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ABSTRACT

EXPLORATIONS INTO MACHINE LEARNING
TECHNIQUES FOR PRECIPITATION NOWCASTING

FEBRUARY 2017

ADITYA NAGARAJAN

B.E, MADRAS INSTITUTE OF TECHNOLOGY

M.S I.E.O.R, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Michael Zink

Recent advances in cloud-based big-data technologies now makes data driven

solutions feasible for increasing numbers of scientific computing applications. One

such data driven solution approach is machine learning where patterns in large data

sets are brought to the surface by finding complex mathematical relationships within

the data. Nowcasting or short-term prediction of rainfall in a given region is an

important problem in meteorology. In this thesis we explore the nowcasting problem

through a data driven approach by formulating it as a machine learning problem.

State-of-the-art nowcasting systems today are based on numerical models which

describe the physical processes leading to precipitation or on weather radar extrap-

olation techniques that predict future radar precipitation maps by advecting from a

sequence of past maps. These techniques, while they can perform well over very short

prediction horizons (minutes) or very long horizons (hours to days), tend not to per-

form well over medium horizons (1-2 hours) due to lack of input data at the necessary
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spatial and temporal scales for the numerical prediction methods or due to the inabil-

ity of radar extrapolation methods to predict storm growth and decay. Given that

water must first concentrate in the atmosphere as water vapor before it can fall to

the ground as rain, one goal of this thesis is to understand if water vapor information

can improve radar extrapolation techniques by giving the information needed to infer

growth and decay. To do so, we use the GPS-Meteorology technique to measure the

water vapor in the atmosphere and weather radar reflectivity to measure rainfall. By

training a machine learning nowcasting algorithm using both variables and comparing

its performance against a nowcasting algorithm trained on reflectivity alone, we draw

conclusions as to the predictive power of adding water vapor information.

Another goal of this thesis is to compare different machine learning techniques,

viz., the random forest ensemble learning technique, which has shown success on a

number of other weather prediction problems, and the current state-of-the-art ma-

chine learning technique for images and image sequences, convolutional neural net-

work (CNN). We compare these in terms of problem representation, training com-

plexity, and nowcasting performance.

A final goal is to compare the nowcasting performance of our machine learning

techniques against published results for current state-of-the-art model based nowcast-

ing techniques.
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CHAPTER 1

INTRODUCTION

We live in an age where large volumes of data generated each day can provide

us with valuable insights to the underlying system the data is representing. Coupled

with significant advances in big data technology, we are now able to extract complex

patterns from high-dimensional data within reasonable time. Mastering the ability

to processes large data sets to extract actionable insights using sophisticated machine

learning algorithms has engendered significant interest in Data Science. In this the-

sis we explore the short-term weather prediction (aka nowcasting) problem from a

Data Science perspective. Specifically this thesis will seek to apply data science and

machine-learning techniques to the problem of nowcasting precipitation fields 1 hour

in the future from time-sequences of past spatial fields of weather radar reflectivity

and precipitable water vapor. These two fields are complementary, weather radar

reflectivity being a measure of location and intensity of precipitation and precipitable

water vapor (otherwise termed as Integrated Precipitable Water or IPW) a measure

of the amount of water in the atmosphere that could potentially fall as precipitation.

Thus, where weather radar reflectivity tells us where precipitation is currently falling,

IPW tells us about the potential for further precipitation. Using the complementary

nature of these two measurements we explore the spatiotemporal patterns and cor-

relations between these fields to make 1 hour precipitation nowcasts through the use

of various machine learning algorithms. In addition to the challenge of obtaining

and pre-processing the input data for machine-learning, we also face the challenge of

developing a machine learning algorithm that can handle spatiotemporal input data
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– essentially short video streams of radar reflectivity and IPW fields to predict the

precipitation field 1 hours in the future.

1.1 Precipitation Nowcasting

Because rain affects so many human activities, predicting rain has a long history.

Whereas long-term rainfall forecasts (i.e., beyond 3 hours in the future) are based

on models of atmospheric processes (cf. [35]), short-term 0-3 hour nowcasts are

frequently based on weather radar data. This is because numerical weather models

tend to be too computationally time-consuming to obtain the resolutions desired for

short-term predictions. Nowcasting or ”very-short-term” forecasting at the resolution

of a few kilometers are useful in aviation applications to route arriving and departing

air traffic at airports. They also find applications in large sporting events where

nowcasts can help to determine when to cover the playing fields. Nowcasts from

weather radar data can be ”manual” as when a weather radar meteorologist plays a

radar reflectivity loop to infer where and how fast a storm is moving.

Nowcasts from weather radar data can also be automated. The Storm Cell Iden-

tification and Tracking (SCIT) algorithm [30] uses the history radar data to identify

storm cells and estimate their speed and direction. Pixel based approaches have

been taken [62] that use Lagrangian models to nowcast rainfall one to three hours

into the future. One such algorithm, Dynamic Adaptive Radar Tracking of Storms

(DARTS)[45], uses a Lagrangian persistence based nowcast model to project radar

reflectivity fields 1-20 minutes into the future. Nowcasts based on weather radar data

alone tend to quickly break down, so that a 20-minute DARTS nowcast of the reflec-

tivity will often bear little resemblance to the actual reflectivity field that occurs 20

minutes in the future. This is because nowcast techniques based on weather radar

data alone, while they can obtain a good estimate of storm advection, have very little

skill at predicting storm growth and decay. They are thus very poor at predicting
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that a storm will pop-up at a given location when there is currently no radar data

coming from that location, and they are very poor at recognizing that a storm will

dissipate 20 minutes from now when it is currently growing in intensity. This has

lead many researchers and atmospheric scientists to look for other information with

which to augment weather radar data.

It was discovered in the early 1990s that GPS signal propagation delays can be

used to infer atmospheric water vapor content [10] [9]. Since then there has been sig-

nificant advances both in hardware and software to accurately measure atmospheric

water vapor more frequently and accurately using the GPS-Met technique. Agencies

such as NOAA (National Oceanic and Atmospheric Administration), UCAR (Uni-

versity Collaboration of Atmospheric Research) and SOPAC (Scripps Orbital and

Permanent Array Center) in the United States have contributed to the development,

operation and maintenance of a nationwide realtime GPS-based water vapor monitor-

ing system [59] [11]. This has lead to the availability of real-time water vapor products

to the public and operational forecasters from over 500 GPS-Met stations distributed

across the continental United States. In addition, it is now also possible to obtain

mature, validated software for GPS-Met calculations (e.g. GAMIT [26]) allowing

for research deployments of GPS-Met stations [1] and repurposing of GIS Continu-

ously Operating GPS Reference Stations (CORS http://geodesy.noaa.gov/CORS/)

stations for the GPS-Met application.

Motivated by the fact that in the water cycle that describes the movement of

water through the atmosphere, water must first exist in the atmosphere as water

vapor before it becomes rain, a number of agencies and researchers have explored the

potential of real-time observations of atmospheric water vapor content derived from

GPS-Met stations for weather forecasting and precipitation nowcasting. Japan thus

far has the highest density of GPS stations with an average spacing between stations

of 17km [50]. Using this densely spaced GPS network, a number of studies have
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looked into the ability of high spatial-temporal resolution GPS-Met derived Integrated

Precipitable Water Vapor (IPW) to nowcast thunderstorms and severe rain, e.g.,

[29], [47]. In a study of how IPW fields relate to the onset of convective weather,

it was pointed out that maximum IPW occurred 1-2 hours prior to thunderstorm

activity where thunderstorms were measured using cloud-to-ground lightning and

convective activity was measured by hourly accumulated rainfall [28]. In another

study looking at relationships between spatial variations in IPW and precipitation it

was shown that rainfall intensity is related to IPW gradients and in particular that

strong convergence (concentration) of water vapor is generally present several hours

in advance of convective precipitation [61].

Spatial variations in IPW and their correlations with thunderstorm activity have

also been studied in Europe. De Haan [16] devised a method to construct IPW maps

from a network of GPS stations using two dimensional variational techniques. The

IPW maps were then studied with regard to lightning and thunderstorm events in

the Netherlands. The level of convergence of water vapor evident in the IPW fields

again correlated well with subsequent precipitation rates and thunderstorm activity.

A similar analysis was conducted in Spain [57] using normalized IPW fields to take

into account the seasonal variation. The interesting observation made in the paper is

that the decay of IPW values coincided with storm direction and intensity.

Generation and validation of IPW spatial fields have also been carried out in the

US and the potential use of IPW fields for analyzing long and short term climatolog-

ical activity have been studied (cf.[40]). These studies have shown that IPW fields

generated from point measurements using GPS-Met systems prove to be an excellent

tool to visualize convergence and build up of water vapor. They observed a strong

build-up of water vapor 1-3 hours in advance of a convective event, leading to the

conclusion that IPW holds the potential to accurately predict convective initiation. A

recent study conducted in Malaysia evaluated various spatial interpolation techniques
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for obtaining water vapor fields from networks of ground based GPS stations. The

spatial interpolation techniques were then suggested for applications in nowcasting

precipitation [54].

A common indicator of rainfall is a steep increase in IPW seen from individual

GPS-Met stations. [49] [2] showed that variations in IPW usually peaks a few hours

prior to the onset of precipitation and that the variations in IPW and the variations

of rainfall rate measured by rain gauges are also strongly correlated. However both

papers also note that IPW alone is not a precise predictor of rainfall and there are

other atmospheric parameters that play a role in the onset of rain. This final con-

clusion is based on observing several cases where high peaks in IPW values did not

result in heavy rainfall.

As presented in the previous paragraphs that several research efforts have been

made to explore the possibility for using GPS-Met stations for forecasting/nowcasting

precipitation and severe weather, no one has taken the step forward to build an

automated system which incorporates data from GPS-Met stations. Based on the

above findings, we propose a precipitation nowcasting approach that uses both IPW

and weather radar reflectivity. Rather than attempting a prediction system that tries

to model and explain how these two fields jointly evolve, we propose instead a machine

learning approach to learn the joint spatial-temporal patterns and correlations to be

able to better predict rainfall.

The use of machine learning for precipitation nowcasting is not new. An early

application of machine learning to the precipitation nowcasting problem used artificial

neural networks to predict rainfall fields 1 hour in advance based on the current

rainfall field [22]. A single layer neural network was trained using a 100× 100 km2, 4

km resolution simulated precipitation field to predict the corresponding precipitation

field 1 hour in the future. The predictions were evaluated against mean areal index

(MAI) and PAC (Percent Areal Coverage) and performed as well as the standard
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nowcasting algorithm of the time. A neural network approach was also applied to

forecasting rain gauge readings with 0-6 hr lead times using moisture and updraft

data from the NCEP (National Center for Environmental prediction) Nested Grid

Point Model. A feature selection method was used to reduce the initial 528 feature

input space to the 25 most important features [32].

A machine learning approach using random forests and logistic regression was

used in [38] to make probabilistic predictions 1-hour ahead of convective storms. The

inputs were GOES satellite and numerical weather prediction (NWP) data and the

prediction goal was to determine if a particular cloud would turn into a convective

storm. As part of the analysis, this paper used the feature importance attribute of the

random forest method to determine relative importance of each feature in predicting

convective initiation. In an another study, a modified version of the random forest

called the Spatiotemporal Relational Random Forest (SRRF) [37] was used to detect

turbulence areas for aircraft. This algorithm used archived NWP estimates of the

weather and meteorological observations. This algorithm achieved a 0.80 area under

the receiver operating characteristic (ROC) curve detection rate of turbulence with

100 trees in the forest.

The state-of-the-art machine learning algorithms of today fall under the category

of ”Deep Learning” [4]. The word ”Deep” was coined to emphasize the fact that this

type of learning algorithm tries to learn multiple layers of representations of the input

data space or representation learning as it is called in the literature. These multiple

layers of representations take advantage of the spatial correlations in an input image

or the temporal correlations of time series data. Some of the well known deep learn-

ing architectures include Convolutional Neural Networks (CNN), Recurrent Neural

Networks (RNN) and LSTM (Long Short Term Memory). A very recent application

of Deep Learning and one of the first in the meteorological domain to tackle the now-

casting problem used a CNN-LSTM, a combination of CNN and LSTM, to predict
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rainfall fields based on a sequence of radar reflectivity products [60]. Specifically,

the goal was to predict the next 15 frames of reflectivity from the previous 5. The

algorithm was trained and tested on a dataset of reflectivity echoes from a radar in

Hong-Kong for rainfall days which occurred over a period of three years. The results

showed that the CNN-LSTM performs better than the current model based state-

of-the-art radar reflectivity extrapolation nowcasting algorithm called the Real-time

Optical flow by Variational methods for Echoes of Radar (ROVER).

In this thesis we attempt to go a step beyond the works cited above (which use

reflectivity only, IPW only, or use NWP data), to develop a machine-learning pre-

cipitation nowcasting system based on direct observations of IPW (water vapor) and

reflectivity (precipitation). We develop a data pipeline which ingests data from a

”network of networks” of remote sensing systems in real time. We make our software

system an open source artifact for future researchers to use. We provide the data

used to train our open source software and one of the goal of this thesis is to establish

various bench marks on this data set against which future researchers can compare

the results of the techniques they develop.

1.2 Thesis Goals

Precipitation nowcasting systems are generally based on the underlying physics

model or radar reflectivity extrapolation approaches which make the persistence as-

sumption (i.e. the system does not account for the growth and decay of storms).

Our goal in this thesis is to build a nowcasting system by complementing the radar

reflectivity data with water vapor data. Because water vapor convergence is corre-

lated with rainfall, we believe that it should improve the nowcasting performance.

By comparing nowcast systems that use water vapor information against ones that

do not, we can evaluate this conjecture. The second goal is the general exploration

of machine learning as an approach to the precipitation nowcasting problem. Given
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the large amount of training data one can generate and recent developments in ma-

chine learning, e.g., the new deep learning techniques, we think machine learning is

well suited to the precipitation nowcasting problem. By comparing a few machine

learning algorithms against each other and against other nowcasting algorithms from

the literature, we can evaluate the applicability of using machine learning algorithms

to the precipitation nowcasting problem.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 will discuss the

hydrologic cycle of how water moves into and out of the atmosphere in the various

states and the theory behind the two remote-sensing systems (GPS-Met and Weather

Radars) that we will use for our studies. Chapter 2 also gives a brief description of the

interpolation technique we use to build IPW fields from IPW point measurements.

Chapter 3 will discuss the region of Texas that will be the focus of our studies and how

we collected, organized, and processed the data set we use for our experiments. We

also analyze several storm cases using the reflectivity fields overlapped over the IPW

fields visualizations, to visually understand if IPW can account for the growth and

decay of a storm. Chapter 4 will give our solution approach and a brief introduction

machine learning and background on the various algorithms we use in this thesis.

Chapter 5 will present the results of the machine learning experiments and Chapter

6 will give the conclusions, recommendations for future work and discuss about some

of the issues we encountered.

Readers only interested in the machine learning related work that has gone into

this thesis can skip directly to chapter 4.
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CHAPTER 2

PRECIPITATION BACKGROUND

In the hydrologic cycle that describes the movement of water into and out of the

atmosphere, water must first exist as water vapor before it precipitates back to the

earth as rain. After a simplified explanation of how water vapor becomes precipita-

tion, this chapter describes the instruments we will use to measure atmospheric water

vapor and rainfall.

2.1 Mechanisms of Precipitation

In the hydrologic cycle shown in Figure 2.1, water enters the atmosphere as vapor

through evaporation and transpiration. Humidity, measured in mass of water per

volume of atmosphere, is a measure of the amount of water vapor present in the

atmosphere. The total amount of water vapor the atmosphere can hold is mainly

a function of temperature. Relative humidity gives the saturation percentage - 0%

implies no water vapor at all in the atmosphere, 100% implies the atmosphere is fully

saturated and can hold no more. The dew point is the temperature at which the

relative humidity becomes 100%.

Precipitation forms when there is uplift that forces warm moist air into increas-

ingly colder air aloft. As the moist air is lifted, the relative humidity increases to

100% at which point the water vapor begins to condense into water droplets. Very

small droplets ( 0.01 mm in size) remain suspended in the atmosphere to become

clouds. The height of the cloud base being roughly the height where the tempera-

ture is equal to the dew point (a ”cloud base” at ground level gives fog). For small
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Figure 2.1: The basic hydrological cycle (www.srh.noaa.gov/jetstream/atmos/hydro.htm).

cloud droplets to become larger, they need a surface (condensation nuclei), in the

form of dust, pollen or frozen ice crystals to coalesce onto. Once the water droplets

become sufficiently large (e.g., greater than 0.1 mm in size), the vertical motion

of the atmosphere can no longer hold them aloft and they begin to fall to earth as

precipitation.

Figure 2.2 shows the two basic mechanisms leading to precipitation. The left of

the figure shows a cold front, where convective uplift is caused by cold air being forced

into warm moist air. This is the mechanism of thunderstorms and the super-cells that

can spawn tornadoes. The right of the figure shows a warm front where warm moist

air is dynamically forced into cold air. This is the mechanism of less violent and more

widespread stratiform rain. For more detailed explanations of the hydrologic cycle,

atmospheric water vapor, and the mechanisms of precipitation, the reader is referred

to [6] and the summaries in [48] and [18].
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Figure 2.2: Basic mechanisms of precipitation - warm moist air uplifted by or into
colder air. On the left is a cold front leading to convective lift and thunderstorms.
On the right is a warm front leading to dynamic lift and stratiform rain. Figure from
www.physicalgeography.net.

2.2 Measuring Atmospheric Water Vapor

There are a number of instruments for measuring the amount of water vapor in

the atmosphere. These include:

1. Radiosondes: A radiosonde is a battery powered telemetry instrument package

with sensors for sampling various atmospheric variables as it is carried up by a

balloon from ground launch to between 20-30 km altitude1. While radiosondes

have the advantage that they can measure the vertical distribution of water

vapor, they have the distinct disadvantages that they are typically only launched

two times a day (at 0000 and 1200 UTC) and from only a handful of locations

(the entire CONUS is covered by a mere 90 radiosonde launch sites).

2. Radiometers. Ground-based water vapor radiometers measure the background

microwave radiation emitted by atmospheric water vapor along a given line of

site [7]. An advantage of these instruments is their ability to make continuous

measurements of water vapor. Disadvantages are cost, calibration, and sparse

1http://www.wrh.noaa.gov/rev/tour/UA/introduction.php
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spatial deployment. They are also limited in that they do not work when it is

raining.

3. Satellites. The GOES (Geostationary Operational Environmental Satellite) sys-

tem provides two sources of information about the water vapor [21]: imagery

through its water vapor channel (at 4km spatial resolution, 15 min temporal

resolution), and sounder retrievals (at 20km spatial resolution, 1hr temporal

resolution). Both of these observations, however, are negatively impacted by

cloud cover.

4. GPS-Meteorology. GPS-meteorology (GPS-Met) is a technique that allows GPS

receivers to simultaneously perform the multiple functions of position estima-

tion and precipitable water vapor estimation [10]. For a given GPS receiver,

precipitable water vapor estimates can be made with 30-minute temporal reso-

lution. In regions, such as the middle and western U.S., where there is a high

density of Continuously Operated GPS Reference Stations (CORS), techniques

have been developed to combine the water vapor measurements from multiple

stations into 2D and 3D water vapor fields. The spatial resolution of the field

depends on the density of GPS stations (spatial Nyquist). While GPS-Met

currently cannot provide the spatial and temporal resolution of that of GOES

satellite, it has the advantage that it is accurate in all weather conditions and

not impacted by clouds or precipitation.

Based on our previous work [1], where we developed low-cost GPS-Met systems for

near real-time Integrated Precipitable Water Vapor (IPW) estimation and an infras-

tructure for disseminating the IPW data on-line, we will use the GPS-Met technique

as our source of atmospheric water vapor information.2.

2UMass operates two low-cost GPS-Met stations in Dallas-Fort-Worth, Texas metroplex region,
one site designation CNVL at the Univ. of Texas at Arlington and another site designation NWSD
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2.2.1 GPS Meteorology Technique

The Global Positioning System (GPS) is a system of satellites operated by the

U.S. Department of Defense (DoD). First launched in the 1970s for the purpose of

military navigation, the system was later opened up for civilian use. The GPS system

consists of a core of 24 satellites flying at 22,200 ft AGL orbiting in 6 different orbital

planes inclined at 55◦ to each other3. For a GPS receiver located in the CONUS the

number of satellites in view at any one time ranges between 8 and 12, though only 4

are required for an estimate of horizontal and vertical position.

The signal path from a given satellite to a GPS receiver is called a slant path.

Since GPS satellites are not in geosynchronous orbit, the azimuth and elevation angles

of the slant paths to the satellites in view change with time, as does the particular

set of satellites in view4. Along each slant path a GPS receiver receives carrier signals

at two distinct frequencies L1 (f1 = 1575.42MHz) and L2 (f2 = 1227.60MHz).

These carrier signals are modulated as a sequence of bits called Pseudo Random

Noise (PRN) and each satellite is identified by a unique PRN code [27]. From the

carrier signals (code and carrier phase) the GPS receiver obtains measurements of the

distance (pseudo-range) between the satellite and the receiver. As the GPS carrier

signals travel from a satellite to a receiver, they accumulate delays that cause the

pseudo-ranges to accumulate errors,

P s
r (tr) = ρsr − (δtr − δts) ∗ c+ δsr,ion + δsr,trop + ξ (2.1)

Here P s
r is the code pseudorange measurement from satellite s to receiver r, ρsr

is the geometric distance as a function of the receiver and satellite coordinates, and

at the NWS Dallas-Fort-Worth Weather Forecast Office (WFO). IPW observations from these two
sites is published on-line at http://emmy9.casa.umass.edu/gpsmet/2015/)

3http://www.gps.gov/systems/gps/space/

4see the animation at wiki page for GPS https://en.wikipedia.org/wiki/Global Positioning System
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the rest of the terms are range corrections - δts and δtr the clock corrections for

the satellite and receiver respectively, c is the speed of light in vacuum, δsr,ion is the

correction for the signal delay through the electrically charged ionosphere, δsr,trop is

the correction for the refractivity induced delays through the troposphere, and ξ are

residual corrections for things like multipath delay and receiver and satellite hardware

biases (cf. [48]).

For the geodest, position accuracy is limited by the accuracy of the clocks and

the accuracies of the ionospheric and tropospheric corrections. For the meteorologist,

its the tropospheric correction that is of interest, since the tropospheric delay is the

term that varies with atmospheric water vapor content [10] [42] [20]. Estimating the

tropospheric delay from the observed code range and carrier phase requires estimating

and subtracting the other correction terms. For high accuracy, such as required by the

GPS-Met application, the so-called double differencing technique is often used [41],

[3]. This involves taking the differences of the pseudorange equations between two

receivers and two different satellites and then taking the difference of these differences.

If the baseline distance between the two receivers is sufficiently large (> 500km)

that the observables are uncorrelated, then the result of double differencing is the

elimination of both satellite and receiver clock errors (the (δtr − δts) ∗ c term in eq.

2.1). For the electrically charged ionosphere, which is the region of the atmosphere

between 60 and 1000 km altitude, the ionospheric delay (the δsr,ion term in eq. 2.1) is

frequency dependent (dispersive) [52]. This delay, which amounts to between 1 and

15 meters of pseudorange error, can be estimated to millimeter precision via linear

combinations of the GPS dual frequency observables [42].5 Residual errors (ξ in eq.

5The lowest cost GPS receivers, such as those in cell-phones, are single frequency receivers that
use L1 to estimate position. It is because these receivers cannot correct for the large ionospheric
delay as accurately as dual-frequency receivers that they are not generally used for the GPS-Met
application.
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2.1), such as due to multipath, are avoided by careful selection of GPS site to avoid

obstructions such as cell phone towers and buildings.

What remains after applying the above corrections is the tropospheric delay. The

troposphere is the lowest portion of the atmosphere from the earth’s surface to about

17 km and is the site of all weather on earth. The excess path length that GPS

signals travel in the troposphere is due to refraction and can reach up to 2.5 meters

at sea-level. This excess path length is given by [10], [48],

δsr,trop = 10−6
∫
Nds+ (S −G) (2.2)

where N is the refractivity, S is the actual signal path and G is the geometric signal

path respectively along the slant path between satellite s and receiver r, and the

integral is along the slant path. The refractivity, N , can be split into a dry part, Nh,

(refractivity of dry air) and a wet part, Nw, (refractivity due to water vapor) [15],

[46],

δsr,trop = 10−6
∫

(Nh +Nw)ds+ (S −G) (2.3)

The refractivity’s depend on pressure, temperature, and humidity according to,

Nh = 77.6(
Pd

T
), Nw = 64.8(

Pw

T
) + 3.776 · 105(

Pw

T 2
) (2.4)

where Pd and Pw are the partial pressures (in millibars) of dry air and water vapor

respectively, and T is the surface temperature (in degrees Kelvin).

A GPS-Met estimation of the right hand side of eq. 2.3 proceeds as follows. The

tropospheric delay along a slant path is called the Slant Total Delay (STD). This is

broken into a Slant Hydrostatic Delay (SHD) term and a Slant Wet Delay (SWD)

term,
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STD = SHD + SWD (2.5)

of these, the SHD accounts for the majority of the excess path length, or about 2

meters, while the SWD accounts for only about 1-2 meters of excess path length. The

STD is commonly written in terms of the hydrostatic and wet delays in the zenith

direction as (cf.[20]),

STD = mh(θ)ZHD +mw(θ)ZWD (2.6)

where mh(θ) and mw(θ) are mapping functions (inversely proportional to the sine

of the slant path elevation angle θ) for the hydrostatic and wet components respec-

tively. For elevation angles above 15◦ the hydrostatic and wet mapping functions are

essentially equal allowing us to write,

STD = mn(θ)ZTD (2.7)

where,

ZTD = ZHD + ZWD (2.8)

is the Zenith Total Delay. The ZTD is determined from the measured STDs [58] and

the ZWD is determined as,

ZWD = ZTD − ZHD (2.9)

where the ZHD is a slowly varying quantity that can be estimated to a fraction of a

millimeter via the so-called Saastamoinen model [46],

ZHD =
0.00227768P0

1− 0.00266cos(2φ)− 0.00028href
(2.10)

16



where P0 is the surface pressure (in millibars), href is the geodic height of the station

(in meters) and φ is the station latitude. Given the ZWD, the Integrated Precipitable

Water (IPW), which represents the depth of water in mm per square meter that the

column of atmosphere directly over the GPS receiver is holding in the vapor state, is

given by [9],

IPW = ΠZWD (2.11)

where,

Π =
106

461, 525(
373, 900

Tm
+ 22.1)

(2.12)

and

Tm = 70.2 + 0.72T0 (2.13)

with T0 the surface temperature at the GPS receiver location.

2.2.2 GAMIT Software

There are a number of available software packages that one can use for IPW

estimation. The one we use in this work is the GAMIT software package developed

at MIT [26]. In addition to providing high-precision position analysis, GAMIT has

routines for GPS-Met IPW estimation. The routines use the double differencing

technique and tropospheric delay models described previously.

Inputs to GAMIT are RINEX (Receiver Independent Exchange Format [25]) nav-

igation files containing the receiver and satellite clock offsets, observation files con-

taining the code and carrier phase measurements for each slant path at 30 second

sample rate, and for the GPS-Met application, meteorological files (from a collocated

or nearby weather station) containing the surface pressure, temperature, and relative

humidity data mapped to the GPS site location. The satellite orbital parameters giv-

ing precise orbit information for each satellite are also an input. These are generated
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by the IGS (International GNSS services) [19] and are automatically downloaded by

GAMIT for the analysis time period in order to correct for orbit errors. Reference

stations with baselines of more than 500 km from the GPS stations at which IPW

is desired are chosen to satisfy the double-differencing condition that the reference

site is uncorrelated from the IPW sites [42]. GPS-Met software, such as GAMIT, has

been validated to produce precipitable water vapor measurements of better than 2

mm RMS [20].

2.2.3 IPW Normalization

The GAMIT software produces point estimates of IPW. To obtain the spatial

distribution of IPW, we need to combine IPW values from multiple GPS receivers.

Before we can do so, however, we first need to normalize the IPW values from the dif-

ferent GPS stations. IPW is the amount of water vapor in a vertical column over the

site. Because the amount of water vapor the atmosphere can hold is a function of tem-

perature and temperature generally decreases with altitude, IPW will consequently

also depend on the altitude of the station. Since IPW depends on temperature, IPW

will also change with season so that an IPW value corresponding to low humidity at

summer temperatures might be saturated at winter temperatures. Moreover, IPW

by itself does not tell the level of saturation, since again that depends on the daily

temperature. To account for station height differences, seasonal (monthly) variations,

and to identify anomalously high or low IPW values, we normalize the IPW values

by the monthly mean and standard deviation before we combine them as follows,

NIPW =
IPW − µij

σij
∀ i, j (2.14)

here the subscripts i and j are for the station and month respectively and µij and

σij are the mean and standard deviations respectively. In the literature NIPW is
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termed the standardized anomaly of precipitable water vapor and is a common way

of presenting precipitable water information [24].

2.2.4 Multiquadric Interpolation

To obtain the spatial distribution of NIPW we interpolate from a set of point

measurements. The paper [56] describes a number of methods for interpolating geo-

physical data. The method we chose is the multiquadric method. This method was

chosen because it has been shown to perform nearly as well as the more common

Kringing technique [40] but without the need for historical data.

Similar to Kringing, the multiquadric method is a weighted linear interpolation

method where the estimate h0 for any grid point (x0, y0) is given by,

h0 =
n∑

j=1

wj · hj (2.15)

where hj is the observed NIPW at point (xj, yj) and wj is the weight giving the

influence of hj in determining h0.

In the multiquadric method the weights wj are calculated from the matrix of dis-

tances between the observed points (xj, yj) and the distances between the interpolated

point and each observed point as follows. We start by expressing the observed points

as a weighted linear combination of the distances between the observation points,

hj =
n∑

i=1

ci · dji ∀j = 1, 2..n (2.16)

where dij is the distance between GPS site i and GPS site j and hj is the observed

NIPW measurement at that GPS station. The coefficients ci are then determined by,

ci =
n∑

j=1

δij · hj ∀i = 1..n (2.17)
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where δij is an element of the inverse of the n×n distance matrix dij, j = 1..n and i =

1..n. Given the ci we can thus write,

h0 =
n∑

i=1

ci · d0i

=
n∑

i=1

[
n∑

j=1

δij · hj] · d0i

=
n∑

j=1

[
n∑

i=1

δij · d0i] · hj

or

wj =
n∑

i=1

δij · d0i (2.18)

2.2.5 Time complexity of Multiquadric interpolation

The multiquadric interpolation works in two steps. The first step involves comput-

ing the weights for each point on the grid that we are interpolating onto as a function

of the influence of the N points where the measurements are made. The second step

involves computing the interpolated estimate at that grid point as a function of the

N grid points. Thus for a given number of stations N where the measurements are

made the weights or influence of each one of these points on each point in the grid

needs to be computed only once and can be stored.

To analyze the time complexity of the multiquadric interpolation algorithm, let

us start by defining a spatial grid of size m × m with M number of points and

measurements made at N points. To compute the distance matrix would require

O(N2) and to invert this matrix would be O(N3).

To interpolate each of these points to the m × m domain where each point is a

weighted linear combination of each element in the inverse distance matrix we obtain
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the time complexity of O(N2). Thus the total time complexity to compute the weights

is O(N2 +N3 +MN2).

The storage required for the weights is O(MN). In our case we have N = 44

stations or measured points and we interpolate to a M = 100 × 100 grid. The time

complexity to compute the weights can be distributed in a way that the M points

can be subdivided threads, and each thread can concurrently compute the weights of

the subdivided points. Finally the points can be concatenated to obtain the weight

matrix of the entire spatial grid.

Once we compute and store the matrix, the measurement must be estimated at

each grid point. As the estimate at each grid point is a linear combination of the

measurements the time complexity to compute the entire field is O(MN) given that

the weights are calculated.

2.2.6 IPW Field Generation

In light of the above discussion, we can summarize our method for obtaining fields

of NIPW as follows. Every 30-minutes we do the following,

1. Obtain GPS navigation and observation files from N GPS sites distributed

throughout the geographical region of interest;

2. Obtain Pressure(P), Temperature(T), Relative Humidity(RH) for each GPS

station;

3. Put the P, T, RH data in the required RINEX format;

4. Feed the GPS and meteorological RINEX files into GAMIT to get IPW values

for each station for the current 30-minute interval;

5. Normalize the IPW values based on the average and standard deviation for the

given station and given month;
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6. Apply multiquadric interpolation to obtain the NIPW field for the current 30-

minute interval.

2.3 Measuring Rainfall

The primary instrument for obtaining spatial-temporal fields of precipitation is the

ground-based weather radar. There are a number of different weather radar systems

in operation in the U.S. These include the 160 long-range WSR-88D, Next Generation

Weather Radars (NEXRADs) operated by the U.S. National Weather Service (NWS)

for real-time weather monitoring and short-term forecasting and the 45 Terminal

Doppler Weather Radars (TDWR) operated by the Federal Aviation Administration

(FAA) to provide high-update rate, high-resolution weather and wind data at key

major airports. In addition to these, increasing numbers of television stations have

their own weather radars, and there are a variety of research weather radars, such

as the network of small X-band radars operated by the University of Massachusetts,

Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) in the Dallas-

Fort-Worth metroplex region.

As a weather radar scans in azimuth, it sends out a narrow, pencil beam of

microwave pulse energy and then samples the return echo. This partitions the space

around the radar into resolution volumes or voxels (volume elements). Voxels have

the shape of a disk on its side: the diameter of the disk determined by the radar’s

beam-width; the thickness by the radar’s gate spacing. The size V of a voxel in cubic

meters thus varies with the square of the range from the radar according to,

V = G · π · tan2(θ/2) ·R2 (2.19)

where G is the gate spacing in meters, θ is the beam width in radians, and R is

the range from the radar to the voxel in meters. For NEXRAD, with its 1 degree

beam and 250 meter gate spacing, this leads to voxel with volumes that are roughly 6
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million cubic meters at 10 km from the radar to 3 billion cubic meters at the radar’s

maximum (Doppler) range of 230 km.

Under assumptions that the voxels are completely filled with liquid hydrometeors

(raindrops) and that the hydrometeors are small relative to the radar’s wavelength

(Rayleigh scattering), weather radars measure the echo from each voxel to infer prop-

erties of the hydrometers in the voxel (their density, size, radial (Doppler) motion,

(Polarimetric) shape asymmetry, and so on) [13] [18]. To sample the complete volume

around the radar, multiple 360 degree sweeps in azimuth are performed, each at a

different elevation tilt angle. Each such 360 degree sweep is termed a Plan Position

Indication (PPI) scan, and the sequence PPIs starting at the radar’s lowest eleva-

tion tilt angle and working up to the radar’s highest tilt angle that are performed

to cover the volume is called the Volume Coverage Pattern (VCP). The NEXRAD

lowest elevation tilt angle is 0.5 degrees, and the standard convective weather VCP

has a temporal update rate of approximately 5-minutes between revisits of the 0.5

degree lowest elevation PPI.

The main weather radar product, reflectivity (Z in mm6/m3), is defined as the

6-th moment of the drop size distribution [18].

Z =

∫ ∞
0

N(D) ·D6dD (2.20)

where D is the (volume equivalent spherical) drop size (diameter in mm) and N(D)

is the drop size distribution given by (Marshall-Palmer model) [18].

N(D) = 8000 exp(−4.1R−0.21ΛD) (2.21)

where R is the rain rate (in mm/hr).

Plugging (2.21), into (2.20) one can obtain an expressions relating reflectivity to

median drop size [18],
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Z = 642D7
0 (2.22)

and rain rate,

Z = 297R1.47 (2.23)

Using the above relationships, Table 2.1 relates reflectivity (in dBZ = 10log10Z) to

median drop size D0 (in mm) and rain rate R (in mm/hr)6. Noting that cloud droplets

Table 2.1: Reflectivity as a function of median drop size diameter and rainfall rate.

dBZ D0 (mm) R (mm/hr)
-42 0.1 -
0 0.4 -
10 0.6 0.1
20 0.8 0.5
30 1.1 2.3
40 1.5 11.0
50 2.1 52.0

average 12µm = 0.012mm, and that even the high-powered NEXRAD only has -

21dBZ sensitivity at 10km (estimated from the WSR-88D specification of -7.5 dBZ

at 50 km7 and the fact that minimum detectable reflectivity is proportional to range

squared), we see that weather radars generally cannot detect clouds or uncondensed

water vapor, but can only detect active precipitation. We also remark that although

dual-polarimetric weather radar, such as the upgraded NEXRAD, do provide a rainfall

rate product8, in this thesis we will use reflectivity as a proxy for rainfall rate with

24dBZ and above indicating rainfall and the dBZ value reflecting rainfall intensity.

6We remark that the Z-R relationship in equation 2.23 is only one of many such relationships.
Others include the famous 1948 Z = 200R1.6 Marshall-Palmer relationship [36] and the Z = 300R1.4

relationship used by the NWS as the default Z-R relationship for the WSR-88D radar network
http://www.srh.noaa.gov/tlh/?n=research-zrpaper

7https://www.roc.noaa.gov/WSR88D/PublicDocs/NTR96.pdf

8https://www.ncdc.noaa.gov/data-access/radar-data/nexrad-products
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Specifically, we will use the NEXRAD 0.5 degree elevation reflectivity PPI as an

indicator of precipitation activity and intensity at ground level.9

9To say that the 0.5 degree NEXRAD reflectivity product gives the rainfall at ground level ignores
the fact that the earth is curved while radar beams travel in essentially straight lines leading to an
increase in radar beam height above ground level with distance from the radar. In particular, we
are ignoring the fact that even at its lowest tilt of 0.5 degrees, the bottom of a NEXRAD beam is
some 3000 meters (10,000 feet) above ground level at the radar’s maximum (Doppler) range of 230
km.
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CHAPTER 3

DEVELOPING A BENCHMARK DATA SET

The domain of study considered in this thesis is the Dallas Fort-Worth area in

Texas. Part of the infamous U.S. ”tornado alley”, DFW spring and summer weather

is dominated by convective thunderstorms that move in lines generally from west

to east through the region. We choose the DFW region because we understand its

climatology (through CASA’s more than 15 years of operating networks of weather

radars, first in Oklahoma and now in DFW) and because the DFW region has a

high density of GPS receivers and weather stations whose data are publicly available

on-line for us to repurpose as a GPS-Met network. We also select this region as our

domain of study because it has a fairly flat topography with no lakes, rivers or oceans

surrounding it. This makes it easier for us to study the effects of water vapor on

precipitation. The flat topography also allows us to make the assumption that one

particular region in the domain behaves like an another one in the domain. We use

this assumption in training our machine learning algorithm by uniformly sampling

points in the domain and applying the trained model to the rest of the points.

Three years of storm data are analyzed (2014 - 2016) during the spring summer

storm season in the DFW region which consists of days between May to August.

We take as the center of our region the NWS KFWS NEXRAD radar in Fort-Worth

Texas1. Within the 230 km coverage range of the radar we identified 44 Regional

Reference Points, i.e., high performance dual-frequency GPS receivers. These GPS

1http://radar.weather.gov/radar.php?rid=fws
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receivers, which are operated by the Texas Dept. of Transportation (TxDOT)2, were

deployed to provide precise position information for Geodetic studies. As such these

GPS receivers do not have collocated weather stations. For the weather data (surface

temperature, pressure, and relative humidity) required for IPW estimation, we used

data from the network of Automated Surface Observation Stations (ASOS) operated

by NOAA NWS3. The ASOS network provides surface meteorological variables at 5

minute resolutions. Figure 3.1 shows the relative locations of the GPS receivers and

ASOS stations within the 230 km coverage range of the KFWS radar. Table A.1 in

the Appendix gives the locations and heights of the the GPS receivers as well as the

location and height of the ASOS that is closest to the GPS receiver.

GPS RINEX files of code range and carrier phase for the storm periods of 2014

– 2016 are downloaded for each of the 44 stations from databases maintained by

SOPAC4 [11] and CORS5[51]. The meteorological data from the ASOS stations are

obtained at 30 minute intervals for the both years 2014 and 2015 from Teresa Vanhove

of UCAR6 and the data for 2016 was downloaded from NCDC. The KFWS 0.5 degree

reflectivity product is downloaded from NCDC7. For the long baseline stations needed

for double differencing, we chose the four stations: AC20 in Girdwood Alaska, CONZ

in Concepcion Chile, P019 in Fairfield, Idaho, and UNBJ at the University of New

Brunswick, Canada. The closest of these stations, P019 is approximately 1500 km

from the KFWS radar that defines the center of our DFW GPS network. These

2http://www.txdot.gov/inside-txdot/division/information-technology/gps.html

3http://www.nws.noaa.gov/asos/

4http://sopac.ucsd.edu/

5http://www.ngs.noaa.gov/

6http://www.suominet.ucar.edu/

7https://www.ncdc.noaa.gov/data-access/radar-data
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stations were chosen to ensure that there was always at least one satellite that had a

view of all of the TxDOT GPS stations and one of the baseline stations.

To get the meteorological data for a particular TxDOT GPS station, we found

the closest ASOS site and used the equations from [5] to interpolate the surface

temperature (T), pressure (P), and relative humidity (RH) data from the MSL height

of ASOS site to the MSL height of the GPS station,

PSL = PMSL · (1− 2.26 · 10−5 ·H)5.225 (3.1)

TSL = TMSL − 0.0065 ·H (3.2)

RHSL =
RHMSL

e−0.0006396·H
(3.3)

Figure 3.1: GPS and ASOS stations within the KFWS 230 km coverage range.
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In the above equation, PSL is the pressure at the station level, PMSL is the pressure

at mean sea level, and H is the height of the station (in meters MSL). We developed

a Python script to convert the meteorological values from the ASOS file format to

the met RINEX format required for GAMIT.

Processing for IPW is done using the GAMIT software using the GPS and met

RINEX to obtain measurements of 30 minute intervals for each GPS station for the

duration of our study (spring summer storm season 2014 – 2016). The mean and

standard deviation of IPW for each GPS station are calculated for each month, and

the IPW values normalized to obtain the standardized anomaly of precipitable water,

which we denote NIPW. The NIPW values were then mapped to a 300 km by 300 km,

3km resolution grid centered on the KFWS radar using the multiquadric interpolation

method as previously described in Chapter 2.

The data processing was done on a Ubuntu server where GAMIT is installed.

The server has 16 CPUs with 4 cores each. The data processing was performed in a

manner that optimized the computation resources of the server thus allowing many

days to be processed at the same time. Specifically, the 44 GPS stations were broken

down into 4 different sub networks where the data processing for the networks could

run in parallel. CSV files containing the IPW estimates for the spring-summer storm

season from the 44 GPS stations are available online 8.

Regarding the NEXRAD reflectivity data, this was first down-sampled from its

native 5-minute update rate to the 30-minute NIPW update interval. We then

performed a polar to Cartesian coordinate conversion to map the reflectivity field to

the same 3 km grid using the WGS84 mapping equations9 to the same resolution

as used for NIPW. The result is two fields of 10,000 pixels each updated every 30-

8http://emmy9.casa.umass.edu/gpsmet/DFWnet/

9http://williams.best.vwh.net/avform.htm
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minutes, one of NIPW (a measure of atmospheric water vapor) the other of reflectivity

(a measure of rainfall).

3.1 Experimental Data Set

To understand the role of NIPW in predicting precipitation we chose a set of

storm dates and visually inspect the relationship between NIPW and reflectivity. We

denote these storm dates as ”weather anomaly” days. The criteria for selecting these

dates are to see if 30 or more NIPW values from a particular day had a standard

deviation of greater than 2 from the mean amongst all of the NIPW values from that

day. In other words consider a matrix of 44× 48 values of NIPW (44 stations where

IPW is sampled at 30 minute intervals for the entire day) values, a day is termed

as a weather anomaly day if there are more than 30 values which have a standard

deviation of greater than 2. The list of days were further padded by taking into

consideration one day before and one day after the weather anomaly days to account

for storm build up and decay. Table 3.1 lists the weather anomaly days for the years

2014 – 2016. Interestingly almost all of the weather anomaly dates were days during

which severe weather occurred and all severe storm reports reported by NOAA10 for

the DFW region are included in the ”weather anomaly” days.

3.1.1 Data Preprocessing

One issue we encountered is that we would occasionally get ”bad” IPW estimates

from GAMIT. For instance we found numerous instances where there is an abrupt

increase or decrease in the IPW value at a station followed by smooth measurements

of IPW values thereafter. This did not make any sense as the atmosphere can not

lose so much moisture (energy) in such a short period of time. We believe these bad

IPW estimates were due to missing or corrupt carrier phase and pseudo range mea-

10http://www.spc.noaa.gov/climo/reports/today.html
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surements files and/or missing or corrupt orbit files. The bad values may also be due

to the fact that the zenith measurements are averaged from only 3-4 satellites rather

than the 8-12 satellites. Some of these bad values, for example, had a greater level of

uncertainty associated with them as reported by GAMIT (i.e standard deviation of

the estimate was greater than 2 mm for some of these bad values).

To account for bad IPW values, we wrote an algorithm to search the IPW se-

quences for times where the IPW value dropped by 50% or increased by 100% be-

tween consecutive values. The algorithm would then replace the bad value by linear

interpolation of the IPW values to either side. This algorithm was run before find-

ing the monthly mean and standard deviations of the stations and determining the

weather anomaly days. Alternatively, these ”bad values” could have been determined

directly from GAMIT itself by considering a value bad when the uncertainty in the

IPW estimate is greater than 2 mm. We did not use this technique as this did not

account for all apparent bad values in our experiment.

Table 3.1: Weather anomaly days

Month 2014 2015 2016
May 8,12,23,25,31 9,10,19,20,23,24,29 26,31
June 13,18,19,22,25 15,16,17,18,21 1,12,13,28
July 15,16,17,18,24,28,29,30,31 3,7,8,22,31 3,4,5,25,26,27,28
August 11,16,17,18,19,29 1,19,20,21,25 -

3.2 Preliminary Data Analysis

To give a sense of typical IPW values in the DFW region and how these IPW values

vary with station altitude, Figure 3.2 plots the monthly means for the 4 highest and

4 lowest GPS sites for the year of 2014. GPS station altitudes range from a low of

83.6 meters above sea level to 498.3 meters above sea level. Clear in the plot is the

altitude dependence, with mean IPW inversely proportional to station altitude.
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To see how IPW varies by season in the DFW region, Figure 3.3 plots histograms

of the IPW values observed at the lowest (TXBX) and highest (TXC3) GPS sites.

From the figure we can see the seasonal dependence with higher mean IPW values

during the warmer months (April-September) and lower mean IPW values during

the cooler months (October-March). This is due to the fact that during the summer

of the warmer months the atmosphere can hold more water vapor than the colder

months. Again we see the height dependence with the IPW of the highest station

having generally lower IPW values than the lowest station.

These two plots illustrate why IPW values are typically normalized before they are

combined to produce a field. Our approach of normalizing to obtain the number of

standard deviations from the mean removes height and seasonal dependancies and also

allows us to infer something about saturation level as many standard deviations above

(below) the mean will typically indicate a saturated (dry) atmosphere respectively

without a need to estimate relative humidities or dew points. This normalization

technique also renders unnecessary the temperature measurement to determine the

saturation levels of water vapor.

3.3 Visualizing the joint evolution of NIPW and radar re-

flectivity fields

As a first step in visualizing the correlation between the NIPW and the reflectivity

fields, we plot the reflectivity fields on top of the NIPW fields as shown by Figure 3.5

– 3.7. We only show the reflectivity measurements with values greater than 30dBz

(light rain and above). Browsing through these figures we see that there is some

correlation between the NIPW field and the reflectivity field, where in the patches

where there is a large peak of NIPW values, there is also high levels of precipitation.

This suggests that the NIPW indicates where the storm will grow into and where it

will decay and die out. It thus seems true that NIPW should help with the ”Growth
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Figure 3.2: Mean IPW for each month for 4 highest and 4 lowest stations. The height
is measured as the Geodic height in meters.

and Decay” problem that plagues radar extrapolation based nowcasting algorithms.

In some cases we see that these patches of peak NIPW is leading the precipitation

fields. We further analyze several of these cases in the following sections.

3.3.1 May 8th 2014

A severe storm occurred on May 8th 2014 which caused devastating floods and

tornadoes in the DFW area. Figure 3.4 shows the reflectivity overlaid on the NIPW

plot. The storm approaches the area as a front which originates from the North-West

and moves across the domain in lines. The rain seems to follow the decreasing edge

of the NIPW.

3.3.2 July 17th 2014

As discussed in Chapter 2 a stratiform cloud formation is one where the clouds

are mostly stationary causing a heavy downpour while circulating in the area. July
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17 2014 was one such case where there was no front but the clouds seemed to have

been circulating in a single location. From Figure 3.5 we can see that the rain seems

to be pulled along by the NIPW fields. We can also notice the higher than normal

NIPW values with larger white patches.

3.3.3 August 29 2014

Similar to the storm on May 8th 2014 a storm on August 29 presented with fronts

which originated from the North-West. From Figure 3.6 we see that the reflectivity

fields rides on top of the NIPW fields. The large convergence of NIPW coincides well

with the storm front. This convergence can be detected 1 - 2 hours before the storm

appears in the region. We rely on this convergence of water vapor to be indicative of

severe storms.

3.3.4 May 17th 2015

A similar pattern can also be seen on a storm on May 17th 2015 in Figure 3.7. It

is interesting to note from this figure that there is a large build up of NIPW in the

South-West corner of the domain but there is no indication of rain. This indicates

that a large convergence of water vapor does not always lead to severe front across

the region.

3.3.5 Concluding Summary

As we have seen from all of the different cases presented above, the common trend

seen is that precipitation moves into the regions of growing NIPW and moves away

from decreasing NIPW. This correlation seems to be obvious in some cases and not so

obvious in other cases. We believe these correlations although present in only a few

cases will be enough for a machine learning algorithm to infer the growth-and-decay

component of a storm.
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We explore this conjecture that since radar reflectivity can not determine growth

and decay of a storm and convergence of NIPW indicates growth and decay which

can aid in precipitation nowcasting.
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Figure 3.3: IPW histograms for each season left: lowest station TXBX at 110m MSL
and right: highest station TXC3 at 524m MSL. The vertical bars indicate the mean
and +/- standard deviations from the mean
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Figure 3.4: Reflectivity IPW fields for a storm on May 8th 2016. The correlation
between NIPW and precipitation is clear in this case where we see precipitation is
increasing at regions of high NIPW and decreasing or stopping at regions of decreasing
NIPW.
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Figure 3.5: A strataform storm on July 17th 2014. The correlations seem to be
less clear however we see that where there is gradients of NIPW there tends to be
precipitation.
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Figure 3.6: A convective front on August 29th 2014. Similar to May 8th, there is a
correlation between the NIPW and precipitation where precipitation is riding atop or
behind the convergence of NIPW
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Figure 3.7: Storm on June 17th 2015. Here’s another case where the correlations are
not as immediately obvious - the general trend of rain riding slightly behind the peak
in NIPW is there, but the NIPW does not trace as clear a frontal boundary as in the
previous cases in Figure 3.4 and 3.6
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CHAPTER 4

MACHINE LEARNING SOLUTION APPROACH

As seen from the previous chapter, visually there appears to be a spatiotemporal

correlation between atmospheric water vapor and precipitation in that a concentration

of the former tends to lead to the latter. To investigate this correlation and see if

there is any precipitation nowcasting benefit in complementing radar reflectivity fields

with NIPW fields we take a machine learning approach.

In this chapter we formulate our machine learning nowcasting problem and then

describe the machine learning algorithms that we will explore for its solution.

4.1 Machine Learning Nowcasting Problem

For a machine learning approach, we can phrase our problem as follows: We have

two evolving images or videos, one of the reflectivity field showing where it is raining

now and another of the NIPW field showing the concentrations of precipitable water

vapor that could potentially become rain, and our goal is to predict the reflectivity

field 1-hour in the future. The two fields are sampled at the same spatial and temporal

resolution (30 minute temporal resolution, 3 km spatial resolution over a 300×300 sq-

km domain) to give, at each sample time t, two 100×100 matrices, one for each field,

where each element in the matrix represents the intensity value of the corresponding

variable at a particular grid location on the domain. Let us denote the NIPW field and

the reflectivity field at a given time step t as X ipw
t and Xrefl

t ∈ R100×100, respectively.

In order to find the pattern between a history of reflectivity and NIPW fields up

to time t and the reflectivity field t + 2 time steps (1-hour) in the future, we need,
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in principle, to find the conditional probability distribution P (Xrefl
t+2 |X

refl
k , X ipw

k , k =

t − T, . . . , t), where T is the amount of past history used for the prediction. Rather

than attempting to develop a physics-based model for the conditional probability

distribution, as traditional nowcasting algorithms usually do, we will attempt to use

supervised machine to learn the distribution function.

4.2 Supervised Machine Learning

Supervised machine learning involves a labeled data set where each instance or

example is a pair (xi, yi) where the vector xi = (x1, x2, x3, ...xD) consists of reals

xj ∈ R (j = 1, . . . , D) or categorical values xj ∈ Xk (j = 1, . . . , D) and y can either

belong to a finite set c1, c2, c3, ...., cn as in case of classification or can take a real value

y ∈ R as in the case of a regression problem. If we thus have N labeled examples

of the form (xi, yi) where xi ∈ RD and yi ∈ R, i = 1, . . . , N we can write the input

matrix as X ∈ RN×D and the output as a column vector Y ∈ RN×1. From this labeled

data, supervised machine learning is a family of techniques for finding a functional

mapping f : x→ y.

In machine learning, the function f is obtained by adjusting a set of adaptable

parameters w, where the parameters are adjusted to minimize the discrepancy be-

tween the predicted value fi(x) and the associated truth value yi. For a regression

problems, this usually involves minimizing the mean squared error (MSE) given by

1/N
∑N

i=1(yi−f(xi; w))2. In practice, the labeled data set is divided into two subsets

– a training set used to learn the functional mapping f and a testing or validation

set used to evaluate the ability of the learned function to generalize to new examples

not seen during training.
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4.3 Ensemble Methods

Ensemble methods rely on the average prediction of many different models rather

than single model [17]. The different models can be thought of as a panel of experts

each with different knowledge about the data and the principle is that one can ob-

tain a better decision by combining the ensemble of decisions from the individual

experts.The philosophy behind ensemble methods is a desire to balance the so-called

bias/variance tradeoff. To explain, let the true mapping from x to y be f and our

machine learning approximation be f̂ . Given an arbitrary input output pair (x, y)

we want to understand the mean-squared prediction error,

E[(y − f̂(x))2] (4.1)

where the expectation is over the dataset Ω = {(xi, yi), i = 1, 2, . . .}. Through some

manipulation we can write the above as (c.f [34]),

E[(y − f̂(x))2] = Bias[f̂(x)]2 + V ariance[f̂(x)] (4.2)

where,

Bias[f̂(x)] = E[f̂(x− f(x)]

V ariance[f̂(x)] = E[f̂(x)2]− E[f̂(x)]2

A good result is a small mean-squared error. This implies we want a system that has

both small bias and small variance. We can get small bias by fitting the training data

very accurately, i.e., we get small bias when we ”overfit” the training data. On the

other hand, we get small variance when we generalize well to data points not seen

during training, which is generally not the case for a model that overfits its training
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data. This difficulty in getting a system that gives good training performance (has

low bias) and good generalization (has low variance) is the essence of the bias-variance

tradeoff. The power of ensemble methods is that it can be shown that if we train

many models f̂ on different randomly selected (with replacement) subsets of Ω such

that each model has low bias but high variance.(i.e., overfits its training set), then by

averaging the model outputs we can reduce the variance while retaining the individual

models’ low bias [34].

4.3.1 Random Forests

One of the more popular ensemble algorithms is the random forest algorithm [12].

Each model in a random forest is a decision tree otherwise known as a Classification

and Regression Tree (CART). Decision trees are ideal candidates for the individual

models in the random forest as they are able to capture non-linear patterns in the

data. Trees are also good candidates because they are ”interpretable” in the sense

that one can determine the importance of each feature in the input vector x as it

relates to the output of the tree.

Given a set of training examples (x, y), a decision tree learns by recursively finding

the optimal variable xd ∈ x to split (branch) on and optimal splitting threshold td

using a greedy heuristic that tries to maximize the training accuracy. In a geometrical

sense the decision tree partitions the D dimensional input space into smaller regions

such that each region contains the maximum number of instances that belong to a

single class as shown in Figure 4.1 (left). An example is thus classified by traversing

through the tree as shown by 4.1 (right).

Let us define pkm to be the proportion of data instances from the kth class that

are assigned to the mth region. In terms of these definitions, CART seeks the variable

xd and split threshold td that maximizes the so-called Genie index,
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CGI =
K∑
k=1

pkm(1− pkm) (4.3)

CART maximizes the Genie index criteria by exhaustive search over all variables and

Figure 4.1: Decision Tree. Left: variables and thresholds for two dimensional variable
x. Right: Representation of the decision tree corresponding to the split and thresholds
made by the figure on the left. Figure from [23].

all different possible threshold values. The search process continues until all terminal

nodes or leaves are pure1 or until a pre-determined maximum tree depth is reached. It

must be noted that the greater the maximum tree depth the more likely it is the model

will overfit the training data. Each decision tree is grown on a randomly bootstrapped

subset of the entire data set Ω. Moreover, each tree is further randomized in that

each one is grown using a random subset of the features from the input vector x.

This use of randomly selected features from randomly selected data sets results in a

”forest” of decorrelated trees. In this fashion an ensemble of low bias, high variance

models is obtained. The ensemble prediction of the random forest is obtained for the

1A leaf is said to be pure when all the data cases represented by that leaf are of the same class
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regression case by taking the average prediction of each of the individual models and

in the classification case by taking the average of the probabilities for each class (c.f

[34]), i.e,

fRF (x) =
1

B

B∑
i=1

Tb(x) (4.4)

for the regression case, where B is the number of decision trees and Tb(x) is the

prediction for the bth tree, and,

fRF (x) = arg max
c∈y

1

B

B∑
b=1

Pb(Y = c|X = x) (4.5)

for the classification case, where c is a category in y and Pb(Y = c|X = x) is the

probability of class c given the input x for tree b.

As mentioned, one of the key advantages of the random forest algorithm is its inter-

pretability through variable importance. Variable importance measures the relative

importance of each variable. This is done by measuring the prediction performance on

so-called OOB (Out Of Bag) samples. When the bth tree is being constructed, OOB

samples, which are samples separate from the bootstrapped samples used to train the

model, are used to measure its predictive performance at a particular split. Different

permutations of the variable split are tried and the performance is measured on the

OOB samples. The results are accumulated over all trees and the variables are ranked

with respect to their importance in determining the overall ensemble prediction.

4.3.2 Time complexity analysis of Random Forests

The random forest can be summarized as follows [23],

1. Initialize the number of trees B in the forest.

2. for b = 1 : B

(a) Draw a bootstrap sample Z of size N examples from the training set Ω
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(b) Grow a random forest tree Tb to the bootstraped data by recursively re-

peating the following steps

i. select m variables at random from D-dimensional input vector x (ide-

ally m =
√
D)

ii. pick the best variable split among the m variables based on the Genie

criteria

iii. split the node to two daughter nodes

(c) The classification is based on the majority votes from B trees.

To analyze the time complexity of the random forest algorithm as a whole, we find

the worst case time complexity for training the random forest and then for predicting

a data case. We reproduce the analysis from [34] which gives a rigorous derivation of

the best, average and worst case time complexities of the random forest algorithm.

As the random forest algorithm consists of an ensemble of decision trees, we begin

by analyzing the worst case time complexity of growing each tree. Given a data set

Ω with N labeled samples of the form (xi, yi) where |x| = D, the optimal split is

found by recursively searching each variable and splitting on each value to find the

impurity measure (Genie index). As a first step each variable D in x needs to be

sorted from N different values. Using the fastest sorting algorithm, quick sort, this

can be achieved with a worst case of O(Nlog(N)). With D different variables this

becomes O(DNlog(N)) and for the randomized trees where a subset m ≤ D variables

are searched, this becomes O(mNlog(N)). For growing M trees in the forest the worst

case complexity becomes O(MmN2log(N)).

For prediction, each data case must traverse through all M trees in the forest.

The worst case time complexity for N examples is thus O(MN).
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4.4 Convolutional Neural Networks

The Deep Convolutional Neural Network(CNN) was first introduced in the 1990s

[33] to classify hand written digits with near human level accuracy. Since then CNNs

have been used for many different tasks such as image and speech recognition. For

image recognition, CNNs have come to dominate the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC).2 Given its success in the field of computer vision,

CNNs have very recently started to surface in the solutions to precipitation nowcasting

problem. In [31] CNNs were used to predict the next reflectivity image from a set of

previous images sampled at 10 minute intervals. To exploit the temporal correlations

inherent in sequences of reflectivity images, [60] used a type of sequence-to-sequence

learning deep neural network called the Long Short-Term Memory (LSTM) network

for precipitation prediction. Our work in this thesis on one hand duplicates the above

in that we try to predict the next reflectivity image in a sequence of reflectivity im-

ages. The difference lies in that we base our prediction on two measured atmospheric

variables, one a sequence of reflectivity fields, the other a sequence of precipitable

water vapor fields.

4.4.1 Multi-Layered Perceptron

The CNN has its roots in the multi-layered perceptron, the classical artificial

neural network (ANN). An ANN generally has three layers – an input layer, a hidden

layer and an output layer. The input layer consists of the D dimensional input vector

x = (x1, x2, x3, ..xD). The hidden layer consists of some number of hidden units, each

of which generates an output according to,

zj = h(aj) = h(
D∑
i=0

w
(1)
ji xi + w

(1)
j0 ) (4.6)

2http://www.image-net.org/challenges/LSVRC/
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where wji is the ”weight” between input i and hidden node j and h is the so-called

”activation function”. In practice, h is usually one of three non-linear functions, the

sigmoid,

h(a) =
1

1− e−a
(4.7)

the hyperbolic tangent,

h(a) =
ea − e−a

ea + e−1
(4.8)

or the rectifier function,

h(a) = max(0, a) (4.9)

Similar to the hidden layer, the output layer is either the weighted sum of the outputs

of the hidden layer nodes or some function (sigmoid, hyperbolic tangent, or rectifier)

of the weighted sum of the outputs of the hidden layer nodes.

An ANN is trained by adjusting the hidden and output-layer weights to minimize

the mean-squared error (MSE) in case of regression problem,

MSE =
1

N

N∑
i=1

(ŷi − yi)2 (4.10)

or the cross-entropy in the case of classification problem,

L(w) =
1

N

N∑
i=1

C∑
k=c

yik log fc(xi) (4.11)

A revolution in the use of ANNs, including rainfall prediction[22], occurred in the

1990’s following the discovery of the back-propagation algorithm, an iterative gradient

descent algorithm based on the chain rule of differentiation, for adjusting the ANN

weights to minimize the objective function over a training set [44].

4.4.2 Convolutional Neural Networks

Since it was proven in the 1980’s that an ANN with a single hidden layer can,

in theory, represent any arbitrary function to an arbitrary degree of accuracy [39],
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research on neural networks with more than one hidden layer seemed unnecessary.

This was until the introduction of the CNN. Rather than viewing machine learning

as a function approximation problem, the CNN sought to mimic in some sense the

functioning of the human visual cortex. Here we discuss the properties of CNNs,

– local receptive fields, shared weights, and pooling – that differentiate CNNs from

ANNs and give them their power for problems in image recognition and prediction.

4.4.3 Convolution Layer

Unlike traditional ANNs where every input is connected to every hidden unit in

a layer, CNNs have ”sparse connectivity” in that only a local set of inputs termed as

”local receptive fields” is connected to each hidden unit. Figure 4.2 illustrates this

where (top) each unit in the hidden layer of the CNN is connected to three variables in

the input or its local receptive field, and (bottom) shows a fully connected ANN, where

each input unit is connected to all hidden units performing matrix multiplication. The

sparse (local) connectivity of the CNN reduces the the number of weights the network

has to learn, which in turn reduces the memory and computational burden, thereby

allowing for the construction of deeper networks by stacking multiple convolution

operations.

To better understand the operation of convolution over images consider in Figure

4.3 an N × N input image labeled the input neurons to a CNN. The output of the

convolution layer is labeled the first hidden layer in the figure. A neuron in the hidden

layer of a CNN is connected to a local region (5× 5 neurons) in the input called the

receptive field. This filter of size 5× 5 is slid across the image with a stride S (S = 1

in the figure). The same weights of the filters are used as the filter is slid across the

image with stride 1 connecting the various 5× 5 regions in the inputs to the different

neurons in the hidden layer, thus giving us the property of ”shared weights”. Shared

weights is derived from the property of ”translation invariance” of an image where
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a feature detected in one location of the image is considered as the same in another

location of the image. In Figure 4.3 the CNN layer has K = 1 filter. The number

of filters can be varied which would then increase the depth of the first hidden layer

where each neuron in each depth is connected to the same same receptive field through

a different set of filter weights there by learning to extract different features from the

input image.

The sliding can be thought of as a convolution operation with a 3D input image

tensor Vi,j,k– where i is the axis representing the different channels (red, green and

blue for images) or depth, and j, k represents the spatial location of the pixel intensity

in the image – is convolved with a 4D kernel tensor Ki,j,k,l which represents the weight

connecting an input unit at depth j to an output unit at depth i with an offset of

k, l. The convolution operation performed by a convolution layer can be summarized

by the following equation (c.f [8]),

Zi,j,k = c(K,V, s) =
∑
l,m,n

Vl,(j−1)×s+m,(k−1)×s+nKi,l,m,n (4.12)

where s is the so-called stride and Zi,j,k is the output neurons of the convolution layer.

This can be seen as a 2D convolution with the tensor K representing the filters, and

learning a CNN can be thought of as constructing different filters, each responding

to the presence of a different feature in the input image3. To deal with boundary

cases in convolution we can pad the inputs. Three types of padding strategies are

employed in practice. These are ’valid’ padding where no padding is added; ’same’

padding where padding is added to give the output the same shape as as the input;

and ’full’ padding such that the convolution operation visits every input unit once

(i.e. filter size - 1 zeros are added to each side of the input).

3Noting that the filters are not flipped when convolving across the image, the operation performed
by a CNN is more technically a cross-correlation than a convolution.
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Figure 4.2: Connections for an ANN (bottom) and a CNN (top). Whereas an ANN
is fully-connected, a CNN is sparsely(locally), in this case with a kernel width of 3.
Figure from [8]

Figure 4.3: Input and output of a convolution layer with 1 filter, a 5×5 receptive field
and a stride of 1. Image from http://neuralnetworksanddeeplearning.com/chap6.html

The number of output units or neurons Z are given by the following equations4,

4http://cs231n.github.io/convolutional-networks/
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W2 = (W1 − F + 2P )/S + 1

H2 = (H1 − F + 2P )/S + 1

D2 = K

where W2, H2, D2 is the volume (width, height and depth) of the output/hidden layer

and W1, H1, D1 is the volume (width, height and depth) of the input to a CNN layer

with K filters, a receptive field of F , stride by S and padded with P zeros on each

side of the image.

Multiple convolution layers can be stacked together where the output of one con-

volution layer is the input to an another convolution layer creating a deep network.

The output of a convolution layer can also be the input to a pooling layer as explained

in the next section.

4.4.4 Pooling Layer

It is common practice to add a pooling layer after a convolution layer. A pooling

layer is defined by an M×M receptive field and stride s. The pooling layer differs from

a convolution layer in that the receptive field has no weights but rather performs an

operation such as average, max, or square root of the sum of squares over the receptive

field.

Figure 4.4 below puts it all together. Adapted from a hand writing recognition

problem where the input consists of hand written digits digitized to a 28 × 28 pixel

resolution. A convolutional layer obtained by sliding three different 5 × 5 receptive

field windows over the input image – each with different weights and hence each

looking for different features. A pooling layer consisting of three pooling 12 × 12

maps is obtained by sliding 2× 2 windows over the different feature maps.
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The pooling layer is then connected to a fully connected layer (not pictured in the

figure) with ten units and a ”softmax” activation, giving a probability score for each

one of the 10 digits. Like ANNs, CNNs are trained using back-propagation, stochastic

gradient descent.

Figure 4.4: 1 convolution and 1 pooling layer. Image from
http://neuralnetworksanddeeplearning.com/chap6.html

4.4.5 Regularization and Dropout

A problem facing deep neural networks is overfitting. Two ways to overcome this

problem are – regularization and dropout. Regularization is a family of techniques

that includes early stopping to stop the training before overfitting occurs, or con-

straining the parameters of the network in various ways, e.g., by limiting the number

of hidden units or penalizing the weight vectors, to impair the network’s performance.

Dropout is a very recently developed technique [53] that is becoming the standard

for CNN’s because it greatly speeds the training process. At each stage of training,

dropout involves removing a given network node with probability p and training only

those nodes that remain. The ”dropped out” nodes are then reinserted with their
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original weights for the next stage of training and the process repeats. By avoid-

ing training all nodes on all training data, dropout decreases overfitting and speeds

training.

4.4.6 Analysis of number of parameters, operations and memory

Let us consider our input tensor of shape (8 × 33 × 33)5. We pass this through

a convolution layer with K = 16 filters, a receptive field of F = 5 and a stride of

S = 2 with ’full’ padding or P = 4 on each side. Using the equation from the Section

4.4.3 this produces an output tensor (hidden neurons) of shape 16× 19× 19 or 5776

hidden units/neurons. A receptive field of 5 means that each unit in the hidden layer

is connected with 5×5×8 = 200 weights and 1 bias term to the input layer for which

201 parameters per hidden unit. The total number of parameters the convolution

layer needs to learn would thus appear to be 5776 × 201 = 1, 160, 976. Recalling

the notion of parameter sharing, separate parameters are not used at each location.

Replication the K = 16 filters across the layer we thus obtain a number of parameters

equal to 16×5×5×8 = 3200 plus 16 bias terms for a total of 3,216. Contrast this to

a fully connected layer where each input is connected to each hidden unit, in which

case we would obtain 5776× 8712 = 50, 320, 512 parameters, which may not even fit

in memory, making implementing such a network infeasible if not impossible.

5As will be discussed, this will be the size of our ”tensors” we use for the precipitation nowcasting
problem
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter we apply the machine learning algorithms – random forest (RF)

ensemble algorithm and convolutional neural network (CNN) algorithm – discussed

in the previous chapter to the precipitation nowcasting problem. By comparing the

nowcasting performance of the two machine learning algorithms when trained using

only radar reflectivity fields and when trained using both radar reflectivity and NIPW

fields, we draw conclusions relative to our thesis that water vapor information in the

form of NIPW might be expected to improve the performance of a reflectivity-based

precipitation nowcaster. By comparing the two machine learning algorithms in terms

of problem representation, implementation, and performance, we draw conclusions

related to the suitability of each algorithm to the nowcasting problem. And by com-

paring the nowcasting performance of our algorithms against published results for

current state-of-the-art nowcast algorithms, we are able to draw conclusions regard-

ing potential for improvement.

5.1 Problem Representation

The success of machine learning algorithms generally depends on how the problem

is ”represented” to the algorithm. Representations are generally done manually based

on prior knowledge about the problem.

As described in previous chapters, our broad goal is to take a sequence reflectivity

images and a sequence of water vapor images (in the form of normalized integrated

precipitable water vapor, NIPW) recorded at spatial resolution of 3 km over a 300
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sq-km domain and a temporal resolution of 30 minutes and predict from them the

reflectivity image 1-hour in the future.

As a first simplification we will formulate the above problem as a classification

problem – raining or not raining – where we define rain at a pixel reflectivity value ≥

24 dBZ (corresponding to approximately 0.9 mm/hr of rainfall). Given the sequence

of reflectivity and water vapor images, Xrefl
ti , X ipw

ti , ti = t− T, . . . , t our goal is thus

to predict the binary image Yt+2 where element i, j is a 1 if the reflectivity at i, j is

predicted to exceed 24 dBZ and 0 otherwise. Here T is the amount of past history

of reflectivity and NIPW images that we use for the prediction. In what follows we

choose T = 4, or 2 hours of past images. This should be adequate to infer reflectivity

(storm) advection rates and rates of water vapor convergence.

As a second simplification we will not try to predict the entire 100 × 100 binary

output field Yt+2 at once, but rather we will only try to predict the value at a single

pixel. Then to obtain the 100× 100 output field, we separately predict the values for

each pixel. The idea is that where we would likely never have sufficient training data

to predict entire 100 × 100 output fields (there are simply too many permutations

of input patterns of reflectivity and NIPW to output patterns of binary rainfall), we

should have sufficient training data to learn the input patterns that lead to rain at a

single pixel.

Given that weather has limited spatial influence, i.e., the weather at a given pixel

location 1-hour from now is most strongly influenced by the weather that can reach

that pixel in 1 hour, we will only look at the evolving reflectivity and NIPW within

a 50 km radius of the pixel we are trying to predict. Since 50 km/hr far exceeds the

typical advection rate of storms in the DFW region, the weather in the 100 sq-km

region surrounding the pixel should be ample to see storms moving towards the pixel

from any direction. This reduces the size of the input from the full 100× 100 pixels
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that comprise the DFW domain to the 33 × 33 pixels surrounding the pixel under

consideration.

Finally, under the assumption that the relative flatness of the DFW region makes

it homogeneous in terms of how weather forms and evolves, we will only seek to

learn a single model mapping reflectivity and NIPW to binary rainfall. We will train

and validate the model on 500 points randomly selected from an 66× 66 pixel region

inscribed within the 100×100 domain (the smaller 66×66 region ensures a full 33×33

region around each pixel). We will test the resulting nowcast algorithm by applying

the same model to every pixel in the domain.

5.2 Feature Extraction

Classification is generally based on the identification of certain key features in the

input. For machine learning classifiers, these features can be manually or automati-

cally extracted/learned.

Four 33 × 33 fields of NIPW and four 33 × 33 fields of reflectivity from the last

two hours are the raw inputs to the machine learning algorithms. For the random

forest classifier we manually extract the following features from these raw inputs:

1. Average NIPW value in each NIPW frame (4 features): This gives a measure

for the amount of water vapor surrounding the pixel to be predicted.

2. Average reflectivity value in each reflectivity frame (4 features): This gives a

measure for rainfall rate (using reflectivity as a surrogate) surrounding the pixel

to be predicted.

3. Standard deviation of the NIPW values in each NIPW frame (4 features): This

gives a measure of the spread of water vapor surrounding the pixel to be pre-

dicted.
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4. Standard deviation of reflectivity values in each reflectivity frame (4 features):

This gives a measure of the spread of values about the mean – uniformly or

not uniformly distributed – of rainfall intensity surrounding the pixel to be

predicted.

5. Difference between successive NIPW averages (3 features): Gives information

about the rate of moisture convergence, which has been shown to play a role in

storm growth and decay [16].

6. Difference between successive reflectivity averages (3 features): Gives informa-

tion about the rate at which a storm is advecting into or out of the region

surrounding the pixel to be predicted.

7. Difference between alternating NIPW features (2 features): Since we predict 1

hour in advance leaving out the intermediate 30 minute prediction, these 1-hour

differences may be important.

8. Difference between alternating reflectivity features (2 features): Same as above.

The input to the random forest classifier is thus a vector of real numbers containing

the 26 features described above. Through these features, we have manually identified

moisture concentration and convergence as well as rainfall intensity, advection, growth

and decay. All of these are features that the physics of the problem (recall Chapter

2) have suggested are important to the onset and cessation of rainfall.

Regarding the CNN, deep learning architectures have been shown able to auto-

matically extract multiple layers of representation from raw inputs such as images or

text. For instance in image classification the first few layers of deep neural networks

extract features such as edges while deeper layers extracts more complex features

such as specific shapes. In the same way we would like to see if a CNN is able to

extract similar features in the context of rainfall prediction such as storm advection
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rate and growth and decay. To test this we provide the CNN an input tensor with

shape 8× 33× 33 consisting of the 4 NIPW frames and 4 reflectivity frames from the

last two hours.

Note that not only do the features provided to the random forest explicitly capture

the temporal aspects related to storm advection, growth, and decay, they do so in a

way that does not depend on storm direction. This is not the case for the CNN. By

making nothing explicit, the CNN will have to learn not only the spatial features in the

input frames that predict rain, they will also have to learn, if possible, the predictive

value of changes in features over time. Regarding storm direction, we believe that

the translational invariance property of the CNN would allow it to recognize patterns

leading to rain regardless of the direction they are coming from.

5.3 Training and Validation

The generalization performance of a prediction system is important because it

must be able to make a good prediction given any kind of event and not only perform

well on specific types of events. This is particularly important in the meteorological

domain where storms can be convective or stratiform, can come from any direction,

and can travel at a wide range of speeds. To evaluate our prediction systems, we use

the K-fold cross validation technique. This technique splits the dataset to K folds or

sub-datasets. A model is trained on K - 1 folds and validated on the Kth fold. The

process is repeated until all K folds have been validated. The prediction score for the

system is then taken as the average of the performance over the K folds.

In our problem we divide our dataset into 9 folds, where each fold is data from

a different month. The 9 months of data were obtained as follows: 4 months from

2014 (May - August), 2 months from 2015 (May, June) and 3 months from 2016

(May - July). For each month we use the reflectivity and NIPW data from the

weather anomaly days listed earlier in Table 3.1. In this thesis however we only use
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the 4 months from 2014 as our validation set to evaluate the random forest and the

convolutional neural network algorithms as each training and validation block takes

a long time to train explained as follows.

Our data set consists of 49 weather anomaly days selectively chosen from Table

3.11. NIPW and reflectivity fields are sampled at 30 minute intervals each day thus

obtaining 48 (some time steps are dropped because we don’t have 2 hours worth of

prior data at the beginning of the day) examples per day. We thus obtain a total of

2361 time steps to train on for each pixel point. Randomly sampling 500 points from

our domain gives a total of 1,180,500 training examples.

For the random forest experiments where we extract the 26 features as our training

data obtaining a input matrix size of 1, 180, 500 × 26 and an output column vector

of size 1, 180, 500 × 1. If we use double precision floating point to represent the two

matrices, this occupies a total of 1180500× 27× 64 = 2, 039, 904, 000 bits or 250MB.

On the other hand for the CNN experiments where the entire frames are inputs

to the algorithm we have 1180500 × 8 × 33 × 33 × 64 = 658, 209, 024, 000 bits or 82

GB2. The data is read from disk in batches and processed by a Tesla K-80 GPU. The

workhorse of deep learning techniques, the batch stochastic gradient descent method

allows us to evaluate the gradient in batches and sum them together in the end [39].

5.4 Measuring Nowcaster Performance

The output of our prediction systems are real numbers between 0 and 1. These

can be interpreted as probability scores, or beliefs, that it is raining or not raining at

a selected pixel location. The actual rain, no-rain decision is determined by a decision

1Some weather anomaly days were dropped due to bad NIPW fields and some were relatively
small storms

2Theano uses single precision floating point thus the tensors are converter to 32 bit floating point
when training
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Table 5.1: Contingency Matrix

Predicted
1

Predicted
0

Actual
1

Tp Fn

Actual
0

Fp Tn

threshold - rain if the output exceeds the decision threshold, no-rain otherwise (the

probability decision threshold is set at 0.5 but can be varied to determine rain or no

rain).

The contingency matrix shown in Table 5.1 defines the quantities, Tp or the num-

ber of cases predicted correctly(hits), Fn the number of false negatives (misses), Fp the

number of false alarms and Tn the number of negative cases predicted correctly. The

metric most commonly used to evaluate nowcasting algorithms is the critical success

index (CSI = Tp

Tp+Fn+Fp
) otherwise known as the threat score [43]. CSI ranges from

0 to 1, with a value of 1 indicating a perfect nowcast. Compared to measures like

Probability of Detection (POD = Tp

Tp+Fn
) and False Alarm Rate (FAR = FP

FP+Tp
), CSI

takes into account both false alarms and missed events, making it a more balanced

score.

For our machine learning nowcaster we calculate the CSI on the predictions made

on 500 randomly chosen points for the storm dates from validation set.

5.5 Random Forest Experiments

For our random forest experiments we used the random forest implementation in

the Scikit-learn Python API3 trained on a server with 32 cores.

3http://scikit-learn.org/stable/
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The first step in learning a random forest nowcast system is to determine the

hyper-parameters of the random forest. These are the maximum depth that each

tree can be grown, the total number of trees in the forest and, the maximum number

of variables to sample at each split. To choose the hyper-parameters, we use a grid

search approach involving arbitrarily selecting set of values for each hyper-parameter

and choosing the values hat obtain highest average CSI score on the 4 validation

sets. For the total number of trees we choose from 400, 500, and 600, for maximum

tree depth we choose 6, 9 and 12. For the maximum number of variables we sample

randomly from log(D) variables or D variables.

Figure 5.1 shows the CSI scores averaged over the four training and validation

blocks evaluated for both the NIPW + reflectivity (I + R) and reflectivity(R) only

experiments using the training samples and validation samples. The bottom row of

the figure shows the training and validation CSI scores for the random forest which

samples all D variables and the top row for log(D) variables. From both plots on the

left representing the training CSI scores as a function of max tree depth, we see that

CSI scores increase with increasing tree depth. This is a case of overfitting and is

expected as deeper trees give better fit. From evaluating the training CSI scores the

I + R model obtains a better CSI than the R model for almost all max depths. We

thus choose the hyper-parameters which yield the best CSI score on the validation

set. This is observed for the random forest which samples all D variables at each

split, uses a max tree depth of 6 and 600 trees in the forest for both the I + R and

the R models.

5.6 Convolutional Neural Network Experiments

Unlike the random forests where features are manually extracted, the inputs to the

CNN are the raw NIPW and reflectivity images represented as 8 × 33 × 33 tensors.

Using the various hyper-parameters of the CNN described in the Chapter 4.4, we
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Figure 5.1: CSI scores for RF1 and RF2 evaluated on the training set and the val-
idation set. Top left: average CSI scores evaluated on training set using RF2. Top
right: average CSI scores evaluated on validation set using RF2. Bottom left: average
CSI scores evaluated on training set using RF1. Bottom right: average CSI scores
evaluated on validation set using RF1

explore 2 CNN architectures each for the I + R model and the R model. Figure 5.2

shows the schematic of the single layer convolutional neural network CNN1 and a two

layer convolutional neural network CNN2 along with the hyper-parameters for each

layer. From the figure we see that the connections from the reflectivity fields and

the NIPW fields to the convolution layer are separate and features learnt from the

individual convolution layer(s) are later concatenated before passed through a fully

connected (FC) layer with a dropout rate of 20%. This is done in the concatenation

layer where the neurons of each of the incoming layers are stretched out as vectors

from tensors and joined together to form a large vector. The output of the FC layer
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is passed through a softmax layer with two units which outputs a probability score

for rain or no-rain at the center of the 33× 33 one hour into the future.

The motivation for connecting the two types of inputs (i.e. reflectivity and NIPW

images) separately this way is we can use different convolution layer parameters (i.e.

receptive field, stride and number of filters) for each input type, based on the spatial

sampling and the way each input evolves over time. However in this thesis we use the

same convolution parameters for both types of inputs shown in Figure 5.2. This type

of connections can be generalized for any number of weather variables representing

the weather at a particular location. The variables can also be of different spatial

resolution making a single connection to the convolution layer infeasible.

Both CNN1 and CNN2 are trained using the batch stochastic gradient descent

technique with a batch size of 250. Since all the training data does not fit in memory

each point is read from disk separately. Before training the averages of each feature

(i.e. each of the 8 × 33 × 33) is computed over all storm dates for that point and is

subtracted from the respective feature (i.e. we center each feature around 0 which

should help the optimizer to find the global minima faster). The networks are trained

using the Nestrov momentum [55] with a training rate of 0.0001 and a momentum of

0.9 for 200 epochs.

Our implementation of the CNN is using the Python Theano library4. The CNN

is trained using a Tesla K-80 GPU instance available to us from Massachusetts Green

High Performance Computing Cluster (MGHPCC)5.

4http://deeplearning.net/software/theano/

5http://www.mghpcc.org/
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Figure 5.2: CNN 1 and 2 architectures, where F is the receptive field size, S is the
stride, K is the number of filters and P is padding strategy. CNN1 uses only the first
convolution layer followed by the concatenation layer. CNN2 uses both convolution
layers followed by the concatenation layer

5.7 Results

Both RF and CNN are trained and evaluated when IPW and reflectivity (I + R)

are inputs and when reflectivity only (R) are inputs to the algorithm.

5.7.1 Random Forest Results

Tables 5.2 - 5.5 shows the POD, FAR and CSI for the 4 validation months and

Table 5.6 summarizes the averages of these metrics taken over the 4 validation months

evaluated over the randomly chosen 500 points. The RF using the R model seems to

perform as well or better for the months of May, June and July but in the month of

August the I + R model seems to perform better based on the CSI scores. The RF

I + R obtains an average CSI of 0.33 compared with an average CSI of 0.32 for the
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R model. This small difference in the CSI scores is not enough to conclude that the

RF has learnt the growth and decay information in the I + R model which allows the

model to make a better prediction.

5.7.2 Random Forest Feature Importance

From Section 1.1 and chapter 2 we have seen that water vapor should predict

the onset of rainfall. We thus based our conjecture that water vapor information

must help with nowcasting precipitation. To see how much water vapor helped the

I + R RF model we evaluate the feature importance of the I + R and R models of

the RF. Figure 5.3 shows the variable importance of the I + R model. From this

we see that the average and standard deviation of reflectivity and the rate of average

reflectivity change are dominant variables in making a prediction. It is also interesting

to note that there is a feeble contributions from the NIPW averages which could have

contribute to the slight performance gain of the I + R model. However as a whole

the top three variables are ones derived from the reflectivity fields and the RF seems

to have ignored the NIPW data. From Figure 5.4 we again see the same top three

variables as the I + R model for the R model.

5.7.3 Convolutional Neural Network Results

In the CNN family of models the inputs to the algorithm are the raw tensors of

NIPW and reflectivity fields and no information about advection rate and water vapor

convergence are explicitly given to the model. Our hope is that the convolution layer

will learn the feature representation to make a good prediction. We use the same

training and validation set strategy as the random forest experiments.

Figure 5.5 shows the training and validation loss (cross entropy objective) for

CNN1 measured at each epoch for 200 epochs for both I + R and R models. From

evaluating the training and validation loss on the 4 folds we see that the training loss

converges converges to the same value for both I + R and R models. Although the
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Figure 5.3: Relative variable importance for trees grown by sampling all features at
each split for the I + R model

training loss seems to have converged quite well, we see that the validation loss has not

converged quite as well for both models (I + R, R). This is likely because our training

set is too small to expose the CNN to the huge number of different input pattens that

the NIPW and reflectivity fields can take and there by attaining a good generalization

performance on the validation set is difficult. This is especially true for the month

of June where we see a general trend that the validation loss is decreasing but there

are still large fluctuations in the validation loss. However we can also see that the R
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Figure 5.4: Relative variable importance for trees grown by sampling all features at
each split for the R model

model for June also finds it difficult to obtain a good generalization performance on

the validation set. Clear from the May, June and August validation sets, the I + R

model performs better than the R model. However from the validation loss in July

2014 we see that R model converges to a lower value than the I + R model. This

may be due to the stratiform storm event encountered during the month of July.

We determine the epoch at which the model attains the best CSI score on each of

the validation sets and use the network parameters at this epoch to make predictions
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on storms from the validation set. The results for the 4 validation months are shown

in Tables 5.2 - 5.5 along with the averages in Table 5.6. Comparing the performance

metrics of the I + R and R models of the CNN1, we see that the CSI is higher for I

+ R model for the months May and June and the inverse is true for the months of

July and August. On average however the CSI of the I + R and R models are the

same. From Table 5.6 it is also clear that the average CSI of CNN1 with a score of

0.38 is much higher than that of the RF1 model.

Figure 5.6 shows the training and validation loss of the CNN2 model evaluated on

the 4 cross validation sets. We see that by increasing the capacity of the model i.e.

by allowing more layers in the model to capture higher-order features from the data

we are able to obtain a lower training loss than the CNN1 model and the validation

loss seems to have stabilized better compared to the CNN1 model. This suggests

that CNN2 has learnt a better feature representation of the storm advection rate and

water vapor convergence that it can now generalize better. The validation losses for

the month of May and August are marginally lower for the I + R model compared

to the R model and the inverse is true for the months of June and July.

We determine the epoch where we obtain the best CSI score on the validation set

for each model and measure the nowcasting performance made by the network using

parameters at this epoch. The nowcasting metrics evaluated on the 4 validation sets

for CNN2 are summarized in Tables 5.2 - 5.5 and the summaries in Table 5.6. From

Table 5.5 we see the largest difference in CSI scores between the I + R and R model

using the CNN2 architecture with CSI score of 0.38 and 0.35 respectively. From Table

5.6 we see that CNN2 achieves the best CSI overall from the I + R model with a

value of 0.39.
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Figure 5.5: Training and validation loss for the 4 cross validation blocks using I +
R and R models. Top-left: May 2014 Top-right: June 2014 Bottom-left: July 2014
Bottom-right: August 2014

5.7.4 Evaluating Nowcasting Performance on Individual Storm Cases

Tables 5.7 and 5.8 show the performance metrics of the CNN1 and CNN2 evaluated

on individual storms for all points in our prediction domain. The storm dates column

represents the UTC day in which the nowcasting algorithm started prediction and

was run through the number of days represented in the table. All storms in May

2014 are predicted better by the I + R model than the R model. Figure 5.8 shows

the inputs and predictions made by CNN2 I + R and R models from 17:30 - 20:30

UTC on May 12th. From Table 5.8 we see that the I + R scores a higher CSI of 0.54

compared to the R model with a CSI of 0.50. It is also clear from the Figure where

we see the water vapor convergence in the North-West of the prediction domain from

17:30 - 19:00 in the inputs results is a better prediction at by the I + R model at

20:00. From this figure we can see that the NIPW fields are smooth and clearly show
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Figure 5.6: Training and validation loss for the 4 cross validation blocks using IPW +
reflectivity variables and reflectivity variables only trained on the 2CNN model (top-
left)May -2014 (top-right) June 2014 (bottom-left) July 2014 (bottom-right) August
2014

the water vapor convergence that allow the I + R model to perform better. However

this is not always the case.

Figure 5.9 shows the inputs and predictions made by the CNN2 I + R and R

models for a storm on June 9th 2014 from 12:30 - 15:00 UTC. The prediction made

at 14:30 and 15:00 seem to be discontinuous in that there are holes in the predictions

themselves. This is due to the fact that the NIPW fields are noisy where there are

large fluctuations in IPW seen from individual stations compared to the previous case

and a strong water vapor convergence is not present like the one seen earlier. From

Table 5.8 the R model performs better than the I + R model with CSI scores of 0.46

and 0.38 respectively. From this figure we can also generally see that the pattern of

water vapor convergence followed by rainfall is not followed like the May 12th case.

We thus note that for days where the 44 stations measure accurate IPW values,

the I + R model tends to perform better than the R model. One of the reasons the

72



R model performs better than the I + R model contrary to our conjecture is that the

IPW values measured by the stations add more noise than signal and degrade system

performance.

Table 5.2: Performance metrics of the best models validated for storms during May
2014

CNN1 CNN2 RF
I + R R I + R R I + R R

POD 0.57 0.55 0.53 0.54 0.44 0.45
FAR 0.35 0.36 0.33 0.36 0.32 0.33
CSI 0.43 0.42 0.42 0.41 0.37 0.37

Table 5.3: Performance metrics of the best models validated for storms during June
2014

CNN1 CNN2 RF
I + R R I + R R I + R R

POD 0.58 0.55 0.53 0.53 0.53 0.56
FAR 0.40 0.41 0.41 0.41 0.41 0.42
CSI 0.42 0.40 0.39 0.39 0.38 0.40

Table 5.4: Performance metrics of the best models validated for storms during July
2014

CNN1 CNN2 RF
I + R R I + R R I + R R

POD 0.43 0.44 0.46 0.48 0.34 0.32
FAR 0.42 0.36 0.38 0.40 0.31 0.27
CSI 0.33 0.35 0.36 0.36 0.29 0.29

5.7.5 Comparison With State-Of-The-Art Nowcasting Algorithms

Current state-of-the are nowcasting systems such as Conv-LSTM [60] and ROVER

[14] predict a sequence of reflectivity frames for the next two hours at a 10 minute

resolution. The reflectivity fields predicted are also the intensity fields and not the
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Table 5.5: Performance metrics of the best models validated for storms during August
2014

CNN1 CNN2 RF
I + R R I + R R I + R R

POD 0.46 0.47 0.54 0.46 0.30 0.25
FAR 0.42 0.39 0.43 0.41 0.30 0.28
CSI 0.34 0.35 0.38 0.35 0.26 0.23

Table 5.6: Average performance metrics

CNN1 CNN2 RF
I + R R I + R R I + R R

POD 0.51 0.50 0.51 0.50 0.40 0.40
FAR 0.40 0.38 0.39 0.39 0.34 0.33
CSI 0.38 0.38 0.39 0.38 0.33 0.32

binary fields like the predictions made in this thesis. CSI values for these two algo-

rithms were determined by evaluating their ability to predict that rainfall intensity

would be above or below 0.5 mm/hr (contrast this to our algorithm, which predicts

if rainfall intensities will be above or below 0.9 mm/hr). The CSI scores are provided

for Conv-LSTM and ROVER in [60].

Figure 5.7 shows the nowcasting performance curve. From this curve we see that

our best model CNN2 with an average CSI score of 0.39 predicting 0.9mm/hr rainfall

is not far from ROVER with a CSI of 0.44 and Conv-LSTM with a CSI of 0.49.

We also note that predicting a higher rainfall rate is tougher than predicting a lower

rainfall rate because there are more number of cases of the lower rainfall rate. We

can thus conclude that CNN2 is on par with the 1 hour ahead predictions made by

ROVER.
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Figure 5.7: Performance curves of our CNN1 and CNN2 model evaluated at a predic-
tion made for 0.9 mm/hr rainfall compared with Conv-LSTM and ROVER prediction
made at 0.5mm/hr rainfall for a 1 hour nowcast. The solid contour lines represent
CSI values
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Table 5.7: CNN1 performance metrics for individual storms. The storm date is
recorded in UTC and performance metrics are measured for a number of days for all
points. As seen, the algorithm is very good on some days, very poor on others. The
general thing we notice is the poor days correspond to days with a lot of ”bad” NIPW
data.

Storm
dates

number
of days

I + R R
POD FAR CSI POD FAR CSI

05/08/14 2 0.30 0.41 0.25 0.20 0.48 0.17
05/12/14 2 0.59 0.21 0.51 0.52 0.23 0.45
05/24/14 3 0.34 0.29 0.30 0.32 0.32 0.28
06/09/14 1 0.42 0.29 0.36 0.56 0.36 0.42
06/13/14 1 0.25 0.43 0.21 0.30 0.53 0.22
06/23/14 1 0.27 0.60 0.19 0.24 0.61 0.17
07/03/14 1 0.39 0.14 0.36 0.43 0.17 0.39
07/14/14 4 0.34 0.29 0.30 0.34 0.26 0.30
07/28/14 4 0.25 0.40 0.21 0.18 0.35 0.16
08/11/14 1 0.24 0.49 0.20 0.28 0.35 0.24
08/16/14 4 0.35 0.43 0.28 0.25 0.34 0.22
08/29/14 1 0.56 0.35 0.43 0.62 0.37 0.45

Table 5.8: CNN2 performance metrics for individual storms. The storm start date is
recorded in UTC and measured for a number of days for all points.

Storm
dates

number
of days

I + R R
POD FAR CSI POD FAR CSI

05/08/14 2 0.40 0.49 0.29 0.24 0.48 0.20
05/12/14 2 0.66 0.25 0.54 0.59 0.23 0.50
05/24/14 3 0.44 0.36 0.35 0.35 0.36 0.29
06/09/14 1 0.47 0.35 0.38 0.60 0.35 0.46
06/13/14 1 0.30 0.48 0.24 0.41 0.54 0.28
06/23/14 1 0.20 0.66 0.15 0.32 0.56 0.23
07/03/14 1 0.42 0.15 0.39 0.54 0.27 0.45
07/14/14 4 0.44 0.37 0.35 0.42 0.31 0.35
07/28/14 4 0.28 0.43 0.24 0.28 0.42 0.23
08/11/14 1 0.34 0.40 0.28 0.27 0.34 0.24
08/16/14 4 0.33 0.39 0.27 0.21 0.33 0.19
08/29/14 1 0.63 0.35 0.47 0.56 0.32 0.44
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Figure 5.8: Comparison of I + R and R CNN2 models for storm on May 12th UTC
where the I + R model did better than the R model. We can see clear water vapor
convergence starting at 17:30 to 19:00 in the North-West of the prediction domain
which eventually leads to a better prediction at 20:00 by the I + R model compared
with the R model. Blue = hits, green = misses, red = false alarms.
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Figure 5.9: Comparison of I + R and R CNN2 models for storm on June 9th UTC
where the R model did better than the I + R model. Large fluctuations in the
IPW values viewed at each station creates holes in the NIPW maps which leads to
discontinuous predictions made by the I + R model seen at 14:00 and 14:30 UTC by
the holes in the prediction. This is due to the noise added by the NIPW fields to the
I + R model which degrades the prediction. Blue = hits, green = misses, red = false
alarms.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE WORK

This thesis looked at the 1-hour ahead precipitation nowcasting problem. This is

a difficult problem for nowcasting algorithms based on the extrapolation of weather

radar data because weather radars can only detect where it is actively raining and

cannot predict the atmospheric variables that predict rain-cell formation, growth,

and decay. As a result, the forecast skill of such algorithms quickly degrades after a

few 10 minutes. A 1-hour nowcast is also difficult for nowcasting algorithms based on

numerical weather prediction, largely due to the lack of input data at the spatial reso-

lution needed to achieve the high-resolutions expected from precipitation nowcasting

algorithms.

Different from traditional extrapolation and numerical weather prediction based

techniques, in this thesis we adopted a machine learning approach. As inputs to

our machine learning algorithm, we used histories of weather radar reflectivity and

normalized integrated precipitable atmospheric water vapor (NIPW) fields. Radar

reflectivity tells where it is currently raining. Sequences of radar reflectivity images

give indications of advection rate and direction. NIPW fields, which we obtain by

interpolating point NIPW measurements generated using the GPS-Meteorology tech-

nique from a network of GPS and ASOS (weather stations), gives the location and

concentration of the atmospheric water vapor that might become rain. Sequences of

NIPW fields give the flow of water vapor as well as the rate at which water vapor

is concentrating. Since water must first exist in the atmosphere as vapor before it

79



becomes rain, our thesis was that the combination of NIPW and reflectivity could on

one hand give the same high-resolution prediction as reflectivity extrapolation now-

casters, while extending its forecast horizon by providing the water vapor information

indicative of storm initiation, growth, and decay.

For our domain, we used the 300 sq-km region centered on the Dallas Fort Worth

(DFW) KFWS NEXRAD radar. Our reflectivity data came from the KFWS archives.

Our NIPW data was generated from a local network of 44 GPS CORS stations and

ASOS weather stations using the GPS-Met technique. The reflectivity and NIPW

data was gridded onto the 300 sq-km domain at a spatial resolution of 3 km and

temporal resolution of 30 minutes. Our data set, which covered the years 2014-

2016 contained a number of severe convective rainfall events as well as a number of

stratiform rainfall events.

6.1 Summary of Results

Two machine learning techniques were explored in this thesis, the Random Forest

(RF) technique and the Convolutional Neural Network (CNN) technique. The RF

technique was chosen as a baseline as it has been shown to work well on a number of

other weather forecasting problems, e.g., aviation turbulence forecasting. The CNN

technique was chosen, not only because it represents the current cutting edge machine

learning technique, but also because it is explicitly designed for learning relationships

in image based data.

For the RF the input consisted of a hand tailored vector of 26 features related

to reflectivity and NIPW intensity, spatial variation, and rate of change. For the

CNN the input consisted of the reflectivity and NIPW fields observed over the past

2 hours. The learning goal in each case was to predict rain vs. no rain at each grid

point in the DFW domain. Thus, whereas the RF was explicitly given the variables
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that seem important in predicting precipitation, the CNN was expected to learn both

the temporal and spatial relationships between reflectivity, NIPW and rain.

To test the thesis that water vapor information can improve 1-hour precipitation

nowcasts, we conducted what might be referred to as ”data denial” studies. In these

studies we trained and tested our machine learning algorithms first using reflectivity

alone (R) and then using both NIPW and reflectivity (I + R).

The best random forest model with reflectivity alone gives an average CSI score

of 0.32 and the NIPW and reflectivity gives an average CSI score of 0.33. The best

convolutional neural network CNN2 gives an average CSI of 0.38 for the reflectivity

only model and an average CSI of 0.39 for the reflectivity and NIPW model.

From this we are unable to conclude that NIPW improves nowcaster performance.

From our experiments relating the performance improvement due to NIPW and the

quality of the NIPW fields, we believe that our inconclusive results may be a result

of poor NIPW data quality.

As for machine learning techniques, the deep learning CNN technique outper-

formed the RF technique. This was expected, as the deep learning CNN techniques

are designed explicitly to extract predictive features from image-based data. Also

expected was that training a CNN would be much more complicated than training

a RF. The RF learns on a 26 dimensional feature vector which takes up 250MB of

space and can be trained using a 32 core machine in 30 minutes. The data set for the

CNN however occupies 80GB of space and takes 12 hours to train using the powerful

state-of-the-art Tesla k-80 GPU.

Finally, comparing the CSI scores of our CNN model with state-of-the-art now-

casters from the literature indicates that we are on par with the best 1-hour ahead

nowcasters such as ROVER.
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6.2 Summary of Contributions

A significant portion of our work is highly experimental in that we developed a

software system which ingests GPS derived Integrated Precipitable Water vapor and

radar reflectivity data to nowcast precipitation in the DFW area 1 hour into the fu-

ture. The software system was built to answer the question if realtime water vapor

data from a network of GPS stations can provide additional information to improve

radar reflectivity based nowcast algorithms. We showed that there is a minor perfor-

mance benefit from our ”data denial” experiments when NIPW is added as input to

the machine learning based nowcaster. We also pointed out that improvements can

be made to the water vapor and reflectivity based nowcast algorithm by improving

on the quality of IPW estimates alone. The following summarizes the contributions

of thesis.

1. A hardware/software design for a low-cost GPS-Met station capable of near-

real-time IPW estimates and use in a high density GPS network. This work is

documented in the publication [1].

2. Deployment of two low-cost GPS-Met stations in the DFW metroplex that

include high-resolution barometers for the DFW Weather Forecast Office and

other researchers to use for IPW and fine resolution barometric pressure analysis

during events such the passing of nearby tornados and other weather anomalies.

3. Python based suite of tools for near-real-time estimates of IPW fields from

the network of GPS-receivers and NWS ASOS weather stations in the DFW

region. This set of tools is capable of automatically downloading the necessary

GPS and ASOS data from on-line databases, putting the data in appropriate

RINEX formats and directories, executing GAMIT for IPW estimation, and

then calling a multiquadric interpolation algorithm to map the results to a

field.
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4. An improved understanding of the relationships between IPW and precipitation,

including the ability to make movies to show visually the joint spatial-temporal

evolution of IPW and weather radar reflectivity.

5. Application and analysis of random forest and convolution neural networks

to the precipitation nowcasting problem using multiple weather variables (i.e.

water vapor and radar reflectivity).

6. Development of Python-based tools to analyze and conduct machine-learning

experiments with spatial-temporal fields of weather data that others will be able

to use for future weather forecasting and analysis studies.

7. Development, analysis, and comparison of different machine learning approaches

for precipitation nowcasting from spatial-temporal sequences of normalized IPW

and weather radar reflectivity, including random forests and convolutional neu-

ral networks.

8. Develop and benchmarking a dataset of NIPW and reflectivity fields from sev-

eral storms in the DFW area from 2014-2016.

9. We open-source our code which provides a modular framework to try different

things such as different models etc. Since the bulk of the work went into the

preprocessing future researchers can concentrate on building and evaluating

different models. The code can be found in my github repository1. All of our

results are reproducible with code and instructions provided in this repository.

10. Experimenting with a novel framework of the CNN for nowcasting applications.

Our contribution is the idea and results obtained by using separate convolutional

1https://github.com/adityanagara/deep nowcaster
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for the two weather variables and concatenating the features learnt by these

layers before passing them to the fully connected layer.

6.3 Recommendations for Future Work

We took a systems approach in building the nowcasting algorithm, where the entire

nowcasting system was broken down into various subsystems. These subsystems can

be improved independently to increase the performance of the systems as a whole. In

this section we enumerate on the improvements that can be made to the individual

subsystems.

6.3.1 Estimating IPW from GAMIT

Our results that IPW should improve precipitation nowcasting were largely incon-

clusive. We feel this is because of poor quality IPW data and that with better quality

IPW data our results would have been different. This improvement can be made in

GAMIT software package to generate the IPW values. To infer the water vapor from

equation 2.8 GAMIT first needs to compute the ZTD from raw GPS pseudo-ranges.

The ZTD is either computed as a constant for each station per session or is computed

as a piece-wise linear function over a session [26]. The ZTD parameters computed for

this thesis is for every 2 hours. The ZHD are then estimated from the pressure obser-

vations every 30 minutes. To get the water vapor observations as a true function of

the GPS signal delays, we can estimate the ZTD values themselves every 30 minutes

or even every 5 minutes. In GAMIT this can be done by increasing the ”Number

Zen” parameter in the tables/sestbl. session file which is currently set to a value of

25. Obtaining an estimate of ZTD at a higher resolution comes at the expense of

additional computational cost.

Strong a-priori station coordinates is key to better estimates of IPW. Since we

processed 3 years worth of data for the 44 GPS stations in DFW, we can compute
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a stronger a-priori station coordinates for each station by averaging the location

estimate from the three years. This would increase the accuracy of the IPW estimate

at each station as a result of more precise station coordinates. There is a simple script

in GAMIT which would allow us to estimate the position from all the GAMIT files

produced from the three years.

GAMIT outputs the value of IPW at a given sampling interval along with the

uncertainty in that measurement. The uncertainty or standard deviation usually

ranges between the values of 0.05 mm to 2.0 mm. This uncertainty can be used as

a criteria to determine the bad values of IPW which abruptly increase or decrease

causing noise in the data set.

6.3.2 IPW Normalization

The normalization technique we tried only accounted for height and seasonal vari-

ation. Other normalization can take into account temperature, which we have seen

affects the saturation point of IPW in the atmosphere. Other techniques for normal-

izations such as by pressure can also be explored as well such as the CAMR proposed

by [40].

Normalization techniques using seasonal mean and standard deviations may yield

better results, rather than monthly means and standard deviations as in this thesis.

The seasonal means are now available for the storm seasons from 3 years (2014 -

2016). Normalizing by the seasonal mean and standard deviation can improve the

statistical efficiency, where the NIPW representing all storm dates are varying at the

same scale.

6.3.3 Interpolation techniques

In this thesis we used an interpolation technique to bring the point measurements

of IPW to the same spatial sampling interval of the reflectivity fields. Specifically

we used the Multiquadric interpolation technique which is a deterministic approach.
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Several other stochastic based approach such as the Kringing interpolation can be

used which rely on historical data at each point to get a better interpolation. There

has been a recent study of evaluating various interpolation technique to build fields

from point IPW estimates [54]. The aim of the study was to determine a good

interpolation technique to use for an IPW based nowcasting system.

6.3.4 Nowcasting algorithm formulation

There are many ways in which the problem formulation could be changed to

improve the performance of the nowcasts. As a first step one could predict a window

of pixels similar to [31] rather than a single pixel point. Another technique to increase

the complexity of the predictions is to predict a sequence of reflectivity values as

done by most of the precipitation nowcasting algorithms in literature. In the machine

learning framework this is known as the ”structured prediction” formulation where the

structure in the output sequence is exploited by the model to make better predictions.

This approach was taken by the Conv-LSTM nowcasting algorithm[60].

6.3.5 Building a Larger Dataset

To explore more complex models would require more data. This can easily be

achieved by increasing the size of the domain or predicting the reflectivity at a finer

temporal resolution. Finer temporal resolution of IPW can be obtained by methods

proposed in Section 6.3.1. Increasing the domain may require more complex modi-

fications such as incorporating reflectivity data from multiple radars to measure the

rainfall in a larger domain.
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APPENDIX

DFW PRECIPITABLE WATER VAPOR, REFLECTIVITY
NETWORK

This appendix gives the locations of the sensor assets used for the studies in this

thesis.

Weather radar reflectivity data came from the KFWS WSR-88D weather radar

located in Fort-Worth, TX (32.569 Deg Lat, -97.299 Deg Lon). This radar defined

the center point of our 300 km by 300 km region of study. The table in Figure A.1

gives the locations of the GPS stations used along with the location of the closest

ASOS weather station from which the met variables needed for IPW estimation were

obtained. Table A.1 gives the location of the long baseline stations used for the double

differencing processes.

Table A.1: Long baseline stations

Site ID Location Latitude(d) Longitude(d) Height(m)

AC20
Girdwood,

Alaska, USA
60.92 -149.35 43.73

CONZ
Concepcion,

Chile
-36.84 -73.07 176.22

P019
Fairfield,

Idaho, USA
43.30 -115.31 1682.39

UNBJ
University of New Brunswick,

Canada
45.95 -66.64 22.8
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