is if the robot can grab the bean eventually when the Maximum
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Likelihood Estimation is used? In mathematics, this question can be formulated as the

consistency of the estimator.

Intuitively, there exist two strategies for robot to grab the bean, 1) keeps a static po-

sition and obtains the measurements until the estimation is consistent, and 2) updates

robot’s position using the estimation of bean at each step. We are interested in that, in

either case, if the estimation is consistent eventually under some conditions.

1.4 Contributions

The major contributions of this thesis in resolving ambiguous distance falls into two cat-

egories: 1) relaxing the conditions on the conventional algorithms, and 2) improving the

performance of algorithms in terms of increasing the successful reconstruction of the am-

biguous integers and reducing computation complexity. In detail, the main contributions

include:

1. Relaxation of the coprimality condition in conventional lattice algorithm [25, 26]

One of the advantages of the conventional lattice algorithm proposed in [27] is

that the algorithm returns the distance estimate using wrapped phases in m − 1

steps, where m is the number of wavelengths used, with the same reconstruc-

tion performance of the search-based algorithm. However, in order to achieve

this closed-form property, a crucial condition is that the wavelengths used have

to be co-prime. In practice, this coprimality condition may prevent the algorithm

being used as the wavelengths are in practice normally constrained to a limited

bandwidth [13, 28], such as Wi-fi band (2.4GHz and 5GHz), or Industrial, Scientific

and Medical (ISM) radio bands. In order to solve the distance uniquely, the un-

known distance r has to be less than maximum unambiguous distance as shown

in (1.3), thus the constrained bandwidth imposes limitations on the maximum un-

ambiguous distance. For example, the admissible wavelengths in the 2.4GHz Wi-fi

band are {125, 124, · · · , 120}mm and thus the coprime wavelengths in this interval,

e.g. {121, 120}mm, may not cover a sufficient unambiguous distance. In addition,

the coprimality condition may reduce the resolution of range; for example, in a



12 Introduction

medium-to-high Pulse repetition frequency (PRF) radar, the target may be unob-

servable because of the so-called “blind zone” and clutter [29] when the number

of available PRFs is not enough. Clearly, the usefulness of the algorithm will be

improved by the relaxation of the coprimality condition. Base on this, a relaxed

and more general condition for the lattice algorithm is presented while retaining its

closed form. This new condition allows a larger number of integer-related wave-

lengths to be used.

2. A computationally efficient lattice-based algorithm with non-coprime wavelengths

[30]

Under the relaxed condition mentioned above, the closed-form lattice algorithm

can be used to resolve the ambiguous distance. However, in practice, the available

wavelengths can not always satisfy this relaxed condition. One possible solution

to this is the search-based algorithm. On the other hand, implementation requires

high computational complexity because of the need for exhaustive searches over

the parameter space. In this thesis, a general iterative lattice algorithm to solve this

general ambiguity problem with the non-coprime walvengths is presented. Based

on the work in [31], a modified iteration for closest point searching is derived so that

the proposed algorithm is computationally more efficient than existing approaches.

3. An improved lattice algorithm using different structures of lattice basis [32]

In the problem of resolving the ambiguous distance in localization, one major con-

cern is the probability of successful reconstruction of wrapped integers in high

noise levels, since if the unknown integers are estimated incorrectly, the distance

estimation error can be very significant. In order to increase the probability of suc-

cessful reconstruction, an improved lattice algorithm with slightly more compu-

tations is presented. In the lattice algorithm, the basis of the lattice space, which

influences the performance of the algorithm in a noise circumstance is determined

by the order of wavelengths used. Based on this, in the improved algorithm, the

different structures of the lattice basis are obtained by the ordering of the wave-

lengths used and then more information about the wrapped integers are collected.
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As a result, a set of candidate estimates of the integers are obtained according to

the structures of lattice basis, then a criterion based on the noise distribution is pre-

sented to select a reasonable estimation from the candidates.

4. An improved CRT algorithm [33]

As mentioned earlier, the probability of successful reconstruction of wrapped in-

tegers is of importance in localisation. Our contribution is to improve the perfor-

mance of CRT in terms of the probability of successful reconstruction. In the ex-

isting CRT algorithm, the difference of two integral measurements is used to solve

the wrapped integers. However, in practice, measurements are unnecessary to be

integers due to the noisy, therefore, the difference of measurements are normally

non-integer. The rounding operation applied to the fractional difference yields an

estimate of the value of the integer. This estimate has a significant influence on the

performance of CRT algorithm. Unfortunately, this rounding operation can esti-

mate the difference erroneously in the high noise regime. By considering this, we

propose a modified estimator which is able to compensate for rounding error and

improve the estimate of the difference, thereby improving the performance of the

CRT.

5. A modified lattice algorithm by considering multiple candidate estimations [26,

34]

This contribution is to improve the performance of the lattice in terms of the prob-

ability of successful reconstruction. In contradistinction to the contribution de-

scribed above, which operates by changing the lattice basis, in this case the basis is

fixed, and multiple candidates estimations are obtained by using properties of the

noise. The final estimation is selected using an optimization process. In the conven-

tional lattice algorithm, a lattice point in a certain lattice basis is found which is the

closest one to the given point calculated from the noisy measurements. The correct

result is returned if the given point lies in the Voronoi cell of the lattice point which

corresponds to the ground truth. However, due to the noise, the given point will

not always lie in the correct cell, but in the neighbor ones. By considering this, we
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could consider the neighbor lattice points of the given points as the candidates and

then obtain the estimation using the noise property.

The second major focus of this thesis is an investigation of the behaviour of the MLE

in finding the location of target using distance dependent noise:

6 Finding the position when the noise is distance dependent

We restrict attention to the one dimensional case, since even there the problem is

surprisingly challenging. Consider the case of a robot moving a long the line and

taking measurements of its distance to a fixed target. The robot measurement is the

location of the target, relative to its position, which is unknown. The noise assumed

Gaussian with mean 0 and the variance dependent on the distance between the

robot and target. Conventionally, if normal distribution is considered, the MLE

is consistent if the noise variance is constant. However, when the noise variance is

dependent on the distance, the proof of consistency is, as far as we are aware, absent

from the literature . In the Part III, we prove that the MLE, when the noise variance

is dependent on the distance, is consistent if the robot is static or moving under

some conditions via analyzing the likelihood function and the use of martingale

theory.
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Chapter 2

Preliminaries

In this chapter, the necessary background of lattice theory including the basic definition, closest

vector problem, shortest vector problem and some related algorithms, such as sphere decoder, Babai’s

algorithm and LLL algorithm, are introduced in Section 2.1. In Section 2.2, the localization example in

wireless sensor network using phase difference measurement is introduced and the ambiguity problem

is formulated. The classical Chinese Remainder Theorem is given in Section 2.3

2.1 Introduction to Lattice Theory

Lattice theory is a key part of number theory and studies the arrangement of points in

Euclidean space. It has many applications in mathematics and engineering fields, e.g.

the solution of integer programming problems[35], diophantine approximation[36, 37],

cryptography[38, 39], telecommunication, the design of error correcting codes for multi

antenna systems[40–43] and frequency estimation[44]. This section will cover the defini-

tion, basic problems and related algorithms of lattice.

2.1.1 The Definition of Lattice

Definition 2.1. A lattice Ω is a discrete additive subgroup of Rm, i.e., it is a subset Ω ⊂

Rm satisfying:

1. (subgroup) Ω is closed under addition and subtraction operations;

2. (discrete) ∃ε > 0 such that any two distinct lattice points x 6= y and x, y ∈ Ω

satisfying

‖x− y‖ ≥ ε

17
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Remark 2.1. Not every subgroup of Rm is a lattice.

Another definition is given by

Definition 2.2. Let a1, · · · , an be be linear independent row vectors in Rm and A =
a1
...

an

. The lattice Ω is defined by

Ω , {x = nA|n ∈ Zn} (2.1)

where A called as the basis or generator of lattice and the lattice generated by A is denoted

by Ω(A).

For example, consider following bases of two lattices:

A1 =

 1 0

0 1

 and A2 =

 1 1
2

0
√

3
2

 (2.2)

the lattice Ω(A1) and Ω(A2) are shown in Fig.2.1a and 2.1b, where the red dots are the

lattice points generated by A1 and A2 respectively according to different value of n ∈ Z2.

There are two fundamental problems in lattice theory, that concern us. The first is the

shortest vector problem (SVP) and the second is the closest vector problem (CVP), also

called closest point searching. In lattice theory, the SVP and CVP are central algorithmic

problems which have applications in integer programming [45], factoring polynomials

over the rationals [46], Cryptography [47–49], and much more.

2.1.2 Shortest Vector Problem

In a lattice, the basis is not unique: one could find many bases which generate the same

lattice space. This enables us to change a ”bad” basis to a ”good” one.

There are standard elementary operations on a basis that will retain the basis property

for a given lattice. They are:
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(a) The lattice space with basis A1
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(b) The lattice space with basis A2

Figure 2.1: Two examples of 2-dimensional lattice, the lattice points are denoted by red
dots

1. interchanging two rows in A;

2. multiplication of a row by −1;

3. multiplying a row by an integer and adding it to a second row, thereby replacing

the second row.

Moreover, Lemma 2.1 is usually used in practice to find the alternative basis.

Definition 2.3. A unimodular matrix U is a square integer matrix having determinant

±1; that is, |det(U)| = 1.

Lemma 2.1. Bases A and B generate identical lattice, i.e. Ω(A) = Ω(B) if and only if

there exists a unimodular matrix U satisfying B = UA.

A crucial application of CVP is known as reduction which aims to find a basis in which,

informally, the basis consists of short vectors that are (almost) orthogonal to each other,

whereas “bad” means that it consists of long vectors that generally point in the same (or

opposite) direction. As so (informally) defined it is hard to find basis that is absolutely

the best by this criterion.

Fig. 2.2 shows a reduction example. In the figure, the green vectors [a′1, a′2]
T and

the alternative blue vectors [a1, a2]T are both bases of the lattice and the blue ones are
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evidently better than the green ones as they are shorter.

The orthogonality defect is a measure of the orthogonality of the basis.

Definition 2.4 (orthogonality defect). The orthogonality defect of a basis A =


a1
...

an

,

γ(A), is the quantity

γ(A) =
∏m

i=1 ‖ai‖
|det(ATA)

(2.3)

Remark 2.2. It can be shown that γ(A) ≥ 1 and the equality holds if and only if the

basis is orthogonal.
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-2
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a0

1

a2

a0
2

Figure 2.2: The example of basis reduction.

There exist many notions for reduction, such as Minkowski-reduced[50], Hermite-

Korkine-Zolotarev (HKZ)-reduced[51] and Lenstra-Lenstra-Lovasz (LLL)-reduced bases[46].

Among them, the Minkowski reduction is the most intuitive one. However, as the di-

mension increases, the computation of Minkowski-reduced and HKZ-reduced basis is

NP-Hard.
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1. Minkowski reduction. Before introducing Minkowski reduction, some definitions

are needed.

Definition 2.5 (Successive Minima[52]). For a lattice Ω ∈ Rm, let B(c, r) be a

closed ball center at c with radius r, then define Li as

Li = {r : B(0, r) contains at least i linearly indep. lattice vectors} (2.4)

Then L1 ≤ L2 ≤ · · · ≤ Lm are the successive minima of Ω

Remark 2.3. L1 is the Euclidean length of a shortest nonzero lattice vector of

the given lattice Ω. Fig.2.3 shows an example of successive minima with basis[
1, 1

2 ; 0,
√

3
2

]
, and L1 =

√
3

2 , L2 =

√
1 +

(
1/2−

√
3/2

)2
≈ 1.065.

Definition 2.6 (Minkowski-reduced basis[50]). A lattice basis A = [a1, · · · , am] is

called Minkowski-reduced if, ∀i, 1 ≤ i ≤ m, the vector ai has the minimum norm

among all lattice vectors Ai such that [a1, · · · , ai] can be extended to a basis for

Ω(A).
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Figure 2.3: The example of successive minima with basis
[
1, 1

2 ; 0,
√

3
2

]
.

The basis of an m-dimensional lattice that reaches the m successive minima must

be Minkowski-reduced, however, a Minkowski-reduced basis may not reach suc-
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cessive minima[53]. The Minkowski-reduced basis is optimal up to 4 dimension

compared to other reduction algorithm[53, 54].

Another result states that the orthogonality defect of a Minkowski-reduced basis

can be upper-bounded by a constant that only depends on the lattice dimension.

2. HKZ reduction. Korkine and Zolotarev proposed a reduced basis by strengthening

Hermites size-reduction[51, 55, 56]. In higher dimensions, the reduction of HKZ

reduced basis is stronger than the Minkowski reduced basis in the sense that all

the elements of a HKZ reduced basis are known to be very close to the successive

minima, but the former one is expensive to compute. Next, we introduce the HKZ

reduction and related definitions.

Definition 2.7 (Gram-Schmidt orthogonalization). Let [a1, · · · , am] be linearly in-

dependent vectors. The Gram-Schmidt orthogonalization [a∗1 , · · · , a∗m] is: ∀1 ≤ i ≤

m, a∗i is the component of ai that is orthogonal to the subspace spanned by the vec-

tor [a∗1 , · · · , a∗i−1]. Moreover, the Gram-Schmidt coefficients µi,j satisfy, ∀1 ≤ i ≤ m

ai = a∗i + ∑
j<i

µi,ja∗j (2.5)

and

µi,j =
〈ai, a∗j 〉
‖a∗j ‖

∀ j < i (2.6)

Definition 2.8 (QR decomposition). For any m× n matrix A with rank(A) = n ≤

m, we can construct an m× n orthogonal matrix Q satisfying QTQ = I, where I is

identity matrix, and an n× n upper triangular matrix R such that A = QR.

Then we have following definition:

Definition 2.9 (Size-reduced). A lattice basis A ∈ Rm×n is called size-reduced if

the upper triangular factor R = {ri,j} of the QR decomposition, where i = 1, · · · , m,
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j = 1, · · · , n and ri,j are entries of R, satisfies

|ri,j| ≤
1
2

ri,i for 1 ≤ i < j ≤ n (2.7)

Now, the definition of HKZ-reduced basis is as follows:

Definition 2.10 (HKZ reduction). A lattice basis A = [a1, · · · , am] is said to be

HKZ-reduced if

1) ‖a1‖ = L1(Ω(A));

2) ai is a lattice vector having minimal non-zero distance to the linear span of

(a1, · · · , ai−1) for i ≥ 2;

3) the basis A is size-reduced.

3. LLL reduction. The LLL algorithm of Lenstra, Lenstra Lovász was presented in

[46]. It provides reduced basis in polynomial time with proven quality. The LLL

algorithm is based on the Lagrange-Gauss algorithm and Gram-Schmidt orthogo-

nalization. Since there is no lattice basis reduction algorithm able to give optimal

results in polynomial time, LLL algorithm, which provides an approximation of the

shortest vector, is widely used in many applications.

Definition 2.11 (LLL reduction). Given a δ ∈
( 1

4 , 1
)

and a lattice basis A = [a1, · · · , am].

Let the QR decomposition of A be A = QR (Definition 2.8). Then A is called LLL-

reduced if

1. (size reduction) R is sized-reduced and

2. (Lovász condition) r2
i,i + r2

i−1,i ≥ δr2
i−1,i−1

Remark 2.4. It is usual to choose δ = 3
4 in Lovász condition. It should be noticed

that though the determinant of Q in QR decomposition of A is either 1 or −1, R
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cannot be used for lattice reduction as Q is generally not an integer matrix.

The algorithm to compute the LLL-reduced basis given an original basis is provided

in Algorithm 2.1 at the end of this chapter. The LLL algorithm is an iterative algo-

rithm. As seen in the Definition 2.11, the algorithm falls into two main procedures:

1. the size reduction procedures and; 2. swap procedures (Lovász condition). Size

reduction can be obtained by performing integer linear combinations. On the other

hand, two columns, ai and ai−1, in a basis are swapped if ai is not not significantly

longer than ai−1.

2.1.3 Closest Vector Problem

The Closest Vector Problem (CVP) is also known as the the nearest point searching prob-

lem. Given an m-dimensional lattice Ω and an arbitrary point x ∈ Rm, the CVP aims to

find a lattice point p ∈ Ω which is closest to x in the sense of Euclidean distance, i.e.

p = arg min
v∈Ω
{‖x− v‖} for x ∈ Rm (2.8)

CVP can also be described using Voronoi cells[58].

Definition 2.12 (Voronoi cell of lattice). Given a lattice Ω ⊆ Rm and a point p ∈ Ω, the

Voronoi cell of p, V(Ω, p), is defined by

V(Ω, p) =
{

x ∈ Rm : ∀p′ ∈ Ω, p′ 6= p, ‖x− p‖ ≤ ‖x− p′‖
}

(2.9)

Then the CVP is to find a Voronoi cell of the lattice point which the given point x ∈ R

lies in. A solution of CVP is given in Fig. 2.4, where the shaded Voronoi cell is the solution

of CVP.

Since Voronoi cell for any lattice points will be translates of the Voronoi cell of the

origin, Voronoi cells for the lattice points will be translates of the Voronoi
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Figure 2.4: The example of CVP where the arbitrary point x ∈ R lies in the shaded
Voronoi cell which is associated to a lattice point that is closest to the x

it suffices to calculate the latter. Thus we defined V(Ω) , V(Ω, 0). Another property

related to Voronoi cell is the relevant vector.

Definition 2.13 (Relevant vector). Given a lattice space Ω, the relevant vectors are those

points v ∈ Ω \ {0} such that

v · p < p · p ∀p ∈ Ω \ {0} (2.10)

An example of Voronoi cell and relevant vector is shown in Fig.2.5 where the red dots

represent lattice points, the cell surrounded by the blue line segment is a Voronoi cell,

and the black arrows are relevant vectors.

Then the CVP aims to find a Voronoi cell for an arbitrary point x ∈ Rm such that

p = {v|x ∈ V(Ω, v), ∀v ∈ Ω} for x ∈ Rm (2.11)

There exist many algorithms to solve the CVP, such as Babai’s nearest-plane algo-

rithm[59], the sphere decoder[60–62], and the slicing algorithm[63].

If the lattice basis chosen is a diagonal, then the result of Babai’s algorithm is optimal,



26 Preliminaries

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Voronoi Cell

Figure 2.5: The example of Voronoi cell and relevant vector.

i.e. the output lattice point is the closest one to the given point. However, if the basis is

non-diagonal, the output of Babai’s algorithm is not guaranteed to be optimal. Babai’s

algorithm is described in Algorithm 2.2.

Algorithm 2.2: Babai’s nearest-plane algorithm
Data: A lattice basis A = [a1, · · · , am] and given point x ∈ Rm

Result: closest lattice point v

1 Compute Gram-Schmidt basis [a∗1 , · · · , a∗m]

2 xm = x

3 for i = m : −1 : 1 do

4 li =
xi ·a∗i
a∗i ,a∗i

5 yi = blieai

6 xi−1 = xi − (li − blie)a∗i − blieai

7 v = ∑m
i=1 yi

where b·e is rounding operation.

Another efficient algorithm is the sphere decoder and this is described in Algorithm

2.3 at the end of this chapter. In this case, R is the upper-triangular matrix obtaining from

QR decomposition (see Definition 2.8 ) of the reduced lattice basis A and the closest point

can be calculated from vA, where v is output of the algorithm. In this algorithm, the
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function sgn(·) is used and defined by

sgn(x) =

 −1 x ≤ 0

1 x > 0

2.2 The Ambiguity Problem in Sensor Localization

In a wireless sensor network (WSN), one of the main aims is to collect data from the en-

vironment such as temperature, air pressure, humidity etc.. However, before uploading

these data to process centrally, it is important that the locations where the sensors collect

these data should be identified. The sensors can be localized via Global Positioning Sys-

tem (GPS), although in a large sensor network with a high density of nodes deployment

of many GPS can become expensive. There are also many circumstances in which GPS

may be unavailable. A practical approach is to use a few sensors with known position,

normally called anchors. The position might be obtained by onboard GPS or by manual

deployment. The other nodes are then located by means of distance measurements to

the other anchors. One such approach is the Radio Interferometric Positioning System

(RIPS). This method has low cost and relatively high accuracy.

In this section, the RIPS will be used as an example to introduce the ambiguity prob-

lem in sensor localization, and then the rigorous mathematical definition of ambiguity is

given.

2.2.1 The Ambiguity Problem in Sensor Localization

The concept of RIPS is firstly presented in [13] and extended in papers [64–68]. The

localization technique is investigated in [69]. This technique requires at least 3 anchors to

localize one unknown sensor node.

As shown in Fig. 2.6, sensors A, B and C are anchors and D is the sensor to be lo-

calized. Anchor A and B transmit pure sine signal with frequencies fA and fB, then the
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transmitted signal sA(t) and sB(t) can be represented as

sX(t) = aX cos (2π fXt)

where X = A or B, aX is the amplitude of the signal. These two frequencies satisfy

| fA − fB| ≤ 1kHz

Then, anchor C and unknown sensor D act as receivers and the received signal, sC(t) and

sD(t), can be written as follows in the absence of noise

sC(t) = aA cos (2π fAt + φAC) + aB cos (2π fBt + φBC)

and

sD(t) = aA cos (2π fAt + φAD) + aB cos (2π fBt + φBD)

where the phase offset φXY, X = A or B and Y = C or D, due to the traveled distance is

defined by

φXY = 2π
fXdXY

c
mod 2π

and c is the speed-of-light.

Then the relative phase difference of these two signals is

φCD =− 2π
fAdAC

c
+ 2π

fBdBC
c

+ 2π
fAdAD

c
− 2π

fBdBD
c

mod 2π

=2π
f̄
c
(dAD − dAC + dBC − dBD) +

2π
f̃
c
(dAD − dAC − dBC + dBD) mod 2π

'2π
f̄
c
(dAD − dAC + dBC − dBD) mod 2π

(
since

f̄
c
' 0

)
(2.12)
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Figure 2.6: The illustrated example of RIPS, where A, B and C are anchors and D is the
sensor to be localized

We define ABCD = dAD − dAC + dBC − dBD, then (2.12) becomes

2π
f̄
c

dABCD mod 2π =2π
dABCD

λ
mod 2π

⇐⇒yCD ,
λφCD

2π
= dABCD mod λ (2.13)

⇐⇒dABCD = nCDλ + yCD where nCD ∈ Z (2.14)

where f̄ = fA+ fB
2 and f̃ = fA− fB

2 , and yCD is the equivalent measurement. Then, due to

the unknown integer nCD, dABCD has a series of candidate values and one of them is the

ground truth. This is so-called ambiguity problem.

Similarly, let nodes A and C be transmitters and nodes B and D receivers. Then the

associated phase difference is

φBD =2π
dAD − dCD + dBC − dAB

λ
mod 2π

⇐⇒yBD ,
λφCD

2π
= dABCD mod λ

⇐⇒dABCD = nBDλ + yBD where nBD ∈ Z (2.15)

dABCD will have different values corresponding to different values of integer nBD. Again
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there is an ambiguity problem. A crucial step before implementing the localisation algo-

rithm is to resolve the ambiguous dABCD and dABCD with measurements yBD and yCD.

2.2.2 Mathematical Formulation of the Ambiguity Problem

In this section, the rigorous mathematical formulation of ambiguity problem is given and

the related properties of ambiguity equations are introduced as well.

Based on the discussion in Section 2.2.1, in general, the ambiguity problem could be

written into following two equivalent forms:

r = nλ + ytrue ⇐⇒ ytrue = r mod λ (2.16)

where r ∈ Z+ and n ∈ Z+ are unknown values, λ is modular (wavelength used) and ytrue

is remainder (noise-free measurement). The main goal is to solve for r, or equivalently n,

via known values ytrue and λ.

In general, the unknown r is much larger than λ. Then in order to solve the ambigu-

ous r, one should use multiple different wavelengths λi > 0, i = 1, · · · , m, to generate a

set of measurements yi,true > 0. Therefore, we have a set of ambiguous equations which

is called as congruence equations:


r = n1λ1 + y1,true

...
...

r = nmλm + ym,true

⇐⇒


y1,true = r mod λ1

...
...

ym,true = r mod λm

(2.17)

where ni ∈ Z.

Obviously, the equations (2.17) cannot be solved directly as the number of unknown

variables is m + 1 which is always larger than the number of equations, i.e. m. There-

fore, we should resort to other algorithms such as searching algorithm, CRT or lattice

algorithm which will be discussed in following sections, to obtain the solution of (2.17).

The unique solution for equations (2.17) is of interest in practice. Therefore, in order

to obtain an unique solution for (2.17), there exists a mild condition on the ambiguity

resolving algorithms: the unknown distance r is less than the least common multiplier of
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the wavelengths used, i.e.

r < LCM(λ1, · · · , λm)

where LCM(·) is the least common multiplier function. This condition is justified via

Proposition. 2.1 and Lemma 2.2[70]. In general, the LCM(λ1, · · · , λm) is called as the

maximum unambiguous range for r which implies that given a set of modulo and re-

mainders, the solution of r is unique within this range.

Proposition 2.1. Suppose that

{z, n1, · · · , nm} ∈ Z+

are unknown and

{λ1, · · · , λm} ∈ Z+, λi 6= λj ∀i 6= j, i, j = 1, · · · , m

are known.

Then the solution of following equations


z = n1λ1

...
...

z = nmλm

(2.18)

are z = 0 or z = k · LCM(λ1, · · · , λm), where LCM(·) is the least common multiplier

function and k ∈ Z.

Proof. Generally, let k = 1. Suppose that z0 is a solution of (2.18) and z0 6= 0, z0 6=

LCM(λ1, · · · , λm). Therefore, we have

n1,0λ1 − n2,0λ2 = z0 − z0 = 0
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From Bézout’s identity, the solutions of above equation are

 n1,0 = 0

n2,0 = 0
or

 n1,0 = λ2

n2,0 = λ1

Similarly, we have following conclusion:



n1,0 = 0

n2,0 = 0
...

nm,0 = 0

or



n1,0 = LCM(λ1,··· ,λm)
λ1

n2,0 = LCM(λ1,··· ,λm)
λ2

...

nm,0 = LCM(λ1,··· ,λm)
λm

Then z = 0 or z = LCM(λ1, · · · , λm).

For k ∈ Z, we have the same result. This completes the proof.

Then we have following lemma to justify the uniqueness of solution[71].

Lemma 2.2 (The uniqueness of solution). The unknown value (distance) r ∈ Z+ can be

determined from (2.17) uniquely if and only if r < LCM(λ1, · · · , λm).

Proof. Suppose that r1 < LCM(λ1, · · · , λm) and r2 < LCM(λ1, · · · , λm) solve the equa-

tions (2.17) and r1 > r2. Then we have

z = r1 − r2 and 0 < z < LCM(λ1, · · · , λm)

satisfying


z = (n1,1 − n2,1)λ1 + y1,true − y1,true = (n1,1 − n2,1)λ1

...
...

z = (n1,m − n2,m)λm + ym,true − ym,true = (n1,m − n2,m)λm

(2.19)

where ni,j is the integral solution of j-th equation of ri, i = 1, 2 and j = 1 · · · , m.

Then z only has two possible solution, 0 or LCM(λ1, · · · , λm). However, since r <

LCM(λ1, · · · , λm), therefore, z = 0 and there exists a unique solution for equations (2.17)

if r < LCM(λ1, · · · , λm).
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Accordingly, let ni,max ∈ Z+ be the maximum unambiguous value of unknown inte-

ger ni, i = 1, · · · , m corresponding to the maximum unambiguous range in (2.17), then

ni,max could be determined by

ni,max =
LCM(λ1, · · · , λm)

λi
(2.20)

2.3 The Chinese Remainder Theorem(CRT)

2.3.1 The Conventional CRT

The concept of the ambiguity problem and the earliest example of Chinese Remainder

Theorem (CRT) are found in ancient Chinese mathematical book Sun Zi Suanjing (Sun’s

Arithmetical Manual), of which the author is unknown. The exact date of this book is

also unknown, but it is usually thought to have been written some time between the 3rd

and 5th AD. The algorithm was formulated by Aryabhata in 6th century. A more general

algorithm, called as Dayanqiuyi method was introduced in Qin Jiushao’s book Mathemat-

ical Treatise in 1247. Later, in 1801, Carl Friedrich Gauss discussed congruence equation

in his notable book Disqvisitiones arithmeticae and invented the notation for congruence

equation. The general solution was given by Gauss as well.

The conventional CRT which is used to solve noise-free congruence equations is in-

troduced in this section. Some definitions and notations are introduced before the con-

ventional CRT (Theorem 2.1).

Definition 2.14. Two positive integers λ1 and λ2 are said to be co-prime if and only if

GCD(λ1, λ2) = 1 and this is denoted by1[72]

λ1 ⊥ λ2

where GCD(·) is greatest common divisor.

Definition 2.15. Let λ1, λ2 ∈ Z, then b ∈ Z is said to be the modular inverse of λ1

1This notation is suggested in[72] since “Like perpendicular lines dont have a common direction, perpendicular
numbers dont have common factors”
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modulo λ2 if

bλ1mod λ2 = 1

Definition 2.16. Let {b, λ1, λ2} ∈ Z, λ1 divides λ2 if there exists an integer b ∈ Z such

that λ1 = bλ2. If λ1 divides λ2, we write λ1 | λ2, otherwise, λ1 6 | λ2.

The conventional CRT is encapsulated in the following theorem. The proof can be

found in [70].

Theorem 2.1 (Conventional CRT). Consider following congruence system


y1,true = r mod λ1
...

ym,true = r mod λm

(2.21)

where yi,true ∈ Z, i = 1, · · · , m are remainders of r ∈ Z modulo λi ∈ Z. Assume that

λi ⊥ λj, ∀ i, j = 1, · · · , m, i 6= j and r < LCM(λ1, · · · , λm). Then the unique solution for

r exists and is given by

r =
k

∑
i=1

ξiyi,true

where ξi =
∏m

j=1 λj

λi
bi and bi is modular inverse of

∏m
j=1 λj

λi
modulo λi.

However, in engineering, the remainders (measurements) has noise and therefore,

the conventional CRT cannot be applied directly to estimate the range as it is sensitive

to noise[24]. This problem was first investigated by Xia etc. and robust CRT algorithms

were proposed in [73, 74] . In [24], a closed-form CRT is shown to be robust to noise and

computationally efficient. Later, some improved algorithms are presented in [75–78]. In

order to increase the probability of successful reconstruction of the ambiguous number

in the context of noise, an improved algorithm based on the modified CRT is presented in

next section. It is demonstrated that the improved algorithm outperforms the traditional

closed-form CRT in terms of probability of successful reconstruction.
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Algorithm 2.1: LLL basis reduction algorithm[57]

Data: A lattice basis [a1, · · · , am] and 1
4 < δ < 1

Result: Reduced basis [b1, · · · , bm]
1 Main Loop
2 for i = 1 : m do bi = ai
3 for i = 1 : m do
4 a∗i = ai;
5 for j = 1 : i− 1 do µi,j = (bi · b∗j )/γi and b∗i = b∗i − µi,jb∗j ;
6 γi = b∗i · b∗i ;
7 end
8 k = 2;
9 while k ≤ n do

10 Call reduce(k, k− 1);
11 if γk ≥ (δ− µ2

k,k−1)γk−1 then
12 for j = k− 2 : −1 : 1 do Call reduce(k, j);
13 k = k + 1;
14 else
15 Call swap(k);
16 if k > 2 then k = k− 1
17 end
18 end

1 Procedure reduce(k, j)
2 if |µk,j| > 1

2 then
3 ak = Ak − dµk,jcaj;
4 for i = 1 : j− 1 do µk,i = µk,i − dµk,jcµj,i;
5 µk,j = µk,j − dµk,jc
6 end
2 Procedure swap(k)
3 z = bk−1, bk−1 = bk, bk = z;
4 ν = µk,k−1, η = γk + η2γk−1;
5 µk,k−1 = νγk−1/η, γk = γkγk−1/η, γk−1 = η;
6 for j = 1 : k− 2 do t = µk−1,j, µk−1,j = µk,j, µk,j = t;
7 for i = (k + 1) : m do
8 ξ = µi,k, µi,k = µi,k−1 − νµi,k, µi,k−1 = µk,k−1µi,k + ξ
9 end
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Algorithm 2.3: Sphere Decoder
Data: The m×m upper triangular matrix R with positive diagonal elements and

an m-dimensional vector x ∈ Rm

Result: Integer vector n
1 H = R−1

2 e = 0m×m
3 bestdist = ∞
4 k = 1
5 dk = 0
6 ek = xH
7 uk = bek,ke
8 y =

ek,k−uk
hk,k

9 sk = sgn(y)
10 while Stopconditionisnotsatis f ied do
11 newdist = dk + y2

12 if newdist < bestdist then
13 if k 6= m then
14 for i = K + 1 : m do ek+1,i = ek,i − yhk,i;
15 k = k + 1
16 dk = newdist
17 uk = bek,ke
18 y =

ek,k−uk
hk,k

19 sk = sgn(y)
20 else
21 n = U
22 bestdist = newdist
23 k = k− 1
24 uk = uk + sk

25 y =
ek,k−uk

hk,k

26 sk = −sk − sgn(sk)

27 else
28 if k = 1 then
29 return n
30 else
31 k = k− 1
32 uk = uk + sk

33 y =
ek,k−uk

hk,k

34 sk = −sk − sgn(sk)



Chapter 3

Efficient Algorithms to Resolve
Ambiguity in Noise — CRT

The well-known CRT is a powerful tool to solve the congruence equations arising in mathematics

and engineering. In [24], a robust closed-form CRT is presented to resolve the congruence equa-

tions with noisy remainders(measurements). Some of the improvements of the closed-form CRT are

proposed in order to extend the applications of this algorithm[75–78]. In this chapter, we aim to

introduce the modified CRT[76] and prove the related lemmas, then we present an improved CRT al-

gorithm based on the modified CRT using the noise property which has better performance in terms

of reconstruction probability. The structure of this chapter is as follows: the noisy ambiguous mea-

surement model is firstly introduced in Section 3.1; in Section 3.2 the modified CRT algorithm with

noisy measurements is described and an improved CRT method is presented in order to increase the

reconstruction probability in Section 3.2. Finally, Section 3.4 concludes this chapter.

3.1 The Measurement Model

As introduced in the last chapter, in sensor localization, the measurement is normally in

the form of phase and the distance of interest can be calculated from

φtrue = 2π
r
λ

mod 2π (3.1)

where φtrue is noise-free phase measurement, λ is used wavelength, r is an unknown

distance.

In practice, the measurement is always contaminated by noise, i.e.

φ = φtrue + ωφ (3.2)

37
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where ωφ is the phase noise term, assumed to be Normally distributed with mean 0 and

variance δ′2, i.e. ωφ ∼ N (0, δ′2). Therefore, the noisy form of (3.1) is

φtrue + ωφ = 2π
r
λ

mod 2π + ωφ (3.3)

which can be rewritten as

2πλφtrue + 2πλωφ = r mod λ + 2πλωφ (3.4)

⇐⇒ytrue + ω = r mod λ + ω (3.5)

where ω = 2πλωφ has Gaussian distribution with mean 0 and variance 4πλ2δ′2, denoted

4πδ′2 by δ2, since ωφ ∼ N (0, δ′2). The we have ω ∼ N (0, δ2λ2).

Equivalently, (3.5) can be written into:

c = nλ + ytrue + ω =⇒ c = nλ + y (3.6)

where c is the possible distance due to the noise, n ∈ Z and y = ytrue + ω.

In applications, the available wavelengths are normally much smaller than the re-

quired unambiguous range, so that multiple measurements, {y1, · · · , ym}, with different

wavelengths, {λ1, · · · , λm}, are required to provide an unambiguous estimate of the dis-

tance r. We then have following congruence system:


c1 = n1λ1 + y1,true + ω1
...

cm = nmλm + ym,true + ωm

=⇒


c1 = n1λ1 + y1
...

cm = nmλm + ym

(3.7)

where ωi ∼ N (0, λ2
i δ2).

3.2 The Modified CRT

The conventional CRT described in Section 2.3 is inapplicable since is not suitable to find

a robust estimate in a noisy context. In this section, a modified CRT is introduced which
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could be used in noisy case. The modified CRT is described in Theorem 3.1 [24, 76] and

some propositions and lemma are proved as well.

Proposition 3.1. Let q ∈ Z− and λ ∈ Z+, then q mod λ can be calculated by

q mod λ = λ− (|q| mod λ).

Proof. Let y∗ = |q| mod λ, then there exist an N ∈ Z+, such that |q| = Nλ + y∗. There-

fore,

y∗ =|q| − Nλ

λ− y∗ =λ− (|q| − Nλ)

−|q| =− (1 + N)λ + (λ− y∗)

Then 0 < (λ− y∗) < λ is the remainder of the q modulo λ.

Proposition 3.2. Let {λ1, · · · , λm} ∈ Z+, and λ̄i ⊥ λ̄j, ∀ i, j = 1, · · · , m − 1, i 6= j,

where λ̄i = λi
gi,m

and gi,m , GCD(λi, λm), where GCD(·) is greatest common divisor.

Then

LCM(λ1, · · · , λm) = λm

m−1

∏
i=1

λ̄i

Proof. Let m = 2, then it is easily to see that LCM(λ1, λ2) =
λ1λ2
g1,2

= λ̄1λ2. Let m = 3, then

we have

LCM(λ1, λ2, λ3) = LCM(LCM(λ1, λ3), λ2)

= LCM(λ̄1λ3, λ2)

= g2,3LCM
(

λ̄1
λ3

g2,3
,

λ2

g2,3

)
= g2,3λ̄1

λ3

g2,3

λ2

g2,3
= λ̄1λ̄2λ3
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Repeating the same steps, we have LCM(λ1, · · · , λm) = λm ∏m−1
i=1 λ̄i

Lemma 3.1 is crucial in proving Theorem 3.1. A slightly different lemma is given in

[24], we will indicate the difference between these two lemmas in the subsequent remark.

Lemma 3.1. Let {λ1, λ2, x, y} ∈ Z+ and q ∈ Z, where λ1, λ2, q are known and x, y are

unknown, furthermore, suppose λ1 ⊥ λ2. Consider following equations,

λ1x− λ2y = q (3.8)

then the integral solution for {x, y} is, n ∈ Z,

 x = (bq) mod λ2 + λ2n

y = ((bq) mod λ2+λ2n)λ1−q
λ2

(3.9)

where b ∈ Z+ is the modular inverse of λ1 modulo λ2.

Proof. From Bézout’s lemma[79], we know that there always exists a modular inverse of

λ1 modulo λ2 if λ1 ⊥ λ2, i.e.

λ1b− λ2
λ1b− 1

λ2
= 1

λ1bq− λ2
λ1b− 1

λ2
q = q

where λ1b−1
λ2
∈ Z.

If bq ≥ 0, then x = bq is a specific solution of (3.8) and

x = (bq) mod λ2

is also a solution of (3.8) since ∃N ∈ Z such that

y =
λ1((bq) mod λ2)− q

λ2

=
λ1(bq− Nλ2)− q

λ2
∈ Z
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If bq < 0, we have a similar result using Prop.3.1. This implies that (bq) mod λ2 is a

specific solution of (3.8) and the general solution is (3.9).

Next, we aim to show that all the solutions of (3.8) are included in (3.9). Suppose that

there exits an integral solution {x0, y0} for (3.8) which does not satisfy (3.9). Then, for

specific {x0, y0}, one can find α ∈ Z and n0 ∈ Z such that

 x0 = (bq) mod λ2 + λ2n0 + α

y0 = ((bq) mod λ2+λ2n0+α)λ1−q
λ2

(3.10)

where α 6= 0 and α 6 | λ2. Obviously,

y0 =
((bq) mod λ2 + λ2n0 + α)λ1 − q

λ2

=
((bq) mod λ2 + λ2n0)λ1 − q

λ2
+

αλ1

λ2

,C +
αλ1

λ2

where C ∈ Z based on previous discussion. Since y0 ∈ Z, therefore α is either 0 or α | λ2

which contradicts the assumption. Therefore, all solutions are included in (3.9).

Remark 3.1. Another solution with slightly different form to (3.8) is given in [24](see

Lemma 1, [24]) as:

 x = bq + λ2nq

y = (bq+λ2nq)λ1−q
λ2

(3.11)

where b is the modular inverse of λ1 modulo λ2. However, (3.11) dose not give all solu-

tions of (3.8). For example, consider an equation

7x− 9y = 2

with specific solution {x = 17, y = 13}. Then we can calculate that b = 4 is the modular
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inverse of 7 modulo 9. Therefore, from (3.11), the solution of 7x− 9y = 2 is given by

x = 4 · 2 + 9 · 2 · n 6= 17, ∀n ∈ Z.

This because of that the term nq in (3.11) belongs to

{z|z ∈ Z and z mod q ≡ 0}

rather than Z.

Recall the congruence system


y1,true = r mod λ1
...

ym,true = r mod λm

(3.12)

Based on conventional CRT and Lemma 3.1, the modified CRT [76] is given in Theorem

3.1.

Theorem 3.1. Consider the congruence system shown in (3.12). Assume that

r < LCM(λ1, · · · , λm) and λ̄i ⊥ λ̄j, ∀ i, j = 1, · · · , m− 1, i 6= j

where λ̄i = λi
gi,m

and gi,m , GCD(λi, λm), ∀i = 1, · · · , m − 1. Then there is a unique

solution for r.

Proof. The system (3.12) can be rewritten into


n1λ1 + y1,true = r
...

nmλm + ym,true = r

(3.13)

where n1, · · · , nm are unknown integers.
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Then we subtract the last equation in (3.13) from the first m− 1 equations, i.e.


n1λ1 + y1,true − (nmλm + ym,true) = 0
...

nm−1λm−1 + ym−1,true − (nmλm + ym,true) = 0

=⇒


nmλm − n1λ1 = ym,true − y1 , q1,true
...

nmλm − nm−1λm−1 = ym,true − ym−1,true , qm−1,true

Consider gi,m = GCD(λi, λm) for i = 1, · · · , m− 1, we have


nm

λm
g1,m
− n1

λ1
g1,m

=
q1,true
g1,m

...

nm
λm

gm−1,m
− nm−1

λm−1
gm−1,m

=
qm−1,true
gm−1,m

=⇒


nmλ̄m − n1λ̄1 = q̄1,true
...

nmλ̄m − nm−1λ̄m−1 = q̄m−1,true

(3.14)

where λ̄i,m = λm
gi,m

and q̄i,true =
qi,true
gi,m

for i = 1, · · · , m− 1. Since all numbers in nmλ̄m− n1λ̄1

are integers, q̄i,true ∈ Z.

From Lemma 3.1 and assumption λ̄i ⊥ λ̄j, ∀ i, j = 1, · · · , m, i 6= j we know that the

solutions for the unknown integer nm in (3.14) is obtainable as follows:


nm = (b1q̄1,true) mod λ̄1 + n1λ̄1
...

nm = (bm−1q̄m−1,true) mod λ̄m−1 + nm−1λ̄m−1

=⇒


nm = ȳ1,true + n1λ̄1
...

nm = ȳm−1,true + nm−1λ̄m−1

(3.15)

where ȳi = (bi q̄i) mod λ̄i and 0 ≤ ȳi < λ̄i, i = 1, · · · , m − 1. System (3.15) is a con-
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gruence system with co-prime moduli {λ1, · · · , λm−1} and remainders {y1, · · · , ym−1}.

From Theorem 3.15, we know that the solution of nm is

nm =
m−1

∑
i=1

ξ̄iȳi

where ξ̄i =
∏m

j=1 λ̄j

λ̄i
b̄i and ξ̄i mod λ̄i = 1. Then we have r = nmλm + ym.

From (3.15) and Prop. 3.2, we know that nm < ∏m−1
i=1 λ̄i, meanwhile, from CRT, nm <

LCM(λ̄1, · · · , λ̄m−1) = ∏m−1
i=1 λ̄i. Therefore, nm is the unique solution for nm for system

(3.13) and r has a unique solution.

In the next section, we will show how to use Theorem 3.1 to solve the noisy distance

problem and present an improved CRT algorithm.

3.3 An Improved CRT Solution

3.3.1 Introduction

In the noise-free scenario, the conventional CRT is enough to find the ambiguous integer

effectively provided the associated conditions are satisfied. However, in the noisy case,

this theorem cannot be applied directly as it is sensitive to noise, and will give the incor-

rect answer with high probability. Therefore it is important to find robust algorithms that

are less sensitive to the noise. It is shown that Theorem 3.1 can be modified to solve noisy

ambiguity problem efficiently.

In practice, estimating {q̄1,true, · · · , q̄m−1,true} in (3.16) and (3.14) is a key step in Theo-

rem 3.1 for estimating r via the noisy measurements {y1, · · · , ym} which are not integers.

Define, for i = 1, · · · , m− 1,

q̄i ,
(yi − ym)

gi,m
, and q̄i,true ,

(yi,true − ym,true)

gi,m
. (3.16)

Since q̄i are no longer integers so that the modified CRT is inapplicable. As suggested

in [76], a rounding operation ˆ̄qi = dq̄ic is introduced for the estimation of q̄i,ture. Theorem
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3.1 is then applicable to obtain the estimation of nm, denoted by n̂m. An improved CRT

algorithm is presented in next section.

3.3.2 The Proposed CRT Algorithm

Let the set of waveforms used be {λ1, · · · , λm}, and suppose that they satisfy the condi-

tions of Theorem 3.1. Also assume that λ1 > λ2 > · · · > λm. The smallest wavelength

λm is selected as the “reference” in the measurement operation (3.14) because ωm has the

minimum variance as ωi ∼ N (0, δ2λi).

After obtaining n̂m, the estimation of r, r̂, can be done using a maximum likelihood

method [27], i.e

r̂ = W
m

∑
i=1

(n̂iλi + yi)Wi (3.17)

where Wi = 1/λ2
i , W = 1/ ∑m

i=1 Wi and n̂i =
⌈

n̂mλm+ym−yi
λi

⌋
.

In this estimation, the calculation of ˆ̄qi is crucial and the algorithm will return the

correct answer if[76]

−1/2 <
ωi −ωm

gi,m
< 1/2, ∀i = 1, · · · , m− 1

otherwise, the algorithm will return the wrong n̂m. Furthermore,

[
ω1 −ωm

g1,m
, · · · ,

ωm−1 −ωm

gm−1,m

]
∼ N

(
0, δ2Σ

)
where 0 is zero vector and δ2Σ is covariance matrix. Since

[
ω1−ωm

g1,m
, · · · , ωm−1−ωm

gm−1,m

]
can be

written into [ω1, · · · , ωm]MT and [ω1, · · · , ωm] is Normally distributed with mean 0 and

covariance

δ2


λ2

1 0 · · · 0

0 λ2
2 · · · 0

0 0 · · · λ2
m


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where

M =


1

g1,m
0 · · · 0 − 1

g1,m

0 1
g2,m

· · · 0 − 1
g2,m

0 0 · · · 1
gm−1,m

1
gm−1,m


then we have

Σ = δ2M


λ2

1 0 · · · 0

0 λ2
2 · · · 0

0 0 · · · λ2
m

MT

This CRT solution using rounding operation implies that there exists an integer set

Z0 = [z1, · · · , zm−1] such that ˆ̄qi + zi = q̄i,true, ∀i = 1, · · · , m− 1 for a given set of mea-

surement {y1, · · · , ym}. Let ˆ̄q = [ ˆ̄q1, · · · , ˆ̄qm−1]. Then the algorithm implemented under

Theorem 3.1 will return the correct n̂m, i.e. n̂m = nm, if ˆ̄q + Z0 is used. However, in prac-

tice, the elements contained in Z0 are unknown, therefore we need to estimate the integer

set Z0.

Let Zj = [zj,1, · · · , zj,m−1], j = 1, 2, · · · , zj,i ∈ Z represent possible values of Z0. In

practice, since the δ is small and λm < λi, ∀i = 1, · · · , m− 1, the variance of (ωi − ωm)

is not large. We may reasonably assume that zj,i ∈ {−1, 0, 1}1. It is easy to find the max

value of j is jmax = 3m−1. Let Z = [ZT
1 , · · · , ZT

jmax
]T be a jmax × (m− 1) dimensional matrix

containing all possible value of Z0. The probability that Z0 ∈ Z is calculated by

Pr (Z0 ∈ Z) =
∫

Ω

1
(2πδ2|Σ|)m

2
exp

{
−1

2
xT(δ2Σ)−1x

}
dx

where Ω is the integration volume which is a (hyper-) rectangle with lower and upper

limits − 3
2 and 3

2 respectively.

Now the main goal is to find the estimation of Z0. An efficient algorithm is presented

1In the standard CRT algorithm, it is assume that zj,i = 0, ∀i = 1, · · · , m− 1
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as follows:

ĵ0 = arg min
j∈{1,··· ,3m−1}

1
m∑m

i=1
ˆ̄ω2

j,i (3.18)

s.t. n̂j,m = mCRT
(

ˆ̄q + Zj
)

, Zj ∈ Z (3.19)

n̂j,i =

⌈
n̂j,mλm + ym − yi

λi

⌋
, ∀i = 1, · · · , m− 1 (3.20)

ˆ̄ωj,i =
br̂je − (n̂j,iλi + yi)

λi
(3.21)

r̂j = E[r|n̂j,1, · · · , n̂j,m] (3.22)

where E[r|n̂j,1, · · · , n̂j,m] is the estimation of r given n̂j,1, · · · , n̂j,m using (3.17), mCRT is the

modified CRT algorithm described in Theorem 3.1. Thus, the estimation of Z0 is the ĵ0-th

row of Z and, therefore, the new estimation of nm is n̂ ĵ0,m, i.e. n̂ ĵ0,m = mCRT( ˆ̄q + Z ĵ0).

We briefly investigate the performance of estimator (3.18) and the conclusion (3.23) is

given without proof. The detailed analysis is given in Section 4.5.3. In the proposed algo-

rithm (3.18), formula (3.19) and (3.20) estimate the
[
n̂j,1, · · · , n̂j,m

]
according to vector Zj

and fixed ˆ̄q, and (3.21) estimates the measurements noise base on
[
n̂j,1, · · · , n̂j,m

]
. If Z0 is

in Z , then the r̂j is close to true r and the corresponding noise estimation
[

ˆ̄ωj,1, · · · , ˆ̄ωj,m
]

is approximately Normally distributed with mean 0 and δ2. Furthermore, if the frequen-

cies used are from same band, then they will close to each other and we have following

conclusion: the reconstruction probability given δ2, Pr(n̂ ĵ0,m = nm|δ2), of the proposed

algorithm (3.18) can be approximated by

k

∏
i=1

Pr
(
− 1

λ̃
+ 2|ω̃i| < 0

)
(3.23)

where λ̃ = 1
m ∑m

i=1 λi and ω̃ ∼ N (0, δ2). (3.23) will be discussed in detail in Section 4.5.

Meanwhile, it can be noticed, in (3.18), the proposed algorithm needs to execute the

conventional one 3m−1 times to find the required estimation, however, in practice, the

number of wavelengths used is not too large and the conventional algorithm is extremely

fast, therefore the proposed algorithm will not increase too much computational cost.
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3.3.3 Simulation

The proposed algorithm in Section 3.3.2 is evaluated via simulation using two sets of

wavelengths:

Λ1 = {61, 59, 49, 47, 46}

and

Λ2 = {21, 19, 17, 13}

The first set of wavelengths is from Wifi 5 GHz band and the latter from 1 ∼ 26MHz

which is from frequency difference region of US UHF band, 902 ∼ 928MHz[32]. These

two bands are widely used in localization via range estimation. The distance r is ran-

domly selected between 0 and the LCM of all wavelengths used. The parameter δ in the

measurement noise variance δ2λ2
i is chosen as −20 log10 δ = 46 : 2 : 66, which provides

an indication for noise level in the simulation. All simulation results illustrated are av-

eraged over 5000 Monte Carlo runs. The algorithm performance is evaluated in terms of

the reconstruction probability Pr(nm = n̂m) versus the phase measurement noise level.

The simulation results of the reconstruction probability via Monte Carlo simulation

and theoretic computation via (3.23) are given in Fig.3.1. It is found that the simulation

results agree with the theoretic result. For example, in the Λ1 case, as shown in the

figure, we can notice that the simulated reconstruction probability of ambiguous integers,

denoted by blue circle line, agrees with the computed reconstruction probability using

(3.23), denoted by star markers, at each error levels. As comparison, the performance of

existing algorithm mCRT is plotted along with that of the proposed algorithm in Fig.3.1.

Clearly, using both wavelength sets the proposed algorithm outperforms mCRT in terms

of reconstruction probability of the underlying integer set when signal to noise ratio is

low.

Finally, we point out that additional computational overhead of the proposed algo-

rithm over the existing CRT algorithm in [24] is marginal.
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Figure 3.1: Reconstruction probability versus error level

3.4 Conclusions

In this chapter, the modified CRT for noisy ambiguity problem is described and an im-

proved CRT algorithm for range estimation is proposed. Compared with existing ap-

proaches, the proposed algorithm takes a set of more probable integer outcomes after the

rounding operation is taken into evaluating additional hypotheses based on measure-

ments and known conditions. The approximate probability of correct integer set recon-

struction is accordingly given. Simulation results are presented showing the performance

of the proposed algorithm is better than the conventional one in terms of reconstruction

probability with a slightly higher computations.





Chapter 4

Efficient Algorithms to Resolve
Ambiguity in Noise — Lattice

Algorithms

In [27], it is shown that ambiguity problem can be formulated in the framework of lattice theory

and an efficient algorithm is presented with the same performance as closed-form CRT algorithm. In

this chapter, some improved algorithms based on conventional lattice method are proposed. The con-

ventional algorithm is described in Section 4.1; in Section 4.2, a relaxed condition on the selection

of wavelengths is presented that extends the applications of the lattice; in Section 4.3, the ambiguity

problem with non-coprime wavelengths is addressed using an improved iterative lattice algorithm. A

new lattice algorithm with higher reconstruction probability using different basis structures is pro-

posed in Section 4.4. In Section 4.5, an improvement to the algorithm that takes into account multiple

lattice points is proposed. This algorithm has better reconstruction probability over the conventional

algorithm for a given basis.

4.1 Formulation of the Ambiguity Problem in Lattices

4.1.1 Introduction

In this section, the lattice based algorithm presented in [27] is introduced. The main

focus is to elucidate how to transform the phase ambiguity problem into a nearest point

problem in the lattice theory. Maximum likelihood estimation of the ambiguous distance

from phase measurements is derived. Then a closed-form algorithm based on the lattice

method and number theory is described. The performance of the lattice algorithm is

analysed.

51
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Recall the ambiguous equations (3.6):


c1 = n1λ1 + y1
...

cm = nmλm + ym

(4.1)

Since yi ∼ N (yi,true, λ2
i δ2), then ci ∼ N (niλi + yi,true, λ2

i δ2). Denote the true solution

of ni by Ni and let N = [N1, · · · , Nm].

The associated likelihood function is defined by

f (yi|r) =
1√

2πλ2
i δ2

exp
{
− (r− niλi − yi)

2

2λ2
i δ2

}

∝ exp
{
− (r− niλi − yi)

2

2λ2
i δ2

}
= exp

{
− 1

2δ2

}
+ exp

{
−
(

r
λi
− ni −

yi

λi

)2
}

∝ exp

{
−
(

r
λi
− ni −

yi

λi

)2
}

(4.2)

Then the joint log-likelihood function with m measurements is:

log
m

∏
i=1

f (yi|r) =
m

∑
i=1

log f (yi|r) (4.3)

∝
m

∑
i=1

{
−
(

r
λi
− ni −

yi

λi

)2
}

(4.4)

In vector form, the MLE is then equivalent to

(r̂, N̂) = arg min
n∈Zm,r∈Z

∥∥rλ̄− n− ȳ
∥∥ (4.5)

where ‖ · ‖ is the 2-norm function, n = [n1, · · · , nm], λ̄ =
[

1
λ1

, · · · , 1
λm

]
and ȳ =

[
y1
λ1

, · · · , ym
λm

]
.

To solve (4.5), we should estimate N̂ at first. Then the estimate of r, r̂, could be ob-
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tained via differentiating (4.5) with respect to r:

∂

∂r
∥∥rλ̄− n− ȳ

∥∥ =0
m

∑
i=1

r
(
λ̄− n− ȳ

)
=0

⇒ r̂ =(n + ȳ)λ̄+

where λ̄+ = (λ̄Tλ̄)−1λ̄T is the Moore-Penrose pseudo-inverse of λ̄.

Substituting r̂ = (n + ȳ)λ̄+ into (4.5), we can obtain the estimator of N as:

N̂ = arg min
n∈Zm

∥∥(n + ȳ)λ̄+λ̄− (n + ȳ)
∥∥

= arg min
n∈Zm

‖nA− (−ȳA)‖ (4.6)

where

A = (λ̄Tλ̄)−1 − Im =



∏m−1
i=1 λi 0 · · · 0

0 ∏m−1
i=1 λi · · · 0

...
. . .

...
...

0 · · · ∏m−1
i=1 λi 0

∏m−1
i=1 λi
λ1

∏m−1
i=1 λi
λ2

· · · ∏m−1
i=1 λi
λm


(4.7)

and Im is m-dimensional identity matrix.

Therefore, it is easy to find that (4.6), as introduced in Section 2.1.3, is actually the

closest vector problem in lattice with lattice basis A and the given point −ȳA. To solve

the CVP, the basis could be reduced to a simple one using LLL algorithm as in Algorithm

2.1. Fortunately, we have following theorem to guarantee that the the reduced basis of A

is a diagonal one if some mild conditions are satisfied.

Theorem 4.1. If the wavelengths used [λ1, · · · , λm] are co-prime, i.e.

λi ⊥ λj i, j = 1, · · · , m and i 6= j
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The basis A defined in (4.7) could be reduced into B with following form:

B =



∏m−1
i=1 λi
λ1

0 · · · 0

0 ∏m−1
i=1 λi
λ2

· · · 0
...

. . .
...

...

0 · · · ∏m−1
i=1 λi
λm−1

0

0 0 · · · 0


(4.8)

Proof. Since the matrix A has integer entries, a unique m × m matrix T in the Hermite

Normal form (HNF) of A with integer entries can be found such that

UA = T (4.9)

where U is a unimodular matrix i.e. |det(U)| = 1.

Recall

A =


∏m−1

i=1 λi . . . 0 0
...

. . .
...

...

0 . . . ∏m−1
i=1 λi 0

−∏m
i=1 λi
λ1

. . . −∏m
i=1 λi

λm−1
0

 (4.10)

and assume that T is a HNF of A expressed as

T =



∏m−1
i=1 λi
λ1

. . . 0 0
...

. . .
...

...

0 . . . ∏m−1
i=1 λi
λm−1

0

0 . . . 0 0

 (4.11)

We wish to verify that the matrix U is a unimodular matrix.

Let U be a square matrix with entries up,q, p, q = 1, · · · , m and UA = T. Multiplying
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out the equation UA = T for p = 1, q = 1, · · · , m, we have


u1,1 ∏m−1

i=1 λi − u1,m
∏m

i=1 λi
λ1

= ∏m−1
i=1 λi
λ1

...

u1,m−1 ∏m−1
i=1 λi − u1,m

∏m
i=1 λi

λm−1
= 0

(4.12)

thus 
u1,1λ1 − u1,mλm = 1

...

u1,m−1λm−1 − u1,mλm = 0

(4.13)

Since λ1, · · · , λm are co-prime, the first column elements of U, i.e., [u1,1, · · · , u1,m]
T in

(4.13) can be solved by the Euclidean algorithm. In a similar manner, all other elements

of U (for p = 1, · · · , m) can be found. So, U can be expressed using known terms as

U =



1+u1,mλm
λ1

u1,mλm
λ2

. . . u1,m

u2,mλm
λ1

1+u2,mλm
λ2

. . . u2,m

. . . . . . . . . . . .
∏m

i=1 λi
λ1

∏m
i=1 λi
λ2

. . . ∏m
i=1 λi
λm

 (4.14)

For U to be unimodular, we require |U| = 1. To show this, we use a property of deter-

minant, which says that if all the elements of a row or column of a matrix are formed by

two addends, the determinant of this matrix decomposes in the sum of two determinants.

Let consider the first row of U, which can be expressed as

[
1 + u1,mλm

λ1
,

u1,mλm

λ2
· · · , u1,m

]
=

[
1

λ1
, 0, · · · , 0

]
+[

u1,mλm

λ1
,

u1,mλm

λ2
, · · · , u1,m

]
. (4.15)

Then U can be written in the sum of two matrices U1 and U2 which are identical except
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for the first row, i.e.,

U1 =


1

λ1
0 . . . 0

u2,mλm
λ1

1+u2,mλm
λ2

. . . u2,m

. . . . . . . . . . . .
∏m

i=1 λi
λ1

∏m
i=1 λi
λ2

. . . ∏m
i=1 λi
λm

 (4.16)

and

U2 =



u1,mλm
λ1

u1,mλm
λ2

. . . u1,m

u2,mλm
λ1

1+u2,mλm
λ2

. . . u2,m

. . . . . . . . . . . .
∏m

i=1 λi
λ1

∏m
i=1 λi
λ2

. . . ∏m
i=1 λi
λm

 , (4.17)

Therefore, we have det(U) = det(U1) + det(U2).

It is easily to verify that det(U2) = 0 because the first row and last row of U2 are

colinear. As a consequence, det(U) = det(U1).

Let U = U1 and repeat the above operation to obtain that det(U) and so on. Finally,

det(U) is evaluated as

det(U) = det


1

λ1
0 . . . 0

λ3u2,3
λ1

1
λ2

. . . 0

. . . . . . . . . . . .
∏m

i=1 λi
λ1

∏m
i=1 λi
λ2

. . . ∏m
i=1 λi
λm

 (4.18)

Thus det(U) = 1, i.e., U is an unimodular matrix. This result also justifies that the

matrix T is a HNF of A based on the relation (4.9).

Then, if the wavelengths used are coprime, the estimation (4.6) is equivalent to

N̂ = arg min
n∈Zm

‖nB− (−ȳA)‖ (4.19)
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where B has the following simple form according to Theorem 4.8:

B =



∏m−1
i=1 λi
λ1

. . . 0 0
...

. . .
...

...

0 . . . ∏m−1
i=1 λi
λm−1

0

0 0 0 0

 (4.20)

As a consequence, the nearest point in nTB to ȳTA can be found by the Babai’s nearest

plane algorithm [59], which is given in Algorithm 2.2. The algorithm returns the nearest

point, denoted by PT = [p1, · · · , pm], in nTA to ȳTA. Therefore, the estimate of NT can be

computed as

N̂T ,
{

nT ∈ Zm|nTA = P
}

(4.21)

Since A is not full rank, N̂T cannot be computed directly. From nTA = PT, we have


n1 ∏m−1

i=1 λi − nm
∏m

i=1 λi
λ1

= p1
...

nm−1 ∏m−1
i=1 λi − nm

∏m
i=1 λi

λm−1
= pm−1

(4.22)

where ni represents an unknown integer, and pi is the element of PT, i = 1, · · · , m.

Equation (4.22) consists of congruence equations which are solvable since all the pa-

rameters in the equations are integers. The solution is of the form

ni = ñi + kdi (4.23)

where ñi and di can be obtained from (4.22), k is an unknown integer. Equation (4.23) is

the general solution of (4.22), where ñi is a special solution, di can be viewed as the period

of the solution and k ∈ Z is the only unknown integer to be determined.

A method based on the computation of the Hermite Normal Form (HNF) of the ma-

trix A is adopted to solve (4.22). Following from (4.9), we have

UA = B (4.24)
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where U is a unimodular matrix (det(U) = 1).

Since UA = B, we can write

nTA = (nTU−1)(UA) = (nTU−1)B = P.

Let (nTU−1) = XT = [x1, · · · , xm]. It is easy to see that XT is an integer vector since the

elements of both nT and U are all integers. Therefore, nTA = PT has integer solutions

when XTB = PT has an integer solution for XT and all the solutions of nTA = PT are of

the form nT = XTU, where XT can be found from the relationship XTB = PT. When the

set of wavelengths λi, i = 1, · · · , m are all co-prime, according to (4.20) we have

XT =

[
p1λ1

∏m−1
i=1 λi

, · · · ,
pm−1λm−1

∏m−1
i=1 λi

, xm

]
.

Substitution of XT into nT = XTU, yields the following form for the solution of N̂T


N̂1 = ñ1 + xmum,1

...

N̂m = ñm + xmum,m

(4.25)

where ñ1, · · · , ñm are the special solutions of N̂T, xm is an unknown integer and um,i is

the (m, i)th entry of U. In similar vein to (4.23), the equation (4.25) is a general solution of

N̂T with the period um,i and xm is the only unknown integer, which may be determined

as follows. Since 0 ≤ N̂1 < LCM(λ1,··· ,λm)
λ1

, we have

xm = floor

 LCM(λ1,··· ,λm)
λ1

− ñ1

um,1

 (4.26)

or

xm = ceil
⌈
−ñ1

um,1

⌉
(4.27)

where floorb·c and ceild·e denote the floor and ceiling functions, respectively. Substitu-

tion of the solution of xm into (4.25) gives the following estimated set of integers N̂T =

[N̂1, · · · , N̂m].
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The above algorithm can be implemented using the pseudo-code shown in Algorithm

4.1. As the Steps 2-4 can be pre-computed in advance, the algorithm is computationally

efficient and search free.

Algorithm 4.1: The closed-form algorithm to determine N

1 begin
2 Construct basis A by [λ1, · · · , λm], compute reduced basis B of A;
3 Obtain B∗ by applying the Gram-Schmidt process to B;
4 Find the Hermite normal form decomposition of A, obtain B and U;
5 Obtain the remainders y = [y1, · · · , ym]T and compute ȳ by ȳ = [ y1

λ1
, · · · , ym

λm
]T;

6 Compute the nearest point PT to ȳTA according to Algorithm 2.2;
7 Solve XT from XTB = PT and then obtain the general solution of N̂T by

nT = XTU;
8 Determine xm by (4.26) or (4.27) and then substituting it into (4.25).
9 return N̂T

10 end

4.1.2 The Performance Analysis of the Lattice Algorithm and Simulation

In this section, the performance analysis of the lattice algorithm is analyzed based on the

assumption of noise distribution.

Recall the estimator (4.6), we have

arg min
n∈Zm

‖nA− (−ȳA)‖ (4.28)

= arg min
n∈Zm

‖nA− (−(ȳtrue + ω̄)A)‖ (4.29)

= arg min
n∈Zm

‖nA− (−ȳtrue) + ω̄A‖ (4.30)

where ω̄ ∼ N (0, δ2Im), and Im is m-dimensional identity matrix.

According to the CVP, the estimator (4.6) will give the correct estimation of n if the

given point point lies in the Voronoi cell of (−ȳtrue), i.e.

(−ȳtrue) + ω̄A ∈ V(B,−ȳtrue)

where V(B,−ȳtrue) denotes the Voronoi cell of −ȳtrue with basis B. On the other hand,
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the Voronoi cell is just a copy of that at the origin shifted by a lattice element, so it is

sufficient to consider ȳtrue = 0.

Therefore, it is easy to see that the probability of Pr(N̂ = N|δ2, λ1 · · · , λm) is

Pr(N̂ = N|δ2, λ1 · · · , λm) =Pr(ω̄A ∈ V(B, 0)|δ2, λ1 · · · , λm) (4.31)

Since ω̄ ∼ N (0, δ2Im), then

ω̄A ∼ N (0, ATδ2ImA) (4.32)

Thus,

Pr(ω̄A ∈ V(B, 0)|δ2, λ1 · · · , λm) (4.33)

=
∫

V(B,0)
f (x)dx (4.34)

=
∫ ∏m−1

i=1 λi
λ1

−∏m−1
i=1 λi

λ1

· · ·
∫ ∏m−1

i=1 λi
λm−1

−∏m−1
i=1 λi
λm−1

f (x1, · · · , xm−1)dx1 · · · dxm−1 (4.35)

where

f (x) =
1

2(π|ATδ2ImA|)m−1
2

exp
{
−1

2
xT(ATδ2ImA)−1x

}
An example of the 2-D Voronoi cell of lattice space and measurement error ellipsoid

are shown in Fig.4.1, where the ellipsoid E is defined by the f (x) and a confidence level.

4.1.3 Conclusions

In this section, the problem of distance estimation using ambiguous and noisy phase

measurements is formulated in the framework of lattice theory and the lattice based al-

gorithm[27] is introduced. It is shown that it has similar performance to the closed-form

CRT algorithm[27]. The lattice based algorithm is extremely fast and it computational

complexity only depends on the number of wavelengths used.

However, there is a crucial condition on this algorithm, namely the wavelengths used

must be co-prime. Without this assumption, the diagonal reduced basis may not exist and
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Voronoi cell

V(B,0)

E Lattice point

True point

Given point

Figure 4.1: The example of Voronoi cell of lattice

the fast closest point searching algorithm is inapplicable. This may limit the applications

of the lattice algorithm in practice. Therefore, we are interested in relaxing the co-prime

condition.

On the other hand, in estimating distance using ambiguous phase, the estimation

of ambiguous integer N is particularly crucial since if the n is estimated incorrectly, the

distance estimation will be far from the truth. Therefore, to increase the performance of

the successful reconstruction of N is important in real world.

4.2 A Relaxed Condition on Wavelengths for the Closed-form
Algorithm

4.2.1 Introduction

In Section 4.1, the lattice algorithm for solving noisy congruence equations is described

and analysed. It should be noted that the efficiency of this algorithm partly derives from

the fact that the reduced basis B of the original lattice basis is diagonal based in turn on

the co-primality assumption on the wavelengths used. Then Babai’s algorithm which

only needs m − 1 times computations is applicable and the optimal result(the closest

point) can be guaranteed.



62 Efficient Algorithms to Resolve Ambiguity in Noise — Lattice Algorithms

The coprimality requirement may prevent the algorithm being used for many real ap-

plications as, additionally, the wavelengths used are normally constrained to lie within

a limited bandwidth [13, 28]. The latter imposes limitations on the maximum distance

that can be unambiguously measured. For example, the admissible wavelengths in the

2.4GHz Wi-fi band are {125, 124, · · · , 120}mm, and the coprime wavelengths in this inter-

val may not cover a sufficient large unambiguous distance as shown in the Section 4.2.4.

The coprimality condition may also reduce the resolution of range; for example, in a

medium-to-high PRF radar, the target may be unobservable because of the so-called

“blind zone” and clutter [29] when the number of available PRFs is not enough. Clearly,

the practical effectiveness of the algorithm is limited by the coprimality condition.

In this section, we show that the coprimality condition on the wavelengths in the

closed-form lattice algorithm can be relaxed to a more general condition that allows a

larger number of integer-related wavelengths to be used . As a result, a diagonal reduced

basis of A defined in (4.7) is still guaranteed and a closed-form lattice algorithm is im-

plementable. In addition, the construction of the associated unimodular matrix for the

implementation of the closed-form lattice method is derived. The performance of the

lattice algorithm under this new condition is analyzed and demonstrated via simulation.

4.2.2 The Proof of the Relaxed Condition

To prove the main result (Theorem 4.2) of this section, the following three propositions

are required.

Proposition 4.1. Let {a, b, k} ∈ Z+. Then

GCD (a, kb)
GCD (a, b)

∈ Z+

Proof. Since there exist {u, v} ∈ Z such that GCD (a, kb) = au+ kbv, and
{

a
GCD(a,b) , b

GCD(a,b)

}
∈
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Z, we have

GCD (a, kb)
GCD (a, b)

=
au + kbv

GCD (a, b)

=
a

GCD (a, b)
u +

b
GCD (a, b)

kv

=GCD
(

a
GCD (a, b)

, k
b

GCD (a, b)

)
∈ Z+

Proposition 4.2. Let di,m = GCD (λi, kiλm) and gi,m = GCD(λi, λm), i = 1, · · · , m− 1,

where ki ∈ Z+. Then
m−1

∏
i=1

di,m =
m−1

∏
i=1

gi,m

if and only if di,m = gi,m, i = 1, · · · , m− 1.

Proof. It is easy to see that

di,m = gi,m, i = 1, · · · , m− 1 =⇒
m−1

∏
i=1

di,m =
m−1

∏
i=1

gi,m

On the other hand, from Proposition 4.2, we have

di,m

gi,m
= GCD

(
λi

gi,m
, ki

λm

gi,m

)
≥ 1 (4.36)

Then
m−1

∏
i=1

di,m ≥
m−1

∏
i=1

gi,m,

with equality holds if di,m = gi,m i = 1, · · · , m− 1.

Proposition 4.3. Let {a, b, c} ∈ Z+. Then GCD(a, bc) = 1 if and only if GCD(a, b) = 1

and GCD(a, c) = 1.

Proof. If GCD(a, bc) = 1, since

GCD(a, bc) ≥ GCD(a, b)
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and

GCD(a, bc) ≥ GCD(a, c),

then we have GCD(a, b) = 1 and GCD(a, c) = 1.

It is obvious that if GCD(a, b) = 1 and GCD(a, c) = 1, then GCD(a, bc) = 1.

Now, we present the main result.

Theorem 4.2. Let A be a matrix defined by (4.7), λi ∈ Z+ and gi,m = GCD(λi, λm) for

i = 1, · · · , m− 1. If

GCD
(

λi

gi,m
,

λj

gj,m

)
= 1, i, j = 1, · · · , m− 1, i 6= j.

Then there are integer matrices B and U satisfying

B =



g1,m
∏m−1

i=1 λi
λ1

0 · · · 0

0 g2,m
∏m−1

i=1 λi
λ2

· · · 0
...

. . .
...

...

0 · · · gm−1,m
∏m−1

i=1 λi
λm−1

0

0 0 · · · 0


(4.37)

and det |U| = 1, such that UA = B.

Proof. The proof of Theorem 4.2 is in two parts:

1) proof that there exists an integer matrix U such that UA = B;

2) proof of det|U| = 1.

For the first part, let ui,j be the (i, j)-th entry of matrix U and let B be of the form:

B =


b1,1 . . . 0 0

...
. . .

...
...

0 . . . bm−1,m−1 0

0 . . . 0 0

 (4.38)
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Recall the definition of A in (4.7), and let UA = B. Then, for the first row of B, we have



u1,1 ∏m−1
l=1 λl − u1,m

∏m
l=1 λl
λ1

= b1,1

u1,2 ∏m−1
l=1 λl − u1,m

∏m
l=1 λl
λ2

= 0
...

u1,m−1 ∏m−1
l=1 λl − u1,m

∏m
l=1 λl

λm−1
= 0

(4.39)

Let b1,1 = d1,m
∏m−1

l=1 λl
λ1

, where d1,m ∈ Z. Then (4.39) becomes



u1,1λ1 − u1,mλm = d1,m

u1,2:(m−1)λ2:(m−1) − u1,mλm = 0
...

u1,m−1λm−1 − u1,mλm = 0

(4.40)

Let c1,i ∈ Z, i = 1, · · · , m− 1. Consider the last equation in (4.40); that is,

u1,m−1λm−1 − u1,mλm = 0

The integer solutions are

 u1,m−1 = λm
gm−1,m

c1,m−1

u1,m = λm−1
gm−1,m

c1,m−1

(4.41)

where gm−1,m = GCD(λm−1, λm).

Substituting (4.41) into u1,m−2λm−2 − u1,mλm = 0 from Equation (4.40) yields

u1,m−2λm−2 − λm
λm−1

gm−1,m
c1,m−1 = 0, (4.42)

so that the integer solutions are

 u1,m−2 = λmλm−1
gm−2,mgm−1,m

c1,m−2

c1,m−1 = λm−2
gm−2,m

c1,m−2

(4.43)
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Now substitution of (4.43) into (4.41) produces

u1,m =
λm−2λm−1

gm−2,mgm−1,m
c1,m−2. (4.44)

Similarly, using the last m− 2 equations in (4.40), we obtain

u1,m =
∏m−1

l=2 λl

∏m−1
l=2 gl,m

c1,2 (4.45)

Finally, substitution of (4.45) into u1,1λ1 − u1,mλm = d1,m gives

u1,1λ1 −
∏m

l=2 λl

∏m−1
l=2 gl,m

c1,2 = d1,m (4.46)

By Bézout’s identity [79], u1,1 and c1,2 have integral solution if d1,m = GCD
(

λ1, ∏m
l=2 λl

∏m−1
l=2 gl,m

)
.

In turn,

b1,1 = GCD

(
λ1, ∏m

l=2 λl

∏m−1
l=2 gl,m

)
∏m−1

l=1 λl

λ1

Based on the above analysis, the elements of the ith row, i = 1, · · · , m − 1, of U are all

integers if

di,m = GCD

(
λi,

gi,m ∏m
l=1 λl

λi ∏m−1
l=1 gl,m

)
= GCD (λi, kiλm)

where ki =
gi,m ∏m−1

l=1 λl

λi ∏m−1
l=1 gl,m

∈ Z+. It follows that

bi,i = di,m

(
m−1

∏
l=1

λl

)/
λi (4.47)

Since the elements in the mth row of B are all zero, the following equations can be

constructed from UA = B
um,1 ∏m−1

l=1 λl − um,m
∏m

l=1 λl
λ1

= 0
...

um,m−1 ∏m−1
l=1 λl − um,m

∏m
l=1 λl

λm−1
= 0

(4.48)
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From (4.48), it is not hard to see that um,j =
∏m

l=1 λl

λj ∏m−1
l=1 gl,m

for j = 1, · · · , m.

The above conclusion indicates that we always can find an integer matrix U so that

UA = B. If we can show that det(U) = 1, B will be the reduced lattice basis of A. Using

the above analysis, U can be rewritten in the following form

U =



d1,m+u1,mλm
λ1

u1,mλm
λ2

. . . u1,m

u2,mλm
λ1

d2,m+u2,mλm
λ2

. . . u2,m

. . . . . . . . . . . .
∏m

l=1 λl

λ1 ∏m−1
l=1 gl,m

∏m
l=1 λl

λ2 ∏m−1
l=1 gl,m

. . . ∏m
l=1 λl

λm ∏m−1
l=1 gl,m

 (4.49)

det(U) can then be rewritten as det(U) = det(U1) + det(U2), where

U1 =



d1,m
λ1

0 . . . 0
u2,mλm

λ1

d2,m+u2,mλm
λ2

. . . u2,m

. . . . . . . . . . . .
∏m

l=1 λl

λ1 ∏m−1
l=1 gl,m

∏m
l=1 λl

λ2 ∏m−1
l=1 gl,m

. . . ∏m
l=1 λl

λm ∏m−1
l=1 gl,m


and

U2 =



u1,mλm
λ1

u1,mλm
λ2

. . . u1,m

u2,mλm
λ1

d2,m+u2,mλm
λ2

. . . u2,m

. . . . . . . . . . . .
∏m

l=1 λl

λ1 ∏m−1
l=1 gl,m

∏m
l=1 λl

λ2 ∏m−1
l=1 gl,m

. . . ∏m
l=1 λl

λm ∏m−1
l=1 gl,m


As the first and last row in U2 are collinear, then

det(U) =

det



d1,m
λ1

0 . . . 0
u2,mλm

λ1

d2,m+u2,mλm
λ2

. . . u2,m

. . . . . . . . . . . .
∏m

l=1 λl

λ1 ∏m−1
l=1 gl,m

∏m
l=1 λl

λ2 ∏m−1
l=1 gl,m

. . . ∏m
l=1 λl

λm ∏m−1
l=1 gl,m

 (4.50)
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Similarly, we have following

det(U) =

(
m−1

∏
i=1

di,m

λi

)
∏m

l=1 λl

λm ∏m−1
l=1 gl,m

=
∏m−1

l=1 dl,m

∏m−1
l=1 gl,m

(4.51)

If ∏m−1
l=1 dl,m = ∏m−1

l=1 gl,m, then det(U) = 1. From Proposition 4.2, then, ∏m−1
l=1 dl,m =

∏m−1
l=1 gl,m if and only if gi,m = di,m, i = 1, · · · , m− 1.

In other words, U is a unimodular matrix and, in view of (4.47) and (4.38), B has the

form

B =


b1,1 . . . 0 0

...
. . .

...
...

0 . . . bm−1,m−1 0

0 . . . 0 0

 (4.52)

if and only if gi,m = di,m, i = 1, · · · , m− 1, where bi,i = gi,m
∏m−1

l=1 λl
λi

.

In particular, from Proposition 4.3, we remark that the condition for B to be of the

form (4.52) is (i, j = 1, · · · , m− 1, i 6= j)

1 =
di,m

gi,m
= GCD

(
λi

gi,m
,

(
∏m−1

l=1 λl

λi

/
∏m−1

l=1 gl

gi

)
λm

gi,m

)

⇔ GCD
(

λi

gi,m
,

λj

gj,m

)
= 1

Theorem 4.2 implies that the matrix B defined in (4.37) is a reduced lattice basis for A.

The following lemma is trivial. It states that the coprimality condition in [27] is a special

case of Theorem 4.2.

Lemma 4.1. If GCD(λi, λj) = 1, i, j = 1, · · · , m, i 6= j, then GCD
(

λi
gi,m

, λj
gj,m

)
= 1, i, j =

1, · · · , m− 1, i 6= j.

As shown in [27], the associated unimodular matrix U is essential for implementing

the closed-form lattice algorithm. Now we show how to determine the values of U. In

view of (4.49), it is sufficient to compute ui,m and di,m, i = 1, · · · , m− 1 so as to determine
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U. From the relation

ui,iλi −
gi,m ∏m

l=1 λl

λi ∏m−1
l=1 gl,m

ci,2 = di,m (4.53)

and di,m = gi,m, we have

ui,i
λi

gi,m
−
(

∏m−1
l=1 λl

λi

/
∏m−1

l=1 gl

gi

)
λm

gi,m
ci,2 = 1 (4.54)

Since GCD
(

λi
gi,m

, λj
gj,m

)
= 1, i, j = 1, · · · , m− 1, i 6= j, Equation (4.54) is solvable using

the Extended Euclidean algorithm [80]. Consequently, ui,m is determined by

ui,m =
gi,m ∏m−1

l=1 λl

λi ∏m−1
l=1 gl,m

ci,2 (4.55)

and then the unimodular matrix U is constructed.

4.2.3 The Performance Analysis of the Lattice Algorithm Using the Relaxed
Condition

In this section, the performance of the closed-form lattice algorithm [27] in terms of the

reconstruction probability under the relaxed condition is derived using the properties of

the lattice. We assume that the signal wavelengths satisfy the condition in Theorem 4.2.

Recall the definition of A, since ȳ = ȳtrue + ω̄, where

ω̄ =

[
ω1

λ1
, · · · ,

ωm

λm

]
, ȳtrue =

[
y1,true

λ1
, · · · ,

ym,true

λm

]

and ωi ∼ N (0, λ2
i δ2), then

ȳA = ȳtrueA + ω̄A and ω̄A ∼ N (0, Σ) (4.56)
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and Σ = δ2 (∏m
i=1 λi)

2
Σ′, where σ′i,j is the (i, j)-th entry of Σ′ and

 σ′i,i =
1

λ2
i
+ 1

λ2
m

, i, j = 1, · · · , m− 1 and i 6= j

σ′i,j =
1

λiλj
, i = 1, · · · , m− 1

On the assumption that the condition in Theorem 4.2 is satisfied, the closed-form lattice

algorithm will return the correct value of N if −(ȳtrue + ω̄)A lies in the Voronoi cell of

NB, where B is a diagonal matrix. The Voronoi cell of the diagonal basis B is an (m− 1)-

dimensional rectangle with vertices are given by

{
−b1,1

2
+ v1

b1,1

2
,

b1,1

2
+ v1

b1,1

2

}
× · · ·×{

−bm−1,m−1

2
+ vm−1

bm−1,m−1

2
,

bm−1,m−1

2
+ vm−1

bm−1,m−1

2

}

where× is the Cartesian product, {v1, · · · , vm−1} ∈ {0,±1,±3,±5 · · · } and bi,i = gi,m
∏m−1

i=l λl
λi

.

Because of the translational symmetry of the lattice, the Voronoi cells of all lattice

points are congruent, [58], we may simply discuss the case ȳtrue = 0; that is, N = 0. Based

on (4.56), we see that the probability of correctly estimating N given different values of δ

and wavelengths is

Pr(N̂ = N|δ, λ1, · · · , λm)

=Pr(N̂ = N = 0|δ, λ1, · · · , λm)

=
∫ b1,1

2

− b1,1
2

· · ·
∫ bm−1,m−1

2

− bm−1,m−1
2

1√
2π|Σ|1/2

exp
{
−1

2
xΣ−1xT

}
dx

where x = [x1, · · · , xm−1].

4.2.4 Simulation

In this section, we demonstrate the distance estimation performance improvement when

using the closed-form lattice algorithm with the relaxed hypothesis in Theorem 4.2. We

consider a 2.4GHz Wi-fi band transmitter localisation example. Typically, the localisation

of a transmitter can be done via triangulation by a receiver able to measure the phase
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difference of Wi-fi signals transmitted from the transmitter at multiple frequencies. We

assume that the measurement errors are zero-mean Gaussian distributed with standard

deviations proportional to their corresponding wavelengths (i.e., ∝ δλi, 0 < δ ≤ 1).

Within the 2.4GHz Wi-fi band, the available integer wavelengths are the set (2.40GHz–

2.49GHz)

Λ1 = {125, 124, 123, 122, 121, 120}mm.

Since Λ1 satisfies the condition in Theorem 4.2, we can use all of them to calculate the

distance between the transmitter and receiver. On the other hand, if we assume that the

wavelengths satisfying the coprimality condition, as in [27], are used, we would have the

following two wavelength sets:

Λ2 = {125, 124, 123, 121}mm

Λ3 = {121, 120}mm

Clearly, GCD(Λ3) = 121× 120 = 14.5m covers too small an unambiguous distance to be

used in the application. We chose Λ2 for the wavelengths to be used under the coprimal-

ity condition for “measuring” the distance using the closed-form lattice algorithm. There-

fore, we compared the performance of the two closed-form algorithms implemented us-

ing Λ1 and Λ2, respectively.

Figure 4.2 shows the performance comparison of estimating the unwrapped signal

phase (distance) versus different error level δ. The performance is measured in terms of

the probability that the correct N is found.

In the simulation, the distance r (corresponding to the ground truth signal phase) is

randomly selected between 1 and the LCM of the wavelength used. The “noise” param-

eter δ in the phase measurement noise variance δ2λ2
i is chosen to be −20 log10 δ = 20 :

5 : 80. All simulation results were averaged over 5000 Monte Carlo runs. The theoretic

probabilities; that is, Pr(N̂ = N|δ, Λ1,2), are also plotted in Figure 4.2.
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Figure 4.2: Reconstruction probability versus error level

4.2.5 Conclusions

In this section, the standard coprimality condition on waveform sets for estimation of

travel distances of wireless signal using a closed-form lattice based algorithm is relaxed.

According to this new result, more signal wavelengths may be selected to unwrap signal

phase using phase measurements under bandwidth constraints using the closed-form lat-

tice algorithm [27]. The associated probabilistic performance measure and an illustrative

simulation example are also given.

4.3 An Algorithm for Phase Unwrapping Using Non-coprime
Wavelengths

4.3.1 Introduction

In Section 4.2, a relaxed condition on the closed-form lattice algorithm is presented using

the properties of lattice. However, in some practical cases, the available wavelengths



4.3 An Algorithm for Phase Unwrapping Using Non-coprime Wavelengths 73

cannot satisfy the new condition. Without the co-prime constraint and new condition, an

optimal solution may be achieved via the search-based algorithm [81] or lattice algorithm

using the sphere decoder as described in Algorithm 2.3. However, the implementation

demands very high computational complexity because of the involvement of exhaustive

searches over parameter space.

In this section, we present a lattice based algorithm to solve this general ambiguity

problem without the co-prime constraint. Based on the work in [31], a modified iteration

for closest point searching is derived so that the proposed algorithm is computation-

ally more efficient than existing approaches. The efficiency of the proposed algorithm is

demonstrated via simulation.

4.3.2 The Proposed Algorithm

In this section, we are interested in using moduli which do not satisfy the condition of

Theorem 4.2 and therefore, the closed-form lattice algorithm is not applicable.

Recall

A =


∏m−1

i=1 λi . . . 0 0
...

. . .
...

...

0 . . . ∏m−1
i=1 λi 0

−∏m
i=1 λi
λ1

. . . −∏m
i=1 λi

λm−1
0

 (4.57)

By the Hermite Normal Form(HNF) decomposition, A can be represented as the product

of an upper-triangular matrix T and a unimodular matrix U [80], so that Ω(A) = Ω(T),

where Ω(·) denotes the lattice space generated by the corresponding basis. The elements

of the mth row and column of T are all zero since the rank of A is m− 1.

Suppose that the closest lattice point to the given point ȳA and the associated integer

vector corresponding to Ω(T) are solved and denoted by P = [P1, · · · , Pm−1, 0] and v =

[v1, · · · , vm−1, vm] respectively, where vm is undetermined. Then we have vT = N̂A = P.

We aim to determine N̂ from these known values. Since vT = (N̂U−1)T, therefore vU =
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N̂ which can be written as follows, where j = 1, · · · , m

m−1

∑
i=1

viui,j + vmum,j = N̂j (4.58)

All the values are known in these equations except N̂j and the undetermined integer

value vm . N̂j in (4.58) are integers and bounded by 0 < N̂j ≤ LCM(λ1,··· ,λm)
λj

, therefore

0 < vm +
∑m−1

i=1 viui,j

um,j
≤ LCM(λ1, · · · , λm)

λjum,j
(4.59)

Lemma 4.2. Let U, A and T be integer matrices as defined in this section. Then there

exist {um,j ∈ Z, j = 1, · · · , m} satisfying following relation

1
um,1λ1

= · · · = 1
um,mλm

= ± 1
LCM(λ1, · · · , λm)

Proof. Since UA = T and the entries of last row of T are all 0, then we have um,j ∏m−1
i=1 λi−

um,m
∏m

i=1 λi
λj

= 0 for j = 1, · · · , m

Clearly, the solution of {um,j} is K
λj

. Consider {um,j ∈ Z, j = 1, · · · , m}, then let

K = kLCM(λ1, · · · , λm) where k ∈ Z \ 0 (det U will be 0 if k = 0). Substituting K into

um,j =
K
λj

, we have

1
um,1λ1

= · · · = 1
um,mλm

= ± 1
kLCM(λ1, · · · , λm)

Let k = ±1 and the lemma is proved.

Let um,j ∈ Z+ and j = 1, from Lemma 4.2, (4.59) can be written as

−∑m−1
i=1 viui,1

um,1
< vm ≤1− ∑m−1

i=1 viui,1

um,1

Lemma 4.3. Let X ∈ R. there exists an unique integer vm satisfies −X < vm ≤ 1−

X.
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Since vm ∈ Z, it follows from Lemma 4.3 that vm can be uniquely determined


vm = −

⌊
∑m−1

i=1 viui,1
um,i

⌋
∑m−1

i=1 viui,1
um,i

6∈ Z

vm = 1− ∑m−1
i=1 viui,1

um,i

∑m−1
i=1 viui,1

um,i
∈ Z

Therefore, all parameters in (4.58) are known, and N̂ can be uniquely determined.

4.3.3 Finding the Closest Lattice Point By Relevant Vectors

Finding the lattice point in Ω(G), where G is a lattice basis, which is closest to a given

point x ∈ Rm can be iteratively implemented as in [31]:

tk+1 = tk + dk (4.60)

dk = arg min
d∈Rel(G)∪{0}

‖x− tk − d‖ (4.61)

with an initial guess on t0 which lies in Ω(G). It can be proved that this algorithm con-

verges to the closest point of x within a finite number of steps.

Inspired by [31] and [63], we may use an adaptive step size αk rather a fixed step size

in the iteration. Thus, the above iteration may be written as

tk+1 = tk + αkdk (4.62)

{dk, αk} = arg min
c∈Rel(G), α∈Z+∪{0}

‖x− tk − αc‖ (4.63)

We have following proposition to optimally choose αk:

Proposition 4.4. The optimal choice of αk satisfies αk = Round
(∣∣∣∣∑m−1

i=1 βici

∑m−1
i=1 c2

i

∣∣∣∣), where ci

and βi is ith element of c and x− tk respectively and c ∈ Rel(G).

Proof. Given x and c, minα∈R ‖x− tk − αc‖ can be written into minα ∑m−1
i=1 (βi − αci)

2

Taking the derivative of ∑m−1
i=1 (βi − αci)

2 with respect to α and setting it zero gives

α =
∑m−1

i=1 βici

∑m−1
i=1 c2

i

.
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Since αk is either a positive integer or 0, the optimal choice is

αk = Round

(∣∣∣∣∣∑m−1
i=1 βici

∑m−1
i=1 c2

i

∣∣∣∣∣
)

.

Proposition 4.5. The algorithm (4.62) will be converges to the closest point in a finite

steps.

Proof. Denote the closest point of x by P. If tk lies in the Voronoi cell of P, then from

the definition of Voronoi region, we have ∑m−1
i=1 βici <

1
2 ∑m−1

i=1 c2
i , where ci and βi is ith

element of c and x− tk, ∀c ∈ Rel(G), thus from Proposition 4.4, αk = 0.

If tk does not lie in the Voronoi cell of P, then from tk+1 = tk + αkdk, we have

‖x− tk+1‖

 < ‖x− tk − αkc‖ α 6= 0

= ‖x− tk+1‖ αk = 0

where α ∈ Z+,α 6= αk, ∀c ∈ Rel(G) and dk 6= c.

This implies that the distance between x and tk+1 will be strictly decreasing until αk =

0. From the above analysis, αk = 0 means that the tk lies in the the Voronoi cell of P and

the closest point is attained.

An illustrative example showing the search path and number of iteration differences

between the conventional searching algorithm and the proposed adaptive searching al-

gorithm is given in Fig. 4.3.

After obtaining the closest point to the given point P, it is easy to find the associated

vector v corresponding to lattice T via vT = P since T is upper-triangular matrix.

4.3.4 Simulation

In this section, we compare the performance of the proposed algorithm with the search-

based CRT algorithm presented in [81]. The latter is regarded as an optimal algorithm.
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Figure 4.3: An illustrative example for comparing the conventional searching and adap-
tive searching algorithms. The given point is indicated using a black circle and the lattice
point is indicated by blue dot. Red arrowed-line shows the iteration path of conventional
algorithm and the green arrowed-line shows the adaptive searching algorithm.

Two sets of wavelengths(moduli), which do not satisfy the co-prime constraint, are

used as below to demonstrate the efficiency of the proposed algorithm.

Λ1 ={21, 22, 23, 24, 25, 26, 27, 29}

Λ2 ={56, 57, 58, 59, 60, 61, 62, 63}

The distance r is randomly selected between 1 and the LCM of the modulus set. The

parameter δ in phase measurement noise variance δ2λ2
i is chosen such that −20 log10 δ =

30 : 2 : 56, which provides an indication for both noise level and signal to noise ratio

in the simulation. All simulation results illustrated are averaged over 1000 Monte Carlo

runs. Algorithm performance is measured in the probability of correctly estimating the

set of integers N for a given measurement noise level, i.e., the probability of a correct

signal phase reconstruction. Computational complexity is also an important criterion.

Fig.4.4 shows the probabilities of correctly reconstructing signal phases for different
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measurement noise levels δ and different moduli sets Λ1 and Λ2, i.e. Pr(N̂ = N|δ).

In both cases (Λ1 and Λ2), the proposed algorithm has an identical performance to the

search-based CRT algorithm in the probabilities of correctly estimating both N and r. On

the other hand, Fig.4.5 shows the ratio of required CPU time. It indicates that the required

computational load by the proposed algorithm is significantly less than the search-based

algorithm[27].

The closest point searching algorithm with an adaptive iteration step size plays a key

role for the efficiency enhancement of the proposed algorithm. We compare the compu-

tational complexity of the new derived searching algorithm with that of the conventional

algorithm presented in [31] in terms of CPU time in Fig. 4.6 versus the number of sig-

nal wavelengths used. It shows that the conventional searching algorithm increases its

computational overhead much faster than the proposed one once the number of signal

wavelengths exceed 8.

It is worth mentioning that if the underlying problem satisfies the co-prime constraint,

the proposed algorithm is equivalent to the closed-form lattice algorithm presented in

[27] or Section 4.1.
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Figure 4.4: Comparison of the proposed algorithm and searching based algorithm vs. the
amplitude of the noise using Λ1 and Λ2: Probability of correctly reconstruction.
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Figure 4.5: Comparison of the proposed algorithm and searching based algorithm vs. the
amplitude of the noise using Λ1 and Λ2: Ratio of required computation time.
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Figure 4.6: The required CPU time of proposed closest point searching algorithm and
conventional one versus different number of moduli used.
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4.3.5 Conclusions

In this section, we present a lattice based estimator for estimating distances with phase

wrapped signal measurements. The proposed algorithm addresses a more general situ-

ation where the co-prime constraint on signal wavelengths is relaxed. Furthermore, we

propose an adaptive searching algorithm for finding the nearest lattice point for a given

noisy measurement on a lattice, which greatly improves the efficiency of the proposed

estimator.

4.4 An Improved Lattice Algorithm Using Different Basis Struc-
tures

4.4.1 Introduction

In the lattice based approach, the problem is formulated as a state estimation problem,

requiring simultaneous estimation of the wrapped signal phase and the unknown integer

for the number of times that the range is folded by the signal wavelength. Practically, if

the unknown integer is estimated incorrectly, the range estimation error is significant. As

a result, the reconstruction probability of the wrapped integer becomes the key measure

of algorithm capability for resolving ambiguity.

In this section, we propose an improved lattice based algorithm for localization prob-

lem. We show analytically that the proposed algorithm has better performance in terms

of reconstruction probability than the one in [27], though with a slightly higher compu-

tational complexity.
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4.4.2 Improvement Over the Conventional Lattice Algorithm

Before introducing the proposed algorithm, we define two matrices:

A(x1, · · · , xm) =


∏m−1

i=1 xi . . . 0 0
...

. . .
...

...

0 . . . ∏m−1
i=1 xi 0

−∏m
i=1 xi
x1

. . . −∏m
i=1 xi

xm−1
0

 (4.64)

and,

B(x1, · · · , xm) =



∏m−1
i=1 xi
x1

. . . 0 0
...

. . .
...

...

0 . . . ∏m−1
i=1 xi
xm−1

0

0 . . . 0 0

 (4.65)

Obviously, A(x1, · · · , xm) and B(x1, · · · , xm) are functions of (x1, · · · , xm).

Then recall the following estimator (4.19):

N̂ = arg min
n∈Zm

∥∥∥nB(λ1, · · · , λm) + ȳA(λ1, · · · , λm)
∥∥∥. (4.66)

Formula (4.66) is typically the closest point searching problem in lattices and can be

solved via Babai’s algorithm efficiently [27, 60] if the wavelengths are co-prime. This

algorithm is referred as the conventional lattice algorithm in this section.

Define λ = [λ1, · · · , λm], and assume that λ1 < · · · < λm and that [λ1, · · · , λm] are

co-prime. As in [27], when the variance of the measurement noise is proportional to the

wavelength, the probability of correct reconstruction of the integer vector N, Pr(N̂ = N),

is largely impacted by the minimum wavelength in the set [λ1, · · · , λm].

We define the circular shift function S(·, ·) of an array as

S(λ, 0) = [λ1, · · · , λm]

S(λ, 1) = [λm, λ1, · · · , λm−1]
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...

S(λ, m− 1) = [λ2, λ3, λ4, · · · , λm, λ1]

Accordingly, recalling the definition of A(·) and B(·) in (4.64) and (4.65), we let Aj ,

A(S(λ, j)), Bj , B(S(λ, j)), j = 0, 1, · · · , m− 1.

As shown in Lemma 4.4, in the conventional lattice algorithm, the use of different

basis Aj, j = 0, · · · , m− 1 implies different reconstruction probability Pr
(
N̂ = N|S(λ, j)

)
.

Lemma 4.4. Define λ = [λ1, · · · , λm]. Suppose λ1 < · · · < λm and are co-prime. Then

the probabilities of correct reconstruction of the integer set N using the conventional lat-

tice algorithm[27] satisfies

Pr
(
N̂ = N|S(λ, 0)

)
> Pr

(
N̂ = N|S(λ, j)

)
, j = 1, · · · , m− 1.

Proof. We only prove the case Pr
(
N̂ = N|S(λ, 0)

)
> Pr

(
N̂ = N|S(λ, 1)

)
. The proofs of

other cases are similar.

As indicated in [27], for S(λ, 0), the lattice algorithm will return the true value if

|ωi −ωm| < 1
2 for i = 1, · · · , m− 1, and this yields

Pr
(
N̂ = N|S(λ, 0)

)
= Pr

(
m−1⋂
i=1

|ωi −ωm| < 1/2

)

Similarly, for S(λ, 1), we have

Pr
(
N̂ = N|S(λ, 0)

)
= Pr

( ⋂
i∈{1,··· ,m}\{m−1}

|ωi −ωm−1| < 1/2
)

(4.67)

Since ωi ∼ N (0, δ2λ2
i ), i = 1, · · · , m, indicating that the variance of ωi is propor-

tional to the value of wavelengths λi, it is not hard to see that Pr
(
N̂ = N|S(λ, 0)

)
>

Pr
(
N̂ = N|S(λ, 1)

)
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The result in Lemma 4.4 is from a statistical perspective. However, in each realization,

it is possible that the conventional lattice algorithm may return the wrong estimate of N

using A0 while the algorithm returns the correct estimate using Aj, j = 1, · · · , m − 1.

Thus it is useful to draw information not only from A0, as used in conventional lattice

algorithm in [27], but also from Aj, j = 1, · · · , m − 1 before a decision is made. Based

on the above idea, we present following estimator. The performance of the estimator is

analysed in the next section.

N̂ =N̂j0 (4.68)

s.t. j0 = arg min
j=0,··· ,m−1

∣∣E [( ˆ̂rj − r̂j) · λ̄j
]∣∣

N̂j = arg min
n∈Zm

‖nBj + ȳiAj‖, j = 0, · · · , m− 1

r̂j =N̂jλ + yj

ˆ̂rj =E
[
r|r̂j
]

where E[·] is the arithmetic mean operator, λ̄j , S(λ̄, j), yj , S(y, j), ȳj = S(ȳ, j), and

ˆ̂rj = E
[
r|r̂j
]

is the optimal estimator of r given r̂j, as can be found in [27].

It is not hard to solve (4.68). One could first solve N̂j, j = 0, · · · , m − 1 according

to Aj = A(S(λ, j)) using the conventional lattice algorithm, and then compute the r̂j.

After calculating N̂j and r̂j for all j, the estimation of N̂ is easy to find by computing∣∣E [( ˆ̂rj − r̂j) · λ̄j
]∣∣.

The algorithm can be divided into two parts: the off-line part and the on-line part.

The matrices used are constructed and stored in memory in the off-line part. In the on-

line part, the unknown range is estimated using measurements and the stored matrices.

The algorithm is set out as Algorithm 4.2.

4.4.3 The Computational Complexity and Performance Analysis

In this section, we aim to analyse the algorithm described in Algorithm 1 in terms of com-

putational complexity and reconstruction performance. The computational complexity

is measured by the required on-line computation time, while the reconstruction perfor-
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Algorithm 4.2: Proposed algorithm to find N̂ with different constructions of Aj

Data: λ = [λ1, · · · , λm],
λ1 < · · · < λm, {λ1, · · · , λm} are co-prime,
y = [y1, · · · , ym]
Result: Estimation of N, i.e. N̂

1 Off-line part:
2 for j = 0 : m− 1 do
3 Aj = A(S(λ, j));
4 Compute Bj and other associated matrices;

5 On-line part:
6 ȳ = [y1/λ1, · · · , ym/λm];
7 for j = 0 : m− 1 do
8 yj = S(y, j), ȳj = S(ȳ, j);
9 Calculate N̂j using the conventional lattice algorithm with data ȳjAj, Bj and

other associated matrix;
10 ˆ̂rj = E

[
r|r̂j
]
, Objj =

∣∣E [( ˆ̂rj − r̂j) · λ̄j
]∣∣;

11 j0 = arg minj=0,··· ,m−1 Objj;
12 return N̂ = N̂j0

mance is measured by the probability of correct reconstruction of N; that is, Pr(N̂ = N).

The required on-line computation has two parts, 1) the processes to calculate the can-

didate estimations, i.e. N̂j, j = 0, · · · , m− 1, and 2) the outer loop from 0 to m− 1. Since,

for each j, the first part needs m times computations and therefore, the total computation

complexity is m ·m = m2.

Since the performance of the proposed algorithm is measured by Pr(N̂ = N), as

indicated in the algorithm, N̂ = N happens if and only if there exists at least one j0 ∈

[0, · · · , m− 1] such that following event happens

{N̂j0 = N}
⋂
{j0 = arg min

j=0,··· ,m−1
Objj}, (4.69)

where Objj =
∣∣E [( ˆ̂rj − r̂j) · λ̄j

]∣∣. Therefore

Pr
(
N̂ = N

)
=Pr

(
{N̂j0 = N}

⋂
{j0 = arg min

j=0,··· ,m−1
Objj}

)
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=Pr
(

j0 = arg min
j=0,··· ,m−1

Objj
∣∣∣N̂j0 = N

)
Pr
(
N̂j0 = N

)
Since, when N̂j0 = N, we have ˆ̂rj0 ' r,

( ˆ̂rj0 − r̂j0) · λ̄j0 '(r− r̂j0) · λ̄j0 = ωj0 · λ̄j0 ,

where ωj0 , S(ω, j0).

According to the definition of ωj and λ̄j0 , we know that

ωj0 · λ̄j0 ∼ N (0, δ2Im)

where Im is the m-dimensional identity matrix.

If N̂j0 = N, then
∣∣E [( ˆ̂rj0 − r̂j0) · λ̄j0

]∣∣ ' 0, and then
∣∣E [( ˆ̂rj0 − r̂j0) · λ̄j0

]∣∣ will normally

be the minimum value for j = 0, · · · , m− 1 if m is large.

This implies that

Pr
(

j0 = arg min
j=0,··· ,m−1

Objj
∣∣∣N̂j0 = N

)
'Pr

(
j0 = arg min

j=0,··· ,m−1
Objj

∣∣∣N̂j0 = N, Objj0 = 0
)

=1

It follows that Pr
(
N̂ = N

)
' Pr

(
N̂j0 = N

)
. Define the event E , {N̂j0 = N, ∃j0 ∈

{0, · · · , m− 1}}, then E c states that {N̂j 6= N, ∀j = 0, · · · , m− 1}. In consequence,

Pr(E) = 1− Pr(E c) =1− Pr

m−1⋂
j=0

{N̂j 6= N}


>1− Pr

(
N̂j 6= N

)
=Pr

(
N̂j = N

)
∀j = 0, · · · , m− 1

By Lemma 4.4, this implies that the proposed algorithm is more robust than the conven-

tional lattice algorithm in terms of the probability of correct reconstruction.
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4.4.4 Simulation

The performance using the proposed algorithm listed in Algorithm 4.2 is demonstrated

using Monte Carlo simulations. We take the US UHF band, 902 ∼ 928 MHz, as an exam-

ple. The frequency 902 MHz is selected as the reference frequency; that is, f0 = 902 MHz,

and therefore, the available frequency differences are within 1 ∼ 26 MHz with 1MHz

increment[82] and wavelengths are within 300 ∼ 12 m. In the simulation, the following

co-prime wavelengths are selected λ = {21, 19, 17, 13}m.

The distance r is randomly selected between 1 and the LCM of all . The parameter δ

in the measurement noise variance δ2λ2
i is chosen so that −20 log10 δ = 34 : 2 : 50, which

provides an indication for both noise level and signal-to-noise ratio in the simulation. All

simulation results illustrated are averaged over 5000 Monte Carlo runs. The algorithm

performance is evaluated in terms of the reconstruction probability Pr(N = N̂) versus

the phase measurement noise level.

The simulation results are shown in Figure 4.7. For a comparison, the performance

of the conventional lattice algorithm using the lattice basis A0 is presented as well. As

indicated in Lemma 4.4, the reconstruction probability of the conventional lattice algo-

rithm satisfies Pr(N̂ = N|S(λ, 0)) > Pr(N̂ = N|S(λ, j)), j = 1, · · · , m − 1 and S(λ, 0)

corresponds to the lattice basis A0. Thus it is sufficient to compare the performance of the

new algorithm and conventional lattice algorithm using the lattice basis A0.

Figure 4.7 shows that the proposed algorithm outperforms the conventional lattice

algorithm in that it has a high probability of correct reconstruction for a given noise level.

4.4.5 Conclusions

In this section, we have presented an improved lattice algorithm for estimating the dis-

tance. The proposed algorithm is more robust than the conventional lattice algorithm in

terms of the probability of correct reconstruction of the wrapped integers at the cost of

only slightly higher complexity. The performance of the proposed algorithm is analysed.

This algorithm is suitable for other situations when wrapped measurements arise.
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Figure 4.7: The reconstruction probability comparison between the conventional lattice
[10] algorithm and proposed algorithm in Section 4.4.2.

4.5 An Improved Lattice Algorithm Using Multiple Candidate
Lattice Points

4.5.1 Introduction

As mentioned earlier, in many engineering applications, e.g. sensor localization using

range, the performance of successfully reconstructing the ambiguous integers is the first

priority since if the integers are not correctly estimated, the range estimation will be nor-

mally far away from the ground truth. In this section, we present an improved lattice

algorithm by considering multiple lattice points with slightly more computations com-

paring to the conventional lattice algorithm in [27]. In the conventional algorithm, due

to the noise, the given point corresponding to the measurements may lie in the Voronoi

cell of a neighbor of the ground truth and, in this situation, an incorrect estimate will be

returned. Base on this, a set of neighbor lattice points of the one given by conventional

algorithm is considered, and then a point is selected within these points as the estimation

via a cost function. The improved algorithm is demonstrated to have higher probability

to reconstruct the ambiguous integers. The performance of the improved algorithm is



88 Efficient Algorithms to Resolve Ambiguity in Noise — Lattice Algorithms

analysed as well.

4.5.2 The Proposed Algorithm

Suppose that the wavelengths used are co-prime, then the estimator can be written as:

N̂ = arg min
n∈Zm

∥∥∥nB + ȳA
∥∥∥. (4.70)

where

A =


∏m−1

i=1 λi . . . 0 0
...

. . .
...

...

0 . . . ∏m−1
i=1 λi 0

−∏m
i=1 λi
λ1

. . . −∏m
i=1 λi

λm−1
0

 (4.71)

and,

B =



∏m−1
i=1 λi
λ1

. . . 0 0
...

. . .
...

...

0 . . . ∏m−1
i=1 λi
λm−1

0

0 . . . 0 0

 (4.72)

In formula (4.70), nB generates a lattice space, denote by Ω(B) with basis B. On the

other hand, each lattice point, nB, in Ω(B) has a Voronoi cell, denoted by V(nB), and

these Voronoi cells are translated of each other.

In formula (4.70), we find that ȳ can be written

ȳ =

[
ω1

λ1
, · · · ,

ωm

λm

]
+

[
y1,true

λ1
, · · · ,

ym,true

λm

]
, ω̄ + ȳtrue

where ω̄ ∼ N (0, δ2I). Then

ȳA = ω̄A + ȳtrueA. (4.73)
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(4.73) implies that the given point in (4.70) can be written as a sum of the true value and

an error. It is easy to see that ω̄A is still Normally distributed, i.e. ω̄A ∼ N (0, Σ), where

Σ = δ2AT
1 A1 (4.74)

and A1 is just the first m− 1 columns of A. Accordingly,

ȳA ∼ N (ȳtrueA, Σ) (4.75)

The conventional lattice algorithm gives the closest point to the ȳA in the lattice space

generated by B and this closest point corresponds to the estimation of the N̂. If there is

no noise in ȳ, i.e. ȳA = ȳtrueA, the given point will be exactly a point in the lattice.

However, as shown in (4.75), ȳA is Normally distributed and this defines a ellipsoid in the

Euclidean space centred at the true point ȳtrueA with area determined by the covariance

Σ and the confidence level α.

Given a point ȳA, we known that this point can be in any Voronoi cell covered by

the ellipsoid. Intuitively, the conventional lattice algorithm will not return the true lattice

point if the ȳA lies in other Voronoi cells. Thus, if the given point ȳA does not lie in the

V(ȳtrueA), then the lattice algorithm will return a closest point N̂B which is not equal to

ȳtrueA. Since B is a diagonal matrix and N̂B ∈ Ω(B), then there exists a integer vector

t0 = [t0,1, · · · , t0,m−1, 0] ∈ Zm−1 such that

t0B + N̂B = ȳtrueA (4.76)

Obviously, if N̂B = ȳtrueA, t0 = 0. We aim to estimate the unknown vector t0 ∈ Zm−1 in

order to improve the performance of the lattice algorithm.

From the above analysis and the distribution of ȳA, we know that ȳtrueA either equals

N̂B or is a lattice point which is a neighbor of N̂B within a certain distance determined

by δ2. In practice, δ2 is often small, thus we assume that |t0,i| ≤ 1 and t0,i ∈ Z for

i = 1, · · · , m− 1. Let tj, j = 1, · · · , jmax, be the possible value of t0, i.e.

tj = [tj,1, · · · , tj,m−1, 0], s.t. |tj,i| ≤ 1 and tj,i ∈ Z (4.77)
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and it is easily to determine that jmax = 3m−1. From (4.76), we could define a collection of

all possible neighboring points of N̂B and denoted by P , i.e.

P = {N̂B + t1 B, · · · , N̂B + tjmax B}

The number of points included in P is denoted by #P . From the above analysis, we can

see that #P contains t0 with large probability. It should be noticed that a larger region for

|t0,i| can be used, however, it needs more computations in estimating t0. Obviously, the

zero vector 0 is a possible vector of tj, therefore, without loss of generality, we assume

that t⌊ jmax
2

⌉ = 0.

P can be used directly to estimate t0, however, we can reduce the number of ele-

ments in P by computing the lattice points covered by the ellipsoid via the Mahalanobis

distance:

dj = (ȳ0A + tj − ȳ0A)δ2Σ(ȳ0A + tj − ȳ0A)T

⇒ dj = δ2(tjB)Σ(tjB)T (4.78)

Then, in the (4.78), the index of the points within the ellipsoid can be calculated by

I =
{

j; dj < χ2
α

}
(4.79)

supposeP1 contains the lattice points in theP satisfying (4.79) and the number of points

included in P1 is denoted by #P1. It should be noticed that I can be calculated in ad-

vance.

An 2-D example of how to construct P is shown in Fig. 4.8, where R is the region

including all possible point in P and E is the ellipsoid defined byN (0, Σ). In Fig.4.8, the

given point lies in the Voronoi cell which is not of the true point, then the lattice algorithm

will give the wrong estimation, i.e. N̂B. If we can estimate t0B = N̂B− nB correctly, then

the true estimate is achieved.

In Fig.4.8, the given point lies in the Voronoi cell which is not that of the true point,

then the lattice algorithm will give the wrong estimation, i.e. N̂B. If we can estimate
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Figure 4.8: The example of P

t0B = N̂B− nB correctly, then the true estimation is achieved.

Now the main goal is to find the estimation of t0. An efficient algorithm is presented

as follows:

ĵ0 = arg min
j∈I

1
m∑m

i=1
ˆ̄ω2

j,i (4.80)

s.t. N̂⌊
jmax

2

⌉ = Lattice Algorithm(λ, y) (4.81)

N̂j = N̂⌊
jmax

2

⌉ + tj, ∀j ∈ {1, · · · , jmax} \
{⌊

jmax

2

⌉}
(4.82)

ˆ̄ωj,i =
br̂je − (N̂j,iλi + yi)

λi
, ∀i = 1, · · · , m (4.83)

r̂j = E[r|N̂j] (4.84)

where Lattice Algorithm(λ, y) is the conventional lattice algorithm using λ and y and

E[r|N̂j] is the estimate of r, which can be done using a maximum likelihood method [27],

i.e

r̂ = W
k

∑
i=1

(N̂iλi + yi)Wi (4.85)
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where Wi = 1/λ2
i , W = 1/ ∑k

i=1 Wi.

4.5.3 Performance Analysis

Next, we aim to analyze the performance of the algorithm we have presented under

some mild assumptions. Suppose that there exists an index j0 ∈ {1, · · · , 3m−1} satisfying

N̂j0,m = nm. Let J = {1, · · · , 3m−1} \ j0, then Algorithm (4.80) returns the true value, i.e.

ĵ0 = j0, if

1
m

m

∑
i=1

ˆ̄ω2
j0,i −

1
m

m

∑
i=1

ˆ̄ω2
j,i < 0, ∀j ∈ J (4.86)

Consider λi ˆ̄ωj0,i, we have

λi ˆ̄ωj0,i =
⌊
r̂j0
⌉
− N̂j0,iλi − yi,true −ωi

=
⌊

r + W ∑k
i=1 Wiωi

⌉
− r−ωi

,r + Ij0,i − r−ωi, where Ij0,i ∈ Z

=Ij0,i −ωi (4.87)

since δ2 is small and ωi is normally distributed with 0 mean, then Ij0,i = 0 with high

probability, therefore, we assume that Ij0,i = 0 in the following analysis.

For a fixed j ∈ J , since there exits αj,i ∈ Z, i = 1, · · · , m such that N̂j,iλi + yi,true +

αj,iλi = r and at least one αj,i 6= 0, otherwise, j = j0. Therefore,

λi ˆ̄ωj,i =
⌊
W ∑m

i=1(r− αj,iλi)Wi + ω̄
⌉
− r− αiλi −ωi

=
⌊
r−W ∑m

i=1 αj,iλiWi + ω̄
⌉
− r− αiλi −ωi

,
⌊
r− ᾱj + ω̄

⌉
− r− αiλi −ωi (4.88)

Proposition 4.6. For a fixed j ∈ J , there exists at least an i ∈ {1, · · · , m} such that⌊
r− ᾱj + ω̄

⌉
− r− αiλi 6= 0.
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Proof. Since the ᾱj = W ∑m
i=1 αj,iλiWi ∈ R, ᾱj,i ∈ R and can be written as a sum of the

integer part ᾱI
j ∈ Z and fractional part ᾱD

j ∈ [−1, 1). Therefore,

⌊
r− ᾱj + ω̄

⌉
− r− αiλi

=r− ᾱI
j +
⌊

ω̄− ᾱD
j

⌉
− r− αiλi

=
⌊

ω̄− ᾱD
j

⌉
− ᾱI

j − αiλi (4.89)

where
⌊

ω̄− ᾱD
j

⌉
− ᾱI

j is a constant for a fixed j. If
⌊

ω̄− ᾱD
j

⌉
− ᾱI

j − αiλi = 0 for all i =

1, · · · , m, then we must have α1λ1 = · · · = αmλm which implies that α1 = · · · = αm = 0

as αm ∈ Z and λi are not equal to each other. This contradicts the fact that there exists at

least one αj,i 6= 0.

Let Ij,i ,
⌊
r− ᾱj + ω̄

⌉
− r− αiλi. From Prop. 4.6, we know Ij,i ∈ Z and ∑k

i=1 I2
j,i ∈ Z+.

Then from (4.88), we have ˆ̄ωj,i =
Ij,i
λi
− ωi

λi
. This with (4.86) adnd (4.87) implies that

1
m

(
m

∑
i=1

ˆ̄ω2
j0,i −

m

∑
i=1

ˆ̄ω2
j,i

)

=
1
m

m

∑
i=1

(
−

ω2
i

λ2
i
−
(

Ij,i

λi
− ωi

λi

)2
)

,
1
m

(
−

m

∑
i=1

I2
j,i

λ2
i
+ 2 ∑m

i=1 ω̃i

)
, ω̃i =

ωi

λi
∼ N (0, δ2)

In consequence, the probability that the proposed algorithm returns the true value is

Pr

⋂
j∈J

{
−

m

∑
i=1

I2
j,i

λ2
i
+ 2 ∑m

i=1
ω̃i
λi

< 0

} (4.90)

The calculation of (4.90) is trivial, but it is possible to find an approximation. Since

in range estimation, the λi, i = 1, · · · , m are from the same frequency band and close to

each other. We could use λ̃ = 1
n ∑m

i=1 λi to approximate λi. Therefore, (4.90) becomes

Pr

⋂
j∈J

{
− 1

λ̃

m

∑
i=1

I2
j,i +

k

∑
i=1

2Ij,iω̃i < 0

} (4.91)
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and (
− 1

λ̃

m

∑
i=1

I2
j,i +

k

∑
i=1

2Ij,iω̃i

)
∼ N

(
−

∑m
i=1 I2

j,i

λ̃
, 4δ2

m

∑
i=1

I2
j,i

)

when δ is small, Pr
(
− 1

λ̃
∑m

i=1 Ĩ2
j,i + ∑k

i=1 2Ij,iω̃i < 0
)

is largely influenced by ∑m
i=1 I2

j,i = 1

because this probability is closed to 1 for other values of ∑m
i=1 I2

j,i. Therefore, we could

approximate (4.91) by only considering the case ∑m
i=1 I2

j,i = 1, i.e. only one element in

[Ij,1, · · · , Ij,m] is ±1 and other elements are all 0. Therefore, by considering all possible

combinations of [Ij,1, · · · , Ij,m] satisfying ∑m
i=1 I2

j,i = 1, (4.91) can be calculated approxi-

mately by

Pr

( ⋂
i=1,··· ,m

{
− 1

λ̃
+ 2ω̃i < 0,− 1

λ̃
− 2ω̃i < 0

})

=
k

∏
i=1

Pr
(
− 1

λ̃
+ 2ω̃i < 0,−1/λ̃− 2ω̃i < 0

)
(4.92)

Define two events E±i =
{
− 1

λ̃
± 2ω̃i

}
, then

Pr
(
E+i ∩ E

−
i

)
=Pr

(
E+i
∣∣ωi < 0

)
Pr(ωi < 0) + Pr

(
E−i
∣∣ωi > 0

)
Pr(ωi > 0)

=Pr
(
− 1

λ̃
− 2|ω̃i| < 0

)

It follows that

k

∏
i=1

Pr
(
− 1

λ̃
+ 2|ω̃i| < 0

)
(4.93)

which is computable since − 1
λ̃
+ 2|ω̃i| satisfies a folded normal distribution. In the next

section, the simulation demonstrates the efficiency of (4.93) in range estimation.
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4.5.4 Simulation

The proposed algorithm in this section is evaluated via simulation using two sets of

wavelengths:

Λ1 = {133, 131, 127, 125, 123, 122, 121}

Λ2 = {61, 59, 51, 49, 47, 46}

These two sets are from the Wifi 2.4GHz and 5GHz bands which are widely used in

sensor localization.

The distance r is randomly selected between 1 and the LCM of all wavelengths used.

The parameter δ in the measurement noise variance δ2λ2
i is chosen as −20 log10 δ = 46 :

2 : 66, which provides an indication for both noise level and signal-to-noise ratio in

the simulation. The simulation results are averaged over 5000 Monte Carlo runs. The

algorithm performance is evaluated in terms of the reconstruction probability Pr(Nk =

N̂k|δ2, Λ1,2) versus the phase measurement noise level.

In the figure, algorithm2 represents the algorithm proposed in this section. The sim-

ulation results of the reconstruction probability via Monte Carlo simulation and theoretic

computation using (4.93) are given in Fig.4.9 and Fig.4.10. It is found that the simulation

results agree with the theoretic result. As comparison, the performance of existing algo-

rithm, represented by algorithm1, is plotted along with that of the proposed algorithm

in Fig.4.9. Clearly, when both waveform sets are used, the proposed algorithm outper-

forms algorithm1 in terms of reconstruction probability of the underlying integer set

when signal to noise ratio is low.

On the other hand, the comparison of the computation complexity using P and P1

in plotted in Fig.4.10 by the ratio of #P and #P1, i.e. #P1
#P . Obviously, #P1 ≤ #P , then

#P1
#P ≤ 1. The smaller the value of #P1

#P , the less computation required.

4.5.5 Conclusions

In this section, an improved lattice is presented by considering multiple lattice points.

The proposed algorithm has better performance than the conventional lattice algorithm
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Figure 4.9: The comparison of reconstruction probability between proposed algorithm
and conventional one
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Figure 4.10: The comparison of the computation complexity
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in terms of the probability of correct reconstruction with slightly higher complexity. The

performance of the proposed algorithm is analysed and the approximated reconstruction

probability is derived.

4.6 Conclusions

In this chapter, some improved algorithms based on lattice method are presented in or-

der to fit more situations. Compared with conventional lattice method, the proposed

relaxed condition can give more flexibility to designers on selecting wavelengths when

the closed-form lattice algorithm is used while the other improved lattice algorithms fo-

cus on increasing reconstruction probability by using the different structures of basis,

Voronoi cell and fast closest point searching algorithm etc.. The performance of the im-

proved algorithms are evaluated and demonstrated via numerical simulations using var-

ious wavelengths setting. These improved algorithms can extend the applications of the

lattice algorithm.
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Chapter 5

Introduction and Preliminaries

In order to introduce the main results in Chapter 6 and 7, some useful theory, definitions and

theorems, such as martingale, convergence and law of large number, are introduced in this chapter.

5.1 Introduction to Martingale Theory

Martingales are nowadays considered to be a powerful tool in solving problems in ap-

plied probability theory. Such problems include random walks, point processes, mathe-

matical statistics, risk analysis and the mathematics of finance[83]. They also have appli-

cations in other fields of mathematics, such as harmonic analysis and partial differential

equations[84, 85], economic [86] and engineering[87–89].

A martingale is the stochastic model of “fair game” in gambling which means a gam-

bler has the same expectation to win or lose money. In [90], the theory of martingale

is introduced in detail and the potential applications of martingale are revealed. Mar-

tingales are also widely used in proving the consistency of MLE as shown in [91–93].

Further introduction to martingale can also be found in [92] and [94].

In this section, basic facts about martingales are given and some useful definitions are

introduced.

Let (Ω,F , (Fi)i≥0, P) be a filtered probability space: Ω is a set, F is a σ-field of subset

of Ω and P a probability measure defined on F and F0 = {Ω, ∅}.

Definition 5.1. A filtration is an increasing sequence of sub-σ-fields Fi, i > 0, i ∈ N of

F , i.e. all Fi ⊂ F are σ-fields and Fn ⊂ Fm if n ≤ m.

Given a process {Xi, i > 0, i ∈ N}, Xi is a adapted to a filtration Fi if Xi ∈ Fi, i.e. Xi

is Fi-measurable requiring X−1
i (B) ∈ Fi for all Borel sets B ⊂ R.

101
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Definition 5.2. Suppose that {Xi, i > 0} is sequence of random variables on Ω satisfy-

ing

1. Xi is adapted to Fi;

2. E[|Xi|] < ∞;

3. E[Xi|Fm] = Xm a.s. for all m < i.

Then, the sequence {Xi, i ≥ 0} is said to be a martingale with respect to {Fi, i > 0}. If

1) and 2) hold, and 3) is replaced by inequality E[Xi|Fm] ≥ Xm a.s. (or E[Xi|Fm] ≤ Xm

a.s.), then {Xi, i ≥ 0} is called a submartingale (or supermartingale).

Furthermore, if 3) is replaced by

3)′ E[Xi|Fm] = 0 a.s. for all m < i.

then Xi is called the martingale difference sequence.

Example 5.1. Let X1, X2, · · · be independent random variable sequence with E[Xi] = 0.

Consider the partial sum process:

S0 = 0, Sn =
n

∑
i=1

Xi, n = 1, 2, · · ·

Let Fn = σ(Xm : m < n) be the filtration for Xn, i.e. the minimal filtration. Then Sn is a

martingale since

E[Sn+1|Fn] = E[Sn+1|X1, · · · , Xn]

= E[Xn + Sn|X1, · · · , Xn]

= E[Xn|X1, · · · , Xn] + Sn

= Sn
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5.2 Convergence of Random Variable

An important focus in probability theory is investigating the limiting behavior of a se-

quence of random variables. This is also known as “large sample theory” or “asymptotic

theory”. This theory is pivotal in analysing the behaviour of estimators and is termed in

that context.

In this section, we aim to introduce some basic definitions and theorems used in the

followed chapters which focus on the consistency of estimators. The definitions of differ-

ent types of convergence are given as follows:

Definition 5.3 (Convergence). Let X1, X2, · · · be a sequence of random variables with

cumulative distribution functions F1, F2, · · · and X be some other random variable with

cumulative distribution function F.

(1) Xn converges to X in probability if for all ε > 0,

lim
n→∞

P (|Xn − X| ≥ ε) = 0

This is denoted by Xn
P−→ X

(2) Xn converges to X almost surely if

P
(

lim
n→∞

Xn = X
)
= 1

This is denoted by Xn
a.s−→ X

(3) Xn converges to X in distribution if

lim
n→∞

Fn(x) = F(x)

for every x ∈ R at which F is continuous. This is denoted by Xn
d−→ X.

The following theorem shows the relationship between the different types of conver-

gences[95, p. 208]:
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Theorem 5.1 (The hierarchy of convergence concepts). Let X1, X2, · · · be a sequence of

random variables and X be some other random variable. Then as n→ ∞, we have

Xn
a.s.−→ X ⇒ Xn

P−→ X ⇒ Xn
d−→ X

Next, two of the most notable achievements in probability theory are introduced, i.e.

the law of large number(LLN) and central limit theorem(CLT). These two theorems play

fundamental role in analysing the limit behaviour of an estimator.

Theorem 5.2 (The strong law of large number). Let X1, X2, · · · be a sequence of inde-

pendent, identically distributed random variables with common mean µ. Then we have

1
n

n

∑
i=1

Xi
a.s.−→ µ

Theorem 5.3 (The central limit theorem). Let X1, X2, · · · , Xn be a sequence of inde-

pendent, identically distributed random variables with common mean µ and variance

V[Xi] = σ2 < ∞. Then we have

√
n

X̄− µ

σ

d−→ N (0, 1)

where X̄ = 1
n ∑n

i=1 Xi

Definition 5.4 (Asymptotic normality). An estimator is said to be asymptotically nor-

mal if there exist numbers µ1, µ2, · · · and σ1, σ2, · · · s.t.

θ̂n − µn

σn

d−→ N (0, 1)

Remark 5.1. Normally, µn = E[θ̂n] and σn =
√

V[θ̂n].



Chapter 6

Finding A Position With Distance
Dependent Noise — Static Position

Case

In target localization problems, the measurement accuracy of the position of a target is normally

dependent on the relative distance between the sensor and target. For example, the received power of

the radar signal declines as the fourth power of the distance. Therefore the variance of measurement

noise should be the functions of the unknown target’s position. In practice, this dependency is nor-

mally neglected since it makes analysis hard. However, this inaccuracy of the model could lead to the

incorrect estimation.

In Section 6.2, the target localization in 1 dimension is formulated. Two cases, namely the robot is

static or moving, are described. In the formulation, the measurement noise is assumed to be normally

distributed and with 0 mean and variance dependent on the unknown position of target. Due to this

dependency, the classic Maximum Likelihood Estimation(MLE) does not have a closed form solution

and the convergence results for the MLE in this problem are largely absent from the literature. In this

chapter, we aim to show that the MLE is consistent when the robot is static.

6.1 Introduction

Consider a typical localization problem in robotic and other engineering fields where a

robot or an intelligent agent localizes a static target, for example a bean or a door, via

successive “location measurements” of the target using Maximum Likelihood Estima-

tor(MLE). After receiving a new measurement, the robot will estimate the location of the

target combining all collected information, it then moves to the newly estimated location

of the target. A practical issue is that the location measurement is influenced by the rela-

105
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tive distance between the robot and target, i.e. the smaller the distance between the robot

and target, the more accurate the measurement is. One can find many such measure-

ment models in engineering fields, such as radar systems, sensor localization with range

measurement[96, 97] and robotics[98]. An important question is whether the robot will

eventually arrive at the target’s position, i.e. whether the MLE is consistent in this case.

The consistency of the MLE obtained from statistically independent and identically

distributed observations has been studied for a long time. Under certain regularity con-

ditions, the MLE is proved to be consistent and asymptotically normal[99–101]. For de-

pendent observations, Bar-shalom[102], Bhat[103] and Crowder [104] show that the MLE

is consistent under some mild conditions. An excellent discussion and survey when the

observations are not independent and identically distributed is given in [91]. Martingale

theory is used in proving consistency of the MLE. Recently, the consistency properties

of MLE for statistical models, under the assumption of Hidden Markov models, when

parameter value corresponds to a stochastic system observed with noise is studied in

[105]. The consistency results of Quasi-MLE with state-dependent were presented by

Heijmans[106] and Bollerslev [107]

Though there exist lots of literature related to the consistency and asymptotic behav-

ior of MLE, the consistency analysis for this robotic problem is still absent. The standard

conditions are hard to be applied to this kind of problem since the observation is non-i.i.d.

and the Markov assumption is unavailable.

6.2 Formulation

Let θT ∈ R1 be the true location of the target, θ̂n the estimation of target’s location at the

n-th step and xn the measurement. It should be noticed that the θ̂n is location of robot at

(n+ 1)-th step as well. Then the current location of the robot at n-th step, θ̂n, n = 1, 2 · · · ,

can be described as  θ̂n = Sn(θ̂0:n−1, x1:n)

xn = θT + ωn

√
f (θ̂n−1 − θT)

(6.1)
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where θ̂0:n−1 = (θ̂0, · · · , θ̂n−1), Sn(·) is the maximum likelihood estimator that used to

estimate the location of target and ωn is independent and identically distributed with

zero mean unit variance. And we have following assumptions on function f (·):

C1. f (θ) is a convex function of θ ∈ Θ and Θ ⊂ R;

C2. minθ∈Θ f (θ) = f (0) = σ2 > 0, without loss of generality, we assume that σ2 = 1;

C3. f (θ) is an even function and strictly increasing on R+ and f (∞) = ∞.

Example 6.1. The typical examples of f (θ) include polynomial function

f (θ) = |θ|β + 1, β ≥ 1

or exponential function

f (θ) = exp{|θ|}

Obviously, the expectation and variance of xn are

E[xn] = E

[
ωn

√
f (θ̂n−1 − θT) + θT

]
= θT

V[xn] = V

[
ωn

√
f (θ̂n−1 − θT) + θT

]
= f (θ̂n−1 − θT)

The joint density of x1:n = (x1, · · · , xn) which depends on the parameter θ ∈ Θ is

p(x1:n|θ) (6.2)

the parameter θ is a real-valued constant with unknown true value θT, and is estimated

by a Borel measurable function θ̂n = Sn(θ̂0:n−1, x1:n) obtained from maximizing the like-

lihood function

Ln , p(x1:n|θ) =
n

∏
i=1

p(xi|x1:i−1, θ)
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where

p(xi|x1:i−1, θ) =
Li

Li−1

Therefore,

θ̂n = argθ∈Θ max

{
1
n

n

∑
i=1

log p(xi|x1:i−1, θ)

}

, argθ∈Θ max
1
n

n

∑
i=1

`(xi, θ, θ̂i−1) (6.3)

where `(xi, θ, θ̂i−1) is log-likelihood function at time i.

Since xi, i = 1, 2, · · · , is normally distributed, then the i-th likelihood function is

1√
2π f (θ̂i−1 − θ)

exp
{
− (xi − θ)2

2 f (θ̂i−1 − θ)

}

Neglecting the constant term and the log-likelihood function can be written as

`(xi, θ, θ̂i−1) , − log f (θ̂i−1 − θ)− (xi − θ)2

f (θ̂i−1 − θ)

Then the joint likelihood function is defined by,

1
n

n

∑
i=1

`(xi, θ, θ̂i−1) = −
1
n

n

∑
i=1

log f (θ̂i−1 − θ)− 1
n

n

∑
i=1

(xi − θ)2

f (θ̂i−1 − θ)
(6.4)

There are two cases,

Case I. The robot is static(non-moving), i.e. θ̂i ≡ θ̂0, ∀i, where θ̂0 is the initial po-

sition of robot. It gathers measurements of position of target and performs

estimation until it is arbitrarily close to the target. Then from (6.4), the esti-

mation of θT via MLE is given by

θ̂T = arg max
θ∈Θ

1
n

n

∑
i=1

`(xi, θ, θ̂0) (6.5)

Case II. The robot will move to the estimated position of θT at each step. Then, from
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(6.4), estimation via the MLE is given by

θ̂n = arg max
θ∈Θ

1
n

n

∑
i=1

`(xi, θ, θ̂i−1) (6.6)

Then θ̂n is both the estimated position of target and the next position that

the robot will move to.

6.3 Consistency With Distance Dependent Noise

In this section, the robot is assumed to be static, namely Case I described in Section 6.2.

We aim to show that the estimation of target’s position θ̂T defined in (6.5) is consistent.

Although the consistency can be established in this case by applying general result, for

example see Theorem 17 in [108, P. 117], the approach here reveals the relationship be-

tween the MLE, the sample mean and the inverse of variance function f at the sample

variance.

Let

x̄ =
1
n

n

∑
i=1

xi and s2 =
1
n

n

∑
i=1

(x̄− xi)
2

be the sample mean and (biased) sample variance. Then (6.4) could be rewritten into

1
n

n

∑
i=1

`(xi, θ, θ̂0)

=−
(

log f (θ̂0 − θ) +
1

f (θ̂0 − θ)

1
n

n

∑
i=1

(xi − θ)2

)

=−
(

log f (θ̂0 − θ) +
1

f (θ̂0 − θ)

1
n

n

∑
i=1

(xi − θ + x̄− x̄)2

)

=−
(

log f (θ̂0 − θ) +
1

f (θ̂0 − θ)

1
n

n

∑
i=1

(
(x̄− θ)2 + (xi − x̄)2 − 2(xi − x̄)(x̄− θ)

))
(6.7)

=−
(

log f (θ̂0 − θ) +
1

f (θ̂0 − θ)

(
(x̄− θ)2 + s2)) (6.8)

=−
(

log f (θ̂0 − θ) +
s2

f (θ̂0 − θ)
+

(x̄− θ)2

f (θ̂0 − θ)

)
(6.9)

,`(θ)
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where (6.8) is due to the cross product terms in (6.7) add to 0. Without loss of generality,

we assume that θ̂0 = 0 and let s2 = f (ζ) where ζ ∈ R+. Since f (θ) is strictly increasing

and f (∞) = ∞, then there is a unique root ζ > 0 such that s2 = f (ζ).

Then (6.9) becomes

−
(

log f (θ)− s2

f (θ)
− (x̄− θ)2

f (θ)

)
, −

(
log f (θ)− f (ζ)

f (θ)
− (x̄− θ)2

f (θ)

)
(6.10)

And the score function is

D(θ) ,
∂

∂θ

{
−
(

log f (θ) +
f (ζ)
f (θ)

+
(x̄− θ)2

f (θ)

)}

=
1

f (θ)2

(
f ′(θ) f (ζ) + f ′(θ)(θ − x̄)2 − f ′(θ) f (θ)− 2 f (θ) (θ − x̄)

)
(6.11)

Following propositions will be useful.

Proposition 6.1.

{−ζ, ζ} = arg max
θ∈R

{
− log f (θ)− f (ζ)

f (θ)

}
(6.12)

Proof. Since the function to be maximized is symmetric. Thus it is sufficient to discuss

the case θ ∈ R+.

For θ ∈ R+, since f (θ) is increasing in R+, we have

∂

∂θ

{
− log f (θ)− f (ζ)

f (θ)

}

=
f ′(θ)
f 2(θ)

( f (ζ)− f (θ))


> 0 if θ < ζ

< 0 if θ > ζ

= 0 if θ = ζ

(6.13)

Then we know that

ζ = arg max
θ∈R+

{
− log f (θ)− f (ζ)

f (θ)

}
(6.14)
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Therefore,

{−ζ, ζ} = arg max
θ∈R

{
− log f (θ)− f (ζ)

f (θ)

}
(6.15)

Proposition 6.2. If x̄ > 0, − (θ−x̄)2

f (θ) is strictly increasing for θ ∈ [0, x̄], and

x̄ = arg max
θ∈R

{
− (θ − x̄)2

f (θ)

}
.

Proof. Let θ ∈ [0, x̄], then

∂

∂θ

{
− (θ − x̄)2

f (θ)

}
= − (θ − x̄) ((θ − x̄) f ′(θ)− 2 f (θ))

f (θ)2 > 0

This implies that

− (θ − x̄)2

f (θ)

is strictly increasing when θ ∈ [0, x̄].

Since − (θ−x̄)2

f (θ) ≤ 0 and attains 0 if and only if θ = x̄, thus

x̄ = arg max
θ∈R

{
− (θ − x̄)2

f (θ)

}
.

Proposition 6.3. Suppose θ̂T is defined in (6.5). θ̂T > 0 if x̄ > 0 and θ̂T < 0 if x̄ < 0.

Proof. Suppose x̄ > 0, then we have

− (θ − x̄)2

f (θ)

∣∣∣
|θ|
≥ − (θ − x̄)2

f (θ)

∣∣∣
−|θ|

(6.16)

equality only holds at θ = 0.
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From proposition 6.1, we have

(
− log f (θ)− f (ζ)

f (θ)
− (θ − x̄)2

f (θ)

) ∣∣∣∣∣
|θ|

≥
(
− log f (θ)− f (ζ)

f (θ)
− (θ − x̄)2

f (θ)

) ∣∣∣∣∣
−|θ|

(6.17)

equality only holds at θ = 0. Then θ̂T > 0.

Similarly, if x̄ < 0, then θ̂T < 0.

Proposition 6.3 states that it is sufficient to discuss the consistency of MLE with the

assumption x̄ > 0. If x̄ < 0, the analysis is similar.

Theorem 6.1 and Lemma 6.1 are need in proving Theorem 6.2.

Theorem 6.1. [109] Suppose function h is continuously differentiable at a. If h′(a) < 0,

there exists a neighbourhood Bµ(a) such that ∀t ∈ Bµ(a),

t < a⇒ h(t) > h(a)

t > a⇒ h(t) < h(a)

Recall s2 = 1
n ∑n

i=1(x̄− xi)
2 = f (ζ), then we have following lemma

Lemma 6.1. s2 a.s.−→ f (θT)

Proof. By Theorem 5.2,

s2 =
1
n

n

∑
i=1

x2
i − x̄2

a.s.−→ E[x2
1])− (E[x1])

2

= f (θT)

Now we prove the key theorem, Theorem 6.2, of this section.
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Theorem 6.2. Suppose θ̂T is the MLE, then θ̂T satisfies

θ̂T ∈ [(sgn(x̄) · ζ) ∧ x̄, (sgn(x̄) · ζ) ∨ x̄] eventually, a.s. (6.18)

where sgn is sign function.

Proof. Firstly, assume that x̄ > 0. Then from Proposition 6.3, we have θ̂n > 0, therefore we

only need to consider the behaviour of likelihood function defined in (6.5) when θ ∈ R+.

With these assumptions, we aim to prove

θ̂T ∈ [ζ ∧ x̄, ζ ∨ x̄] eventually, a.s. (6.19)

the proof can be separated into two parts.

Part I: 0 < ζ < x̄, θ ∈ R+

Assume that 0 < ζ < x̄. Then ∀θ < ζ and θ > 0, from Proposition 6.1 and 6.2, we

know

− log f (θ)− f (ζ)
f (θ)

and − (θ − x̄)2

f (θ)

are both strictly increasing. Therefore 1
n `(xi, θ) is strictly increasing ∀θ < ζ and we must

have θ̂T ≥ ζ.

On the other hand, from Proposition 6.2 and from (6.13), x̄ = arg maxθ∈R

{
− (θ−x̄)2

f (θ)

}
and − log f (θ)− f (ζ)

f (θ) is strictly decreasing ∀θ > x̄ > ζ, then

max
∀θ≥x̄

`(θ) =max
∀θ≥x̄

{
− log f (θ)− f (ζ)

f (θ)
− (θ − x̄)2

f (θ)

}
≤max
∀θ≥x̄

{
− log f (θ)− f (ζ)

f (θ)

}
+ max
∀θ≥x̄

{
− (θ − x̄)2

f (θ)

}
=

{
− log f (θ)− f (ζ)

f (θ)

}∣∣∣∣
θ=x̄

+

{
− (θ − x̄)2

f (θ)

}∣∣∣∣
θ=x̄

=⇒ x̄ = arg max
∀θ≥x̄

`(θ) =⇒ θ̂T ≤ x̄ (6.20)

Therefore θ̂T ∈ [ζ, x̄].

Part II: ζ > x̄ > 0, θ ∈ R+
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Assume ζ > x̄ > 0. From Proposition 6.1 and 6.2, we know that ∀θ < x̄ and θ > 0,

`(θ) is increasing function, thus θ̂T > x̄.

Consider

sgn(D(ζ)) =sgn
(

f ′(ζ) f (ζ) + f ′(ζ)(ζ − x̄)2 − f ′(ζ) f (ζ)− 2 f (ζ) (ζ − x̄)
)

(6.21)

=sgn
(

f ′(ζ)(ζ − x̄)2 − 2 f (ζ) (ζ − x̄)
)

(6.22)

By Law of Theorem 5.2 and Lemma 6.1,

x̄ a.s.−→ θT and s2 a.s.−→ f (θT) (6.23)

then

ζ = ( f )−1(s2)
a.s.−→ |θT| (6.24)

Thus, for any arbitrary small ε, there exists (random) N(ε) ∈ N, for n > N(ε), we

have

ζ − x̄ < ε a.s. (6.25)

Therefore

2 f (ζ)
f ′(θ)

> ζ − x̄ a.s.⇒ sgn(D(ζ)) = −1 a.s. (6.26)

On the other hand, rewrite

`(θ) =− log f (θ)− f (ζ)
f (θ)

− (θ − x̄)2

f (θ)

=− log f (θ)− f (ζ)
f (θ)

− (θ − ζ)2

f (θ)︸ ︷︷ ︸
,`1(θ)

− (ζ − x̄)2

f (θ)
− 2

(ζ − x̄)(θ − ζ)

f (θ)

=`1(θ) + (ζ − x̄)
(
− (ζ − x̄)

f (θ)
− 2

(θ − ζ)

f (θ)

)
︸ ︷︷ ︸

,`2(θ)
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=`1(θ) + (ζ − x̄)`2(θ) (6.27)

Then ∀θ ∈ R+ \ {ζ}

`1(ζ)− `1(θ) =− log f (ζ)− f (ζ)
f (ζ)

− (ζ − ζ)2

f (ζ)
+

log f (θ) +
f (ζ)
f (θ)

+
(θ − ζ)2

f (θ)

=− log f (ζ)− 1 + log f (θ) +
f (ζ)
f (θ)

+
(θ − ζ)2

f (θ)

=− log
f (ζ)
f (θ)

+
f (ζ)
f (θ)

− 1 +
(θ − ζ)2

f (θ)
> 0 (6.28)

Thus

ζ = arg max
θ∈R+

`1(θ) (6.29)

Compute

∂

∂θ
`2(θ)

∣∣∣
θ=ζ

=
∂

∂θ

{
− (ζ − x̄)

f (θ)
− 2

(θ − ζ)

f (θ)

} ∣∣∣
θ=ζ

=
1

f 2(θ)

(
−2 f (θ) + f ′(θ)(2θ − ζ − x̄)

) ∣∣∣
θ=ζ

=
1

f 2(ζ)

(
−2 f (ζ) + f ′(ζ)(ζ − x̄)

)
<0 a.s. (6.30)

Inequality (6.30) is because of

1
f (θ)

= 0 and f ′(θ)
∣∣∣
θ=0

= 0 (6.31)

and ζ < ∞ a.s. and ζ is also bounded away from 0, thus from (6.25), we have ∂
∂θ {`2(θ)} |θ=ζ

is a negative value which is bounded away from 0.

From ∂
∂θ `2(θ)|θ=ζ < 0 a.s. and Theorem 6.1, we know that there exists a neighbour-
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hood Bµ(ζ) of ζ such that, ∀θ ∈ (ζ, ζ + µ),

`2(ζ) > `2(θ) (6.32)

Since ∂
∂θ `2(θ)|θ=ζ is a negative value which is bounded away from 0, therefore we

always can find such a positive constant µ.

Then for θ ∈ [ζ, ζ + µ),

 ζ = arg maxθ∈[ζ,ζ+µ) `1(θ) , and

ζ = arg maxθ∈[ζ,ζ+µ) {(ζ − x̄)`2(θ)}
(6.33)

=⇒ζ = arg max
θ∈[ζ,ζ+µ)

{`1(θ) + (ζ − x̄)`2(θ)} (6.34)

⇐⇒ζ = arg max
θ∈[ζ,ζ+µ)

`(θ) (6.35)

On the other hand, since

ζ = arg max
θ≥ζ

`1(θ) (6.36)

then ∀θ ≥ (ζ + µ), there exists a positive value η,

`1(ζ)− max
θ≥(ζ+µ)

`1(θ) > η (6.37)

Thus ∀θ ≥ (ζ + µ)

`(ζ)− `(θ)

=`1(ζ)−
(ζ − x̄)2

f (ζ)
−
(
`1(ζ)−

(ζ − x̄)2

f (θ)
− 2(ζ − x̄)

θ − ζ

f (θ)

)
>`1(ζ)− `1(θ)−

(ζ − x̄)2

f (ζ)

>η − (ζ − x̄)2

f (ζ)
> 0 a.s. (6.38)
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Thus from  ζ = arg maxθ∈[ζ,ζ+µ) `(θ)

`(ζ) > maxθ≥ζ+µ `(θ) a.s.
(6.39)

we have

ζ = arg max
θ≥ζ

`(θ) a.s. (6.40)

Therefore, combining θ̂T > x̄, D(ζ) < 0 and ζ = arg maxθ≥ζ `(θ), we have θ̂T ∈

[x̄, ζ], a.s..

From Part I and Part II,

θ̂T ∈ [ζ ∧ x̄, ζ ∨ x̄] eventually, a.s. (6.41)

Similarly, if x̄ < 0, we have

θ̂T ∈ [−ζ ∧ x̄,−ζ ∨ x̄] eventually, a.s. (6.42)

In conclusion,

θ̂T ∈ [(sgn(x̄) · ζ) ∧ x̄, (sgn(x̄) · ζ) ∨ x̄] eventually, a.s. (6.43)

Remark 6.1. Two examples, Fig.6.1 and 6.2, are used to illustrate the interval of θ̂T given

in the Theorem 6.2 with different sample size. In these two example, the used variance

function is f (θ) = θ2 + 1 and θT = 20.

On the other hand, it should be noticed that there may exist multi-modal(at least one)

within [(sgn(x̄) · ζ) ∧ x̄, (sgn(x̄) · ζ) ∨ x̄], however, the one which maximize the function

over Θ is the required MLE.

Based on the above propositions and theorem, we now give the main theorem 6.3
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15 16 17 18 19 20 21 22 23 24 25
-3.65

-3.6

-3.55

-3.5

The log-likelihood function with 100 samples

Figure 6.1: The illustration of log-likelihood function `(θ) with 100 samples.
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The log-likelihood function with 1000 samples

Figure 6.2: The illustration of log-likelihood function `(θ) with 1000 samples.

Theorem 6.3. Suppose θ̂T is the MLE, then

θ̂T
a.s.−→ θT (6.44)
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Proof. From Theorem 5.2 and Lemma 6.1, we have

x̄ a.s.−→ θT and s2 a.s.−→ f 2(θT) (6.45)

then from Theorem 6.2,

θ̂T
a.s.−→ θT (6.46)

6.4 Conclusions

In this chapter, finding location via distance dependent noise using MLE is formulated.

Two cases, the robot is non-moving or moving, are described as well. A natural question

is if the MLE is a consistent estimator in these two cases. In this chapter, by analyzing the

likelihood function and describing the inverse of variance function f at MLE in relation

to two natural start point for estimation, sample variance and sample mean, we derive

the consistency result for the first case in Section 6.3. The more complicated case that the

robot is assumed to be moveable will be considered in the next chapter.





Chapter 7

Finding A Position With Distance
Dependent Noise — Dynamical

Position Case

In Chapter 6, the problem of finding a position with distance dependent noise was formulated and

the case I that the robot is static, was analysed. The MLE in case I was shown to be a consistent estima-

tor. Another question is how the MLE behaves when the robot moves to the estimated location of target

after each step, i.e. case II. In this case, the two main challenges are: 1) the joint log-likelihood function

∑n
i=1 `(θ, xi, θ̂i−1) is complicated and, 2) the estimate θ̂n is dependent on all previous measurements

x1, · · · , xn as shown in (6.3). As a result, the conventional consistency theorems are inapplicable

due to the non-Markovian dependency. In this chapter, we aim to prove that the MLE for case II is

consistent under some conditions.

7.1 Introduction and General Consistency Theorem

In this chapter, a more complex robotic problem is considered. In Chapter 6, the robot was

assumed to be static and collected measurements of the position of the target. However,

if the robot moves to the estimated location of target after each step, the log-likelihood

function becomes, as shown in Chapter 6.1,

1
n

n

∑
i=1

`(xi, θ, θ̂i−1) =
1
n

n

∑
i=1

(
log

1
f
(
θ̂i−1 − θ

) − (xi − θ)2

f
(
θ̂i−1 − θ

)) (7.1)

And the estimate at n-th step, θ̂n, is given by

θ̂n = arg max
θ∈Θ

1
n

n

∑
i=1

`(xi, θ, θ̂i−1) (7.2)

121
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Obviously, θ̂n is a function of x1, · · · , xn. In other words, the random variable θ̂n is de-

pendent on the all previous information. As a result, conventional consistency theorems

are inapplicable since the independence assumption or Markov condition are not satis-

fied. Fortunately, martingale theory is shown to be a powerful tool in dealing with the

dependent random variables as the conditional expectation is involved. In the following

sections, we aim to investigate the behaviour of the MLE given in (7.2) using martingale

theory.

Two definitions and the general consistency theorem, Theorem 7.1, for MLE using

martingale theory are introduced.

Definition 7.1 (Uniformly Strong Law of Large Number for Martingale,USLLNM). Let Y ×

Θ be the Cartesian product of Y ⊂ R and Θ ⊂ R. Let qi(yi, θ) be a real-valued function

defined on Y × Θ. Assume that qi(·, θ) is measurable for every θ ∈ Θ and y1, · · · , yn

is a sequence of random variables on Y . Let Fn be the σ-field generated by y1, · · · , yn.

Then qi(yi, θ) is said to satisfiy the Uniform Strong Law of Large Number for Martin-

gale(USLLNM) if

sup
θ∈Θ

∣∣∣∣∣ 1n n

∑
i=1

(
qi(yi, θ)−E [qi(yi, θ)|Fi−1]

)∣∣∣∣∣ a.s.−→ 0

Definition 7.2 (Identifiably Unique Maximizer). Let qi(θ) be a real valued continuous

function on a compact space Θ ⊂ R such that qi(θ) has a maximum at θ∗i , i = 1, 2, · · · , n.

Let Bε(θ∗i ) be an open ball centered at θ∗i with fixed radius ε > 0. Define the neighbour-

hood ηi(ε) = Bε(θ∗i ) ∩Θ. The maximizer θ∗i is said to be identifiably unique if and only

if for any ε > 0

lim sup
n→∞

{
max

θ∈η̄(ε)
qn(θ)− qn(θ

∗
n)

}
< 0

Next, we give a general consistency theorem 7.1. This is the martingale version of the

theorem in [110] and [111].

Theorem 7.1. Assumptions:



7.1 Introduction and General Consistency Theorem 123

A1. θ is in the interior of Θ ⊂ R1 and Θ is compact;

A2.
{
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

}
satisfies USLLNM, i.e.

sup
θ∈Θ

∣∣∣ 1
n

n

∑
i=1

(
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)−

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)|Fi−1

] )∣∣∣ a.s.−→ 0

where Fi−1 = σ(x1, · · · , xi).

A3. ∀θ ∈ Θ, θT is the Identifiably Unique Maximizer(IUM) of

1
n

n

∑
i=1

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]

.

If A1., A2., A3. are satisfied, then the MLE is (weakly) consistent, i.e. θ̂n
p−→ θT under

PθT .

Proof. Let Bε(θT) be the open ball with radius ε and center θT, i.e. Bε(θT) = {θT ∈ Θ :

|θ − θT| < ε}. We need to show that PθT (θ̂n 6∈ Bε(θT))→ 0.

Since θT is the IUM of

1
n

n

∑
i=1

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]

thus, according to the definition of IUM, we have

η , sup
θ∈Θ\Bε(θT)

1
n

n

∑
i=1

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]
< 0 (7.3)

Note that θ̂n 6∈ Bε(θT) implies

1
n

n

∑
i=1

EθT

[
`(xi, θ̂n, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]

≤ sup
θ∈Θ\Bε(θT)

1
n

n

∑
i=1

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]

=η (7.4)
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Let

E1
n =

{
1
n

n

∑
i=1

EθT

[
`(xi, θ̂n, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]
≤ η

}

thus

P(θ̂n 6∈ Bε(θT)) ≤ P(E1
n)

Consider the following events

E2
n =

{∣∣∣∣∣ 1n n

∑
i=1

(
`(xi, θ̂n, θ̂i−1)− `(xi, θT, θ̂i−1)

)
−

1
n

n

∑
i=1

EθT

[
`(xi, θ̂n, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]∣∣∣∣∣ > |η|2

}

E3
n =

{
sup
θ∈Θ

∣∣∣∣∣ 1n n

∑
i=1

(
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

)
−

1
n

n

∑
i=1

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]∣∣∣∣∣ > |η|2

}

Note that E2
n ⊆ E3

n, so P(E2
n) ≤ P(E3

n).

Consider the complementary event Ē2
n of E2

n, we have

∣∣∣∣∣ 1n n

∑
i=1

(
`(xi, θ̂n, θ̂i−1)− `(xi, θT, θ̂i−1)

)
−

1
n

n

∑
i=1

EθT

[
`(xi, θ̂n, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]∣∣∣∣∣ ≤ |η|2 (7.5)

Note
1
n

n

∑
i=1

EθT

[
`(xi, θ̂n, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]
≤ η < 0

Then we must have

1
n

n

∑
i=1

(
`(xi, θ̂n, θ̂i−1)− `(xi, θT, θ̂i−1)

)
<

η

2

otherwise, (7.5) will not hold.
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However, since θ̂n is the Maximizer of log-likelihood function over Θ, i.e.

θ̂n = max
θ∈Θ

1
n

n

∑
i=1

`(xi, θ, θ̂i−1)

then
1
n

n

∑
i=1

(
`(xi, θ̂n, θ̂i−1)− `(xi, θT, θ̂i−1)

)
≥ 0

Therefore we have the conclusion that E1
n ∩ Ē2

n = ∅.

Therefore,

P(E1
n) ≤ P(E1

n ∪ E2
n)

≤ P(E1
n ∩ Ē2

n) + P(E2
n)

= P(∅) + P(E2
n)

≤ P(E3
n)

Since
{
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

}
satisfies the USLLNM, we have P(E3

n)
a.s.−→ 0 and

then

θ̂n
p−→ θT under PθT

7.2 Consistency With Distance Dependent Noise

In next two sections, we aim to show that the likelihood function (7.1) satisfies A1, A2

and A3, and therefore the MLE is consistent. The assumption A1 is easily to be satisfied

as we could assume that Θ to be a compact set.

7.2.1 Assumption A2

Assumption A2 requires that
{
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

}
satisfies USLLNM. The main

theorem is given in Theorem 7.3 which follows Theorem 7.2, Lemma 7.2 and Lemma 7.1.
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Theorem 7.2. [112] Let Yn = y1 + · · ·+ yn be a martingale with E[yn] = 0. If

∞

∑
i=1

E[|yi|2α]

i1+α
< ∞

then

lim
n→∞

Yn

n
= 0 a.s.

Then, the Lemma 7.1 is straightforward from Theorem 7.2,

Lemma 7.1 (Strong Law of Large Numebr for Martingale, SLLNM). Let Yn = y1 + · · ·+

yn be a martingale with E[yn] = 0. If

sup
i

E[|yi|2] < ∞

then

lim
n→∞

Yn

n
= 0 a.s.

We also have following lemma.

Lemma 7.2. Under PθT ,

`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)−EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣∣Fi−1

]
is martingale difference.

Proof. Under PθT , we can write

xi = θT + ωi

√
f (θ̂i−1 − θ) (7.6)

where ωi is i.i.d standard normal random variable.
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Then `(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1) can be written into

`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

=− (θ − θT)
2

f (θ̂i−1 − θ)
+

(
1− f (θ̂i−1 − θT)

f (θ̂i−1 − θ)

)
ω2

i + 2
f (θ̂i−1 − θT)ωi

f (θ̂i−1 − θ)
(7.7)

so

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

]
= − (θ − θT)

2

f (θ̂i−1 − θT)
+

(
1− f (θ̂i−1 − θT)

f (θ̂i−1 − θ)

)
(7.8)

Since θ̂i−1 isFi−1 measurable and ωi is independent ofFi−1 with 0 mean and variance

1. Hence,

`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)−EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

]
=

(
1− f (θ̂i−1 − θT)

f (θ̂i−1 − θ)

)
(ω2

i − 1) + 2
f (θ̂i−1 − θT)

f (θ̂i−1 − θ)
ωi (7.9)

is martingale difference process.

Then we have following USLLNM theorem.

Theorem 7.3 (Uniformly Strong Law of Large Number for Martingale, USLLNM). Let

{qi(yi, θ), i ≥ 1} be a Borel measurable function on Y ×Θ and Fi be an increasing se-

quence of σ−fields with {yi, i ≥ 1}, where Y is a Borel set such that P(yi ∈ Y) = 1 and

Θ is the compact parameter space of θ such that qi(yi, θ) is a continuous function. If the

following two assumptions are satisfied, ∀θ ∈ Θ

1. supi E
[
|qi(yi, θ)|2

]
< ∞;

2. qi(yi, θ) is differentiable a.s. ∀i.

Then

sup
θ∈Θ

∣∣∣∣∣ 1n n

∑
i=1

(
qi(yi, θ)−E [qi(yi, θ)|Fi−1]

)∣∣∣∣∣ a.s.−→ 0 (7.10)
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Proof. By Theorem 2 in [113], we know that (7.10) holds if

1). Θ is compact;

2). 1
n ∑n

i=1

(
qi(yi, θ)−E [qi(yi, θ)|Fi−1]

)
a.s.−→ 0, ∀θ ∈ Θ;

3). 1
n ∑n

i=1

(
qi(yi, θ)−E [qi(yi, θ)|Fi−1]

)
is Strongly Stochastically Equicontinuous(S.S.E).

are satisfied.

Since

E [qi(yi, θ)−E [qi(yi, θ)| Fi−1]| Fi−1] = 0

then

qi(yi, θ)−E [qi(yi, θ)|Fi−1]

is a martingale difference process.

By Hölder’s inequality and the conditional Jensen’s inequality,

E
[
|qi(yi, θ)−E [qi(yi, θ)|Fi−1]|2

]
≤E

[
|qi(yi, θ)|2

]
+ E

[
|E [qi(yi, θ)|Fi−1]|2

]
+ 2E

[
|qi(yi, θ)| · |E [qi(yi, θ)|Fi−1]|

]
(7.11)

≤E
[
|qi(yi, θ)|2

]
+ E

[
E
[
|qi(yi, θ)|2 |Fi−1

]]
+

2
(

E
[
|qi(yi, θ)|2

]) 1
2
(

E
[∣∣∣E [qi(yi, θ)|Fi−1]

∣∣∣2]) 1
2

(7.12)

≤2E
[
|qi(yi, θ)|2

]
+ 2

(
E
[
|qi(yi, θ)|2

]) 1
2
(

E
[
E
[
|qi(yi, θ)|2

∣∣Fi−1

]]) 1
2

(7.13)

≤4E
[
|qi(yi, θ)|2

]
(7.14)

Then

sup
i

E
[
|qi(yi, θ)−E [qi(yi, θ)|Fi−1]|2

]
≤ 4 sup

i
E
[
|qi(yi, θ)|2

]
< ∞ (7.15)

according to Lemma 7.1, we have, ∀θ ∈ Θ,

lim
n→∞

1
n

n

∑
i=1

(qi(yi, θ)−E [qi(yi, θ)|Fi−1]) = 0 a.s.
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Let

Yi(yi, θ) , qi(yi, θ)−E [qi(yi, θ)|Fi−1] (7.16)

On the other hand, ∀θ′, θ′′ ∈ Θ, θ′ < θ′′ and θ∗ ∈ (θ′, θ′′), we have∣∣∣∣∣ 1n n

∑
i=1

Yi(yi, θ′)− 1
n

n

∑
i=1

Yi(yi, θ′′)

∣∣∣∣∣ ≤|θ′ − θ′′|
∣∣∣∣∣ ∂

∂θ

1
n

n

∑
i=1

Yi(yi, θ)

∣∣∣∣∣
θ=θ∗

∣∣∣∣∣ (7.17)

Since ∀θ ∈ Θ

1
n

n

∑
i=1

Yi(yi, θ)
a.s.−→ 0 (7.18)

provided supi E[|qi(yi, θ)|2] < ∞, therefore

lim sup
n

∣∣∣∣∣ ∂

∂θ

1
n

n

∑
i=1

Yi(yi, θ)

∣∣∣∣∣
θ=θ∗

∣∣∣∣∣ < ∞ (7.19)

holds.

Then by the Theorem 21.10 in [114], 1
n ∑n

i=1 Yi(yi, θ) is S.S.E.

Therefore, in conclusion,

sup
θ∈Θ

∣∣∣∣∣ 1n n

∑
i=1

(
qi(yi, θ)−E [qi(yi, θ)|Fi−1]

)∣∣∣∣∣ a.s.−→ 0

holds.

In order to show that, ∀θ ∈ Θ,

`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)−EθT [`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)|Fi−1] (7.20)

satisfies the condition of Theorem 7.3, it is sufficient to show that

sup
i

EθT

[∣∣`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)
∣∣2] < ∞ (7.21)
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since

EθT

[∣∣`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)
∣∣2]

=EθT

(log
f (θ̂i − θT)

f (θ̂i − θ)
+ z2

i −
(xi − θ)2

f (θ̂i − θ)

)2


,EθT

[
(Φi + Ψi)

2]
where Φi = log f (θ̂i−θT)

f (θ̂i−θ)
and Ψi = z2

i −
(xi−θ)2

f (θ̂i−θ)
.

Recall xi ∼ N
(
θT, f (θ̂i − θT)

)
, then for finite θT and f (θ̂i − θT), we have

EθT [x
r
i ] < ∞, r ∈ Z+ and r < ∞

Thus, by condition C2 and assumption A1, it is not hard to verify that

sup
i

Φ2
i < ∞, sup

i
EθT

[
Ψ2

i
]
< ∞, sup

i
EθT [|Ψi|] < ∞

then

sup
i

EθT

[
(Φi + Ψi)

2]
≤ sup

i
EθT

[
Φ2

i + Ψ2
i + 2|Φi| · |Ψi|

]
≤ sup

i
Φ2

i + sup
i

EθT

[
Ψ2

i
]
+ sup

i
|Φi| · sup

i
EθT [|Ψi|]

<∞

From Theorem 7.3, by considering A1 and {`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)} is differen-

tiable a.s. at each point of Θ, we have

sup
θ∈Θ

∣∣∣∣∣ 1n n

∑
i=1

(
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)−EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)|Fi−1

])∣∣∣∣∣ a.s.−→ 0
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7.2.2 Assumption A3

First, we should show that θT is the Identifiably Unique Maximizer(IUM) of

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]
∀θ ∈ Θ (7.22)

then θT is the IUM. of

1
n

n

∑
i=1

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]

Therefore, we have

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]

=E

[
− log f

(
θ̂i−1 − θ

)
− (xi − θ)2

f
(
θ̂i−1 − θ

) + log f
(
θ̂i−1 − θT

)
+

(xi − θT)
2

f
(
θ̂i−1 − θT

) ∣∣∣Fi−1

]
(7.23)

Taking the first derivative to (7.23), we have

∂

∂θ

(
EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]) ∣∣∣

θ=θT

=
2

f 3
(
θ̂i−1 − θ

)EθT

[
−(θ − xi) f

(
θ̂i−1 − θ

)
+ (θ − xi)

2 f ′
(
θ̂i−1 − θ

)
−

f 2 (θ̂i−1 − θ
)

f ′
(
θ̂i−1 − θ

)] ∣∣∣
θ=θT

=0

Thus the θT is the maximizer of

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]

by considering that

∂2

∂θ2

(
EθT [`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)|Fi−1]

)∣∣∣∣
θ=θT

=
f
(
θ̂i−1 − θT

)
f 3
(
θ̂i−1 − θT

)( f ′2
(
θ̂i−1 − θT

)
− f

(
θ̂i−1 − θT

) (
f ′′
(
θ̂i−1 − θT

)
+ 2
)
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EθT

[(
(θT − xi)

2 f ′′
(
θ̂i−1 − θT

)
+ 4(θT − xi) f ′

(
θ̂i−1 − θT

))
− 2(θT − xi)

2 f ′2
(
θ̂i−1 − θT

)
f
(
θ̂i−1 − θT

) ])

=− 2
f
(
θ̂i−1 − θT

) −( f ′
(
θ̂i−1 − θT

)
f
(
θ̂i−1 − θT

) )2

<0

Let θ ∈ Θ \ {θT}. To prove θT is the IUM of (7.22), we have

EθT

[
`(xi, θT, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]
−EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]

=0−E

[
− log f

(
θ̂i−1 − θ

)
− (xi − θ)2

f
(
θ̂i−1 − θ

) + log f
(
θ̂i−1 − θT

)
+

(xi − θT)
2

f
(
θ̂i−1 − θT

) ∣∣∣∣∣Fi−1

]

=
θ2 + f

(
θ̂i−1 − θT

)
f
(
θ̂i−1 − θ

) − log
f
(
θ̂i−1 − θT

)
f
(
θ̂i−1 − θ

) − 1

>
f 2 (θ̂i−1 − θT

)
f 2
(
θ̂i−1 − θ

) − log
f 2 (θ̂i−1 − θT

)
f 2
(
θ̂i−1 − θ

) − 1

Since f 2 (‖θ̂i−1 − θ‖, σ2) 6= f 2 (‖θ̂i−1 − θT‖, σ2), thus

f 2 (θ̂i−1 − θ
)

f 2
(
θ̂i−1 − θT

) − log
f 2 (θ̂ − θ

)
f 2
(
θ̂ − θT

) − 1 > 0

Thus, θT is the IUM of (7.22) and also the IUM of

1
n

n

∑
i=1

EθT

[
`(xi, θ, θ̂i−1)− `(xi, θT, θ̂i−1)

∣∣Fi−1
]

Therefore, A1, A2 and A3 in Theorem 7.1 are satisfied, as a conclusion, the MLE of

robotic problem with Gaussian noise is consistent provided the conditions C1 – C3 listed

in Section 6.2 on the variance are satisfied.

7.3 Conclusions

In this chapter, we investigate the consistency of MLE in a complicated situation that the

mean and variance of measurement are dependent on the unknown parameter and more-
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over, the estimate relies on the all previous information. This situation is of interest in the

engineering application and theoretical analysis. The key theorem is given in Theorem

7.1 which is the martingale version of general consistency theorem. In Section 7.2.1 and

7.2.2, the likelihood function of underlying problem is shown to satisfy the assumptions

A1, A2 and A3 listed in Theorem 7.1, and therefore, the MLE is consistent.
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Two critical issues, the phase ambiguity and finding a position using distance depen-

dent noise, in localization are considered in this thesis in Part II and III respectively.

In Part II, the improved efficient CRT and lattice algorithms in resolving ambiguity are

presented to fit more practical situations, such as providing more flexibility to the design-

ers and improving the performance of the conventional algorithm in terms of increasing

reconstruction probability and decreasing computational complexity. On the other hand,

in Part III, the consistency problem of target localization with distance dependent noise

is discussed. Two cases are considered and the consistency results are given under some

conditions. The author of this thesis is keen to continue his research along these topics. In

particular, he has great interest to address the following open issues with effort towards

the following open questions towards designing efficient algorithm and theoretical anal-

ysis.

1. The CRT-related algorithms in addressing the noisy phase ambiguity problem re-

quire that the used wavelengths satisfy some conditions, e.g. the coprimality con-

dition. However, in practice, these conditions cannot always be satisfied due to the

limitation of available wavelengths range. This could prevent the applications of

CRT in real world. Therefore, efficient algorithms using arbitrary wavelengths are

preferred and the performance analysis is required.

2. An efficient lattice algorithm using arbitrary wavelengths is presented in this Sec-

tion 4.3 and its efficiency is demonstrated via simulation in both reconstruction

probability and computational complexity. However, the theoretical analysis of the

performance is pivotal in applying this algorithm. Therefore, in the future work,

the reconstruction probability and computational complexity of lattice algorithm

using arbitrary wavelengths should be analyzed.

3. The consistency result of robotic problem with distance dependent noise when

robot is movable is given in Chapter 7. In the proof, a crucial condition is that

the parameter space of unknown target’s location is compact. However, in theory,

it is interesting to prove that the MLE will lie in a compact set eventually without

any assumption on the parameter space. This problem is found to be very challeng-
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ing even in 1 dimension case. Therefore, in the future, one of the main job is to find

a proper method to solve this problem.

4. The behaviors of MLE of the robotic problem are discussed in Chapter 6 and 7.

There are some other interesting questions about Bayesian inference. The first prob-

lem is to find a conjugate prior for updating the posterior density and, the second

one is to prove the consistency for the Bayesian inference using maximizing poste-

rior density or posterior mean.
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bruchähnliche algorithmen.” Journal für die reine und angewandte Mathematik, vol.

107, 1891, pp. 278–297.

[51] A. Korkine and G. Zolotareff, “Sur les formes quadratiques,” Mathematische An-

nalen, vol. 6, no. 3, 1873, pp. 366–389.

[52] J. Cassels, An Introduction to the Geometry of Numbers, ser. Classics in Mathematics.

Springer Berlin Heidelberg, 1996.
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