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Abstract 

 

 

The effects of two geometric refinement strategies widespread in natural structures, 

chirality and self-similar hierarchy, on mechanical response of two-dimensional 

honeycombs were studied systematically. 

First, by employing the concepts of mechanics of materials, simple closed-form 

expressions were derived for the elastic moduli of several chiral, anti-chiral, and 

hierarchical honeycombs with hexagon and square based networks. The analytical results 

were validated using finite element analysis and experimental data available in the 

literature. 

Next, a new class of hierarchical fractal-like honeycombs inspired by the topology 

of the “spiderweb” was introduced and investigated for its small and large deformation 

response through analytical modeling, detailed numerical simulations, and mechanical 

testing.  For small deformations, the elastic moduli can be controlled by geometrical ratios 

in the hierarchical pattern, and the response can vary from bending to stretching dominated. 

These structures exhibit auxetic behavior at large deformations. 

Next, we exploit mechanical instabilities and structural hierarchy to induce 

negative Poisson’s ratio over a wide range of applied compressive strains in hierarchical 

structures which otherwise exhibit positive Poisson’s ratio at small deformations. This 

unusual behavior is demonstrated experimentally and analyzed computationally. 

Finally, we highlighted the effects of structural hierarchy and deformation on band 

structure and wave-propagation behavior of two-dimensional phononic crystals. We 

employed finite element analysis along with Bloch theorem to show that the topological 

hierarchical architecture and instability-induced pattern transformations of the structure 

under compression can be effectively used to tune the band gaps and directionality of 

phononic crystals. 
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Chapter 1 

 

Elastic Properties of Chiral, Anti-Chiral, and Hierarchical 

Honeycombs: A Simple Energy-Based Approach 

 

 

1.1 Abstract 

The effects of two geometric refinement strategies widespread in natural structures, 

chirality and self-similar hierarchy, on the in-plane elastic response of two-dimensional 

honeycombs were studied systematically. Simple closed-form expressions were derived 

for the elastic moduli of several chiral, anti-chiral, and hierarchical honeycombs with 

hexagon and square based networks. Finite element analysis was employed to validate the 

analytical estimates of the elastic moduli. The results were also compared with the 

numerical and experimental data available in the literature. We found that introducing a 

hierarchical refinement increases the Young’s modulus of hexagon based honeycombs 

while decreases their shear modulus. For square based honeycombs, hierarchy increases 

the shear modulus while decreasing their Young’s modulus. Introducing chirality was 

shown to always decrease the Young’s modulus and Poisson’s ratio of the structure. 

However, chirality remains the only route to auxeticity. In particular, we found that anti-

tetra-chiral structures were capable of simultaneously exhibiting anisotropy, auxeticity, 

and remarkably low shear modulus as the magnitude of the chirality of the unit cell 

increases. 
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1.2 Introduction 

Among the most readily observed topological features in natural structures are chirality [1-

5], hierarchy [6-13], and hierarchy of chirality [14, 15]. Their abundance in nature can be 

contrasted with traditional man-made constructions, which often rely on multiple materials 

selection but relatively simpler micro-geometrical constitution. In recent years, following 

these topological cues, synthetic metamaterials with non-traditional properties such as 

negative stiffness [16-18], auxeticity [19-22], and negative thermal expansion [23-25] have 

been proposed. These characteristics make mechanical metamaterials suitable for 

applications such as novel prostheses [26], fasteners [27], piezo-composites with optimal 

performance [28], dome-shaped panels [29, 30], and high structural integrity foams [31]. 

Among this general class of metamaterials, periodic chiral lattices such as the ones 

shown in Figure 1.1 have been shown to possess relatively compliant behavior because of 

their bending dominated response, while exhibiting considerable multi-axial 

expansion/contraction under uniaxial loads due to auxeticity [32, 33]. These features make 

them optimal candidates for flexible design applications such as micro-electro-mechanical-

systems (MEMS) [19, 34, 35], aircraft morphing structures [36-43], and as analogues of 

spokes in non-pneumatic tires [44, 45]. In addition, chiral honeycombs have been 

experimentally and numerically shown to possess Poisson’s ratios in the range of −1 <

𝜈 < 0. For instance, Alderson et al. [46] studied the in-plane elastic constants of chiral and 

anti-chiral honeycombs using finite element (FE) analysis and experiments. Continuing 

further, Alderson et al. [47] investigated the in-plane linear elastic response and out-of-

plane bending of tri- and anti-tri-chiral honeycombs and their re-entrant counterparts using 

FE analysis and experiments. Nonetheless, closed-form expressions of elastic moduli for 

most of these structures are still unavailable. Among several two-dimensional (2D) chiral 

lattices proposed in the literature, only the elastic properties of hexa- and tetra-chiral 

lattices have been investigated analytically, using micro-polar and second-gradient 

continuum theories [32, 48-51]. These approaches are far more complex than the simple 

yet robust method used here for analytical study of chiral unit cells, which often require 

special boundary conditions at the unit cell level due to underlying rotational symmetry of 

the structure. 
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Figure 1.1 Schematic of the structure and the unit cell, and the expression of relative 

density for the chiral and anti-chiral honeycombs studied. 

 

Another class of bio-inspired materials used increasingly to broaden the achievable 

range of mechanical response is the hierarchically structured material systems. Extreme 

values of material properties such as specific stiffness [11, 52-54], toughness [55-58], 

strength [11, 53, 59, 60], buckling strength [61], negative or complex Poisson’s ratio [62-

65], and phononic band gaps [66] have been reported in hierarchical architectures across 

multiple length scales. Through a series of studies on the strength of different fractal-like 

structures under various loads, Farr and co-workers [59, 67-70] suggested that the volume 

of the material used for a stable structure can be reduced by an order of 3 to 4 under mild 

loads using hierarchical designs of third and fourth generation. However, the advantage of 

hierarchical design in these structures diminishes as the magnitude of applied loading 

increases. Ajdari et al. [52] showed that a type of self-similar hierarchical honeycomb is 

capable of attaining specific Young’s modulus as much as 2 and 3.5 times that of a regular 

hexagonal lattice through first and second orders of hierarchy, respectively. In a more 

inclusive study that considered enhancements in multiple parameters, Haghpanah et al. 

[71] showed that a wide range of specific stiffness and strength can be tailored by 

introducing higher orders of hierarchy in a hexagonal lattice. However, none of these 

earlier studies specifically focused on investigating the geometry of hierarchy as a 
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controlling variable of mechanical properties of honeycombs. Moreover, there is no 

systematic comparison between hierarchy and chirality in the literature, which can be 

useful in design and selection of structures for different loading conditions. 

In light of this discussion, it becomes clear that further investigations on the 

behavior of these classes of metamaterials are well justified. Particularly, obtaining closed-

form analytical expressions for the elastic constants in terms of geometric and material 

parameters would constitute an important step towards evaluating and designing these 

materials. Furthermore, it would also foster a better understanding of the role of chirality 

and hierarchy in influencing the mechanical response of these materials. To this end, as a 

part of this dissertation, we carry out a systematic theoretical and computational study of 

the effects of these two natural geometrical organizations - chirality and hierarchy - on the 

in-plane elastic response of 2D honeycombs. In order to directly compare the effects of 

chirality versus hierarchy, we limit the results to first order of hierarchy for the hierarchical 

structures presented here. An energy-based method is used to obtain the unit cell 

deformation by satisfying both the periodic boundary conditions and symmetry 

requirements for the unit cell. Two specific types of regular tessellation with square and 

hexagonal cells are altered to endow them with chirality and hierarchy. For achieving 

chirality, the square based unit cell is altered to yield two different types of chiral 

architectures - tetra-chiral and anti-tetra-chiral - whereas the hexagonal unit cell alteration 

results in tri-chiral and anti-tri-chiral structures (illustrated in Figure 1.1). In contrast to 

chiral microstructures, hierarchy is achieved by both conserving the rotational and 

reflective symmetries of the lattice. This is done by replacing the nodes in a periodic 

network of cells with the original cells albeit of smaller size as shown in Figure 1.2. Thus, 

the introduction of hierarchy into the square unit cell results in hierarchical square and 

hierarchical diamond honeycombs (illustrated in Figure 1.2). In order to proceed with our 

calculations, the Representative Volume Element (RVE) is used as the fundamental unit of 

analysis. In a periodic lattice material, the RVE (i.e., unit cell) is identified as the smallest 

volume which with associated tractions and displacements, tessellates the space to 

represent the whole lattice structure under loading [60]. We choose the shaded triangular 

and square areas bounded by dashed lines in Figures 1.1 and 1.2 as the structural unit cells 

of the structures under study. This implies that under any in-plane loading, we can tile the 



5 
 

2D space, solely by translating, and/or reflecting, and/or rotating (by 180o) the unit cells 

and their corresponding tractions and displacements, to represent the infinitely extended 

2D structures. 

 

 

Figure 1.2 Schematic of the structure and the unit cell, and the expression of relative 

density for the hierarchical honeycombs studied. 

 

We first describe and derive the elastic moduli (i.e., Young’s and shear moduli, and 

Poisson’s ratio) of chiral and anti-chiral structures. This is followed by a section devoted 

to deriving the elastic constants for the hierarchical structures. The results are then 

compared in a unified template to highlight the effects brought about by these geometrical 

variants. This chapter ends with conclusions. 

 

1.3 Chiral and anti-chiral structures 

Chiral and anti-chiral structures studied in this dissertation have an array of cylinders 

(nodes) connected by tangential ligaments (ribs) as shown in Figure 1.1. Depending on the 

number of ligaments tangential to each cylinder, two types of chiral lattices are introduced: 
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tri-, and tetra-chiral structures which are respectively composed of 3, and 4 tangential 

ligaments for each cylinder. Similarly, anti-chiral lattices are generated if any two adjacent 

cylinders share the same side of the common tangential ligament. Thus, in addition, two 

anti-chiral lattices are introduced which are called anti-tri-, and anti-tetra-chiral structures 

(see Figure 1.1). 

The structural organization of the chiral and anti-chiral honeycombs can be defined 

by the ratio, 𝑟/𝐿, where 𝑟 is the radius of the cylinders and 𝐿 is the length of the ligaments 

as described in Figure 1.1. This figure also represents the dimensionless relative density 

(i.e., area fraction) of the structures in terms of 𝑟/𝐿 and 𝑡/𝐿, where 𝑡 is the thickness of the 

cell walls. For the special case, where 𝑟 = 0, the normalized relative density of the hexagon 

(tri-chiral and anti-tri-chiral), and square (tetra-chiral and anti-tetra-chiral) based chiral and 

anti-chiral honeycombs respectively reduce to that of regular hexagonal (2 √3⁄  . (𝑡 𝐿⁄ )), 

and square (2 𝑡 𝐿⁄ ) honeycombs. 

 

1.3.1 Theoretical formulations 

Here, we derive closed-form expressions for elastic properties of chiral and anti-chiral 

honeycombs made of an isotropic linear elastic material with Young’s modulus, 𝐸𝑠. In 

contrast to the previous studies [32, 33, 48-51], we employ a simple energy-based 

procedure (Castigliano’s second theorem [72]) to obtain analytical estimates for elastic 

properties of the structures under study. A three-fold symmetry seen within the tri- and 

anti-tri-chiral lattices (see Figure 1.1) assures the macroscopic isotropy of their in-plane 

elastic properties [73]. Thus, for complete characterization of these structures, they each 

need only two elastic constants to be determined (i.e., Young’s modulus and Poisson’s 

ratio) (shear modulus is obtained as a function of the other two elastic constants, analogous 

to isotropic materials). In principle, these elastic constants can be determined by any kind 

of in-plane loading. However, in this study, without loss of generality we chose uniaxial 

loading to obtain the Young’s modulus and Poisson’s ratio. In contrast, the four-fold 

symmetry of tetra- and anti-tetra-chiral honeycombs causes the structures to exhibit 

macroscopic anisotropy in their in-plane elastic behavior. Therefore, all the components of 

their stiffness (or compliance) tensor have to be determined in order to fully identify their 
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elastic behavior. For tetra- and anti-tetra-chiral lattices, we first chose a coordinate system 

such that the x and y axes were aligned to the lines connecting the center of adjacent 

cylinders together. This symmetry requires one Young’s modulus, one Poisson’s ratio, one 

shear modulus, and possibly two more coefficients called “the coefficients of mutual 

influence of the first kind” [74] (they characterize the normal strains caused by shear 

stresses). 

To this end, for each of the anisotropic honeycombs (tetra- and anti-tetra-chiral 

structures), we first impose a uniaxial loading in the x-direction (i.e., horizontal direction 

in Fig. 1) to obtain the structure’s Young’s modulus, 𝐸𝑥, and Poisson’s ratio, 𝜈𝑥𝑦. Note that 

the sub-index 𝑥, is used to emphasize that the elastic constants are obtained as a result of a 

loading in the 𝑥-direction and they are not valid for any other directions (except for y-

direction (i.e., vertical direction in Figure 1.1), due to symmetry) of in-plane loading since 

the structures do not have an isotropic in-plane behavior. Furthermore due to this 

anisotropy, in order to obtain the shear modulus, 𝐺𝑥𝑦 , and the coefficients of mutual 

influence of the first kind, we apply a separate shearing load to these structures. It is 

noteworthy that since these structures are stretching dominated in both the 𝑥- and 𝑦-

directions, we must include the stretching terms in addition to bending terms in computing 

the strain energy of the unit cells. In contrast, for bending dominated structures, we only 

include the bending terms of strain energy. In our theoretical calculations, the central 

cylinders appearing in the unit cells are regarded as perfectly rigid elements. Also the 

rotation of ligaments and cylinders is neglected due to small deformation assumption. 

These assumptions significantly reduce the complexity of the problem yielding closed-

form expressions for elastic moduli while staying reasonably accurate for most of the 

geometries considered in this study. 

In the next paragraphs, we will derive closed-form expressions for the elastic 

moduli of tetra-chiral structures as a demonstration of our proposed method. The detailed 

derivations for other chiral and anti-chiral structures are presented in Appendices. 

A schematic of a tetra-chiral structure, which is based on an underlying square 

network, undergoing a uniaxial far-field stress in the 𝑥-direction, 𝜎𝑥 is shown in Figure 

1.3 (A). The free body diagram (FBD) of the corresponding unit cell is shown in Figure 
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1.3 (B). The unit cell contains a cylinder (node) which is assumed to be rigid and four half 

ligaments. Due to the 180o rotational symmetry of the structure and the components of the 

microscopic stresses, all four external cut points of the unit cell (i.e., points 1 through 4 in 

Figure 1.3 (B)) must be moment-free under an arbitrary macroscopic stress state. Also, 

since the only far-field stress acting on the structure is along the x-direction, all the external 

cut points must be force-less except points 1 and 2 which carry a pair of forces with 

opposite directions along the x-direction due to 𝜎𝑥 . Therefore, unknown forces and 

moments acting on the unit cell’s external cut points can be summarized as shown in 

Figure 1.3 (B), where 𝐹 can be determined as a function of applying stress as, 𝐹 = 𝜎𝑥𝑅, 

where R is the center to center distance between any two adjacent cylinders. Moreover, to 

be able to determine the structure’s Poisson’s ratio, a pair of virtual forces, 𝑃 is also added 

on points 2 and 4 of the unit cell. The strain energy of the unit cell is given as: 

𝑈 = 2
(𝐹𝑐𝑜𝑠 𝜃)2 𝐿 2⁄

2𝐸𝑠𝐴
+ 2

(𝑃𝑐𝑜𝑠 𝜃)2 𝐿 2⁄

2𝐸𝑠𝐴

+ 2∫
(𝑥𝐹𝑠𝑖𝑛 𝜃)2

2𝐸𝑠𝐼
𝑑𝑥

𝐿 2⁄

0

+ 2∫
(𝑥𝑃𝑠𝑖𝑛 𝜃)2

2𝐸𝑠𝐼
𝑑𝑥

𝐿 2⁄

0

 
(1.1) 

where 𝐸𝑠 (as mentioned earlier) is the Young’s modulus of the cell wall material, 𝐴 is the 

cross sectional area of cell walls (i.e., for a rectangular cross section with unit depth, 𝐴 =

𝑡), 𝐼 is the second moment of area of the wall’s cross section (cell walls are assumed to 

have a rectangular cross section with uniform thickness, 𝑡, and unit depth, i.e., 𝐼 = 𝑡3 12⁄ ), 

and 𝜃 = 𝑡𝑎𝑛−1(2𝑟 𝐿⁄ ) is the angle between each ligament and the line connecting the 

centers of two adjacent cylinders as shown in Figure 1.3 (B). Next, 𝜕𝑈 𝜕𝐹⁄ |𝑃=0 gives the 

total displacement of point 1 with respect to point 3 in the 𝑥-direction as, 𝛿𝑥 =
𝐹𝐿

𝐸𝑠𝐴
𝑐𝑜𝑠2𝜃 +

𝐹𝐿3

12𝐸𝑠𝐼
𝑠𝑖𝑛2𝜃. From this, we can now calculate the structure’s average strain in the 𝑥-

direction as, 𝜖𝑥 = 𝛿𝑥 𝑅⁄ . The Young’s modulus of the structure normalized by material’s 

Young’s modulus is then defined as the ratio of the average stress, 𝜎𝑥 and the average 

strain, 𝜖𝑥 and obtained as: 
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𝐸𝑥 𝐸𝑠⁄ =
𝑡 𝐿⁄

𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 (𝑡 𝐿⁄ )2⁄
 

(1.2) 

On the other hand, 𝜕𝑈 𝜕𝑃⁄ |𝑃=0 gives the total displacement of points 2 and 4 in the 

direction of virtual forces as 𝛿𝑦 = 0. Therefore, 𝜖𝑦 = 𝛿𝑦 𝑅⁄ = 0 and this will result in 

𝜈𝑥𝑦 = 0. 

 

 

Figure 1.3 (A) Schematic of a tetra-chiral honeycomb under x-direction uniaxial loading. 

(B) Free body diagram of the structural unit cell under uniaxial loading. (C) Schematic of 

a tetra-chiral honeycomb under x-y shearing load. (D) Free body diagram of the structural 

unit cell under shearing load. 

 

In the next step, we seek to determine the structure’s shear modulus with respect to 

the 𝑥-𝑦 coordinate system. To this end, we consider a tetra-chiral structure undergoing a 

uniform far-field shear stress, 𝜏𝑥𝑦, as shown in Figure 1.3 (C). FBD of a representative 

unit cell is also shown in Figure 1.3 (D). The 180o rotational symmetry of the structure 

implies unit cell’s all four external cut points (i.e., points 1 through 4 in Figure 1.3 (D)) to 

be moment free. Furthermore, each of these external cut points must be free of any normal 
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forces (in the direction passing through the cut point and center of the cylinder), because 

there is no macroscopic normal stress acting on the structure in those directions. Thus, there 

are only four equal shearing forces acting on the unit cell’s external cut points, 𝐹, which 

can be obtained as a function of applying stress as, 𝐹 = 𝜏𝑥𝑦𝑅. We also apply two pairs of 

virtual forces, 𝑃𝑥, and 𝑃𝑦 to the unit cell to be able to find the average strains in the 𝑥- and 

𝑦- directions due to the applying shear stress. Therefore, based on the loadings on the unit 

cell shown in Figure 1.3 (D), the strain energy is given as the following: 

𝑈 = 2
(𝐹𝑠𝑖𝑛 𝜃 − 𝑃𝑥𝑐𝑜𝑠 𝜃)2 𝐿 2⁄

2𝐸𝑠𝐴
+ 2

(𝐹𝑠𝑖𝑛 𝜃 + 𝑃𝑦𝑐𝑜𝑠 𝜃)
2
𝐿 2⁄

2𝐸𝑠𝐴

+ 2∫
((𝐹𝑐𝑜𝑠 𝜃 + 𝑃𝑥𝑠𝑖𝑛 𝜃)𝑥)

2

2𝐸𝑠𝐼
𝑑𝑥

𝐿 2⁄

0

+ 2∫
((𝐹𝑐𝑜𝑠 𝜃 − 𝑃𝑦𝑠𝑖𝑛 𝜃)𝑥)

2

2𝐸𝑠𝐼
𝑑𝑥

𝐿 2⁄

0

 
(1.3) 

Next, (𝜕𝑈 𝜕𝐹⁄ |𝑃𝑥=𝑃𝑦=0)/𝑅 gives the total change of angle between two straight 

lines initially parallel to the 𝑥- and 𝑦-axes which is the direct measure of the shear strain, 

𝛾𝑥𝑦. Then, the shear modulus of the structure normalized with respect to the Young’s 

modulus of cell wall material, is defined as the ratio of the average shear stress, 𝜏𝑥𝑦 to the 

average shear strain, 𝛾𝑥𝑦 and given as the following: 

𝐺𝑥𝑦 𝐸𝑠⁄ =
0.5(𝑡 𝐿⁄ )3

𝑐𝑜𝑠2𝜃 + (𝑡 𝐿⁄ )2𝑠𝑖𝑛2𝜃
 

(1.4) 

Note that as 𝜃 goes to zero, the structure transforms into a regular square 

honeycomb. Upon substituting 𝜃 = 0 into the closed-form expressions for 𝐸𝑥 and 𝐺𝑥𝑦, we 

obtain 𝐸𝑥 𝐸𝑠⁄ = 𝑡 𝐿⁄ , and 𝐺𝑥𝑦 𝐸𝑠⁄ = 0.5(𝑡 𝐿⁄ )3, which are the Young’s and shear moduli 

of a regular square honeycomb, respectively [75]. For all values of 𝜃, Poisson’s ratio is 

equal to that of square honeycomb, 𝜈𝑥𝑦 = 0. 

From the above calculations, the structure’s 2D compliance tensor can be formed 

as the following: 
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𝑆 = [

𝑆11 𝑆12 𝑆13

𝑆12 𝑆22 𝑆23

𝑆13 𝑆23 𝑆33

] 

(1.5) 

where 𝑆11 = 𝑆22 = 1 𝐸𝑥⁄ , 𝑆12 = −𝜈𝑥𝑦 𝐸𝑥⁄ , and 𝑆33 = 1 𝐺𝑥𝑦⁄ . Then, to completely 

determine all components of 2D compliance tensor of this structure, we still need to obtain 

𝑆13 and 𝑆23, which can respectively be given by calculating the average normal strains of 

the structure in the 𝑥- and 𝑦-directions due to the shearing load. (𝜕𝑈 𝜕𝑃𝑥⁄ |𝑃𝑥=𝑃𝑦=0)/𝑅 and 

(𝜕𝑈 𝜕𝑃𝑦⁄ |
𝑃𝑥=𝑃𝑦=0

)/𝑅 give the average normal strains in the 𝑥- and 𝑦-directions (𝜖𝑥 and 

𝜖𝑦), respectively. Then, 𝑆13 and 𝑆23 are respectively defined as the ratio of the resulting 

normal strains in the 𝑥- and 𝑦-directions to the applying shear stress and given as the 

following: 

𝑆13 =
𝜖𝑥

𝜏𝑥𝑦
= +((𝐿 𝑡⁄ )3 − (𝐿 𝑡⁄ ))𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃/𝐸𝑠 

𝑆23 =
𝜖𝑦

𝜏𝑥𝑦
= −((𝐿 𝑡⁄ )3 − (𝐿 𝑡⁄ ))𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃/𝐸𝑠 

(1.6) 

Next, in order to find the orientation of principal coordinate system (i.e., directions 

in which 𝑆13 and 𝑆23 are both equal to zero which implies that no normal strains can be 

produced under shear stress) we rotate the 𝑥-𝑦-𝑧 coordinate system with respect to the 𝑧-

axis by an angle 𝛼 (positive when counter-clockwise). The compliance tensor in the new 

system, 𝑆̅ is determined using the compliance transformation rule [74], 𝑆̅ = 𝑇𝑆𝑇𝑇, where 

T is the rotation tensor defined as: 

𝑇 = [
𝑚2 𝑛2 𝑚𝑛
𝑛2 𝑚2 −𝑚𝑛

−2𝑚𝑛 2𝑚𝑛 (𝑚2 − 𝑛2)
] 

(1.7) 

where 𝑚 = cos 𝛼, and 𝑛 = sin 𝛼. Performing this transformation, we will end up with 

𝑆1̅3 = −𝑆2̅3 =
1

2𝐸𝑠
(𝐿 𝑡⁄ ) ((𝐿 𝑡⁄ )

2
− 1) 𝑠𝑖𝑛(2𝜃 + 4𝛼) . Thus, 𝑆1̅3 = −𝑆2̅3 = 0  gives the 

orientation of the principal axes as, 𝛼 = 𝑘𝜋 4⁄ − 𝜃 2⁄ , where 𝑘 is an integer. 
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Similar procedure has been performed to obtain closed-form expressions of elastic 

moduli for tri-, anti-tri-, and anti-tetra-chiral structures and the details have been presented 

in Appendices. 

 

1.4 Self-similar hierarchical structures 

In this section we investigate the linear elastic properties of hierarchical structures. To this 

end, we select two representative samples, hierarchical square and hierarchical diamond; 

which are respectively generated by replacing the vertices of a regular square honeycomb 

by smaller squares and diamonds (see Figure 1.2). The wall thickness of the structures is 

simultaneously reduced to maintain the overall density equal to that of regular square 

honeycomb. 

Similar to chiral and anti-chiral honeycombs, the structural organization of 

hierarchical structures can be defined by the ratio, 𝑟/𝐿, where 𝑟 and 𝐿 are defined for each 

structure in Figure 1.2. This figure also represents the dimensionless relative density (i.e., 

area fraction) of the structures in terms of 𝑟/𝐿 and 𝑡/𝐿. For the special case, where 𝑟 = 0, 

the normalized relative density of the hexagon (hierarchical hexagonal honeycomb), and 

square (hierarchical square and hierarchical diamond) based hierarchical structures 

respectively reduce to that of regular hexagonal (2 √3⁄  . (t L⁄ ) ), and square (2 t L⁄ ) 

honeycombs. 

Note that among the three hierarchical structures shown in Figure 1.2, Ajdari et al. 

[76] studied the in-plane elastic properties of hierarchical hexagonal honeycombs. Thus, in 

this dissertation we focus on the other two structures and just report the results published 

by the authors for the sake of completeness. 

 

1.4.1 Theoretical formulations 

Similar to the previous section, Castigliano’s second theorem is used to derive closed-form 

relations for elastic properties of hierarchical structures made of an isotropic linear elastic 

material with Young’s modulus, 𝐸𝑠 . It should be noted that hierarchical square and 
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diamond structures exhibit macroscopic anisotropy. Thus, in order to completely 

characterize their elastic behavior we need to obtain the Young’s modulus, Poisson’s ratio, 

and shear modulus along the principal directions. To this end, first a uniaxial loading in the 

𝑥-direction is applied to each structure to determine the structure’s Young’s modulus, 𝐸𝑥 

and Poisson’s ratio, 𝜈𝑥𝑦 and then a shearing load is imposed to obtain the shear modulus, 

𝐺𝑥𝑦. Finally the orientation of principal coordinate systems is given for each structure. In 

contrast to chiral and anti-chiral lattices where we assumed the cylinders to be rigid, here 

we assume the entire structure including smaller squares and diamonds to have a linear 

elastic material property. 

We will obtain closed-form expressions of the elastic moduli for hierarchical square 

structures as a demonstration of our proposed method. The details of the procedure for 

hierarchical diamond structures are presented in Appendices. 

A schematic of a hierarchical square honeycomb under a uniaxial far-field stress in 

the 𝑥-direction, 𝜎𝑥 is shown in Figure 1.4 (A). A detailed FBD of the structural unit cell 

of this structure is shown in Figure 1.4 (B). It contains a smaller square and four half 

ligaments connecting the smaller squares together. Due to 180o rotational symmetry of the 

structure and components of microscopic stress, all external cut points of the unit cell (i.e., 

points 1 through 4 in Figure 1.4 (B)) must be moment free. Furthermore, by using a cut 

line ∆1, we can see that since there is no macroscopic stress on the structure in the 𝑦-

direction, the unit cell must be free of any forces in the 𝑦-direction at point 4. Similar 

arguments also hold true for point 2. Also note that the structure is symmetric with respect 

to all four cut lines shown in Figure 1.4 (A). This implies that the component of forces 

parallel to these cut lines at corresponding external cut point must be equal to zero. Thus, 

under the uniaxial stress on the structure, 𝜎𝑥, each unit cell experiences the loading shown 

in Figure 1.4 (B), where 𝐹 can be obtained as a function of applied stress as, 𝐹 = 𝜎𝑥𝐿. 

In order to determine the distribution of forces and moments at any cross section of 

the smaller square (needed for strain energy calculation in the next step), let us consider 

the right portion of the unit cell as illustrated in Figure 1.4 (B) (right). For equilibrium to 

be satisfied for forces in the x-direction, two equal forces, 𝐹/2 must be applied to points 5 

and 6. Also, shear forces at these two points must be equal to zero due to the fact that no 



14 
 

macroscopic stress is being applied to the structure in the y-direction. Moreover, symmetry 

of the structure requires that the rotation of point 5 (and similarly point 6) with respect to 

the z-axis be equal to zero. Using Castigliano’s theorem, this condition is equivalent to the 

relation, 𝜕𝑈 𝜕𝑀⁄ = 0, where 𝑈 is the total strain energy of the portion of the unit cell 

shown in Figure 1.4 (B) and 𝑀 is a yet unknown moment to be determined. This constraint 

will result in 𝑀 = 𝑟𝐹 8⁄ . Now, the unit cell’s strain energy can be obtained as: 

𝑈 = 2
𝐹2(𝐿 2⁄ − 𝑟)

2𝐸𝑠𝐴
+ 4

(𝐹 2⁄ )2𝑟

2𝐸𝑠𝐴
+ 4

(𝑟𝐹 8⁄ )2𝑟

2𝐸𝑠𝐼
+ 4∫

(𝑟𝐹 8⁄ − 𝑥𝐹 2⁄ )2

2𝐸𝑠𝐼
𝑑𝑥

𝑟

0

 
(1.8) 

 

 

Figure 1.4 (A) Schematic of a hierarchical square honeycomb under 𝒙-direction uniaxial 

loading. (B) and (C) Free body diagram of the structural unit cell under uniaxial loading, 

where P is a virtual force used for Poisson’s ratio calculations. (D) Schematic of a 

hierarchical square honeycomb under 𝒙-𝒚 shearing load. (E) Free body diagram of the 

structural unit cell under shearing load. 

 

Using above equation, the total displacement of point 1 with respect to point 3 in 

the x-direction can be calculated as, 𝛿𝑥 =
𝜕𝑈

𝜕𝐹
=

𝐹(𝐿−𝑟)

𝐸𝑠𝐴
+

10𝐹𝑟3

48𝐸𝑠𝐼
. Next, the structure’s 

average strain in the x-direction is obtained by using the relation, 𝜖𝑥 = 𝛿𝑥 𝐿⁄ . The Young’s 
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modulus of the structure normalized by material’s Young’s modulus is then defined as the 

ratio of the average stress, 𝜎𝑥 and the average strain, 𝜖𝑥 and obtained as: 

𝐸𝑥 𝐸𝑠⁄ =
𝑡 𝐿⁄

1 − (𝑟 𝐿⁄ ) + 2.5 (𝑟 𝐿⁄ )3 (𝑡 𝐿⁄ )2⁄
 

(1.9) 

Next, in order to calculate the Poisson’s ratio, let us consider a pair of virtual forces 

acting on the unit cell in the lateral direction, as shown in Figure 1.4 (C). One fourth of 

the smaller square of this unit cell is also shown in Figure 1.4 (C). Similar procedure as 

employed earlier is used to determine the unknown moments, 𝑀1 and 𝑀2, acting on points 

6 and 7 as 𝑀1 = 𝑟𝐹 8⁄ − 3𝑟𝑃 8⁄  and 𝑀2 = 𝑟𝑃 8⁄ − 3𝑟𝐹 8⁄ . Thus, the strain energy of the 

unit cell is given as: 

𝑈 = 2
𝐹2(𝐿 2⁄ − 𝑟)

2𝐸𝑠𝐴
+ 2

𝑃2(𝐿 2⁄ − 𝑟)

2𝐸𝑠𝐴
+ 4

(𝐹 2⁄ )2𝑟

2𝐸𝑠𝐴
+ 4

(𝑃 2⁄ )2𝑟

2𝐸𝑠𝐴

+ 4∫
(𝑥𝐹 2⁄ + 𝑟𝑃 8⁄ − 3𝑟𝐹 8⁄ )2

2𝐸𝑠𝐼
𝑑𝑥

𝑟

0

+ 4∫
(𝑥𝑃 2⁄ + 𝑟𝐹 8⁄ − 3𝑟𝑃 8⁄ )2

2𝐸𝑠𝐼
𝑑𝑥

𝑟

0

 
(1.10) 

Now using Castigliano’s second theorem on the strain energy calculated in 

Equation (1.10) we obtain 𝛿𝑦 = 𝜕𝑈 𝜕𝑃⁄ |𝑃=0 =
−𝐹𝑟3

8𝐸𝑠𝐼
. Using this equation, we obtain 𝜖𝑦 =

𝛿𝑦 𝐿⁄  which is the structure’s average strain in the y-direction due to the uniaxial loading, 

𝜎𝑥. Poisson’s ratio, 𝜈𝑥𝑦 is then defined as the negative of the ratio of the average strain in 

the 𝑦-direction, 𝜖𝑦 to the average strain in the 𝑥-direction, 𝜖𝑥 and obtained as: 

𝜈𝑥𝑦 =
0.6(𝑟 𝐿⁄ )3

(𝑟 𝐿⁄ )3 − 0.4(𝑡 𝐿⁄ )2(𝑟 𝐿⁄ ) + 0.4(𝑡 𝐿⁄ )2
 

(1.11) 

Finally, to determine the shear modulus, as shown in Figure 1.4 (D), we apply a 

uniform far-field shear stress, 𝜏𝑥𝑦 to the structure. A FBD of the unit cell of the structure 

is also shown in Figure 1.4 (E). The 180o rotational symmetry of the structure implies unit 

cell’s all four external cut points (i.e., points 1 through 4 in Figure 1.4 (E)) to be moment 

free. Furthermore, each of these external cut points must be free of any normal forces (in 
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the direction of the ligament), because there is no macroscopic normal stress acting on the 

structure in those directions. Thus, there are only four equal shearing forces acting on the 

unit cell’s external cut points, 𝐹, which can be obtained as a function of applying stress as, 

𝐹 = 𝜏𝑥𝑦𝐿. Next, consider one fourth of the smaller square as shown in Figure 1.4 (E). 

Using the equilibrium equations, components of unknown forces and moment acting on 

the external cut points of this portion of the unit cell can be determined as functions of 𝐹, 

as shown in Figure 1.4 (E), where 𝑀 = 𝐹/2 ⋅ (𝐿 2⁄ − 𝑟). Hence, the strain energy of the 

unit cell can be written as: 

𝑈 = 4∫
(𝐹𝑥)2

2𝐸𝑠𝐼
𝑑𝑥

𝐿 2⁄ −𝑟

0

+ 8
(𝐹 2⁄ )2𝑟

2𝐸𝑠𝐴
+ 8∫

(𝐹 2⁄ (𝐿 2⁄ − 𝑟) − 𝐹𝑥 2⁄ )2

2𝐸𝑠𝐼
𝑑𝑥

𝑟

0

 
(1.12) 

Then, (𝜕𝑈 𝜕𝐹⁄ )/𝐿 gives the total change of angle between two straight lines 

initially parallel to the 𝑥- and 𝑦-axes (i.e., the shear strain, 𝛾𝑥𝑦). Finally, shear modulus of 

the structure (𝐺𝑥𝑦, normalized with respect to the Young’s modulus of cell walls material) 

is defined as the ratio of the average shear stress, 𝜏𝑥𝑦 to the average shear strain, 𝛾𝑥𝑦 and 

obtained as the following: 

𝐺𝑥𝑦 𝐸𝑠⁄ =
0.5(𝑡 𝐿⁄ )3

1 − 3(𝑟 𝐿⁄ ) − 6(𝑟 𝐿⁄ )2 + 20(𝑟 𝐿⁄ )3 + (𝑡 𝐿⁄ )2(𝑟 𝐿⁄ )
 

(1.13) 

Note that as 𝑟 goes to zero, the structure transforms into a regular square 

honeycomb. Upon substituting 𝑟 = 0 into Equations (1.9), (1.11), and (1.13), we obtain 

𝐸𝑥 𝐸𝑠⁄ = 𝑡 𝐿⁄ , 𝜈𝑥𝑦 = 0, and 𝐺𝑥𝑦 𝐸𝑠⁄ = 0.5(𝑡 𝐿⁄ )3, which are the Young’s modulus, 

Poisson’s ratio, and shear modulus of a regular square honeycomb, respectively. The 

principal directions for the 2D compliance tensor (𝑆13 and 𝑆23 are both equal to zero for 

the current 𝑥-𝑦-𝑧 coordinate system) of this structure can be calculated as, 𝛼 = 𝑘𝜋/4, 

where k is an integer. 

Similar procedure has been performed to obtain closed-form expressions of elastic 

moduli for hierarchical diamond structures and demonstrated in detail in Appendices. 
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1.5 Numerical modeling 

In order to validate the theoretical expressions of elastic moduli, FE-based numerical 

models were developed to conduct simulations on the structures. We carry out FE analysis 

at the structural level instead of the unit cell level with 2D models of the structures 

constructed using the FE software ABAQUS 6.11-2 (SIMULIA, Providence, RI). The 

relative characteristic length of the samples with respect to the unit cells was sufficiently 

large enough to mitigate boundary effects on the inner unit cells. The models were meshed 

using in-plane 2-node linear beam elements allowing for shear deformation (i.e., B21 beam 

element in ABAQUS) and a mesh sensitivity analysis was carried out to guarantee that the 

results were not mesh-dependent. Static-general solver of ABAQUS was used to simulate 

the response of these structures under uniaxial compression and shearing loads. Cell walls 

were assumed to have a rectangular cross section with unit length normal to the loading 

plane (i.e., normal to the x-y plane). 𝑅 was taken to be equal to unity and the thickness (𝑡) 

was adjusted to be consistent with the value of the relative density presented in Figures 

1.1 and 1.2. Linear elastic properties of aluminum were assumed for the cell wall material 

with 𝐸𝑠=70 GPa and 𝜈𝑠=0.3. 

Figures 1.5 and 1.6 show the schematic diagrams of the FE models constructed in 

ABAQUS for simulating static uniaxial and shearing loads, as well as their corresponding 

exaggerated deformed configurations, for the structures with underlying hexagon and 

square based grids, respectively. In order to simulate the uniaxial loading, constant static 

displacement was assigned to the left nodes (see Figures 1.5 and 1.6), while the horizontal 

displacement of the right nodes was constrained (i.e., set to zero). Then, to eliminate any 

boundary effects, periodic boundary conditions were imposed on the structures on the top- 

and bottom-side nodes [77]. Also note that the vertical displacement of an arbitrary node 

was constrained (i.e., set to zero) in order to prevent rigid body motion of the structure in 

that direction. To simulate the square based honeycombs under shearing loads, shear forces 

were applied to the boundary nodes, while the horizontal and vertical displacements of an 

arbitrary node were constrained (i.e., set to zero) to avoid rigid body motion, Figure 1.6. 
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Figure 1.5 Schematic diagrams of the finite element models constructed in ABAQUS for 

simulating static uniaxial loads, as well as their corresponding exaggerated deformed 

configurations, for the structures with hexagon based grids with 𝑟 𝑅⁄ = 0.3. 
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Figure 1.6 Schematic diagrams of the finite element models constructed in ABAQUS for 

simulating static uniaxial and shearing loads, as well as their corresponding exaggerated 

deformed configurations, for the structures with square based grids with 𝑟 𝑅⁄ = 0.3. 

 

1.6 Results 

The analytical expressions of effective Young’s modulus (Young’s modulus of the 

structure normalized by cell wall material’s Young’s modulus), Poisson’s ratio, and 

effective shear modulus (shear modulus of the structure normalized by cell wall material’s 

Young’s modulus) for the meta-lattices studied are tabulated in Tables 1.1 and 1.2. In 

Table 1.1, the structures are characterized into two categories - hexagon and square based 

honeycombs. The structural unit cell, effective Young’s modulus, and Poisson’s ratio for 
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each structure are reported in the next columns. For anisotropic structures (i.e., square 

based honeycombs), the effective shear modulus and material principal directions are 

reported in Table 1.2. 

 

Table 1.1 Summary of the analytical relations for the effective Young’s modulus and 

Poisson ratio of cellular lattices studied in this article. Asterisks (*) highlight anisotropic 

lattices. For these anisotropic lattices the analytical expressions for the effective shear 

modulus and material principal directions are given in Table 1.2. 

 

 

Table 1.2 Summary of the analytical expressions for the effective shear modulus and 

material principal directions for the anisotropic lattices studied. 
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Figure 1.7 (A) Normalized Young’s modulus, and (B) Poisson ratio as a function of 

geometrical parameter, 𝑟/𝑅 , for three different hexagon based hierarchical and chiral 

lattices. The effective Young’s modulus of the structure is normalized by the effective 

Young’s modulus of a regular hexagonal honeycomb (𝑟/𝑅 = 0) with same relative density. 

The solid lines represent the results from the theoretical estimates (i.e. relations reported in 

Table 1.1), and circles show the finite element results. 

 

In Figure 1.7, we plot the normalized Young’s modulus (effective Young’s 

modulus of the structure normalized by the effective Young’s modulus of a regular 

hexagonal honeycomb with same relative density) (Figure 1.7 (A)) and the Poisson’s ratio 

(Figure 1.7 (B)) of hexagon based chiral and hierarchical honeycombs varied via the 𝑟/𝑅 

ratio which is a de-facto measure of the magnitude of alteration to the underlying structure. 

The solid lines represent the results from the analytical estimates of elastic moduli in Table 

1.1 and markers denote the FE results. Note that Figure 1.7 (A) is a log-log plot. Clearly 

as 𝑟/𝑅 → 0, the chiral and hierarchical structures reduce trivially to the regular hexagonal 

honeycomb. A good agreement is observed between the theoretical and FE results except 

for tri-chiral structure where the theory predicts higher stiffness and negative Poisson’s 

ratio when 𝑟 𝑅⁄ > 0.2. This discrepancy is resulted from the assumed rigid behavior for 

the cylindrical components in the chiral structures. When 𝑟 𝑅⁄ → 0.5  in the tri-chiral 

structure, the cylindrical components become the only source of compliance for the 

structure as straight beams vanish, and therefore the theoretical results diverge from the FE 

results. Among the hexagon based structures, hierarchical hexagonal honeycomb shows 

higher stiffness with respect to the other structures and the normalized Young’s modulus 

achieves the maximum value of �̅� ≅ 2 at 𝑟 𝑅⁄ ≅ 0.32 [78]. The plot of Poisson’s ratio 
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shown in Figure 1.7 (B) also shows a good agreement with the theoretical derivations 

presented earlier. Unlike the hierarchical structure, the chiral and anti-chiral structures are 

capable of showing auxetic behavior (i.e., negative Poisson’s ratio) at higher 𝑟 𝑅⁄  values. 

The anti-tri-chiral structure which is also the most compliant among the three exhibits 

auxeticity as Poisson’s ratio becomes negative for 𝑟 𝑅⁄  greater than ≅ 0.2. 

 

 

Figure 1.8 (A) Normalized Young’s modulus, (B) Poisson ratio, and (C) Normalized shear 

modulus as a function of geometrical parameter, 𝑟/𝑅, for four different anisotropic square 

based hierarchical and chiral lattices. The effective Young’s and shear moduli of the 

structure are normalized by those of a square honeycomb (𝑟/𝑅 = 0) with same relative 

density. The solid lines represent the results from the theoretical estimates (i.e. relations 

reported in Tables 1.1 and 1.2), and circles show the finite element results. 

 

Figure 1.8 illustrates the behavior of square based structures which are anisotropic. 

Since the results for stretching dominated honeycombs depend on the relative density of 

the structures, we reported the results of square based honeycombs only at a constant 
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relative density of 6%. The solid lines in these figures represent the results from the closed-

form estimates of elastic moduli from Tables 1.1 and 1.2, and markers denote the FE 

results. Similar to hexagon based honeycombs, there exist discrepancies between the 

theoretical and numerical results of square based structures in the case of chiral and anti-

chiral lattices, which become more pronounced for tetra-chiral structure as 𝑟/𝑅 goes to 0.5. 

Again, these discrepancies stem from the assumed rigid behavior for the cylindrical 

components in the chiral and anti-chiral structures. We plot the normalized Young’s 

modulus of the structure (effective Young’s modulus of the structure normalized by the 

effective Young’s modulus of a square honeycomb with same relative density) in Figure 

1.8 (A) and notice a good agreement with FE results. Clearly, increasing 𝑟/𝑅 results in a 

sharp decrease in the in-plane stiffness of these structures which is especially pronounced 

in tetra- and anti-tetra-chiral lattices. Of all the square based structures studied, only anti-

tetra-chiral honeycombs exhibit auxeticity for all values of 𝑟/𝑅 . In this structure, the 

Poisson’s ratio starts to change quite appreciably with even small changes in 𝑟/𝑅, then 

accelerates towards lesser values of 𝑟/𝑅 and finally reaches a plateau. On the other hand, 

although the tetra-chiral structure, along with the hierarchical structures show little initial 

sensitivity to the variations in 𝑟/𝑅, at around 𝑟/𝑅 ≅ 0.03, their behaviors begin to sharply 

diverge. The hierarchical structures show a rapid change followed by plateaus whereas the 

tetra-chiral structure starts with a slower variation which accelerates sharply as 𝑟/𝑅 → 0.5 

due to the effect of compliance of the cylinders as mentioned above. Finally Figure 1.8 

(C) plots the variation of normalized shear modulus (effective shear modulus of the 

structure normalized by the effective shear modulus of a square honeycomb with same 

relative density) of these anisotropic structures. The normalized shear moduli of the two 

chiral and two hierarchical structures show little initial sensitivity to variation of 𝑟/𝑅. 

However, soon at about 𝑟/𝑅 ≅ 0.01, these two groups diverge completely in opposite 

directions unlike previous elastic constants. The chiral structures show increasingly low 

normalized shear modulus as 𝑟/𝑅  is increased whereas an increase in 𝑟/𝑅  positively 

affects the normalized shear modulus of the hierarchical structures. The trend for tetra-

chiral structure changes course at an 𝑟/𝑅  of about 0.25 as the structure becomes 

increasingly stiff in shear, causing a rapid increase as 𝑟/𝑅 → 0.5. 

 



24 
 

Table 1.3 Our theoretical and numerical results vs. numerical and experimental data 

available in the literature [46]. 

 

 

Next, we compare our results with numerical and experimental data available in the 

literature. We choose the reported data from Alderson et al. [46] who carried out numerical 

and experimental analysis on the in-plane elastic properties of chiral and anti-chiral 

honeycombs subjected to uniaxial loading for small deformations. They employed 

selective laser sintering rapid-prototyping technique to fabricate the experimental samples 

out of nylon powder with geometrical parameters 𝑟 = 5𝑚𝑚, 𝐿 = 25𝑚𝑚, 𝑡 = 1.5𝑚𝑚, and 

out-of-plane depth 𝑑 = 25𝑚𝑚. Table 1.3 compares our results with their numerical and 

experimental data. From this table we find favorable comparisons of our elastic constants 

(Young’s modulus and Poisson’s ratio) for almost all chirality except the tetra-chiral case. 

Note that some discrepancy is natural both due to the difference in the materials between 

the two cases and also from the different boundary conditions employed between the two 

FE models. Specifically, in contrast to our periodic boundary conditions imposed on the 

FE models at structural level, they employed slightly different non-periodic boundary 

conditions at the “RVE level” which led to a stiffening effect on the RVEs. For instance, 

for tri- and anti-tri-chiral honeycombs, instead of applying appropriate forces and moments 

on the RVE’s edge nodes to simulate the uniaxial loading on a periodic structure, they used 

geometrical constraints (i.e., coupling interaction between RVE’s edge nodes) to relate the 

displacements of particular edge nodes within the RVE. We believe that this difference 

may play an even greater role in the relatively large discrepancy between the results 

obtained for the case of tetra-chiral honeycombs. Interestingly, for this particular case, 

Alderson et al. [46] report auxeticity for this structure at small strains through both FE and 

experimental investigations (Table 1.3) whereas neither our theoretical prediction, nor FE 

simulations as seen in Figure 1.6 show any auxeticity for this case. 
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1.7 Conclusions 

We studied the effects of chirality and hierarchy, generally a hallmark of natural 

materials, on the static in-plane properties of a selected set of 2D honeycombs. Analytical 

closed-form formulas for square and hexagon based networks have been obtained, and the 

results are verified numerically. Comprehensive design graphs, comparing elastic moduli 

(Young’s and shear moduli and Poisson’s ratio) are provided. We find that both chirality 

and hierarchy crucially affect the in-plane mechanical properties of these structures. 

Overall, hierarchical structures are stiffer and have higher Poisson’s ratio than their chiral 

counterparts for similar values of the 𝑟/𝑅 ratio which quantifies the amount of hierarchy 

or chirality. However, chirality remains the only route to auxeticity. This is due to the 

deformation mechanism observed in auxetic chiral and anti-chiral honeycombs. This 

mechanism is characterized by the rotation of cylindrical nodes and bending of the 

ligaments, which make the structures contract in the transverse direction when subjected 

to uniaxial compressive loads. The behavior of the elastic constants of anti-tetra-chiral 

structure shows a remarkable glimpse of an engineered material which can simultaneously 

exhibit anisotropy, auxeticity, and a shear modulus that is much lower than usual solids. 

 

1.8 Appendices 

 

1.A Tri-chiral 

A schematic of a tri-chiral honeycomb derived from a regular hexagonal architecture 

undergoing an in-plane uniaxial far-field (macroscopic) loading in the x-direction 

characterized by the normal stress, 𝜎𝑥 is shown in Figure 1.A.1 (A). A detailed free body 

diagram (FBD) of the structural unit cell of this honeycomb is shown in Figure 1.A.1 (B). 

The unit cell contains a cylinder (node) which is assumed to be rigid and three half 

ligaments. Due to the 180o rotational symmetry of the structure and the components of the 

microscopic stresses, all three external cut points of the unit cell (i.e., points 1 through 3 in 

Figure 1.A.1 (B)) must be moment-free under an arbitrary macroscopic stress state. 

Therefore, utilizing the equilibrium conditions of forces and moments, the horizontal force, 
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𝐹, can be related to the far-field stress as, 𝐹 = 𝜎𝑥𝑅√3/2, where R is the center to center 

distance of adjacent cylinders in the structure, as shown in Figure 1.A.1 (B). The vertical 

force, 𝑃  is a virtual force which will be used later in this subsection to compute the 

Poisson’s ratio of the structure. Under the influence of this force system, neglecting the 

stretching and shearing terms, the strain energy stored in the unit cell of this bending 

dominated structure can be obtained as: 

𝑈 = 1 (2𝐸𝑠𝐼)⁄ {∫ ((𝐹 𝑐𝑜𝑠(𝜋 6 + 𝜃⁄ ) − 𝑃 𝑠𝑖𝑛(𝜋 6 + 𝜃⁄ ))𝑥)
2
𝑑𝑥

𝐿
2⁄

0

+ ∫ ((2𝐹 𝑠𝑖𝑛(𝜃))𝑥)
2
𝑑𝑥

𝐿
2⁄

0

+ ∫ ((𝐹 𝑐𝑜𝑠(𝜋 6 − 𝜃⁄ ) − 𝑃 𝑠𝑖𝑛(𝜋 6 − 𝜃⁄ ))𝑥)
2
𝑑𝑥

𝐿
2⁄

0

} 
(1.A.1) 

where 𝐸𝑠 (as mentioned earlier) is the Young’s modulus of the cell wall material, 𝐼 is the 

second moment of area of the wall’s cross section (cell walls are assumed to have a 

rectangular cross section with uniform thickness, 𝑡, and unit depth, i.e., 𝐼 = 𝑡3 12⁄ ), and 

𝜃 = 𝑡𝑎𝑛−1(2𝑟 𝐿⁄ ) is the angle between each ligament and the line connecting the centers 

of two adjacent cylinders as shown in Figure 1.A.1 (B). Setting 𝑃 = 0 in Equation (1.A.1) 

and using Castigliano’s second theorem [72], 𝜕𝑈 𝜕𝐹⁄  gives the total displacement (𝛿𝑥) of 

points 1 and 2 (with respect to point 3) in the 𝑥-direction. Then the average strain of the 

structure in the 𝑥-direction is obtained by using the relation, 𝜖𝑥 = 𝛿𝑥 1.5𝑅⁄ . The effective 

Young’s modulus of the structure (normalized by material’s Young’s modulus, 𝐸𝑠) is then 

defined as the ratio of the average stress, 𝜎𝑥, and the average strain, 𝜖𝑥, and obtained as: 

𝐸 𝐸𝑠⁄ = 4 √3⁄ (𝑡 𝐿⁄ )3{1.5 (cos2(𝜋 6⁄ − 𝜃) + 4 sin2(𝜃) + cos2(𝜋 6⁄ + 𝜃))⁄ } (1.A.2) 

Note that as 𝑟 goes to zero, 𝜃 also approaches zero and the structure is reduced to a 

regular hexagonal honeycomb. Thus, letting 𝜃 = 0 in Equation (1.A.2) will result in 

𝐸 𝐸𝑠⁄ = 4 √3⁄ (𝑡 𝐿⁄ )3, which is a familiar result for the effective Young’s modulus of a 

regular hexagonal honeycomb [75]. 
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Figure 1.A.1 (A) Schematic of a tri-chiral honeycomb under 𝑥-direction uniaxial loading. 

(B) Free body diagram of the structural unit cell. 

 

Next, to completely characterize the elastic behavior of tri-chiral honeycomb, we 

also need to determine its Poisson’s ratio, 𝜈. We again used Castigliano’s second theorem 

to obtain the displacement between points 1 and 2 (𝛿𝑦) (see Figure 1.A.1 (B)) in the 

direction of the virtual forces as, 𝛿𝑦 = 𝜕𝑈 𝜕𝑃⁄ |𝑃=0. Using this relation we obtain 𝜖𝑦 =

𝛿𝑦 (𝑅 √3 2⁄ )⁄  which gives the structure’s average strain in the 𝑦 -direction due to the 

uniaxial loading, 𝜎𝑥 in the 𝑥-direction. The effective Poisson’s ratio, 𝜈, of the structure is 

finally defined as the negative of the ratio of the average strain in the 𝑦-direction, 𝜖𝑦, to 

the average strain in the 𝑥-direction, 𝜖𝑥, and obtained as the following: 

𝜈 = √3
(sin(𝜋 6⁄ − 𝜃) cos(𝜋 6⁄ − 𝜃) + sin(𝜋 6⁄ + 𝜃) cos(𝜋 6⁄ + 𝜃))

cos2(𝜋 6⁄ − 𝜃) + 4 sin2(𝜃) + cos2(𝜋 6⁄ + 𝜃)
 

(1.A.3) 

Again, note that as 𝑟 goes to zero, Equation (1.A.3) reduces to 𝜈 = 1, which is the 

effective Poisson’s ratio of a regular hexagonal honeycomb [75]. 

 

1.B Anti-tri-chiral 

A schematic of an anti-tri-chiral structure which is also derived from an underlying 

hexagonal unit cell architecture is shown in Figure 1.B.1 (A). An in-plane uniaxial far-

field loading characterized by the normal stress, 𝜎𝑥 is applied to the structure in the 𝑥-
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direction. A detailed FBD of the structural unit cell is also shown in Figure 1.B.1 (B). It 

contains a rigid cylinder (node) and three half ligaments. As shown in Figure 1.B.1 (A), 

by using a cut line ∆1, since there is no macroscopic stress to the structure in the 𝑦-

direction, the unit cell must be free of any forces in the 𝑦-direction at point 1. Similar 

argument holds true for point 2 (by using the cut line ∆2 in Figure 1.B.1 (A)). Furthermore, 

due to the symmetry of the structure with respect to the cut line ∆3 (see Figure 1.B.1 (A)), 

point 3 must also be free of any forces in the 𝑦-direction. Then, using the zigzag cut line 

∆4 shown in Figure 1.B.1 (A) and due to the symmetry of the structure mentioned above; 

points 1 and 2 must experience same forces in the 𝑥-direction and same moments with 

respect to the 𝑧-axis. Thus, the forces and moments acting on the external cut points of the 

unit cell are reduced as shown in Figure 1.B.1 (B) (recall from previous section that the 

virtual force 𝑃 has been applied to calculate the Poisson’s ratio and can be treated as zero 

in this part of the calculation). Note that the 𝑥-component of the force applied to point 3 

(i.e., 2𝐹) comes from the equilibrium of forces in the 𝑥-direction. Now, the equilibrium of 

moments in the 𝑧-direction gives 2𝑀 + 𝑀∗ − 3𝑟𝐹 = 0, where 𝑀 and 𝑀∗ are two yet 

unknown moments at external cut points of the unit cell as a result of the loading on the 

structure. Using this equation and neglecting the stretching and shearing terms, the strain 

energy stored in the unit cell is obtained as: 

𝑈 = 1 (2𝐸𝑠𝐼)⁄ {∫ (2𝑀 − 3𝑟𝐹)2𝑑𝑥

𝐿
2⁄

0

+ ∫ (𝑀 + 𝐹𝑥 √3 2⁄ )2𝑑𝑥

𝐿
2⁄

0

+ ∫ (𝑀 − 𝐹𝑥 √3 2⁄ )2𝑑𝑥

𝐿
2⁄

0

} 
(1.B.1) 

Now, for all horizontal lines of the structure to remain parallel in the deformed 

state, we can show that the following geometrical condition must hold: 𝜃1 = −𝜃2, where 

𝜃1 and 𝜃2 are respectively the total rotations of points 1 and 2 with respect to the 𝑧-axis. 

Using Castigliano’s theorem, this geometrical condition is equivalent to the relation, 

𝜕𝑈 𝜕𝑀⁄ = 0. Now, substituting into this equation the strain energy given by Equation 

(1.B.1), 𝑀 is determined as a function of 𝐹 as 𝑀 = 𝑟𝐹. Also using equation of equilibrium 

for the moments given earlier, 𝑀∗ is obtained as 𝑀∗ = 𝑟𝐹. Next, substituting the values 
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obtained for unknown moments 𝑀 and 𝑀∗ into Equation (1.B.1), the strain energy stored 

in the unit cell can be written as: 

𝑈 = 1 (2𝐸𝑠𝐼)⁄ {∫ (𝑟𝐹)2𝑑𝑥

𝐿
2⁄

0

+ ∫ (𝑟𝐹 + 𝐹𝑥 √3 2⁄ )2𝑑𝑥

𝐿
2⁄

0

+ ∫ (𝑟𝐹 − 𝐹𝑥 √3 2⁄ )2𝑑𝑥

𝐿
2⁄

0

} 
(1.B.2) 

where 𝐹 can be obtained as a function of the applying stress, 𝜎𝑥 as 𝐹 = 𝐿𝜎𝑥 √3 2⁄ . 

 

 

Figure 1.B.1 (A) Schematic of an anti-tri-chiral honeycomb under 𝑥-direction uniaxial 

loading. (B) Free body diagram of the structural unit cell. 

 

Using Castigliano’s second theorem, 𝜕𝑈 𝜕𝐹⁄  gives the total displacements of points 

1 and 2 (with respect to point 3) in the loading direction as, 𝛿𝑥 =
𝐹𝐿(𝐿2+24𝑟2)

16𝐸𝑠𝐼
. Furthermore, 

the structure’s average strain in the 𝑥-direction is obtained by using the relation, 𝜖𝑥 =

𝛿𝑥 1.5𝐿⁄ . The effective Young’s modulus of the structure (normalized by material’s 

Young’s modulus, 𝐸𝑠) is then defined as the ratio of the average stress, 𝜎𝑥 and the average 

strain, 𝜖𝑥 and obtained as: 

𝐸 𝐸𝑠⁄ = 4 √3⁄ (𝑡 𝐿⁄ )3 (1 + 24(𝑟 𝐿⁄ )2)⁄  (1.B.3) 

In the remaining part of this subsection, in order to obtain the Poisson’s ratio of the 

structure we add two virtual forces, 𝑃 acting on points 1 and 2 of the unit cell, as shown in 
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Figure 1.B.1 (B). Note that for the unit cell to remain in the static equilibrium state, we 

also need to add a virtual moment (𝑃𝑟√3) with respect to the z-axis acting on point 3. 

Thus, the strain energy stored in the unit cell will be modified as follows: 

𝑈 = 1 (2𝐸𝑠𝐼)⁄ {∫ (𝑟𝐹 + 𝑃𝑟√3)2𝑑𝑥

𝐿
2⁄

0

+ ∫ (𝑟𝐹 + 𝐹𝑥 √3 2⁄ − 𝑃𝑥/2)2𝑑𝑥

𝐿
2⁄

0

+ ∫ (𝑟𝐹 − 𝐹𝑥 √3 2⁄ + 𝑃𝑥/2)2𝑑𝑥

𝐿
2⁄

0

} 
(1.B.4) 

Next, we use Castigliano’s second theorem to obtain the total displacement of 

points 1 and 2 (see Figure 1.B.1 (B)) in the direction of the virtual forces as, 𝛿𝑦 =

 𝜕𝑈 𝜕𝑃⁄ |𝑃=0. Using Equation (1.B.4), 𝛿𝑦 is obtained as, 𝛿𝑦 =
𝐹𝐿√3(24𝑟2−𝐿2)

48𝐸𝑠𝐼
. Then, using 

this equation, 𝜖𝑦 = 𝛿𝑦 (𝐿 √3 2⁄ )⁄  gives the structure’s average strain in the y-direction due 

to the uniaxial loading in the 𝑥-direction (𝜎𝑥). The effective Poisson’s ratio, 𝜈 of the 

structure is then defined as the negative of the ratio of the average strain in the 𝑦-direction, 

𝜖𝑦 to the average strain in the 𝑥-direction, 𝜖𝑥 and given as follows: 

𝜈 =
1 − 24(𝑟 𝐿⁄ )2

1 + 24(𝑟 𝐿⁄ )2
 

(1.B.5) 

Note that similar to the tri-chiral structure, here as 𝑟 goes to zero, the structure 

transforms into a regular hexagonal honeycomb. Letting 𝑟 = 0 in Equations (1.B.3) and 

(1.B.5) will result in 𝐸 𝐸𝑠⁄ = 4 √3⁄ (𝑡 𝐿⁄ )3, and 𝜈 = 1, which are the effective Young’s 

modulus and Poisson’s ratio of a regular hexagonal honeycomb, respectively, as noted 

earlier. 

 

1.C Anti-tetra-chiral 

We now turn our attention to the next alteration of the square based unit cell which is an 

anti-tetra-chiral structure. Note that the Young’s modulus and Poisson’s ratio of the anti-

tetra-chiral lattice with square and rectangle based networks have been analytically 
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determined assuming the square based anti-tetra-chiral lattice (i.e., when all straight beams 

having identical lengths) is macroscopically isotropic [33]. In contrast, in the current paper 

we will show that the square anti-tetra-chiral structure is macroscopically orthotropic (i.e., 

having four-fold rotational symmetry and defined by three in-plane materials constants), 

and will derive analytical relations for the shear modulus and the material’s principal 

directions. 

An anti-tetra-chiral structure is depicted schematically in Figure 1.C.1 (A) under a 

uniaxial far-field stress in the 𝑥-direction, 𝜎𝑥. FBD of a representative unit cell of the 

structure is shown in Figure 1.C.1 (B). It contains a rigid cylinder (node) and four half 

ligaments. The 180° rotational symmetry of the structure and loading, requires that any 

two external cut points (i.e., points 1 through 4 in Figure 1.C.1 (B)) located opposite to 

each other in the unit cell experience same forces and moments. Then, using the cut line 

∆1, since there is no macroscopic stress applied to the structure in the 𝑦-direction, the unit 

cell must be forceless in that direction at point 4. Similar statement holds true for point 2, 

by using the cut line ∆2. Also note that the component of forces parallel to each cut line at 

corresponding external cut point of the unit cell must be equal to zero, because no 

macroscopic shear stress acts on the structure. Thus, under this uniaxial stress on the 

structure, 𝜎𝑥, each unit cell experiences the loading shown in Figure 1.C.1 (B) (for instance 

neglect the terms containing 𝑃 in the forces and moments), where F can be given as a 

function of applied stress as, 𝐹 = 𝜎𝑥𝐿. Also, 𝑀 and 𝑀∗ are two yet unknown moments to 

be determined. Then, equilibrium of moments with respect to the 𝑧-axis gives 𝑀 + 𝑀∗ −

𝑟𝐹 = 0. Using this equation and neglecting the shearing terms, the strain energy of the unit 

cell can be written as, 𝑈 = 2
𝐹2𝐿 2⁄

2𝐸𝑠𝐴
+ 2∫

𝑀2

2𝐸𝑠𝐼
𝑑𝑥

𝐿 2⁄

0
+ 2∫

(𝑟𝐹−𝑀)2

2𝐸𝑠𝐼
𝑑𝑥

𝐿 2⁄

0
. Next, for all 

horizontal lines in the structure to remain parallel in the deformed state, the following 

condition must hold: 
𝜕𝑈

𝜕𝑀
= 0. Upon substituting the strain energy into this equation, 𝑀 is 

obtained as a function of 𝐹 as 𝑀 = 𝑟𝐹 2⁄ . Then, using the equation of equilibrium of 

moments given earlier, 𝑀∗ is also obtained as 𝑀∗ = 𝑟𝐹 2⁄ . Then, substituting the values 

obtained for unknown moments, 𝑀 and 𝑀∗ into the equation of strain energy, it will be 

modified as 𝑈 = 2
𝐹2𝐿 2⁄

2𝐸𝑠𝐴
+ 4

(𝑟𝐹 2⁄ )2𝐿 2⁄

2𝐸𝑠𝐼
. Using Castigliano’s theorem, 𝜕𝑈 𝜕𝐹⁄  gives the 
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total displacement of point 1 with respect to the point 3 in the x-direction as 𝛿𝑥 =
𝐹𝐿

𝐸𝑠𝐴
+

𝐹𝑟2𝐿

2𝐸𝑠𝐼
. Then the structure’s average strain in the 𝑥-direction is given by using the relation, 

𝜖𝑥 = 𝛿𝑥 𝐿⁄ . The effective Young’s modulus of the structure (normalized by material’s 

Young’s modulus, 𝐸𝑠) is then defined as the ratio of the average stress, 𝜎𝑥 and the average 

strain, 𝜖𝑥 and obtained as: 

𝐸𝑥 𝐸𝑠⁄ =
𝑡 𝐿⁄

1 + 6(𝑟 𝐿⁄ )2 (𝑡 𝐿⁄ )2⁄
 

(1.C.1) 

Next, in order to obtain the Poisson’s ratio of the structure, we add two virtual 

forces of magnitude 𝑃 acting on points 2 and 4 as shown in Figure 1.C.1 (B) to be able to 

find the elongation of the unit cell in the 𝑦-direction. Note that for the unit cell to remain 

in the equilibrium state, we must include virtual moments, 𝑟𝑃 2⁄ , with respect to the 𝑧-axis 

acting on points 1 through 4 (see Figure 1.C.1 (B)). Thus, the strain energy of the unit cell 

will be modified into: 𝑈 = 2
𝐹2𝐿 2⁄

2𝐸𝑠𝐴
+ 2

𝑃2𝐿 2⁄

2𝐸𝑠𝐴
+ 4

(𝑟𝐹 2⁄ +𝑟𝑃 2⁄ )2𝐿 2⁄

2𝐸𝑠𝐼
. Then, using Castigliano’s 

theorem, the displacement of point 4 with respect to point 2 in the 𝑦-direction can be 

obtained as, 𝛿𝑦 =
𝐹𝑟2𝐿

2𝐸𝑠𝐼
. Using this equation, 𝜖𝑦 = 𝛿𝑦 𝐿⁄  gives the structure’s average strain 

in the 𝑦-direction due to the uniaxial loading, 𝜎𝑥. The effective Poisson’s ratio of the 

structure is then defined as the negative of the ratio of the average strain in the 𝑦-direction, 

𝜖𝑦 to the average strain in the 𝑥-direction, 𝜖𝑥 and obtained as follows: 

𝜈𝑥𝑦 =
−6(𝑟 𝐿⁄ )2

6(𝑟 𝐿⁄ )2 + (𝑡 𝐿⁄ )2
 

(1.C.2) 

Finally, to determine the shear modulus, as shown in Figure 1.C.1 (C), consider an 

anti-tetra-chiral structure under a uniform far-field shear stress, 𝜏𝑥𝑦. A representative unit 

cell of the structure is also shown in Figure 1.C.1 (D). Similar to tetra-chiral honeycombs 

studied in the dissertation, we can show that under the shearing load, 𝜏𝑥𝑦, the unit cell must 

experience the loading shown in Figure 1.C.1 (D), where 𝐹 can be obtained as a function 

of applying stress as, 𝐹 = 𝜏𝑥𝑦𝐿. Thus, the unit cell’s strain energy is obtained as 𝑈 =
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4∫
(𝐹𝑥)2

2𝐸𝑠𝐼
𝑑𝑥

𝐿 2⁄

0
. Then, (𝜕𝑈 𝜕𝐹⁄ )/𝐿 gives the total change of angle (i.e., the shear strain, 

𝛾𝑥𝑦) between two straight lines initially parallel to the 𝑥- and 𝑦-axes. Finally, the effective 

shear modulus of the structure (𝐺𝑥𝑦, normalized with respect to the Young’s modulus of 

cell wall material) is defined as the ratio of the average shear stress, 𝜏𝑥𝑦 to the average 

shear strain, 𝛾𝑥𝑦 and obtained as the following: 

𝐺𝑥𝑦 𝐸𝑠⁄ = 0.5(𝑡 𝐿⁄ )3 (1.C.3) 

 

 

Figure 1.C.1 (A) Schematic of an anti-tetra-chiral honeycomb under 𝑥-direction uniaxial 

loading. (B) Free body diagram of the structural unit cell under uniaxial loading. (C) 

Schematic of an anti-tetra-chiral honeycomb under 𝑥-𝑦 shearing load. (D) Free body 

diagram of the structural unit cell under shearing load. 

 

Note that as 𝑟  goes to zero, the structure transforms into a regular square 

honeycomb. Upon substituting 𝑟 = 0  into Equations (1.C.1)-(1.C.3), we get 𝐸𝑥 𝐸𝑠⁄ =

𝑡 𝐿⁄ , 𝜈𝑥𝑦 = 0, and 𝐺𝑥𝑦 𝐸𝑠⁄ = 0.5(𝑡 𝐿⁄ )3, which are the Young’s modulus, Poisson’s ratio, 

and shear modulus of a regular square honeycomb, respectively. Employing the same 
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procedure as outlined in the paper yields the principal directions for the two-dimensional 

compliance tensor of this honeycomb as 𝑘𝜋/4, where k is an integer. 

 

1.D Hierarchical diamond 

We now turn our attention to determining the linear elastic constants of hierarchical 

diamond structure. Figure 1.D.1 (A) shows a hierarchical diamond structure under a 

uniaxial far-field stress in the x-direction, 𝜎𝑥. The corresponding FBD of the unit cell is 

shown in Figure 1.D.1 (B). It contains a diamond and four half ligaments connecting the 

diamonds together. Similar to the previous section, under a uniaxial stress on the structure, 

𝜎𝑥, each unit cell experiences the loading shown in Figure 1.D.1 (B), where 𝐹 can be 

obtained as a function of applied stress as, 𝐹 = 𝜎𝑥𝐿. Consider the right portion of the unit 

cell as shown in Figure 1.D.1 (B). Unknown forces and moment acting on points 5 and 6 

of the unit cell are obtained by satisfying the equilibrium conditions discussed earlier. 𝑀 

is found to be 𝑀 = 𝑟𝐹 4⁄ . Then, using this equation, the unit cell’s strain energy is obtained 

as: 

𝑈 = 2
𝐹2(𝐿 2⁄ − 𝑟)

2𝐸𝑠𝐴
+ 4

(𝐹√2 4⁄ )
2
𝑟√2

2𝐸𝑠𝐴
+ 4∫

(𝑟𝐹 4⁄ − 𝑥𝐹√2 4⁄ )
2

2𝐸𝑠𝐼
𝑑𝑥

𝑟√2

0

 
(1.D.1) 

Using above equation we can obtain the total displacement of point 1 with respect 

to point 3 in the 𝑥-direction as 𝛿𝑥 =
𝜕𝑈

𝜕𝐹
=

𝐹(𝐿−𝑟(2−1 √2⁄ ))

𝐸𝑠𝐴
+

√2𝐹𝑟3

12𝐸𝑠𝐼
. Next, the structure’s 

average strain in the 𝑥-direction is obtained by using the relation 𝜖𝑥 = 𝛿𝑥 𝐿⁄ . The effective 

Young’s modulus of the structure (normalized by material’s Young’s modulus, 𝐸𝑠) is then 

defined as the ratio of the average stress, 𝜎𝑥 and the average strain, 𝜖𝑥 and obtained as: 

𝐸𝑥 𝐸𝑠⁄ =
𝑡 𝐿⁄

1 − (𝑟 𝐿⁄ )(2 − 1 √2⁄ ) + √2 (𝑟 𝐿⁄ )3 (𝑡 𝐿⁄ )2⁄
 

(1.D.2) 

Next, in order to obtain the Poisson’s ratio, consider a pair of virtual forces acting 

on the unit cell in the lateral direction, as shown in Figure 1.D.1 (C). One fourth of the 

diamond is also shown in Figure 1.D.1 (C). Similar procedure is used to determine the 
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unknown moments (𝑀1 and 𝑀2) acting on points 6 and 7. 𝑀1 and 𝑀2 are obtained as 𝑀1 =

−𝑀2 = 𝑟𝐹 4⁄ − 𝑟𝑃 4⁄ . Then, the strain energy of the unit cell is given as: 

𝑈 = 2
𝐹2(𝐿 2⁄ − 𝑟)

2𝐸𝑠𝐴
+ 2

𝑃2(𝐿 2⁄ − 𝑟)

2𝐸𝑠𝐴
+ 4

((𝐹 + 𝑃)√2 4⁄ )
2
𝑟√2

2𝐸𝑠𝐴

+ 4∫
((𝑟 4⁄ − 𝑥√2 4⁄ )(𝑃 − 𝐹))

2

2𝐸𝑠𝐼
𝑑𝑥

𝑟√2

0

 
(1.D.3) 

Castigliano’s second theorem states that the total displacement of points 2 and 4 in 

the direction of virtual forces can be obtained using the relation, 𝛿𝑦 = 𝜕𝑈 𝜕𝑃⁄ |𝑃=0. 

Substituting Equation (1.D.3) into this equation gives, 𝛿𝑦 =
𝐹𝑟

√2𝐸𝑠𝐴
−

√2𝐹𝑟3

12𝐸𝑠𝐼
. Then, using 

this equation, 𝜖𝑦 = 𝛿𝑦 𝐿⁄  gives the structure’s average strain in the y-direction due to the 

uniaxial loading, 𝜎𝑥. The effective Poisson’s ratio of the structure is then defined as the 

negative of the ratio of the average strain in the y-direction, 𝜖𝑦 to the average strain in the 

𝑥-direction, 𝜖𝑥 and obtained as the following: 

𝜈𝑥𝑦 =
(𝑟 𝐿⁄ )3 − 0.5(𝑡 𝐿⁄ )2(𝑟 𝐿⁄ )

(𝑟 𝐿⁄ )3 − (√2 − 0.5)(𝑡 𝐿⁄ )2(𝑟 𝐿⁄ ) + (𝑡 𝐿⁄ )2 √2⁄
 

(1.D.4) 

Finally, to determine the shear modulus, as shown in Figure 1.D.1 (D), we apply a 

uniform far-field shear stress, 𝜏𝑥𝑦 to a typical hierarchical diamond honeycomb. FBD of 

the unit cell is also shown in Figure 1.D.1 (E). Likewise the previous section, there are 

only four equal shear forces acting on the unit cell’s external cut points, 𝐹, which can be 

obtained as a function of applying stress as, 𝐹 = 𝜏𝑥𝑦𝐿. Next, consider one fourth of the 

diamond as shown in Figure 1.D.1 (E). Components of unknown forces and moment 

acting on the external cut points of this portion of the unit cell can be determined as 

functions of 𝐹, as shown in Figure 1.D.1 (E), where 𝑀 = 𝐹
2⁄ (𝐿 2⁄ − 𝑟). Hence, the strain 

energy of the unit cell is obtained as: 

𝑈 = 4∫
(𝐹𝑥)2

2𝐸𝑠𝐼
𝑑𝑥

𝐿 2⁄ −𝑟

0

+ 4
(𝐹 √2⁄ )

2
𝑟√2

2𝐸𝑠𝐴
+ 4 ∫

(𝐹 2⁄ (𝐿 2⁄ − 𝑟))
2

2𝐸𝑠𝐼
𝑑𝑥

𝑟√2

0

 
(1.D.5) 
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Then, (𝜕𝑈 𝜕𝐹⁄ )/𝐿 gives the total change of angle (i.e., the shear strain, 𝛾𝑥𝑦) 

between two straight lines initially parallel to the 𝑥- and 𝑦-axes. Finally, the effective shear 

modulus of the structure (𝐺𝑥𝑦, normalized with respect to the Young’s modulus of cell 

walls material) is defined as the ratio of the average shear stress, 𝜏𝑥𝑦 to the average shear 

strain, 𝛾𝑥𝑦 and obtained as the following: 

𝐺𝑥𝑦 𝐸𝑠⁄ =
0.5(𝑡 𝐿⁄ )3

(1 − 2(𝑟 𝐿⁄ ))
2
(1 + (1.5√2 − 2)(𝑟 𝐿⁄ )) + √2(𝑡 𝐿⁄ )2(𝑟 𝐿⁄ )

 

(1.D.6) 

 

 

Figure 1.D.1 (A) Schematic of a hierarchical diamond honeycomb under x-direction 

uniaxial loading. (B) and (C) Free body diagram of the structural unit cell under uniaxial 

loading, where P is a virtual force used for Poisson’s ratio calculations. (D) Schematic of 

a hierarchical diamond honeycomb under x-y shearing load. (E) Free body diagram of the 

structural unit cell under shearing load. 
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Note that as 𝑟 goes to zero, the structure transforms into a regular square 

honeycomb. Upon substituting 𝑟 = 0 into Equations (1.D.2), (1.D.4), and (1.D.6), we get 

𝐸𝑥 𝐸𝑠⁄ = 𝑡 𝐿⁄ , 𝜈𝑥𝑦 = 0, and 𝐺𝑥𝑦 𝐸𝑠⁄ = 0.5(𝑡 𝐿⁄ )3, which are the Young’s modulus, 

Poisson’s ratio, and shear modulus of a regular square honeycomb, respectively. The 

principal directions for the two-dimensional compliance tensor of this structure are 𝛼 =

𝑘𝜋 4⁄ , where k is an integer.  
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Chapter 2 

 

Spiderweb Honeycombs 

 

 

2.1 Abstract 

Small and large deformation in-plane elastic response of a new class of hierarchical fractal-

like honeycombs inspired by the topology of the “spiderweb” were investigated through 

analytical modeling, detailed numerical simulations, and mechanical testing. Small 

deformation elasticity results show that the isotropic in-plane elastic moduli (Young’s 

modulus and Poisson’s ratio) of the structures are controlled by dimension ratios in the 

hierarchical pattern of spiderweb, and the response can vary from bending to stretching 

dominated. In large deformations, spiderweb hierarchy postpones the onset of instability 

compared to stretching dominated triangular honeycomb (which is indeed a special case of 

the proposed spiderweb honeycomb), and exhibits hardening behavior due to geometrical 

nonlinearity. Furthermore, simple geometrical arguments were obtained for large 

deformation Poisson’s ratio of first order spiderweb honeycombs, which show good 

agreement with numerical and experimental results. Spiderweb honeycombs exhibit 

auxetic behavior depending on the non-dimensional geometrical ratio of spiderweb. 
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2.2 Introduction 

The spider’s web is a highly efficient network of natural fibers where the geometry plays 

a major role in unique properties such as significant strength, toughness and reversible 

extensibility. From the structural point of view, the current state of literature on the 

spiderweb includes evaluation of the elastic properties of spider silk [79-86] and the out-

of-plane mechanical properties of the structure under various static, dynamic, and impact 

loadings produced by wind, insects, or other natural sources [87-89]. In this dissertation 

we incorporate the spiderweb structural organization into hexagonal honeycombs resulting 

in a centrosymmetrical fractal-like pattern. 

Recently, it has been shown that engineered self-similarity can be exploited to 

control the mechanical properties of cellular structures [53, 54, 60, 90-97]. Haghpanah et 

al. [71] carried out a comprehensive study of hierarchical design which considered multiple 

parameter enhancements of high order hierarchical honeycomb lattices and showed that 

remarkably favorable combinations of specific stiffness and specific strengths can be 

simultaneously achieved via hierarchical organization. However, unlike previously 

introduced geometries, the current topology has the advantage of controlling the response 

through a critical transition between two main structural responses in a cellular solid, 

namely the stretching and bending dominated behaviors. The transverse (i.e. in-plane) 

elastic modulus of a regular hexagonal honeycomb is governed mostly by the bending 

deformation of cell walls and is related to the structure’s relative density through the 

closed-form expression: 𝐸 𝐸𝑠⁄ = 1.5𝜌3 , where 𝐸  and 𝐸𝑠  are respectively the Young’s 

moduli of the structure and cell wall material, and 𝜌 is the relative density of the structure 

[98]. On the other hand, in an equilateral triangular honeycomb, the elastic deformation is 

dominated by the axial extension or compression of cell walls, so that the resulting elastic 

modulus is much higher than the regular hexagonal honeycomb and is given as: 𝐸 𝐸𝑠⁄ =

(1 3⁄ )𝜌 [98]. 

To this end, we introduce spiderweb hierarchy by adding smaller hexagons at the 

centers of cells in an underlying hexagonal network and connecting the adjacent vertices 

by straight beams. This procedure can be repeated at smaller scales to produce higher 

orders of spiderweb structure, yet the thickness of the cell walls is reduced simultaneously 
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to conserve the overall relative density of the structure. The resulting structural 

organization has an isotropic in-plane linear elastic response due to the preservation of six-

fold symmetry. Figure 2.1 shows the evolution of a regular hexagonal honeycomb cell as 

the order of hierarchy is increased through the introduction of successive spiderweb 

topology. The structural organization of the spiderweb honeycomb at each order of 

hierarchy can be defined by the ratio of the newly added hexagonal edge length (𝑏 for first 

order and 𝑐 for second order spiderwebs), to the original hexagonal edge length, 𝑎, as 

illustrated in Figure 2.1 (i.e., 𝛾1 = 𝑏 𝑎⁄  and 𝛾2 = 𝑐 𝑎⁄ ). For first order spiderweb 

honeycomb, 0 ≤ 𝑏 ≤ 𝑎  and thus, 0 ≤ 𝛾1 ≤ 1 , where 𝛾1 = 0  represents the equilateral 

triangular grid and 𝛾1 = 1 denotes the regular hexagonal honeycomb structure where each 

cell wall consists of three separate cell walls with a thickness equal to one third of the 

overall wall thickness. For a second order spiderweb honeycomb, 0 ≤ 𝑐 ≤ 𝑏 and thus, 0 ≤

𝛾2 ≤ 𝛾1. The relative density (equal to area fraction) can be given as: 

𝜌 = 6 √3⁄  . (𝑡 𝑎⁄ ) 𝑛 = 0, 1  

𝜌 = 2 √3⁄  . (𝑡 𝑎⁄ ) . (3 + 2 ∑ 𝛾𝑖

𝑛−1

𝑖=1

) 𝑛 ≥ 2 
(2.1) 

where 𝑡  is the thickness of the cell walls and 𝑛  is the order of hierarchy. Using this 

equation, one can easily obtain the wall thickness for a structure with specified geometry 

and relative density. For instance, for a second order hierarchical structure with 𝛾1 = 1/6, 

𝛾2 = (1/6)2, and 5% relative density, assuming the original edge length to be equal to 

unity, Equation (2.1) gives: 0.05 = 2 √3⁄ ∗ (𝑡 1⁄ ) ∗ (3 + 2 ∗ (1/6)) , and then the 

thickness is obtained as 𝑡 = 0.01299. 

Analytical models based on energy methods were provided in Section 2.3 to 

determine the closed-form expressions of small deformation Young’s modulus and 

Poisson’s ratio of first order spiderweb honeycombs. The analytical results were then 

compared with FE simulations. We provided numerical results for small deformation 

Young’s modulus of second and higher orders of spiderweb hierarchy in Section 2.4. 
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Furthermore, large deformation elastic response of first order spiderweb honeycomb was 

investigated in Section 2.5. Conclusions were drawn in Section 2.6. 

 

 

Figure 2.1 Schematics showing the evolution of the unit cell in a regular hexagonal 

honeycomb into first and second order spiderweb honeycombs. 

 

2.3 First order spiderweb honeycombs under small deformations 

2.3.1 Theoretical investigations 

In this section, an analytical approach based on energy methods [72] is used to determine 

closed-form expressions for small deformation in-plane elastic moduli (Young’s modulus 

and Poisson’s ratio) of the first order spiderweb honeycomb. The cell walls of the structure 

were assumed to have an isotropic linear elastic behavior with the Young’s modulus, 𝐸𝑠. 

A six-fold symmetry seen within the structure makes it exhibit macroscopic isotropy in the 

in-plane elastic behavior [73]. Therefore, for complete characterization of the in-plane 

elastic behavior of first order spiderweb honeycomb, we only need to determine two elastic 

constants. These constants can be obtained by employing any type of in-plane loading. 

Here without loss of generality, we chose biaxial loading in the principal directions of the 

material, x and y in Figure 2.2, to obtain the Young’s modulus and Poisson’s ratio. 

To find the Young’s modulus of a first order spiderweb honeycomb described 

earlier, we first imposed a far field biaxial state of stress (𝜎𝑥𝑥 and 𝜎𝑦𝑦 in the x- and y- 

directions, respectively) as illustrated in Figure 2.2 (A). Next, we choose the triangular 

area shown by dashed lines in Figure 2.2 (A) as a structural unit cell of the structure. This 

implies that we can restore the entire structure solely by translating and/or reflecting this 

triangle. Considering small deformations, we can assume that the deformation is 

symmetrical due to inherent geometrical symmetries of the structure as well as the 

symmetry of the applied macroscopic stresses (i.e., 𝜎𝑥𝑥 and 𝜎𝑦𝑦). Therefore, the chosen 
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unit cell can only be utilized for this part of the study and cannot be employed for large 

and unsymmetrical deformation analysis. A free body diagram (FBD) of the unit cell is 

shown in detail in Figure 2.2 (B). We assigned numbers (1 through 5) to the mid-points of 

the edges in the unit cell cut by the dashed lines, 𝐿1-𝐿3. The horizontal edge in the unit cell 

with length 𝑎 2⁄ + (𝑎 − 𝑏) (see Figure 2.2 (B)) is an axis of symmetry for the unit cell. 

Thus, any pair of mirror points with respect to this edge experiences the same internal 

forces and moments, so same numbers were assigned to them. Consider the edges cut at 

their mid-points 1 and 3. Due to the 180o rotational symmetry of the structure and the 

components of macroscopic stresses, no bending moment is transmitted by these edges at 

their mid-points. For example, if the bar at point 1 bulges ‘downward’, rotating the 

structure in the x-y plane by 180o makes point 1 to bulge ‘upward’ breaking the symmetry 

of the structure and loading mentioned earlier. Next, considering the mid-points 1 and 2 

and their corresponding edges, we can conclude that no vertical forces are transmitted by 

these edges through their mid-points, because that would again break the requirements of 

symmetry. For example, if the bar at point 1 transmits a ‘downward’ vertical force, 

reflecting the structure with respect to the x axis makes the vertical force to point ‘upward’. 

Finally, symmetry of the structure also implies that points 4 and 5 transmit same forces and 

moments as shown in the figure. This is because point 5 can be mapped onto point 4 

through a half plane rotation of the structure and loading around the intersection of lines 

L1 and L2 in Figure 2.2 (A), followed by a rigid body translation along the line L2 (in the 

down right direction by the magnitude 𝑎√3 + 𝑏 √3 2⁄ ). 

The unknown forces and moments being transmitted through the points 1-5 are 

summarized in Figure 2.2 (B). They include four unknown horizontal forces, 𝐹𝑥1 - 𝐹𝑥4, 

two unknown vertical forces, 𝐹𝑦3 and 𝐹𝑦4, and two unknown moments, 𝑀 and 𝑀′, thus 

representing eight unknown variables, which would be uniquely determined through eight 

appropriate equations. 

Note that based on the FBD of the unit cell (see Figure 2.2 (B)), two out of three 

equations of equilibrium in the x-y plane, i.e. Σ𝐹𝑦 = 0 and Σ𝑀 = 0, are automatically 

satisfied. Thus, we only need to take into account the x-component of equilibrium equation; 

i.e., Σ𝐹𝑥 = 0 . This gives us, 𝐹𝑥1 = −(2𝐹𝑥2 + 2𝐹𝑥3 + 4𝐹𝑥4) . Then, neglecting the 
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contribution of shearing energy, the strain energy stored in the unit cell can be written as a 

function of unknown forces and moments as, 𝑈 = 𝑈(𝐹𝑥2, 𝐹𝑥3, 𝐹𝑥4, 𝐹𝑦3, 𝐹𝑦4, 𝑀,𝑀′) , in 

which the equations of equilibrium are already satisfied. Next, considering the cut line 𝐿1, 

the average force per unit length transmitted through this vertical line is 𝜎𝑥𝑥, or in other 

words we can write the following relation between 𝜎𝑥𝑥 and the forces acting on 𝐿1: 

𝜎𝑥𝑥 =
𝐹𝑥1 + 2𝐹𝑥2

𝑎√3
 (2.2) 

Similarly, 𝜎𝑦𝑦 is related to 𝐹𝑦3 and 𝐹𝑦4 through the following relation: 

𝜎𝑦𝑦 =
−(𝐹𝑦3 + 2𝐹𝑦4)

3𝑎 2⁄
 (2.3) 

 

 

Figure 2.2 (A) First order spiderweb honeycomb under biaxial loading in x and y 

directions. A unit cell of the structure is shown by red. The area bounded by dotted lines is 

the effective area of the unit cell used in strain energy calculations. (B) Free body diagram 

of the unit cell. 

 

Line 𝐿1 is an axis of symmetry for the structure. So, the unit cell’s three horizontal 

lines which are cut in half by 𝐿1 through their mid-points 1 and 2 must deform in a fashion 

in which their right and left halves are mirror images with respect to line 𝐿1. This implies 

that by fixing the coordinate system at the center of the unit cell, point 2 must have zero 
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displacement in the x direction and zero rotation with respect to the z axis. These constraints 

can be expressed mathematically using Castigliano’s theorem [72] as: 

𝜕𝑈

𝜕𝐹𝑥2
= 0     𝑎𝑛𝑑     

𝜕𝑈

𝜕𝑀′
= 0 (2.4) 

Again, symmetries seen within the structure impose identical rotations of points 4 

and 5. Since the direction of moment acting at point 4 is opposite to the direction of moment 

acting on point 5, the total amount of rotation of these two points in the direction of their 

moments must be equal to zero. Using Castigliano’s theorem, this can be written as: 

𝜕𝑈

𝜕𝑀
= 0 (2.5) 

To be able to reconstruct the structure using deformed unit cells, points 3, 4, and 5, 

which are initially collinear must remain so during deformation. It can be shown that this 

constraint will be satisfied if the vector relation 𝑢3⃗⃗⃗⃗ = (𝑢4⃗⃗⃗⃗ + 𝑢5⃗⃗⃗⃗ ) 2⁄  is satisfied, where 𝑢𝑖⃗⃗  ⃗ is 

the displacement vector of point 𝑖  and 𝑖 = 3,4,5 . This equation actually includes two 

separate equations, i.e. one in the x and the other in the y directions as 𝑢𝑥3 =

(𝑢𝑥4 + 𝑢𝑥5) 2⁄ , and 𝑢𝑦3 = (𝑢𝑦4 + 𝑢𝑦5) 2⁄ , where 𝑢𝑥𝑖  and 𝑢𝑦𝑖  are respectively the 

displacements of point 𝑖 (𝑖 = 3,4,5) in the x and y directions. Using Castigliano’s theorem, 

these relations can be expressed as: 

𝜕𝑈

𝜕𝐹𝑥4
= 2

𝜕𝑈

𝜕𝐹𝑥3
 

𝜕𝑈

𝜕𝐹𝑦4
= 2

𝜕𝑈

𝜕𝐹𝑦3
 

(2.6) 

Equations (2.2)-(2.6), make a system of seven equations with seven unknowns. 

We employed Matlab® (Mathworks Inc., Natick, MA) to solve this system of equations 

using symbolic variables. 

Note that under a uniaxial state of stress (i.e., 𝜎𝑥𝑥 ≠ 0 and 𝜎𝑦𝑦 = 0), the Young’s 

modulus of the structure is defined as 𝐸 = 𝜎𝑥𝑥
2 (2𝑈0)⁄ , where 𝑈0  is the strain energy 

density stored in the unit cell of the structure and is given as 𝑈0 = 𝑈 (3√3𝑎2 4⁄ )⁄ . Then, 



45 
 

closed-form relation for the Young’s modulus (to be normalized by the Young’s modulus 

of cell wall material) is obtained as follows: 

𝐸

𝐸𝑠
= 4√3𝛿3

𝑓1(𝛾) + 𝑓2(𝛾)𝛿2 + 𝑓3(𝛾)𝛿4

𝑔1(𝛾) + 𝑔2(𝛾)𝛿2 + 𝑔3(𝛾)𝛿4 + 𝑔4(𝛾)𝛿6
 (2.7) 

where 𝛿 = 𝑡 𝑎⁄ , 𝛾 = 𝛾1, and the functions appearing in the equation are listed below: 

𝑓1(𝛾) = 6 − 16𝛾 + 12𝛾2 + 6𝛾3 − 22𝛾4 + 24𝛾5 − 12𝛾6 + 2𝛾7 

𝑓2(𝛾) = 12 − 23𝛾 + 24𝛾2 − 13𝛾4 + 4𝛾5 

𝑓3(𝛾) = 6 − 7𝛾 − 𝛾2 + 2𝛾3 

𝑔1(𝛾) = 18𝛾3 − 60𝛾4 + 72𝛾5 − 36𝛾6 + 6𝛾7 

𝑔2(𝛾) = 36 − 111𝛾 + 88𝛾2 + 78𝛾3 − 169𝛾4 + 132𝛾5 − 60𝛾6 + 10𝛾7 

𝑔3(𝛾) = 48 − 100𝛾 + 97𝛾2 + 6𝛾3 − 59𝛾4 + 20𝛾5 

𝑔4(𝛾) = 12 − 5𝛾 − 17𝛾2 + 10𝛾3 (2.8) 

For the special case where 𝛾 = 0 (and 𝛿 ≪ 1), Equation (2.7) reduces to 𝐸 𝐸𝑠⁄ =

(2 √3⁄ )𝛿, which is equivalent to the relative Young’s modulus of an equilateral triangular 

honeycomb reported in the literature [98]. Interestingly, for the other special case where 

𝛾 = 1 (and 𝛿 ≪ 1), Equation (2.7) reduces to 𝐸 𝐸𝑠⁄ = 4√3𝛿3, which is three times the 

relative Young’s modulus of a regular hexagonal honeycomb with thickness, 𝑡 and edge 

length, 𝑎. This is because when 𝛾 = 1, the structure geometrically transforms to a regular 

hexagonal honeycomb with each cell wall consisting of three separate cell walls with 

thickness, 𝑡, and three-fold bending rigidity. 

As mentioned earlier, to completely identify the linear elastic behavior of first order 

spiderweb honeycomb, we need to determine the Poisson’s ratio of the structure, 𝜈. We 

again use energy methods and consider the same structure as in Figure 2.2 under biaxial 

state of stress. It should be emphasized that we ignored the contribution of beam shear 

deformation in strain energy density of the structure; however the bending and stretching 

terms are fully considered. 
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Under equi-biaxial state of stress (i.e. 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎 ), the relation 𝜈 = 1 −

𝑈0𝐸 𝜎2⁄  can be used to obtain the Poisson’s ratio of the structure [72], where again 𝑈0 is 

the strain energy density of the unit cell and 𝐸 is the Young’s modulus of the structure that 

was determined earlier (Equation (2.7)). Therefore, closed-form relation for the Poisson’s 

ratio of a first order spiderweb honeycomb can be derived as: 

𝜈 = 1 − 4𝛿2
𝑓1(𝛾) + 𝑓2(𝛾)𝛿2 + 𝑓3(𝛾)𝛿4

𝑔1(𝛾) + 𝑔2(𝛾)𝛿2 + 𝑔3(𝛾)𝛿4 + 𝑔4(𝛾)𝛿6
 (2.9) 

We now rewrite the above equation as a function of the Young’s modulus of the 

structure as (see Equation (2.7)): 

𝜈 = 1 −
𝐸 𝐸𝑠⁄

𝛿√3
 (2.10) 

Note that for two special cases where 𝛾 = 0 and 𝛾 = 1 (in both cases take 𝛿 ≪ 1), 

Equation (2.9) reduces to 𝜈 = 1 3⁄  and 𝜈 = 1 which are the Poisson’s ratio of equilateral 

triangular and hexagonal honeycombs, respectively. 

 

2.3.2 Numerical investigations 

In this section, the finite element (FE) method was used to verify the analytical 

formulations of elastic response of first order spiderweb honeycombs derived in the 

previous subsection of this dissertation. Commercially available FE software ABAQUS 

6.11-2 (SIMULIA, Providence, RI) was used to carry out all the simulations in this study. 

3D models of first order spiderweb honeycomb structure were meshed using 4-node shell 

elements (S4R). A mesh sensitivity analysis was also performed to ensure that the results 

are not dependent on the mesh size. Cell walls were assumed to have a rectangular cross 

section with unit length normal to the plane of loading (i.e., normal to the x-y plane (see 

Figure 2.2)) and the thickness was adjusted to be consistent with the value of the relative 

density. Linear elastic properties of aluminum were assumed for the cell wall material with 

𝐸𝑠 = 70𝐺𝑃𝑎, and 𝜈𝑠 = 0.3. 
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Figure 2.3 (A) Schematic of the finite element model of first order spiderweb honeycomb 

under in-plane compressive loading. (B) Normalized Young’s modulus, and (C) Poisson’s 

ratio, versus 𝛾1 for honeycombs with three different relative densities (solid lines show the 

analytical estimates, markers show the finite element results). 

 

Figure 2.3 (A) shows the schematic diagram of the FE model constructed in 

ABAQUS for simulating static uniaxial loading on first order spiderweb honeycomb. 

Vertical displacement of the top and bottom nodes of the structure was coupled to the 

corresponding rigid flat plates. A constant downward static displacement was then assigned 

to the top plate, while the bottom plate was fixed. To eliminate any boundary effects, 
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periodic boundary conditions were imposed to the structure on the right and left side nodes 

[77]. Also note that the horizontal displacement of an arbitrary node in the structure was 

constrained (i.e., set to zero) in order to prevent rigid body motion of the structure in that 

direction. The out-of-plane degrees of freedom of the model were also constrained to avoid 

the out-of-plane buckling of the structure. 

Figures 2.3 (B) and 2.3 (C) respectively show the normalized Young’s modulus, 

�̅� and Poisson’s ratio, 𝜈 of first order spiderweb honeycombs for all possible values of 𝛾1. 

The Young’s modulus is normalized by the Young’s modulus of a regular hexagonal 

honeycomb with same relative density, 𝐸 = 1.5𝐸𝑠𝜌
3. The results are presented for three 

different values of relative densities, 1%, 5%, and 10%. In the figures, solid lines represent 

the results obtained directly by using the theoretical closed-form expressions derived in the 

previous subsection of this dissertation, and markers denote the FE results. Excellent 

agreement between the analytical and numerical approaches was observed even though the 

contribution of shearing energy was neglected in the analytical method presented in the 

previous subsection. For the values of 𝛾1 greater than 𝛾1 ≅ 0.25, the structure exhibits a 

bending dominated behavior (i.e., 𝐸 𝐸𝑠⁄ ∝ 𝜌3 ), with the normalized Young’s modulus 

independent of the relative density �̅� ∝ 𝜌0. In contrast, for the values of 𝛾1 smaller than 

𝛾1 ≅ 0.25, the honeycomb transforms into a stretching dominated structure with 𝐸 𝐸𝑠⁄ ∝

𝜌 or equally �̅� ∝ 𝜌−2. At 𝛾1 = 0, the normalized Young’s modulus is obtained as 2222, 

89, and 22 for the relative densities of 1%, 5%, and 10%, respectively. As the value of 𝛾1 

increases, since the structure transforms from stretching to bending dominated one, its 

normalized Young’s modulus decreases. At 𝛾1 ≅ 0.35 the stiffness of the structure is about 

the stiffness of a regular hexagonal honeycomb with same relative density. After this point, 

the structure becomes more compliant compared to a regular honeycomb. At the 𝛾1 = 1 

limit, the structure transforms into a regular hexagonal honeycomb with each cell wall 

consisting of three separate cell walls. At this point the normalized Young’s modulus can 

be obtained using Equation (2.7) as, 4√3(𝜌√3 6⁄ )
3

(1.5𝜌3)⁄ = 1 9⁄ . Figure 2.3 (C) 

shows the Poisson’s ratio of first order spiderweb honeycomb varying from 1 3⁄  

(equilateral triangular lattice) to 1 (regular hexagonal honeycomb). With decrease in the 

relative density, the Poisson’s ratio for a constant value of 𝛾1 (𝛾1 ≠ 0) approaches unity. 
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2.4 Higher order spiderweb honeycombs under small deformations – 

Young’s modulus 

FE analysis was used to evaluate the small deformation elastic response in higher order 

spiderweb honeycombs. Finite size, 3D models of the structure were constructed in 

ABAQUS, and were subjected to uniaxial static compression along 𝑦-direction. Material 

properties, FE models, boundary conditions, and loadings are similar to those explained in 

Section 2.3. The overall relative density of the structures was fixed at 5%. 

 

 

Figure 2.4 Normalized Young’s modulus versus 𝛾2  for second order spiderweb 

honeycombs with different values of 𝛾1. The relative density of honeycombs was kept 

constant as 5%. 

 

Figure 2.4 shows the FE results on the Young’s modulus of second order spiderweb 

honeycombs normalized by that of a regular hexagonal honeycomb of equal relative 

density (𝐸 = 1.5𝐸𝑠𝜌
3), versus 𝛾2. The results are plotted for four different values of 𝛾1= 

1/3, 1/2, 2/3, 5/6. Geometrically, the structural parameter 𝛾2 is bound on the upper limit by 

the value of 𝛾1, i.e., 𝛾2 ≤ 𝛾1. Similar to the first order spiderweb honeycombs, lower values 

of 𝛾1 result in higher Young’s modulus at a constant value of 𝛾2. At a constant value of 𝛾1, 
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increasing the value of 𝛾2  decreases the Young’s modulus of the structure since the 

bending compliance of the structure is increased and less portion of the strain energy is 

stored through the axial stretching of the beams. 

 

 

Figure 2.5 Normalized Young’s modulus versus 𝜂 for higher order spiderweb honeycombs 

(up to fifth order). The relative density of honeycombs was kept constant as 5%. 

 

To investigate the Young’s modulus of higher order spiderweb honeycombs, we 

introduced a scalar geometrical ratio, 𝜂, defined as 𝛾𝑖 = 𝜂𝑖 (e.g., 𝛾1 = 1/6 and 𝛾2 = 1/36 

for a second order spiderweb honeycomb with 𝜂 = 1/6). This relation in fact describes a 

subclass of fractal-like spiderweb honeycomb with constant ratios between successive 

hexagonal sides. The normalized Young’s modulus of higher order spiderweb honeycombs 

(up to fifth order) with different values of 𝜂 is plotted in Figure 2.5. The Young’s modulus 

of the structures is normalized by the Young’s modulus of a regular hexagonal honeycomb 

of equal relative density (𝐸 = 1.5𝐸𝑠𝜌
3). For honeycombs with 𝜂 < ~0.8, increasing the 

hierarchical order increases the Young’s modulus of the structure. However, for 𝜂 > ~0.8 

a negative correlation is found between the hierarchical order and Young’s modulus. In 

fact, the mechanical response in spiderweb honeycombs is governed by the size of the 

smallest hexagonal feature (i.e., 𝜂𝑛 for nth order of hierarchy). Therefore, based on the 
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results obtained for first order hierarchy (i.e., 𝛾1 = 0.25  as the boundary between 

stretching and bending dominated behaviors), as well as the results shown in Figure 2.5 

for higher order structures, we can define an empirical equation to estimate the boundary 

between stretching and bending dominated behaviors of self-similar spiderweb 

honeycombs as 𝜂𝑛 = 0.25 . This empirical condition states that the transition from 

stretching to bending dominated behaviors occurs at increasing η value as the order of 

hierarchy increases. For instance, 𝜂 = 0.25 and 𝜂~0.76, respectively for first and fifth 

orders of hierarchy. In general, in a fully stretching dominated regime (lower values of 𝜂), 

a smaller hexagon will result in a more stretching dominated structure and increased 

Young’s modulus. However, in the fully bending dominated regime (higher values of 𝜂), 

the increase in Young’s modulus due to higher stretching energy is somewhat offset by the 

fact that an addition to the order of hierarchy will only reduce the effective bending rigidity 

of the cell walls (beams) due to conservation of mass, resulting in a decreased Young’s 

modulus. 

 

2.5 First order spiderweb honeycombs under large deformations 

In this section, we investigated the large deformation elastic response of first order 

spiderweb honeycombs under quasi-static compressive loading. Material properties, FE 

models, boundary conditions, and loadings are similar to those discussed in the previous 

sections, and similar to the previous section the overall relative density of the structure was 

kept constant at 5%. Similar to previous sections, a mesh sensitivity analysis was also 

performed to ensure that the results are not dependent on the mesh size. The deformation 

of first order spiderweb honeycomb with different values of 𝛾1 was simulated up to at least 

40% crushing strain. 

It is well known [10] that typical cellular solids have a distinctive sequence of 

practically linear elastic behavior, weakly stable or unstable collapse due to instability or 

plasticity, followed by a significant restiffening caused by densification. The latter regime 

occurs at 70% - 80% strain for low density cellular structures. The compressive stress-

strain response of spiderweb honeycomb obtained for different values of 𝛾1 is plotted in 
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Figure 2.6 (A). For 𝛾1 = 0 (equilateral triangular honeycomb), the “stress plateau” regime 

begins at the very early stages of crushing (strain ~ 0.1%) as the result of elastic buckling 

(i.e., instability) of the cell walls. This very low buckling strain is due to the highly 

stretching-dominated behavior of the structure [99]. As the value of 𝛾1 increases, although 

the small deformation Young’s modulus of the structure decreases dramatically, instability 

occurs at higher strains. For example, for 𝛾1 = 1/4 the instability occurs at 8% crushing 

strain. This effect would cause the structures with 𝛾1  equal or greater than 1/3 to not 

experience instability until 40% crushing strain. In fact, the large static deformation along 

with large lateral load components in the cell walls would entirely suppress instability in 

these structures [99]. At 𝛾1 = 1/3, although the small deformation stiffness is much lower 

than that of the triangular honeycomb, the structure is much stronger in crushing strains 

greater than 7.5%. 

 

 

Figure 2.6 Nonlinear elastic response of first order spiderweb honeycombs under large 

deformations. (A) Normalized stress (with respect to the Young’s modulus of cell wall 

material), and (B) Strain energy density of the honeycombs versus crushing strain plotted 

for first order spiderweb honeycombs with different values of 𝛾1. The relative density of 

honeycombs was kept constant as 5%. 

 

The load-displacement response of the spiderweb honeycombs promises potentially 

enhanced values of toughness and energy absorption at certain geometries, which we will 

investigate next. Figure 2.6 (B) shows plots of the strain energy density versus crushing 

strain. Note that the strain energy density shown in this figure is equivalent to the area of 

the region bounded by the graph of stress and 𝑥-axis in Figure 2.6 (A). Smaller values of 
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𝛾1 correspond to the higher elastic energy storage in the structure at small deformation 

range (휀 < 2.5%). For 𝛾1 ≤ 1/3, this behavior is reversed as deformation proceeds to larger 

strains. For example at 40% crushing strain, the elastic energy storage capacity of 

spiderweb honeycombs with 𝛾1 = 1/4 and 𝛾1 = 1/3 is equally about 40% greater than 

that of a triangular honeycomb (𝛾1 = 0). The noticeable difference between energy storage 

performance for structures 𝛾1 = 1/3 and 𝛾1 = 1/4 is due to cell wall buckling in the latter 

structure starting at 휀 = 8%. At 40% strain, the spiderweb structure with 𝛾1 = 1/3 has not 

experienced instability, yet it has the greatest strain energy density among all the values of 

𝛾1 studied (equal to 𝛾1 = 1/4). 

 

 

Figure 2.7 (A) Poisson’s ratio versus crushing strain for first order spiderweb honeycombs 

under large deformations. The solid lines show the finite element results and dashed lines 

denote the geometrical predictions at 100% crushing strain for honeycombs with different 

values of 𝛾1. The markers show the experimental results for 𝛾1 = 0, 𝛾1 = 1/5, and 𝛾1 =
1/2. (B) Undeformed (휀 = 0) and deformed configurations of specimens at two different 

crushing strains, 휀 = 0.2 and 휀 = 0.4. The specimen with 𝛾1 = 0 has an overall size of 245 

mm * 243 mm with wall thickness of 0.5 mm and wall length of 35 mm. The specimens 

with 𝛾1 = 1/5 and 1/2 have an overall size of 225 mm * 243 mm with wall thickness of 

0.4 mm and wall length of 28 mm. All specimens maintain a relative density of 5%. 

 

As previously observed, occurrence of instability could significantly influence the 

deformation mechanisms and large deformation elastic response of first order spiderweb 

honeycombs. For further studying this effect, the effect of large deformation elasticity on 

Poisson’s ratio is studied next. In Figure 2.7 (A), Poisson’s ratio is plotted against the 
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crushing strain. The solid lines denote the FE results and the dashed lines represent the 

Poisson’s ratio estimations at 100% crushing strain obtained by a geometrical estimation 

which will be discussed shortly in this section. The markers show the experimental data 

for 𝛾1 = 0, 𝛾1 = 1/5, and 𝛾1 = 1/2, which are in good agreement with numerical results. 

For the experimental investigations, the specimens were fabricated using PolyJet 3D 

printing (Objet24 3D printer, Stratasys Inc., Eden Prairie, MN) with VeroWhitePlus© (see 

Appendices for material’s stress-strain response). The specimen with 𝛾1 = 0  has an 

overall size of 245 mm * 243 mm with wall thickness of 0.5 mm and wall length of 35 mm. 

The specimens with 𝛾1 = 1/5 and 1/2 have an overall size of 225 mm * 243 mm with 

wall thickness of 0.4 mm and wall length of 28 mm. All specimens maintain a relative 

density of 5%. The specimens were then tested under uniaxial compression using an Instron 

5582 testing machine at the rate of 5 mm/min (i.e. strain rate of 2%/min). Images of 

deformed configurations were taken to obtain the values of Poisson's ratio in the section of 

the structure far from the boundaries. For each specimen the measurement were repeated 4 

times. The figure shows that the value of Poisson’s ratio for each structure at very small 

strains is equal to the value predicted by theoretical analysis presented in Section 2.3.1. As 

the crushing proceeds, Poisson’s ratio decreases. The rate of reduction is higher for smaller 

values of 𝛾1. Figure 2.7 (B) shows the undeformed and deformed configurations of the 

experimental samples at two different stages, 휀 = 0.2 and 휀 = 0.4, where two different 

behaviors are observed which will be discussed shortly. For values of 𝛾1 greater than 1/3 

the Poisson’s ratio remains positive. On the other hand, an auxetic behavior (i.e. negative 

Poisson’s ratio) is seen for the structures with 𝛾1 less than 1/3. 𝛾1 = 1/4 seems to be a 

threshold value of 𝛾1 in which the deformation mechanism of the structure completely 

changes. To understand the difference between these two behaviors, we studied 

deformation mechanism of the structures at 40% strain. Schematics of undeformed 

configuration for the unit cell of spiderweb structures with eight different values of 𝛾1 are 

shown in Figure 2.8. FE results on deformed configurations at 40% strain are also depicted 

in this figure. Two different types of deformation mechanism were seen within the 

structures. In mechanism #1, the structure deformation is mostly governed by static 

deflection in the cell walls. No instability (i.e., elastic buckling) is observed in the 

structures deforming based on this deformation mechanism, which is dominant in the 
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structures with 𝛾1 > 1/3. All nodal rotations are zero (or very close to zero approaching 

𝛾1 = 1/3 ) due to the reflection symmetry of the structure and loading. The second 

mechanism takes place in the structures with 𝛾1 < 1/3 (i.e., stretching dominated) and is 

mostly governed by elastic buckling of cell walls and rotation of the smaller hexagons 

which remain almost intact. The limit structure is the case of 𝛾1 = 0, where the periodic 

deformation is characterized by the equal rotation of all nodes in a row, while adjacent 

rows have opposite rotations. 

To estimate the Poisson’s ratio at 100% crushing strain for the structures whose 

deformation is governed by deformation mechanism # 1, we considered an undeformed 

unit cell of the structure with the geometrical ratio 𝛾1 = 𝑏/𝑎 as shown in Figure 2.8. The 

simplified geometry of deformed unit cell at 100% strain is also shown in the bottom of 

Figure 2.8. Using this, the transverse engineering strain ( 휀𝑥 ) is obtained as 

((3𝑎 + b) − (3𝑎)) (3𝑎)⁄ = 𝑏 (3𝑎)⁄ , while the axial engineering strain (휀𝑦) is given as 

(0 − 𝑎√3) (𝑎√3)⁄ = −1 . Thus, the Poisson’s ratio can be estimated as 

−(𝑏 (3𝑎)⁄ ) (−1)⁄ = 𝑏 (3𝑎)⁄ = 𝛾1 3⁄ . Regarding the deformation mechanism # 2, an 

undeformed unit cell of the structure with the geometrical ratio 𝛾1 = 𝑏/𝑎  is shown in 

Figure 2.8. Simplified deformed configuration is also shown in this figure. Based on FE 

observations at 100% crushing strain, the midpoints in beams oriented initially at 60° (or 

120°, based on rotation direction) become in contact with midpoints of initially horizontal 

beams. Therefore, we considered that the smaller hexagon rotates 60° in the plane of 

loading at 100% crushing strain. It was also assumed that the deformation (𝑢) in edges that 

are originally horizontal in the undeformed configuration will be a cubic function of the 

position (𝑠) along the beam (i.e., 𝜕4𝑢 𝜕𝑠4⁄ = 0), since there is no distributed load acting 

on the edges. Using these assumptions it can be shown that a horizontal edge with length 

𝐿 will bend such that its final length in horizontal direction will be 0.8𝐿 (see Appendices). 

So the transverse engineering strain ( 휀𝑥 ) is obtained as 

((0.8(𝑎 − 𝑏) ∗ 2 + 0.8(𝑎 2⁄ ) ∗ 2 + 𝑏) − 3𝑎) (3𝑎)⁄ = −0.2(1 + 𝛾1) . The axial 

engineering strain (휀𝑦) is again evaluated as -1. Thus the Poisson’s ratio is estimated as 

−(−0.2(1 + 𝛾1)) (−1)⁄ = −0.2(1 + 𝛾1) . Note that the value of 𝛾1  in this deformed 

configuration is smaller than 1/3, so we can estimate the Poisson’s ratio to be -0.2 for all 
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the structures following this deformation mechanism. A very good agreement is observed 

between the FE results and the values estimated by geometrical predictions. 

 

 

Figure 2.8 Nonlinear elastic response of first order spiderweb honeycombs under large 

deformations. Two different types of deformation mechanism are seen in the honeycombs 

under uniaxial compression. For each 𝛾1, the schematic of undeformed unit cell and finite 

element result of deformed unit cell at 40% crushing strain are shown (two top rows). For 

each deformed mechanism, the schematic of undeformed unit cell and predicted 

configuration of deformed unit cell at 100% crushing strain are also shown (two bottom 

rows). 

 

 

2.6 Conclusions 

The effect of spiderweb hierarchical organization on the in-plane elastic response of 

honeycombs in small and large deformation regimes was studied. Analytical closed-form 

formulas for the Young’s modulus and Poisson’s ratio for the first order spiderweb 

honeycomb were obtained and verified numerically. It was shown that a relatively broad 

range of linear elastic response, varying from bending to stretching dominated, can be 

achieved by tailoring the structural organization of spiderweb honeycombs. While the 

geometrical parameters influence the linear elastic moduli in small deformations, they also 
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significantly influence the mechanisms of deformation in large deformation regime. In 

structures with 𝛾1 > 1/3, large deformation is symmetrical and is formed by the static 

deflection in the cell walls. When 𝛾1 < 1/3  (i.e., stretching dominated structures), 

deformation is nonlinear, asymmetric and is accompanied by elastic buckling of cell walls 

and rotation of the nodes. The latter mechanism is not unique for a given macroscopic state 

of stress and is influenced by boundary conditions [99]. Furthermore, a geometrical 

estimation for the large deformation Poisson’s ratio of spiderweb honeycombs at 100% 

crushing strain was presented. Large deformation auxetic behavior was observed in first 

order spiderweb honeycombs with 𝛾1 less than 1/3. 

A unique feature in the spiderweb honeycomb is a combination of high stiffness 

and toughness. Toughness of the spiderweb honeycomb - a measure of structure’s ability 

to absorb energy under quasi-static loading - is greater than that of a stretching dominated 

structure (e.g., triangular lattice). In a stretching dominated cellular solid under crushing, 

the capacity of the structure to absorb energy is limited by the early onset of buckling 

occurring at low crushing strains. A bending dominated structure, on the other hand, has a 

relatively low relative stiffness which makes it unsuitable for many in-plane applications. 

Spiderweb design can therefore provide required stiffness and toughness, as the 

geometrical parameters can be tuned to create a sweet spot between bending and stretching 

dominant responses. The elastic energy storage capacity of the spiderweb honeycombs 

with 𝛾1 = 1/4  and 𝛾1 = 1/3  was shown to be about 40% greater than triangular 

honeycomb (𝛾1 = 0) at 40% crushing strain. 

 

2.7 Appendices 

 

2.A Material properties 

For the experiments we used VeroWhitePlus© material with the stress-strain response 

shown in Figure 2.A.1. 
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Figure 2.A.1 (left) 3D printed dog-bone specimen for uniaxial tension test. (right) 

engineering stress vs. engineering strain for the tested material. 

 

Note that five dog-bone samples (Figure 2.A.1 (left)) were tested under uniaxial 

tensile loading to obtain the stress-strain response of the material (engineering stress vs. 

engineering strain). The tension tests were based on ASTM-D638-10 standard, which is 

the standard test method for tensile properties of plastics. 

 

2.B Geometrical estimation 

As shown in Figure 2.B.1, consider a horizontal line with length 𝐿 under a loading in 

which it bends such that it forms a cubic function (i.e., 𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 where 𝑥 

here denotes position along beam direction) with the slope of -60° at both ends. Also 

assume that the length of the curved line remains 𝐿 and the horizontal distance between 

two ends is 𝐿′. The following geometrical boundary conditions can be written based on the 

assumptions: 

𝑦(0) = 0,     𝑦′′(0) = 0,     𝑦(𝐿′ 2⁄ ) = 0,     𝑦′(𝐿′ 2⁄ ) = −√3 (2.B.1) 

where 𝑦′ and 𝑦′′ are respectively the first and second derivatives of 𝑦 with respect to 𝑥. 

Solving Equation (2.B.1), the unknown constants appearing in 𝑦 are obtained as, 𝑏 = 𝑑 =
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0, 𝑎 = −
2√3

𝐿′2
, and 𝑐 =

√3

2
. Using the assumption that the length of the curved line remains 

𝐿 we can finally obtain the unknown length 𝐿′ by using the following relation: 

2∫ √1 + 𝑦′2𝑑𝑥

𝐿′

2

0

= 𝐿 (2.B.2) 

Solving this equation will result in 𝐿′ = 0.8𝐿. 

 

 

Figure 2.B.1 Undeformed and deformed line with original length L.  
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Chapter 3 

 

Hierarchical Honeycomb Auxetic Metamaterials 

 

 

3.1 Abstract 

Most conventional materials expand in transverse directions when they are compressed 

uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class 

of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in 

transverse directions under uniaxial compressive loads leading to auxeticity. This is 

achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy 

and retained over a wide range of applied compression. This unusual behavior is 

demonstrated experimentally and analyzed computationally. The work provides new 

insights into the role of structural organization and hierarchy in designing 2D auxetic 

metamaterials, and new opportunities for developing energy absorbing materials, tunable 

membrane filters, and acoustic dampeners. 
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3.2 Introduction 

In recent years, synthetic metamaterials with negative Poisson’s ratio (defined as the 

negative of the ratio between transverse and longitudinal strains in uniaxial elastic loading) 

have been proposed [100-105]. In contrast to conventional materials, these so-called 

“auxetic” metamaterials contract in the transverse directions when compressed uniaxially 

[106]. This behavior is usually linked to specific microstructural deformation mechanisms 

also observed in traditional auxetic structures such as re-entrant, chiral, and rotating-units 

structures [32, 107-114]. On the other hand, elastic instability (i.e., buckling) can also be 

utilized to induce auxetic behavior over a wide range of applied strains in the structures, 

which otherwise show positive Poisson’s ratio at small deformations [115-117]. 

Particularly, in this context, the role of hierarchy has been recently explored by 

Mousanezhad et al. [115] who demonstrated auxetic behavior in a hierarchical “spiderweb” 

honeycomb at large deformations through a combination of numerical simulations and 

experiments. 

Here, we exploit elastic instabilities along with structural hierarchy to design a new 

class of 2D auxetic metamaterials capable of exhibiting negative Poisson’s ratio over a 

wide range of applied compressive strains. Our study shows that the origin of this behavior 

is linked to the added hexagonal features within the hierarchical structure which make the 

instabilities to occur at smaller compressive strains compared to the original non-

hierarchical structure leading to auxeticity. In fact, these particular buckling modes have 

been previously observed in regular hexagonal honeycombs but they did not lead to 

auxeticity [61]. 

The hierarchical structure studied in this article which was first introduced by 

Ajdari et al. [76], exhibited higher stiffness and more phononic bandgaps compared to its 

regular non-hierarchical counterpart [54, 76, 118]. The structure exhibits a positive 

Poisson’s ratio, ranging from ~0.37 to 1, at small deformations for first order of hierarchy 

[76]. The first level of hierarchy which was achieved by replacing the vertices of a regular 

hexagonal lattice with smaller hexagons and reducing the wall thickness to keep the overall 

density fixed, could be repeated to reach higher levels of hierarchy. Figure 3.1 shows the 

evolution of a regular hexagonal honeycomb and its corresponding cell as the order of 
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hierarchy is increased. The geometrical organization of this structure at each order of 

hierarchy (𝛾𝑖) is defined by the ratio of the newly added hexagonal edge length (𝑏 for first 

order and 𝑐 for second order of hierarchy, see Figure 3.1) to the original hexagon’s edge 

length (𝑎) (i.e., 𝛾1 = 𝑏 𝑎⁄ , and 𝛾2 = 𝑐 𝑎⁄ ) [76] (See Appendices for more details). The 

density of the structure (i.e., area fraction) normalized by the parent material density can 

be given as [76] 

𝜌 = 2 √3⁄  . (1 + 2𝛾1 + 6𝛾2) . 𝑡 𝑎⁄ , (3.1) 

where 𝑡 is the wall thickness which is assumed to be uniform throughout the structure. 

 

 

Figure 3.1 Schematic showing the evolution of a regular hexagonal honeycomb and its 

corresponding cell into first and second orders of hierarchy. The structural organization of 

the hierarchical structure at each order of hierarchy (𝛾𝑖) is defined as the ratio of the newly 

added hexagonal edge length (𝑏 for first order and 𝑐 for second order of hierarchy) to the 

original hexagon’s edge length (𝑎) (i.e., 𝛾1 = 𝑏 𝑎⁄ , and 𝛾2 = 𝑐 𝑎⁄ ) [76]. 

 

3.3 Results 

We subjected a specimen with first order of hierarchy ( 𝛾1 = 0.25 ) under uniaxial 

compression along the y and x directions (see Section 3.5 and Appendices for more 

details), Figure 3.2. The response of the specimen was monitored by taking photographs 

at different levels of compression with local strains 휀𝑦𝑦  and 휀𝑥𝑥  in either direction 

measured within the inner-most unit of the specimen (i.e., Representative Volume Element 
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(RVE), highlighted in yellow in Figure 3.2) to avoid boundary effects [116, 119, 120]. 

Note that the classical definition of an RVE relies on a limit of relatively infinite size of 

the sample thereby making boundaries irrelevant. However, finite sample size is inevitable 

in experiments and in the current work we seek to minimize the boundary effects on the 

inner-most unit of the specimen by choosing sufficient numbers of unit cells in the test 

sample thereby making it equivalent to an RVE in an infinite periodic media. Thus, in this 

work, we compare the experimental response of only the inner-most unit cell, which has 

minimal boundary effects with our numerical simulations, which rely on the assumption of 

an infinite periodic sample (the details of numerical simulations will be explained shortly). 

Figure 3.2 shows the undeformed and deformed configurations of the specimen and its 

RVE. As the deformation proceeds in either direction, the lateral sides of the specimen 

bulge inward, showing a perceptible 2D auxetic behavior which has not been observed in 

the non-hierarchical counterpart. Interestingly, two different types of deformation mode 

(i.e., buckling mode) are identified depending on the direction of the applied compression: 

X-shape and N-shape modes, respectively for the y and x direction loads. In the X-shape 

mode, the RVE’s deformation is mostly governed by elastic buckling of the horizontal cell 

walls and rotation of the corresponding smaller hexagons in the central hexagonal cell, 

while the RVE’s other horizontal cell walls and corresponding smaller hexagons remain 

almost intact. This is analogous to the buckling mode of a regular hexagonal honeycomb 

in biaxial compression [75, 99]. The N-shape deformation mode on the other hand, is 

characterized by a zigzag collapse of hexagonal cells due to compression along the x 

direction, similar to the uniaxial buckling mode of the regular hexagonal honeycomb [75, 

99]. Interestingly, these buckling modes, which have been previously observed in the 

regular structure, did not lead to auxeticity. 

In order to quantify this behavior, we plot the transverse strain and Poisson’s ratio 

against the longitudinal strain for both loading directions, respectively in Figures 3.3 (a) 

and 3.3 (b), by post-processing photographs (See Appendices for details on strain 

calculations). Next, we computationally analyzed a single RVE under uniaxial 

compression along the y and x direction using finite element (FE) simulations, intrinsically 

assuming the structure to be infinitely extended in 2D space (i.e., periodic boundary 

conditions were imposed) [116]. We first investigated the instability of the structure 
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through a linear perturbation analysis [121]. Then, the non-linear post-buckling response 

of the system was simulated by introducing a small imperfection in the initial geometry 

(see Section 3.5 for more details). In Figures 3.3 (a) and 3.3 (b), FE results of the 

transverse strain and Poisson’s ratio (denoted by solid lines) are reported as functions of 

the longitudinal strain for both loading directions, which are in an excellent agreement with 

experimental results. Also, Figure 3.3 (c) compares the experimental and numerical 

images of deformed configurations of the RVE at different levels of applied compressive 

strain along the y (i.e., X-shape mode) and x (i.e., N-shape mode) directions, which are 

again in perfect agreement. 

 

 

Figure 3.2 Hierarchical honeycomb auxetic metamaterials. (left) Undeformed 

configuration of the fabricated first order hierarchical structure with 𝛾1 = 0.25 . The 

representative volume element (RVE) is highlighted as yellow. (middle and right) 

Deformed configurations of the specimen and the RVE under compression along the y 

(휀𝑦𝑦 = −0.266, X-shape deformation mode) and x (휀𝑥𝑥 = −0.255, N-shape deformation 

mode) directions, respectively. 

 

Although these plots confirm the difference in deformation behavior of the structure 

in the two directions, several important similarities exist. For instance, in both these 

directions, upon increasing the compressive strain, the transverse strain rises from zero 

(i.e., undeformed configuration) up to a turning point, and then decreases until it becomes 

zero at ~10% compressive strain, Figure 3.3 (a). After this point, the transverse strain 

becomes negative showing lateral contraction (i.e., negative Poisson’s ratio). This 

similarity is further confirmed through Poisson’s ratio variation with longitudinal strain in 

two directions (𝜈𝑥𝑦 = −휀𝑦𝑦 휀𝑥𝑥⁄  and 𝜈𝑦𝑥 = −휀𝑥𝑥 휀𝑦𝑦⁄ ), Figure 3.3 (b). Note that small 

deformation Poisson’s ratios (~0.9) are in agreement with published literature [76]. The 
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Poisson’s ratio decreases as the strain is increased: first, slowly as also seen for 

honeycombs with no hierarchy, and then follows by a sharp decrease due to instability. 

Negative Poisson’s ratio is achieved at ~10% compressive strain. Thereafter, the rate of 

reduction becomes smaller indicating the formation of a plateau regime with 𝜈 ≅ −0.5 as 

the plateau Poisson’s ratio. 

 

 

Figure 3.3 Validating the experiments using numerical simulations. a) Transverse strain, 

and b) Poisson’s ratio, versus longitudinal strain for both loading directions. The solids 

lines denote the simulation results and markers represent the experimental data. The error 

bars on the experimental points show the standard deviation of the values of the strain (and 

Poisson’s ratio) measured at different locations on the RVE. c) Experimental and numerical 

images of deformed configuration of the RVE at different levels of deformation. 
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Figure 3.4 Strain-dependent response of first order hierarchical honeycombs. a) Stress-

strain curves, and b) the evolution of Poisson’s ratio versus longitudinal strain for uniaxial 

compression along the y and x directions. The stress is normalized with respect to the initial 

Young’s modulus of the cell wall material ( 𝐸0 ). c) Undeformed and deformed 

configurations of the RVEs at 20% compression. 
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To further investigate the auxetic behavior of hierarchical honeycombs, we extend 

our validated simulations to study the effect of the parameter, 𝛾1, on uniaxial compressive 

response of the structures with first order of hierarchy. Although no dynamic calculations 

were performed in this study, in order to isolate the effect of hierarchy, the relative density 

was kept constant at 8% for these simulations performed on the RVE as earlier. The results 

are presented for eight different values of 𝛾1 , varying from 0 (i.e., regular hexagonal 

honeycomb) to 0.5. Figure 3.4 (a) plots the evolution of the normalized nominal stress, 

𝜎 𝐸0⁄  (where 𝐸0 is the initial Young’s modulus of the cell wall material), versus the applied 

longitudinal strain, 휀. We find that no instability occurs in the structures with 𝛾1 = 0 and 

0.5 for compression along the y direction. In fact, the structures’ deformation is 

symmetrical and is formed by static deflection of the cell walls due to bending (see Figures 

3.4 (a) (left) and 3.4 (c) (middle row)). In contrast, for 0 < 𝛾1 < 0.5, the response of the 

structure is characterized by a linear elastic regime followed by elastic buckling resulting 

in a stress plateau (i.e., a typical response for cellular solids). Similar phenomenon is 

observed for compression along the x direction (see Figure 3.4 (a) (right)) except for the 

structure with 𝛾1 = 0  in which the elastic buckling (in contrast to the other loading 

direction) is observed (i.e., uniaxial mode of buckling of a regular hexagonal honeycomb 

(see Figure 3.4 (c) (bottom row)) [75]). 

 

 

Figure 3.5 The evolution of Poisson’s ratio as a function of 𝛾1  at 5, 10, and 20% 

compression along the y and x directions. The vertical dashed lines represent the point in 

which the Poisson’s ratio is minimum and the deformation mode switches. 
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Figure 3.6 Honeycombs with second order of hierarchy. a) Stress-strain curves, and b) the 

evolution of Poisson’s ratio versus longitudinal strain, for second order hierarchical 

structures with 𝛾1 = 0.1 and 𝛾1 = 0.45, under uniaxial compression along the y direction 

(see Supplementary Information for loading along the x direction). The stress is normalized 

with respect to the initial Young’s modulus of the cell wall material (𝐸0). c) Deformed 

configuration of the RVEs at 20% compression. 
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Next, Figure 3.4 (b) which shows the evolution of Poisson’s ratio with longitudinal 

strain in both directions, indicates that in either direction of loading, for structures with no 

instability, Poisson’s ratio remains positive and smoothly decreases with deformation. On 

the other hand, Poisson’s ratio for the structures with elastic instability exhibits an initial 

slow decrease from the small deformation positive value transitioning to a negative regime 

via a sharp drop. Our simulations showed that this sharp transition can be further advanced 

by increasing 𝛾1 which also lowers Poisson’s ratio for a given deformation. Interestingly, 

we find that this trend is abruptly arrested at around 𝛾1 ≈ 0.375, and then reversed for 

higher 𝛾1 making it an important design parameter. Shedding greater light on this critical 

point, Figure 3.4 (c), which shows the deformed configuration of the RVEs at 20% 

compressive strain for different geometries, reveals that the fundamental origin of this 

critical point is a switch in deformation mode at 𝛾1 ≈ 0.375 from X-shape to N-shape and 

vice versa for compression along the y and x directions, respectively. It is interesting to 

note that the 𝛾1  corresponding to this critical point also results in the lowest possible 

Poisson’s ratio. Figure 3.5 displays the evolution of Poisson’s ratio against 𝛾1 at 5, 10, and 

20% longitudinal strain for both loading directions, showing that Poisson’s ratio reaches a 

minimum at 𝛾1 ≈ 0.375, corresponding to the switching of the buckling modes. 

Investigating the role of hierarchy further, we computationally study honeycombs 

with two orders of hierarchy with 𝛾1 = 0.1 and 0.45 under uniaxial compression along the 

y direction (see Appendices for loading along the x direction, exhibiting similar behavior). 

Carrying out FE simulations on RVEs with relative density held constant at 8%, we plot 

the normalized nominal stress against the applied strain, Figure 3.6 (a). The effect of 

second order of hierarchy depends on 𝛾1 values. For instance, the plateau stress decreases 

dramatically upon introducing second order of hierarchy into a structure with 𝛾1 = 0.1 (see 

Figure 3.6 (a) (left)) in contrast to the structure with 𝛾1 = 0.45 (see Figure 3.6 (a) (right)). 

More dramatically, second order of hierarchy can significantly advance auxeticity by 

significantly reducing the Poisson’s ratio with deformation for the 𝛾1 = 0.1 case (Figure 

3.6 (b) (left)) whereas having an opposite effect for the 𝛾1 = 0.45 case. The contrasting 

behavior stems from the overall size of the smaller hexagons in the hierarchical structure, 

rather than from any fundamental change of buckling modes of the underlying structure 

due to introduction of the second order of hierarchy as confirmed in Figure 3.6 (c). 
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Essentially, introducing a higher order of hierarchy increases the overall size of the smaller 

hexagons, and this acts like increasing 𝛾1  without increasing the order of hierarchy. 

Recalling our discussion from first order hierarchical structures, this makes the structures 

with 𝛾1  less than the turning point value (≈ 0.375) achieve a smaller Poisson’s ratio 

(moving left to right in Figure 3.5) while the opposite being true for 𝛾1 greater than this 

turning point value (also moving left to right in Figure 3.5). 

 

3.4 Discussion and Conclusions 

In summary, our experimental and computational study provides new insights on the 

behavior of auxetic metamaterials with structural hierarchy. We found that hierarchy-

dependent elastic buckling introduced at relatively early stages of deformation decreases 

the value of Poisson’s ratio as the structure is compressed uniaxially leading to auxeticity 

in subsequent stages of deformation. This extraordinary behavior, which originates from 

structural hierarchy, has not been observed in the non-hierarchical regular structure, in spite 

of topical similarities in deformation modes. Our proposed hierarchical architecture is 

unique in exhibiting two different deformation modes for structures with different 

geometrical parameters when compressed along the same direction. An optimal design in 

terms of the lowest Poisson’s ratio is achieved among the structures with first order of 

hierarchy, which interestingly corresponds to a point in which the buckling modes switch. 

The auxetic response can further be pronounced (i.e., lower Poisson’s ratio) by introducing 

higher orders of hierarchy. Our results provide new insights into designing energy 

absorbing materials and tunable membrane filters [100, 122]. 

However, the main limitation of our proposed hierarchical architecture is the range 

of the strain at which the Poisson’s ratio becomes negative (i.e., critical strain ~10%). It is 

desirable to achieve auxetic behavior at much smaller strains for many practical 

applications. To reduce the critical strain, we tailor the geometry of the hierarchical 

structure for lowest critical strain. For instance, a hierarchical structure with first order of 

hierarchy has the lowest critical strain (~6%) for the geometry at which the switching of 

the buckling modes occurs and Poisson’s ratio attains the lowest value among all first order 
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hierarchical structures. Interestingly, the critical strain can further be reduced by 

introducing higher orders of hierarchy as we demonstrated for second order of hierarchy. 

 

3.5 Methods 

Materials. A rubber-like flexible material (commercial name TangoGray, with material 

properties presented in Appendices) was used to 3D print the experimental specimen. The 

material properties were measured through tensile testing on dog-bone specimens up to the 

strain of ε~0.3. 𝐺0=1.7 MPa and 𝐾0=84.43 MPa are the initial shear and bulk moduli in 

the undeformed configuration and they are obtained by fitting the response under uniaxial 

tension of the bulk material (see Appendices for more details). 

Fabrication using 3D printing. The specimen was fabricated using PolyJet 3D 

printing technique (Objet Eden260V 3D printer, Stratasys Inc., Eden Prairie, MN) out of 

TangoGray material. The specimen has overall size of Width × Hight × Depth = 254 × 

229 × 20 mm with wall thickness of 1 mm, maintaining a relative density of 8% for 𝛾1 =

0.25. Prior to testing in either direction, two aluminum plates were attached to the top and 

bottom of the specimen to prevent the edge nodes from excessive bending. 

Mechanical testing. We applied uniaxial compression along the y and x directions 

using an Instron 5582 testing machine with a 1 KN load cell. In order to calculate the 

Poisson’s ratio at each level of applied compression, the photographs of deformed 

configurations of the specimen were recorded using a digital camera (See Appendices for 

more details). 

Numerical simulations. The commercial FE package ABAQUS (SIMULIA, 

Providence, RI) was employed to carry out all the simulations in this study. Both 

microscopic and macroscopic instability analyses as well as post-buckling analysis were 

performed using the ABAQUS/Standard solver. The 2D FE models of periodic unit cells 

for the first and second order of hierarchical honeycomb were constructed using beam 

elements (ABAQUS hybrid element type B22H) and the accuracy of the mesh is insured 

by a mesh refinement study. The models were subjected to uniaxial static compression 
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along the y and x directions while the lateral contractions were monitored. The first four 

eigenvalues from the instability analysis were employed to model imperfections in non-

linear post-buckling analysis. 

 

3.6 Appendices 

 

3.A Hierarchical honeycombs 

The first order of hierarchy is obtained by replacing all three-edge nodes of a regular 

hexagonal honeycomb with smaller, parallel hexagons. This procedure can be repeated at 

smaller scales to achieve higher orders of hierarchy, yet the thickness of the cell walls must 

be reduced simultaneously to keep the overall density fixed. Figure 3.1 shows the 

evolution of a regular hexagonal honeycomb and its corresponding cell as the order of 

hierarchy is increased. 

The structural organization of the structure at each order of hierarchy (𝛾𝑖) is defined 

by the ratio of the newly added hexagonal edge length (𝑏 for first order and 𝑐 for second 

order of hierarchy) (see Figure 3.1) to the original hexagon’s edge length (𝑎) (i.e., 𝛾1 =

𝑏 𝑎⁄  and 𝛾2 = 𝑐 𝑎⁄ ) [76]. For first order of hierarchy, 0 ≤ 𝑏 ≤ 𝑎 2⁄  and thus, 0 ≤ 𝛾1 ≤

0.5 , where 𝛾1 = 0  represents the regular hexagonal honeycomb. For a structure with 

second order of hierarchy, 0 ≤ 𝑐 ≤ 𝑏  and 𝑐 ≤ 𝑎 2⁄ − 𝑏  and thus, 0 ≤ 𝛾2 ≤ 𝛾1  if 𝛾1 ≤

0.25, and 0 ≤ 𝛾2 ≤ (0.5 − 𝛾1) if 0.25 ≤ 𝛾1 ≤ 0.5. These geometrical constraints must be 

imposed on the structures to avoid overlapping edges. The dimensionless relative density 

(i.e., area fraction), compared to the material density, is given as: 

𝜌 = 2 √3⁄  . (1 + 2𝛾1 + 6𝛾2) . 𝑡 𝑎⁄  (3.A.1) 

where 𝑡 is the wall thickness which is assumed to be uniform throughout the structure. 
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3.B Experimental specimen - material properties 

We used a rubber-like flexible material (commercial name TangoGray) as the bulk material 

to fabricate the specimen. To measure the material properties, five dog-bone specimens 

were 3D printed and tested under uniaxial tensile loading, and the stress-strain response of 

the material (i.e., engineering stress vs. engineering strain) is monitored up to the strain of 

휀 = 0.3 (see Figure 3.B.1). Since the test was performed quasi-statically, we neglected 

viscoelastic effect and captured the constitutive behavior using a nearly-incompressible 

Neo-Hookean hyperelastic model (Poisson’s ratio: ν0 = 0.49), whose strain energy is 

given by 𝑈 = 𝐺0(𝐼1̅ − 3)/2 + 𝐾0(𝐽 − 1)2/2, where 𝐼1̅ = 𝐽−2/3 tr[dev(𝐅T𝐅)], J = det (𝐅), 

and 𝐅 is the deformation gradient. We obtained the initial shear modulus (G0=1.7 MPa) 

and bulk modulus (K0=84.43 MPa) in the undeformed configuration by fitting the material 

model to the experimental data (see Figure 3.B.1). The mechanical tests were performed 

based on ASTM-D638-10, which is the standard test method for measuring tensile 

properties of plastics. 

 

 

Figure 3.B.1 (Left) 3D printed dog-bone specimen for uniaxial tension test. (Right) 

Engineering stress vs. engineering strain for the tested material. 
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3.C Experiments 

The specimen was fabricated using PolyJet 3D printing technique out of TangoGray 

material which has an overall size of Width × Hight × Depth = 254 × 229 × 20 mm with 

wall thickness of 1 mm, maintaining a relative density of 8% for 𝛾1 = 0.25. Next, we 

applied uniaxial compression along the y and x directions using an Instron 5582 testing 

machine with a 1 KN load cell. In order to calculate the Poisson’s ratio at each level of 

applied compression, the photographs of deformed configurations of the specimen was 

recorded using a digital camera. Then, we tracked RVEs’ boundary points (i.e., the points 

in touch with adjacent RVEs) to obtain their locations at different levels of deformation 

and used them to measure the horizontal and vertical distances (i.e., ∆𝑥 and ∆𝑦, see Figure 

3.C.1) needed to evaluate the local strains (i.e., 휀𝑥𝑥 = ∆𝑥 ∆𝑥(0)⁄  and 휀𝑦𝑦 = ∆𝑦 ∆𝑦(0)⁄ ). 

The measurement was repeated at least at five different locations on the RVE at each level 

of compression. The Poisson’s ratio is then calculated as 𝜈𝑥𝑦 = −휀𝑦𝑦 휀𝑥𝑥⁄  and 𝜈𝑦𝑥 =

−휀𝑥𝑥 휀𝑦𝑦⁄ . 

 

 

Figure 3.C.1 Hierarchical honeycomb auxetic metamaterials: experimental setup. (left) 

Undeformed configuration of the fabricated first order hierarchical structure with 𝛾1 =
0.25. The representative volume element (RVE) is highlighted as yellow. (middle and 

right) Deformed configurations of the specimen and the RVE under compression along the 

y (휀𝑦𝑦 = −0.266, X-shape deformation mode) and x (휀𝑥𝑥 = −0.255, N-shape deformation 

mode) directions, respectively. 
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3.D Second order of hierarchy – additional results 

We performed FE simulations on second order hierarchical structures with 𝛾1 = 0.1 and 

0.45 under uniaxial compression along the x direction. The relative density was kept 

constant at 8%. The results are presented in Figure 3.D.1 in the form of the normalized 

nominal stress (Figure 3.D.1.a) and Poisson’s ratio (Figure 3.D.1.b) versus the applied 

compressive strain. Deformed configuration of the RVEs at 20% compressive strain is also 

presented in Figure 3.D.1.c. The results presented in Figure 3.D.1, which show the effect 

of the second order of hierarchy on auxetic response of hierarchical honeycombs, are 

similar to the results presented in Figure 3.6 for compression in y direction. 

Next, Figure 3.D.2 plots the evolution of Poisson’s ratio against 𝛾2  at 20% 

compressive strain for second order hierarchical structures with 𝛾1 = 0.1 and 0.45. The 

figure clearly shows that second order of hierarchy reduces the value of Poisson’s ratio for 

the structure with 𝛾1 = 0.1, whereas the opposite is true for the structure with 𝛾1 = 0.45. 

The reason for this behavior relies on the overall size of the smaller hexagons in the 

hierarchical structure. Introducing a higher order of hierarchy increases the overall size of 

the smaller hexagons, and this acts like increasing the value of 𝛾1 without increasing the 

order of hierarchy. This makes the structures with 𝛾1 < 0.375  to achieve a smaller 

Poisson’s ratio (moving from left to right in Figure 3.5) with the opposite being true for 

𝛾1 > 0.375 (moving from left to right in Figure 3.5). 
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Figure 3.D.1 Honeycombs with second order of hierarchy. a) Stress-strain curves, and b) 

the evolution of Poisson’s ratio versus longitudinal strain, for second order hierarchical 

structure with 𝛾1 = 0.1 and 𝛾1 = 0.45, under uniaxial compression along the x direction. 

The stress is normalized with respect to the initial Young’s modulus of the cell wall 

material (𝐸0). c) Deformed configuration of the RVEs at 20%. 
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Figure 3.D.2 Poisson’s ratio vs. 𝛾2 for second order hierarchical structures with 𝛾1=0.1 

and 0.45. 
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Chapter 4 

 

Honeycomb Phononic Crystals with Self-similar Hierarchy 

 

 

4.1 Abstract 

We highlight the effect of structural hierarchy and deformation on band structure and wave-

propagation behavior of two-dimensional phononic crystals. Our results show that the 

topological hierarchical architecture and instability-induced pattern transformations of the 

structure under compression can be effectively used to tune the band gaps and directionality 

of phononic crystals. The work provides insights into the role of structural organization 

and hierarchy in regulating the dynamic behavior of phononic crystals, and opportunities 

for developing tunable phononic devices. 
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4.2 Introduction 

Hierarchical organization is ubiquitous in biological systems, from the nanometer to the 

macroscopic length scales. Examples include collagen [7], bone [9, 123], tooth [123], 

tendon [9], wood [9, 13], nacre [12], gecko foot pads [124], Asteriscus plant [125], 

Euplectella sponge [6], and water-repellant biological systems [126]. The purely structural 

role of hierarchy in boosting mechanical performance is now well known [11, 54, 61, 115, 

127]. In addition to hierarchy, periodic organizations aimed at influencing the wave-

propagation behavior, for instance in structural colorations, can also be found in nature 

[128-130]. More interestingly, the reversible modulation of these so-called phononic 

crystals through deformation provides an incredibly rich optical behavior enhancing their 

survival [131, 132]. 

Pursuing these synergetic motifs for materials development [133-136], we 

investigate a different class of hierarchical organization based on 2D honeycomb-like 

structures primarily geared towards phononic applications (i.e., phononic crystals) and the 

effect of deformation on controlling their band gaps (defined as frequency ranges of strong 

wave attenuation). To this end, 2D lattices with different nonhierarchical topologies have 

been well investigated (no deformation included) [137-139]. However, recently, Xu et al. 

[140] investigated wave propagation in 2D hexagonal lattice structures with sandwich plate 

cell walls possessing only first-order non-self-similar hierarchy. This early study, although 

lacking a systematic analysis of the role of hierarchy in fostering phononic properties, 

provided an early evidence of expansion of band gaps with hierarchy. 

In this dissertation, we study the effect of structural hierarchy on the band structure 

and directionality of these crystals, as well as investigate the additional effect of 

compressive loads on the tunability of band gaps of first-order hierarchical phononic 

crystals. Interestingly, our results reveal that hierarchy and pattern transformations through 

compression can significantly affect the dynamic response, and they can be effectively 

used to tune the propagation of elastic waves in phononic crystals. 

The evolution of a regular honeycomb into the fractal-like hierarchical phononic 

crystal studied in this dissertation is illustrated schematically in Figure 4.1. The structural 

organization of the honeycomb at each order of hierarchy (𝛾𝑖) is defined by the ratio of the 
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newly introduced hexagonal edge length (𝑙𝑖) to the previous hexagon’s edge length (𝑙𝑖−1), 

i.e., 𝛾𝑖 = 𝑙𝑖/𝑙𝑖−1. For convenience, 𝛾1 is defined as 𝛾1 = 2𝑙1/𝑙0 (see Figure 4.1 (a)) [54]. 

The following geometrical constraints must be imposed on the structure to avoid 

overlapping edges: 

{

0 ≤ 𝛾𝑛 ≤ 1

∑ ∏ 𝛾𝑗

𝑖

𝑗=1

𝑛

𝑖=1
≤ 1

 (4.1) 

where 𝑛 is the order of hierarchy (𝑛 ≥ 1). The dimensionless relative density (equal to area 

fraction) of the structure [compared to the material density (𝜌𝑠)], i.e., 𝜌𝑐 = 𝜌 𝜌𝑠⁄ , is given 

as the following: 

𝜌𝑐 =
2

√3
(1 + ∑ 3𝑖−1 ∏ 𝛾𝑗

𝑖

𝑗=1

𝑛

𝑖=1
)

𝑡𝑛
𝑙0

 (4.2) 

where 𝑡𝑛 is the wall thickness which for simplicity is assumed to be uniform throughout 

the structure. Thus, thickness (𝑡𝑛) must decrease to maintain a fixed relative density (𝜌𝑐) 

as the order of hierarchy (𝑛) and the values of 𝛾𝑖 are increased. 

 

 

Figure 4.1 Hierarchical honeycombs. (a) The evolution of a regular hexagonal honeycomb 

(left) to first-order (middle) and second-order (right) hierarchical honeycombs. (b) 

Corresponding primitive unit cells of the structures. 
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4.3 Results and discussions 

We consider the structure to be infinitely extended in 2D space and the advancing 

wavefront to induce no finite strains to model waves of low intensity with wavelengths of 

the order of lattice characteristic size. Numerical simulations of the propagation of these 

small-amplitude elastic waves in the crystal (in undeformed configuration) were performed 

using Finite Element (FE) method and Bloch wave analysis [141] (see Appendices for 

more details). In the FE models, honeycomb walls were modeled as Timoshenko beams 

with a rectangular cross section of unit length normal to the plane of wave motion, and the 

material was assumed to be aluminum with Young’s modulus 𝐸𝑠 = 71𝐺𝑃𝑎, Poisson’s ratio 

𝜈𝑠 = 0.33, and density 𝜌𝑠 = 2700 kg m3⁄ . The relative density of the structure was kept 

constant at 8%. The frequency of the propagating wave (𝜔) was normalized with respect 

to the first flexural frequency of a simply supported beam with length 𝑙0 and thickness 𝑡0, 

that is 𝛺 = 𝜔 𝜔0⁄ , where 𝜔0 = 𝜋2√𝐸𝑠𝑡0
2 (12𝜌𝑠𝑙0

4)⁄  [138]. 

We compare in Figure 4.2, the band structures and directionality diagrams of a 

regular honeycomb (left column) and a first order hierarchical structure with 𝛾1 = 0.5 

(right column). In Figure 4.2 (a), we report the normalized frequency as a function of the 

reduced wave vector (see Appendices for more details). For the considered frequency 

range, the regular structure features a band gap at 𝛺 = 4.56 − 5.46 . On introducing 

hierarchy, the lowest frequency band gap is now much lower (𝛺 = 2.01 − 2.85) and 

several other new band gaps appear in the considered frequency range (𝛺 = 5.77 −

10.22, 11.67 − 12.38) . Another pre-existing band gap is also shifted to the lower 

frequency at 𝛺 = 13.16 − 13.55. This considerable change in the band structure is due to 

the newly added hexagons (brought about by hierarchy), which also reduce the cell wall 

thickness to conserve mass. This geometrical change results in an increase in multiple 

scattering of the propagating waves at the cell walls and consequently opening up the 

Bragg-type band gaps [142]. The alterations of the band structure indicate a hierarchy 

dependent transition, which parallels the effect of hierarchy on mechanical behavior in 

other contexts [11, 54, 61, 115, 127]. 
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Figure 4.2 Regular hexagonal honeycomb vs. a first order hierarchical honeycomb with 

𝛾1 = 0.5 . (a) Effect of hierarchy on band gaps. (b,c) Effects of hierarchy on the 

directionality of phase and group velocities. 
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Since band diagrams such as Figure 4.2 (a) cannot always fully provide the 

directional behavior of a lattice structure, they are often investigated using dispersion 

surfaces (in compact form: phase and group velocities) [143]. In rapidly expanding 

broadband applications, it is crucial to focus on the low frequency regime in addition to 

more well investigated high frequency behavior [137, 144, 145]. Figures 4.2 (b) and 4.2 

(c) respectively present the phase and group velocity profiles for the lowest two modes of 

propagating waves at relatively low frequency of 𝛺 = 0.1 . Each velocity profile is 

normalized with respect to the maximum velocity of the profile (𝑉𝑚𝑎𝑥) (see Figure 4.2 

(b)). For the regular structure (left column), the phase velocity profile exhibits a slight 

preference in the direction of propagation at 𝜃 = 0°, 𝜃 = 60°, and due to symmetry, at 𝜃 =

120° for mode 1 (shear or S-mode), whereas it does not show any preferential direction for 

mode 2 (longitudinal or L-mode). Hierarchy seems to have no effect on the relative isotropy 

of mode 2. However, anisotropy of mode 1 is further accentuated due to hierarchy. The 

origin of this effect can be traced to decreased thickness of the original cell walls due to 

additional hexagons resulting in an increase in the relative anisotropy ratio 𝑉𝑚𝑎𝑥/𝑉𝑚𝑖𝑛. 

Group velocity, which typically indicates the velocity at which energy is transported along 

the wave vector, also reflects this anisotropy concentration of mode 1 in Figure 4.2 (c) for 

both the regular and hierarchical structures. 

Next, we investigate the effects of the hierarchical order (𝑛) and geometrical ratios 

(𝛾𝑖′𝑠) on band gaps and wave directionality. For convenience, we limited the analysis to 

self-similar hierarchical honeycombs up to third order of hierarchy with self-similarity 

ratio, 𝜂, defined as 𝜂 = 𝛾𝑛 = 𝛾𝑛−1 = ⋯ = 𝛾1 for nth order of hierarchy with 𝑛 =1, 2, and 

3, respectively for first, second, and third orders of hierarchy. The geometrical constraints 

given in Equation (4.1) limit the maximum value of 𝜂 at each order of hierarchy to 𝜂𝑚𝑎𝑥 

= 1, 0.62, and 0.54, respectively for first, second, and third orders of hierarchy. 

Figures 4.3 (a), 4.3 (b), and 4.3 (c) show the evolution of band gaps as the value 

of 𝜂 increases, respectively for first, second, and third orders of hierarchy for the range of 

frequencies, 0 ≤ 𝛺 ≤ 10. Note that the upper bound of the horizontal axis is limited to 

𝜂𝑚𝑎𝑥 . For 𝑛 = 1 (Figure 4.3 (a)), introducing hierarchy is found to at first, lower the 

midgap position of the original non-hierarchical band gap, although the width of the band 
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gap remains fairly the same. Thereafter, a slender band gap appears on either side of this 

central band gap. Increasing 𝜂, opens up another band gap at higher frequencies which 

continues to expand as the original dominant band narrows. After 𝜂 ≈ 0.35 this original 

band gap disappears giving way to two separate band gap flanges which first expand and 

then disappear giving further band gap flanges. This waxing and waning pattern of band 

gaps continues as newer band gaps emerge and disappear. Similar phenomena are observed 

for higher orders of hierarchy (see Figure 4.3 (b) and 4.3 (c)). The results presented in 

Figures 4.3 (a), 4.3 (b), and 4.3 (c) confirm that the order of hierarchy and self-similarity 

ratio are two important geometric parameters affecting the band structure. This has 

important implications on the critical gap/midgap ratio for phononic applications [146]. 

 

 

Figure 4.3 (a, b, c) The evolution of band gaps as a function of self-similarity ratio (η) for 

hierarchical honeycombs with first, second, and third, orders of hierarchy. (d) The 

evolution of anisotropy ratio (λ) as a function of self-similarity ratio (η) for phase, and 

group velocity profiles for mode 1 of propagating waves. 
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To study the directionality of propagating waves at low frequency of 𝛺 = 0.1, we 

define the following scalar anisotropy ratio [142]: 

𝜆 = 𝑉𝑚𝑎𝑥 𝑉𝑚𝑖𝑛⁄  (4.3) 

where 𝑉𝑚𝑎𝑥  and 𝑉𝑚𝑖𝑛  are the maximum and minimum wave velocities, respectively 

(Figure 4.2 (b)). Note that 𝜆 ≥ 1, with 𝜆 = 1 showing an isotropic media where elastic 

waves propagate with the same speed in every spatial direction  with no preference (i.e., 

the polar plot of wave velocity is circular). We report in Figure 4.3 (d) the evolution of 

anisotropy ratio as 𝜂  increases for phase and group velocity profiles for mode 1 of 

propagating waves. Note that the phase and group velocity profiles of the structures for 

mode 2 do not show any preferential direction of propagation indicating isotropic response 

(i.e., 𝜆 = 1). Figure 4.3 (d) shows that for mode 1, 𝜆 of both the phase and group velocity 

profiles rise from the initial values (𝜂 = 0, regular structure) up to a turning point (critical 

point), then decrease as a function of 𝜂 restoring isotropy. This behavior is entirely due to 

the redistribution of matter within the crystal resulting in an initial increase of scattering in 

the smaller hexagons whose expanding size eventually restores crystal symmetry. The 

figures also reveal that the higher order of hierarchy accentuates the rate of anisotropy ratio. 

This is due to higher number of smaller hexagons in the structure which introduces greater 

incremental anisotropy in the crystal structure. 

Next, we investigate the propagation of small-amplitude elastic waves in a first 

order hierarchical honeycomb with 𝛾1 = 0.5 under different levels of applied compressive 

loads using FE simulations. The numerical analyses include: (i) the stability analysis of the 

structure [121]; (ii) the non-linear post-buckling analysis of the system [121]; and (iii) the 

propagation of small-amplitude elastic waves at a given deformation [134, 147]. The 2D 

FE models were constructed using beam elements (hybrid element type B22H in 

ABAQUS). We assumed that the 2D phononic crystal is made of a silicon-based rubber 

(Elite Double 32:Zhermack) represented by an incompressible Neo-Hookean model [148], 

with 𝐺𝑠 = 0.27 𝑀𝑃𝑎 , 𝐾𝑠 = 13.4 𝑀𝑃𝑎 , and 𝜌𝑠 = 965 kg m3⁄  [116]. We chose this 

material to guarantee reversibility under large deformations. 
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Figure 4.4 The evolution of band gaps as a function of the applied engineering strain for 

the first order hierarchical honeycomb with γ1 = 0.5 subjected to (a) uniaxial compression 

in y-direction, (b) uniaxial compression in x-direction, and (c) equi-biaxial compression. 

The dashed vertical lines represent the strain that buckling occurs. The undeformed and 

deformed configurations of the RVEs at different levels of applied strain are shown at the 

bottom. 

 

Using this model, we calculate the dispersion relations for both undeformed and 

deformed configurations [137, 147] (see Appendices for more details). We report the 

normalized frequency (𝛺) as a function of applied engineering strain (휀) in Figure 4.4 (a) 

for uniaxial compression in y-direction, Figure 4.4 (b) for uniaxial compression in x-

direction, and Figure 4.4 (c) for equi-biaxial compression. Note that the structure was 

compressed in all the directions up to the limit where the beams begin to contact one 

another. The dynamic response of the structure is characterized with four band gaps at the 

undeformed configuration in the given range of frequency (0 ≤ 𝛺 ≤ 15). While the widest 

band gap at 𝛺 = 5.77 − 10.22  remains almost unchanged during the entire range of 

applied strain, the other three band gaps are significantly altered upon compression in all 

the directions. The lowest frequency band gap narrows and shifts to higher frequencies 

whereas the other two high frequency band gaps completely close around the buckling 

point and at 휀 = −0.125, respectively for uniaxial and equi-biaxial compressive loads. 

Furthermore, once buckling occurs (highlighted with dashed vertical lines), by increasing 

the level of deformation, several new band gaps open up at different levels of compression, 
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which most of them remain open, up to the highest level of applied deformation. The results 

reported in Figure 4.4 (c) clearly indicate that equi-biaxial compression opens more band 

gaps, a signature of higher band gap tunability (compared to other loading directions). 

Moreover, the corresponding deformation mode shapes of the representative 

volume element (RVE) at different levels of applied strains were shown in Figure 4.4. The 

results clearly show the emergence of distinct pattern transformations upon loading in 

different directions, induced by buckling of the individual beams. Since the pattern 

transformation is reversible, repeatable, and scale-independent, our results provide new 

insights into designing tunable materials and devices over a wide range of length scales. 

 

4.4 Conclusions 

In summary, our computational study, which investigates the influence of structural 

hierarchy and imposed deformations on band structure of self-similar hierarchical 

honeycombs provides new insights on the critical role of hierarchy on dynamic response 

of phononic crystals. We found that hierarchy tends to shift the existing band gaps to lower 

frequencies while opening up new band gaps. Deformation was also demonstrated as 

another mechanism for opening more number of band gaps in hierarchical structures. This 

study, therefore, provides useful guidelines for the design of phononic devices with tunable 

properties [149-151]. 

 

4.5 Appendices 

 

4.A Bloch wave theory 

In our study, we consider the structure to be infinitely extended in two-dimensional (2D) 

space. Figure 4.A.1 (a) shows the schematic of the primitive unit cell and the lattice vectors 

𝐚1 and 𝐚2 for a second order hierarchical honeycomb. Note that the lattice vectors are the 

same for all orders of hierarchy and can be expressed as the following: 
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𝐚1 = √3l0(0.5𝐢 + 0.5√3𝐣) 

𝐚2 = √3l0(−0.5𝐢 + 0.5√3𝐣) (4.A.1) 

where 𝐢 and 𝐣 are the Cartesian unit vectors in the x − y plane. Note that all the vector and 

matrix quantities in this section are denoted by bold letters. The reciprocal lattice vectors 

(see Figure 4.A.1 (b)) are determined as the following: 

 

 

Figure 4.A.1 (a) Schematic of the primitive unit cell and the lattice vectors (𝐚𝟏 and 𝐚𝟐) of 

a second order hierarchical honeycomb. (b) The reciprocal lattice vectors (𝐛𝟏 and 𝐛𝟐), first 

Brillouin zone (hexagonal area), and the irreducible Brillouin zone (shaded triangular area) 

of the structure. (c) Finite element model of the unit cell. 

 

𝐛1 =
2π

3l0
(√3𝐢 + 𝐣) 

𝐛2 =
2π

3l0
(−√3𝐢 + 𝐣) 

(4.A.2) 

Figure 4.A.1 (b) shows the first Brillouin zone (hexagonal region) corresponding 

to the hierarchical structure. It has been shown that the reflectional and rotational 

symmetries of the structure can further reduce the region to what referred as the irreducible 

Brillouin zone (IBZ) which for the hierarchical honeycomb is shown in Figure 4.A.1 (b) 

as a shaded triangular region (OAB). Furthermore, we can restrict the analysis to the wave 

vectors whose origins are located at the center of the first Brillouin zone (O) with their tips 

located on the perimeter of the IBZ (O-A-B-O). 
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4.B Finite element formulations 

Numerical simulations of the propagation of small-amplitude elastic waves in the structures 

were performed using Finite Element (FE) method. Figure 4.A.1 (c) shows the unit cell of 

a second order hierarchical honeycomb structure used in FE analysis. We model the unit 

cell as a finite number of rigidly connected beam elements with axial, transverse, and 

rotational degrees of freedom (DOFs) whose mechanics is governed by Timoshenko beam 

theory [152]. A mesh sensitivity analysis was performed to ensure that the results are not 

dependent on the mesh size. 

The FE form of unit cell’s equation of motion can be expressed as: 

(𝐊 − ω2𝐌)𝐮 = 𝐟 (4.B.1) 

where ω is the wave frequency, 𝐊 and 𝐌 are the global stiffness and mass matrices of the 

unit cell, and, 𝐮 and 𝐟 are the vectors containing generalized nodal displacements and 

forces defined as the following: 

𝐮 = {𝐮0  𝐮1  𝐮2  𝐮3  𝐮i}
T 

𝐟 = {𝐟0  𝐟1  𝐟2  𝐟3  𝐟i}
T (4.B.2) 

where the subscripts 0, 1, 2, and 3 denote the boundary nodes of the unit cell in contact 

with the adjacent cells, while the subscript i denote the internal nodes (see Figure 4.A.1 

(c)). By virtue of Bloch theorem, the following periodic boundary conditions are obtained 

for the boundary nodes: 

𝐮2 = eik1𝐮0 

𝐮3 = eik2𝐮1 

 

(4.B.3) 

and 

𝐟2 = −eik1𝐟0 

𝐟3 = −eik2𝐟1 (4.B.4) 
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Using Equation (4.B.3), one can define the following transformation: 

𝐮 = 𝐓𝐮r (4.B.5) 

where 𝐮r = {𝐮0  𝐮1  𝐮i}
T is the nodal displacements in the Bloch reduced coordinates, and 

𝐓 is a transformation matrix obtained as the following: 

𝐓 =

[
 
 
 
 

𝐈
𝟎

𝟎
𝐈

𝟎
𝟎

𝐈eik1 𝟎 𝟎
𝟎
𝟎

𝐈eik2

𝟎

𝟎
𝐈]
 
 
 
 

 (4.B.6) 

Now, substituting Equation (4.B.5) into Equation (4.B.1) and pre-multiplying the 

resulting equation by 𝐓H, with ()H denoting the Hermitian transpose, yields: 

[𝐊r(k1, k2) − ω2𝐌r(k1, k2)]𝐮r = 𝟎 (4.B.7) 

where 𝐊r(k1, k2)  and 𝐌r(k1, k2)  denote the reduced stiffness and mass matrices. 

Equation (4.B.7) is the equation of motion for free wave propagation which constitutes an 

eigenvalue problem whose solution expresses the dispersion characteristics of the periodic 

lattice. Wavenumbers k1 and k2, which for the wave propagation without attenuation are 

taken to be real quantities, vary within the first Brillouin zone. The solutions obtained for 

all possible values of k1  and k2  within the first Brillouin zone define the dispersion 

surfaces of the lattice. The number of dispersion surfaces corresponds to the number of 

reduced DOFs in the eigenvalue problem. 

 

4.C Numerical implementations 

Matlab® (Mathworks Inc., Natick, MA) was employed to develop a FE code to investigate 

the propagation of small-amplitude elastic waves in the proposed hierarchical honeycomb 

structure. Beams were assumed to have a rectangular cross section with unit length normal 

to the plane of wave motion and the thickness was adjusted to be consistent with the value 

of the relative density of the structure. Mesh convergence study was also performed in 

order to remove any mesh dependence on final results. Linear elastic properties of 
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aluminum were assumed for the cell wall material with Es = 71GPa, νs = 0.33, and ρs =

2700 kg m3⁄ . In all the simulations in this study, the relative density is kept constant at 

8%. 

We basically solved the eigenvalue problem given in Equation (4.B.7) to obtain 

the dispersion relations ω = ω(𝐤) for 𝐤 vectors varying on the perimeter of the IBZ. Then 

the band gaps were identified by the frequency ranges in which no solution exists for ω(𝐤). 

At least fifty uniformly spaced points on each edge of the IBZ were used for band gap 

calculations. For convenience, the wave propagation frequency is normalized with respect 

to the first flexural frequency of a simply supported beam with length l0 and thickness t0, 

that is Ω = ω ω0⁄ , where ω0 = π2√Est0
2 (12ρsl0

4)⁄  [138]. 

 

4.D Additional results for low frequency directionality 

Note that the first and second modes of the propagating waves respectively represent shear- 

and pressure-dominated modes of propagation. The phase velocity 𝐕p and group velocity 

𝐕g of the propagating waves can be calculated using the following relations: 

𝐕p =
ω𝐤

‖𝐤‖2
 

 

𝐕g =
∂ω

∂𝐤
 (4.D.1) 

At least four hundred uniformly spaced points inside the IBZ were used to 

interpolate the dispersion surface in 𝐤 space. 

Here, we first report phase and group velocity profiles for all directions of wave 

motion at Ω = 0.1 for the lowest two modes of propagating waves. Figures 4.D.1, 4.D.2, 

4.D.3, and 4.D.4 respectively present the phase and group velocity profiles for the first and 

second modes of propagating waves. The results are presented for six different values of η 

(i.e., self-similarity ratio, defined in the manuscript) for self-similar hierarchical 

honeycombs up to third order of hierarchy. We employed the data extracted from these 
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profiles to plot the evolution of anisotropy ratio against self-similarity ratio depicted in 

Figure 4.3 (d) in the manuscript. The results clearly indicate that the directionality of 

propagating waves at low frequency regimes is extremely dependent to the topology of the 

structure (i.e., the hierarchical order and self-similarity ratio). Then, the topology of the 

structure can be used as a design parameter to tune the directionality characteristics of the 

structure at low frequency regimes. 

Next, we report in Figures 4.D.5 - 4.D.10 the contour plots of dispersion surfaces 

for the first (S-mode) and second (L-mode) modes of propagation. The results are presented 

for six different values of self-similarity ratio for self-similar hierarchical honeycombs up 

to third order of hierarchy. Note that 𝜉1 and 𝜉2 are the components of the wave vector along 

the Cartesian unit vectors in the x − y plane, that is 𝐤 = k1𝐛1 + k2𝐛2 = ξ1𝐢 + ξ2𝐣. The 

results again confirm the dependency of directionality of propagating waves at low 

frequency regimes to the topology of the structure.  
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Figure 4.D.1 Phase velocity profiles for the first mode of wave propagation. The results 

are presented for six different values of self-similarity ratio for self-similar hierarchical 

honeycombs up to third order of hierarchy.   
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Figure 4.D.2 Phase velocity profiles for the second mode of wave propagation. The results 

are presented for six different values of self-similarity ratio for self-similar hierarchical 

honeycombs up to third order of hierarchy.  
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Figure 4.D.3 Group velocity profiles for the first mode of wave propagation. The results 

are presented for six different values of self-similarity ratio for self-similar hierarchical 

honeycombs up to third order of hierarchy.  
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Figure 4.D.4 Group velocity profiles for the second mode of wave propagation. The results 

are presented for six different values of self-similarity ratio for self-similar hierarchical 

honeycombs up to third order of hierarchy. 

 



97 
 

 

Figure 4.D.5 Iso-frequency plots of the first mode of wave propagation. The results are 

presented for six different values of self-similarity ratio for self-similar hierarchical 

honeycombs up to third order of hierarchy. 



98 
 

 

Figure 4.D.6 Iso-frequency plots of the first mode of wave propagation. The results are 

presented for six different values of self-similarity ratio for self-similar hierarchical 

honeycombs up to third order of hierarchy. 
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Figure 4.D.7 Iso-frequency plots of the first mode of wave propagation. The results are 

presented for six different values of self-similarity ratio for self-similar hierarchical 

honeycombs up to third order of hierarchy. 
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Figure 4.D.8 Iso-frequency plots of the second mode of wave propagation. The results are 

presented for six different values of self-similarity ratio for self-similar hierarchical 

honeycombs up to third order of hierarchy. 
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Figure 4.D.9 Iso-frequency plots of the second mode of wave propagation. The results are 

presented for six different values of self-similarity ratio for self-similar hierarchical 

honeycombs up to third order of hierarchy. 
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Figure 4.D.10 Iso-frequency plots of the second mode of wave propagation. The results 

are presented for six different values of self-similarity ratio for self-similar hierarchical 

honeycombs up to third order of hierarchy. 
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4.E Effect of deformation - wave propagation analysis 

We investigated the propagation of small-amplitude elastic waves in an elastomeric 

deformable hierarchical honeycomb with 𝛾1 = 0.5  under different levels of applied 

compression in x-, y-, and biaxial directions. In order to obtain the dispersion relation, 𝜔 =

𝜔(𝑘) , frequency domain wave propagation analysis was conducted on both the 

undeformed and deformed configurations generated by the post-buckling analysis using 

commercial FE package ABAQUS/Standard [153, 154]. 

In this section, for the sake of simplicity in numerical calculations, we considered 

a rectangular unit cell, and we performed the simulations on the enlarged unit cell assuming 

Bloch type boundary conditions which is implemented using a user defined multiple point 

constraint (MPC) subroutine [134, 153, 154]. In the band diagrams presented in Figures 

4.E.2, 4.E.3, and 4.E.4, the normalized frequency (Ω) was calculated for all 𝑘 vectors along 

the perimeter and the diagonal of the IBZ in reciprocal lattice space (see path G − X − M 

− G − Y – M in Figure 4.E.1). We used 20 uniformly spaced 𝑘 points on each line segment 

(e.g. G − X), that they were updated at every levels of deformation [155]. 

 

 

Figure 4.E.1 Schematic of a 2D point lattice in (a) real space (green dots), and (b) 

reciprocal space (black dots). The unit cell spanned by lattice vectors 𝑎1 and 𝑎2 is shown 

in grey. The first Brillioun zone (blue rectangle area) and the irreducible Brillioun zone 

(orange area GXMYM) are shown in (b).  
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Figure 4.E.2 Effect of the applied compression in y-direction on propagation of elastic 

waves. The band diagrams and corresponding deformed structures are presented at three 

different levels of applied deformation. The contour plot on the deformed structures 

represents the von Mises stress distribution (unit:MPa), and the dark grey area shows the 

RVE during the pattern transformation. 
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Figure 4.E.3 Effect of the applied compression in x-direction on propagation of elastic 

waves. The band diagrams and corresponding deformed structures are presented at three 

different levels of applied deformation. The contour plot on the deformed structures 

represents the von Mises stress distribution (unit:MPa), and the dark grey area shows the 

RVE during the pattern transformation. 
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Figure 4.E.4 Effect of the applied eqi-biaxial compression on propagation of elastic waves. 

The band diagrams and corresponding deformed structures are presented at three different 

levels of applied deformation. The contour plot on the deformed structures represents the 

von Mises stress distribution (unit:MPa), and the dark grey area shows the RVE during the 

pattern transformation. 
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