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Abstract 
 
A simple method to determine the frictional interaction between a carbon 

nanotube (CNT) and a substrate is analyzed for feasibility.  In this technique an 

atomic force microscope (AFM) tip is used to drag a CNT along a substrate.  

Then the deformed shape of the CNT can be viewed either with the AFM or in a 

Scanning Electron Microscope (SEM).  An analysis of the deformed shape allows 

the determination of the frictional interactions which occurred during dragging.  It 

is important to quantify these interactions in a variety of potential applications of 

nanotechnology.  In one such example, a CNT based nanoswitch consists of a 

CNT bridging over a trench. Actuation of the CNT causes it to stretch and can 

lead to partial slip at the interface.  This slip causes hysteresis which has been 

observed in the mechanical actuation of a CNT bridge. In this work continuum 

level modeling is used to determine the relationship between the shape of the 

CNT and the frictional interaction which occurred between the CNT and substrate 

during dragging.  The model and analysis indicate that this method should be 

feasible for CNTs with aspect ratios approximately in the 100−250 range.   

The modeling is extended to determine the frictional interaction between a 

CNT and an anisotropic substrate. Anisotropy is the property of being 

directionally dependent, as opposed to isotropy, which is homogeneity in all 

directions. In this context the shear stress offered by the substrate will vary with 

respect to orientation.  Results of anisotropic substrate indicate the dependence 

of orientation of nanotube with respect to substrate and also the effect of various 

substrates for the  same value of applied load and orientaton. 

For both cases results are of high resolution if the AFM tip is away from 

the midpoint of the nanotube. For high values of the frictional interaction and a 

very long CNT there is insufficient change in the final shape of the CNT to 

accurately resolve the shear stress. For low values of frictional interaction CNT is 

apt to roll rather than slide. 



 
iv 

 

 

Acknowledgements: 
 
I would like to express my sincere gratitude to Professor George G Adams who 

advised and encouraged me during the compilation of this thesis work. Most 

importantly for bringing up the topic and also had been there always for those 

invaluable discussions. 

I would also like to thank the Mechanical Engineering department for their 

graduate assistantship. 

Last but not the least sincere appreciation to all my family and friends who had 

been there to encourage and help during the tough times of this study. 

 



 
v 

 

 

 

Table of Contents 

 

Acknowledgements……………………………………………………………… iii 

Abstract…………………………………………………………………………… iv 

List of Figures……………………………………………………………………. vi 

1. Introduction……………………………………………………………………. 1 

2. Modeling and Analysis……………………………………………………….. 4 

 2.1 Symmetric Loading………………………………………………. 5 

 2.2 Non-symmetric Loading…………………………………………. 6 

 2.3 Non-dimensional Analysis………………………………………. 7 

3. Numerical Solution……………………………………………………………. 7 

4. Results and Discussion…………………………………………………….... 8 

4.1 Symmetric Loading………………………………………………. 8 

4.2 Non – symmetric Loading……………………………………….. 11 

5. Modeling of an Anisotropic Substrate………………………………………. 17 

6. Analysis of an Anisotropic Substrate……………………………………….. 18 

7. Numerical Solution……………………………………………………………. 20 

8. Results and Discussion……………………………………………………… 21 

 8.1 Symmetric Loading……………………………………………… 21 

 8.2 Varying Shear Stress Average….…………………………….. 27 

8.3 Non – symmetric Loading……………………………………….. 33 

9. Conclusion…………………………………………………………………….. 41 

10. References…………………………………………………………………… 42 

11. Appendix-A…………………………………………………………………… 44 

 A-1 MATLAB program or symmetric loading………………………. 44 

 A-2 MATLAB program for non-symmetric loading………………… 48 

 A-3 MATLAB program for anisotropic substrate………………...... 53 

 

 

 



 
vi 

 

 

 

List of Figures 

 

Figure 1.  Schematic representation of Symmetric loading of a CNT……… 5 

Figure 2.  Schematic representation of Non-Symmetric loading of a CNT… 6 

Figure 3.  Rotation angle (ψ) vs. shear stress (τ ) and vs. dimensionless shear  

                stress ( τ )……………………………………………………………... 10 

Figure 4.  Variation of radius of curvature (r) at the load point with shear stress     

                (τ ) and with dimensionless shear stress ( τ )…………………….. 11 

Figure 5.  Final shape of CNT in symmetric loading for various values of  τ (100,  

                200, 300, 400, 500, 600)……………………………………………. 12 

Figure 6.  Variation of rotation angle ψ(0) with shear stress (τ ) and with                                                      

                dimensionless shear stress ( τ ) for non-symmetric condition for various    

                values of ‘a’ (0.3, 0.35, 0.4, 0.45, 0.5)…………………………….. 13 

Figure 7.  Variation of ψ′(0) with shear stress (τ ) and with dimensionless shear  

                stress (τ ) for various values of ‘a’ (0.3, 0.35, 0.4, 0.5)………….. 14 

Figure 8.  Rotation angle ψ(1-a) (right end of beam) vs. shear stress (τ ) and vs.  

                dimensionless shear stress (τ ) for various values  

                of ‘a’ (0.3, 0.4, 0.5)………………………………………………….. 15 

Figure 9.  Variation of rotation angle (ψ (-a)) with shear stress (τ ) and with 

                dimensionless shear stress (τ ) for various values  

                of ‘a’ (0.3, 0.35, 0.4, 0.45, 0.5)…………………………………….. 15 

Figure 10. Deformed shape of nanotube for a = 0.4 and for various values of 

                 shear stress τ  (100, 200, 300, 400)………………………………. 16 

Figure 11. Final shape of nanotube for a = 0.3 and for various values of shear  

                 stress τ  (100, 200, 300, 400)……………………………………… 17 

Figure 12. CNT placed on an anisotropic substrate…………………………. 18  

Figure 13: Shear Force at the loading point………………………………….. 19 

Figure 14: Plot showing the variation of Ψ(0) for a = 0.5 and 300=aveτ …… 22 

Figure 15: Plot showing the variation of Ψ’(0) for a = 0.5 and 300=aveτ ….. 23 



 
vii 

 

 

Figure 16: Plot showing the variation of ψ(1-a) for a = 0.5 and 300=aveτ …. 23 

Figure 17: Plot showing the variation of ψ(-a) for a = 0.5 and 300=aveτ …... 24 

Figure 18: Final shape of nanotube for a = 0.5 and β = 0(τ ave = 300 and  

                τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)…………………………………………. 25 

Figure 19: Final shape of nanotube for a = 0.5 and β = 90 (τ ave = 300 and  

                τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)…………………………………………. 25 

Figure 20: Final shape of nanotube for a = 0.5 and β = 30 (τ ave = 300 and  

                τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)……………………………………….... 26 

Figure 21: Final shape of nanotube for a = 0.5 and β = 60 (τ ave = 300 and  

                τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)…………………………………………. 26 

Figure 22: Plot showing the variation of  (a) ψ’(0) , (b) ψ(1-a) and (c) Ψ(-a)  

                 vs a series of aveτ  for a constant value of a = 0.5 and β=0……… 28 

Figure 23: Plot showing the variation of (a) ψ (0), (b) ψ’(0) , (c) ψ(1-a) and  

                 (d) Ψ(-a) vs a series of aveτ  for a constant value of a = 0.5  

                 and β=30…………………………………………………………….. 29 

Figure 24: Plot showing the variation of (a) ψ (0), (b) ψ’(0) , (c) ψ(1-a) and  

                 (d) Ψ(-a) vs a series of aveτ  for a constant value of a = 0.5  

                 and β=60…………………………………………………………….. 30 

Figure 25: Plot showing the variation of  (a) ψ’(0) , (b) ψ(1-a) and (c) Ψ(-a)  

                 vs a series of aveτ  for a constant value of a = 0.5  

                 and β=90…………………………………………………………….. 31 

Figure 26: Plot showing the variation of ψ(0) for a = 0.4 (τ ave = 300 and  

                τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)………………………………………... 32 

Figure 27: Plot showing the variation of ψ(0) for a = 0.3 (τ ave = 300 and  

                 τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)……………………………………….. 32 

Figure 28: Plot showing the variation of ψ’(0) for a = 0.4 (τ ave = 300 and  

                τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)…………………………………………. 33 

Figure 29: Plot showing the variation of ψ’(0) for a = 0.3 (τ ave = 300 and                 

τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)…………………………………………………….. 34 

Figure 30: Plot showing the variation of ψ(1-a) for a = 0.4 (τ ave = 300 and 



 
viii 

 

 

                τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)…………………………………………. 35 

Figure 31: Plot showing the variation of ψ(1-a) for a = 0.3 (τ ave = 300 and  

                τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)…………………………………………. 35 

Figure 32: Plot showing the variation of ψ(-a) for a = 0.4  (τ ave = 300                                                                    

                 and τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)………………………………….... 36 

Figure 33: Plot showing the variation of ψ(-a) for a = 0.3  (τ ave = 300                                                                  

                 and τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)………………………………..….. 36 

Figure 34: Final shape of CNT for a = 0.4  

                (τ ave = 300 and τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)  (a) β = 00 , (b) β = 300  , 

                (c) β = 600  ,(d) β = 900  ………………………………………..……. 38 

Figure 35: Final shape of CNT for a = 0.3  

                (τ ave = 300 and τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2)  (a) β = 00 , (b) β = 300  , 

                (c)β=600,(d)β=900………………………………………………..…… 39



 
1 

 

 

Introduction 

The discovery of the carbon nanotube (CNT) in 1991 by Iijima [1] has stimulated 

ever broader research activities in science and engineering.  Their mechanical 

properties and structural perfection make CNTs ideal candidates for next 

generation electronic devices.  A CNT can be imagined to be created by 

wrapping one or more one-atom thick graphene sheets to form a cylindrical tube 

structure.  Thus the resulting CNT is either a single-walled nanotube (SWNT) or 

a multi-walled nanotube (MWNT).   

It is important to quantify the frictional interactions between a CNT and 

various substrates.  Such interactions occur in a variety of potential applications 

of nanotechnology.  In fabrication of CNT based devices, knowledge of the 

interactions between CNTs and various contacting substrates is essential in 

order to understand the assembly processes by which these tubes are deposited.  

In a CNT based nanoswitch, a CNT bridges over a trench.  Electrical actuation 

causes the tube to bend toward the electrode at the bottom of the trench.  This 

deformation requires stretching of the CNT and/or slip at the CNT-substrate 

interface.  The stretching is in the elastic range but interfacial slip leads to 

undesirable hysteresis in the switching process. 

Hertel, Martel, and Avouris [2] showed that an AFM tip could be used to 

manipulate individual multiwalled CNTs on a passivated silicon surface.  By 

observing the elastic distortion of a CNT over an obstacle, they were able to 

estimate the binding energy.  Falvo et al. [3] demonstrated various manipulations 

of MWNTs using a specially designed nanomanipulator with a haptic interface.  

Their research investigated the rolling and sliding motion of carbon nanotubes 

using an AFM tip to push the CNTs.  The force of friction was measured during 

both of these motions.  Typically movement began as rolling and then 

transitioned to sliding.  The nanomanipulator was further used by Falvo et al. [4] 

to study rolling and sliding motion of MWNTs on graphite surfaces.  These tubes 

had aspect ratios of about 20 and the rolling was accompanied by stick-slip 

motion.  The frictional shear stress was assumed to be constant and the 

measured value of approximately 2 MPa compared reasonably well with the 
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value of 5 MPa by Schwarz et al. [5] which was inferred from measurements of 

an AFM tip on graphite.   

Falvo et al. [6] performed manipulation of a multi-walled CNT on a HOPG 

substrate.  The effect of the commensurability of the surfaces on friction was 

investigated and found to be significant.  In [7] Falvo and Superfine reviewed 

various studies on the mechanics and friction at the nanometer scale.  The 

frictional sliding of a bundle of SWNTs on KCl and HOPG surfaces was reported 

by Miura et al. [8].  Whittaker et al. [9] presented measurements of the adhesive 

force between a CNT and SiO2 substrate.  The CNT spanned over two adjacent 

and parallel trenches.  An AFM was used to push the CNT into one of the 

trenches, causing slip.  The force required to produce slip was an indication of 

the CNT-substrate frictional interaction.   

Hertel, Walkup and Avouris [10] investigated the effects of van der Waals 

forces on the deformation of a CNT on a Si surface using AFM, continuum 

mechanics, and molecular dynamics.  They found that the radial and axial 

deformations experienced by a CNT on a substrate can significantly modify its 

ideal geometry.  Pantano, Parks and Boyce [11] developed a finite element 

continuum model of single- and multi-walled CNTs which included van der Waals 

interactions.  Results compared favorably with the molecular dynamics 

simulations in [10]. 

Buldum and Lu [12] conducted molecular statics and dynamics 

simulations of atomic scale sliding and rolling of a CNT on a graphite surface.  It 

was shown that the effective contact area and interaction energy scale with the 

square-root of the radius.  When the nanotube is pushed, a combination of 

spinning and sliding occurs.  The frictional interaction between a CNT and a 

graphite surface was studied using molecular dynamics by Cheng and Lu [13].  It 

was found that the dynamic friction depends on the rotation angle of the 

nanotube axis with respect to the graphite surface. 

This work focuses on the continuum modeling and analysis of the 

deformation of a CNT on a substrate, due to the CNT having been dragged along 

the substrate by, for example, the tip of an atomic force microscope.  The shear 



 
3 

 

 

stress offered by the substrate while dragging the CNT is assumed to be 

constant along the length of the CNT.  This analysis shows that the frictional 

interaction between the CNT and the substrate can be determined simply by 

observing the deformed shape of the CNT after dragging is completed.  However 

if the aspect ratio is too large then the sensitivity of the measurement is low.  If 

the aspect ratio is too small then the CNT is apt to roll rather than slide.  Thus the 

results of this analysis provide an operating window for measurements.  This 

method has the advantage of simplicity and does not require the calibration of 

the AFM in the lateral mode (or in any mode) as the force is not measured by the 

AFM. 

The last part of the thesis includes analysis of frictional interaction 

between a CNT and an anisotropic substrate. Anisotropy is the property of being 

directionally dependent, as opposed to isotropy, which means homogeneity in all 

directions. It can be defined as a difference in a physical property (absorbance, 

refractive index, density, etc.) for some material when measured along different 

axes. In this context the shear stress offered by the substrate will vary with 

respect to direction.  
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Modeling and Analysis 

The mechanical deformation model uses the theory of the elastica [14] which 

allows for large elastic deflections of thin structures in which the material 

behavior remains linear elastic.  This theory will be applied to model the 

interaction between a carbon nanotube and a rigid substrate.   Thus the 

nanotube is modeled using the equation of equilibrium of a bent elastic rod, the 

general equation for which is 

0cos)(sin)( 002

2

=−−−− ψψ
ψ

sqSsqT
sd

d
EI yx                       (1) 

As shown in Figure 1, T0 and S0 are the horizontal and vertical 

components of the internal force respectively at the origin which at that point 

correspond to the tension and shear force, ψ is the angle between the x-axis and 

the tangent at position s  (positive clockwise), E is the elastic Young’s modulus, 

4

64
DI

π
=  is the second moment of the cross-sectional area of diameter D of the 

CNT, and xq , yq  are the components of the external load per unit length in the x- 

and y-directions respectively. 

 Two different cases were analyzed based on the point of application of the 

load. These configurations are symmetric loading (the force is applied at the 

midpoint of the CNT) and non-symmetric loading (the force is applied away from 

the midpoint of the CNT).  In both cases, the force is applied so as to push the 

CNT in a direction perpendicular to its initial orientation.  It is this frictional 

interaction which is modeled by the xq and yq  terms in Equation (1).  Implicit in 

our analysis is the assumption that the tube is sufficiently long so that the 

frictional shear stress produces enough bending to make rolling motion 

kinematically unfavorable.  In the following analysis we show how a specified 

frictional interaction during sliding will cause the CNT to deform.  The results of 

this analysis will allow us to determine the frictional interaction which occurred 

during dragging by observing the deformed shape of the CNT.  The analysis also 

provides an operating window of CNT aspect ratios in which this method can be 

used. 
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Figure 1.  Schematic representation of symmetric loading of a CNT. 

Symmetric Loading 

This type of loading corresponds to a force applied at the midpoint of the CNT 

(Figure 1).  The substrate on which the CNT is placed offers a shear resistance 

to the applied load as the CNT slides along the substrate.  By rewriting Equation 

(1) for the symmetric case 

       ,0cos)
2

(
2

2

=+−− ψ
ψ

s
L

PP

sd

d
EI    

2
0

L
s <<                             (2) 

is obtained.  Because sliding occurs in the y-direction, xq was taken to vanish and 

yq  was set equal to the frictional shear stress (τ ) multiplied by the effective 

contact width (b).  The value of b is somewhat arbitrarily chosen to be 0.6 times 

the tube diameter (D).  However it is really only the product bτ  (the shear force 

per unit length or shear flow) which is important in using this result.  Furthermore, 

by equilibrium PLb =τ , so that knowing Lbτ  is equivalent to knowing P  and 

also 2/0 PS −=  was used in Equation (1). 

Since the load is applied at the midpoint, the tangent to the CNT at that 

point is in the x-direction.  Hence one of the boundary conditions is zero rotation 

at the point of application of the load.  The second boundary condition is that the 
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bending moment at the free end of the CNT is zero.  These conditions are written 

as  

0)0( =ψ ,          0)2/( =′ LEIψ                                                (3) 

where prime (′) denotes differentiation with respect to s . 

 

Figure 2.  Schematic representation of non-symmetric loading of a CNT. 

Non-Symmetric Loading 

In this case the CNT is dragged along the substrate by applying the force away 

from the midpoint.  A schematic of this case is shown in Figure 2.  By writing the 

equations for the non-symmetric case from the general equation (1), we obtain 

 

 

,0cos)(
2

2

=−−+ ψ
ψ

saL
L

P

sd

d
EI aLs −<<0                           (4) 

,0cos)(
2

2

=+− ψ
ψ

sa
L

P

sd

d
EI     0<<− sa                                (5) 

Here a  is the distance from the left end of the beam to where the load is applied.  

It will be shown that this non-symmetric case will give better resolution than the 
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symmetric condition case in determining the frictional interaction between the 

CNT and substrate.  Here the boundary conditions are that the bending moments 

at both ends of the CNT are zero.  However the angle ψ at the loading point may 

or may not vanish.  Moreover the field equations (4)-(5) require continuity 

conditions at the load point.  These conditions are that the angle of rotation and 

bending moment are each continuous at 0=s , i.e. 

ψ (0−) = ψ (0+) ,     ψ′(0−) = ψ′(0+)                           (6) 

 

Non-dimensional Analysis 

In order to generalize the analysis for different lengths and diameters of CNTs, 

we convert the equations into dimensionless form.  The dimensionless quantities 

are            

,
2

EI

LP
P =   ,

L

s
s =   ,

L

a
a =   P

EI

bL
==

3τ
τ                                (7) 

 

  

Rewriting equations (2)-(6) gives 

        0cos)5.0(
2

2

=−+ ψ
ψ

sP
ds

d
,   2/10 << s  ,  0)0( =ψ  , 0)2/1( =′ψ                  (8) 

0cos))1((
2

2

=−−+ ψ
ψ

saP
ds

d
,   )1(0 as −<< ,   )0()0(

+− =ψψ ,  0)1( =−′ aψ        (9) 

0cos)(
2

2

=+− ψ
ψ

saP
ds

d
,   0<<− sa ,   )0()0(

+− ′=′ ψψ ,  0)( =−′ aψ                (10) 

 

This dimensionless conversion allows a single result to be used for a variety of 

problems through a simple scaling. 

 

Numerical Solution 

The above equations are solved as initial value problems using standard 

numerical integration software along with a shooting method. Thus for the 



 
8 

 

 

symmetric case an initial guess is needed for the dimensionless moment ψ′(0). 

Equation (8) is then integrated in order to determine ψ′(1/2); the correct value of 

ψ′(0) is the one which causes ψ′(1/2) to equal zero.  This condition corresponds 

to solving a single nonlinear algebraic equation.  For the non-symmetric case, 

initial guesses for ψ(0) and for ψ′(0) are needed.  Equations (9) and (10) were 

then each integrated in order to determine ψ′(1-a) and ψ′(-a).  The correct values 

of ψ(0) and ψ′(0) are found by solving the nonlinear equations corresponding to 

ψ′(1-a)=0 and ψ′(-a)=0. 

As a result of this numerical solution procedure the angle ψ is determined 

at all points along the CNT.  The final deformed shape of the CNT is then 

determined from 

dssX

s

∫=
0

)cos()( ψ    

(11) 

dssY

s

∫−=
0

)sin()( ψ  

using numerical integration.  By observing the deformed shape, it is then possible 

to calculate the frictional interaction which occurred during sliding. 

RESULTS AND DISCUSSION 

Symmetric Loading 

Results were obtained for symmetric loading using the method outlined in the 

previous section. Figure 3 shows the variation of rotation angle (ψ) at various 

points on the CNT as a function of the dimensionless shear stress (τ ) and also of 

the dimensioned frictional shear stress (τ ).  In Figure 3, and in subsequent 

figures, τ  is computed from τ  using typical values of E = 1 TPa, D = 1.3 nm, and 

L = 300 nm.  Note from Figure 3 that as the position away from the midpoint 

increases, so does the angle of rotation.  The maximum angle of rotation that can 

be achieved is 90o.  Also as the value of the shear stress (or equivalently the 

load) increases, so does the rotation angle.  However, as the shear stress 
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increases, the sensitivity of the angle of rotation to the frictional shear stress 

decreases.  

 

     Figure 3.  Rotation angle (ψ) vs. shear stress (τ ) and vs. dimensionless 

shear stress ( ττττ ). 

The dimensionless moment ψ′ is equal to the reciprocal of the 

dimensionless radius of curvature. A plot of the dimensioned radius of curvature 

at the load point vs. either shear stress or dimensionless load is shown in Figure 

4.   
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        Figure 4. Variation of radius of curvature (r) at the load point with 

shear stress (τ ) and with dimensionless shear stress ( ττττ ). 

As indicated in [15], the minimum radius of curvature for a single-walled 

CNT to be in the elastic range is about 8 nm. Here the smallest value of R is 

approximately 12 nm which confirms that the simulation was carried out in the 

elastic range.  It is noted that the assumption of a point load implies that the 

radius of curvature of the AFM tip is less than the radius of curvature of the 

deformed CNT.  Thus the results shown in Figure 4 also allow the checking of 

this assumption for a particular set of results.  Note that a commercially available 

AFM tip can have a radius of curvature as low as 10 nm.  

As discussed earlier, by knowing the rotation angle at every coordinate 

along the CNT and using numerical integration methods, we can determine the 

final deformed shape of CNT.  A plot of such deformed shapes for various values 

of dimensionless load is shown in Figure 5.  As stated earlier an increase in 

frictional shear stress leads to an increase in the bending of the CNT.  In order 

for this measurement method to be practical there needs to be sufficient 

sensitivity of the shape to the shear stress interaction.  It is seen that for τ greater 

than about 300 (which corresponds to L/D = 230 for the typical dimensioned case 

considered with MPa2=τ ), reduced sensitivity becomes an issue.  Note that this 

maximum aspect ratio varies weakly (as the one-third power) with the shear 

stress.  Similarly for low values of τ  the CNT may not bend sufficiently (i.e. for τ  
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less than about 25 from Figure 3, which for the typical case corresponds to L/D = 

100) and hence may then move in a combination of rolling and sliding motion. 

 

Figure 5.  Final shape of cnt in symmetric loading for various values of     ττττ 

(100, 200, 300, 400, 500, 600). 

 

Non-Symmetric Loading 

Results were also obtained for the non-symmetric case using the method 

outlined in the previous section.  However in this case there is the possibility of 

different equilibrium positions existing.  One equilibrium position is for the CNT to 

remain straight and oriented in the same direction as the force; the other 

equilibrium is that the tube bends.  Let τc be the critical shear stress for the 

change of equilibrium positions.  Then if τ > τc, the final shape of the CNT is bent 

and if τ < τc the final shape of the CNT is straight.  This behavior is analogous to 

buckling of a bar under a distributed load.  The critical load τc is also a function of 

the load point location (a).  If the point of application of the load is very close to 

the end of the CNT, shear stress will not cause the CNT to bend.  However in 

such a configuration it is likely that the CNT will slide off the AFM tip rather than 

adhere to it as the AFM tip moves along the substrate.  On the other hand if the 

point of application of the load is close to the midpoint it is more likely that the 
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CNT will bend.  It is noted that in solving the symmetric problem, the rotation 

angle at the load point was forced to be zero which precluded the existence of 

multiple equilibrium positions. 

The simulations were carried out for different values of ‘a’ varying from 

0.3–0.5.  Figure 6 shows the variation of rotation angle ψ(0) with the 

dimensionless shear stress (τ) and with the shear stress τ .  Different curves 

correspond to different values of the load point (a).   

  

 Figure 6. Variation of rotation angle ψ(0) with shear stress (τ ) and with 

dimensionless shear stress ( ττττ ) for non-symmetric condition for various 

values of ‘a’ (0.3, 0.35, 0.4, 0.45, 0.5). 

For sufficiently small values of the shear stress each of the curves start 

with ψ(0) = 900, i.e. the straight configuration.  As the load moves further away 

from the midpoint, the shear stress required to produce a bent configuration 

increases.  The sensitivity of ψ(0) with shear stress becomes low as τ  continues 

to increase. 

Figure 7 shows the variation of dimensionless moment (from which the 

radius of curvature can be readily determined) at the loading point with respect to 

the shear stress for various values of ‘a’.  The curvature increases with 

increasing shear stress and/or increasing load point distance (a). 
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Figure 7. Variation of ψ′(0) with shear stress (τ ) and with dimensionless 

shear stress (ττττ ) for various values of ‘a’ (0.3, 0.35, 0.4, 0.5). 

Figure 8 shows the variation of the rotation angle at the right (long) end of 

the CNT with respect to the shear stress for various values of load point location 

(a).  As the shear stress increases, this end of the CNT rotates through an angle 

which tends to 90o.  For a = 0.3, the CNT remains straight until τ ≅ 125 at which 

point it bends, but the rotation of the longer end still remains close to 900.  When 

the point of application of the load is closer to the midpoint there is a greater 

variation of this rotation angle with an increase in shear stress.  Figure 9 shows 

the variation of angle at the left (short) end of beam with respect to shear stress 

for a variety of load point locations.  Here there is a transition from positive to 

negative angles as the load decreases.  It is noted that for values of τ as high as 

400 (corresponding to an aspect ratio of about 250) there is still sufficient 

sensitivity of the rotation angle to the shear stress. 

 

                 



 
 

 

 

Figure 8.  Rotation angle ψ(1-a) (right end of beam) vs. shear stress (τ ) and 

vs. dimensionless shear stress (ττττ ) for various values of ‘a’ (0.3, 0.4, 0.5). 

 

  

 

Figure 9. Variation of rotation angle (ψ (-a)) with shear stress (τ ) and with 

dimensionless shear stress (ττττ ) for various values of ‘a’ (0.3, 0.35, 0.4, 0.45, 

0.5). 
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Figures 10 and 11 show the final shape of the CNT for a = 0.4 and a = 0.3 

respectively. The two different equilibrium positions can be seen in Figure 11 for 

a = 0.3.  Smaller friction leads to a straight tube in the direction of travel while 

larger friction produces a bent tube.  A straight tube equilibrium does not occur 

for a = 0.4 in the range investigated, although such solutions exist for smaller 

values of τ as indicated in Figures 8 and 9.  As was mentioned the resolution to 

determine the frictional interaction is greater for the case of non-symmetric 

loading than for symmetric loading.  Beyond a certain load the change in shape 

with increasing frictional interaction becomes insufficient to obtain reasonable 

resolution.  However, as stated earlier, if the value of “a” is too small, the tube 

can slip off of the AFM tip. 

 

 

 

Figure 10.  Deformed shape of nanotube for a = 0.4 and for various values 

of shear stress ττττ  (100, 200, 300, 400). 
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Figure 11.  Final shape of nanotube for a = 0.3 and for various values of 

shear stress ττττ  (100, 200, 300, 400). 
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Dragging of CNT on an Anisotropic Substrate 

 

Modeling of an Anisotropic Substrate: 

 

Figure 12: CNT placed on an anisotropic substrate  

The above figure shows a simplified model of a nanotube on an 

anisotropic substrate.  Substrate is represented by dotted lines along the vertical 

direction and continuous lines in horizontal direction stating that there are two 

independent directions and material properties differ along these two directions. 

When the nanotube is placed parallel to the horizontal direction the shear 

stress offered by the substrate is designated as 1τ . On the other hand when 

nanotube is placed along the vertical direction shear stress offered by the 

substrate is designated as 2τ .Now if the nanotube is placed along an inclined 

axis at an angle to both the cases specified above ,  the shear stress offered by 

the substrate is taken to beτ . This shear stress ‘τ ’ should be a function of 21 ,ττ  

and the angle of inclination.    
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As specified earlier angle ‘ψ’ is the angle between the tangent at any 

coordinate of the CNT and an axis perpendicular to the loading direction. 

Because of the direction dependent shear stress an angle of ‘β’ is included in the 

analysis which is taken as the angle between the loading direction and the y-axis. 

The direction between the line perpendicular to the tangent at a point and the y-

axis is taken to be angle ‘γ’. By geometry this angle is an addition of β and ψ.  ‘τ ’ 

is now a function of 1τ , 2τ and γ and expressed as 

)2cos(
22

2121 γ
ττττ

τ
−

+
+

=                βψγ +=                                (12) 

Analysis of Anisotropic Substrate: 

The deformation still follows elastica theory as in first case. Based on the general 

equation (1) equations for the particular case can be formed. 

0cos)( 02

2
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sbS
sd
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Figure 13: Shear Force at the loading point 
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By equilibrium 

∫
−

−=
aL

sbdS
0

0 τ                                                (15) 

∫
−

=′
0

0

a

sbdS τ  

 

 

The above equations are the shear force for right hand side and left hand 

side beam respectively. A schematic of shear force diagram is shown in figure 

13. For a symmetric case since the load is applied at the midpoint, the tangent to 

the CNT at that point is in the x-direction.  Hence one of the boundary conditions 

is zero rotation at the point of application of the load.  The second boundary 

condition is that the bending moment at the free end of the CNT is zero.  These 

conditions are written as  

0)0( =ψ      0)2/( =′ LEIψ      (16) 

For a non-symmetric case ‘ a  ‘ is the distance from the left end of the beam to 

where the load is applied. Here the boundary conditions are that the bending 

moments at both ends of the CNT are zero.  However the angle ψ at the loading 

point may or may not vanish.  Moreover the field equations require continuity 

conditions at the load point.  These conditions are that the angle of rotation and 

bending moment are each continuous at 0=s , i.e. 

ψ (0−) = ψ (0+) ,  )0()0(
+− ′=′ ψψ  , 0)( =−′ aLψ  , 0)( =−′ aψ                     (17) 

following the same rules of generalization equations are converted into 

dimensionless forms 

L

s
s =  , 

L

a
a =  , 

EI

bL
3τ
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EI

LS
S o

2

0 = , 
EI

LS
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2
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Rewriting equations 

,0cos)( 02

2
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ψ
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ds

d
      )1(0 as −<<  

)0()0(
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dsS τ
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Numerical Solutions: 

The above equations are solved as initial value problems using standard 

numerical integration software along with a shooting method. Thus for a case an 

initial guess is needed for the angle at the loading point Ψ(0) ,dimensionless 

moment ψ′(0) and an initial guess for the shear force ( 0S  and )0S ′ on both sides 

of the beam . Equation is then integrated in order to determine ψ′(1-a) and 

)( a−′ψ .The correct value is the one which causes ψ′ at both ends  to equal zero .   

Because of orientation dependent shear stress the shear force on either side of 

beam is not constant and it is found by integrating the shear stress expression 

over the length. So for the given initial guess apart from converging for moment 

at either end to be zero care should be taken to see that the  shear force 

equation is also satisfied. The condition of convergence is taken approximately 

equal to zero since it is a numerical solution. The approximation is made only 

after the sixth decimal place that is 1e-6 is approximately equal to zero. 

As a result of this numerical solution procedure the angle ψ is determined 

at all points along the CNT.  The final deformed shape of the CNT is then 

determined from 
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)sin()( ψ
                                            (22) 

Results and Discussion: 

The analysis was carried out two different ways. First part includes the effect of 

angle β on a consistently increasing τ 2/τ 1 ratio for different values of length ‘a’. 

For this the term 2/)( 21 τττ +=ave  is maintained constant and the ratio of τ 2/τ 1 is 

varied.  

Symmetric loading: 

Figure 14 shows the variation of rotational angle Ψ(0) with respect to τ 2/τ 1 ratio. 

Here the graph is plotted for a constant value of a= 0.5 and 300=aveτ  .The value 

of angle of inclination is varied to find the result. For the extreme cases of angle β 

(00 and 900) system is symmetric and hence the rotational angle is zero. For 

other values of β there is an increase in the rotation angle with increasing τ 2/τ 1 

ratio. The rotation angle does not vanish here because of the asymmetry caused 

by the angle of inclination. 

Figure 15 shows the variation of dimensionless moment ψ’ as a function of 

τ 2/τ 1.  Dimensionless moment is equal to the reciprocal of the dimensionless 

radius of curvature. Hence ψ’ increases with increasing ratio of shear stress for 

smaller values of β. When β approaches 900 ψ’ decreases with increase in shear 

stress. For τ 2/τ 1 < 1 there is an increase in the dimensionless moment with 

increasing β stating that shear stress offered by the substrate is more. On the 

other hand for τ 2/τ 1 >1 the dimensionless moment decreases with increasing β 

stating that shear stress offered by the substrate is less in turn less friction is 

offered . The value of dimensionless moment for extreme cases of τ 2/τ 1 is equal 

in magnitude. This is because for the extreme cases value of shear stress are 

interchanged and hence the values are same. 
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Figure 14: Plot showing the variation of Ψ(0) for a = 0.5 and 300=aveτ  

 

Figure 15: Plot showing the variation of Ψ’(0) for a = 0.5 and 300=aveτ  
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For a given value of β in the 0-900 degree range the value of Ψ(1-a) 

increases with increasing τ 2/τ 1 ratio except for the extreme cases of β. The 

angles are equal for the extreme cases because the nanotube is subjected to a 

symmetric condition. If the amount of shear stress decreases for the same value 

of applied load there will be more bending of nanotube and hence more angle of 

rotation. On the other hand for β = 300 and 600 angle of rotation at the left end of 

beam -Ψ(-a) decreases with increasing τ 2/τ 1  . Figures 16 and 17 show the 

variation of rotation angle to an increasing τ 2/τ 1 ratio. 

 

Figure 16: Plot showing the variation of ψ(1-a) for a = 0.5 and 300=aveτ  
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Figure 17: Plot showing the variation of ψ(-a) for a = 0.5 and 300=aveτ  

By knowing the rotation angle at every coordinate along the CNT and 

using numerical integration methods final deformed shape of the nanotube can 

be determined.The final shape of the nanotube for a constant value of β and 

varying τ 2/τ 1 is shown in Figures 18, 19, 20 and 21. The deformed shape of the 

nanotubes is plotted for a constant value of 300=aveτ . 

In the case of increasing β the shear stress offered by the substrate is 

more when τ 2/τ 1 < 1  . The amount of bending of the nanotube is proportional to 

the radius of curvature which is determined from the dimensionless moment.  For 

the same value of load final shape of nanotube is plotted for varying shear stress 

ratio τ 2/τ 1. The shear stress ratio is changed by changing the substrate. When 

the nanotube is placed horizontal effect of shear stress 1τ  is more as compared 

to 2τ . For higher value of 1τ  there is more shear stress offered by the substrate 

for the applied load and hence less bending. When the value of shear stress 1τ  

decreases for the same value of applied load there is more bending of nanotube. 
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Figure 18: Final shape of nanotube for a = 0.5 and β = 0(τ ave = 300 and  

τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2) 

 

Figure 19: Final shape of nanotube for a = 0.5 and β = 90 (τ ave = 300 and  

τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2) 
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Figure 20: Final shape of nanotube for a = 0.5 and β = 30(τ ave = 300 and  

τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2) 

 

Figure 21: Final shape of nanotube for a = 0.5 and β = 60 (τ ave = 300 and  

τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2) 
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When the nanotube is placed vertical effect of shear stress 2τ  is more as 

compared to 1τ . For higher value of 2τ  there is more shear stress offered by the 

substrate for the applied load and hence less bending. When the value of shear 

stress 2τ  decreases for the same value of applied load there is more bending of 

nanotube. 

For the inbetween cases of angle of orientation β (300,600) the effect of 

shear stress 1τ  is more for the right side beam and left side beam is affected by 

shear stress 2τ . 

Varying Shear Stress Average: 

The above analysis is carried out for a constant value of τ ave = 300. Now if the 

system is subjected to varying average shear stress the following results can be 

achieved. The only disadvantage with this analysis is that the initial guesses of 

angle of rotation, moment and the shear forces on either side of the beam needs 

to be a nominal guess for the problem to converge. So the analysis is carried out 

for a series of τ ave ranging from 300-100 which holds good for all cases 

discussed below. Variation of the angle of rotation at the loading point as well as 

at either ends of the CNT and moment for individual cases are shown below. 

Here apart from varying the shear stress (τ ave) ratio τ 2/τ 1 is also varied. 

Figures 23(a) and 24(a) shows the variation of angle of rotation with 

respect to τ ave. The analysis is carried out for various values of applied load and 

for various substrates in terms of ratio of shear stress. The angle of rotation at 

the loading point increases with increasing τ ave for substrates having higher 

values of shear stress 1τ . The results are reversed for substrates having higher 

value of shear stress 2τ . The value of angle of rotation for the symmetric cases of 

β=00 and β=900 are equal to zero. The value of angle of rotation decreases for a 

constant value of τ 2/τ 1 and increasing β. 

Figure 22 (a), 23(b), 24(b) and 25(a) show the variation of dimensionless 

moment with respect to τ ave. For τ 2/τ 1 <1 dimensionless moment increases with 

increasing τ ave and vice versa for τ 2/τ 1 >1. As the value of shear stress 1τ  

decreases the amount of bending of nanotube increases as less shear stress is 
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offered for the applied load. This states an increase in the bending moment at the 

loading point. On the other hand for τ 2/τ 1 >1 dimensionless moment depends 

mainly on the shear stress τ 2.     

Figure 22, 23, 24 and 25 show the variation of angle of rotation at either 

ends with respect to τ ave. More the angle of rotation more is the bending of CNT. 

One can see that the value of angle of rotation for cases of β=00 and β=900 are 

exactly equal in magnitude which once again states that these are symmetric 

conditions. The sensitivity of the simulation to find the angle of rotation reduces 

for higher values of shear stress. For the same value of load if the shear stress 

offered by the substrate increases the amount of bending of nanotube decreases 

and so does the angle of rotation.  

 



 
29 

 

 

 
(a) 

 

 
(b) 

 
(c) 

 
 
 
           

Figure 22: Plot showing the variation of  (a) ψ’(0) , (b) ψ(1-a) and (c) Ψ(-a) vs. a 

series of aveτ  for a constant value of a = 0.5 and β=0. 
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(a) 

 
(b) 

                                       
               (c) 

 
                                      (d) 
 

Figure 23: Plot showing the variation of (a) ψ (0), (b) ψ’(0) , (c) ψ(1-a) and (d) Ψ(-a) 

vs. a series of aveτ  for a constant value of a = 0.5 and β=30. 
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(a) 

 
(c) 

 
(b) 

 
(d) 

 
 
Figure 24: Plot showing the variation of (a) ψ (0), (b) ψ’(0) , (c) ψ(1-a) and (d) Ψ(-a) 

vs. a series of aveτ  for a constant value of a = 0.5 and β=60. 
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(a) 

 
(b) 

 
(c) 

 

Figure 25: Plot showing the variation of  (a) ψ’(0) , (b) ψ(1-a) and (c) Ψ(-a) 

vs. a series of aveτ  for a constant value of a = 0.5 and β=0 
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Non-Symmetric Loading: 
In the following result section length ‘a’ is kept constant and angle β is varied. 

Figure 26 and 27 shows the variation of angle of rotation for varying τ 2/τ 1. Angle 

of rotation at the loading point increases with increasing τ 2/τ 1 for all cases of β 

except for the case of β = 90 where there is a decrease in the angle of rotation.  

The change in angle of rotation depends on shear stress offered by the substrate 

and also the effect of shear stress based on the orientation of the nanotube. 

 

Figure 26: Plot showing the variation of ψ(0) for a = 0.4 (τ ave = 300 and  

τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2) 

 

Figure 27: Plot showing the variation of ψ(0) for a = 0.3 (τ ave = 300 and 

τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2) 
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Figure 28 and 29 shows the variation of dimensionless moment with 

respect ratio of τ 2/τ 1 . Dimensionless moment is equal to the reciprocal of the 

dimensionless radius of curvature. Hence ψ’ increases with increasing ratio of 

shear stress for smaller values of β. For τ 2/τ 1 < 1 there is an increase in the 

dimensionless moment with increasing β stating that orientation of atoms 

between the nanotube and substrate is more favourable for bending for higher 

values of β. On the other hand for τ 2/τ 1 >1 the dimensionless moment 

decreases with increasing β stating that shear stress offered by the substrate is 

less and hence less bending. Sensitivity also decreases for higher values of β. 

 

Figure 28: Plot showing the variation of ψ’(0) for a = 0.4 (τ ave = 300 and  

τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2) 
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Figure 29: Plot showing the variation of ψ’(0) for a = 0.3 (τ ave = 300 and  

τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2) 

Figure 30-33 show that the rotation angles at the ends of the beam vary 

almost in a similar manner for the non-symmetric cases of a = 0.4 and a = 0.3. 

For the extreme case of β= 900 the angle of rotation at either ends of the beam 

decreases with an increase in shear stress ratio and vice versa for other cases of 

β shown. As the shear stress ratio decreases for the applied load  the right end of 

the CNT rotates through an angle which tends to 900. But on the left end of CNT 

there is a transition from negative to positive angles as the ratio increases. If 

there is a increase in shear stress for the applied load there is less bending of 

nanotube and hence less angle of rotation at either ends of CNT. 
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Figure 30: Plot showing the variation of ψ(1-a) for a = 0.4 (τ ave = 300 and 

 τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2) 

 

 

Figure 31: Plot showing the variation of ψ(1-a) for a = 0.3 (τ ave = 300 and  

τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2). 
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Figure 32, 33: Plot showing the variation of ψ(-a) for a = 0.4 and ψ(-a) for a = 

0.3 respectively (τ ave = 300 and τ 2/τ 1 = 0.5, 0.67 ,1, 1.5, 2) 
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By knowing the rotation angle at every cooridnate along the CNT and 

using numerical integration methods final deformed shape of the nanotube can 

be determined.The final shape of the nanotube for a constant value of β and 

varying τ 2/τ 1 is shown below. The nanotubes are plotted for a constant value of 

300=aveτ . 

Figures 34 and 35 shows the final shape of the CNT for a = 0.4 and a = 

0.3 and for various values of β and a constant value of τ ave = 300.Smaller friction 

leads to a straight tube in the direction of travel while larger friction produces a 

bent configuration. For the cases discussed below all cases produces a bent 

equilibrium shape of the CNT.  

For the case of β = 00 and 2 different values of a = 0.4 and 0.3 the longer 

end that is the right side beam bends through a larger angle as compared to the 

left beam. As the orientation of the nanotube is horizontal τ 1 plays a major role in 

determining the shear stress. The value of τ 1 is a direct measure of the shear 

stress offered by the substrate. As the value of τ 1 decrease there is more 

bending of nanotube.  As the point of application of the load moves away from 

the midpoint the accuracy of finding the shear stress from deformed shape of 

nanotube increases.  For the other extreme case of β = 900  the effect of τ 2 is 

more since the nanotube is placed in the vertical direction with respect to 

substrate. 
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(a) 

 

 

(b) 

                                (c)                                                                      (d) 

Figure 34: Final shape of CNT for a = 0.4 (τ ave = 300 and τ 2/τ 1 = 0.5, 0.67 ,1, 

1.5, 2)  (a) β = 00 , (b) β = 300  ,(c) β = 600  ,(d) β = 900   
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(a) 

 

 

(b) 

 

                              (c)                                                                         (d) 

Figure 35: Final shape of CNT for a = 0.3 (τ ave = 300 and τ 2/τ 1 = 0.5, 0.67 ,1, 

1.5, 2)  (a) β = 00 , (b) β = 300  ,(c) β = 600  ,(d) β = 900   
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Conclusion: 

A simple method to determine the frictional interaction between a CNT and 

substrate using an AFM has been analyzed to determine its feasibility.  Modeling 

has demonstrated that this technique is practical to use for a variety of CNT 

diameters and lengths, provided the aspect ratio is within a range of 

approximately 100-250 which depends weakly on the frictional interaction.  For 

high values of the frictional interaction there is insufficient change in the final 

shape of the CNT to accurately resolve the shear stress.  For low values of the 

frictional interaction the tube may roll rather than slide.  Results are best if the 

AFM tip is placed somewhat away from the midpoint of CNT before dragging.  

However if the value of “a” is too small, then the tube can slip off of the AFM tip.  

The advantage of this technique is its simplicity.  It does not require calibration of 

the AFM cantilever stiffness, as the force that the AFM exerts is not measured.  

For the same reason any force due to frictional interaction between the AFM tip 

and the substrate also does not affect the accuracy of the measurement. 

The method utilized for the isotropic substrate is extended to find the 

results for an anisotropic substrate. This analysis gives information about the 

orientation of nanotube with respect to substrate and explains the effect of 

changing the angle of inclination. The configuration of the interlocking carbon 

atoms are the essential source of friction at atomic level. Changing the 

orientation of the nanotube changes the atomic configuration and hence the 

friction. Results are best fit if the AFM tip is placed a bit away from the midpoint 

of the CNT. The simulation is limited to a series of τ ave values where the solution 

converges for the given equations. Sensitivity also becomes a issue for higher 

values of shear stress average (τ ave). 
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Appendix A 

A.1 : MATLAB program for Symmetric condition 

Code 1: 

%program for symmetric condition to find psi(0.1) psi(0.2)and psi(0.5) 

clear all 

clc 

global p 

p = 1;                        %value of dimensionless load 

coord=1;                   %variable used for continuous plot and not as single points 

while (p <= 600) 

lspan =  [0,0.1,0.2,0.5]; 

low = 0; 

high = 25; 

z0 = [0 (low+high)/2]; 

[s1,z] = ode23('symmetry',lspan,z0);          %solving ODE 

x = length (s1);                                            %finding length of s1 

while ((z(x,2)*10000000 >= 1) || (z(x,2)*10000000 <= -1))    

                                                                    %while loop for condition psi'(0.5)=0 

    

    if z(x,2)>0 

        high = (low+high)/2; 

    else 

        low = (low+high)/2; 

    end 

    z0 = [0 (low+high)/2]; 

    [s1,z] = ode23('symmetry',lspan,z0); 

     x = length (s1); 

end 

    [s1,z] = ode23('symmetry',lspan,z0); 

    c=p; 
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    datax(coord) = 6657.0978*c*1e-6;           %calculating shear stress from P 

    datay(coord) = z(2,1)* (180/pi);                %conversion of psi(0.1) to degrees   

    dataz(coord) = z(3,1)* (180/pi);                %conversion of psi(0.2) to degrees  

    dataw(coord) = z(x,1)* (180/pi);                %conversion of psi(0.5) to degrees  

       

if p==1  

    p=p+9; 

else 

p=p+10; 

end 

coord=coord+1; 

end; 

figure(1) 

plot(datax,datay,'LineWidth',3)                            % Plot of psi(0.1) vs shear stress  

hold on 

plot(datax,dataz,'LineWidth',3)                            % Plot of psi(0.2) vs shear stress  

hold on 

plot(datax,dataw,'LineWidth',3)                           % Plot of psi(0.5) vs shear stress  

hold on 

Code 2: 

Program calls a function by name symmetry. 

function zdot  = symmetry(s1,z)          % function symmetry used for solving ODE 

global p 

zdot = [z(2);(-p*(0.5-s1)*cos(z(1)))];    % z(1) is psi and z(2) is psi' 

end 
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Code 3: 

%program for symmetric condition  to find the variation of R vs shear  

clear all 

clc 

global p 

p = 100;                  % high value of P to get a clear view on least values of R 

coord = 1;               %  variable used for continuous plot and not as single points 

while (p <= 600) 

lspan =  [0 0.5];      %length of CNT 

low = 0; 

high = 25; 

z0 = [0 (low+high)/2]; 

[s1,z] = ode23('symmetry',lspan,z0);                         %solving ODE 

x = length (s1);                                                          %finding length of s1 

while ((z(x,2)*10000000 >= 1) || (z(x,2)*10000000 <= -1))  

                                                                     %while loop for condition psi'(0.5)=0 

    

    if z(x,2)>0 

        high = (low+high)/2; 

    else 

        low = (low+high)/2; 

    end 

    z0 = [0 (low+high)/2]; 

    [s1,z] = ode23('symmetry',lspan,z0); 

     x = length (s1); 

end 

    [s1,z] = ode23('symmetry',lspan,z0); 

     c=p; 

     D(coord) = 6657.0978*c*1e-6;               %calculating shear stress from P 

     B = z(x,1)*(180/pi);                                 %output of psi(0.5) 

     A(coord) = z(1,2) ;                                  %output of psi'(0)    
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     L = 300;                                                  %length of nanotube 

     R(coord) = (L/A(coord));                          %radius of curvature 

if p==10  

    p=p+40; 

else 

p=p+20; 

end 

coord = coord+1; 

end; 

plot(D,R) 
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A-2 : MATLAB program for Non-symmetric condition 

Code 1: 

% program showing variation of psi(0),psi'(0),psi(-a) and psi(1-a) vs shear stress 

clear all 

clc 

global P                     %assigning value for dimensionless constant P 

P = 400; 

global a                     %assigning value for length 'a' 

a = 0.4; 

global s11                  %assigning length for beam from 0 to (1-a) 

s11 = [0 (1-a)]; 

global s22                  %assigning length for beam from 0 to -a 

s22 = [0 -a]; 

global dataC               %variable for plotting psi(1-a) 

global dataD               %variable for plotting psi(-a) 

global X                      %variable assigned to P dimensionless load 

npts = 150; 

Ps = linspace(400,0,npts);            %varying load  

z0 = [0.2 19];      %initial guess for psi(0) and psi'(0) 

global coord       %variable plotting as continuous plots and not as discrete points 

 coord = 1; 

for i = 1:npts 

      P = Ps(i); 

   dataT(coord) = 6657.0978*P*1e-6;  

                            %conversion of shear stress from dimensionless load 

   B = fsolve(@beam,z0);                 %solving both equations 

   z0 =  B; 

   dataE(coord) = B(1)*(180/pi);       %storing psi(0) as an array 

   dataF(coord) = B(2);                     %storing psi'(0) as an array 

   coord = coord + 1; 

end 
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figure(1) 

plot(dataT,dataE,'k');   %plot for shear stress and psi(0) 

hold on 

figure(2) 

plot(dataT,dataF,'k') ;  %plot for shear stress and psi'(0) 

hold on 

figure(3) 

plot(dataT,dataC,'k') ;  %plot for shear stress and psi(1-a) 

hold on 

figure(4) 

plot(dataT,dataD,'k') ; %plot for shear stress and psi(-a) 

hold on 

 

Code 2: 

function A = beam(z0) 

global s11 s22 P dataC dataD X coord 

X = P; 

 [s1,z] = ode23('myfun1',s11,z0);      %ode23 for s1>0 

%indicating output of ode for s1>0 

x = length(s1);                                  %number of outputs 

A(1) = z(x,2);                                    %Moment(1-a) 

dataC(coord) = z(x,1)*(180/pi);        %psi(1-a) conversion in degrees 

 [s2,z] = ode23('myfun',s22,z0);       %ode23 for s2<0 

%indicating output of ode for s1<0 

 y = length(s2);                                %number of outputs 

 A (2) = z(y,2);                                 %Moment(-a) 

dataD(coord) = -z(y,1)*(180/pi);      %psi(-a) conversion in degrees 
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Code 3: 

function y1 = myfun1(s1,z)      

                                       % ODE solving for right side beam (length from 0 to 1-a) 

global P a  

y1 = [z(2); (-P*((1-a)*cos(z(1))))+(P*(s1*cos(z(1))))];  

                                        %z(1)  is psi and z(2) is psi' 

end  

 

function y2 = myfun(s2,z)  

                                      % ODE solving for left side beam (length from -a to 0) 

global P a   

y2 =[z(2) ; ((P*a*cos(z(1)))+(P*(s2*cos(z(1)))))];  

                                       %z(1)  is psi and z(2) is psi' 

end 

 

Code 4: 

% program for finding the shape in non symmetric condition 

clear all 

clc 

global P            %assigning value for dimensionless constant P 

P = 300; 

global a            %specifying value of a distance from right end of the the beam 

a = 0.4; 

global del         %small length considered as del 

del = 0.005;  

global s11         %assigning length for beam from 0 to (1-a)      

s11 = [0:del:(1-a)];  %length for right side beam 

global s22               %assigning length for beam from 0 to -a 

s22 = [0:-del: -a];     %length for left side beam 

z0 = [0.265 15.6742];     %guess for psi0 = e and psip0 = f 

B = fsolve(@beam,z0)   %solving for correct values of psi(0) and psi'(0) 
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[s1,z] = ode23('myfun1',s11,B)     %numerical integration part for right side beam 

x = length(s1)                                %number of output 

del = 0.005;                   %least length division on either side of beam for analysis 

XX(1) = 0; 

YY(1) =  0; 

psi(1) = z(1,1); 

F(1) = cos(psi(1)); 

G(1) = -sin(psi(1)); 

dataX(1) = 0; 

dataY(1) = 0; 

coord = 2;                                        %variable for continuous plot 

for i = 3:2:x                                      % for loop for final shape of right side beam  

   psi(i-1) = z(i-1,1); 

   psi(i) = z(i,1); 

   F(i-1) = cos(psi(i-1)); 

   F(i) = cos(psi(i)); 

   G(i) = -sin(psi(i)); 

   G(i-1) = -sin(psi(i-1)); 

   XX(i) = (0.005/3)*(F(i-2)+(4*F(i-1))+F(i))+ XX(i-2); 

   YY(i) = (0.005/3)*(G(i-2)+(4*G(i-1))+G(i))+ YY(i-2); 

   dataX(coord) = XX(i); 

   dataY(coord) = YY(i); 

   coord = coord+1; 

end 

plot(dataX,dataY,'m')                       %plot showing final shape of right side beam 

   axis tight square; 

   hold on 

[s2,z] = ode23('myfun',s22,B)          %numerical integration part for left side beam 

y = length(s2); 

del = -0.005; 

XX(1) = 0; 
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YY(1) =  0; 

psi(1) = z(1,1); 

F(1) = cos(psi(1)); 

G(1) = sin(psi(1)); 

coordi = 2;                                        %variable for continuous plot 

for i = 3:2:y                                       %for loop for final shape for left side beam 

   psi(i-1) = z(i-1,1); 

   psi(i) = z(i,1); 

   F(i-1) = cos(psi(i-1)); 

   F(i) = cos(psi(i)); 

   G(i) = -sin(psi(i)); 

   G(i-1) = -sin(psi(i-1)); 

   XX(i) = (del/3)*(F(i-2)+(4*F(i-1))+F(i))+ XX(i-2); 

   YY(i) = (del/3)*(G(i-2)+(4*G(i-1))+G(i))+ YY(i-2); 

   dataXX(coordi) = XX(i); 

   dataYY(coordi) = YY(i); 

   coordi = coordi+1; 

  end 

 plot(dataXX,dataYY,'m')              %plot showing the final shape for left side beam 

   axis tight square; 

   hold on 
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A- 3 : MATLAB program for anisotropic substrate 

Code 1: 

%program to find the final shape of nanotube for various orientation angle 

clear all 

clc 

d = 1.3e-9;              %diameter of CNT 

b = 0.6*d;               %interaction width of CNT 

L = 300e-9;            %length of CNT 

E = 1e9;                 %young's modulus of CNT 

I = (pi/64)*(d^4);     %Second moment of cross-sectional area 

global a s11 s22 shear1 shear2 t1 t2 beta del 

a = 0.5;                   %length at which load is applied 

del = 0.005;            %length of individual division  

s11 = 0:del:(1-a);    %length of CNT on right side beam                

s22 = 0:-del:-a;       %length of CNT on left side beam  

t1 = 300;                 %shear stress when CNT is parallel to horizontal direction 

t2 = 300;                 %shear stress when CNT is parallel to vertical direction 

tave = (t1+t2)/2;      %shear stress average 

angle = 0;               %orientation angle beta in degrees 

beta = (pi/180)*angle;       %orientation angle beta in radians 

shear1 =  -150;                 %initial guess for shear force on right side beam 

shear2 =   150;                 %initial guess for shear force on left side beam 

z0 = [-0 16];             %initial guess for rotation angle and moment at loading point 

B = fsolve(@beam,z0)      %command for non-linear equation solving 

[s1,z] = ode23('myfun1',s11,B);     %ode solving for right side beam 

x = length(s1);                               %number of outputs 

A(1) = z(x,2);                                 %moment at (1-a) 

psi(1) = z(1,1);                               %angle at the first point 

F(1) = cos(2*(psi(1)+beta)); 

XX(1) = ((t1-t2)/2)*F(1)*del;           %second term in shear stress integration 

   for i = 3:2:x 
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   psi(i-1) = z(i-1,1); 

   psi(i) = z(i,1); 

   F(i-1) = cos(2*(psi(i-1)+beta)); 

   F(i) = cos(2*(psi(i)+beta)); 

   XX(i) = ((t1-t2)/2)*(del/3)*(F(i-2)+(4*F(i-1))+F(i))+ XX(i-2); 

   end 

X = XX(i); 

YY = ((t1+t2)/2)*(1-a);                      %first term in shear stress integration 

shear3 = -X-YY                                %calculated shear force 

diff = abs(shear3-shear1)                %check for convergence for shear1 

[s2,z] = ode23('myfun',s22,B);         %ode solving for left side beam 

y = length(s2);                                 %number of outputs 

psi(1) = z(1,1);                                 %angle at first point 

A(2) =  z(y,2); 

F(1) = cos(2*(psi(1)+beta)); 

AA(1) = ((t1-t2)/2)*F(1)*del;   

       for j = 3:2:y 

   psi(j-1) = z(j-1,1); 

   psi(j) = z(j,1); 

   F(j-1) = cos(2*(psi(j-1)+beta)); 

   F(j) = cos(2*(psi(j)+beta)); 

   AA(j) = ((t1-t2)/2)*(del/3)*(F(j-2)+(4*F(j-1))+F(j))+ AA(j-2); 

       end 

Y = AA(j);                                         %second term in shear stress integration 

BB = ((t1+t2)/2)*a;                           %first term in shear stress integration 

shear4 = Y+BB                                %shear force for left side beam 

diff1 = abs(shear4-shear2)              %check for convergence for shear2 

while (diff>1e-4*tave || diff1>1e-4*tave)   

                                               %check for convergence for both sides of the beam 
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if (diff>1e-4*tave ) 

    shear1 =  shear3;               %updating with new shear force value for right side 

beam 

end 

if (diff1>1e-4*tave ) 

    shear2 = shear4;           %updating with new shear force value for left side 

beam 

end 

B = fsolve(@beam,z0)      

          %same steps from 23-64 followed with updated value of shear force guess 

[s1,z] = ode23('myfun1',s11,B); 

x = length(s1); 

A(1) = z(x,2); 

psi(1) = z(1,1); 

F(1) = cos(2*(psi(1)+beta)); 

XX(1) = ((t1-t2)/2)*F(1)*del; 

   for i = 3:2:x 

   psi(i-1) = z(i-1,1); 

   psi(i) = z(i,1); 

   F(i-1) = cos(2*(psi(i-1)+beta)); 

   F(i) = cos(2*(psi(i)+beta)); 

   XX(i) = ((t1-t2)/2)*(del/3)*(F(i-2)+(4*F(i-1))+F(i))+ XX(i-2); 

   end 

X = XX(i); 

YY = ((t1+t2)/2)*(1-a); 

shear3 = -X-YY 

diff = abs(shear3-shear1)      

[s2,z] = ode23('myfun',s22,B); 

y = length(s2); 

psi(1) = z(1,1); 

A(2) =  z(y,2); 
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F(1) = cos(2*(psi(1)+beta)); 

AA(1) = ((t1-t2)/2)*F(1)*del; 

       for j = 3:2:y 

   psi(j-1) = z(j-1,1); 

   psi(j) = z(j,1); 

   F(j-1) = cos(2*(psi(j-1)+beta)); 

   F(j) = cos(2*(psi(j)+beta)); 

   AA(j) = ((t1-t2)/2)*(del/3)*(F(j-2)+(4*F(j-1))+F(j))+ AA(j-2); 

       end 

Y = AA(j); 

BB = ((t1+t2)/2)*a; 

shear4 = Y+BB 

diff1 = abs(shear4-shear2) 

end 

 [s1,z] = ode23('myfun1',s11,B)  %solving for final shape of CNT for right side 

beam 

    X(1) = 0; 

Y(1) =  0; 

psi(1) = z(1,1); 

F(1) = cos(psi(1)); 

G(1) = -sin(psi(1)); 

dataX(1) = 0; 

dataY(1) = 0; 

coord = 2;    %variable to get a continuous plot 

                 for i = 3:2:x 

   psi(i-1) = z(i-1,1); 

   psi(i) = z(i,1); 

   F(i-1) = cos(psi(i-1)); 

   F(i) = cos(psi(i)); 

   G(i) = -sin(psi(i)); 

   G(i-1) = -sin(psi(i-1)); 
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   X(i) = (0.005/3)*(F(i-2)+(4*F(i-1))+F(i))+ X(i-2); 

   Y(i) = (0.005/3)*(G(i-2)+(4*G(i-1))+G(i))+ Y(i-2); 

   dataX(coord) = X(i); 

   dataY(coord) = Y(i); 

   coord = coord+1; 

                 end 

plot(dataX,dataY,'m')               %plot showing final shape of right side beam 

   axis tight square; 

   hold on 

[s2,z] = ode23('myfun',s22,B)       %solving for final shape of CNT for left side 

beam 

X(1) = 0; 

Y(1) =  0; 

psi(1) = z(1,1); 

F(1) = cos(psi(1)); 

G(1) = sin(psi(1)); 

coordi = 2;        %variable to get a continuous plot 

                     for i = 3:2:y 

   psi(i-1) = z(i-1,1); 

   psi(i) = z(i,1); 

   F(i-1) = cos(psi(i-1)); 

   F(i) = cos(psi(i)); 

   G(i) = -sin(psi(i)); 

   G(i-1) = -sin(psi(i-1)); 

   X(i) = (-del/3)*(F(i-2)+(4*F(i-1))+F(i))+ X(i-2); 

   Y(i) = (-del/3)*(G(i-2)+(4*G(i-1))+G(i))+ Y(i-2); 

   dataXX(coordi) = X(i); 

   dataYY(coordi) = Y(i); 

   coordi = coordi+1; 

                     end 

 plot(dataXX,dataYY,'m')            %plot showing the final shape for left side beam 
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   axis tight square; 

   hold on 

 

Code 2: 

function A = beam (z0) 

global s11 s22 a  dataC dataD coord x y 

 [s1,z] = ode23('myfun1',s11,z0);   %ode23 for s1>0 

                                                       %indicating output of ode for s1>0 

x = length(s1);                                %number of outputs 

A(1) = z(x,2);                                  %Moment(1-a) 

dataC(coord) = z(x,1)*(180/pi);      %psi(1-a) conversion in degrees 

 [s2,z] = ode23('myfun',s22,z0);      %ode23 for s2<0 

                                                         %indicating output of ode for s1<0 

 y = length(s2);                                 %number of outputs 

 A (2) = z(y,2);                                  %Moment(-a) 

dataD(coord) = -z(y,1)*(180/pi);       %psi(-a) conversion in degrees 

Code 3: 

function y1 = myfun1(s1,z)  

                                       % ODE solving for right side beam (length from 0 to 1-a) 

global shear1 shear2  a t1 t2 beta s11 s22 

y1 = [z(2); (shear1+(((t1+t2)/2)+(((t1-t2)/2)*cos(2*(z(1)+beta))))*s1)*cos(z(1))];                            

                                       %z(1)  is psi and z(2) is psi' 

end  

 

function y2 = myfun(s2,z)  

                                        % ODE solving for left side beam (length from -a to 0) 

global shear1 shear2 a t1 t2 beta s11 s22   

y2 =[z(2) ; (shear2+(((t1+t2)/2)+(((t1-t2)/2)*cos(2*(z(1)+beta))))*s2)*cos(z(1))];                              

                                        %z(1)  is psi and z(2) is psi' 

end 
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Code 4: 

%program for varying shear stress average 

clear all 

clc 

d = 1.3e-9;                           %diameter of CNT 

b = 0.6*d;                            %interaction width of CNT 

L = 300e-9;                          %length of CNT 

E = 1e9;                               %young's modulus of CNT 

I = (pi/64)*(d^4);                   %Second moment of cross-sectional area 

global a s11 s22 shear1 shear2 t1 t2 beta del dataC dataD coord 

a = 0.5;                                 %length at which load is applied 

coord = 1;                             %variable for continuous plot 

del = 0.005;                          %length of individual division 

s11 = 0:del:(1-a);                  %length of CNT on right side beam                  

s22 = 0:-del:-a;                     %length of CNT on left side beam  

npts = 100;                           %number of divisions of shear stress average 

t = linspace(300,100,npts); %linearly spaced shear stress average values 

 z0 = [0 17];         %initial guess for rotation angle and moment at loading point 

for i = 1:npts    

angle = 0;                              %orientation angle beta in degrees 

beta = (pi/180)*angle;           %orientation angle beta in radians 

x = 1.5;                                 %ratio of shear stress (t2/t1) 

   tave = t(i)                           %shear stress average 

   t1 = (2*tave)/(1+x);  %calculation of shear stress when CNT is parallel to X-axis 

   t2 = (x*t1);               %calculation of shear stress when CNT is parallel to Y-axis 

             if tave==300  %initial values of shear force to start with 

shear1 =  -170; 

shear2 =   170; 

             else 

        shear1 = shear3;  

        shear2 = shear4; 
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             end 

              B = fsolve(@beam,z0)              %solving non-linear equations 

              z0 = B;                                      %updating the initial guess                 

             [s1,z] = ode23('myfun1',s11,B); %ode solving for right side beam 

             x = length(s1);                            %number of outputs 

             A(1) = z(x,2);                              %moment at (1-a) 

             psi(1) = z(1,1);                           %angle at the first point 

             F(1) = cos(2*(psi(1)+beta)); 

             XX(1) = ((t1-t2)/2)*F(1)*del;      %second term in shear stress integration 

          for i = 3:2:x 

   psi(i-1) = z(i-1,1); 

   psi(i) = z(i,1); 

   F(i-1) = cos(2*(psi(i-1)+beta)); 

   F(i) = cos(2*(psi(i)+beta)); 

   XX(i) = ((t1-t2)/2)*(del/3)*(F(i-2)+(4*F(i-1))+F(i))+ XX(i-2); 

          end 

               X = XX(i); 

               YY = ((t1+t2)/2)*(1-a);              %first term in shear stress integration 

               shear3 = -X-YY;                       %calculated shear force 

               diff = abs(shear3-shear1);       %check for convergence for shear1 

               [s2,z] = ode23('myfun',s22,B); %ode solving for left side beam 

               y = length(s2);                          %number of outputs 

               psi(1) = z(1,1);                         %angle at first point 

               A(2) =  z(y,2); 

               F(1) = cos(2*(psi(1)+beta)); 

               AA(1) = ((t1-t2)/2)*F(1)*del; 

           for j = 3:2:y 

   psi(j-1) = z(j-1,1); 

   psi(j) = z(j,1); 

   F(j-1) = cos(2*(psi(j-1)+beta)); 

   F(j) = cos(2*(psi(j)+beta)); 
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   AA(j) = ((t1-t2)/2)*(del/3)*(F(j-2)+(4*F(j-1))+F(j))+ AA(j-2); 

           end 

                Y = AA(j);                                %second term in shear stress integration 

                BB = ((t1+t2)/2)*a;                  %first term in shear stress integration 

                shear4 = Y+BB;                      %shear force for left side beam 

                diff1 = abs(shear4-shear2);    %check for convergence for shear2 

                while (diff>1e-4*tave || diff1>1e-4*tave)  

                                               %check for convergence for both sides of the beam 

                    if (diff>1e-4*tave ) 

                        shear1 =  shear3;    

                                     %updating with new shear force value for right side beam 

                    end 

                    if (diff1>1e-4*tave ) 

                        shear2 = shear4;    

                                    %updating with new shear force value for left side beam 

                    end 

                    B = fsolve(@beam,z0)     

          %same steps from 32-74 followed with updated value of shear force guess 

                    [s1,z] = ode23('myfun1',s11,B); 

                    x = length(s1); 

                    A(1) = z(x,2); 

                    psi(1) = z(1,1); 

                    F(1) = cos(2*(psi(1)+beta)); 

                    XX(1) = ((t1-t2)/2)*F(1)*del; 

                       for i = 3:2:x 

                       psi(i-1) = z(i-1,1); 

                       psi(i) = z(i,1); 

                       F(i-1) = cos(2*(psi(i-1)+beta)); 

                       F(i) = cos(2*(psi(i)+beta)); 

                       XX(i) = ((t1-t2)/2)*(del/3)*(F(i-2)+(4*F(i-1))+F(i))+ XX(i-2); 

                       end 
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                    X = XX(i); 

                    YY = ((t1+t2)/2)*(1-a); 

                    shear3 = -X-YY; 

                    diff = abs(shear3-shear1)      

                    [s2,z] = ode23('myfun',s22,B); 

                    y = length(s2); 

                    psi(1) = z(1,1); 

                    A(2) =  z(y,2); 

                    F(1) = cos(2*(psi(1)+beta)); 

                    AA(1) = ((t1-t2)/2)*F(1)*del; 

                           for j = 3:2:y 

                       psi(j-1) = z(j-1,1); 

                       psi(j) = z(j,1); 

                       F(j-1) = cos(2*(psi(j-1)+beta)); 

                       F(j) = cos(2*(psi(j)+beta)); 

                       AA(j) = ((t1-t2)/2)*(del/3)*(F(j-2)+(4*F(j-1))+F(j))+ AA(j-2); 

                           end 

                    Y = AA(j); 

                    BB = ((t1+t2)/2)*a; 

                    shear4 = Y+BB; 

                    diff1 = abs(shear4-shear2); 

                end 

             shear1 = shear3; 

             shear2 = shear4; 

              z0 = B;                               %final value after solving non-linear equation 

              dataE(coord) = B(1)*(180/pi) ; 

                                                        %angle of rotation at loading point in degrees   

                 dataF(coord) = B(2);       %moment at the loading point 

                coord = coord+1; 

                         

 end   
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figure(1) 

plot (t,dataE,'g')                     %angle of rotation at loading point 

hold on 

figure(2) 

plot (t,dataF,'g')                      %moment at loading point 

hold on 

figure(3) 

plot (t,dataC,'g')                      %psi(1-a) plot 

hold on 

figure(4) 

plot (t,dataD,'g')                      %psi(-a) plot 

hold on 
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