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ABSTRACT 
 

From the structural point of view, cellular structures have properties that are much 

superior compared to the properties of the material that they are made of, including high strength 

to weight ratio and energy absorption. One of the key applications of the cellular structures is the 

design of structural components with superior energy absorption and impact resistance. 

Nowadays, the application of cellular structures has been extended in various fields of 

engineering. In this perspective, it is vital to develop a detailed understanding of the relationship 

between mechanical properties and microstructure of cellular materials.  

We investigate the in-plane dynamic crushing of two-dimensional cellular structures 

using finite element methods. Both regular and randomly-distributed cellular structures, as well 

as functionally graded cellular structures are considered and their response is modeled up to large 

crushing strains. We have also studied the energy absorption of hierarchical honeycombs where 

every three-edge vertex of a regular hexagonal lattice is replaced with a smaller hexagon.  

Our numerical simulations of in-plane dynamic crushing of cellular structures show three 

distinct deformation shapes of regular hexagonal cellular materials: quasi-static, moderate-rate 

dynamic mode and high-rate dynamic mode. Special attention was made towards quantifying the 

energy absorbent characteristics of the cellular structure as a function of cellular structure 

relative density and impact velocity, as well as the density gradient for functionally graded 

structures, where a relative density gradient in the direction of crushing was introduced in the 

computational models by a gradual change of the cell wall thickness. Decreasing the relative 

density in the direction of crushing was shown to enhance the energy absorption of honeycombs 

at early stages of crushing. Our results also showed that hierarchical honeycombs of first and 
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second order can be up to 2.0 and 3.5 times stiffer than regular honeycomb at the same mass 

(i.e., same overall average density) and they have advanced energy absorption capacity 

compared to regular honeycomb with the same mass. The results provide new insight into the 

behavior of engineered and biological cellular materials, and could be used in development of a 

new class of energy absorbent cellular structures.   
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1 CHAPTER 1: INTRODUCTION 
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1.1 Cellular structures: Applications and background 

Cellular structures extend the range of properties available to the engineers. Emergence 

of robust methods for fabrication of cellular structures, such as wire assembly and perforated 

sheet folding, have augmented their usage as lightweight and multifunctional materials. From the 

structural point of view, cellular structures have properties that are much superior compared to 

the properties of the material that they are made of, including high strength to weight ratio and 

energy absorption (Gibson, 1997). The application of cellular structure ranges from architectural 

masterpieces of Antonio Gaudi (Nonell, 2001) to thermal insulators (Lu and Chen, 1999) and 

three dimensional scaffolds for tissue engineering (Hollister, 2005; Hutmacher, 2000).  

One of the key applications of the cellular structures is the design of structural 

components with superior energy absorption and impact resistance. The basic applications 

pertaining to these characteristics are packaging of fragile components (e.g. electronic devices) 

and various protective products like helmets and shielding. Another emerging application in this 

area is usage of cellular structures as the core material for metal sandwich panels, which are 

shown to have superior performance over the counterpart solid plates of equal mass under shock 

loading (Dharmasena et al., 2009; Liang et al., 2007; Mori et al., 2009; Mori et al., 2007; 

Rathbun et al., 2006; Vaziri and Hutchinson, 2007; Vaziri et al., 2007; Wadley et al., 2008; 

Wadley et al., 2007; Wei et al., 2008; Xue and Hutchinson, 2003, 2004; Xue and Hutchinson, 

2006). Core topology and relative density have considerable influence on performance of the 

sandwich panels, as the core crushes at early stage of deformation and absorbs a large fraction of 

the kinetic energy imparted to the panel due to shock loading (Fleck and Deshpande, 2004; 

Hutchinson and Xue, 2005) – Thus, there is driving need to better understand the behavior of 

cellular structure under dynamic loading.  
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In the quasi-static regime, the crushing response of most metal cellular structures shows a 

typical stress–strain curve that includes three regimes: an elastic response followed by a plateau 

regime with almost constant stress and eventually a densification regime of sharply rising stress 

(Jang and Kyriakides, 2009a, b; Mohr et al., 2006; Papka and Kyriakides, 1998; Triantafyllidis 

and Schraad, 1998). Under dynamic crushing, however, the response of the metallic cellular 

structure is governed by complex localized phenomena that include buckling and micro-inertial 

resistance. The fundamental study of Vaughn et al. (2005) and (Vaughn and Hutchinson, 2005) 

has provided much insight into these effects, including the interaction between plastic waves and 

localized buckling under dynamic loading. (Xue and Hutchinson, 2006) showed that micro-

inertial resistance of the core webs of a square honeycomb metal core increases its resisting force 

remarkably at early stages of dynamic crushing. At later stages of deformation, the dynamics 

effects results in suppression of the buckling of the metal webs, leading to emergence of 

buckling shapes with a wavelength much smaller than the core height. These effects lead to a 

remarkable increase in the plastic energy dissipation of honeycombs under dynamic crushing at 

high strain rates (Rathbun et al., 2006; Xue and Hutchinson, 2006). In a complementary study, 

(Vaziri and Xue, 2007) studied the role of strain rate on the crushing response of folded plate and 

truss cores. Their study showed that the initial elevation in the resisting stress of the metal cores 

due to the micro-inertial resistance mainly depends on the core relative density and strain rate 

and is relatively insensitive to the core topology.  
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1.2 Objectives 

To further explore the effect of strain rate on the crushing behavior and energy absorption 

of cellular structures, we have studied the response of two dimensional regular hexagonal 

honeycomb under impact and in-plane dynamic crushing, Chapter 2. Most of the previous work 

performed on the mechanical behavior of cellular materials, including the results in Chapter 2, 

considers an intact structural organization for the cellular material. However, most engineered 

cellular materials do not have a perfect structural organization. In Chapter 3, we have 

investigated the role of defects, and more specifically missing cell clusters on the overall 

dynamic behavior of hexagonal honeycombs. The response of two dimensional Voronoi cellular 

structures with different level of irregularities is also discussed. Our study complements previous 

studies on the dynamic behavior of cellular structures with uniform cell size and wall thickness 

(Hönig and Stronge, 2002a, b; Li et al., 2007; Liu and Zhang, 2009; Ruan et al., 2003; Zhao and 

Gary, 1998; Zheng et al., 2005; Zou et al., 2009), while providing new insight into the role of 

deformation rate, defects and irregularity on the behavior of cellular structures under dynamic 

loading. In Chapter 4, we explore the behavior of functionally graded cellular structures and 

carry out a systematic study to investigate the role of relative density gradient on the overall 

crushing response of cellular materials. In Chapter 5, we investigated the mechanical behavior of 

two-dimensional hierarchical honeycomb structures using analytical, numerical and experimental 

methods. There, we have presented a systematic way to incorporate hierarchy in honeycomb 

structures. The resulting isotropic in-plane elastic properties (effective elastic modulus and 

Poisson's ratio) of this structure are controlled by the dimension ratios for different hierarchical 

orders. Chapter 6, draws the attention to the dynamic response and energy absorption of 

hierarchical honeycombs. Conclusions are drawn in Chapter 7.  
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2 CHAPTER 2: IMPACT AND DYNAMIC CRUSHING OF REGULAR 

HEXAGONAL HONEYCOMBS 
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2.1 Background 

In this part of the study, we developed finite element models of honeycomb structures 

with regular hexagonal cell shape to study their structural response under impact and in-plane 

crushing. First, we developed an algorithm to generate the geometry of the cellular materials in 

Matlab® (Mathworks Inc., Natick, MA). The developed geometrical models were imported into 

ABAQUS (SIMULIA, Providence, RI). Dynamic explicit solver with general frictionless contact 

available in ABAQUS was used to simulate the dynamic response of the honeycombs under 

impact and crushing as discussed below. To use the general contact option available in 

ABAQUS, each developed geometrical model was extruded normal to its cross section to create 

three dimensional models of honeycombs. The model was meshed with 4-node shell elements 

and plain strain condition was imposed to the model by constraining the out of plane degrees of 

freedom along the edges of the cell walls. A mesh sensitivity analysis was carried out to ensure 

that the results are not sensitive to the mesh size. In all the calculations, we assumed the cell wall 

material to be linear elastic – perfectly plastic with Young’s modulus, 𝐸 = 70 𝐺𝑃𝑎, yield 

strength, 𝜎𝑌 = 130 𝑀𝑃𝑎, Poisson’s ratio, 𝑣 = 0.3, and density, 𝜌 = 2700 𝑘𝑔 𝑚3⁄ , which are 

typical properties of aluminum. For a regular hexagonal honeycomb, the effective yield stress 

can be calculated from 𝜎𝑌𝑐 = 0.5 𝜌𝑐2𝜎𝑌, where 𝜌𝑐  is the relative density of the honeycomb, 

defined as the area fraction of the cell walls with respect to the structure's dimensions (Gibson, 

1997). In all the calculations presented in this study, the relative density of the honeycombs was 

varied by changing the thickness of the cell walls. We investigated several cases, where the 

relative density was changed by varying the cell wall size, while keeping the thickness constant. 

Our results showed that varying the cell wall size does not have significant effect on the crushing 
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response of regular hexagonal honeycombs, as long as the relative density of cellular structure is 

kept constant.  

2.2 Impact behavior of honeycombs 

To simulate the impact response of the hexagonal honeycomb, a rigid flat plate with 

mass, 𝑀 was modeled to impact the honeycomb with an initial velocity, 𝑉0, as shown 

schematically in Figure 2-1-A. The honeycomb was taken to be clamped at its bottom surface. 

Periodic boundary condition was applied in each side of the structure to avoid the influence of 

the model boundaries on the simulation results (Harders et al., 2005). After the impact, the rigid 

plate comes to rest as it crushes the honeycomb structure and finally detaches from it with a 

velocity that is much lower (generally less than 2% of the impact velocity) than its initial impact 

velocity. The initial kinetic energy of the rigid plate is 𝑀𝑉02/2, which is mainly absorbed by the 

plastic deformation of the cell walls as the honeycomb is crushed by the rigid plate. Figure 2-1-B 

shows the crushing response of honeycombs with three different relative densities, quantified as 

the average crushing of the cellular material, 𝜀 = 𝛿/𝐿, where 𝛿 is the crushing displacement and 

𝐿 is the honeycomb height in the crushing direction, versus the actual time, 𝑡, normalized by 

𝑡0 = 𝐿/𝑉0. The results shown in Figure 2-1-B represent a constant normalized initial kinetic 

energy of the rigid plate, 𝐾𝐸���� = (𝑀𝑉02/2) (𝜎𝑌𝑐𝐴𝐿)⁄ , where 𝜎𝑌𝑐 is the theoretical effective yield 

stress of the honeycomb, 𝐴 is the cross-section area of the structure normal to the longitudinal 

direction. 𝜎𝑌𝑐𝐴𝐿 is a theoretical estimate of the energy dissipated by plastic deformation in a bar 

made of a perfectly plastic material with yield stress, 𝜎𝑌𝑐, height 𝐿 and section 𝐴, when it get 

crushed to 100% strain.  Under rigid plate impact, the maximum crushing of honeycomb, 𝜀𝑚𝑎𝑥, 

and the corresponding crushing time (i.e. at which the rigid plate has zero velocity), 𝑡𝑠, depends 

on the relative density of the structure and the impact velocity, as quantified in Figure 2-1-C and 
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Figure 2-1-D for a wide range of normalized initial kinetic energies of the rigid plate and 

honeycomb relative densities. In this set of calculations, the initial kinetic energy of the rigid 

plate was varied by changing the plate initial velocity, while its mass were kept constant. Based 

on the assumption that the total initial kinetic energy of the rigid plate is dissipated by the plastic 

deformation of the honeycomb, the maximum crushing of the honeycomb can be estimated from, 

𝑀𝑉02/2 = 𝜎𝑌𝑐𝐴𝐿𝜀𝑚𝑎𝑥. This yields 𝜀𝑚𝑎𝑥 = 𝐾𝐸����, which is plotted in Figure 2-1-C as a solid line, 

along with the results from detailed finite element calculations.  

Similarly, an estimate for the 𝑡𝑠 can be obtained using the principal of impulse and 

momentum, 𝜎𝑌𝑐𝐴𝑡𝑠 = 𝑀𝑉0, where 𝜎𝑌𝑐𝐴 is the force applied by a structure made of a perfectly 

plastic material with yield strength of 𝜎𝑌𝑐. Dividing both sides of this equation by 𝑡0, gives: 

𝑡𝑠 𝑡0⁄ = 𝑀𝑉02 𝜎𝑌𝑐𝐴𝐿⁄ = 2𝐾𝐸����, which is shown in Figure 2-1-D. For low values of normalized 

kinetic energy, where the crushing strain is not high, the numerical results are in good agreement 

with the theoretical estimate. However, for high values of initial kinetic energy, the numerical 

simulations predict 𝜀𝑚𝑎𝑥 <  𝐾𝐸���� due to the dynamic effects and nonlinearity caused by cell walls 

contact. For a perfectly plastic material, the role of the micro-inertial resistance of core walls is 

minimal and thus, the effective yield strength of honeycomb is approximately equal to the 

honeycomb yield strength (Xue and Hutchinson, 2006). However, at high strain rate, the contact 

between the cell walls increases the effective yield strength of the honeycomb, leading to 

elevation of the effective yield strength of honeycombs. 
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Figure 2-1- Impact response of a regular hexagonal honeycomb. (A) Schematic of the finite 

element model. (B) The crushing response of honeycombs with three different relative densities. 

(C) The maximum crushing strain of honeycomb versus the normalized initial kinetic energy of 

the rigid plate. (D) The normalized crushing time versus the normalized initial kinetic energy of 

rigid plate. The solid lines show the theoretical estimates. The markers show the finite element 

results. 
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2.3 Dynamic crushing of honeycombs 

To explore the energy absorption of honeycombs under dynamic crushing, we have also 

simulated the honeycomb response under in-plane dynamic crushing at a constant prescribed 

velocity, 𝑉, as shown schematically in Figure  2-2-A. Similar to the previous simulations, the 

honeycomb was clamped along its bottom edge and periodic boundary conditions were imposed 

at its sides. An important dimensionless parameter which governs the inertial effects is 𝑉� =

𝑉/(𝑐0𝜀𝑌), where 𝑐0 = (𝐸 𝜌⁄ )0.5 is the elastic wave speed in the cell wall material, and 𝜀𝑌 =

𝜎𝑌/𝐸 (Xue and Hutchinson, 2006).  

Figure  2-2-B shows the normalized plastic energy dissipation, 𝑈�𝑃 = 𝑈𝑃/𝜎𝑌𝑐𝐴𝐿  of 

honeycomb, where 𝑈𝑃 is the plastic energy dissipation calculated directly from the numerical 

simulations for two different crushing velocities, 𝑉� = 0.32  and 𝑉� = 6.35 . At low crushing 

rates, the normalized dissipated plastic energy increases slightly by increasing the structure 

relative density. However, all honeycombs have comparable normalized plastic energy 

absorption.  

In contrast at high crushing velocities, the normalized plastic energy dissipation of a 

honeycomb strongly depends on its relative density and is higher for a honeycomb with lower 

relative density, which is due to dynamic effects and the nonlinearity caused by cell walls contact 

as discussed for honeycombs subjected to impact rigid plate. In Figure  2-2-C, we have 

quantified the normalized plastic energy dissipation of regular honeycombs with 0.01 ≤ 𝜌𝑐  ≤

0.10, under dynamic crushing. The results are presented in the log-log scale and at 𝜀 = 0.5 or 

50% crushing. 
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At low crushing rates, 𝑉� < 1, the normalized plastic energy dissipation of the honeycomb 

increased by increasing its relative density. For 𝑉� > 1, honeycombs with smaller relative density 

have remarkably higher normalized plastic energy dissipation at the same level of crushing 

strain. Moreover, we have studied the deformation modes of the honeycomb under dynamic 

crushing. Three distinct deformation shapes, which depend on the crushing rate and honeycomb 

relative density, are identified for the regular honeycombs as shown in Figure  2-3-A: quasi-

static or X-shape, transition or V-shape, and dynamic shape.  

In Figure  2-3-B, we provided a deformation map for regular honeycomb structures 

subjected to dynamic crushing. The critical normalized crushing rate associated with the 

transition between different modes, 𝑉�𝑐 increases approximately linearly with increasing the 

relative density, as shown in Figure  2-3-B by the dotted lines. 
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Figure  2-2- Dynamic crushing of a hexagonal regular honeycomb. (A) Schematic of the finite 

element model. (B) Normalized plastic energy dissipation versus the crushing strain for 𝑉� =

0.32  and 𝑉� = 6.35. (C) The normalized plastic energy dissipation of regular honeycombs versus 

the normalized crushing velocity at 50% crushing. The results in (C) are presented in the log-log 

scale. 
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Figure  2-3- Deformation modes of a hexagonal regular honeycomb. (A) Three distinct 

deformation shapes. (B) Deformation map for a regular honeycomb subjected to dynamic 

crushing. The markers show the finite element results. The dotted lines show the approximate 

limit associated with the transition between different deformation modes.  
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3 CHAPTER 3: DYNAMIC CRUSHING OF IRREGULAR CELLULAR 

STRUCTURES 
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3.1 Background 

In contrast to an idealized structure studied in Chapter 2, most cellular materials have 

inherent imperfections and in-homogeneities in their structural organization. Typical types of 

imperfections are missing walls and variations in the arrangement of cell walls, cell size and wall 

thickness. These structural variations are ubiquitous in natural cellular materials (e.g. cork, 

sponge and toucan beak) and cellular structures manufactured using random physical processes 

(e.g. foams). They also could appear in engineered cellular structures that are designed to have 

uniform cellular arrangement, due to fabrication errors.  

Several studies have been carried out to investigate the effect of different defects and 

structural variations on the quasi-static behavior of cellular structures (Ajdari et al., 2008; Chen 

et al., 1999; Fazekas et al., 2002; Fortes and Ashby, 1999; Guo and Gibson, 1999; Silva and 

Gibson, 1997; Silva et al., 1995; Wang and McDowell, 2003; Zhu et al., 2001a). (Liu and Zhang, 

2009) studied the dynamic crushing behavior of honeycombs with different cell topologies and 

arrangements. Their results suggest that the energy absorption of a honeycomb depends not only 

on the structure relative density, but also on the cellular arrangement and irregularity. In the 

same context, (Zheng et al., 2005) showed that cell arrangement irregularity elevates the energy 

absorption of two- dimensional cellular structures. Somewhat contradictory results were reported 

by (Tan et al., 2005), who suggested that the irregularity in the cell arrangement does not have 

considerable effect on the plastic energy absorption of a cellular structure. 

In this chapter, we have studied the role of irregularities in the structural organization of 

cellular structure subjected to in-plane dynamic crushing. Specifically, we considered two types 

of irregularities: In section 3.2, we investigated the role of a missing wall cluster on the energy 
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absorption of a regular hexagonal honeycomb. In section 3.3, we discussed the dynamic crushing 

of irregular cellular structures.  

3.2 Regular hexagonal honeycombs with missing wall clusters 

Schematics of honeycombs with a missing cell cluster of two different sizes, 

corresponding to 5% and 10% missing walls (defect), are shown in Figure  3-1-A. In this figure, 

the missing cell cluster is located at the center (mid height) of the cellular structure. The defect 

size is quantified as the number of missing walls to the total number of cell walls. For example, a 

missing wall cluster denoted by ‘5% defect’, indicates that the 5% of adjacent cell walls were 

removed from the model to form the missing wall cluster - Thus, the average relative density of 

the cellular structure was decreased by 5%. Similar boundary conditions as those used in chapter 

2 were imposed for this investigation. To study the effect of missing cluster on the overall energy 

absorption of honeycombs, we considered honeycombs with two different relative densities, 

𝜌𝑐 = 0.02 and 𝜌𝑐 = 0.06 subjected to a wide range of crushing velocities. In Figure  3-1-B, we 

plotted the normalized plastic energy dissipation of honeycombs with no defect and with two 

different missing wall cluster sizes at the crushing strain 𝜀 = 20% for a wide range of crushing 

velocities. The overall plastic energy absorption of a honeycomb does not change significantly 

with the presence of a missing wall cluster as large as 5%. However, the honeycomb with 10% 

defect has considerably lower plastic energy dissipation compared to the regular honeycomb 

with no defect at both low and high crushing velocities. The normalized plastic energy 

dissipation of the honeycombs with 𝜌𝑐 = 0.02 and 𝜌𝑐 = 0.06 at the 50% crushing is quantified 

in Figure  3-1-C.  Again, the honeycomb with 10% defect shows a considerably lower energy 

absorption compared to the honeycomb with no defect.   
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Figure  3-1- Role of missing cell cluster size. (A) Schematic of honeycombs with a missing cell 

cluster of two different sizes. (B) and (C) The normalized plastic energy dissipation of 

honeycombs with 𝜌𝑐 = 0.02 and 𝜌𝑐 = 0.06 versus the normalized crushing velocity at 20% and 

50% crushing, respectively. The results for honeycombs with no defect and with 5% and 10% 

defects. 
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In Figure  3-2, we have plotted the normalized plastic energy of honeycombs with 

𝜌𝑐 = 0.02 and 𝜌𝑐 = 0.06 and a missing wall cluster of different sizes divided by the normalized 

plastic energy of the counterpart honeycomb with no defect, as a function of normalized crushing 

velocity. The results are presented for honeycombs with 5% and 10% defects at 20% and 50% 

crushing strains in Figure  3-2-A and Figure  3-2-B, respectively. These plots quantify the role of 

the missing wall cluster on the energy absorption of cellular structure. The amount of reduction 

in the plastic energy absorption of the honeycomb due to the presence of the defect is not 

considerably sensitive to the crushing velocity. Our results suggest that the energy absorption 

capacity of honeycombs with  a lower relative densities, are more sensitive to the presence of a 

defect. For example, for a honeycomb with 𝜌𝑐 = 0.02 and 10% missing cluster, the normalized 

plastic dissipation decreases about 95% compare to that of regular honeycomb with no defect. In 

contrast, for a honeycomb with 𝜌𝑐 = 0.06, and 10% missing cluster, the reduction is about 60%, 

as shown in Figure  3-2. 
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Figure  3-2- (A) The plastic energy dissipation of honeycombs with 5% and 10% defects 

normalized by the plastic energy dissipation of a honeycomb with no defect versus the 

normalized crushing velocity at 20% and 50% crushing, respectively. The results are presented 

for honeycombs with 𝜌𝑐 = 0.02 and 𝜌𝑐 = 0.06. 
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In Figure  3-3, we have studied the role of cluster location on the plastic energy 

absorption of a honeycomb under dynamic crushing. In this set of calculations, three models of 

honeycombs with 5% defect were analyzed with a missing cluster located at three different 

locations along the height of the cellular structure: 1) the missing wall cluster considered close to 

the rigid plate; 2) the missing wall cluster is at the mid height (as shown in Figure  3-3-A) ; and 

3) the missing wall cluster close to the clamped side. Figure  3-3-B shows the results of the 

simulations presented in the form of normalized plastic energy dissipation versus the crushing 

strain for honeycomb with 𝜌𝑐 = 0.06 and subjected to 𝑉� = 6.35. At this crushing rate, the 

deformation of honeycomb under crushing is limited to the crushing side (dynamic mode, Figure  

2-3). Thus, a missing cluster closer to the rigid plate affects the energy absorption of the 

honeycomb at early stages of crushing. For example, a honeycomb with a missing cluster in 

location 1 (Figure  3-3) shows smaller plastic energy dissipation compared to a honeycomb with 

no defect at crushing strain of 𝜀 < 0.1 (i.e. at early stage of deformation). However, the plastic 

energy dissipation only gets altered at crushing strain 𝜀 > 0.4 for honeycomb with 5% defect 

located close to its clamped side (location 3). We also checked that changing the location of the 

missing cell cluster in the direction normal to the crushing direction does not have a considerable 

effect on the plastic energy absorption of honeycombs. The results are not presented for brevity. 
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Figure  3-3- Role of missing cell cluster location. (A) Different models of honeycombs with 5% 

defect located at three different locations along the height of the structure (1,2 and 3). (B) 

Normalized plastic energy dissipation versus the crushing strain for honeycomb with  𝜌𝑐 = 0.06 

and subjected to dynamic crushing with 𝑉� = 6.35.  
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3.3 Irregular cellular structures 

In this section, we studied the role of irregularity in the form of variation in arrangement 

of cell walls on the dynamic behavior and energy absorption of cellular structures under 

crushing. Specifically, we studied the dynamic crushing of irregular structures. To construct the 

models of cellular structures, we started from a set of points located at the centroids of a regular 

hexagonal honeycomb, where each point is located at distance √3𝑙 from its adjacent points – see 

Figure  3-4-A.  

To introduce irregularity in the cell arrangement, each point was moved randomly in both 

in-plane coordinates by 𝛼𝑖 = ∅𝑖1 × 𝐷/𝑙 and 𝛽𝑖 = ∅𝑖2 × 𝐷/𝑙, where subscript i denotes the point 

number, 𝐷 is the the maximum dislocation of the initial points and is defined here as ‘irregularity 

index’ and 0 ≤ ∅𝑖1,∅𝑖2 ≤1 are random numbers generated for each point separately. Then, the 

Voronoi diagram which is generated by constructing the perpendicular bisectors of each pair of 

adjacent points (Silva et al., 1995; Zhu et al., 2001b), was used to generate the models of the 

irregular cellular structures. Application of the Voronoi diagram to the original reference points 

(i.e. 𝐷/𝑙 = 0 ) gives the arrangement of a regular hexagonal honeycomb. Examples of structures 

with 𝐷/𝑙 = 1 and 𝐷/𝑙 = 2 are shown in Figure  3-4-B. It should be noted the arrangement of a 

cellular structure with a given cell size and irregularity index changes each time the model is 

constructed, since ∅𝑖1 and ∅𝑖2 are generated in each trial separately.  

Figure  3-4-C shows the normalized plastic energy dissipation versus the crushing strain 

for three irregular cellular structures with 𝐷/𝑙 = 1 , 2 and 3 and relative density 𝜌𝑐 = 0.06. The 

plot shown for each irregularity index is the average results obtained for six different irregular 
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structure models. The standard deviations from the results at several different crushing strains are 

also shown.  

The result for a regular honeycomb is also presented for comparison. These results show 

that the irregularity does not have a considerable effect on the normalized energy dissipation of 

the cellular structures studied.  
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Figure  3-4- Dynamic crushing of irregular honyecombs. (A) Schematic of a regular hexagonal 

structures and location of centroids for irregular structures. (B) Irregular honyecombs with 

𝐷/𝑙 = 1 and 𝐷/𝑙 = 2. (C) Normalized plastic dissipation of irregular structures with different 

irregularity indexes versus the crushing strain at 𝑉� = 6.35.  
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4 CHAPTER 4: DYNAMIC CRUSHING OF FUNCTIONALLY GRADED 

CELLULAR STRUCTURES 
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4.1 Background  

Functionally graded materials (FGM) consist of a gradual change in the volume fraction 

or mechanical properties of constituents in a direction. Application of these materials tends to 

reduce stresses resulting from material property mismatch, increases the bonding strength, 

improves the surface properties and provides protection against adverse thermal and chemical 

environment. Functionally graded materials are ideal for applications involving severe thermal 

gradients, ranging from thermal structures in advanced aircraft and aerospace engines to 

computer circuit boards (Abd El-Sayed et al., 1979; Evans et al., 1998; Gent, 1963; Gent and 

Thomas, 1959; Gibson, 1997; Ko, 1965; Lederman, 1971; Menges and Knipschild, 1975). 

Cellular structures are a class of materials with low densities and novel physical, 

mechanical, thermal, electrical and acoustic properties. A gradual increase in the cell size 

distribution, can impart many properties such as mechanical shock resistance and thermal 

insulation. The understanding of mechanical properties of functionally graded cellular structures 

as a function of cell size gradient is important in the proper application and utilization of these 

materials. Furthermore, the presence of defects may affect the material properties of graded 

cellular structures. 

Several efforts have been made to investigate the mechanical behavior and the effects of 

imperfections on the mechanical properties of cellular materials; most of which are based on the 

finite element method (FEM) . (Chen et al., 1999) investigated the influence of different types of 

morphological imperfections (waviness, non-uniform cell wall thickness, cell-size variations, 

fractured cell walls, cell-wall misalignment and missing cells) on the yielding of 2D cellular 

solids. They also performed a finite element study to determine the effects of holes on elastic 

modulus and yield strength of regular honeycombs under biaxial loading. (Wang and McDowell, 
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2003) and (Silva and Gibson, 1997) investigated the effects of missing or fractured cell walls on 

mechanical properties of regular hexagonal and Voronoi cellular materials. In mu previous work, 

(Ajdari et al., 2008) we investigated the compressive uniaxial and biaxial behavior of 

functionally graded Voronoi structures, using finite element methods Furthermore, the effect of 

missing cell walls on its overall mechanical (elastic, plastic, and creep) properties is investigated. 

The finite element analysis showed that the overall effective elastic modulus and yield strength 

of structures increased by increasing the density gradient. However, the overall elastic modulus 

of functionally graded structures was more sensitive to density gradient than the overall yield 

strength. The study also showed that the functionally graded structures with different density 

gradient had similar sensitivity to random missing cell walls. Creep analysis suggested that the 

structures with higher density gradient had lower steady-state creep rate compared to that of 

structures with lower density gradient. Here, we study the dynamic behavior of functionally 

graded cellular structures where a density gradient is introduced in the direction of crushing by 

changing the thickness of cell walls. 

4.2 Energy absorption of functionally graded cellular structures  

 Functionally graded cellular structures are novel class of materials, where variations in 

cell size, shape and wall thickness results in a functional variation in the relative density and 

organization of the cellular structure. Examples of functionally graded cellular structures in 

nature are bamboo, banana peel and elk antler (Chen et al., 2008; Silva et al., 2006). Previous 

studies on impact resistance and energy absorption of functionally graded cellular structures have 

shown their potential for creating impact resistant structures and cushioning materials (Ali et al., 

2008; Kiernan et al., 2009).  (Cui et al., 2009) suggested that a functionally graded foam can 

exhibit superior energy absorption compared to a uniform foam with equal mass. In another 
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effort, (Wadley et al., 2008), constructed a multilayered pyramidal lattice from stainless steel and 

investigated the quasi-static and dynamic compressive response of these structures. The 

developed method allows fabrication of functionally graded cellular structures by varying the 

relative density of the pyramidal lattice at each layer.  

In this study, we constructed finite element models of functionally graded cellular 

structures by changing the thickness of the cell walls - and thus, the relative density - in the 

direction of crushing. We divided a cellular structure to five equal-size regions with height 

∆𝐿 = 𝐿/5, and assigned different cell wall thicknesses to each region to introduce a constant 

density gradient, 𝛾, in the cellular structure. The models were created for cellular structures with 

both regular hexagonal and irregular cellular arrangements – See Figure  4-1 and Figure  4-3, 

respectively. The density gradient, 𝛾, was defined as 𝛾 = (𝜌𝑖+1 − 𝜌𝑖)/∆𝐿, where 𝜌𝑖 indicates the 

relative density of i-th region, as shown in Figure  4-1-A. 𝛾 = 0 gives a honeycomb with constant 

relative density, and a positive density gradient gives a cellular structure with a relative density 

that gradually decreases in the crushing direction. The total relative density of the structures was 

kept constant (here, 𝜌𝑐 = 0.05), as the density gradient is introduced. For example, 𝛾 = 0.33 

gives a cellular structure with a relative density that functionally decreases from 9% to 1% in the 

direction of crushing. However, the average density of this honeycomb structure is 𝜌𝑐 = 0.05. 

Figure  4-1-B and Figure  4-1-C show the energy absorption of functionally graded 

regular hexagonal honeycombs with different density gradients subjected to low velocity and 

high velocity dynamic crushing. As discussed above, the comparison between cellular structures 

with different density gradients are made at a constant average relative density. At both low and 
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high crushing velocities, the normalized energy absorption of honeycomb with a constant 

relative density, 𝛾 = 0, changes approximately linearly with the crushing strain.  

At low crushing velocity ((i.e. quasi-static mode), introducing the density gradient 

decreases the energy absorption of the honeycombs up to crushing strains ~ 67%, and the 

honeycomb with 𝛾 = 0, has the maximum energy absorption for this crushing strain range.  

There are minimal differences between the response of functionally graded honeycombs with 

positive and negative density gradients, as quantified in Figure  4-1-B and expected in the quasi-

static regime.  

In contrast at high velocity crushing, the density gradient has a remarkable influence on 

the energy absorption of the honeycomb (Figure  4-1-C). Up to ~ 50% crushing, the functionally 

graded cellular structures with positive density gradient, 𝛾 > 0 - where the cellular structure 

relative density is high at the crushing side and changes gradually to its lowest value at the 

clamped side - have higher energy absorption compared to a honeycomb with 𝛾 = 0. The 

negative density gradient, 𝛾 < 0 results in reduction of the honeycomb energy absorption The 

influence of the density gradient on the energy absorption is very significant in early stages of 

crushing (i.e. crushing strain of up to 25%).  At crushing strain ~ 56%, all honeycombs show 

similar energy absorption capacity (𝑈�𝑃 ≅ 1.5 for all honeycombs). At higher crushing strains, 

honeycombs with a negative density gradient show considerable increase in their energy 

absorption capacity.  
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Figure  4-1- Dynamic crushing of a functionally graded regular hexagonal honeycomb. (A) 

Schematic of the model. (B) Normalized plastic energy dissipation versus the crushing strain for 

honeycombs with different density gradients at low crushing rates, 𝑉� = 0.32  and (C) at high 

crushing rate, 𝑉� = 6.35 . The overall relative density of the honeycombs were kept constant, 

𝜌𝑐 = 0.05. 
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 To explain these observations, we studied the deformation modes and the distribution of 

equivalent plastic strain of functionally graded honeycombs with 𝜌𝑐 = 0.05  under crushing. 

Figure  4-2-A compared the deformation modes of a functionally graded honeycomb with 𝛾 =

 0.33 and a honeycomb with a constant relative density, 𝛾 = 0 at 50% crushing. In the quasi-

static regime (𝑉� = 0.32), the deformation of the honeycomb with constant relative density is 

mainly concentrated along two bands, forming the X-Shape as explained in chapter 2. In 

Contrast, for a functionally graded honeycomb, the deformation is limited to the part of the 

structure with low relative density (close to the bottom in Figure  4-2-A), while the rest of the 

structure stays almost undeformed. At high velocity crushing (𝑉� = 6.35), the deformation mode 

is quite different - see Figure  4-2-A: For a regular honeycomb with 𝛾 = 0, the deformation is 

highly localized to the crushing side –  as described in details in chapter 2 – thus, only the cells 

close to crushing side undergo considerable deformation and contribute to the energy absorption 

of the honeycomb as it gets crushed. For cellular structures with 𝛾 < 0, the deformation mode is 

similar to that of regular honeycomb with 𝛾 = 0, and since the structure has a lower relative 

density at the crushing side, its overall energy absorption is even lower than its counterpart 

honeycomb with 𝛾 = 0. For a functionally graded honeycomb with 𝛾 > 0, the deformation is 

focused at both crushing and clamped sides of the honeycomb and thus, a higher number of cells 

deform and contribute to the overall energy absorption of the cellular structure, as can be seen in 

the deformed configurations shown in Figure  4-2-A.  

To further understand the deformation modes of honeycombs, we have plotted the 

distribution of the equivalent plastic strain along the height of honeycombs with different density 

gradients in Figure  4-2-B and Figure  4-2-C. To calculate the equivalent plastic strain through 

the height of the structure, we averaged the equivalent plastic strains for all elements in each row 
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of the honeycomb from top to bottom. These plots shows the relative contribution of cells 

located at different heights of the structure on the overall energy absorption of the honeycomb. 

For the honeycomb with 𝛾 = 0 and subjected to 𝑉� = 0.32, all cell wall rows contribute to the 

overall energy absorption of the structure, by forming the X-shape deformation mode shown in 

Figure  4-2-A. At this crushing rate, for honeycombs with 𝛾 > 0 , the cell walls with the lower 

relative density (wall thickness) are located near the clamped side and are mostly deformed 

under crushing, while for honeycombs with 𝛾 > 0, cell walls with lower density are located  near 

the crushing side and gets more deformed compared to other cell walls. Figure  4-2-C shows the 

results for honeycombs with different density gradients at high crushing rates,  𝑉� = 6.35 at 50% 

crushing strain. For honeycombs with 𝛾 ≥ 0, the  cell walls near the crushing side are mainly 

deformed, while the induced plastic strains in cells located in the bottom half of the structure 

(0.5 < 𝑦/𝐿 ≤ 1) is negligible. For honeycombs with 𝛾 > 0, cells at both side of the structure 

(crushing side and clamped side) gets strongly deformed under crushing, while the cells in the 

mid height of the structure contribute minimally to the overall energy dissipation of the cellular 

structure. It should be noted that the plastic energy dissipation of all honeycombs is comparable 

at this crushing strain, as can be seen in Figure  4-2-C and discussed above.  

In Figure  4-3, we have repeated the calculations for an irregular cellular structure. The 

role of density gradient is more remarkable in this case compared to the regular hexagonal 

honeycombs, Figure  4-3-B. The deformation modes of irregular cellular structures with two 

different density gradients are displayed in Figure  4-3-C, which show qualitative agreement with 

the deformation mode of their regular hexagonal counterpart. Again, a higher number of cells of 

the structure with 𝛾 = 0.33, have deformed considerably, compared to the deformation mode of 

the counterpart irregular structure with 𝛾 = 0, which is highly localized at the crushing side.  
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Figure  4-2-  (A) Deformation shapes of regular cellular structures with constant and functionally 

graded relative density at 50% crushing at low and high crushing rates. (B) and (C) Equivalent 

plastic strain thorough the height of honeycombs with different density gradients subjected to 

V� = 0.32  and V� = 6.35 , respectively, at 50% crushing. (The overall relative density of the 

honeycombs were kept constant, ρc = 0.05. 
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Figure  4-3- Dynamic crushing of a functionally graded irregular structure. (A) Schematic of the 

model of a functionally graded irregular cellular structure with 𝐷/𝑙 = 2. (B) Normalized plastic 

energy dissipation versus the crushing strain for an irregular cellular structures with different 

density gradients at the high velocity crushing, 𝑉� = 6.35 . (C) The deformation shapes of 

irregular cellular structures. 
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5 CHAPTER 5: HIERARCHICAL HONEYCOMBS WITH TAILORABLE 

PROPERTIES 
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5.1 Introduction 

Hierarchical structures are ubiquitous in nature and can be observed at many different 

scales in organic materials and biological systems (Aizenberg et al., 2005; Buehler, 2006; 

Espinosa et al., 2011; Fratzl and Weinkamer, 2007; Gibson et al., 2010; Lakes, 1993; Ortiz and 

Boyce, 2008; Qing and Mishnaevsky Jr, 2009). The hierarchical organization of these systems 

generally plays a key role in their properties, function and survival (Fratzl and Weinkamer, 2007; 

Gibson et al., 2010). Hierarchy is also important in engineering designs, materials and 

architecture. Examples range from the Eiffel tower (Lakes, 1993) and polymers with micro-level 

hierarchical structures (Lakes, 1993), to sandwich panels with cores made of foams or composite 

lattice structures (Cote et al., 2009; Fan et al., 2008; Kazemahvazi et al., 2009; Kazemahvazi and 

Zenkert, 2009; Kooistra et al., 2007). There, the hierarchical organization can lead to superior 

mechanical behavior and tailorable properties, as described recently for sandwich cores with 

hierarchical structure (Fan et al., 2008) and for hierarchical corrugated truss structures (Kooistra 

et al., 2007). The overall mechanical behavior of these structures is governed by the response at 

different length scales and levels of hierarchy; and increasing levels of structural hierarchy can 

result in lighter-weight and better-performing structures (Bhat et al., 1989; Burgueño et al., 2005; 

Gibson et al., 2010; Kooistra et al., 2007; Lakes, 1993; Murphey and Hinkle, 2003; Taylor et al., 

2011).  

Here, we have presented a systematic way to incorporate hierarchy in honeycomb 

structures. Honeycombs are two-dimensional cellular structures used in different applications 

including thermal isolation (Lu and Chen, 1999), impact energy absorption and structural 

protection (Ajdari et al., 2011; Vaziri and Hutchinson, 2007; Zheng et al., 2005), and as the core 

of lightweight sandwich panels (Rathbun et al., 2006; Xue and Hutchinson, 2004; Xue and 
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Hutchinson, 2006). The transverse (i.e., in-plane) stiffness and strength of honeycombs are 

generally governed by the bending deformation of cell walls, and strongly depend on the 

honeycomb relative density (Gibson, 1997). Under uniform transverse loading, the maximum 

bending moment in each cell wall occurs at the honeycomb vertices (i.e., cell wall corners). 

Thus, moving material from the middle part of each wall closer to the vertices can potentially 

increase the transverse stiffness and strength (Chuang and Huang, 2002a, b; Simone and Gibson, 

1998). Here, we replace the vertices of a regular hexagonal lattice with smaller hexagons 

(simultaneously reducing the wall thickness to maintain fixed overall density), to achieve a 

structure with one level of hierarchy. This will be shown able to exhibit a Young's modulus 

superior to that of its regular hexagonal counterpart of equal relative density. This replacement 

procedure for three-edge vertices can be repeated at smaller scales to achieve fractal-appearing 

honeycombs with higher orders of structural hierarchy. Figure  5-1-A shows the evolution of a 

hexagonal honeycomb cell as structural hierarchy is increased. The structural organization of the 

honeycomb at each level of hierarchy can be defined by the ratio of the introduced hexagonal 

edge length (b for 1st order hierarchy and c for 2nd order hierarchy), to the original hexagon’s 

edge length, a, as described in Figure  5-1-A (i.e., 𝛾1 = 𝑏/𝑎 and 𝛾2 = 𝑐/𝑎).  For a honeycomb 

with 1st order hierarchy, 0 ≤ b ≤ a/2 and thus, 0 ≤ 𝛾1 ≤ 0.5, where 𝛾1 = 0 denotes the regular 

honeycomb structure. For a honeycomb with 2nd order hierarchy, there are two geometrical 

constraints, 0 ≤ c ≤ b and c ≤ a/2-b. In terms of the ratio parameters, the constraints are   0 ≤ 𝛾2 ≤ 

𝛾1 if 𝛾1 ≤ 0.25 and 0 ≤  𝛾2 ≤ (0.5 - 𝛾1) if 0.25 ≤ 𝛾1 ≤ 0.5. The dimensionless relative density 

(i.e., area fraction), can be given in terms of t/a: 

𝜌 = 2  √3⁄  ∙  (1 + 2𝛾1 + 6𝛾2) ∙ 𝑡 𝑎⁄ ,               (1) 
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where t is the thickness of the cell walls, from which the special cases of 𝛾2, 𝛾1 = 0 can be read 

off immediately. (For regular honeycomb, 𝜌 = 2 √3⁄  ∙ 𝑡 𝑎⁄ ; and for honeycomb with 1st order 

hierarchy, 𝜌 = 2 √3⁄  ∙  (1 + 2𝛾1) ∙ 𝑡 𝑎⁄ ). This relation clearly shows that t/a must decrease to 

maintain fixed relative density as 𝛾1, 𝛾2 are increased. 

Here, we studied the effective elastic properties hierarchical honeycombs using 

analytical, numerical and experimental methods. The hierarchical honeycomb samples were 

fabricated using 3D printing as discussed in section 5.2. In sections 5.3and 5.4, we provided 

analytical models to estimate the effective elastic modulus and Poisson's ratio of hierarchical 

honeycombs using the concepts of mechanics of materials and compare the analytical results 

with finite element simulations and experiments. 

5.2 Fabrication using 3D printing 

Figure  5-1-B shows samples of regular and hierarchical honeycombs with 𝜌 = 0.10 and a 

= 20 mm fabricated using 3D printing (Dimensions 3D printer, Stratasys Inc., Eden Prairie, MN). 

The regular honeycomb has t = 1.75mm; the honeycomb with one-level hierarchy has 𝛾1= 0.3 

and t = 1mm; and that with two-level hierarchy has 𝛾1= 0.3, 𝛾2= 0.12, and t = 0.75mm. These 

were printed as three-dimensional extruded shells from an ABS polymer (acrylonitrile butadiene 

styrene, elastic modulus = 2.3 GPa) as the bulk material. The input file to the 3D printing 

software was created for honeycombs with a relative density of 0.10. The cell wall thickness was 

reduced for honeycombs with hierarchy in order to keep the overall relative density constant, 

similar to the finite element calculations. The actual printed samples did not maintain the target 

density very precisely due to the 0.25 mm resolution of the printer (so the relative density was 

between 8-12%, and only certain discrete values of 𝛾1 and 𝛾2could be achieved). Prior to the 

experiments, aluminum plates were bonded to the top and bottom of the samples using 
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cyanoacrylate adhesive, in order to prevent the edge nodes (similar to 1, 2, 3, and 4 in Figure  

5-2) from excessive bending. The in-plane compressive response of these bonded-end samples 

was measured using an INSTRON 5582 at the slow rate of 1mm/min (i.e., strain rate, 𝜀̇ = 

0.5%/min). The effective elastic modulus of the honeycombs were estimated from the slope of 

the force-displacement curve at early stage of the experiment (ε < 1.5%). For each specimen, the 

true relative density was measured by weighing, and then was used when calculating the 

normalized effective elastic modulus for Figure  5-3. For each configuration, three samples were 

tested. In addition to the experiments, we developed analytical and finite element models to 

calculate the effective in-plane elastic constants of the honeycombs in terms of cell-wall Young's 

modulus.  
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Figure  5-1- Hierarchical honeycombs. (A) Unit cell of the hierarchical honeycombs with regular 

structure and with 1st and 2nd order hierarchy. (B) Images of honeycombs with a = 2 cm 

fabricated using three-dimensional printing.  
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5.3 Hierarchical honeycombs: Effective elastic modulus - Analytical approach 

For the analytical approach, we used Castigliano's second theorem (Boresi, 2002) to 

determine the uniaxial in-plane deformation of hierarchical honeycombs made of an isotropic 

elastic material with elastic modulus, Es. It is well known that plane lattices with threefold 

symmetry will exhibit macroscopically isotropic in-plane elastic behavior (Christensen, 1987). 

Thus, the macroscopic in-plane linear elastic behavior of hierarchical honeycomb can be 

characterized by just two constants, to be found by whatever loadings are most convenient. We 

imposed a far field y-direction stress, 𝜎𝑦𝑦 = −(2  3⁄ )𝐹 𝑎⁄ , in a vertical direction (perpendicular 

to the horizontal hexagon edges in Figure  5-1-A). This is equivalent to applying a vertical force 

F at every cut-point of a horizontal line (such as L1 in Figure  5-1-A) passing through the mid-

points of non-horizontal edges in a row of underlying (i.e., no hierarchy) hexagons. 

To understand the analysis, it is helpful to envision the underlying regular hexagonal 

network as illustrated in Figure  5-1-A. Midpoints of various edges have been labeled MP1 to 

MP5. For the imposed state of stress, no net horizontal or vertical force is transmitted across L2. 

Yet every horizontal bar is equivalent, allowing us to conclude that each one transmits neither 

axial nor shear force. Furthermore, they also transmit no bending moment, because it would 

break the symmetry about horizontal lines. Therefore, the horizontal edges are entirely load-free 

for this state of stress. Next, considering the edges cut at their midpoints by line L1, it is clear that 

for the given average stress, each cut bar must sustain a vertical force F. Cut at the midpoints as 

they are, we can conclude that no moment is transmitted across the cut, because that would lead 

to the bars being bulged 'out' of some hexagons and 'into' others, in a way prohibited by the 

symmetry of reflecting in L1. The stress state also implies that no net horizontal force is 

transmitted across L1. Therefore, considering the structure below L1, a leftward force at MP3 
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balanced by a rightward force at MP1 might be envisaged. But by reflection in a horizontal line 

through the hexagon center, we would also have to expect a leftward force on the bar above a cut 

at MP4. The resulting net leftward force on the bars between cuts at MP3 and MP4 is not possible 

because we already know that the horizontal bars (e.g., on the line through the hexagon center) 

are tension-free. We can thus conclude that the forces at cut points   MP1, MP3 , and  MP4   are 

purely vertical with magnitude F. This 'hexagon midpoint' reasoning is unchanged when 

structural hierarchy is introduced. 

Figure  5-2-A shows the free body diagram of a subassembly able to represent an entire 

honeycomb with 1st order hierarchy subject to 𝜎𝑦𝑦 loading (therefore, for this section, to find 

effective elastic modulus in y-direction,  we are ignoring the horizontal forces shown at point 

2,3, and 4). According to the above arguments, MP3 is load-free, and MP4 is subject only to force 

-F in the y direction. Since the subassembly is also cut free at points 1 and 2, we need to find the 

force and moment reactions at those cuts. y-direction forces acting on the subassembly are 

denoted by N1 and N2, and moments are denoted by M1 and M2. There can be no horizontal force 

at point 1 because of reflection symmetry about the x axis, along with the lack of any third force 

on point 1 to balance same-direction horizontal inputs from above and below. At point 2, since 

no other horizontal forces act on the subassembly, we can also be sure that there is no horizontal 

reaction. So in this problem, x -direction equilibrium is trivially satisfied. By applying the y-force 

and moment balance laws to the subassembly, N2 and M2 can therefore be written as linear 

functions of N1, M1, and F. The bending energy stored in the subassembly can be expressed as a 

sum over all the beams: 𝑈(𝐹,𝑀1,𝑁1) = ∑∫(𝑀2 (2𝐸𝑠𝐼)⁄ )𝑑𝑠, where M is the bending moment at 

location s along the beam, Es is the elastic modulus of the cell wall material, and I is the beam's 

cross sectional area moment of inertia at s (cell walls are considered to have rectangular cross 
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section with thickness, t , and unit depth; i.e., 𝐼 = 𝑡3 12⁄ ). Since the beam resultants are linear in 

F, M1 and N1, U is then a quadratic function of those same quantities. The horizontal beam 

connecting nodes 2 and 3 can be excluded from the analysis since it is load-free.  

Since there is zero vertical displacement and zero rotation at point 1 due to symmetry, we 

can use Castigliano's method to write 𝜕𝑈 𝜕𝑁1⁄ = 0, and 𝜕𝑈 𝜕𝑀1⁄ = 0. These two relations allow 

N1 and M1 to be calculated in terms of F: 𝑁1 = 𝐹(0.533 + 0.15 𝛾1)⁄ , 𝑀1 = 𝐹𝑎(0.283𝛾1 −

0.017). At point 4 we can find the displacement 𝛿 = 𝜕𝑈 𝜕𝐹⁄ , and then the above substitution for 

N1 and M1 gives 𝛿 =  √3𝐹𝑎3 �72𝐸𝐼𝑓(𝛾1)�� . The effective elastic modulus (to be normalized by 

beam material modulus, 𝐸𝑠) is then defined as the ratio of average stress (−2𝐹 3𝑎⁄ ) and average 

strain, (−4𝛿 𝑎√3⁄  ) : 

𝐸 𝐸𝑠⁄ = (𝑡 𝑎⁄ )3 𝑓(𝛾1)                                                                                                                  (2) 

where 𝑓(𝛾1) = √3/(0.75 − 3.525𝛾1 + 3.6𝛾12 + 2.9𝛾13). To find the maximum normalized 

elastic modulus for structures with first-level hierarchy and constant relative density, we 

eliminate (t/a) from Eq. (2) by using the relative density expression of Eq. (1) The resulting 

expression for 𝐸 𝐸𝑠⁄  is ρ3 times a function of 𝛾1, and setting (𝜕(𝐸 𝐸𝑠⁄ ) 𝜕𝛾1⁄ )𝜌  = 0 gives 𝛾1= 

0.32. Making this substitution leads to 𝐸 𝐸𝑠⁄ = 2.97𝜌3, a stiffness almost twice the stiffness of 

the regular honeycomb structure(Gibson, 1997), for which 𝐸0 𝐸𝑠⁄ = 1.5𝜌3. (The regular 

honeycomb result can be found by letting 𝛾1 = 0 in Eq. (2), and using Eq. (1) to eliminate t/a).  

The same analytical approach was used to evaluate the in-plane effective Young's 

modulus of honeycomb with two orders of hierarchy, as a function of hierarchy indices 𝛾1 and 

𝛾2. Figure  5-2-B shows the free body diagram of a subassembly chosen to minimize calculation. 

As before, the vertical compressive stress (-2F/3a) is achieved by the external force, F, applied 
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downward at point 5 (a midpoint of the underlying hexagon side), with symmetry arguments 

showing that no other loads act at that point. Bar 3-4 is again load-free. The same argument 

applies to point 3 as formerly applied to point 2 for the honeycomb with one order of hierarchy. 

And, the same argument applies to points 2 and 1 as formerly applied to point 1. Therefore,  N1, 

M1, N2, M2, N3, and M3 are the unknown reaction forces and moments at vertices 1, 2, and 3 as 

shown in Figure  5-2-B. One additional step required for analysis of the second-order hierarchy 

is to determine the beam resultants for the statically indeterminate, complete (small) hexagon of 

side c embedded in each subassembly, loaded at nodes 6 and 7 with reactions at node 8. The 

bending moments along each side of the c-hexagon are determined from a subsidiary analysis in 

which it is divided at nodes 6 and 7, and then three compatibility conditions are enforced at each 

of those nodes. The details of that analysis are omitted for brevity. Similar to honeycombs with 

first order hierarchy, using the y-direction and rotational equilibrium equations, N3 and M3 can be 

written as a function of N1, M1, N2, M2, and F. Therefore, the total energy of the investigated 

substructure, which is the sum of the bending strain energy of all the beams, can be written as: 

𝑈(𝐹,𝑀1,𝑁1,𝑀2,𝑁2) = ∑∫(𝑀2 (2𝐸𝑠𝐼)⁄ )𝑑𝑠. The following four boundary conditions are 

imposed at points 1 and 2 to achieve the zero rotation and zero displacement demanded by 

symmetry, as shown in Figure  5-2-B: 𝜕𝑈 𝜕𝑁1⁄ = 0, 𝜕𝑈 𝜕𝑀1 = 0⁄ , 𝜕𝑈 𝜕𝑁2⁄ = 0, and 

𝜕𝑈 𝜕𝑀2⁄ = 0. These relations allow us to solve for M1, N1, M2, N2. In a similar way as above the 

effective elastic modulus can be presented as: 

𝐸 𝐸𝑠⁄ = (𝑡 𝑎⁄ )3𝑓(𝛾1, 𝜉)                                                                                                                                (3) 

where 𝜉 = 𝛾2 𝛾1⁄ and 𝑓(𝛾1, 𝜉) = 𝑁4(𝜉) (𝛾13𝐷7(𝜉) + 𝛾12𝐷6(𝜉) + 𝛾1𝐷5(𝜉) + 𝐷4(𝜉))⁄  

𝑁4(𝜉) = 29.62− 54.26𝜉 + 31.75𝜉2 − 4.73𝜉3 − 𝜉4 

𝐷7(𝜉) = 49.64− 609.01𝜉 + 862.56𝜉2 − 195.50𝜉3 − 270.14𝜉4 + 159.95𝜉5 − 18.13𝜉6 − 2.20𝜉7 
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𝐷6(𝜉) = 61.73 + 310.43𝜉 − 662.32𝜉2 + 334.12𝜉3 + 9.70𝜉4 − 29.38𝜉5 − 1.88𝜉6 

𝐷5(𝜉) = 60.43 + 12.80𝜉 + 123.22𝜉2 − 108.06𝜉3 + 20.50𝜉4 + 3.90𝜉5 

𝐷4(𝜉) = 12.80− 23.46𝜉 + 13.74𝜉2 + 2.04𝜉3 − 0.43𝜉4 

For the 2nd order hierarchical structure, once again eliminating (t/a) in favor of density, 

and then differentiating at constant density, ((𝜕(𝐸 𝐸𝑠⁄ ) 𝜕𝛾1⁄ )𝜌  = (𝜕(𝐸 𝐸𝑠⁄ ) 𝜕𝛾2⁄ )𝜌  = 0 give 𝛾1= 

0.32, and 𝛾2= 0.135, leading to 𝐸 𝐸𝑠⁄ = 5.26𝜌3, a stiffness almost 3.5 times that of the regular 

honeycomb.  
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Figure  5-2- Free body diagrams of the subassembly of honeycombs with (A) 1st and (B) 2nd 

order hierarchy used in the analytical estimation. Ni and Mi (i= 1 to 3) denote the reaction vertical 

forces and moments in the nodes of the subassembly structures as denoted in the pictures. 
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5.4 Hierarchical honeycombs: Effective elastic modulus - Numerical simulation 

To validate the theoretical results we simulated the structural response using finite 

element analysis. Two-dimensional hierarchical honeycombs were modeled using Abaqus 6.10 

(SIMULIA, Providence, RI). All models were meshed using the BEAM22 element, which is 

capable of capturing not only the bending compliance of the above theory, but also the axial and 

shear deformations which may become significant at greater values of t/a. A rectangular cross 

section with unit length normal to the plane of loading was assumed for the cell wall beams. The 

thickness of all the beams was adjusted to control the overall relative density of the structure. 

The material properties of aluminum, Es=70 GPa, and νs = 0.3, were used in this study. We 

performed the analysis with two different boundary conditions representing our analytical model 

and experimental tests, respectively. In the first set, we applied periodic boundary conditions to 

matching nodes on the left and right edges, as if the sample were infinitely wide but free to strain 

laterally (Harders et al., 2005). In the loading (vertical) direction, the structure was connected to 

a movable rigid plate by the nodes lying along the dashed symmetry line of Figure  5-2-A or 

Figure  5-2-B. Those nodes were constrained by symmetry conditions, i.e. free to slide left or 

right, but all maintaining the same y coordinate, and prevented from rotating. In the second set of 

simulations, those same top and bottom nodes were constrained horizontally by being built into 

the fixed and vertically movable rigid plates, and the side nodes were free as in the experimental 

setup. The increase in modulus caused by this constraint in the second kind of simulation ranged 

from 3% up to a maximum of about 20%. Here, we show the numerical results from the first set, 

which matched the boundary conditions of our analytical model. The effective elastic modulus of 

each structure was calculated from the slope of compressive stress-strain response.  
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Figure  5-3-A shows the effective elastic modulus of first order hierarchical honeycombs 

for all possible values of 𝛾1. In this figure, the elastic modulus is normalized by the effective 

stiffness of the counterpart regular honeycomb with the same relative density, 1.5𝐸𝑠𝜌3, allowing 

us to present results for every density on a single curve. In the finite element simulations, 

structures with three different relative densities (2%, 6% and 10%) were analyzed. Results show 

quite good agreement between numerical and theoretical approaches, even though the theoretical 

analysis ignored the axial and shear deformation of the beams (a good approximation only for 

low density honeycombs with small beam thickness (Harders et al., 2005)). We suspect that the 

numerical incorporation of shear and stretching accounts for the FEA-determined modulus 

falling somewhat below the theory, particularly as density increases or beam lengths decrease. 

The FEA results nicely confirm the near-doubling of stiffness for 𝛾1= 0.32. In this figure, 

experimental results are also plotted which show reasonable agreement with both theory and 

numerical results. For honeycombs with 2nd order hierarchy, we fixed 𝛾1= 0.3 and plotted the 

normalized effective elastic modulus for various values of 𝛾2, Figure  5-3-B. The results again 

match theory best for low density, and show that honeycombs with two orders of hierarchy 

where 𝛾1= 0.3, and 𝛾2= 0.135, have stiffness approximately 3.5 times that of regular hexagonal 

honeycomb with same relative density. 
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Figure  5-3- Stiffness of hierarchical honeycombs. (A) Normalized stiffness for honeycombs 

with 1st order hierarchy versus 𝛾1. (B) Normalized stiffness versus 𝛾2, for honeycombs with 2nd 

order hierarchy and 𝛾1= 0.3. The schematic of the honeycomb unit cells are shown for selected 

values of 𝛾1 and 𝛾2 in each plot. The finite element results are shown for honeycombs with three 

different relative densities. Experimental results for structures with different hierarchy levels are 

also shown ( black  circles ). The error bars show the results variation. Each experimental point 

is from 3 tested specimens. 
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5.5 Hierarchical honeycombs: Poisson's ratio 

To fully characterize the linear elastic behavior of hierarchical honeycombs, we also need 

to obtain the dependence of Poisson’s ratio, 𝜈, on the dimension ratios. We again used 

Castigliano's second theorem and considered the same subassemblies under biaxial loading 

(where the horizontal stress is finally set to zero after differentiating). This is a bending-based 

approximate analysis that ignores axial and shear deformation of the cell walls. 

Temporarily considering horizontal loading only, we apply reasoning similar to that in 

section 5.4, to midpoint cut lines such as L2 and L3. This establishes that the horizontal segment 

aligned with the dotted line is subjected to pure compression (no bending), and that the segment 

midpoint to the upper right of each subassembly experiences only a horizontal force. There is no 

horizontal reaction at node 1 for first order hierarchy, or at nodes 1, 2 for second order hierarchy. 

But node 2 (first order) and node 3 (second order) has a horizontal reaction to balance 2P, -P, and 

nodes on the dashed horizontal line still require vertical and moment reactions. The composite 

free body diagrams for both horizontal and vertical stress are shown in  Figure  5-2. Figure  5-2-

A is for 1st order hierarchy where the external forces P and F are applied at point 4 in x- and y-

directions, and N1, M1, N2, and M2 are the reaction vertical forces and moments at vertices 1 and 

2, respectively. The two non-trivial equations of equilibrium (vertical and angular) allow us to 

write N2 and M2 as functions of N1, M1, P and F. Therefore, the bending energy stored in the 

subassembly can be expressed as the summation of bending energy in all beams, 

𝑈(𝐹,𝑃,𝑀1,𝑁1) = ∑∫(𝑀2 2𝐸𝑠𝐼⁄ )𝑑𝑠, where M is the bending moment at position s along each 

beam, Es is the elastic modulus of the cell wall material, and I is the beam's cross sectional area 

moment of inertia (cell walls are considered to have rectangular cross section with thickness t 

and unit depth, i.e., 𝐼 = 𝑡3 12⁄ ). The horizontal beam connecting the nodes 2 and 3 can be 



62 
 

excluded from the analysis since it experiences no bending moment. Assuming zero 

displacement and zero rotation at vertices 1 and 2 due to symmetry, one can write  𝜕𝑈 𝜕𝑁1⁄ = 0, 

and 𝜕𝑈 𝜕𝑀1⁄ = 0. These two relations allow N1 and M1 to be calculated as a function of P and F. 

The bending energy stored in the subassembly can be subsequently expressed as 𝑈 = 𝑈(𝐹,𝑃). 

When P is zero (free lateral expansion), the x and y displacements of point 4 due to force F can 

be expressed as follows, respectively:𝛿𝑋𝐹 = �(𝜕𝑈 𝜕𝑃⁄ )| 𝑝=0 ;𝛿𝑌𝐹 = �(𝜕𝑈 𝜕𝐹⁄ )| 𝑝=0. Considering 

the initial dimensions of the subassembly to be 3𝑎 4⁄  and √3𝑎 4⁄  in X- and Y- dimensions, 

respectively, the Poisson's ratios in direction Y is obtained as 𝜈 = 𝛿𝑋𝐹 √3𝛿𝑌𝐹⁄ , which gives: 

𝜈 = 1 − 𝛾13 /(2.9𝛾13  +  3.6𝛾12  −  3.525𝛾1  +  0.75), which is plotted in Figure  5-4. The 

value of 𝜈 is 𝜈 = 1 at 𝛾1 = 0,  𝜈 = 0.5 at  𝛾1 = 1, with the minimum value 0.37 at  𝛾1 = 0.4 . 

Finite element results are also shown which were obtained by calculating the lateral deformation 

of honeycombs with periodic boundary condition under uniaxial in-plane loading.  

For the biaxially loaded 2nd order hierarchical honeycomb subassembly illustrated in 

Figure  5-2-B. N1, M1, N2, M2, N3, and M3 are the unknown reaction vertical forces and moments. 

Once again, vertical and rotational equilibrium equations allow us to write N3 and M3 as 

functions of N1, M1, N2, M2, P and F. Therefore, the bending energy stored in the subassembly 

can be expressed as the summation of bending energy in all beams, 𝑈(𝐹,𝑃,𝑀1,𝑁1,𝑀2,𝑁2) =

∑∫(𝑀2 2𝐸𝑠𝐼⁄ )𝑑𝑠. The horizontal beam connecting nodes 3 and 4 is again excluded from the 

analysis. Since symmetry prevents vertical displacement or rotation at vertices 1 and 2, one can 

write 𝜕𝑈 𝜕𝑁1⁄ = 0, 𝜕𝑈 𝜕𝑀1⁄ = 0, 𝜕𝑈 𝜕𝑁2⁄ = 0, and 𝜕𝑈 𝜕𝑀2⁄ = 0. These four relations allow 

N1 , N2 , M1 and M2 to be calculated as functions of P and F. The bending energy stored in the 

subassembly can be subsequently expressed as 𝑈 = 𝑈(𝐹,𝑃). The x and y displacements of point 

5 due to force F can be expressed as: 𝛿𝑋𝐹 = �(𝜕𝑈 𝜕𝑃⁄ )| 𝑝=0 ; 𝛿𝑌𝐹 = �(𝜕𝑈 𝜕𝐹⁄ )| 𝑝=0 . Considering 
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the initial dimensions of the subassembly to be 3𝑎 4⁄  and √3𝑎 4⁄ in the x and y directions, the 

Poisson ratio is obtained as: = 𝛿𝑋𝐹 √3𝛿𝑌𝐹⁄  . The value of 𝜈 ranges from 0.28  at 𝛾1 = 𝛾2 = 0.23 

to 1.0 at  𝛾1 = 𝛾2 = 0. 
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Figure  5-4- Poisson's ratio of hierarchical honeycombs with one level of hierarchy versus 𝛾1. 

The finite element results are also plotted for honeycomb with relative density 0.06. 
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6 CHAPTER 6: DYNAMIC CRUSHING OF HIERARCHICAL 

HONEYCOMBS 
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6.1 Background 

As mentioned in previous chapters, one of the main applications of cellular structures is 

their usage in impact resistance and structural protection where their energy absorption 

characteristics become important. Besides, most biological system in nature has hierarchical 

organization. The hierarchical organization of these systems generally plays a key role in their 

properties, function and survival (Fratzl and Weinkamer, 2007; Gibson et al., 2010).  

Hierarchy is also important in engineering designs, materials and architecture. Examples 

range from the Eiffel tower (Lakes, 1993) and polymers with micro-level hierarchical structures 

(Lakes, 1993), to sandwich panels with cores made of foams or composite lattice structures (Cote 

et al., 2009; Fan et al., 2008; Kazemahvazi et al., 2009; Kazemahvazi and Zenkert, 2009; 

Kooistra et al., 2007). There, the hierarchical organization can lead to superior mechanical 

behavior and tailorable properties, as described recently for sandwich cores with hierarchical 

structure (Fan et al., 2008) and for hierarchical corrugated truss structures (Kooistra et al., 2007). 

Enhancement up to one order of magnitude was reported for mechanical properties of 

honeycombs with 2nd order hierarchical sandwich walls by (Fan et al., 2008).  

In this chapter, we will study the energy absorption of honeycombs with 1st order of 

hierarchy. As an addition to previous chapters, we have also considered the plastic hardening in 

the cell wall's material to show  the enhancement of hierarchical honeycombs compare to regular 

hexagonal honeycombs. 

6.2 Dynamic response of honeycombs with one order of hierarchy - Low crushing rate 

Models of  honeycombs with different ratio of hierarchical indices are simulated using 

ABAQUS (SIMULIA, Providence, RI). Same boundary conditions as described in Chapter 2 
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were used  and plastic dissipation of honeycombs with same relative density under low velocity 

crushing was compared up to high crushing strain while changing the hierarchical index, 𝛾1. 

First, we considered the material of the cell walls to be linear elastic-perfectly plastic. 

In Figure  6-1, we have plotted the normalized plastic dissipation for hierarchical 

honeycomb structures with 𝛾1 = 0.3 and  𝛾1 = 0 (regular honeycomb structure). At early stages 

of crushing, both structures show similar energy absorption capacity. An interesting behavior is 

observed for hierarchical structure, where at ~ 70% crushing strain, the normalized plastic 

dissipation increases significantly compare to regular honeycomb structure with the same 

relative density, as quantified in Figure  6-1. 
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Figure  6-1 - Normalized plastic dissipation for hierarchical honeycomb at low crushing rate 

(𝑉� = 0.32) with 𝛾1 = 0 and 𝛾1 = 0.3. The curve shows the significant increase in the plastic 

dissipation at crushing strain of ~70%. 
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To explain the reason we looked at the deformation pattern of the structures under low 

velocity crushing, as shown in Figure  6-2. In this figure, we have plotted the force-displacement 

response of  both regular and hierarchical honeycomb with one order of hierarchy and 𝛾1 = 0.3. 

Black line shows the response for regular hexagonal honeycomb: typical elastic response at early 

stage of crushing which results in linear increase of the force/stress, followed by the plateau 

border where the force(stress level) is almost constant and final densification with significant 

increase of the stress. The red line shows the response for hierarchical honeycomb where 

𝛾1 = 0.3. The response of honeycomb with two order of hierarchy is also shown (blue line).  

As described in chapter 2, for regular honeycomb structure, under low crushing rate, with 

the boundary conditions explained before, we saw an X-shape mode where shear bands in the 

form of "X" is observed. For honeycombs with first order of hierarchy, at early stage of the 

crushing, all the cell walls belongs to the bigger hexagons starts to deform and form the exact X-

shape, as shown in the Figure  6-2, this is the case up to almost 70% crushing. Further crushing 

will results in significant increase in the plastic dissipation and/or force, as illustrated in Figure  

6-1 and Figure  6-2. At this stage of crushing, cell walls belongs to the smaller size hexagons 

come to the picture and start to deform, which will increase the number of plastic hinges and will 

results in higher energy absorption. The crushing strain at which the second stage of crushing 

happens, depends on the geometrical parameter 𝛾1, for example for 𝛾1 = 0.45, the second stage 

of crushing happens at ~55% crushing.  

The response for honeycombs with two order of hierarchy, does not clearly show the 

multi-stage behavior when we have a uniform thickness all over the structures. However, we 

have confirmed that by distributing the mass properly between the hexagons at different level of 

hierarchy, the structure does show multi-stage behavior.  
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Figure  6-2 - Force-displacement response for hierarchical honeycomb under low crushing rate 

(𝑉� = 0.32). Results for both regular and hierarchical honeycomb are shown. The multi-stage 

crushing of the hierarchical honeycomb is obvious. 
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6.3 Honeycombs with plastic hardening 

When one level of hierarchy, as proposed in chapter 5, is introduced to a regular 

hexagonal honeycomb, by replacing the vertices of a regular hexagonal lattice with smaller 

hexagons, in fact we are increasing the total number of the plastic hinges in the entire structure, 

and therefore increasing the energy absorption of the structure. In previous chapters, for energy 

absorption and impact behavior of honeycombs, we assumed the cell wall material to be an 

elastic-perfectly plastic material. If the cell wall material has plastic hardening behavior, then the 

hierarchical honeycomb potentially will show better performance compare to regular honeycomb 

of the same mass. And for obvious reason, adding level of hierarchy, will add more plastic 

hinges and for materials with plastic hardening will results in significant plastic dissipation 

compare to regular, and hierarchical honeycomb with one level of hierarchy. 

In Figure  6-3, we have summarized the normalized plastic dissipation for honeycombs 

with and without plastic hardening. Here, we have plotted the normalized plastic dissipation for 

honeycombs with 𝛾1 = 0.1 and regular hexagonal honeycomb (𝛾1 = 0) for comparison. When 

there is no plastic hardening, the plastic dissipation increases by adding hierarchy ( almost 50% 

increase at 50% crushing strain). By adding only 5% plastic hardening to the material of the cell 

walls, we increase the total plastic dissipation of the regular and hierarchical honeycomb, 

however, this increase is much more significant for hierarchical honeycombs due to larger 

number of plastic hinges in the structures which increases the yielding points and therefore 

results in more energy dissipation, as shown in Figure  6-3. 
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Figure  6-3 - Effect of plastic hardening on energy absorption of hierarchical honeycombs. 

  



73 
 

The multi-stage behavior of hierarchical honeycombs, which was observed in quasi-static 

crushing of these structures can be used as a tool to regulate the energy absorption under low 

crushing rates. By nature, adding the hierarchy to the structure, should results in higher energy 

absorption capacity, due to the increase in number of plastic hinges in the entire structure. by 

distributing the mass at different levels of hierarchy, we should be able to tailor the mechanical 

behavior as well as energy absorption capacitance of hierarchical honeycombs.  
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7 CHAPTER 7: CONCLUDING REMARKS 
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7.1 Summary 

Finite element method was employed to study the in-plane crushing of regular, irregular 

and functionally graded honeycombs. Insights into the role of ‘dynamics effects’ on the overall 

energy absorption and impact resistant of cellular structures are provided, and different 

deformation modes for honeycombs subjected to dynamic crushing were identified. The role of 

irregularities, in the form of missing cell clusters and variations in the cell arrangements was also 

studied for a wide range of crushing velocities. Our results complement previous studies on the 

dynamic behavior of cellular structures with uniform cell size and wall thickness, while 

providing new insight into the role of deformation rate, defects and irregularity on the behavior 

of cellular structures under dynamic loading. 

We also studied the dynamic crushing of functionally graded cellular structure with 

regular and irregular cellular arrangements. Our results show that introducing a density gradient 

could significantly change the deformation mode and energy absorption of cellular structures 

under both low and high crushing velocities. A limited number of functionally graded cellular 

structures were analyzed and no effort was made to obtain the cellular structure with maximum 

energy absorption at a constant average density. However, enough insight is provided to 

understand the mechanism of energy absorption in functionally graded cellular structures under 

dynamic loading. Our results could help better understand the behavior and function of some of 

the engineered and biological cellular materials. Our study also complements recent studies on 

performance of sandwich panels with graded cores (Dharmasena et al., 2009; Wang et al., 2009) 

and could help develop a new class of energy absorbent cellular materials and blast resistant 

structures.  
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To summarize the behavior of all honeycombs with the investigated hierarchical 

structures, we have plotted contour maps of the effective (normalized) elastic modulus and 

Poisson’s ratio of hierarchical honeycombs with second-order hierarchy for all possible values of 

𝛾1 and 𝛾2, as shown in Figure  7-1. The x-axis is 𝛾1 ranges from 0 to 0.5, while 𝛾2 is limited by 

the two geometrical constraints, 𝛾2 ≤ 𝛾1 and 0 ≤ 𝛾2 ≤ (0.5 - 𝛾1). Hierarchical honeycombs with 

small to moderate values of 𝛾1 and 𝛾2, and especially a simple hexagonal honeycomb, have 

Poisson ratio near 1.0. This means that the Young's and Shear moduli, which are controlled by 

element bending, are far lower than the "Bulk" (really, "Areal") modulus which for those 

structures is controlled by element stretching.  

The results show that a relatively broad range of elastic properties, and thus behavior, can 

be achieved by tailoring the structural organization of hierarchical honeycombs, and more 

specifically the two dimension ratios. Increasing the level of hierarchy provides a wider range of 

achievable properties. Further optimization should be possible by also varying the thickness of 

the hierarchically introduced cell walls, and thus the relative distribution of the mass, between 

different hierarchy levels. These hierarchical honeycombs can be used in development of novel 

lightweight multifunctional structures, for example as the cores of sandwich panels.  
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Figure  7-1- Contour maps of the (A) effective elastic modulus and (B) Poisson’s ratio of 

hierarchical honeycombs with 2nd order hierarchy for all possible geometries (i.e., admissible 

range of  𝛾1 and  𝛾2). 
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