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ABSTRACT 

In the past few years, there has been a rapid growth of sample-in/answer-out micro 

total analysis technology (also called lab-on-chip). These platforms can integrate 

standardized lab protocols in a single device. Initially, continuous flow systems have been 

the default approach for fluid handling for these technologies, however, the use of droplet-

based system have become increasingly popular. Droplet handling methods are often the 

source of system complexity and operational problems. For example, these methods often 

require incorporation of complex microfluidic components such as: micropumps, 

microvalve, tube connections and other active controls that require external off-chip 

controllers. Therefore, an in-depth understanding of droplet dynamics behavior is essential 

for improving the overall efficiency of droplet-based microfluidic systems. Especially 

those systems that employ passive on-chip droplet manipulation.  

The focus of this work is wedge-patterned wettability gradient passive on-chip 

droplet manipulation. Specifically, this work investigated the effect of different droplet 

parameters, namely: wedge-surface relative wettability, pattern wedge angle, initial droplet 

position and gravitational acceleration on the droplet dynamic behavior on a numerical 

basis. To this end, we used the lattice Boltzmann method (LBM)-an alternative powerful 

method for solving fluid dynamics problems. 
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1. CHAPTER ONE: DISCRETE FLOW SYSTEMS  

Studies in discrete flow systems (Droplet-based systems) continue to garnered 

significant interest because of its many applications in different industries and scientific 

research. For example, droplet based systems have many applications in different areas 

such as in miniaturized total analysis systems (Xing et al., 2013) (microfluidics), 

biological systems (Hodges and Jensen, 2002), enhanced oil recovery (Genabeek and 

Rothman, 1996), precision film coating (Dimitrakopoulos and Higdon, 1997), and 

cooling operations (Kumari et al., 2010; Freund et al., 2010). These applications often 

involve processes that include the formation and manipulation of freely suspended or 

attached droplets. To improve the design and overall efficiencies of these processes, the 

fluid flow and geometry configuration parameters that affect these designs require 

extensive investigations. Although processes that involve freely suspended droplets have 

been addressed by several studies, more investigations are needed in processes that 

involve droplet interaction with solid substrate.  

Researchers, in several studies, have employed analytical (Blawzdziewicz et al., 

2002a; 2002b), experimental (Ha et al., 2003; Tucker and Moldenaers, 2002) and 

numerical methods to understand droplet dynamics. For many droplet-based systems of 

interest, analytical studies often require some simplifying assumptions (for geometry and 

flow variables) and experimental studies are often empirical in nature.  Therefore, direct 

numerical solutions have become increasingly important. 

These numerical methods can be generally grouped into two categories – interface 

tracking methods (IT) and interface capturing methods (IC). Interface tracking method 
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consists of the boundary integral method (Yeo et al., 2003; Pozrikidis, 2002; Cristini et 

al., 2001), finite element method (Manservisi and Scardovelli, 2009; Notz et al., 2001), 

and immersed boundary conditions (Shin and Juric, 2002; Tryggavson et al., 2001; 

Nobari et al., 1996). In these IT methods, the computational mesh lay in part or fully on 

the fluid-fluid interface such that complex cut-and-connect algorithm is often required in 

some of these methods for the simulation to proceed through droplet evolution (Shin and 

Juric, 2002; Trygagvason, 2001). In addition, these methods are limited in their ability to 

provide a robust understanding of the underlying microscopic dynamics at a much more 

fundamental level. The IC methods include constrained interpolation profile method 

(Takashi et al., 2001), level-set method (Lee and Son, 2011; Sussman et al., 1994; Osher 

and Fedkiw, 2001), volume-of-fluid method (Nikolopoulos et al., 2009; Scardovelli and 

Zaleski, 1999; Xian et al., 2013) and lattice Boltzmann equation method (Gong and 

Chen, 2012; Kang et al., 2005; Zhang et al., 2013). For these methods, the fluid-fluid 

interface evolves through the mesh because the mesh elements do not lie on the interface. 

Among the interface capturing method mentioned above, only lattice Boltzmann method 

does not describe the flow at the macroscopic scale directly. It is based on simplified 

mesoscopic kinetic model that relies on macroscopic averaged properties to capture the 

macroscopic dynamics (Shan and Chen, 1993). This method can simulate surface 

dynamics and wetting conditions in a parallel fashion and because the interface is not 

tracked, the computational cost is further reduced. Furthermore, since the interface region 

is characterized by large range of spatial-temporal scales, the lattice Boltzmann equation 

method is particularly suitable for modeling these interfacial dynamics.  
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Navier-Stokes (N-S) computational fluid dynamics (CFD) is a set of numerical 

techniques applied to the fluid conservation equations to obtain approximate solutions to 

the fluid flow as well as mass transfers. Although, traditional N-S CFD is a promising 

method for understanding droplet dynamic behavior, it however has some drawbacks 

such as high cost of computational resources required to incorporate microscopic 

interaction, introduction of numerical diffusion in volume of fluid (VOF), and mass 

conservation problems near the interface. Unlike traditional N-S CFD, an alternative 

powerful method for solving fluid dynamics problems is the lattice Boltzmann method 

(Qian and Orszag 1993; Chen and Doolen 1998) (LBM). This method is based on 

microscopic models and mesoscopic kinetic equations. It can simulate fluid dynamics at a 

reduced computation cost and promotes parallelization because all information transfer is 

local in time and space. In addition, it is also able to handle interfacial dynamics 

effectively for multiphase problems because the governing equations are developed based 

on microscopic description of fluid. Hence, the interaction between the phases can be 

naturally included.  In LBM, the fluid is replaced with fictitious particles that reside on a 

lattice. These particles collide at the lattice site and stream along given lattice links with 

discrete velocities that can be represented by some velocity distribution functions. 

Consequently, the hydrodynamic moments of these distribution functions provide the 

connection to the macroscopic fluid properties. Owing to its simplicity, the lattice 

Bhatnagar-Gross-Krook (BGK) equation based on a single-relaxation-time 

approximation to the Boltzmann equation (BE) is the most popular LBM (Bhatnagar et 

al., 1954; Qian et al., 1992; Chen et al., 1992). However, it is well known that the BGK 

model exhibits viscosity-dependent truncation errors that in turn affects the quality of the 
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results in term of numerical stability/accuracy (D’Humières and Ginzburg, 2009). Some 

alternatives to the BGK model have been proposed to overcome this flaws, such as; the 

entropic lattice Boltzmann equation (ELBE) method (Karlin et al., 1999; Ansumali and 

Karlin, 2002), the two-relaxation-time (TRT) method (Ginzburg, 2005; Ginzburg, 2008; 

D’Humières and Ginzburg, 2009) and multi-relaxation time (MRT) method 

(D’Humières, 1994; Lallemand et al., 2000, D’Humières, 2002). Overview of some of 

these methods are provided in this paper.  

1.1 Background and Relevance 

In the past few years, there has been a growing interest in the development of 

sample-in/answer-out (Culbertson et al., 2014) micro total analysis technology (Manz et 

al., 1990; Harrison et al., 1992) (also called lab-on-chip). One of the challenges faced by 

researchers in the design of these microfluidic platforms is the complexity in incorporating 

all the different microfluidic components into a fully automated platform that can perform 

some standardized biochemical protocols on a single miniaturized device (Mark et al., 

2010). This has led to the development of different arrays of microfluidic systems that can 

be classified according to their fluid actuation principle, namely: capillary driven 

microfluidics (Zimmermann et al., 2009; Gervais and Delamarche 2009) , pressure driven 

microfluidics (Wu et al., 2008; Yamada and Seki 2006; Bhagat et al 2008) , electrowetting-

on-dielectric (Lee et al., 2002; Pollack et al., 2000) , electrokinetics (Unni et al., 2007; 

Chang and Yang 2007), centrifugal microfluidics (Madou et al., 2001; Duffy et al., 1999) 

and acoustic microfluidics (Beyssen et al., 2006; Wixforth et al., 2004).  

Recently, discrete flow microfluidic platforms have become increasingly popular 

(Teh et al., 2008; Huebner et al., 2008). These platforms use droplet-based systems and 
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provide a unique opportunity to monitor different biochemical processes in a small volume 

environment and the ability to perform parallel experiments without increasing the device 

size or complexity. Especially, the high surface-to-volume ratio droplets not only enhance 

mass and heat transfer but also can be controlled by electrically induced forces or 

electrowetting (Sung et al., 2003). 

Meanwhile, different droplet handling techniques in droplet-based applications are 

often the source of system complexity and operational problems. For example, these 

methods sometimes require incorporation of complex microfluidic components such as: 

micorpumps, microvalves, tube connections and other active controls that require external 

off-chip controllers (Sin et al., 2011). Addition of these components introduces 

complexities into the system and decreases the portability of such devices and increases 

experimental uncertainty.     

Accordingly, the area of focus of many works has been dedicated to the elimination 

of these off-chip control elements and improving the portability of these droplet-based 

microfluidic devices. As such, purely passive on-chip droplet manipulation has become 

increasingly significant. Particularly in the design and optimization of point-of-care (POC) 

devices. These are devices that are low cost, portable, robust, and promotes ease of use. 

These devices are often essential for public health intervention in resource-poor, remote 

and developing countries. Therefore, an in-depth understanding of droplet dynamics 

behavior is essential for improving the overall efficiency of droplet-based microfluidic 

systems. Especially those systems that employ passive on-chip droplet manipulation.     

Over the past few years, different passive on-chip droplet manipulation methods 

have been designed by researchers. Experimental investigations by Nakashima et al., 
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(2015), Khoo and Tseng (2009) and Ghosh et al., (2014) have demonstrated that carefully 

designed wedge-shaped wettability pattern can be used to automatically transport droplet 

on different surfaces. As a fundamental element, these methods are designed to better 

exploit the capillary force imbalance that is created by spatial gradient of surface 

wettability. In a recent study, Xianhua et al., (2016) employed a combination of numerical 

and experimental methods to demonstrate droplet removal and water collection on a 

wedged-shaped wettability patterned surface. It is noteworthy that the numerical 

simulation in this study consist of a droplet on a single wedge, although in the experiment 

the droplet was on multiple wedges.  

Although in these studies, researchers were successful in transporting the droplet 

a distance on the microchannel, however, their techniques are often empirical and not 

founded on a rigorous exploration and understanding of the droplet dynamic and the 

parameters that affects these dynamics. In addition, some of these empirical studies often 

involve droplet on a multi-wedge patterned surface (Nakashima et al., 2015; Xianhua et 

al., 2016). To the best of our knowledge, there is yet to be a numerical study that focuses 

on the interactions between the droplet and multiple wedges. Therefore, in our study we 

will provide a numerical framework to explore and understand the effect of different 

droplet parameters on the droplet dynamics on a multi-wedge patterned surface. 

Furthermore, the simulations by Xianhua et al., (2016) used a numerical method that is a 

combination of traditional Navier-Stokes-based computational fluid dynamics (N-S CFD) 

with front capturing or front tracking methods such as volume of fluid (VOF) (Hirt and 

Nichols, 1981) or level set method (L-S) (Sussman at al., 1998). Therefore, for the 

current study we used the lattice Boltzmann method (LBM)-an alternative powerful 
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method for solving fluid dynamics problems. The main objective of the current study is 

to investigate the effect of different droplet parameters namely: density ratio, viscosity 

ratio, advancing and receding contact angles on the droplet dynamic behavior. To achieve 

this, we considered different droplet physical systems and our immediate aims are:  

 Evaluate the performance of different pseudo-potential wetting schemes in the 

context of multicomponent multiphase lattice Boltzmann (BGK) models using two 

benchmark tests: (i) migration of a droplet placed on a vertical ideal wall under the 

influence of gravity and (ii) deformation-breakup-coalescence of a droplet past 

obstacles under the influence of gravity. 

 Propose a new adhesion interaction force model for single component multiphase 

lattice Boltzmann (BGK) models and applied it to numerically investigate the effect 

of different droplet-surface parameters on the automatic motion of a droplet on a 

wedge-shaped patterned microchannel surface. 

 Extended our investigation in the second aim by incorporating recent 

advancements in lattice Boltzmann models addressing some of the short -comings 

of the multiphase lattice Boltzmann method. Particularly, incorporating the 

appropriate equation of states and the problem of thermodynamic inconsistencies. 

1.2 Unique Opportunities 

This study presents a unique framework that can be employed to design and 

optimize passive on-chip droplet manipulation techniques and corresponding point-of-care 

(POC) technology. Considering that infectious disease is the second most common cause 
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of death (WHO1), the need for a quick turn-around time for identification of infectious 

agent is of great importance. The development of genetic based molecular diagnostics has 

provided processes that have greatly reduced this turn-around time. One of the major 

advantages of point-of-care sample-in/answer-out micro total analysis systems is the 

opportunity to incorporating this genetic based molecular processes on such device. In 

addition, POC devices have also been applied to medical situations in which a fast or early 

diagnostic is of great importance. For example, in diagnosis and treatment of heart attack 

and early cancer detection.  

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 WHO. The world health report 2004-changing history. 2004 
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2. CHAPTER TWO: INTRODUCTION TO THE LATTICE BOLTZMANN METHOD 

2.1 Boltzmann-Maxwell Equation 

In kinetic theory, the state of a gas or gas mixture at an instant is completely 

specified if the distribution function of the molecular velocities and position is known 

throughout the gas (Gombosi, 1994). Therefore, we consider the single particle 

probability distribution denoted by 𝑓(𝐫, 𝛏, 𝑡)  so that at time 𝑡 , the number of molecules 

in the volume element d3r around the location 𝐫 with velocity vector within the volume 

element d3ξ is given by  

 d6N =  𝑓(𝐫, 𝛏, 𝑡)d3rd3ξ (2.1) 

When an external force field is applied to each particle of the gas, the imposed external 

force field results in the acceleration, 𝒂 of the individual molecules (this acceleration is 

usually assumed to be divergence free in velocity space i.e. ∇𝜉𝒂 = 0). During the interval 

𝑑𝑡, if there were no collision all the particles that were located inside the phase space 

element would occupy the volume element d3r′ near the spatial location 𝐫 +  𝛏𝑑𝑡 with 

velocities in the range d3ξ′ at velocity 𝛏 +  𝐚𝑑𝑡. Because the particle acceleration is 

divergence free, we conclude that d3rd3ξ =  d3r′d3ξ′ and the number of the particles in 

the modified set without collision is given by  

 d6N′ =  𝑓(𝐫 +  𝛏𝑑𝑡, 𝛏 +  𝐚𝑑𝑡, 𝑡 + 𝑑𝑡)d3rd3ξ (2.2) 

 

However, because gas molecules interact with each other via a collision process that 

alters the velocities of the colliding particles the total number of molecules inside the 

infinitesimal phase-space may change during the interval 𝑑𝑡. This change due to collision 



27 

27 

 

is proportional to  d3rd3ξ𝑑𝑡 and is denoted by 
𝛿𝑓

𝛿𝑡
d3rd3ξ𝑑𝑡 where 

𝛿𝑓

𝛿𝑡
 is the rate of change 

of the phase space distribution function (formally known as the collision term). 

Therefore, on can write 

 𝑓(𝐫 +  𝛏𝑑𝑡, 𝛏 +  𝐚𝑑𝑡, 𝑡 + 𝑑𝑡)d3rd3ξ − 𝑓(𝐫, 𝛏, 𝑡)d3rd3ξ = 

𝛿𝑓

𝛿𝑡
d3rd3ξ𝑑𝑡 

(2.3) 

Dividing both sides by d3rd3ξ𝑑𝑡 and taking the limit 𝑑𝑡 → 0 the transport equation for 𝑓 

can be expressed as (Huang, 1963) 

 (𝜕𝑡 +  𝛏 ∙ ∇𝐫 + 𝐚 ∙ ∇𝛏)𝑓(𝐫, 𝛏, 𝑡) =  (𝜕𝑡𝑓)coll  (2.4) 

 

2.1.1 Collision Term  

Furthermore, we can see above that the single particle distribution function 𝑓 depends on 

the scattering of the particle due to collision with another particle. Hence, the two-body 

distribution function 𝑓(2) is required to represent the effect of the intermolecular 

interaction. Similarly, 𝑓(2) will require knowing the effect of scattering on the two 

particles due to collision with a third particle which will involve the three-body particle 

distribution function 𝑓(3). Eq. (2.4) can be replaced by a set of 𝑁 coupled equations to 

account for the multi-particle interactions known as the BBGKY hierarchy (Liboff , 

1969). Without closure Eq. (2.4) is not very useful.  Therefore, the following simplifying 

assumptions are made: 

 The gas is sufficiently dilute that only binary collisions are taken into account. 
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 The velocities of the colliding molecules are assumed to be statistically 

independent. Any possible correlations between the velocity and the position of 

any molecule are neglected. This is known as the assumption of molecular chaos. 

 The effect of the external force on the collision cross-section is neglected  

 Scale length of the distribution function is much larger than the range of 

intermolecular forces.  

Based on the following assumptions, the BBGKY hierarchy can be truncated at 

𝑓(2) and this two-particle distribution can be replaced by the product of the single particle 

distribution for both particles. This result in the Boltzmann equation with the collision 

term expressed as (Chapman and Cowling, 1970; Huang, 1963; Koga, 1970) 

 
(𝜕𝑡𝑓)coll = ∫𝑑Ω∫d

3ξ(2) σ(Ω)(𝑓′1𝑓′2 − 𝑓1𝑓2)  (2.5) 

where 𝑓′ and 𝑓 denote the distribution function before and after collision; σ(Ω) is the 

differential cross-section of the binary collision {𝛏(1), 𝛏(2)} →  {𝛏′(1), 𝛏′(2)} with scattering 

angle Ω. 

2.1.2 Equilibrium Distribution Function 

An important consequence of Eq. (2.5) is that the collision process drives the distribution 

function towards equilibrium state in an irreversible way. Consider a gas with spherical 

particles that are subject to no external force and contain only translational energy. Next 

we introduce the Boltzmann function, 

 
H =  ∫d3ξ 𝑓 ln 𝑓  (2.6) 
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If  𝑓 satisfies the Boltzmann transport Eqs. (2.4) and (2.5), then H is a monotonically 

decreasing function of 𝑡,  

 dH(t)

dt
 ≤ 0 (2.7) 

This is referred to as the H-theorem and is fully consistent with the fundamental laws of 

thermodynamics. It can be shown that H is related to the total entropy of a gas, i.e. H =

 −S 𝑘B
⁄ . Therefore, the theorems states that the entropy of the system increases with time 

until equilibrium is reached (Huang, 1963).  

In addition, the equilibrium is reached when 

 𝑓′1𝑓′2 = 𝑓1𝑓2 (2.8) 

  and by definition, the total time derivative in the phase space vanishes 
𝜕𝑓

𝜕𝑡
=  0  

and 
dH

dt
=  0. 

The solution of Eq. (2.8) will yield the Maxwell-Boltzmann distribution function (Huang, 

1963) given as  

 
𝑓𝑒𝑞 =

𝜌

(2𝜋𝑅𝑇)
D
2⁄
exp [−

(𝛏 − 𝐮)2

2𝑅𝑇
] (2.9) 

where D, 𝑅, 𝑇, 𝜌 and 𝐮 are the spatial dimension, gas constant, temperature, macroscopic 

density and velocity respectively.   
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2.1.3 BGK Approximation 

Although it is almost impossible to evaluate the Boltzmann collision integral analytically, 

it however can be simplified for near-equilibrium state. This leads to the collision interval 

theory. The basic assumption in this theory is that the fraction of the particles, in a given 

volume, that undergoes collisions during the time interval 𝛿𝑡 which alter the particle 

distribution function from 𝑓 to 𝑓𝑒𝑞 is equal to 
𝛿𝑡
𝜏⁄  where 𝜏 is the relaxation time 

constant.  

This theory led to the Bhatnagar, Gross, and Krook (1954) approximation, often referred 

to as the BGK approximation, where the collision term can therefore be expressed as  

 
(𝜕𝑡𝑓)coll = − 

𝑓 − 𝑓𝑒𝑞

𝜏
 (2.10) 

 such that the Boltzmann equation with the BGK collision operator becomes 

 
(𝜕𝑡 +  𝛏 ∙ ∇𝐫 + 𝐚 ∙ ∇𝛏)𝑓(𝐫, 𝛏, 𝑡) = − 

𝑓 − 𝑓𝑒𝑞

𝜏
 (2.11) 

The macroscopic equations can be obtained by integrating in the particle momentum 

space and are given by 

Density; ρ =  ∫𝑓 d𝛏 (2.12a) 

Macroscopic velocity; 𝐮 =
1

𝜌
 ∫𝑓 𝛏d𝛏 (2.12b)  

Stress (pressure) tensor; 𝐩 = ∫𝑓 𝛏𝛏d𝛏 (2.12c)  

Heat flux; 𝐪 = ∫𝑓 ξ2𝛏d𝛏 (2.12d)  
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Kinetic energy; 𝐸 =
1

2
 ∫𝑓 ξ2d𝛏 (2.12e)  

 

2.2 Lattice Boltzmann Equation 

Historically the first lattice Boltzmann equation(LBE) (McNamara and Zanetti, 

1988) was proposed to address the statistical noise drawbacks of its lattice gas cellular 

automaton (LGCA) predecessor (Frisch et al., 1986; Wolfram, 1986).  The basic idea in 

these studies was to construct a model based on the mean particle population instead of 

the discrete particles in LGCA by assuming there are no correlations between the 

particles. Later studies showed that the LBE can be derived by systematically discretizing 

the continuous Boltzmann equation. This can be achieved via three forms of 

discretization, namely: velocity space, physical space and time discretization. In the 

LBM, the physical space of interest is filled with a regular lattice and the fluid is modeled 

with hypothetical particles moving from one lattice site to another with velocities that 

belong to a discrete set of velocities and colliding with each other at the lattice sites. In 

this section, we present an overview of the lattice Boltzmann model for the BGK 

approximation of the continuous Boltzmann equation.  

2.2.1 Discretizing the Microscopic Velocity Space  

In the BGK approximation of the continuous Boltzmann equation, the particle 

distribution function is a function of space 𝐫, particle velocity 𝝃 and time 𝑡. The discrete 

version of the Boltzmann equation can be obtained by first discretizing the microscopic 

velocity space such that evolution of the fictitious particles is restricted to velocities that 

belong to a finite set of discrete velocities. From literature, the process of discretizing the 
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velocity space can be achieved in different ways, namely; the low Mach number 

approach (He and Luo, 1997; Shan et al., 2006), the Hermite polynomial approach (Shan 

2006) and Entropic approach (Karlin et al., 1999; Ansumali et al., 2002; Chikatamarla et 

al., 2006).  Next we provide a brief description of the approaches mentioned above.  

2.2.2 Low Mach Number Method 

Referring to the work of He and Luo (1997), the lattice Boltzmann equation can 

be considered as a special finite-difference approximation of the Boltzmann equation. 

The choice of the coefficients of expansion of the equilibrium distribution function (low 

Mach number expansion of the Maxwellian) and the discrete particle velocity (lattice 

structure) are the main results of this study. For sake of simplicity, we describe the 

derivation of the Boltzmann-BGK equation without a body force. Details of derivation 

with body force can be found in (He et al., 1997; Nourgaliev, 2003). The Boltzmann-

BGK equation can be written in the form of an ordinary differential equation and 

integrated over a time interval 𝛿𝑡 such that  

 𝑓(𝐫 + 𝛏𝛿𝑡, 𝛏, 𝑡 + 𝛿𝑡)

= 𝑒
−𝛿𝑡

𝜏⁄ 𝑓(𝐫, 𝛏, 𝑡)

+ 
1

𝜏
𝑒
−𝛿𝑡

𝜏⁄  ×∫ 𝑒
𝑡′
𝜏⁄ 𝑓𝑒𝑞(𝐫 + 𝛏𝑡′, 𝛏, 𝑡 + 𝑡′)𝑑𝑡′

𝛿𝑡

0

 

(2.13) 

Assuming that 𝛿𝑡 is small enough and 𝑓𝑒𝑞is smooth enough locally, the integral on the 

RHS of Eq. (2.13) can be approximated using trapezoidal rule and using the series 

expansion of 𝑒
−𝛿𝑡

𝜏⁄  by 𝛿𝑡 (neglecting terms of  𝑂(𝛿𝑡
2)) we obtain the following 

equation.  
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𝑓(𝐫 + 𝛏𝛿𝑡, 𝛏, 𝑡 + 𝛿𝑡) −  𝑓(𝐫, 𝛏, 𝑡) = −

𝛿𝑡
𝜏
[𝑓(𝐫, 𝛏, 𝑡) − 𝑓𝑒𝑞(𝐫, 𝛏, 𝑡)] (2.14) 

Also, one can expand the equilibrium distribution function as a Taylor series in the limit 

of constant temperature 𝑇 and small velocity 𝐮 while retaining the terms up to the 𝑂(𝑢2) 

 
𝑓𝑒𝑞 =

𝜌

(2𝜋𝑅𝑇)
D
2⁄
exp [−

𝛏2

2𝑅𝑇
] × [1 + 

(𝛏 ∙ 𝐮)

𝑅𝑇
+
(𝛏 ∙ 𝐮)2

2(𝑅𝑇)2
−
𝐮2

2𝑅𝑇
] (2.15) 

Substituting Eq. (2.15) into the conservation laws in Eq. (2.12) we obtain the moment 

integral of the following for  

 
∫𝛏𝑚𝑓𝑒𝑞 𝑑𝛏 (2.16) 

The above integral will contain terms of the following type that can be evaluated by the 

Gaussian-type quadrature as 

 ∫
𝜌

(2𝜋𝑅𝑇)
D
2⁄
exp [−

𝛏2

2𝑅𝑇
] 𝑝(𝛏) 𝑑𝛏 = ∑ 𝑤𝛼exp [−

𝛏2

2𝑅𝑇
] 𝑝(𝛏𝛼)𝜶   (2.17) 

where 𝑝(𝛏) is the polynomial in 𝛏,  𝑤𝛼 are the weights, and 𝛏𝛼 are the discrete velocities 

(abscissa) of the quadrature. Hence. The conservation laws can be expressed as  

 ρ =  ∑ 𝑓𝛼
𝛼

=∑ 𝑓𝛼
𝑒𝑞

𝛼
 (2.18a) 

 ρ𝐮 =∑ 𝛏𝜶𝑓𝛼
𝛼

=∑ 𝛏𝜶𝑓𝛼
𝑒𝑞

𝛼
 (2.18b) 

 ρε =
1

2
 ∑ (𝛏𝜶 − 𝐮)

𝟐𝑓𝛼
𝛼

=
1

2
 ∑ (𝛏𝜶 − 𝐮)

𝟐𝑓𝛼
𝑒𝑞

𝛼
 (2.18c) 

 and the discrete distribution function 𝑓𝛼 and equilibrium function 𝑓𝛼
𝑒𝑞

 as 

 𝑓𝛼 = 𝑓𝛼(𝐫, 𝑡) =  𝑤𝛼𝑓(𝐫, 𝛏𝛼, 𝑡) (2.19a) 

 𝑓𝛼
𝑒𝑞 = 𝑓𝛼

𝑒𝑞(𝐫, 𝑡) =  𝑤𝛼𝑓
𝑒𝑞(𝐫, 𝛏𝛼 , 𝑡) (2.19b) 
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Finally, the lattice Boltzmann equation is given as  

 
𝑓𝛼(𝐫 + 𝛏𝜶𝛿𝑡, 𝑡 + 𝛿𝑡) −  𝑓(𝐫, 𝑡) = −

𝛿𝑡
𝜏
[𝑓𝛼(𝐫, 𝑡) − 𝑓𝛼

𝑒𝑞(𝐫, 𝑡)] (2.20) 

 

2.2.3 Hermite Polynomial Method 

In this approach, following the work by Grad et al., (1949), one assumes that the 

distribution function lies entirely in the subspace spanned by the Hermite polynomial up 

to the order of 𝑁. Here, Hermite polynomial are chosen because the expansion 

coefficients are exactly moments of the distribution function. Therefore, the single 

particle distribution function can be expanded based on the Hermite orthogonal 

polynomials in vector space.  

We introduce the expansion,  

 𝑓(𝒓,  𝝃,  𝑡) ≈ 𝑓𝑁(𝒓,  𝝃,  𝑡) =

𝜔(𝜉)∑
1

𝑛!
𝒂(𝑛)(𝒓,  𝑡)𝓗(𝒏)(𝝃)𝑁

𝑛=0   

(2.21) 

where 𝒂(𝑛) and 𝓗(𝑛) are tensors of the n-th rank and given as  

 𝒂(𝑛)(𝒓,  𝑡) = ∫ 𝑓(𝒓,  𝝃,  𝑡)𝓗(𝑛)(𝝃)𝑑𝝃  (2.22a) 

 
𝓗(𝑛)(𝝃) =

(−1)𝑛

𝜔(𝜉)
𝜵𝑛𝜔(𝝃) (2.22b) 

Up to the 𝑁𝑡ℎ order, 𝑓(𝒙,  𝝃,  𝑡) has the same velocity moments as the original function 

𝑓(𝒙,  𝝃,  𝑡).  
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As a partial sum of the Hermite series with finite term, the truncated distribution function 

in Eq. (2.21) can be completely and uniquely determined by its values at a set of discrete 

abscissae. The integrand in Eq. (2.2a) can be written as  

 𝑓𝑁(𝒓,  𝝃,  𝑡)𝓗(𝑛)(𝝃) = 𝜔(𝜉)𝑝(𝒓,  𝝃,  𝑡)  (2.23) 

where 𝑝(𝒓,  𝝃,  𝑡) is a polynomial in 𝝃 of a degree not greater than 2𝑁. Furthermore, we 

know from the rules of Gaussian quadrature that the best estimate of the integral 

∫𝜔(𝝃) 𝑓(𝝃)𝑑𝝃 can be obtained by choosing optimal set of abscissae 𝜉𝑖,  𝑖 = 1,⋯ , 𝑑 such 

that  

 ∫𝜔(𝜉)𝑓(𝝃)𝑑𝝃 ≅  ∑ 𝑤𝛼𝑓(𝝃𝛼)𝛼   (2.24) 

where 𝜔(𝝃) is an arbitrary weighting function and 𝑤𝛼,  𝛼 = 1, … , 𝑑 a set of constant 

weights. Therefore,  

 𝒂(𝑛) = ∫𝜔(𝝃)𝑝(𝒙,  𝝃,  𝑡)𝑑𝝃 = ∑ 𝑤𝛼𝑝(𝒙,  𝝃𝛼,  𝑡)𝛼 =

∑
𝑤𝑖

𝜔(𝝃𝛼)
𝑓𝑁(𝒙,  𝝃𝛼,  𝑡)𝓗

(𝑛)(𝝃𝛼)𝛼   
(2.25) 

Now the governing equation for 𝑓𝑁(𝒙,  𝝃𝛼,  𝑡) can be obtained by projecting the 

Boltzmann-BGK equation on a Hermite-truncated basis evaluated at  𝝃𝛼. This can be 

accomplished term by term. First the equilibrium distribution function 𝑓𝑒𝑞is projected.  

 𝒇𝒆𝒒 ≈ 𝜔(𝜉)∑
𝟏

𝒏!
𝒂𝑒𝑞

(𝒏)(𝒙, 𝑡)𝓗(𝒏)(𝝃)𝑁
𝑛=0   (2.26) 

where 𝒂𝑒𝑞
(𝑛) ∫ 𝑓𝑒𝑞𝓗(𝑛)(𝝃)𝑑𝝃. This yield the following explicit term for the equilibrium 

distribution function up to the third order 
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 𝑓𝑒𝑞(𝝃) =

𝜔(𝜉)𝜌{
1 + 𝝃 ∙ 𝐮 +

1

2
[(𝝃 ⋅ 𝐮)2 − u2 + (𝜃 − 1)(𝝃𝟐 − 𝐷)]

+
𝝃⋅𝒖

𝟔
[(𝝃 ⋅ 𝒖)𝟐 − 3u2 + 3(𝜃 − 1)(𝜉2 − 𝐷 − 2)]

}   
(2.27) 

For an isothermal system 𝜃 = 1. Directly evaluating Eq. (2.11) at 𝝃𝛼 and multiplying by 

the constant 
𝑤𝛼

𝜔(𝜉𝛼)
⁄  yields the lattice Boltzmann equation 

 𝜕𝑓𝛼
𝜕𝑡

+ 𝝃𝜶 ∙ ∇𝐫𝑓𝜶 =  
1

𝜏
(𝑓𝜶 −  𝑓𝜶

𝒆𝒒) (2.28) 

where 𝑓𝛼(𝐫, 𝑡) = 𝑤𝛼𝑓(𝐫,  𝝃𝜶,  𝑡)/𝜔(𝜉𝛼) . 
 

The left-hand-side (LHS) of the lattice Boltzmann-BGK equation derived Eq. (2.28) be 

discretized in configuration space (𝒓,  𝑡) by employing the first-order upwind finite 

difference approximation for the time derivative  

 𝜕𝑓𝛼(𝒓,  𝑡)

𝜕𝑡
+ 𝝃𝛼 ⋅ 𝛻𝑓𝛼(𝒓, 𝑡) ≅

1

𝛿𝑡
[𝑓𝛼(𝒓 + 𝝃𝛼𝛿𝑡,  𝑡 + 𝛿𝑡) − 𝑓𝛼(𝒓, 𝑡)] (2.29) 

Note that the spatial grid should be such that if r is a node of the grid, 𝒓 → 𝒓 + 𝝃𝛼 are 

also nodes on the grid. The following quadrature 𝐸2,5
7, 𝐸2,5

9, 𝐸3,5
15 and  𝐸3,5

19 all satisfy 

this requirement. 

2.2.4 Entropic Method 

The aim of this approach is to define the equilibrium population as a minimum of 

the 𝐻 function under the constraint of local conservation laws (Ansumali, 2002).  In the 

previous approach, the discrete velocities are constructed from the zeroes of the Hermite 

polynomial. Here, the discrete velocity model is linked to the entropic Grad’s method 

(maximum entropy approximation).  One starts by evaluating the Boltzmann 𝐻 function 
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in Eq. (2.6) using Gauss-Hermite quadrature such that (Ansumali et al., 2002). For 

interested reader, more detailed derivation can be found in the following references 

(Karlin et al., 1999; Ansumali et al., 2002, 2006; Chikatamarla et al., 2006, Chikatamarla 

and Karlin, 2009) 

 

𝐻 = ∑ 𝑓𝛼

𝑑

𝛼=1

ln (
𝑓𝛼
𝑤𝛼
) (2.30) 

where 𝑤𝛼 is the weight associated with the 𝛼 − th discrete velocity 𝝃𝛼. The particle mass 

and the Boltzmann constant 𝑘Bare set equal to unity. Also, the discrete velocity 

populations 𝑓𝛼(𝝃) are related to the continuous single-particle distribution function at the 

nodes of the quadrature as 𝑓𝛼(𝝃) = 𝑤𝛼(2𝜋𝑅𝑇)
D
2⁄ exp [−

𝝃𝛼
2

2𝑅𝑇
] 𝑓(𝐫, 𝝃𝜶) 

For this review, we consider the case of a one-dimensional simulation (D = 1) isothermal 

hydrodynamics where the entropic function in Eq. (2.30) is constructed using the third-

order Hermite polynomial.  The minimizing discrete velocities are 𝝃 =  {−1, 0, 1} with 

the corresponding weights 𝝃 =  {−1, 0, 1}. Details for higher order Hermite velocity 

polynomial can be found in (Chikatamarla et al., 2006) 

The discrete-velocity local equilibrium minimizes the corresponding entropy function 

under density and momentum conservation constraint.  

 

∑𝑓𝛼
𝑒𝑞

𝑑

𝛼=1

{1, 𝝃𝛼 } =  {𝜌, 𝜌𝐮} (2.31) 

and the explicit solution to this conditional minimization problem yields 
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𝑓𝛼
𝑒𝑞 = 𝜌𝑤𝛼∏(2−√1 + 3𝑢𝑖

2)

(

 
2𝑢𝑖 +√1 + 3𝑢𝑖

2

1 − 𝑢𝑖
)

 

𝜉𝛼𝑖
𝐷

𝑖=1

 (2.32) 

where the sound speed 𝑐𝑠 = 
1
√3
⁄   and the exponent 𝜉𝛼𝑖 takes the value {0, ±1}. Note 

that the expansion the equilibrium distribution in the equation above to the order of 𝑢2 

corresponds to the polynomial equilibria used in the lattice Boltzmann method (Ansumali 

et al., 2002).  

Hence, the entropic lattice BGK model for the local equilibrium in Eq. (2.32) become 

 𝑓𝛼(𝒓 + 𝝃𝜶𝛿𝒕, 𝑡 + 𝛿𝒕) − 𝑓𝛼(𝒓, 𝑡)

=  −𝛽𝛼(𝑓𝛼(𝒓, 𝑡))  − 𝑓𝛼
𝑒𝑞 (𝜌(𝐟(𝒓, 𝑡)), 𝐮(𝐟(𝒓, 𝑡))) 

(2.33) 

where the relationship between parameter 𝛽 that is used to match the viscosity coefficient 

in the hydrodynamic limit and the relaxation parameter in the BGK model is given by    

 
𝛽 = 

𝛿𝒕
2𝜏 + 𝛿𝑡

 (2.34) 

Also, the over-relaxation parameter 𝛼 can be computed on each lattice site from the 

entropy condition estimate. 

 𝐻 (𝐟 − 𝛼(𝐟 − 𝐟𝑒𝑞(𝐟))) = 𝐻(𝐟) (2.35) 

Eq. (2.33) can reconstruct the Navier-Stokes equation with the viscosity, 𝜈 = 𝑐𝑠
2𝜏 =

 𝑐𝑠
2𝛿𝒕 (

1

2𝛽
−
1

2
) 
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Recall from (Karlin et al., 1999) that the expansion of the discrete equilibrium function in 

Eq. (2.32) to the second order in 𝐮 and approximate solution of the entropy estimate in 

Eq. (2.35) with 𝛼 = 2 will result in the lattice BGK model below 

 
𝑓𝛼(𝒓 + 𝝃𝜶𝛿𝒕, 𝑡 + 𝛿𝒕) − 𝑓𝛼(𝒓, 𝑡) =  −

2𝛿𝑡
2𝜏 + 𝛿𝑡

[𝑓𝛼
𝑒𝑞(𝒓, 𝑡) − 𝑓𝛼(𝒓, 𝑡)] (2.36) 

 

2.3 Derivation of the Hydrodynamic Equations 

The long-time and large-scale hydrodynamic behavior (Navier-Stokes equations) can be 

derived from the lattice Boltzmann model via the Chapman-Enskog analysis (Chapman 

and Cowling, 1970) or the mode analysis of the dispersion equation (von Neumann 

analysis) (Lallemand and Luo, 2000).  In this section, we provide a brief overview of the 

derivation of the hydrodynamic equation using the Chapman-Enskog approach. More 

detailed application of this approach can be found in latter chapters of this paper.  

Consider the isothermal lattice Boltzmann Eq. (2.20), a series expansion for the 

distribution function in terms of the lattice Knudsen number  𝜖 around the equilibrium 

distribution function can be expressed as  

 
𝑓𝛼 = 𝑓𝛼

(0) +  𝜖𝑓𝛼
(1) + 𝜖2𝑓𝛼

(2) +⋯ = ∑𝑓𝛼
(𝑛)

∞

𝑛=0

 (2.37) 

where 𝑓𝛼
(0) = 𝑓𝛼

(𝑒𝑞)
 is the equilibrium distribution function.  

For the first two moments of the zeroth approximation, we obtain the following 

macroscopic variables. 
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 ∑𝑓𝛼 
𝛼

= 𝜌;           ∑𝑓𝛼 𝝃𝛼
𝛼

=  𝜌𝐮 (2.38) 

The equilibrium distribution function also yield the same moment  

 ∑𝑓𝛼
(0)

𝛼

= 𝜌;           ∑𝑓𝛼
(0)
𝝃𝛼

𝛼

=  𝜌𝐮 (2.39) 

Hence, the higher order expansions are defined in such a way so that   

 ∑𝑓𝛼
(𝑛)

𝛼

= 0;           ∑𝑓𝛼
(𝑛)
𝝃𝛼

𝛼

=  0,     for  n > 0 (2.40) 

Now, substituting the expansion in Eq. (2.37) into the lattice Boltzmann Eq. (2.20) and 

taking the first and second discrete moment result in  

Mass conservation equation,  

 𝜕𝑡𝜌 + 𝜕𝑗𝜌𝑢𝑗 = 0  (2.41) 

And the momentum conservation equation,  

 
𝜕𝑡𝜌𝑢𝑖 + 𝜕𝑗𝜌𝑢𝑖𝑢𝑗 = −𝜕𝑗∑𝜖𝑛

∞

𝑛=0

P𝑖𝑗
(𝑛)

  

where nth approximation of the pressure tensor is given as (Nourgaliev et al., 2003) 

 P𝑖𝑗
(𝑛)

= ∑ (𝜉𝛼𝑖 − 𝑢𝑖)
∞
𝑛=0 (𝜉𝛼𝑗 − 𝑢𝑗)𝑓𝛼

(𝑛)
  

Taken together, lattice Boltzmann transport equation can be expressed as  

 [(𝜕𝑡0 +  𝜖𝜕𝑡1 + 𝜖
2𝜕𝑡2 +⋯) + 𝐷](𝑓𝛼

(0) +  𝜖𝑓𝛼
(1) + 𝜖2𝑓𝛼

(2) +⋯)

=
1

𝜖𝜏
 [(𝑓𝛼

(0) +  𝜖𝑓𝛼
(1) + 𝜖2𝑓𝛼

(2) +⋯) − 𝑓𝛼
𝑒𝑞] 

(2.42) 
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with the consistent expansion  𝜕𝑡 = 𝜕𝑡0 +  𝜖𝜕𝑡1 + 𝜖
2𝜕𝑡2 + …  ; 𝐷𝑓𝛼 = 𝜉𝛼𝑗𝜕𝑗𝑓𝛼

(0)
+

 𝜖𝜉𝛼𝑗𝜕𝑗𝑓𝛼
(1) + 𝜖2𝜉𝛼𝑗𝜕𝑗𝑓𝛼

(2) + … and 𝜕𝑡𝜌𝑢𝑖 = −𝜕𝑗 ∑ 𝜖𝑛∞
𝑛=0 ∑ 𝑓𝛼

(𝑛)
𝜉𝛼𝑖𝜉𝛼𝑗𝛼  

where 𝑓𝛼
(𝑛)

 is defined such that the coefficients of each power of 𝜖 vanish separately in 

the equation above (Nourgaliev et al., 2003). Therefore, in other to obtain the Navier-

Stokes equations only the approximations 𝑓𝛼
(0)

 and  𝑓𝛼
(1)

are required and the following 

equations need to be solved  

 𝑓𝛼
(0) = 𝑓𝛼

𝑒𝑞
 (2.43a) 

 
𝜕𝑡0𝑓𝛼

(0) + 𝐷𝑓𝛼
(0) = −

𝑓𝛼
(1)

𝜏
 (2.43b) 

 

2.4 Boundary Conditions 

Next, we provide a summary of the boundary conditions that were used for the lattice 

Boltzmann method in this study. Detailed description of boundary conditions in lattice 

Boltzmann model can be found in (Maier et al., 1996; Latt and Chopard, 2008; Zhang, 

2011). Prior to the collision step, density distribution functions on the boundary nodes 

entering the fluid domain after the advection step are not known. The role of the 

boundary condition is to find a substitute for these unknown distribution functions, such 

that macroscopic velocity and pressure requirements are satisfied on the domain 

boundary. Therefore, it is imperative that the different boundary conditions are 

implemented on the boundary nodes in a way that will produce the same dynamics as the 

bulk nodes.  
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2.4.1 No-Slip 

The no-slip boundary condition constrains a fluid locally to have the same 

tangential velocity as the wall that confine it. It is commonly implemented with the 

standard bounce-back condition. In this method, the boundary condition is resolved on 

links crossing the solid boundary from the solid to the fluid lattice nodes such that the 

momentum parallel to the boundary is conserved and the perpendicular momentum is 

reserved. However, since the primitive variable in the LBM is the particle distribution 

function and not the velocity field, enforcement of zero velocity through the distribution 

function may not be enough. Therefore, the implementation should ensure that the 

momentum flux condition is not violated near the solid boundary (Chen et al., 1996).  

Because the basic bounce-back boundary condition gives first order numerical accuracy, 

many other improved bounce-back method have been proposed.  Among which the mid-

way bounce back (Succi, 2001) method has found wide application. For the mid-way 

bounce back, a fluid particle can go into the boundary site, reverse its velocity and stream 

back into the boundary fluid site all in one time step.  (make picture and put here)  

 𝑓�̅�(𝐱𝑏 , 𝑡 + 𝛿𝑡) =  𝑓𝛼
′(𝐱𝑏, 𝑡) (2.44) 

where  𝝃�̅� = − 𝝃𝛼 is the reversed lattice velocity, 𝑓𝛼
′ is the distribution function leaving 

the boundary node 𝐱𝑏 after collision at time 𝑡. 

Several modifications of the bounce-back boundary condition have also been 

proposed to incorporate the effects of; moving boundaries (Ladd, 1994; Aidun et al. 

1998), curved boundaries (Filippova and Hanel, 1998; Mei et al., 1999, Guo et al. 2002), 

and deformable membrane (Peskin, 1977)  
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2.4.2 Periodic Boundary Condition 

The periodic boundary condition is a basic implementation of the open boundary 

condition. The basic idea is to map any outgoing particle to the incoming particle where 

there is mass and momentum continuity on the opposite boundaries. Therefore, all 

particles leaving the domain re-enters the domain from the opposite end. It is noteworthy, 

that periodic conditions cannot exist with a pressure gradient since a pressure gradient 

will require that different particle densities at either ends of the boundaries. The work 

around for this problem is to impose the constant pressure gradient by applying a body 

force after the collision process as shown  

 
𝑓𝛼(𝑖𝑛𝑙𝑒𝑡)
′ = 𝑓𝛼(𝑜𝑢𝑡𝑙𝑒𝑡)

′ − 𝑤𝛼
3

𝑐2
𝑑𝑝

𝑑𝑥
𝝃𝛼 ∙ �̂� (2.45) 

where 
𝑑𝑝

𝑑𝑥
 is the constant pressure gradient, �̂� is the unit vector in the 𝒙 direction and 𝑓𝛼()

′  

superscript denote the post-collision state. 

2.4.3 Constant Pressure/Velocity 

Often in several applications, the pressure gradient through a flow field may not 

be modelled with a constant body force. In such applications, the flow can be modeled 

with prescribed velocity or pressure at the boundary. In the case of a pressure boundary 

condition, a pressure gradient can be set between the inlet and outlet of the geometry. 

This can be achieved by setting the density at slightly different value between the two 

ends. Subsequently, an extrapolation scheme can be used to determine the unknown 

distribution functions at the boundary. A detailed description of this scheme can be found 

in (Chen et al., 1996). On the other hand, with the Dirichlet velocity boundary condition, 

the known distribution function and the specified value of the velocity on a straight wall 
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can be used to determine the value of the density on the boundary nodes. Detailed 

theoretical analysis of this boundary condition for a straight wall can be found in (Latt 

and Chopard, 2008).  

2.4.4 Numerical Implementation and Single Phase Validations 

Lattice Boltzmann equation is usually implemented through a two-step approach. 

Namely,  

The collision step:  

 
𝑓𝛼
′(𝒙,  𝑡) = 𝑓𝛼(𝒙, 𝑡) −

1

𝜏
[𝑓𝛼(𝒙, 𝑡) − 𝑓𝛼

(𝑒𝑞)(𝒙, 𝑡)] (2.46) 

Streaming step: 

 𝑓𝛼(𝒙 + 𝝃𝛼𝛿𝑡,  𝑡 + 𝛿𝑡) = 𝑓𝛼
′(𝒙,  𝑡) (2.47) 

where 𝑓𝛼
′ is the post-collision state of the distribution function.  

To validate our custom code for single phase fluid, we simulated two benchmark cases: 

(a) 3-D lid-driven cavity and compared our results with equivalent simulation in 

Ansys FLUENT.  

(b) 3-D Poiseuille (pressure-driven and gravity-driven) and compared our result to the 

analytical solution.  



45 

45 

 

 

Fig. 2.1 Comparison of u𝑥 using 51 × 51 × 51 D3Q15 lattice with a Navier-Stokes 

solution from Ansys FLUENT for Re = 100 in a lid-driven cavity flow. Note that 

simulation parameters are provided on figure.  
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Fig. 2.2 LBM node-wise simulated velocities with the analytical Poiseuille velocity 

profile for gravity driven flow and pressure driven flow with mid-way bounce back (no 

slip) and periodic boundaries.  
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3. CHAPTER THREE: MULTIPHASE LATTICE BOLTZMANN METHOD 

It has been argued that for modeling interfacial phenomena, the LBE method has 

potential to be superior compared to other traditional-CFD methods (Shan and Chen, 

1993, 1994; Shan and Doolen, 1995; Swift et al., 1995, 1996; Wagner and Yeomans, 

1997). This is mainly because LBE methods are developed based on microscopic 

description of the fluids. As such, by dealing with the underlying microphysics it is 

convenient to incorporate intermolecular interactions which are the physical origin of the 

interface phenomena (Sehgal et al, 1999). Different multiphase LBE models have been 

successfully used to study numerous complex flow systems.  An important step in 

developing these multiphase LBE models is the method through which the interaction 

between the particles of the different phases are incorporated into the evolution equation 

of the particle distribution function. 

Over the years, several multiphase models have been proposed. Firstly, the 

Gunstensen method, based on the Rothman-Keller lattice gas model that uses a color 

gradient (two kind of colored particles are introduced for the two phases) to separate and 

model the interaction at the interface (Gunstensen et al., 1991; Rothman, 1988; Grunau et 

al., 1993).  Secondly, the Shan and Chen method in which the interaction between the 

different particles of the different phases (components) are included into the kinetic 

equation via effective two-body pseudo-potential (Shan and Chen, 1993; Shan and 

Doolen, 1995). Thirdly, is the free energy based model in which the equilibrium 

properties of the model are constructed to be consistent with an underlying free energy 

functional, embedding both the hard-core effects and the weak interacting tail (Swift et 

al., 1995; 1996). In addition, there are other multiphase LBE models such as the finite-
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density model by He, Chen and Zhang (He et al., 1999) which is a significant 

modification of the Shan and Chen model.  

For well-separated phases, the single-component multiphase (SCMP) model can 

be used. We provide more detailed description and analysis of the SCMP in latter 

chapters. In preparation for our study in the next chapter, we briefly describe the BGK-

multicomponent multiphase (BGK-MCMP) approach using the Shan and Chen method to 

incorporate the interaction among constituent molecules in the next section. We refer the 

reader to (Chen et al., 2014) for a detailed description of this method.   

3.1 Pseudopotential Multiphase Multicomponent LBE Method 

In the BGK-MCMP pseudo-potential (Shan and Chen) model, each fluid 

component is represented by its own particle distribution function. These distribution 

functions follow the evolution equation  

 𝑓𝛼
𝜎(𝐱 + 𝝃𝛼∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝛼

𝜎(𝐱, 𝑡)

= −
𝛿𝑡
𝜏𝜎
[𝑓𝛼

𝜎(𝐱, 𝑡) − 𝑓𝛼
𝜎,(𝑒𝑞)(𝐱, 𝑡)] 

(3.1) 

where (𝐱, 𝑡) is the lattice (two- or three- dimensional) configuration space.  For 

convenience, the time step in the numerical scheme is set as 𝛿𝑡 = 1. The discrete set of 

velocities (𝝃𝛼, 𝛼 = 0,… ,𝑁) are such that ∆𝐱𝜶 = 𝝃𝛼𝛿𝑡. Also,  𝑓𝛼
𝜎,(𝑒𝑞)

 and 𝑓𝛼
𝜎  are the 

Maxwell-Boltzmann distribution function and density distribution function of the 𝜎𝑡ℎ 

component along the 𝛼𝑡ℎ velocity direction respectively. 𝜏𝜎 is a non-dimensional lattice 

relaxation time that fixes the kinematic viscosity  𝜈𝜎 = 𝑐𝑠
2 (𝜏𝜎 −

1

2
) where 𝑐𝑠

2 = 𝑐
√3
⁄  in 
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the present work with 𝑐 =
𝛿𝑡

𝛿𝑥
.  The total body force acting on a fluid particle in 

multiphase fluid is given by 

 𝐅𝜎 = 𝐅𝜎𝒆𝒙𝒕 + 𝐅
𝜎
𝒊𝒏𝒕 (3.2) 

where 𝐅𝜎𝒆𝒙𝒕 is the external body force, for example, gravity and pressure gradient. 𝐅𝜎𝒊𝒏𝒕 

is the self-consistently generated mean field intermolecular force between particles that 

provides non-local interaction between fluid components at each cell as a function of 

neighboring cell properties (Shand and Chen, 1993). For this interaction force, the 

separation of the fluid phases or components is automatic. The interaction force can be 

further subdivided into  𝐅𝜎𝒊𝒏𝒕 = 𝐅
𝜎
𝑓−𝑓 + 𝐅

𝜎
𝑓−𝑠  (Fig. 3.1) where 𝐅𝜎𝑓−𝑓 is the fluid-fluid 

interaction force and 𝐅𝜎𝑓−𝑠 is the fluid-solid interaction force (further details provided in 

section 3.2) 

The fluid-fluid interaction force (Shan and Chen, 1993) is given as 

 

𝑭𝑓−𝑓
𝜎 = −𝜓𝜎(𝐱, 𝑡) ∑ 𝐺𝜎𝜎′

𝑁

𝜎′=1

∑𝑤𝛼𝜓
𝜎′

𝑁

𝛼=1

(𝐱 + 𝝃𝛼𝚫𝑡, 𝑡)𝝃𝛼 (3.3) 

where 𝜓𝜎(𝐱, 𝑡) is the effective mass (pseudo-potential) and it is a function of the local 

density 𝜌𝜎 . The non-ideal behavior of the fluids is introduced via 𝜓𝜎(𝐱, 𝑡) and different 

choices of the effective mass yields different forms of equation of states (Yuan and 

Shaefer, 2006).  𝐺𝜎𝜎′  is a coupling constant that is set to positive to mimic a cohesive 

force and the strength of the cohesive force is determined by the magnitude of 𝐺𝜎𝜎′. 

Considering that the right-hand-side (RHS) of Eq. (3.3) above is a finite difference 

representation of  −𝜓∇𝜓 , with the right choice of normalization weight  𝑤𝛼, any number 
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of neighbors can be included to obtain higher degree of isotropy (Sbragaglia et al., 2007; 

Shan 2006).  

 

Fig. 3.1 Schematic of net interaction force on a fluid node near solid nodes 

How to incorporate the total force into the pseudo-potential MPMC model is an 

important issue in the numerical stability and accuracy of the model. Different forcing 

schemes have been developed and evaluated (Guo et al., 2002; kupershtokh et al., 2009). 

In chapter 5, we will provide more details on these forcing schemes. In our study in the 

next chapter, the dynamic effect of the body force is incorporated into the evolution Eq. 

(3.1) by modifying the momentum values in the Maxwell-Boltzmann distribution 𝑓𝛼
𝜎,(𝑒𝑞)
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via the original Shan and Chen velocity shift force scheme (Shan and Chen, 1993). A 

brief description is provided below. 

The equilibrium distribution function is given as  

 
𝑓𝛼
𝜎,(𝑒𝑞)

= 𝑤𝛼𝜌𝜎 (1 +
𝝃𝛼𝐮𝜎

𝑒𝑞

𝑐𝑠2
+
(𝝃𝛼𝐮𝜎

𝑒𝑞)
2

2𝑐𝑠4
−
𝑢𝜎
𝑒𝑞2

2𝑐𝑠2
) (3.4) 

 

For the velocity shift method, the interaction force in incorporated into the model by 

shifting the velocity  𝐮𝜎
𝑒𝑞

  in the equilibrium distribution function as shown below. 

 
𝐮𝜎
𝑒𝑞(𝐱, 𝑡) = 𝐮′𝜎(𝐱, 𝑡) +

𝜏𝜎𝐅
𝜎(𝐱, 𝑡)

𝜌𝜎(𝐱, 𝑡)
 (3.5) 

𝐮′𝜎, the composite macroscopic fluid velocity is defined as  

 

𝐮𝜎
′ (𝐱, 𝑡) =

∑ (∑
𝑓𝛼
𝜎𝝃𝛼
𝜏𝜎

𝑁
𝛼=1 )𝜎

∑
𝜌𝜎
𝜏𝜎𝜎

 (3.6) 

Note that this velocity is different from the macroscopic uncoupled velocity of the 

individual components given in Eqs. (3.8) and (3.9).  

The bulk macroscopic velocity can be obtained by averaging the momentum before and 

after collision and it is given by (Pan et al., 2004)  

 

ρ𝐮(𝐱, 𝑡) =  ∑∑𝑓𝛼
𝜎𝝃𝛼

𝑁

𝛼=1𝜎

+
1

2
∑𝐅𝜎(𝐱, 𝑡)

𝜎

 (3.7) 

where  𝜌 = ∑ 𝜌𝜎𝜎  is the total density of the fluid. 
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The fluid mass density and momentum density for each component can now be obtained 

by  

 

𝜌𝜎 = ∑𝑓𝛼
𝜎

𝑁

𝛼=1

 (3.8) 

 

 

𝜌𝜎𝐮𝜎 =∑𝑓𝛼
𝜎𝝃𝛼

𝑁

𝑖=1

 (3.9) 

In this chapter, we introduced the Shan and Chen (1993) method for the modeling 

of multiphase and multicomponent flows. This approach is based on phenomenological 

models of interface dynamics. This method introduces the intermolecular forces directly 

at the discrete lattice level among the constituent particles and are suitable for isothermal 

multicomponent flows. An important improvement, is the free-energy approach (Swift et 

al. 1995; 1996). In this model, the collisional properties of the model have been chosen in 

such a way that the equilibrium distribution is consistent with thermodynamics. In this 

study, we focus on the pseudo-potential based multiphase models and the recent 

improvements.   
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4. CHAPTER FOUR: EVALUATION OF DIFFERENT PSEUDOPOTENTIAL-

BASED MULTICOMPONENT MULTIPHASE LATTICE BOLTZMANN 

WETTING MODELS FOR DROPLET-BASED SYSTEMS 

4.1 Abstract 

As direct numerical solutions, have become increasingly important in the design 

and optimization of droplet-based microfluidics applications, multicomponent and 

multiphase pseudo-potential lattice Boltzmann equation (LBE) method continues to gain 

much success, specifically in problems that involves fluid-solid interactions and complex 

geometries. Recently, some improvements have been made to the initial pseudo-potential 

based wetting model, which does not use a virtual fluid on solid nodes, to address the 

unphysical density variation near solid substrate by introducing a virtual fluid on the solid 

nodes. In this work, we investigated the effect of this density variation on the dynamics 

of a droplet by evaluating the three different pseudo-potential based wetting models 

against two test droplet flow systems. Our results show that the choice of wetting model 

affects the dynamics of the droplet. This effect is more pronounced in the non-wetting 

droplet attached to a solid surface or a wetting droplet in a non-wetting carrier fluid 

interacting with a solid surface. Especially, we discovered that the model that does not 

implement a virtual fluid on the solid node performed poorly.   
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4.2 Introduction 

Next to a solid phase, the interaction force needs to be modified to account for the 

fluid-solid interaction. This modification is subsequently used to tune the contact angle of 

the fluids at the fluid-solid interface with the aim of obtaining different wetting 

conditions. Thus, different MCMP pseudo-potential-based wetting (PPBW) models have 

been developed. The two most popular approaches are the model that does not employ a 

virtual fluid on the solid nodes but tunes the fluid-solid interaction strength (Marty and 

Chen, 1996) and the models that employ a virtual fluid on the solid nodes and tunes the 

contact angles with the density of the virtual fluid (Sbragaglia et al., 2006; Benzi et al., 

2006; Jansen and Harting, 2011).  

It is noteworthy, that the pseudo-potential method is not strictly immiscible (Hou 

et al. 1997). For example, a small amount of the second fluid component (dissolved fluid 

component) is present in the first fluid component (main fluid component). This slight 

mixing has been reported to produce a local density variation near the solid phase (LBM 

is slightly compressible) and in turn affect the simulated fluid dynamics near the contact 

line. Hence, the different MCMP pseudo-potential-based wetting models may behave 

differently (Chen et al., 2015). Therefore, a side-by-side comparison of these different 

models is necessary. 

In this section, we evaluated the performance of different PPBW models against 

the following systems: migration of a droplet placed on a vertical ideal wall under the 

influence of gravity and deformation-breakup-coalesce of a droplet past obstacles under 

the influence of gravity.  
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4.3 Wetting Models 

The fluid-solid interaction force can be computed by this general form (Marty and Chen, 

1996) 

 

𝑭𝑓−𝑠
𝜎 = −𝜓𝜎(𝐱, 𝑡)  ∑ 𝐺𝜎

′𝑠

𝐾

𝜎′=1

∑𝑤𝑖𝜓
𝜎′𝑠

𝑁

𝑖=𝛼

(𝐱 + 𝝃𝛼𝚫𝑡, 𝑡) 𝑠(𝐱

+ 𝝃𝛼𝚫𝑡, 𝑡)𝝃𝛼 

(4.1) 

where 𝑠(𝐱 + 𝝃𝛼𝚫𝑡, 𝑡) is an indicator function that it set to 0 and 1 for a fluid node and a 

solid node respectively.   𝐺𝜎𝑠 (the interaction strength between a fluid node and a solid 

node) and  𝜓𝜎𝑠(𝜌𝑠
𝜎
)  are parameters in Eq. (4.1) that can be adjusted to obtain different 

wetting conditions.  Here 𝜌𝑠
𝜎

 is the fictitious density of the solid node. There are two 

most popular MCMP pseudo-potential based wettability approaches. The first approach 

involves setting 𝜓𝜎𝑠(𝜌𝑠
𝜎
)  as unity and adjusting 𝐺𝜎𝑠 to achieve a range of contact 

angles. For the second approach,  𝐺𝜎𝑠 is fixed (𝐺𝜎𝑠 = 𝐺𝜎𝜎
′
= 𝐺𝜎

′𝜎) and 𝜌𝑠
𝜎

  is tuned to 

obtain the desired contact angle (Sbragaglia et al., 2006; Benzi et al., 2006). The model 

proposed by Marty and Chen (1996) utilizes the first wetting approach while the models 

proposed by Jansen and Harting (2011), Yu Chen (2015) employs the second wetting 

approach.  In what follows, we will provide a brief description of how these different 

models are implemented. 

4.3.1 Marty and Chen (MC) Model 

Marty and Chen model (MC model) is the first wetting model. It sets the effective 

mass on the solid nodes as unity (Fig. 4.1) and adjusts 𝐺𝜎𝑠 to introduce neutral or non-
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neutral wetting (Marty and Chen, 1996). Taking (Fig. 3.1 from chapter 3) as an example, 

the net fluid-fluid interaction on the boundary fluid nodes is given as 

 

𝑭𝑓−𝑓
𝜎 = −𝜓𝜎(𝐱, 𝑡) ∑ 𝐺𝜎𝜎′

𝑁

𝜎′=1

∑ 𝑤𝛼𝐹𝜓
𝜎′

𝑁𝐹

𝛼𝐹=0

(𝐱 + 𝝃𝛼𝐹𝚫𝑡, 𝑡)𝝃𝛼𝐹 (4.2) 

where  𝛼𝐹 are all lattice indices for which 𝐱 + 𝒄𝑖𝐹𝚫𝑡 grid site is a fluid node and  𝑁𝐹 is 

the number of these nodes. Such that,  

 

𝑭𝑓−𝑠
𝜎 = −𝜓𝜎(𝐱, 𝑡)  ∑ 𝐺𝜎

′𝑠

𝑁

𝜎′=1

∑𝑤𝛼𝑆

𝑁𝑠

𝑖𝑠=0

𝝃𝛼𝑆 (4.3) 

the net solid-fluid interaction force above is provided to balance the fluid-fluid interaction 

force on the boundary fluid node. Where  𝛼𝑆 are all lattice indices for which 𝐱 + 𝝃𝛼𝑠𝚫𝑡 

grid site is a solid node and  𝑁𝑆 is the number of these grid sites. Resulting in the total 

interaction force on the fluid boundary node equal to  

 

𝐅𝜎𝒊𝒏𝒕 = −𝜓
𝜎(𝐱, 𝑡) [∑ 𝐺𝜎𝜎′

𝑁

𝜎′=1

∑ 𝑤𝛼𝑁𝑠𝜓
𝜎′

𝑁𝑁𝑆

𝛼𝑁𝑠=0

(𝐱 + 𝝃𝛼𝑁𝑆𝚫𝑡, 𝑡)𝝃𝛼𝑁𝑆

+ ∑ 𝐺𝜎
′𝑠

𝑁

𝜎′=1

∑ 𝑤𝑖𝑠

𝑁𝑠

𝛼𝑠=0

𝝃𝛼𝑠] 

(4.4) 

From Eq. (4.3), positive and negative values of  𝐺𝜎𝑠 results in wetting and non-wetting 

conditions on the solid phase respectively while 𝐺𝜎𝑠 = 0 leads to neutral wetting. 

Generally, the magnitude of the fluid-fluid interaction force is greater than the fluid-solid 

interaction force in simulations (Chen et al., 2015). Thus, a layer of increased density 

may form near the solid nodes. Jansen et al. (2011) demonstrated that this density 

variation may be significant for wetting fluid near the solid nodes.   
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Fig. 4.1 Schematic illustrating the net fluid-solid interaction force for different wetting 

models while considering a hydrophilic wetting condition in a two-component multiphase 

system 

4.3.2 Jansen and Harting (JH) Model  

To alleviate the density variation in MC model, Jansen and Harting (2011) (JH 

model) proposed another wetting model that introduces a fictitious fluid on the solid 

boundary nodes. The density of the virtual fluid on a solid boundary node is 

approximated as the average fluid density of the surrounding fluid nodes. In this model, 

the net fluid-fluid interaction force on the fluid node next to the solid nodes is balanced 

by a similar fluid-fluid interaction force from the solid boundary node as shown in Fig. 

4.1.   
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𝐅𝜎𝒊𝒏𝒕 = −𝜓
𝜎(𝐱, 𝑡) [∑ 𝐺𝜎𝜎′

𝑁

𝜎′=1

∑ 𝑤𝛼𝐹𝜓
𝜎′

𝑁𝐹

𝛼𝐹=0

(𝐱 + 𝝃𝛼𝐹𝚫𝑡, 𝑡)𝝃𝛼𝐹

+ ∑ 𝐺𝜎
′𝑠

𝑁

𝜎′=1

∑ 𝑤𝛼𝑆𝜓
𝜎′𝑠

𝑁𝑠

𝛼𝑆=0

(𝜌𝑠
𝜎′
)𝝃𝛼𝑆] 

(4.5) 

Such that to obtain different wetting conditions the fictitious density on the solid node is 

increased by  |Δ𝜌| in the wetting component (w) and the non-wetting (nw) component left 

unmodified or vice versa. While for neutral wetting none of the components is modified. 

 𝜌𝑠
𝜎(𝑤/𝑛𝑤)

= 𝜌
𝑠

𝜎(𝑤/𝑛𝑤)
+ |Δ𝜌| (4.6) 

 

 𝜌𝑠
𝜎(𝑛𝑤/𝑤)

= 𝜌
𝑠

𝜎(𝑛𝑤/𝑤)
 (4.7) 

where  𝜌
𝑠

𝜎
= 

1

𝑁𝐹
∑ 𝜌𝜎
𝑁𝐹
𝛼𝐹=0

 is the density of the fictitious fluid on the solid node. 

For example, increasing the wetting component by an amount delta increases the 

repulsion between the wetting component (adjusted component) and the unmodified 

component, resulting in a hydrophilic condition. Whereas, increasing the non-wetting 

component results in a hydrophobic condition. It is noteworthy that the fictitious fluid is 

only used as a parameter to tune the net interaction force on the fluid node and does not 

take part in the LBM evolution equation (Sbgragaglia et al., 2006; Jansen and Harting, 

2011). Although density variation still exists for this model because the addition of extra 

virtual fluid creates an imbalance of fluid-fluid interaction on the fluid boundary nodes, 

the magnitude of this density variation is small compared to the MC model. This density 

variation mainly appears on the non-wetting fluid region. 
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4.3.3 Yu Chen (Yu) Model 

Following the JH model, Yu Chen (2015) (Yu model) recently proposed a 

modified wetting model that addressed the density variation in JH model. While this 

density variation cannot be eliminated, the YC model ensured equal level of density 

variation in both the non-wetting and wetting region of the domain. This was achieved by 

simultaneously increasing and decreasing, by equal amount, the fictitious fluid of the 

wetting and non-wetting component respectively.   

 𝜌𝑠
𝜎
= 𝜌

𝑠

𝜎
+ Δ𝜌𝜎 (4.8) 

This ensures that the fluid dynamics near the solid phase is not biased towards either 

component (Fig. 4.1). In Yu et al., (2015) the nonphysical effect produced by the density 

variation in this model was determined to be smaller than in the JH model. 

4.4 Simulation Parameters 

Since the focus of this study is to evaluate the different PPBW models, here we 

consider a two-component system (binary immiscible fluids) with identical viscosity 

(
𝜈𝑤

𝜈𝑛𝑤⁄ = 1) and density (
𝜌𝑤

𝜌𝑛𝑤⁄ = 1) for all cases. Therefore, viscosity and density 

ratio is equal to unity. For simplicity, the effective mass was chosen as 𝜓𝜎(𝐱, 𝑡) =

𝜌𝜎(𝐱, 𝑡). Furthermore, we employed the three dimensional D3Q15 velocity model 

because it requires less memory. The weights are 

 

𝑤𝑖 =

{
 

 
2
9⁄ ,                    𝑖 = 0 

1
9⁄ , 𝑖 = 1,… , 6,

1
72⁄ , 𝑖 = 7,… , 14 

        (4.9) 
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and discrete velocities are defined as 𝝃𝛼 = 𝑐𝒆𝛼 with  

 [𝒆0, 𝒆1, 𝒆2, 𝒆3, 𝒆4, 𝒆5, 𝒆6, 𝒆7, 𝒆8, 𝒆9, 𝒆10, 𝒆11, 𝒆12, 𝒆13, 𝒆14  ]

=  [
0 1 −1
0 0 0
0 0 0

   
0 0 0
1 −1 0
0 0 1

     
0 1 −1
0 1 −1
−1 1 −1

     
1 −1 1
1 −1 −1
−1 1 1

    
−1 1 −1
1 −1 1
−1 −1 1

] 
(4.10) 

From Eqs. (4.2) and (4.5),  𝐺𝑤,𝑛𝑤 = 𝐺𝑛𝑤,𝑤 = 𝐺𝑤,𝑠 = 𝐺𝑛𝑤,𝑠  given as (Pan et al., 2004)  

 

𝐺𝑤,𝑛𝑤(𝐱, 𝐱′) = {

𝑔,             if   |𝐱 − 𝐱′| = 1
𝑔

√3
⁄ ,         if   |𝐱 − 𝐱′| = √3

0,                     otherwise

 (4.11) 

𝑔 is the fluid-fluid interaction strength and from Eq. (4.5),  𝐺𝑤𝑠 = −𝐺𝑛𝑤,𝑠 defined as 

(Pan et al., 2004)  

 

𝐺𝑤,𝑠(𝐱, 𝐱′) = {

𝑔𝑤𝑠,             if   |𝐱 − 𝐱′| = 1

𝑔𝑤𝑠

√3
⁄ ,        if   |𝐱 − 𝐱′| = √3

0,                     otherwise

 (4.12) 

where 𝑔𝑤𝑠 is the fluid-solid interaction strength. 

To determine the position of the interface we introduce an order parameter given by 

(Jansen and Harting, 2011)  

 𝜙(𝐱, 𝑡) = 𝜌𝑤 − 𝜌𝑛𝑤 (4.13) 

and we select the interface as the points where the order parameter is zero.  

We set the fluid-fluid interaction coefficient 𝐺𝑤,𝑛𝑤 = 𝐺𝑛𝑤,𝑤 = 0.001  and obtained the 

surface tension  𝜎 =  0.0067 . Also, for a quantitative comparison of these PPBW 

models, the wetting parameters in the models need to be tuned for identical contact 

angles. Therefore, we performed several preliminary simulations and provide the 

matching wetting parameters in Table 4.1.   
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Contact Angle 

𝜃 = 1180 

Contact Angle 

𝜃 = 780 

Contact Angle 

𝜃 = 620 

Yu    

model 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑤   = −0.0146 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑛𝑤 = 0.0146 

 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑤   = 0.0051 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑛𝑤 = −0.0051 

 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑤   = 0.0146 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑛𝑤 = −0.0146 

 

JH   

model 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑤   = 0.0330 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑛𝑤 = 0 

 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑤   = 0 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑛𝑤 = 0.0097 

 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑤   = 0 

 

𝐺𝑤,𝑛𝑤𝛥𝜌𝑛𝑤 = 0.0330 

 

MC  

model 

 

𝐺𝑤,𝑛𝑤𝐺𝑤,𝑠   =  1.5 ×10−5 

 

𝐺𝑤,𝑛𝑤𝐺𝑛𝑤,𝑠 = −1.5 ×10−5 

 

 

𝐺𝑤,𝑛𝑤𝐺𝑤,𝑠  = −4.0 ×10−6 

 

𝐺𝑤,𝑛𝑤𝐺𝑛𝑤,𝑠 = 4.0 ×10−6 

 

 

𝐺𝑤,𝑛𝑤𝐺𝑤,𝑠  = −1.5 ×10−5 

 

𝐺𝑤,𝑛𝑤𝐺𝑛𝑤,𝑠 = 1.5 ×10−5 

 

Table 4.1 Simulation parameters for all test cases. 

 

4.5 Numerical Results and discussion 

To evaluate the numerical performance of the different (PPBW) models described 

in the previous section, two numerical test cases were simulated. Namely, the dynamic 

behavior of a wetting and non-wetting droplets sliding down the bottom wall of a vertical 

duct under the influence of gravity and the deformation-breakup-coalesce of a wetting 

and non-wetting droplet past an octagonal and square bar obstacle under the influence of 

gravity. 
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Fig. 4.2 Schematic illustration of the simulations geometries: (a) Sliding attached droplet 

(b) Square bar obstruction (c) Octagonal bar obstruction. All dimensions are in lattice 

unit. 

4.5.1 Wetting and non-wetting droplet sliding on a vertical ideal wall under the influence 

of gravity 

The first test case is a droplet (wetting or non-wetting) that is attached to the 

bottom ideal wall of a vertical duct and allowed to slide down the wall under the 

influence of gravity. The computational domain size is 40 ×80×300 lattice units (Fig. 

4.2) and 𝑉 ℎ3⁄ = 0.15 as described in (Kang et al., 2005) where h is the height of the duct 

and V is the volume of the duct. Mid-way bounce back boundary condition was used on 
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all walls and periodic boundary condition was used in the z- direction. Initially, the 

droplet was allowed to equilibrate and after 50 000 iteration a steady droplet was 

obtained. This lattice time was set as the initial time. Then, a constant body force was 

applied along the negative z-direction.  The flow is characterized by the capillary number 

Ca which is defined as 𝐶𝑎 =
𝜌𝑛𝑤𝑔𝑉

𝜎ℎ⁄   (Kang et al., 2005) where 𝜌𝑛𝑤  is the density of 

the non-wetting fluid,  𝑔 is the gravitational factor, 𝑉 is the volume of the duct, ℎ is the 

height of the duct and 𝜎 is the surface tension. During preliminary simulations, we varied 

the gravitational factor g to obtain different capillary number and determined that 𝐶𝑎 =

0.8 is above the critical capillary number for the wetting and non-wetting droplet (data 

not shown). Therefore, in this test case we set 𝐶𝑎 = 0.8 to capture the deformation and 

pinch-off of the droplet in the carrier fluid.  The density variation on the boundary fluid 

node vanishes when the droplet has a neutral wettability (i.e. contact angle is 90o) in the 

PPBW model that utilizes a virtual fluid on the solid nodes (Kang et al., 2005). 

Consequently, we simulated a sliding neutral wetting droplet with MC (MC ref) and JH 

models (ref.). In turn, we used the result as our reference solution to allow a quantitative 

comparison.  Additionally, we simulated wetting and non-wetting droplets sliding for the 

three PPBW models and allowed the simulations to proceed until the droplet was about to 

re-enter the domain due to the periodic boundary condition along the z-direction. 

Afterwards, we inspected the results for similarities or differences and compared the 

solutions against the reference solutions. For the analysis of the results, we first measured 

the displacement z of the leading edge of the contact line from the top periodic boundary 

condition. The initial position at iteration time = 0 is zo. Secondly, we measured the 

wetted length l by subtracting the displacement of the trailing edge of the contact line 
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from its leading edge and normalized this value with the initial value lo. Finally, we 

measured the wetted area A enclosed by the contact line. In a similar way, we normalized 

this value with the initial wetted area Ao.  

 

Fig. 4.3 Snapshots of a droplet on a hydrophobic wall (𝜃 = 118o) with the different 

wetting schemes at different lattice times 
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Fig. 4.4 Snapshots of the droplet on a hydrophilic wall (𝜃 = 78o) with the different 

wetting schemes at different lattice times. 

Figure 4.3 shows snapshots of the dynamic behavior of the non-wetting. Here, we 

can see that the droplet experienced faster deformation in the JH and Yu model. This 

result in earlier pinch off of the portion of the droplet compared to the MC model. On the 

contrary, more wetting in general was observed in the MC model. Similarly, Figure 4.4 

shows snapshots of the dynamic behavior of the wetting droplet. In this case, different 

from what we observed in Figure 4.3, we noticed a faster deformation and an earlier 

pinch off in the MC model.   

Next we check the displacement of the neutral wetting droplet as it slides down 

the vertical wall for the MC (MC ref.) and JH (ref.) models. In Figure 4.5A and Figure 

4.5B, we observe that the slip velocity of the contact line for the MC model is less than 
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that of JH model for the neutral droplet. This suggests that the density variation that is 

present in MC ref. simulation tends to produce increased (unphysical) wetting (Fig. 4.5B) 

resulting in reduced slip velocity. For the non-wetting droplet (Fig. 4.5A), very little 

increase in the slip velocity was observed in MC model when compared to the reference 

(ref. on figure) model. In contrast, JH and Yu models produced a much greater increase 

in slip velocity as it is to be expected in a non-wetting droplet. As reported in Chen et al. 

(2015) for the non-wetting fluid, little variation in density of the dissolved component 

(wetting) was produced for both JH and Yu models while the density variation in the 

main component (non-wetting) for JH model is greater than in Yu model. This explains 

why the observed slip velocity in the JH model is greater than in Yu model.  

 

Fig. 4.5 Time history of the displacement of the sliding droplet from initial position. A. 

Non-wetting droplet (𝜃 = 118o) B. Wetting droplet ( 𝜃 = 78o ).  

 In the case of a wetting droplet (Fig. 4.5B), we observed that the slip velocity of 

the contact line in JH and Yu models are less than in the reference case. Similarly, the 

contact line velocity in MC model is also less than that of MC reference. This is 

consistent with a wetting droplet because the velocity is reduced as a result of the 

wetting. Interestingly, the contact line slip velocities observed in JH and Yu model is still 

greater than that of the neutral droplet in the MC model.  



72 

72 

 

 

Fig. 4.6 Time history of the normalized wetted length of the sliding droplet. A. Non-

wetting droplet (𝜃 = 118o) B. Wetting droplet ( 𝜃 = 78o ).  

Figures 4.6A and 4.6B show the normalized wetted length for the wetting and 

non-wetting droplets. We observe that in general it takes a longer time before the 

differences in the normalized wetted length for the three PPBW models begin to appear 

in the wetting droplet (lattice time = 700) compared to the non-wetting droplet (lattice 

time = 400). Consistent with our observations in the slip velocity, the neutral droplet in 

the reference MC model generates longer normalized wetted length compared to the 

reference JH model.   

For the non-wetting droplet (Fig. 4.6A), we notice cycles of increase and decrease 

in the value of the normalized wetted length, suggesting that the motion of the contact 

line of the droplet involves a sequence of contracting (decrease in wetted length) and 

stretching (increase in wetted length) processes. The contact line initially contracts and 

then stretches, followed by another contraction just before a portion of the droplet 

pinches off. On the other hand, for the wetting droplet, the contact line stretches 

continuously for most the motion and a minute contraction was observed just before a 

portion of it pinches off (Fig. 4.6B). For the non-wetting droplet, the normalized wetted 
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length in JH and Yu models vary similarly and its magnitude is below the JH model 

reference neutral droplet. On the contrary, pronounced stretching (stretching greater than 

as observed in a neutral droplet) was observed in the MC model when we compared it 

with both reference neutral droplets. We also notice that at iteration time = 800, while the 

Yu model was already contracting, JH model continued to stretch and did not begin 

contracting until iteration time = 900. Incidentally, the peak of this stretching for the JH 

model slightly corresponds to the sudden increase in the slip velocity observed in (Figure 

4.5A).  

In Figure 4.6B, for the wetting droplet, we observed identical profile for the 

normalized wetted length in both JH and Yu model. Although for most the flow the 

magnitude of the normalized wetted length for the JH and Yu model is greater than the 

JH model reference neutral droplet, at iteration time = 1250, the magnitude dropped 

below that of the neutral droplet and remained below for the droplet.  

 

Fig. 4.7 Time history of the normalized wetted area of the sliding droplet. A. Non-

wetting droplet (𝜃 = 118o) B. Wetting droplet ( 𝜃 = 78o ).  

Although we observed almost similar profile in the MC model, the magnitude did not 

drop below that of the neutral droplet for the duration of the flow. Also, as expected, MC 
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model produced significantly increased wetted length when it was compared JH reference 

neutral wetting droplet.     

We also compared the normalized wetted area. As shown in Figures 4.7A and 8B, 

the reference neutral droplet in MC model also generated more normalized wetted area 

when compared to the reference neutral droplet in JH model. For the non-wetting droplet, 

the magnitudes of the normalized wetted area in JH and Yu models are identical and 

below that of the neutral droplet throughout the flow duration while in the MC model an 

increase in this magnitude began to develop at iteration time = 700 and eventually 

exceeded the neutral wall at approximately iteration time = 1000. Also, the normalized 

wetted area in the MC model decreased at a slower rate than other two PPBW models. 

Furthermore, in Figure 4.7B we can see that for the wetting droplet, the magnitude of the 

normalized wetted area is greater than that of the neutral droplet in the three different 

PPBW models. Different from our observations in Figure 4.7A, MC model predicted a 

similar normalized wetted area profile to the other two PPBW models even though its 

magnitude is greater.   

The above results demonstrate that the choice of PPBW models affects the flow 

physics. From the numerical formulation, fluid-fluid interaction and fluid-solid 

interaction forces for the MC model are in the same direction for either the wetting or the 

non-wetting droplet. This results in an increase in the density of the dissolved component 

on the fluid boundary node (Kang et al., 2005). This variation in the density of the 

dissolved component on the fluid boundary nodes will repel the main fluid. As a result, 

the density of the main fluid on the fluid boundary node is reduced (more reduction in 

non-wetting droplet). This explains the increased unphysical wetting observed in the non-
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wetting droplet evidenced by the reduced slip velocity, with greater magnitude in wetted 

length and wetted area.  In JH model, this density variation is minimized by providing a 

virtual fluid on the solid boundary nodes to balance the fluid-fluid interaction force. Take 

the case of a non-wetting droplet as an example; this addition can minimize the increase 

in the density of the dissolved wetting component.  Resulting in less unphysical wetting 

and increase in the slip velocity as observed in the results above. Like the JH model, Yu 

model also apply a virtual fluid on the solid boundary nodes. However, it minimizes 

density variations in both dissolved and main components through a counterbalance 

arrangement.  

Summing up the above test case, we can see that while the results from JH model 

are very like that produced by Yu model. We discovered that the counterbalance in 

density variation implemented in Yu model could balance the slip velocity. In general, 

density variation on fluid boundary nodes produced unphysical wetting that reduces slip 

velocity which in turn produces earlier pinch off of the top of the droplet. This density 

variation effect was more pronounced in MC model. 

4.5.2 Free droplet obstructed by octagonal and square bars 

In the previous section, we evaluated the different PPBW models for attached 

non-wetting and wetting droplets. To further compare the different PPBW models, we 

consider a more complex problem that involves the interaction of a free wetting or non-

wetting droplet with two differently shaped obstacles (square and octagonal prism). In 

our simulations, the computational domain size is 80 ×80 ×240  lattice units and 

periodic boundary conditions were used on all boundaries. Initially, a droplet of diameter 

𝐷 = 28 lattice units was placed in the axis of the domain and allowed to equilibrate. 
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After which a square or octagonal prism was placed a distance from the droplet (Figure 

3). The viscosity and density ratio are set as the previous case in section. The motion of 

the droplet is driven by gravity = 2.0 × 10−3 . 

 

Fig. 4.8 Computed images (view from two opposing angles) of the impact of a wetting 

droplet (𝜃 = 62o) onto a square obstacle at different lattice times for the different 

pseudo-potential based wetting models. Note that we included the image of a neutral 

droplet for reference.   

Here we describe the dynamics of the droplet as it goes through a deformation, 

break up and coalescing processes. We also described the direction of the velocity vector 

field near the droplet and obstacle. To achieve this, we first created a YZ plane that 
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represents the slice of the domain at position 𝑥 = 40 lattice units and reported the 

interface evolution and the velocity vector field directions.  

4.5.2.1 Wetting droplet in a non-wetting carrier fluid 

In Figures 4.8 and 4.9, at iteration time = 800, the droplet begins to deform 

steadily as it encounters the obstacles and produces a concave meniscus around the 

obstacles. We observe a dead zone (layer of carrier fluid) enclosed between the valley of 

the meniscus and the upstream surface of the obstacles. This dead zone is shaped like a 

sliced sphere and we noticed that the diameter of the dead zone is generally greater in the 

square obstacle compared to the octagonal obstacle (Fig. 4.10). In addition, we notice for 

the square obstacle that in JH and Yu models the diameter of the dead zone is 

approximately equal and less than that in the MC model. For the octagonal obstruction, 

no difference was observed in the diameter of the dead zone between the different 

models. 
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Fig. 4.9 Computed images (view from two opposing angles) of the impact of a wetting 

droplet (𝜃 = 62o) onto an octagonal obstacle at different lattice times for the different 

pseudo-potential based wetting models. Note that we included the image of a neutral 

droplet for reference.   
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Fig. 4.10 Droplet dynamics as the wetting droplet (𝜃 = 62o) impacts the obstacles for the 

different pseudo-potential based wetting models at lattice time = 800. The figure shows 

the interface profile and the velocity vector in the plane x=40. Arrows are included to 

show the general direction of the velocity vectors   

We also observe more wetting by the two horns of the meniscus in the octagonal 

obstacle than that in the square obstacle (Fig. 4.10). While inspecting the velocity vector 

field in Figure 4.10, we noticed a recirculating region in the carrier fluid near the 

downstream surface of the square obstacle. Similar recirculating region was not observed 

in the downstream surface of the octagonal obstruction. Interestingly, we did not find any 

recirculating region inside the droplet as it interacts with the obstacles in Figure 4.10. We 

also observe an increase in the velocity near the downstream region of both horns of the 

meniscus and in the carrier fluid near this region. This increased velocity appears to pull 
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(Fig. 4.8 and 4.9) the meniscus around the obstacle which results in further deformation 

of the droplet.  

 

Fig. 4.11 Droplet dynamics as the wetting droplet (𝜃 = 62o) impacts the obstacles for the 

different pseudo-potential based wetting models at lattice time = 1000. The figure shows 

the interface profile and the velocity vector in the plane x=40. Arrows are included to 

show the general direction of the velocity vectors   

At iteration time = 1000 (Fig. 4.8 and 4.9), the droplet continues to deform around 

the obstacles. In the octagonal obstacle case, the upstream regions of the two horns of the 

meniscus could force the carrier fluid out of the region and merge near the stagnation 

point on the downstream surface of the obstacle because there is no carrier fluid 

recirculating in this region.  
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Fig. 4.12 Droplet dynamics as the wetting droplet (𝜃 = 62o) impacts the obstacles for the 

different pseudo-potential based wetting models at lattice time = 1200. The figure shows 

the interface profile and the velocity vector in the plane x=40. Arrows are included to 

show the general direction of the velocity vectors   

However, because of the carrier fluid recirculation near the stagnation point of the 

square obstacle, we did not observe similar merging of the upstream region of the horns 

of the meniscus (Fig. 4.11). A layer of the carrier fluid remains between the two horns. In 

Figures 4.8 and 4.11, we observed a blob of the droplet attached to the upstream face of 

the square obstacle in all the models. 
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Although similar blob was observed in JH and Yu models, however, a hole was 

left in the middle of the blob for MC model because of the greater size of the carrier fluid 

dead zone (Fig. 4.8). Also, we observed similar patterns in JH, Yu and MC models for 

the octagonal obstacle (Fig. 4.9). In general, the velocity vector field on the downstream 

surface of the both obstacles are pointing outwards as if the droplet is moving away from 

this surface. Upon further inspection, we notice for square obstacle that the velocity 

vector field inside the droplet (near the base of the separated horns) points towards the 

surface while the velocity field vectors in the carrier fluid (near the center of the surface) 

points outward as if the carrier fluid is being forced outwards (Fig. 4.11). The horns of 

the meniscus of the droplet continue to coalesce and the downstream tip of the droplet 

begins to assume a convex shape like a pendant droplet in the octagonal obstruction 

around lattice time = 1200 (Fig. 4.12). Similar behavior was observed in the square 

obstruction as the base of the meniscus horns have now merged while the downstream tip 

of the droplet is yet to assume a convex configuration. In the square obstruction, we 

observe a single satellite droplet in JH and Yu models but two satellite droplets in MC 

model. Likewise, we observe similar behavior in the octagonal obstacle except that two 

satellite droplets were formed in all models (Fig. 4.9).  
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Fig. 4.13 Droplet dynamics as the wetting droplet (𝜃 = 62o) impacts the obstacles for the 

different pseudo-potential based wetting models at lattice time = 1800. The figure shows 

the interface profile and the velocity vector in the plane x=40. Arrows are included to 

show the general direction of the velocity vectors.   
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Interestingly, recirculating region begins to appear in the center of the droplet 

together with a layer of flow near the interface of the droplet in the downstream direction 

for both obstacles (Fig. 4.12). The profile of the velocity vector field for the square 

obstruction is quite different from the octagonal obstacle. This explains why the 

downstream interface of the droplet is still concave. In addition, the strength of the 

recirculating region in MC model for the square obstacle appears to be smaller compared 

to the other models. Therefore, we notice more concavity in the MC model. In the 

octagonal prism case, the outer layer beyond the recirculating region appears to prevent 

the droplet from assuming a convex shape like a pendant droplet at a faster rate like the 

other two models.   

In Figure 4.13, the inner recirculating velocity vector region in the pendant 

droplet attached to the octagonal obstacle resulted in the breakup of the droplet into a 

smaller pendant droplet as the outer velocity vector layer inside the droplet (near the 

interface of the droplet) produced daughter droplets. It is noteworthy, that the Yu model 

approached a pendant droplet at a slower rate than MC and JH models. At the same time, 

the tip of the droplet attached to the square obstacle begins to assume a convex shape as 

the recirculating region inside the droplet begins to grow- particularly in JH and Yu 

models. As such, no daughter droplets were formed in these models. Whereas, the droplet 

in the MC model continues to break up to form daughter droplets. 

4.5.2.2 Non-wetting droplet in a wetting carrier fluid 

Like our observations in the wetting droplet, the droplet deforms steadily around 

the obstacle and produces a concave meniscus around the obstacle (Figs. 4.14 and 4.15). 

Unlike the tip of the horns of the meniscus that bend inward toward the surface in the 
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wetting droplet, the non-wetting droplet tip bends outwards and produces less wetting 

around both obstacles for all models (Fig. 4.16). In addition, the size of the carrier fluid 

dead zones is generally larger than in the wetting droplet and square obstacle appears to 

have more volume of dead zone than the octagonal obstacle in all models. 

 

Fig. 4.14 Computed images (view from two different angles) of the impact of a non-

wetting droplet (𝜃 = 118o) onto a square prism obstacle at different lattice time for the 

different pseudo-potential based wetting model. Note that we included the image of a 

neutral droplet for reference. 
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Fig. 4.15 Computed images (view from two different angles) of the impact of a non-

wetting droplet (𝜃 = 118o) onto an octagonal prism obstacle at different lattice time for 

the different pseudo-potential based wetting model. Note that we included the image of a 

neutral droplet for reference. 
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Fig. 4.16 Droplet dynamics as the non-wetting droplet (𝜃 = 118o) impacts the obstacles 

for the different pseudo-potential based wetting models at lattice time = 800. The figure 

shows the interface profile and the velocity vector in the plane x=40. Arrows are included 

to show the general direction of the velocity vectors.   

In contrast to our observations in the wetting droplet, there were no recirculating 

regions of the carrier fluid on the downstream surface of the obstacles for all the models 

except for a small region in JH model for the square obstacle (Fig. 4.16).   
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Fig. 4.17 Droplet dynamics as the non-wetting droplet (𝜃 = 118o) impacts the obstacles 

for the different pseudo-potential based wetting models at lattice time = 1000. The figure 

shows the interface profile and the velocity vector in the plane x=40. Arrows are included 

to show the general direction of the velocity vectors.  

The obstruction splits the droplet as it deforms as shown in Figure 4.17. Different 

from our observations in the wetting droplet case, the horns of the meniscus did not 

merge for the octagonal obstruction. A layer of the carrier fluid was enclosed between the 

two horns. We observed similar behavior in the square obstacle but the thickness of the 

layer is greater (Fig. 4.17). For the square prism, a thin liquid finger of the droplet was 

left behind on the upstream surface of the obstruction. Thicker finger was observed in 

MC model (Fig. 4.14).  
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Fig. 4.18 Droplet dynamics as the non-wetting droplet (𝜃 = 118o) impacts the obstacles 

for the different pseudo-potential based wetting models at lattice time = 1200. The figure 

shows the interface profile and the velocity vector in the plane x=40. Arrows are included 

to show the general direction of the velocity vectors.   

The horns of the meniscus begin to coalesce at lattice time = 1200. The rate is 

faster in the octagonal obstacle than in the square obstacle because the tip of the droplet is 

more concave (Fig. 4.18). Satellite droplets where produced in the MC model for the 

square obstacle because of more wetting in the carrier fluid (Fig. 4.14). The velocity 

vector field continues to drag the droplet downstream as the horns merge together. In the 

MC model for the square prism, near the downstream surface of the obstacle, the carrier 

fluid appears to be moving outward in a concave manner. This motion helps to explain 

the formation of the satellite droplets.   
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Fig. 4.19 Droplet dynamics as the non-wetting droplet (𝜃 = 118o) impacts the obstacles 

for the different pseudo-potential based wetting models at lattice time = 1400. The figure 

shows the interface profile and the velocity vector in the plane x=40. Arrows are included 

to show the general direction of the velocity vectors.   

The droplet totally detaches from the octagonal obstacle and begins to become 

spherical at a faster rate than the droplet through the square obstacle (Fig. 4.15 and 4.19). 

The two satellite droplets in the MC model also change their surfaces to approach a 
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spherical shape. Recirculating region begins to develop on the downstream surface of the 

square obstruction in all models. Only a little recirculating region was observed in the JH 

model for the octagonal obstruction. We did not observe any recirculating region for the 

other models in the octagonal obstruction case (Fig. 4.19).  

Taken together, when a wetting droplet (in a non-wetting carrier fluid) interacts 

with the obstacles, we observe more wetting in the upstream surface of the octagonal 

obstacle at the initial stage because of the different flow fields around the obstacle due to 

different geometric configurations. Subsequently, a thinner recirculating region develops 

in the droplet on the downstream surface of the octagonal prism compared to the square 

prism. This is because more wetting on the downstream surface of the square obstacle 

increases surface tension forces on the droplet. Hence, a thicker recirculating region is 

observed in the square obstacle.  The thinner recirculating region in the droplet for the 

octagonal obstruction promotes earlier onset of necking in the droplet and formation of 

daughter droplets. Among the different PPBW models, we observed slower onset of 

necking in JH and Yu models. Consistent with our observations in the attached droplet 

case, we suggest that there will be greater unphysical density variation in the non-wetting 

carrier fluid for MC model near the downstream surface of the obstacle. This will reduce 

the non-wetting ability of the carrier fluid and the wetting ability of the droplet. As a 

result, thinner recirculating region develops and an earlier onset of necking. Similar 

pattern was observed in the square obstacle but daughter droplets were only formed in 

MC model.  We also observed droplet dynamic behavior like the ones described above in 

the non-wetting droplet (in a wetting carrier fluid) for the two obstacle configurations. 

However, MC model results were slightly different from the other PPBW models in the 
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square prism case. Our results are generally consistent with the observations in the 

simulations study in (Pasandideh-Fard et al., 2001) and experimental results in (Hung et 

al., 2002) even though the experiment considered an array of droplet impacting a wire.  

4.6 Conclusion 

In this paper we evaluated the performance of different pseudo-potential-based 

wetting models for multicomponent multiphase (MCMP) lattice Boltzmann method, 

including: MC model (1996) , JH model (2011) and Yu model (2015) . Because pseudo-

potential MCMP lattice Boltzmann method is not strictly incompressible (Hou et al., 

1997) (some dissolved components are still present in the main component), unphysical 

density variations are often introduced near the solid nodes by these different wetting 

models. We have studied the influence of this density variation on the dynamic behavior 

of an attached wetting or non-wetting droplet and a free wetting or non-wetting droplet 

moving past obstacles under the influence of gravity. The numerical results indicate that 

the MC model suffers from excessive unphysical wetting, specifically in the cases where 

the carrier fluid is non-wetting and the droplet is wetting. Consequently, there is an 

increase in surface tension forces between the droplet (or carrier fluid) and the solid 

surface which results in; (a) reduced slip velocity for the non-wetting droplet and early 

onset of small droplet pinch off in the case of a sliding attached droplet (b) early onset of 

necking and break up of droplet to create daughter droplets in the case of a wetting 

droplet past solid obstacles.  
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We hope that these side-by-side comparisons of different PPBW models in this 

section provide the framework for the choice of PPBW models for droplet-based 

numerical studies that involves fluid-solid interactions and contributes to better designs 

and optimization of droplet microfluidics. 
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5. CHAPTER FIVE: INCORPORATING THE FORCING TERM 

5.1 Multi-Scale Analysis of BGK LBM with Forcing Term 

In chapter four, we discussed the performance of different pseudo-potential 

wetting schemes in the context of multicomponent multiphase lattice Boltzmann (BGK) 

models. However, we identified some areas of improvements in the study. First, the 

LBM-BGK scheme was chosen for simplicity and does not represent the state-of-the-art 

approach for solving this class of problems. Secondly, we incorporated the general body 

force via the velocity shift method proposed by Shan and Chen (Shan and Chen, 1993). 

In the limit of vanishing space and time step, this method is known to introduce addition 

terms into the hydrodynamics equations. Finally, the density ratio was set to unity as the 

focus of the study was the fluid-solid interaction on the ideal wall. In subsequent 

chapters, we extend the investigations to large-density ratio applications. For this reasons, 

we review existing schemes available for incorporating the general body force into the 

LBM-BGK model and in later chapters address other areas of improvement. 

We start from the simple and popular BGK approximation of the discrete 

Boltzmann equation without a forcing term given as 

 
𝑓𝛼(𝒙 + 𝝃𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝛼(𝒙, 𝑡) =  − 

1

𝜏
[𝑓𝛼(𝒙, 𝑡) − 𝑓𝛼

(𝑒𝑞)(𝒙, 𝑡)] (5.1) 

where the macroscopic fluid density 𝜌 and velocity 𝐮 can be obtained from the first and 

second moments of the density distribution function as follows 

 𝜌 =∑ 𝑓𝛼
𝛼

 (5.2) 
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 𝜌𝐮 =∑ 𝜉𝛼𝑓𝛼
𝛼

 (5.3) 

In addition, the equilibrium particle distribution function is given as  𝑓𝛼
𝑒𝑞

 (Guo et al., 

2002) 

 
𝑓𝛼
𝑒𝑞 = 𝜔𝛼𝜌 [1 +

𝐮 ⋅ 𝝃𝛼
𝑐𝑠2

+
𝐮𝐮: (𝝃𝛼𝝃𝛼 − 𝑐𝑠

2𝑰)

2𝑐𝑠4
] (5.4) 

In general, Eq. (5.1) can be modified to account for the physics of a general body force 

by introducing a forcing term as shown below 

 
𝑓𝛼(𝒙 + 𝝃𝛼𝛿𝑡) − 𝑓𝛼(𝒙, 𝑡) =  − 

1

𝜏
[𝑓𝛼(𝒙, 𝑡) − 𝑓𝛼

(𝑒𝑞)(𝒙, 𝑡)] + 𝛿𝑡𝐹𝛼 (5.5) 

The velocity used in the equilibrium distribution can now be redefined as  

 𝜌𝐮 =∑ 𝜉𝛼𝑓𝛼
𝛼

+𝑚𝑭𝛿𝑡 (5.6) 

where 𝑚 is a constant to be determined for the different forcing schemes (Guo et al. 

2002, Li et al., 2012) 

As was previously discussed by Ladd et al (2001), the forcing term can be written in a 

power series in the particle velocity 𝝃𝛼. Here we adopt the form in Guo et al. (2002)  

 
𝐹𝛼 = 𝜔𝛼 [𝐴 +

𝐁 ⋅ 𝝃𝛼
𝑐𝑠2

+
𝐂: (𝝃𝛼𝝃𝛼 − 𝑐𝑠

2𝐈)

2𝑐𝑠4
] (5.7) 

where A, 𝐁 and  𝐂 are functions of 𝐅 that is to be determined so that the moments of 𝐅 are 

consistent with the hydrodynamic equations. 

Taking the zero, first and second velocity moments of the forcing term in Eq. (5.7) yields 

the following equations   
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 ∑ Fα = 𝐴
𝛼

 (5.8) 

 

 ∑ 𝛏αFα = 𝐁
α

 (5.9) 

 

 
∑ 𝝃𝛼𝝃𝛼𝐹𝛼 = 𝑐𝑠

2𝐴𝐈 +
1

2
[𝐂 + 𝐂T]

𝛼
 (5.10) 

The macroscopic dynamic equations can be recovered for the lattice Boltzmann equation 

with the forcing term in Eq. (5.5) through the Chapman-Enskog multi-scale analysis 

described below. We start here with the following expansion  

 𝑓𝛼 = 𝑓𝛼
(0)
+ 𝜖𝑓𝛼

(1)
+ 𝜖2𝑓𝛼

(2)
+⋯ (5.11) 

 

 𝜕

𝜕𝑡
= 𝜖

𝜕

𝜕𝑡1
+ 𝜖2

𝜕

𝜕𝑡2
 (5.12) 

 

 𝜕

𝜕𝒙
= 𝜖

𝜕

𝜕𝒙1
 (5.13) 

 

 𝑭 = 𝜖𝑭1, 𝐴 = 𝜖𝐴1, 𝑩 = 𝜖𝑩1, 𝑪 = 𝜖𝑪1 (5.14) 

where 𝜖 is the expansion parameter that is proportional to the ratio of the lattice space to 

the characteristic length and 𝑓𝛼
(0)
= 𝑓𝛼

(eq)
 is the equilibrium distribution function.  

Next, we expand 𝑓𝛼(𝒙 + 𝝃𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) about 𝒙 and 𝑡 as shown below 
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 𝑓𝛼(𝒙 + 𝝃𝛼𝛿𝑡, 𝑡 + 𝛿𝑡)

=  𝑓𝛼(𝒙, 𝑡) +
𝜕𝑓𝛼
𝜕𝑡

𝛿𝑡 + 
𝜕𝑓𝛼
𝜕𝒙

𝝃𝛼𝛿𝑡

+ 
1

2
 𝛿𝑡

2 [
𝜕2𝑓𝛼
𝜕𝑡2

+ 2
𝜕2𝑓𝛼
𝜕𝑡𝜕𝒙

𝝃𝛼 +
𝜕2𝑓𝛼
𝜕𝒙2

𝝃𝛼𝝃𝛼]

+ 𝑂(𝛿𝑡
3) 

(5.15) 

we now introduce the scaling in Eqs. (5.12) and (5.13) into Eq. (5.15) 

 𝑓𝛼(𝒙 + 𝝃𝛼𝛿𝑡, 𝑡 + 𝛿𝑡)

=  𝑓𝛼(𝒙, 𝑡) + 𝜖
𝜕𝑓𝛼
𝜕𝑡1

𝛿𝑡 + 𝜖
2
𝜕𝑓𝛼
𝜕𝑡2

𝛿𝑡 +  𝜖
𝜕𝑓𝛼
𝜕𝒙1

𝝃𝛼𝛿𝑡

+ 
1

2
 𝛿𝑡

2 [𝜖2
𝜕2𝑓𝛼

𝜕𝑡1
2 + 𝜖

4
𝜕2𝑓𝛼

𝜕𝑡1
2 + 2𝜖

2
𝜕2𝑓𝛼
𝜕𝑡1𝜕𝒙1

𝝃𝛼

+ 2𝜖4
𝜕2𝑓𝛼
𝜕𝑡2𝜕𝒙1

𝝃𝛼 + 𝜖
2
𝜕2𝑓𝛼

𝜕𝒙1
2 𝝃𝛼𝝃𝛼] + 𝑂(𝛿𝑡

3)

+ 𝑂(𝜖3) 

(5.16) 

Keeping terms with 𝜖2 we obtain 

 𝑓𝛼(𝒙 + 𝝃𝛼𝛿𝑡 , 𝑡 + 𝛿𝑡)

=  𝑓𝛼(𝒙, 𝑡) + 𝜖
𝜕𝑓𝛼
𝜕𝑡1

𝛿𝑡 + 𝜖
2
𝜕𝑓𝛼
𝜕𝑡2

𝛿𝑡 +  𝜖
𝜕𝑓𝛼
𝜕𝒙1

𝝃𝛼𝛿𝑡

+ 
1

2
 𝛿𝑡

2 [𝜖2
𝜕2𝑓𝛼

𝜕𝑡1
2 + 2𝜖

2
𝜕2𝑓𝛼
𝜕𝑡1𝜕𝒙1

𝝃𝛼

+ 𝜖2
𝜕2𝑓𝛼

𝜕𝒙1
2 𝝃𝛼𝝃𝛼] + 𝑂(𝛿𝑡

3) + 𝑂(𝜖3) 

(5.17) 

 

Substituting in the transport Eq. (5.5),  
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𝜖
𝜕𝑓𝛼
𝜕𝑡1

𝛿𝑡 + 𝜖
2
𝜕𝑓𝛼
𝜕𝑡2

𝛿𝑡 +  𝜖
𝜕𝑓𝛼
𝜕𝒙1

𝝃𝛼𝛿𝑡

+ 
1

2
 𝛿𝑡

2 [𝜖2
𝜕2𝑓𝛼

𝜕𝑡1
2 + 2𝜖

2
𝜕2𝑓𝛼
𝜕𝑡1𝜕𝒙1

𝝃𝛼

+ 𝜖2
𝜕2𝑓𝛼

𝜕𝒙1
2 𝝃𝛼𝝃𝛼] + 𝑂(𝛿𝑡

3) + 𝑂(𝜖3)

=  − 
1

𝜏
[𝑓𝛼(𝒙, 𝑡) − 𝑓𝛼

(𝑒𝑞)(𝒙, 𝑡)] + 𝛿𝑡𝜖𝐹1𝛼 

(5.18) 

Next we apply the expansion  𝑓𝛼 = 𝑓𝛼
(0)
+ 𝜖𝑓𝛼

(1)
+ 𝜖2𝑓𝛼

(2)
+⋯ with the result:  

 
[𝜖
𝜕𝑓𝛼

(0)

𝜕𝑡1
+ 𝜖2

𝜕𝑓𝛼
(1)

𝜕𝑡1
+⋯]𝛿𝑡 + [𝜖

2
𝜕𝑓𝛼

(0)

𝜕𝑡2
+] 𝛿𝑡

+ [𝜖
𝜕𝑓𝛼

(0)

𝜕𝒙1
+ 𝜖2

𝜕𝑓𝛼
(1)

𝜕𝒙1
+⋯]𝝃𝛼𝛿𝑡

+ 
1

2
 𝛿𝑡

2 [𝜖2
𝜕2𝑓𝛼

(0)

𝜕𝑡1
2 +⋯]

+ 
1

2
𝛿𝑡
2 [2𝜖2

𝜕2𝑓𝛼
(0)

𝜕𝑡1𝜕𝒙1
+⋯]𝝃𝛼

+
1

2
 𝛿𝑡

2 [𝜖2
𝜕2𝑓𝛼

(0)

𝜕𝒙1
2 +⋯]𝝃𝛼𝝃𝛼 + 𝑂(𝛿𝑡

3) + 𝑂(𝜖3)

=  − 
1

𝜏𝛿𝑡
[𝜖𝑓𝛼

(1)
+ 𝜖2𝑓𝛼

(2)
+⋯]𝛿𝑡 + 𝛿𝑡𝜖𝐹1𝛼 

(5.19) 
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Equating terms of the same order of 𝜖 we obtain 

𝑂(𝜖0)   ∶ 𝑓𝛼
(0) = 𝑓𝛼

(𝑒𝑞)
 (5.20) 

 

𝑂(𝜖1)   ∶ 𝜕𝑓𝛼
(0)

𝜕𝑡1
 +  𝝃𝛼

𝜕𝑓𝛼
(0)

𝜕𝒙1
= − 

1

𝜏𝛿𝑡
𝑓𝛼
(1) + 𝐹1𝛼   

(5.21) 

 

𝑂(𝜖2)   ∶ 𝜕𝑓𝛼
(0)

𝜕𝑡2
 + 

𝜕𝑓𝛼
(0)

𝜕𝑡1
+ 𝝃𝛼

𝜕𝑓𝛼
(1)

𝜕𝒙1

+ 
1

2
 𝛿𝑡 [

𝜕2𝑓𝛼
(0)

𝜕𝑡1
2 + 2𝝃𝛼

𝜕2𝑓𝛼
(0)

𝜕𝑡1𝜕𝒙1

+ 𝝃𝛼𝝃𝛼
𝜕2𝑓𝛼

(0)

𝜕𝒙1
2 ] + 𝑂(𝛿𝑡

2)

+ 𝑂(𝜖3)  = − 
1

𝜏𝛿𝑡
𝑓𝛼
(2)
  

(5.22) 

One can use Eq. (5.21) to simplify the term 𝝃𝛼
𝜕𝑓𝛼

(1)

𝜕𝒙1
 in Eq.(5.22) 

 𝜕𝑓𝛼
(0)

𝜕𝑡2
 +  (1 −

1

2𝜏
) [
𝜕𝑓𝛼

(1)

𝜕𝑡1
+ 𝝃𝛼

𝜕𝑓𝛼
(1)

𝜕𝒙1
]   

= − 
1

𝜏𝛿𝑡
𝑓𝛼
(2) − 

𝛿𝑡

2
[
𝜕𝐹1𝛼
𝜕𝑡1

+ 𝝃𝛼
𝜕𝐹1𝛼
𝜕𝒙1

] 

(5.23) 

To obtain the macroscopic equations we take the zero, first and second velocity moments 

of Eqs. (5.21) and (5.23). By first taking the zeroth velocity moment of equation (5.21) 

we obtain the macroscopic equations on the scale 𝑡1 = 𝜖𝑡 and 𝒙1 = 𝜖𝒙 
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∑ (

𝜕𝑓𝛼
(0)

𝜕𝑡1
+ 𝝃𝛼

𝜕𝑓𝛼
(0)

𝜕𝒙1
)

𝛼
=∑ (−

1

𝜏𝛿𝑡
𝑓𝛼
(1) + 𝐹1𝛼)

𝛼
 (5.24) 

 

 𝜕

𝜕𝑡1
(∑ 𝑓𝛼

(0)

𝛼
) +

𝜕

𝜕𝒙1
(∑ 𝝃𝛼𝑓𝛼

(0)

𝛼
)

=  −
1

𝜏𝛿𝑡
(∑ 𝑓𝛼

(1)

𝛼
) + ∑ 𝐹1𝛼

𝛼
  

(5.25) 

Using the fact that 𝜌 =  ∑ 𝑓𝛼𝛼 = ∑ 𝑓𝛼
(0)

𝛼   and 𝜌𝐮 = ∑ 𝝃𝛼𝑓𝛼
(0)

𝛼 = ∑ 𝝃𝛼𝑓𝛼𝛼  we obtain 

 𝜕𝜌

𝜕𝑡1
+ 
𝜕(𝜌𝒖∗)

𝜕𝒙1
= 𝐴1 (5.26) 

Eq. (5.26) allows for source term in the continuity equation. Taking the first order 

velocity moment of equation (5.21) yields: 

 
∑ 𝝃𝛼 (

𝜕𝑓𝛼
(0)

𝜕𝑡1
+ 𝝃𝛼

𝜕𝑓𝛼
(0)

𝜕𝒙1
)

𝛼
=∑ 𝝃𝛼 (−

1

𝜏𝛿𝑡
𝑓𝛼
(1) + 𝐹1𝛼)

𝛼
 (5.27) 

 

 𝜕

𝜕𝑡1
(∑ 𝝃𝛼𝑓𝛼

(0)

𝛼
) +

𝜕

𝜕𝒙1
(∑ 𝝃𝛼𝝃𝛼𝑓𝛼

(0)

𝛼
)

=  −
1

𝜏𝛿𝑡
(∑ 𝝃𝛼𝑓𝛼

(1)

𝛼
) + ∑ 𝝃𝛼𝐹1𝛼

𝛼
  

(5.28) 

 

 𝜕(𝑝𝐮)

𝜕𝑡1
+ 
𝜕∏(0)

𝜕𝒙1
= 𝑩1 +

𝑚

𝜏
𝑭1 (5.29) 

Now let 𝑩1 = 𝑛𝑭1. Eq. (5.29) becomes 
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 𝜕(𝑝𝐮)

𝜕𝑡1
+ 
𝜕∏(0)

𝜕𝒙1
= (𝑛 +

𝑚

𝜏
)𝑭1 (5.30) 

As before, we used the fact that 𝜌𝐮 = ∑ 𝝃𝛼𝑓𝛼
(0)

𝛼 = ∑ 𝝃𝛼𝑓𝛼𝛼  and define  

 ∏𝑖𝑗
(0) = ∑ 𝝃𝛼𝑖𝝃𝛼𝑗𝑓𝛼

(0)

𝛼
= 𝑐𝑠

2𝜌𝛿𝑖𝑗 +  𝜌u𝑖u𝑗 (5.31) 

Similarly, we take the zero and first order moments of Eq. (5.23) to obtain the 

macroscopic equation on the 𝑡2 = 𝜖
2𝑡  . Zero order velocity moment yields:  

 
∑ (

𝜕𝑓𝛼
(0)

𝜕𝑡2
 +  (1 −

1

2𝜏
) [
𝜕𝑓𝛼

(1)

𝜕𝑡1
+ 𝝃𝛼

𝜕𝑓𝛼
(1)

𝜕𝒙1
])

𝛼
  

= ∑ (− 
1

𝜏𝛿𝑡
𝑓𝛼
(2) − 

𝛿𝑡
2
[
𝜕𝐹1𝛼
𝜕𝑡1

+ 𝝃𝛼
𝜕𝐹1𝛼
𝜕𝒙1

])
𝛼

 

(5.32) 

 

 𝜕

𝜕𝑡2
(∑ 𝑓𝛼

(0)

𝛼
) + (1 −

1

2𝜏
)
𝜕

𝜕𝑡1
(∑ 𝑓𝛼

(1)

𝛼
)

+ (1 −
1

2𝜏
)
𝜕

𝜕𝒙1
(∑ 𝝃𝛼𝑓𝛼

(1)

𝛼
)

=  − 
1

𝜏𝛿𝑡
(∑ 𝑓𝛼

(2)

𝛼
) − 

𝛿𝑡
2

𝜕

𝜕𝑡1
(∑ 𝐹1𝛼

𝛼
)

− 
𝛿𝑡
2

𝜕

𝜕𝒙1
(∑ 𝝃𝛼𝐹1𝛼

𝛼
)  

(5.33) 

 

 𝜕𝜌

𝜕𝑡2
= 𝛿𝑡 (𝑚 − 

1

2
)
𝜕𝑭1
𝜕𝒙1

 (5.34) 

Next, the first order moment,  
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∑ 𝝃𝛼 (
𝜕𝑓𝛼

(0)

𝜕𝑡2
 +  (1 −

1

2𝜏
) [
𝜕𝑓𝛼

(1)

𝜕𝑡1
+ 𝝃𝛼

𝜕𝑓𝛼
(1)

𝜕𝒙1
])

𝛼
  

= ∑ 𝝃𝛼 (− 
1

𝜏𝛿𝑡
𝑓𝛼
(2) − 

𝛿𝑡
2
[
𝜕𝐹1,𝛼
𝜕𝑡1

+ 𝝃𝛼
𝜕𝐹1𝛼
𝜕𝒙1

])
𝛼

 

(5.35) 

 

 

𝜕

𝜕𝑡2
(∑ 𝝃𝛼𝑓𝛼

(0)

𝛼
) + (1 −

1

2𝜏
)
𝜕

𝜕𝑡1
(∑ 𝝃𝛼𝑓𝛼

(1)

𝛼
)

+ (1 −
1

2𝜏
)
𝜕

𝜕𝒙1
(∑ 𝝃𝛼𝝃𝛼𝑓𝛼

(1)

𝛼
)

=  − 
1

𝜏𝛿𝑡
(∑ 𝝃𝛼𝑓𝛼

(2)

𝛼
) − 

𝛿𝑡
2

𝜕

𝜕𝑡1
(∑ 𝝃𝛼𝐹1𝛼

𝛼
)

− 
𝛿𝑡
2

𝜕

𝜕𝒙1
(∑ 𝝃𝛼𝝃𝛼𝐹1𝛼

𝛼
)  

(5.36) 

 

 

𝜕(𝜌𝒖∗)

𝜕𝑡2
=  𝛿𝑡 (𝑚 − 

1

2
)
𝜕𝑭1
𝜕𝑡1

 

+  
𝜕

𝜕𝒙1
((1 − 

1

2𝜏
)∏(1) + 

𝛿𝑡
4
(𝑪1 + 𝑪1

𝑻)) 

(5.37) 

where we have defined the first-order momentum flux as: 

 

∏𝑖𝑗
(1)
= ∑ 𝝃𝛼𝑖𝝃𝛼𝑗𝑓𝛼

(1)

𝛼

= −𝜏𝛿𝑡 [(u𝑖𝐹1𝑗 + u𝑗𝐹1𝑖) + 𝑐𝑠
2𝜌 (

𝜕u𝑖
𝜕𝑥1𝑗

+ 
𝜕u𝑗

𝜕𝑥1𝑖
)

− 
1

2
(𝐶1𝑖𝑗 + 𝐶1𝑗𝑖)] 

(5.38) 
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Taken together, we obtain the momentum equation on the 𝑡2 = 𝜖2𝑡 time scale as; 

 

𝜕(𝜌u𝑖)

𝜕𝑡2
= 𝛿𝑡 (𝑚 − 

1

2
)
𝜕𝐹1𝑖
𝜕𝑡1

 

+  
𝜕

𝜕𝑥𝑗
(𝜈𝜌 (

𝜕u𝑖
𝜕𝑥1𝑗

+ 
𝜕u𝑗

𝜕𝑥1𝑖
)

+  𝛿𝑡 [(𝜏 − 
1

2
) (u𝑖𝐹1𝑗 + u𝑗𝐹1𝑖)

− 
𝜏

2
(𝐶1𝑖𝑗 + 𝐶1𝑗𝑖) ]) 

(5.39) 

 

 𝜈 =  (𝜏 − 
1

2
) 𝑐𝑠

2𝛿𝑡 (5.40) 

At this point, we believe that a few comments about the multi-scale analysis above is in 

order. First we observe additional contributions to the viscous stress due to discrete 

effects and the presence of the body force Eq. (5.38). In addition, we notice the presence 

of addition spatial and temporal derivatives terms in Eqs. (5.34) and (5.37). These extra 

terms will influence the changes in the density and momentum. Consequently, Guo et al. 

(2002) proposed that to match the correct Navier-Stokes equation the velocity needs to be 

defined in a way so that the effect of the forcing term is included. Furthermore, the 

forcing sceme should be defined to cancel out the contributions of the force term to the 

momentum flux equation. In the next section, we provide brief description of existing 

methods of incorporating forcing term. 
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5.2 Review of Existing Methods of Incorporating the Forcing Term 

5.2.1 He Method: 

The forcing scheme proposed by He et al., (1997) takes the form   

 𝑚 = 0;   𝐴 = 0;   𝐁 = 𝐅    𝑎𝑛𝑑   𝐂 =  𝟎  (5.41) 

 

 Fα = 
𝜔𝛼𝐅 ⋅ 𝝃𝛼
𝑐𝑠2

 (5.42) 

 

 𝜌�̅� = 𝜌𝐯 =  𝜌𝐮 =  ∑ 𝝃𝛼𝑓𝛼
𝜶

 (5.43) 

Substituting in Eqs. (5.30), (5.34), (5.39) and combining the results on the 𝑡1 and 𝑡2 time 

scale we obtain the following macroscopic equations 

 
𝜕𝜌

𝜕𝑡
+ 
𝜕(𝜌�̅�)

𝜕𝒙
=  −

𝛿𝑡

2

𝜕𝐅

𝜕𝒙
 (5.44) 

 

 

𝜕(𝜌�̅�)

𝜕𝑡
+ 
𝜕(𝜌�̅��̅�)

𝜕𝒙

=  − 
𝜕(𝑐𝑠

2𝜌)

𝜕𝑥
+  𝜈

𝜕

𝜕𝑥
[𝜌 (

𝜕�̅�

𝜕𝒙
+ (

𝜕�̅�

𝜕𝒙
)
𝑇

)] + 𝐅

− 
𝛿𝑡

2
𝜖
𝜕𝐅

𝜕𝑡1
+  (𝜏 − 

1

2
) 𝛿𝑡

𝜕

𝜕𝒙
(�̅�𝐅 + �̅�𝐅T) 

(5.45) 

The first problem with this forcing scheme is that to match the Navier-Stokes equation 

the spatial and temporal changes of body force should only vary slightly. This implies 

that 𝐅 should be a constant force. Hence, this method is mainly used for applications that 
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involve constant body force. Despite this consideration, the last term in Eq. (5.45) may 

not be negligible even though F is a nonzero constant because of the velocity gradient.  

5.2.2 Luo Method:  

In the forcing scheme proposed independently by (Luo, 1998) and Marty et al. 

(1998), the representation of the force is derived from the kinetic equations and it takes 

the following form 

 𝑚 = 0;   𝐴 = 0;   𝐁 = 𝐅    𝑎𝑛𝑑   𝐂 =  2𝐅𝐯  (5.46) 

Such that the forcing term is  

 Fα = 𝜔𝛼 [
(𝝃𝛼 − 𝐯)

𝑐𝑠2
+
(𝝃𝛼 ∙ 𝐯)𝝃𝛼

𝑐𝑠4
] ∙ 𝐅 (5.47) 

where the fluid velocity �̅�, velocity used in the equilibrium density function 𝐮 and the 

velocity used in the forcing term 𝐯  are all equal 

 𝜌�̅� = 𝜌𝐯 =  𝜌𝐮 =  ∑ 𝝃𝛼𝑓𝛼
𝜶

 (5.48) 

As before, the macroscopic equations obtained by combining the results on the 𝑡1 and 𝑡2 

time scales can be given as  

 
𝜕𝜌

𝜕𝑡
+ 
𝜕(𝜌�̅�)

𝜕𝒙
=  −

𝛿𝑡

2

𝜕𝐅

𝜕𝒙
 (5.49) 
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𝜕(𝜌�̅�)

𝜕𝑡
+ 
𝜕(𝜌�̅��̅�)

𝜕𝒙

=  − 
𝜕(𝑐𝑠

2𝜌)

𝜕𝒙
+ 𝐅 +  𝜈

𝜕

𝜕𝒙
[𝜌 (

𝜕�̅�

𝜕𝒙
+ (

𝜕�̅�

𝜕𝒙
)
𝑇

)]

− 
𝛿𝑡

2
𝜖
𝜕𝐅

𝜕𝑡1
+  

𝛿𝑡

2

𝜕

𝜕𝒙
(�̅�𝐅 + �̅�𝐅T) 

(5.50) 

Although this method considered the contribution of the forcing term to the momentum 

flux, it however offered little to no improvements to the previous method. The additional 

terms that are present in the previous term are not eliminated in this method. Therefore, 

this method suffers from limitations like those found in the previous method.   

To address the limitations in the methods described so far, Ladd and Verberg 

(2001) proposed a new method that modifies the forcing term in Eq. (5.47). In this 

method, the forcing term is expanded in a power series in the particle velocity. This 

resulted in the redefinition of 𝐂 in Eq. (5.46) as shown below 

 𝑚 = 0;   𝐴 = 0;   𝐁 = 𝐅    𝑎𝑛𝑑     𝐂 =  (𝜏 − 
1

2
) (𝐯𝐅 + 𝐯𝐅T)  (5.51) 

Accordingly, the forcing term becomes 

 Fα = 𝜔𝛼 (1 −
1

2𝜏
) [
(𝝃𝛼 − 𝐯)

𝑐𝑠2
+
(𝝃𝛼 ∙ 𝐯)𝝃𝛼

𝑐𝑠4
] ∙ 𝐅 (5.52) 

and the corresponding macroscopic equations are  

 
𝜕𝜌

𝜕𝑡
+ 
𝜕(𝜌�̅�)

𝜕𝒙
=  −

𝛿𝑡

2

𝜕𝐅

𝜕𝒙
 (5.53) 
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𝜕(𝜌�̅�)

𝜕𝑡
+ 
𝜕(𝜌�̅��̅�)

𝜕𝒙

=  − 
𝜕(𝑐𝑠

2𝜌)

𝜕𝒙
+ 𝐅 +  𝜈

𝜕

𝜕𝒙
[𝜌 (

𝜕�̅�

𝜕𝒙
+ (

𝜕�̅�

𝜕𝒙
)
𝑇

)]

− 
𝛿𝑡

2
𝜖
𝜕𝐅

𝜕𝑡1
 

(5.54) 

As can be seen in Eq. (5.54), the contribution to the momentum flux by the additional 

term (�̅�𝐅 + �̅�𝐅T) vanishes. Meanwhile, the influence on the density due to spatial 

variation of the force (Eq. 5.53) and momentum flux due to temporal variation of the 

force are not eliminated. As before, if 𝐅 is constant, Eqs. (5.53) and (5.54) will be 

identical to the Navier-Stokes equation.  

Another version of the forcing term proposed by Ladd and Verberg (2001) required the 

redefinition of the fluid velocity to account for the effect of the spatial variation of the 

force on density of the fluid in Eq. (5.53).  

 𝜌�̅� =   ∑ 𝝃𝛼𝑓𝛼
𝜶

+ 
𝛿𝑡

2
𝐅 (5.55) 

Here, the velocity used in the computation of the equilibrium distribution function and 

the forcing term are unchanged from the earlier formulation.  

 𝜌𝐯 = 𝜌𝐮 =  ∑ 𝝃𝛼𝑓𝛼
𝜶

 (5.56) 
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This yields the following macroscopic equation  

 
𝜕𝜌

𝜕𝑡
+ 
𝜕(𝜌�̅�)

𝜕𝒙
=  0 (5.57) 

 

 

𝜕(𝜌�̅�)

𝜕𝑡
+ 
𝜕(𝜌�̅��̅�)

𝜕𝒙

=  − 
𝜕(𝑐𝑠

2𝜌)

𝜕𝒙
+  𝜈

𝜕

𝜕𝒙
[𝜌 (

𝜕�̅�

𝜕𝒙
+ (

𝜕�̅�

𝜕𝒙
)
𝑇

)] + 𝐅

− 
𝛿𝑡

2
𝜖2
𝜕𝐅

𝜕𝑡2
− 
3(𝛿𝑡)2

4

𝜕

𝜕𝒙
(
𝐅𝐅

𝜌
)

− 
𝛿𝑡

2
𝜈
𝜕

𝜕𝒙
[(
𝜕𝐅

𝜕𝒙
+ (

𝜕𝐅

𝜕𝒙
)
𝑇

)] 

(5.58) 

Although the continuity equation is obtained without any additional term, more additional 

terms were introduced into the momentum flux equation.  First, the term  
𝛿𝑡

2
𝜖2

𝜕𝐅

𝜕𝑡2
. This 

term may be considered negligible since 𝜖2 and 𝛿𝑡 are small. Secondly, the terms 
𝜕

𝜕𝒙
(
𝐅𝐅

𝝆
) 

and 
𝛿𝑡

2
𝜈
𝜕

𝜕𝒙
[(
𝜕𝐅

𝜕𝒙
+ (

𝜕𝐅

𝜕𝒙
)
𝑇

)] will clearly introduce some errors in the momentum flux 

equation.  

5.2.3 Shan and Chen Method: 

This method is referred to as the velocity shift method. The force is incorporated 

into the model by shifting the velocity in the equilibrium distribution function. Recently, 

following the theoretical comparative analysis by Huang et al. (2011), Li et al. (2012) 

expressed this scheme in a compact form that is like the general form of forcing scheme 
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previously discussed. Note that in the general form the shifted velocity is now absorbed 

into the forcing term in Eq. (5.59). Thus, the Shan and Chen method takes the from  

 𝑚 = 0;   𝐴 = 0;   𝐁 = 𝐅    𝑎𝑛𝑑     𝐂 =  (𝐯𝐅 + 𝐯𝐅T)  (5.59) 

with the forcing term, 

 Fα = 𝜔𝛼 [
(𝝃𝛼 − 𝐯)

𝑐𝑠2
+
(𝝃𝛼 ∙ 𝐯)𝝃𝛼

𝑐𝑠4
] ∙ 𝐅 (5.60) 

where the velocity used in the equilibrium distribution function is given as  

 𝜌𝐮 = ∑ 𝝃𝛼𝑓𝛼
𝜶

 (5.61) 

and the shifted velocity used in the forcing term as  

 𝜌𝐯 =   ∑ 𝝃𝛼𝑓𝛼
𝜶

+  𝜏
𝛿𝑡

2
𝐅 (5.62) 

The fluid velocity is now defined as  

 𝜌�̅� =   ∑ 𝝃𝛼𝑓𝛼
𝜶

+ 
𝛿𝑡

2
𝐅 (5.63) 

The macroscopic equation recovered from this method can be expressed as  

 
𝜕𝜌

𝜕𝑡
+ 
𝜕(𝜌𝐮)

𝜕𝒙
=  −

𝛿𝑡

2

𝜕𝐅

𝜕𝒙
 (5.64) 
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𝜕(𝜌𝐮)

𝜕𝑡
+ 
𝜕(𝜌𝐮)

𝜕𝒙

=  − 
𝜕(𝑐𝑠

2𝜌)

𝜕𝒙
+  𝐅 −  𝜖

𝛿𝑡

2

𝜕𝐅

𝜕𝑡1

+  𝜈
𝜕

𝜕𝒙
[𝜌 (

𝜕𝐮

𝜕𝒙
+ (

𝜕𝐮

𝜕𝒙
)
𝑇

)]

−  𝛿𝑡
𝜕

𝜕𝒙
[
1

2
(𝐮𝐅 + 𝐮𝐅T) − 𝜏2

𝐅𝐅

𝜌
] 

(5.65) 

From the equations, above, we can see that the Shan and Chen model does not recover 

the correct fluid flow macroscopic equations in the macroscopic limit. Various studies 

have demonstrated theoretically and numerically the problems associated with this 

method (Huang et al., 2011; Sun et al., 2012). However, Li et al., (2012) demonstrated 

that the coefficient of the term 
𝜕

𝜕𝒙
(
𝐅𝐅

𝜌
) in Eq. (5.63) is associated with the numerical 

stability of this method.  

5.2.4 Exact Difference Method: 

In the same study by Li et al., (2012), the exact-difference-method developed by 

Kupershtokh et al., (2009) was also reformulated in the compact general form of the 

forcing scheme. For the exact-difference-method, the force term is the difference of the 

equilibrium distribution function corresponding to the mass velocity after and before the 

action of the body force. After transforming to the general forcing term form, the 

resulting equations are like the ones derived for the Shan and Chen method. However, the 

definition of the fluid velocity and velocity used in the forcing term are identical. Thus, 

the macroscopic equations recovered is slightly different from the ones in the Shan and 

Chen method and determined as  
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 𝑚 = 0;   𝐴 = 0;   𝐁 = 𝐅    𝑎𝑛𝑑     𝐂 =  (𝐅𝐯 +  𝐯𝐅)  (5.66) 

The forcing is also chosen as  

 Fα = 𝜔𝛼 [
(𝝃𝛼 − 𝐯)

𝑐𝑠2
+
(𝝃𝛼 ∙ 𝐯)𝝃𝛼

𝑐𝑠4
] ∙ 𝐅 (5.67) 

Velocity used in the equilibrium distribution function is  

 𝜌𝐮 = ∑ 𝝃𝛼𝑓𝛼
𝜶

 (5.68) 

also, the fluid velocity and the velocity used in the forcing term is set to   

 𝜌�̅� = 𝜌𝐯 =   ∑ 𝝃𝛼𝑓𝛼
𝜶

+ 
𝛿𝑡

2
𝐅 (5.69) 

Therefore, we obtain the following macroscopic equations  

 
𝜕𝜌

𝜕𝑡
+ 
𝜕(𝜌𝐮)

𝜕𝒙
= −

𝛿𝑡

2

𝜕𝐅

𝜕𝒙
 (5.70) 

 

 

𝜕(𝜌𝐮)

𝜕𝑡
+ 
𝜕(𝜌𝐮𝐮)

𝜕𝒙

=  − 
𝜕(𝑐𝑠

2𝜌)

𝜕𝒙
+  𝐅 −  𝜖

𝛿𝑡

2

𝜕𝐅

𝜕𝑡1

+  𝜈
𝜕

𝜕𝒙
[𝜌 (

𝜕𝐮

𝜕𝒙
+ (

𝜕𝐮

𝜕𝒙
)
𝑇

)]

−  𝛿𝑡
𝜕

𝜕𝒙
[
1

2
(𝐮𝐅 + 𝐮𝐅T) −  𝜏𝛿𝑡

𝐅𝐅

𝜌
] 

(5.71) 
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5.2.5 Buick and Greated Method:  

Next, we consider the method introduced by Buick and Greated (2000). In this 

work, the fluid velocity is the same as the ones used in equilibrium distribution and 

forcing term. This velocity is defined to address the problem of spatial and temporal 

variation variations of the body force and it takes the following form   

 𝑚 =
1

2
;   A = 0;   𝐁 = (1 − 

1

2𝜏
) 𝐅       𝑎𝑛𝑑     𝐂 =  0 (5.72) 

Note here that  𝐂 =  0. This in a way makes the formulation like the popular method 

proposed by He et al., (1997) described earlier except for the discrete effects are 

accounted for and the velocities redefined.  

 𝜌�̅� = 𝜌𝐯 =  𝜌𝐮 =   ∑ 𝝃𝛼𝑓𝛼
𝜶

+ 
𝛿𝑡

2
𝐅 (5.73) 

 

 Fα = 𝜔𝛼 (1 − 
1

2𝜏
)
𝝃𝛼 ∙ 𝐅

𝑐𝑠2
 (5.74) 

The resulting macroscopic equations are 

 
𝜕𝜌

𝜕𝑡
+ 
𝜕(𝜌�̅�)

𝜕𝒙
=  0 (5.75) 
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𝜕(𝜌�̅�)

𝜕𝑡
+ 
𝜕(𝜌�̅��̅�)

𝜕𝒙

=  − 
𝜕(𝑐𝑠

2𝜌)

𝜕𝒙
+ 𝐅 +  𝜈

𝜕

𝜕𝒙
[𝜌 (

𝜕�̅�

𝜕𝒙
+ (

𝜕�̅�

𝜕𝒙
)
𝑇

)]

+ (𝜏 −
1

2
) 𝛿𝑡

𝜕

𝜕𝒙
(�̅�𝐅 + �̅�𝐅T) 

(5.76) 

Despite the changes made to the velocities and the 𝐁 term in Eq. (5.72), the correct 

hydrodynamic equations are still not recovered. We notice the presence of an additional 

term given as (𝜏 −
1

2
) 𝛿𝑡

𝜕

𝜕𝒙
(�̅�𝐅 + �̅�𝐅T). This term contains velocity gradients and may 

not vanish even in applications that involve constant body force.  

5.2.6 Guo Method: 

Finally, we provide a brief description of the method proposed by Guo et al. (2002). Per 

this method, the forcing term can be defined so that the contribution of the body force to 

the momentum flux cancels out. In addition, the velocity is redefined to include the effect 

of the external force in the continuity equation. In keeping with these facts, the method 

takes the following form   

 

𝑚 = 
1

2
;   𝐴 = 0;   𝐁 = (1 − 

1

2𝜏
) 𝐅    𝑎𝑛𝑑     𝑪

=  (1 − 
1

2𝜏
) (𝐯𝐅 + 𝐯𝐅T) 

(5.77) 

 

 𝜌�̅� = 𝜌𝐯 =  𝜌𝐮 =   ∑ 𝝃𝛼𝑓𝛼
𝜶

+ 
𝛿𝑡

2
𝐅 (5.78) 
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with the forcing term given by  

 F𝛼 = 𝜔𝛼 (1 − 
1

2𝜏
) [
(𝝃𝛼 − 𝐯)

𝑐𝑠2
+
(𝝃𝛼 ∙ 𝐯)𝝃𝛼

𝑐𝑠4
] ∙ 𝐅 (5.79) 

and the corresponding macroscopic equation taking the form  

 
𝜕𝜌

𝜕𝑡
+ 
𝜕(𝜌�̅�)

𝜕𝒙
=  0 (5.80) 

 

 
𝜕(𝜌�̅�)

𝜕𝑡
+ 
𝜕(𝜌�̅��̅�)

𝜕𝒙
=  − 

𝜕(𝑐𝑠
2𝜌)

𝜕𝒙
+  𝐅 +  𝜈

𝜕

𝜕𝒙
[𝜌 (

𝜕�̅�

𝜕𝒙
+ (

𝜕�̅�

𝜕𝒙
)
𝑇

)] (5.81) 

We can see from the equations above that the Navier-Stokes equation is clearly recovered 

by this method.  

  The different forcing schemes described in this chapter provide insights into the 

effect of forcing scheme on recovering consistent hydrodynamic equations. In addition, 

the choice of forcing scheme is very important for numerical stability. Details of the 

performance of the forcing methods mentioned in this section can be found in Huang et 

al. (2011), Sun et al. (2012) and Li et al. (2012).   
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6. CHAPTER SIX: IMPROVEMENTS TO THE SINGLE COMPONENT 

MULTIPHASE LATTICE BOLTZMANN METHOD 

The performance of different pseudo-potential forcing schemes was investigated 

in recent studies by Huang et al. (2011) and Sun et al. (2012). In these studies, they 

discovered that the original Shan and Chen (SC) multiphase model yields inaccurate 

surface tension for different density ratio and relaxation times. Furthermore, it was also 

found that both the SC scheme and exact difference scheme (EDM) (Kupershtokh et al., 

2009) produce relaxation time dependent coexistence curve. Li et al., (2012), through 

numerical analysis, discussed the physics behind the phenomenon that different forcing 

schemes exhibit different numerical performance and made a case that mechanical 

stability condition is dependent on the forcing scheme. In addition, the theoretical 

analysis in this studies revealed that the additional terms in the SC and EDM schemes is 

the reason for the relaxation time dependent coexistence curves (Huang et al., 2011). 

Based on these findings, an improved forcing scheme that can achieve thermodynamic 

consistency was developed by modifying the Guo et al., (2002) forcing scheme. This 

improved forcing scheme was later extended to simulate multiphase flows at large 

density ratio and relatively high Reynolds number via a multi-relaxation-time collision 

operator (Li et al., 2013). In this section, we provide details of the improvements to the 

pseudo-potential single component multiphase (SCMP) models, particularly with a focus 

on incorporating the appropriate equation of states to achieve large density ratio and 

thermodynamic consistency.  
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6.1 Correction to Ideal Equation of State 

In dense gas the mean free path is comparable with molecular dimensions. 

Therefore, additional mechanisms for momentum and energy transfer must be considered 

(Nourgaliev et al., 2003). Many intermolecular potential can be approximated by the 

Lennard-Jones potential (Rowlinson, 1982; Koplik and Banavar, 1995). However, in 

cases where the particles are located on fixed points on the lattice the modelization of the 

short-range molecular attractions needs to be handled with care (Sbragaglia and Shan, 

2011). Hence, Shan and Chen (1994) proposed to adopt a pairwise interparticle potential 

that embeds the role of exclusion volume directly (effective mass). This pseudopotential 

may also be viewed as a generalized density (effect of the pseudopotential is heuristically 

explained by the fact that density is implicitly a measure of the average distance between 

two particles), obeying the properties of going to zero in the limit 𝜌 → 0 and saturating 

to a constant value at large density. This feature of approaching a constant density at 

large density prevent mass collapse of the phase with high density due to attractive 

interactions and thus increase the numerical stability (Sbragaglia et al., 2006). Although, 

the pseudopotential 𝜓(𝜌) have always been given based on phenomenological 

considerations, its form can also be derived in comparison with a free energy approach in 

other to guarantee the thermodynamic consistency of the theory. Interested reader can 

find details of this derivation in (Sbragaglia and Shan, 2011). Next, we present the 

corrections to the ideal equation of state for pseudo-potential interaction force.  
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The interaction force experienced by the particles at 𝑥𝑖 from the particles at 𝑥𝑖
′ can be 

written as 

 𝐅 =  −G(|𝒙 −  𝒙′|)𝜓(𝒙)𝜓(𝒙′) (6.1) 

 

This force is formulated in such a way that the following constraints are satisfied (Shan, 

2008):  

a) Interactions should satisfy Newton’s third law and conserve momentum 

globally 

b) Interactions should be along the vector between the two interacting lattice 

sites 

where G is a constant of proportionality that represents the overall interaction strength on 

the nonideal interactions.  

Now when the sites that interacts with the particles on 𝑥𝑖 are limited to N-

neighbors, not necessarily the nearest neighbors, the total force exerted on particles at 𝑥𝑖 

is therefore given by summing over all 𝑥𝑖
′. Given limited links that are defined as 𝜉𝑖𝛼 

(does not necessarily have to be the same as those involved in the lattice Boltzmann 

dynamic) and requiring that the interactions be isotropic (i.e. |𝑥𝑖 −  𝑥𝑖
′| =  |𝜉𝑖𝛼| provide 

the same interaction strength G(|𝑥𝑖 −  𝑥𝑖
′|) is a function of |𝜉𝑖𝛼| ) we obtain: 

 F𝑖 = −G𝜓(𝒙)∑𝑤(|𝜉𝑖𝛼|
2)𝜓(𝒙 + 𝒙′)𝜉𝑖𝛼

𝛼

 (6.2) 

where 𝑤(|𝜉𝑖𝛼|
2) is the normalized weighting factor.  
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To obtain the hydrodynamic consequences of this interaction at the continuum limit, let 

the lattice scale approach zero  𝜉𝑖𝛼  → 0. Now expand, 𝜓(𝑥𝑖 + 𝑥𝑖
′) around 𝑥𝑖 via the 

Taylor’s expansion 

 

F𝑖 = −G𝜓(𝑥𝑖) (𝕃𝑖𝑗
(2)
𝜕𝑗𝜓 + 

1

3!
𝕃𝑖𝑗𝑘𝑙
(4)
𝜕𝑗𝑘𝑙𝜓 + 

1

5!
𝕃𝑖𝑗𝑘𝑙𝑝𝑞
(6)

𝜕𝑗𝑘𝑙𝑝𝑞𝜓

+ 
1

7!
𝕃𝑖𝑗𝑘𝑙𝑝𝑞𝑚𝑛
(8)

𝜕𝑗𝑘𝑙𝑝𝑞𝑚𝑛𝜓 +⋯) 

(6.3) 

where we have defined  

 𝕃𝑖1𝑖2𝑖3⋯𝑖𝑛
(𝑛)

= ∑𝑤(|𝝃𝛼|
2)(𝝃𝛼)𝑖1⋯ (𝝃𝛼)𝑖𝑛

𝛼

 (6.4) 

Since 𝜓(𝜌) is a function of density, the interaction force F𝑖 is a function of the gradient 

and higher derivatives of the density field Eq. (6.3). Therefore, if the density distribution 

is axially symmetric the density gradient should only have radial components and for the 

interaction force F𝑖 to be perfectly aligned with the density gradient all tensors 𝕃𝑖1𝑖2𝑖3⋯𝑖𝑛
(𝑛)

 

must be fully isotropic (Shan, 2008). Taking the form  

 {
𝕃(2𝑛+1)      0

𝕃𝑖1𝑖2𝑖3⋯𝑖2𝑛
(𝟐𝑛)  𝑒(2𝑛)𝑐

(2𝑛)∆𝑖1𝑖2𝑖3⋯𝑖𝑛
(2𝑛)  (6.5) 

Where 𝑒(2𝑛) are arbitrary scalar constant, 𝑐(2𝑛) is the lattice constant and ∆𝑖1𝑖2𝑖3⋯𝑖𝑛
(2𝑛)

 is the 

2𝑛-ranked fully symmetric tensor given by the recurrence relation (Wolfram, 1986) 

  

{
 
 

 
 ∆𝑖𝑗

(2)
= 𝛿𝑖𝑗

∆𝑖𝑗𝑘𝑙
(4)

                                      = 𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘

         ∆𝑖1𝑖2𝑖3⋯𝑖𝑛
2𝑛                                         = ∑𝛿𝑖1𝑖2∆𝑖2𝑖3⋯𝑖𝑗−1𝑖𝑗+1⋯𝑖2𝑛

𝑛

2𝑛

𝑗=2

 (6.6) 
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Given that it is impossible to have all 𝕃(𝑛) isotropic, the problem now is how to optimize 

weights 𝑤(|𝝃𝛼|
2) to maximize the isotropy of  𝕃(𝑛) . More details of this optimization 

procedure are provided in (Sbragaglia et al. 2007)  

For example, let us consider a two-dimensional square lattice, if the nearest-neighbor 

sites are used, only the tensor up to the fourth order can be made isotropic.   As an 

extension, if the next level of neighbors is included, tensors up to the eight order can be 

made isotropic. For the two cases, the coefficients 𝑒2 and 𝑒4 are given by the weights 

(Shan, 2008)  

 𝑒2 = 2𝑤(1) +  4𝑤(2) +  8𝑤(4) +  20𝑤(5) +  16𝑤(8) + …  (6.7) 

 

 𝑒4 =
1

2
𝑤(1) +  2𝑤(2) +  8𝑤(4) +  25𝑤(5) +  32𝑤(8) + … (6.8) 

 For the force F𝑖 to be a good approximation to the gradient of the density gradient, 𝕃(𝑛) 

must be a unit tensor. Therefore, the weights are normalized such that 𝑒2 = 1. For the 

standard D2Q9 lattice the weights are given as  

 

𝑤(1) =  
1

3
, 𝑤(2) =  

1

12
, 𝑤(|𝝃𝛼|

2) = 0  for |𝝃𝛼|
2 > 2,

𝑒4 = 
1

3
 

(6.9) 

Once the form of the pseudopotential force and the appropriate weights have been 

determined, a correction to the ideal-state equation induced by the pseudopotential to 

obtain the correct form of the pressure tensor and ensure mechanical stability condition is 

satisfied at the interface is in order.  
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In continuum, the pressure tensor 𝑃𝑖𝑗
𝑐  can be defined as follows (Benzi et al., 2006; 

Sbragalia 2007; Li et al., 2013):   

 𝜕𝑗𝑃𝑖𝑗
𝑐 = 𝜕𝑗(𝑐𝑠

2𝜌)𝛿𝑖𝑗 − 𝐹𝑖 (6.10) 

Subsequently, the leading terms of the interaction force 𝐹𝑖 can be obtained from the 

Taylor expansion in Eq. (6.3) 

 𝐹𝑖 =  −𝐺𝑐
2 [𝑒2𝜓𝛁𝜓 + 

𝑒4𝑐
2

2
𝜓𝛁(∇2𝜓) + … ] (6.11) 

Which can be further simplified as shown below 

 

𝐹𝑖 =  −𝐺𝑐
2 [𝑒2𝜓𝛁𝜓 + 

𝑒4𝑐
2

2
𝜓𝛁(∇2𝜓) + … ]  

                =  −
𝐺𝑐2𝑒2
2

𝛁𝜓2 −
𝐺𝑐4𝑒4
2

[𝛁(𝜓∇2𝜓) − ∇2𝜓𝛁𝜓] + … 

                =  −
𝐺𝑐2𝑒2
2

𝛁𝜓2 −
𝐺𝑐4𝑒4
2

𝛁(𝜓∇2𝜓)

+ 
𝐺𝑐4𝑒4
2

[𝛁 ∙ (𝛁𝜓𝛁𝜓) − 
1

2
𝛁|𝛁𝜓|2] + … 

 

(6.12) 

To obtain the continuum form of the pressure tensor 𝑃𝑖𝑗, Eq. (6.12) can be substituted in 

Eq. (6.10) 

 

𝑃𝑖𝑗
𝑐 = (𝑐𝑠

2𝜌 +
𝐺𝑐2𝑒2
2

𝜓2 +  
𝐺𝑐4𝑒4
4

|𝛁𝜓|2  +  
𝐺𝑐4𝑒4
2

𝜓∇2𝜓)𝛿𝑖𝑗

− 
𝐺𝑐4𝑒4
2

𝛁𝜓𝛁𝜓 + 𝑂(𝜕4) 

(6.13) 
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It is instructive to note that, there is always a degree of arbitrariness in the derivation 

above because there exists a sort of gauge invariance in the definition of the pressure 

tensor (Rowlinson, 1982). In addition, the derivation involves imposing the constraint in 

Eq. (6.10) while the Taylor expansion of the force field is verified up to second order. 

Consequently, the integration of approximate force field may not guarantee exact 

mechanical balance. Therefore, Shan (2008) outlined a general approach, using the 

discrete form of the pressure tensor, that can guarantee exact mechanical balance. Next, 

we provide brief detail of Shan (2008) approach.  

To derive the discrete form of the pressure tensor, consider an infinitesimal 

surface 𝑑𝐴𝑗, then take the differential force 𝑑𝐹𝑖 as the interaction force through  𝑑𝐴𝑗. 

Since the interaction pressure tensor can be defined as the momentum transfer rate 

through an area of surface, 𝑃𝑖𝑗 can be defined as: 

 −𝑃𝑖𝑗𝑑𝐴𝑗  =  𝑑𝐹𝑖 (6.14) 

 That is, given an infinitesimal surface element 𝑑𝐴𝑗  and taking the differential force 𝑑𝐹𝑖 

as the interaction force acting across 𝑑𝐴𝑗 . The 𝑃𝑖𝑗 can be defined as the momentum 

transfer rate through the surface  𝑑𝐴𝑗  

Integrating over a closed volume  

 −∮𝑃𝑖𝑗𝑑𝐴𝑗  =  ∫𝐹𝑖𝑑Ω (6.15) 

And applying the gauss integration theorem be obtain  

 −∑𝑃𝑖𝑗𝐴𝑗  =  ∑𝐹𝑖 (6.16) 
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Now the discrete form of the pressure tensor can be expressed as (Shan, 2008; Sbragaglia 

and Shan, 2011) 

 𝑃𝑖𝑗 = 𝑐𝑠
2𝜌𝛿𝑖𝑗 + 

𝐺

2
𝜓(𝒙)∑𝑤(|𝜉𝑖𝛼|

2)𝜓(𝒙 + 𝒙′)𝜉𝑖𝛼𝜉𝑗𝛼
𝛼

 (6.17) 

In other to calculate the density profile and the surface tension, we considered Eq. (6.17) 

and its generalization (Shan, 2008) and apply it to the case of nearest-neighbor 

interaction. Applying Taylor expansion to Eq. (6.17) yields 

 𝑃𝑖𝑗 = (𝑐𝑠
2𝜌 +

𝐺𝑐2

2
𝜓2 + 

𝐺𝑐4

12
𝜓∇2𝜓 ) 𝛿𝑖𝑗 + 

𝐺𝑐4

6
𝜓𝛁𝛁𝜓 (6.18) 

Now for a flat interface and let us suppose that the interface develops along the x-

direction in a two-phase equilibrium system. The condition for mechanical stability 

implies that the normal component remain constant and equal to the bulk pressure 𝑃0 

(Shan and Chen 1994; Shan, 2008). Hence, the normal pressure tensor can be written as 

 𝑃𝑜 = 𝑃𝑥𝑥 = 𝑐𝑠
2𝜌 +

𝐺𝑐2

2
𝜓2 + 

𝐺𝑐4

12
(𝛼 (

𝑑𝜓

𝑑𝑥
)
2

+  𝛽𝜓
𝑑2𝜓

𝑑𝑥2
) (6.19) 

where  𝛼 = 1 − 3𝑒4 and 𝛽 = 1 + 6𝑒4. For the case of nearest-neighbor 𝑒4 =  
1
3⁄  

Using the relation 

 
1

2

𝑑

𝑑𝜓
(
𝑑𝜓

𝑑𝑥
)
2

= 
𝑑2𝜓

𝑑𝑥2
 (6.20) 

And making the change of variable 𝜑 = (
𝑑𝜓

𝑑𝑥
)
2

  

 𝛼𝜑 + 
𝛽

2
𝜓
𝑑𝜑

𝑑𝜓
=
𝛽

2
𝜓1+

𝑑(𝜓− 𝜑)

𝑑𝜓
=  
𝛽

2

𝜓1+

𝜓′
𝑑

𝑑𝜌
[
𝜓′2

𝜓
(
𝑑𝜌

𝑑𝑥
)
2

] (6.21) 
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With 휀 =  −2𝛼 𝛽⁄  and 𝜓′ = 
𝑑𝜓

𝑑𝜌
 

one can rewrite the mechanical equilibrium as an ordinary differential equation as 

 𝑃0 = 𝑐𝑠
2𝜌 +

𝐺𝑐2

2
𝜓2 +

𝐺𝑐4𝛽

24
 
𝜓1+

𝜓′
𝑑

𝑑𝜌
[
𝜓′2

𝜓
(
𝑑𝜌

𝑑𝑛
)
2

] (6.22) 

Eq. (6.22) can be rearranged as 

 (𝑃0 − 𝑐𝑠
2𝜌 −

𝐺𝑐2

2
𝜓2)

24

𝐺𝑐4𝛽

𝜓′

𝜓1+
= 

𝑑

𝑑𝜌
[
𝜓′2

𝜓
(
𝑑𝜌

𝑑𝑛
)
2

] (6.23) 

Integrating yields 

 
24

𝐺𝑐4𝛽
∫ (𝑃0 − 𝑐𝑠

2𝜌 −
𝐺𝑐2

2
𝜓2)

𝜓′

𝜓1+
𝑑𝜌

𝜌𝑙

𝜌𝑔

= ∫  𝑑 [
𝜓′2

𝜓
(
𝑑𝜌

𝑑𝑛
)
2

]
𝜌𝑙

𝜌𝑔

 (6.24) 

 

 
24

𝐺𝑐4𝛽
∫ (𝑃0 − 𝑐𝑠

2𝜌 −
𝐺𝑐2

2
𝜓2)

𝜓′

𝜓1+
𝑑𝜌

𝜌𝑙

𝜌𝑔

=
𝜓′2

𝜓
(
𝑑𝜌

𝑑𝑛
)
2

|
𝜌𝑔

𝜌𝑙

 (6.25) 

The equation of state in both phases can be expressed as  

 𝑃0(𝜌𝑙) = 𝑐𝑠
2𝜌𝑙 +

𝐺𝑐2

2
𝜓(𝜌𝑙)

2 ,        𝑃0(𝜌𝑔) = 𝑐𝑠
2𝜌𝑔 +

𝐺𝑐2

2
𝜓(𝜌𝑔)

2
 (6.26) 

Therefore (
𝑑𝜌

𝑑𝑛
) = 0 in each single-phase region and   

 
𝜓′2

𝜓
(
𝑑𝜌

𝑑𝑛
)
2

|
𝜌𝑔

𝜌𝑙

= 0 (6.27) 

Finally, we obtain the relation below for the mechanical stability condition  
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 ∫ (𝑃0 − 𝑐𝑠
2𝜌 −

𝐺𝑐2

2
𝜓2)

𝜓′

𝜓1+
𝑑𝜌

𝜌𝑙

𝜌𝑔

= 0 (6.28) 

The combination of the Eq. (6.28) and the conditions in Eq. (6.26) can be used to solve 

for 𝑃0, 𝜌𝑙 and 𝜌𝑔 via numerical integration to arbitrary precision.  

The surface tension can be defined as the integral along the coordinate normal to the 

interface of the mismatch between the normal and transverse components of the pressure 

tensor (Rowlinson, 1982). 

 

𝜎 =  ∫ (𝑃0 − 𝑃𝑇)𝑑𝑥
∞

−∞

= ∫ (𝑃𝑥𝑥 − 𝑦𝑦)𝑑𝑥
∞

−∞

=
𝑒4𝐺𝑐

4

2
∫ |𝜕𝑥𝜓|

2𝑑𝑥
∞

−∞

 

(6.29) 

To be consistent with the thermodynamic equation of state (Eq. 6.26), Yuan and Schaefer 

(2006) redefined the pseudopotential function as  

 𝜓 =  √
2(𝑃o −  𝜌𝑐𝑠2 )

𝐺𝑐2
 (6.30) 

With this definition of the pseudopotential function, different EOS can be incorporated 

into the pseudopotential model. We will use the Carnahan-Starling (Carnahan and 

Starling 1970a) equation of state (CS-EOS) shown below in our single component 

multiphase (SCMP) simulations. 

 

𝑝 =  𝜌𝑅𝑇 
1 + 

𝑏𝜌
4 ⁄ + (

𝑏𝜌
4 ⁄ )

2

 −   (
𝑏𝜌

4 ⁄ )
3

(1 − 
𝑏𝜌

4 ⁄ )
3  − 𝑎𝜌2 (6.31) 

where 𝑎 = 0.4963(𝑅𝑇𝑐)
2 𝑃𝑐⁄  , 𝑏 = 0.1873𝑅𝑇𝑐 𝑃𝑐⁄ . Here we set 𝑎 = 1 and 𝑏 = 4 
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Therefore, the critical temperature and pressure are  𝑇𝑐 = 0.094 and  𝑃𝑐 = 0.0044 

repsecitvely. Next, we verify if the SCMP LB model with CS-EOS described above can 

reproduce the correct liquid and vapor densities corresponding to different temperatures 

as given by the Maxwell construction. In this study, we used the Exact-Difference-

Method (EDM) Kupershtokh et al., (2009) scheme described in chapter five to 

incorporate the forcing term as shown below 

 F𝛼 = 𝑓𝛼
𝑒𝑞(𝜌, 𝐮 + Δ𝐮) − 𝑓𝛼

𝑒𝑞(𝜌, 𝐮) (6.32) 

where 𝐮 =  
∑ 𝑓𝛼𝝃𝛼𝛼

𝜌⁄  and  Δ𝐮 =  
𝐅𝛿𝑡

𝜌⁄   

F in this case is the total force acting on a fluid particle in multiphase flow and it is given 

as: 

 𝐅 =  𝑭𝑓 + 𝑭𝑠 + 𝑭𝑒 (6.33) 

Also, the actual fluid velocity for EDM scheme is defined as  

�̅� =  𝐮 + 
𝛿𝑡𝐅

2𝜌⁄  

We considered the case of a flat surface with the computational domain given as 

N𝑥 × N𝑦 × N𝑧 = 101 × 201× 101 . Periodic boundary condition was set for all 

boundaries and the region  0 ≤ 𝑦 ≤ 100 is filled with gas while the rest is filled with 

liquid. The density field was initialized as  

 
𝜌(𝑦) =  𝜌𝑔 + 

𝜌𝑙 − 𝜌𝑔

2
 × [tanh(

2(𝑦 − 100)

𝑊
)] (6.34) 

where 𝑊 is the initial interface thickness and it is chosen as 5 lattice units. We compared 

our results to the ones in Huang et al. (2011) and observe good agreement (Table 6.1).  
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Table 6.1. Density ratios obtained for CS-EOS at different temperatures 𝜏 = 0.6 

T/Tc 
𝝆𝒍
𝝆𝒈⁄  

𝝆𝒍
𝝆𝒈⁄  Huang et al., (2011)  

𝝆𝒍
𝝆𝒈⁄  Analytical 

0.95 0.2098/0.06576 0.2099/0.06583 0.2097/0.06553 

0.90 0.2473/0.04368 0.2475/0.04380 0.2471/0.04299 

0.85 0.2783/0.02997 0.2786/0.02912 0.2781/0.02781 

0.80 0.3061/0.01838 0.3065/0.01854 0.3060/0.01674 

 

6.2 Proposed Pseudo-Potential-Based Fluid-Solid Interaction  

Near a solid node, there exist an adhesion force 𝑭𝑠  between the fluid and the 

solid. There are generally two classes of implementations of this adhesion force, namely: 

density-based interaction (Martys and Chen 1996) and pseudopotential-based interaction 

(Raiskinmaki et al., 2002). In a recent study, Li et al., (2014) compared these different 

methods and proposed a modified pseuodopotential-based method that is defined as: 

 𝑭𝑠 = − 𝐺𝑤𝜓(𝑥)∑𝓌(|𝜉𝛼|
2)𝑆(𝒙 + 𝝃𝛼)𝝃𝛼

𝛼

 (6.35) 

where 𝐺𝑤 is the absorption parameter, 𝑆(𝒙 + 𝝃𝛼) =  𝜙(𝑥)𝑠(𝒙 + 𝝃𝛼) is the switch 

function. Note that 𝑠(𝒙 + 𝝃𝛼) is equal to 0 or 1 for a fluid or solid phase respectively. In 

Li et al. (2014), the choice of  𝜙(𝑥) is 𝜙(𝑥) =  𝜓(𝑥) where 𝜓(𝑥) is the effective mass at 

the boundary fluid node. Here we propose another modified model that introduces a 

virtual effective mass on the solid boundary node as follows: 
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  𝑆(𝒙 + 𝝃𝛼) =  𝜙(𝑥 + 𝝃𝛼)𝑠(𝒙 + 𝝃𝛼) (6.36) 

 

such that  𝜙(𝑥 + 𝒆𝛼) is equal to 0 for a fluid node and  𝜙(𝑥 + 𝒆𝛼) =

 𝜓𝑣𝑖𝑟𝑢𝑡𝑎𝑙 (𝜌𝑣𝑖𝑟𝑡𝑢𝑎𝑙
𝑎𝑣𝑔 (𝒙𝑠))  for a solid node and   𝜌𝑣𝑖𝑟𝑡𝑢𝑎𝑙

𝑎𝑣𝑔 (𝒙𝑠) =  
1

𝑁𝑓
∑ 𝜌 (𝒙𝑠 + 𝝃𝛼𝑓)𝛼𝑓  

where  𝒙𝑠 is the site of the solid node, 𝑁𝑓 is the number of fluid nodes that directly 

connect to the solid node side and 𝛼𝑓 are all indices 𝛼 for which 𝒙𝑠 + 𝝃𝛼 is a boundary 

fluid node.  

We then evaluated the proposed model for pseudo-potential based adhesion interaction 

force against the model proposed in (Li et al., 2014) in terms of density variation near the 

wall. In this simulation, we adopted a N𝑥 × N𝑦 × N𝑧 = 101 × 201× 101 lattice. No-slip 

boundary conditions were applied in all three directions and no body force was applied. 

The initial density field was initialized as shown in Eq. (6.34).  

The parameter 𝐺𝑤 is adjusted to simulate identical contact angles in both models. From 

Fig. 6.1, our result shows no deviation in the profile of the density variation near the 

boundary fluid node for the liquid phase. However, in the vapor phase, we noticed some 

variation in the magnitude of the vapor density. Our proposed model produced a lower 

vapor density.  In our proposed model the ratio of the liquid density to the vapor density 

is (0.3057/0.0182) while in the Li et al. (2014) model the ratio is (0.3057/0.0193). 

Therefore, in the next chapter we used the model proposed in Eq. 6.36  
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Fig. 6.1 Comparison of density variation on the fluid boundary node for our proposed 

model and Li et al. (2014). (a) Vapor phase (b) Liquid phase 
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6.3 Multi-Relaxation Lattice Boltzmann Equation 

In the preceding section, we presented corrections to the ideal equations of state 

for nonideal fluids. In addition, we also presented a detailed derivation of the mechanical 

stability condition and Yuan-Schaefer (2006) scheme for incorporating different 

equations of state. We ended the section by verifying that C-S EOS can be used to 

simulate different density ratios and proposing a modified scheme for incorporating fluid-

solid interaction force. Here, 15-velocity three-dimensional MRT model is adopted and 

we present the Chapman-Enskog multiscale analysis for the model (Xu et al., 2015). 

The discrete velocity set for the three-dimensional, fifteen-velocity (D3Q15) model is 

given as 

 

𝝃𝜶 = {|𝜉𝑥⟩, |𝜉𝑦⟩, |𝜉𝑧⟩, }

= 𝑐 [
0
0
0
  
1
0
0
  
−1
0
0
  
0
1
0
  
0
−1
0
  
0
0
1
  
0
0
−1
  
1
1
1
  
−1
1
1
  
1
−1
1
  
−1
−1
1
  
1
1
−1
  
−1
1
−1
  
1
−1
−1
  
−1
−1
−1
] 

(6.37) 

We consider, in a concise vector form, the evolution equation with a source term 

that incorporates molecular interaction that can model interfacial dynamics such as phase 

segregation and surface tension,  

 

|𝑓(𝒙 + 𝝃𝛼𝛿𝑡, 𝑡 + 𝛿𝑡)⟩ − |𝑓(𝒙, 𝑡)⟩

=  −𝚲 (|𝑓(𝒙, 𝑡)⟩ − |𝑓𝑒𝑞(𝒙, 𝑡)⟩) + 𝛿𝑡 (𝐈 −
1

2
𝚲) |F⟩ 

(6.38) 

where we have used the Dirac notation of bra ket |∙⟩ vectors to denote column vector. In 

addition,   
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 |𝑓(𝒙 + 𝝃𝛼𝛿𝑡, 𝑡 + 𝛿𝑡)⟩ =  [𝑓(𝒙 + 𝝃0𝛿𝑡, 𝑡 + 𝛿𝑡), 𝑓(𝒙 + 𝝃1𝛿𝑡, 𝑡 + 𝛿𝑡),

… , 𝑓(𝒙 + 𝝃14𝛿𝑡, 𝑡 + 𝛿𝑡)]
T is the vector of the state after advection 

|𝑓(𝒙, 𝑡)⟩ =  [𝑓0(𝒙, 𝑡), 𝑓1(𝒙, 𝑡), … , 𝑓14(𝒙, 𝑡)]
T is vector of the distribution function 

of velocity 𝝃𝛼 at location  𝒙 and time 𝑡. 

|𝑓𝑒𝑞(𝒙, 𝑡)⟩ =  [𝑓0
𝑒𝑞(𝒙, 𝑡), 𝑓1

𝑒𝑞(𝒙, 𝑡), … , 𝑓14
𝑒𝑞(𝒙, 𝑡)]T is the vector of the 

equilibrium distribution function and 𝚲 is the collision matrix.  

The left-hand side and right-hand side of Eq. (6.37) represents the streaming and collision 

steps of the evolution of the lattice Boltzmann equation. Here the collision is 

accomplished through a generalized relaxation process such that the distribution function 

can approach the local equilibrium values at characteristic relaxation time scales given by 

a collision matrix (Premnath and Abraham, 2007). It is noteworthy that the LBGK model 

is a special case in which the collision matrix is a diagonal matrix with elements 1 𝜏⁄  

where 𝜏 is the dimensionless relaxation matrix (He et al. 1998). 

The equilibrium distribution function can be obtained from a Taylor series 

expansion of the Maxwell-Boltzmann distribution in terms of fluid velocity 𝐮  (He et al., 

1997) and it is given by 

 𝑓𝛼
𝑒𝑞 = 𝜔𝛼𝜌 [1 +

𝐮 ⋅ 𝝃𝜶
𝑐𝑠2

+
𝐮𝐮: (𝝃𝜶𝝃𝜶 − 𝑐𝑠

2𝑰)

2𝑐𝑠4
] (6.39) 

The source term Fα is used to model interfacial dynamics and it is defined as (Premnath 

and Abraham, 2007)  

  Fα = 𝜔𝛼 [
(𝝃𝜶 − 𝐯)

𝑐𝑠2
+
(𝝃𝜶 ∙ 𝐯)

2𝑐𝑠4
𝝃𝜶] ∙ 𝐅 (6.40) 
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Next, we will use the generalized lattice Boltzmann model introduced by 

(D’Humieres, 1992). In this approach, the collision step will be executed in moment 

space that is constructed from the distribution function through a transform matrix. This 

transform matrix comprises of linearly independent set of vectors (details will be 

provided later in this chapter). The choice of performing the collision in moment space is 

predicated on the understanding, from kinetic theory, that physical processes in fluids can 

be approximately described by interaction among modes of the collision operator and that 

these modes are related to the moments. For example, the hydrodynamic modes are linear 

combinations of mass and momenta moments (Lallemand and Luo, 2000). Hence, 

moment representation provides a convenient way of incorporating the physics into the 

lattice Boltzmann equation. Below we rewrite the evolution equation in moment space.   

 

|𝑓(𝒙 + 𝝃𝛼𝛿𝑡, 𝑡 + 𝛿𝑡)⟩ − |𝑓(𝒙, 𝑡)⟩

=  −𝐌−𝟏 [�̂� (|𝑓(𝒙, 𝑡)⟩ − |𝑓𝑒𝑞(𝒙, 𝑡)⟩)

+ 𝛿𝑡 (𝐈 −
1

2
�̂�) |F̂⟩] 

(6.41) 

In the above equation, the advection and collision steps are executed in the 

velocity and moment space respectively. This is done so that the time scales of the 

various processes can be controlled independently since all the modes of the collision 

operator are orthogonal. The transform matrix  𝐌  comprises of linearly independent set 

of vectors that is used to transform a vector in the vector space spanned by the discrete 

velocities into a vector in the vector space spanned by the velocity moments of the 

discrete distribution function per the following linear mapping 
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 |𝑓⟩ = 𝐌|𝑓⟩ and |𝑓⟩ =  𝐌−1|𝑓⟩ (6.42) 

Considering that our desire is to reduce the collision matrix to the appropriate diagonal 

form shown below, 

 �̂� =  𝑑𝑖𝑎𝑔[𝑆𝜌, 𝑆𝑒 , 𝑆𝜖 , 𝑆𝑗 , 𝑆𝑞 , 𝑆𝑗 , 𝑆𝑞 , 𝑆𝑗, 𝑆𝑞 , 𝑆𝜈 , 𝑆𝜈 , 𝑆𝜈 , 𝑆𝜈 , 𝑆𝜈 , 𝑆𝑥𝑦𝑧] (6.43) 

an orthogonal transform matrix can be constructed to comprise of normalized orthogonal 

dual basis set (D’Humieres, 1992). This basis set can be obtained by applying the Gram-

Schmidt orthogonaliztion procedure to the monomials of the Cartesian components of the 

discrete velocities. Details of this procedure can be found in (Lallemand and Luo, 2003). 

We provide the results for the components of the corresponding 15 orthogonal basis 

column vectors for the 3D cubic lattice with 15 discrete velocities below  

 |𝜌⟩𝛼 = |𝝃𝛼|
0 (6.44a) 

 |𝑒⟩𝛼 = |𝝃𝛼|
2 − 2 (6.44b) 

 |𝜖⟩𝛼 =
1

2
(15|𝝃𝛼|

4 − 55|𝝃𝛼|
2 + 32) (6.44c) 

 |𝑗𝑥⟩𝛼 = 𝜉𝛼𝑥 (6.44d) 

 |𝑞𝑥⟩𝛼 =
1

2
(5|𝝃𝛼|

2 − 13)𝜉𝛼𝑥 (6.44e) 

 |𝑗𝑦⟩𝛼 = 𝜉𝛼𝑦 (6.44f) 

 |𝑞𝑦⟩𝛼 =
1

2
(5|𝝃𝛼|

2 − 13)𝜉𝛼𝑦 (6.44g) 

 |𝑗𝑧⟩𝛼 = 𝜉𝛼𝑧 (6.44h) 

 |𝑞𝑧⟩𝛼 =
1

2
(5|𝝃𝛼|

2 − 13)𝜉𝛼𝑧 (6.44i) 

 |𝑝𝑥𝑥⟩𝛼 = 3𝜉𝛼𝑥
2 − |𝝃𝛼|

2 (6.44j) 
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 |𝑝𝑤𝑤⟩𝛼 = 𝜉𝛼𝑦
2 − 𝜉𝛼𝑧

2
 (6.44k) 

 |𝑝𝑥𝑦⟩𝛼 = 𝜉𝛼𝑥𝜉𝛼𝑦 (6.44l) 

 |𝑝𝑦𝑧⟩𝛼 = 𝜉𝛼𝑦𝜉𝛼𝑧 (6.44m) 

 |𝑝𝑧𝑥⟩𝛼 = 𝜉𝛼𝑧𝜉𝛼𝑥 (6.44n) 

 |𝑚𝑥𝑦𝑧⟩𝛼 = 𝜉𝛼𝑥𝜉𝛼𝑦𝜉𝛼𝑧 (6.44o) 

The above components of the orthogonal basis column vectors form the transform matrix. 

Each basis vector has an explicit physical significance related to the moments of  𝑓𝛼 in 

the discrete velocity space. For example, |𝜌⟩ is the mode related to the density; |𝑒⟩ is the 

mode related to the kinetic energy; |𝜖⟩ is the mode related to the kinetic energy 

square; |𝑗𝑥⟩ , |𝑗𝑦⟩, |𝑗𝑧⟩ are the modes related to the  𝑥, 𝑦, 𝑧 components of the momentum 

respectively; |𝑞𝑥⟩, |𝑞𝑦⟩, |𝑞𝑧⟩ are the modes related to the  𝑥, 𝑦, 𝑧 components of the 

energy flux; |𝑝𝑥𝑥⟩, |𝑝𝑤𝑤⟩, |𝑝𝑥𝑦⟩, |𝑝𝑦𝑧⟩, |𝑝𝑧𝑥⟩ are the modes corresponding to the diagonal 

and off-diagonal components of the symmetric traceless viscous stress tensor; and finally 

|𝑚𝑥𝑦𝑧⟩ the mode related anti-symmetric third-order moment.  

For the case where 𝑐 = 1 (i.e. unit lattice and time step), the simplified form of the 

transform matrix is given a 
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𝐌 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−2 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1
16 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 1 −1 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 −4 4 1 1 1 1 −1 −1 −1 −1
0 2 2 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1
0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 (6.45) 

The main challenge in using lattice Boltzmann equation to simulate isotropic fluid is how 

to make the flow independent of the symmetry of the underlying lattice structure (Luo 

and Lellamand, 2000). Although the collision process does not change the conserved 

modes, however, the non-conserved modes are affected and they in turn causes changes 

in the fluxes of some of the conserved modes (Lellemand and Luo, 2003). Hence, to 

obtain the equilibrium functions that are equivalent to the Taylor series expansion of the 

Maxwell-Boltzmann equilibrium distribution function in velocity space, we need to 

obtain the values of the coupling parameters for these non-conserved modes that will 

optimize the isotropy and the Gallilean invariance of the model. Details of this process 

are described in (Lellemand and Luo, 2000). In what follows, we provide a summary of 

this process.  Firstly, we assumed that the non-conserved moments relax linearly towards 

the equilibrium values that are functions of the conserved moments. We provide the 

relaxation equation for the non-conserved moments below (Lellenad and Luo, 2003)    
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 𝑒∗ = 𝑒 − 𝑠𝑒[𝑒 − 𝑒
(𝑒𝑞)] (6.46a) 

 𝜖∗ = 𝜖 − 𝑠𝜖[𝜖 − 𝜖
(𝑒𝑞)] (6.46b) 

 𝑞𝑥
∗ = 𝑞𝑥 − 𝑠𝑞[𝑞𝑥 − 𝑞𝑥

(𝑒𝑞)] (6.46c) 

 𝑞𝑦
∗ = 𝑞𝑦 − 𝑠𝑞[𝑞𝑦 − 𝑞𝑦

(𝑒𝑞)] (6.46d) 

 𝑞𝑧
∗ = 𝑞𝑧 − 𝑠𝑞[𝑞𝑧 − 𝑞𝑧

(𝑒𝑞)] (6.46e) 

 𝑝𝑥𝑥
∗ = 𝑝𝑥𝑥 − 𝑠𝜈[𝑝𝑥𝑥 − 𝑝𝑥𝑥

(𝑒𝑞)] (6.46f) 

 𝑝𝑤𝑤
∗ = 𝑝𝑤𝑤 − 𝑠𝜈[𝑝𝑤𝑤 − 𝑝𝑤𝑤

(𝑒𝑞)] (6.46g) 

 𝑝𝑥𝑦
∗ = 𝑝𝑥𝑦 − 𝑠𝜈[𝑝𝑥𝑦 − 𝑝𝑥𝑦

(𝑒𝑞)] (6.46h) 

 𝑝𝑦𝑧
∗ = 𝑝𝑦𝑧 − 𝑠𝜈[𝑝𝑦𝑧 − 𝑝𝑦𝑧

(𝑒𝑞)] (6.46i) 

 𝑝𝑥𝑧
∗ = 𝑝𝑥𝑧 − 𝑠𝜈[𝑝𝑥𝑧 − 𝑝𝑥𝑧

(𝑒𝑞)] (6.46j) 

 

Note that the quantities with and without superscript * represent the post and pre-

collision values, respectively. Furthermore, the form of the equilibrium values of the non-

conserved modes need to be chosen based on the corresponding moments obtained from 

transform matrix and the equilibrium distribution function in velocity space. However, 

this values should satisfy the symmetry of the problem. Hence, the optimal values of the 

coupling parameters are obtained via the mode analysis of the dispersion equation 

(Lellemand and Luo, 2000). The non-conserved moments obtained from the linear 

analysis are as follows 

 𝑒𝑒𝑞 = −1 + |𝐮| (6.47a) 

 𝜖𝑒𝑞 =  1 − 5|𝐮| (6.47b) 
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 𝑞𝑥
𝑒𝑞 = −

7

3
𝑢𝑥 (6.47c) 

 𝑞𝑦
𝑒𝑞 = −

7

3
𝑢𝑦 (6.47d) 

 𝑞𝑧
𝑒𝑞 = −

7

3
𝑢𝑧 (6.47e) 

 3𝑝𝑥𝑥
𝑒𝑞 =  2𝑢𝑥

2 − 𝑢𝑦
2 − 𝑢𝑧

2 (6.47f) 

 𝑝𝑤𝑤
𝑒𝑞 = 𝑢𝑦

2 − 𝑢𝑧
2 (6.47g) 

 𝑝𝑥𝑦
𝑒𝑞 = 𝑢𝑥𝑢𝑦 (6.47h) 

 𝑝𝑦𝑧
𝑒𝑞 = 𝑢𝑦𝑢𝑧 (6.47i) 

 𝑝𝑥𝑧
𝑒𝑞 = 𝑢𝑥𝑢𝑧 (6.47j) 

 𝑚𝑥𝑦𝑧
𝑒𝑞 = 0 (6.47k) 

where the kinematic viscosity 𝜈 and the bulk viscosity 휁 of the model are  

 𝜈 =  
1

3
(
1

𝑠𝜈
−
1

2
) 𝛿𝑡 (6.48) 

 

 휁 =  
2

9
(
1

𝑠𝑒
−
1

2
) 𝛿𝑡 (6.49) 
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6.3.1 Improved Forcing Term 

Recall the general forcing scheme,  

 Fα = 𝜔𝛼 [
𝐁 ∙ 𝝃𝜶
𝑐𝑠2

+
𝐂: (𝝃𝜶𝝃𝜶 − 𝑐𝑠

2𝐈)

2𝑐𝑠4
] (6.50) 

 

 𝐁 = 𝐵𝑒𝐅,        𝐂 = 𝐶𝑒(𝐯𝐅 + 𝐯𝐅
T),   𝐶𝑒 = 𝐵𝑒 = (1 −

1

2𝜏
) (6.51) 

Recovered macroscopic equation is of the form,  

 
𝜕𝜌

𝜕𝑡
+ 
𝜕(𝜌𝐮)

𝜕𝒙
=  𝛿𝑡 (𝑚 −

1

2
)
𝜕𝐅

𝜕𝒙
 (6.52) 

 

 

𝜕(𝜌𝐮)

𝜕𝑡
+ 
𝜕(𝜌𝐮𝐮)

𝜕𝒙

=  − 
𝜕(𝑐𝑠

2𝜌)

𝜕𝒙
+  𝑭 −  𝜖𝛿𝑡 (𝑚 −

1

2
)
𝜕𝐅

𝜕𝑡1

+ 
𝜕

𝜕𝒙
[𝜌𝜈 (

𝜕𝐮

𝜕𝒙
+ (

𝜕𝐮

𝜕𝒙
)
𝑇

)]

−  𝛿𝑡
𝜕

𝜕𝒙
[(𝜏 −

1

2
) (𝐮𝐅 +  𝐮𝐅𝐓) −  𝜏𝐶𝑒(𝐯𝐅 + 𝐯𝐅

T)] 

(6.53) 

where, 𝐮 =  ∑ 𝑓𝛼𝒆𝜶 +  𝑚𝛿𝑡𝐅𝛼  is the velocity used in the equilibrium function and  𝐯 is 

the velocity used in the forcing term. 

For Guo et al. (2002) from chapter 5, Eq. (5.78), the velocities used in the equilibrium 

function 𝐮, the forcing term 𝐯 and overall fluid velocity �̅� are identical and it is given as 
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�̅� = 𝐯 = 𝐮 =  ∑𝑓𝛼𝒆𝜶 + 
1

2
𝛿𝑡𝐅

𝛼

 

𝐶𝑒 = 𝐵𝑒 = (1 −
1

2𝜏
) 

(6.54) 

This model correctly recovers the Navier-Stokes equation without any additional term 

yields,  

 
𝜕𝜌

𝜕𝑡
+ 
𝜕(𝜌𝐮)

𝜕𝒙
=  0 (6.55) 

 

 
𝜕(𝜌𝐮)

𝜕𝑡
+ 
𝜕(𝜌𝐮𝐮)

𝜕𝒙
=  − 

𝜕(𝑐𝑠
2𝜌)

𝜕𝒙
+  𝐅 +

𝜕

𝜕𝒙
[𝜌𝜈 (

𝜕𝐮

𝜕𝒙
+ (

𝜕𝐮

𝜕𝒙
)
𝑇

)] (6.56) 

To resolve the problem of thermodynamic inconsistency. Li et al. (2012) proposed an 

improved version of Guo method. According to the mechanical stability condition of the 

pseudopotential model presented earlier in this chapter shown below, 

 ∫ (𝑃0 − 𝑐𝑠
2𝜌 −

𝐺𝑐2

2
𝜓2)

𝜓′

𝜓1+
𝑑𝜌

𝜌𝑙

𝜌𝑔

= 0 (6.57) 

when the Yuan and Schaffer (2006) kind of pseudopotential is used, there is an 

opportunity to approximately achieve thermodynamic consistency by adjusting the 

parameter 휀 =  −2𝛼 𝛽⁄ . However, because the value of the parameter 휀 is fixed once the 

form of the interaction force and the corresponding weights are chosen we will need 

another tuning parameter. On the other hand, according to the definition of the normal 

pressor tensor for a flat surface in Eq. (6.19) 휀 can be tuned by making the coefficient 

before the term  (
𝑑𝜓

𝑑𝑛
)
2

 adjustable. Interestingly, (
𝑑𝜓

𝑑𝑛
)
2

 is related to the following two 
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terms in the pressure tensor; 𝛁𝜓𝛁𝜓 and |𝛁𝜓|2𝐈. Therefore, the coefficient of (
𝑑𝜓

𝑑𝑛
)
2

 can 

be made adjustable by introducing a tuning constant that will modify either of the two 

terms above while maintaining the overall form of the pressure tensor.   

Recently, (Li et al., 2012) presented an improved forcing scheme within the 

BGK framework. In this work, theoretical and numerical analyses were first performed 

on the Shan and Chen model (1993) and the exact difference method (Kupershtokh et al. 

2009) forcing schemes different. These analyses revealed the relationship between the 

coefficients before the extra term −
𝜕

𝜕𝒙
(
𝐅𝐅

𝜌
) (Chapter 5, Eqs. (5.64) and (5.70)) and 

numerical performance of these schemes. Noting that the additional term is the 

divergence of a tensor and can be given by the term  

 −
𝜕

𝜕𝒙
(
𝐅𝐅

𝜌
) =  −𝐺2𝑐4

𝜕

𝜕𝒙
(
𝜓2

𝜌
𝛁𝜓𝛁𝜓) + 𝑂(𝜕5) (6.58) 

Li et al., (2012) adjusted the parameter 휀  by modifying the coefficient of the term 𝛁𝜓𝛁𝜓  

in the pressure tensor while maintaining the overall form of the pressure tensor. In a later 

work (Li et al., 2013), utilized the MRT collision operator to derived a corresponding 

forcing scheme in moment space. Xu et al., (2015) later extended the forcing scheme to a 

3D model. Below we briefly introduce the 3D MRT pseudopotential lattice Boltzmann 

model with the improved forcing scheme. 

  Starting from Guo et al., (2002) forcing scheme, Li et al. (2012) introduced an 

improved velocity that is a slight modification of the velocity in Guo model given by  
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�̅� = 𝐯 = 𝐮 = ∑𝑓𝛼𝒆𝜶 + 
1

2
(
𝛿𝑡
𝜌
+

2𝜎

(𝜈𝜓2)
 ) 𝐅

𝛼

 

𝐶𝑒 = 𝐵𝑒 = (1 −
1

2𝜏
) 

(6.59) 

Performing the Chapmans-Enskog multi-scale analysis, we obtain the following 

hydrodynamic equations  

 
𝜕𝜌

𝜕𝑡
+ 
𝜕(𝜌𝐮)

𝜕𝒙
=  0 (6.60) 

 

 

𝜕(𝜌𝐮)

𝜕𝑡
+ 
𝜕(𝜌𝐮𝐮)

𝜕𝒙

=  − 
𝜕(𝑐𝑠

2𝜌)

𝜕𝒙
+  𝐅 +

𝜕

𝜕𝒙
[𝜌𝜈 (

𝜕𝐮

𝜕𝒙
+ (

𝜕𝐮

𝜕𝒙
)
𝑇

)]

− 𝛿𝑡
𝜕

𝜕𝒙
(2𝜎

𝐅𝐅

𝜓2
) 

(6.61) 

By noting that the addition term 
𝜕

𝜕𝒙
(2𝜎

𝐅𝐅

𝜓2
) is the divergence of a tensor it can therefore 

be absorbed into the normal pressure tensor. Through Taylor expansion of the pseuo-

potential force as defined in Eq. (6.2) we obtain the leading terms of the interaction force. 

Subsequently, the leading term of the interaction force can be used to determine the 

simplified form of the addition term in Eq. (6.61) as,  

 −
𝜕

𝜕𝒙
(2𝜎

𝐅𝐅

𝜓2
) =  −2𝐺2𝑐4𝜎

𝜕

𝜕𝒙
(∇𝜓∇𝜓) + 𝑂(𝜕5) (6.62) 
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Meanwhile, the pressure tensor of the model can now be redefined as:  

 𝐏 = 𝐏original + 2𝐺
2𝑐4𝜎(𝛁𝜓𝛁𝜓) (6.63) 

where  휀 =  −2 (𝛼 + 24𝛿𝑡𝐺𝜎) 𝛽⁄  is now in equation (6.21). Note that although the 

coefficient of the term 𝛁𝜓𝛁𝜓 is altered, however the nature of the pressure tensor 

remains the same (Eq. 6.13).  

Next, we determine the macroscopic equations for the MRT 3D lattice Boltzmann 

model with the improved forcing scheme. We perform the Chapman-Enskog multi-scale 

analysis in moment space.  

 𝑓𝛼(𝒙 + 𝝃𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) =  ∑ 휀𝑛(𝜕𝑡 + 𝝃𝛼 ∙ 𝛁)
𝑛𝑓𝛼(𝒙, 𝑡)

𝑛=0

 (6.64) 

 

 𝑓𝛼 = ∑휀𝑛𝑓𝛼
(𝑛)

𝑛=0

 (6.65) 

 

 𝜕𝑡 = ∑휀𝑛𝜕𝑡𝑛
(𝑛)

𝑛=1

 (6.66) 

Applying the above expansions to the lattice Boltzmann equation. We obtain the 

following relationship for the zeroth; first and second-order expansion in 휀 

O(휀0):  𝑓𝛼
(0) = 𝑓𝛼

𝑒𝑞   (6.67) 

 

O(휀1):  (𝜕𝑡1 + 𝝃𝛼 ∙ 𝛁)𝑓𝛼
(0) = −∑𝚲𝑓𝛽

(1)

𝛽

+∑(𝐈 −
𝚲

2
)𝐹𝛽

𝛽

 (6.68) 
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O(휀2): 

 𝜕𝑡2𝑓𝛼
(0) + (𝜕𝑡1 + 𝝃𝛼 ∙ 𝛁)∑(𝐈 −

𝚲

2
) 𝑓𝛽

(1)

𝛽

+ 
𝛿𝑡
2
(𝜕𝑡1 + 𝝃𝛼 ∙ 𝛁)∑(𝐈 −

𝚲

2
)𝐹𝛽

𝛽

= −∑ 𝚲𝑓𝛽
(2)

𝛽
 

(6.69) 

Next, we multiplied Eqs. (6.67) - (6.69) by the transform matrix to transform the 

equations into moment space.   

O(휀0):  �̂�(0) = �̂�(𝑒𝑞)  (6.70) 

 

O(휀1):  (𝜕𝑡1 + �̂� ∙ 𝛁)�̂�
(0) = −�̂��̂�(1) + (𝐈 −

1

2
�̂�) �̂� (6.71) 

 

O(휀2): 

 𝜕𝑡2�̂�
(0) + (𝜕𝑡1 + �̂� ∙ 𝛁) (𝐈 −

1

2
Λ̂) �̂�(1)

+ 
𝛿𝑡
2
(𝜕𝑡1 + �̂� ∙ 𝛁) (𝐈 −

1

2
Λ̂) �̂�

= −
𝚲

𝛿𝑡

̂
�̂�(2) 

(6.72) 

where  �̂� = 𝐌𝝃𝛼𝐌
−1,  
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 �̂� = 𝐌𝐅 =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

𝟐𝐯 ∙ 𝐅 + 
6𝜎|𝐅|2

𝜓2𝛿𝑡(𝑠𝑒−1 − 0.5)
−10𝐯 ∙ 𝐅

𝐹𝑥

−
𝟕

𝟑
𝐹𝑥

𝐹𝑦

−
𝟕

𝟑
𝐹𝑦

𝐹𝑧

−
𝟕

𝟑
𝐹𝑧

4𝑣𝑥𝐹𝑥 − 2𝑣𝑦𝐹𝑦 − 2𝑣𝑧𝐹𝑧
2𝑣𝑦𝐹𝑦 − 2𝑢𝑧𝐹𝑧
𝑣𝑥𝐹𝑦 + 𝑣𝑦𝐹𝑥
𝑣𝑦𝐹𝑧 + 𝑣𝑧𝐹𝑦
𝑣𝑥𝐹𝑧 + 𝑣𝑧𝐹𝑥

0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (6.73) 

and  

�̂�(1) = |𝑓(1)⟩  = [0, 𝑒(1), 𝜖(1),
𝛿𝑡
2
F𝑥, 𝑞𝑥

(1),

𝛿𝑡
2
F𝑦, 𝑞𝑦

(1),
𝛿𝑡
2
F𝑧, 𝑞𝑧

(1), 3𝑝𝑥𝑥
(1), 𝑝𝑤𝑤

(1) , 𝑝𝑥𝑦
(1) , 𝑝𝑦𝑧

(1), 𝑝𝑥𝑧
(1), 𝑚𝑥𝑧𝑦

(1)  ]T 

We can now obtain the components of the first-order equations in moment space by 

substituting Eq. (6.68), in Eq. (6.66) as  

𝜕𝑡1𝜌 + 𝜕𝑥(𝜌𝑢𝑥) + 𝜕𝑦(𝜌𝑢𝑦) + 𝜕𝑧(𝜌𝑢𝑧) = 0 (6.74a) 

𝜕𝑡1(𝜌(−1 + |𝐮|
2)) −

1

3
 (𝜕𝑥(𝜌𝑢𝑥) + 𝜕𝑦(𝜌𝑢𝑦) + 𝜕𝑧(𝜌𝑢𝑧))

= −
𝑠𝑒
𝛿𝑡
𝑒(1) + (1 −

1

2
𝑠𝑒)(2𝐯 ∙ 𝐅 +

6𝜎|𝐅|2

𝜓2𝛿𝑡(𝑠𝑒−1 − 0.5)
) 

(6.74b) 
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𝜕𝑡1(𝜌(1 − 5|𝐮|
2)) −

7

3
 (𝜕𝑥(𝜌𝑢𝑥) + 𝜕𝑦(𝜌𝑢𝑦) + 𝜕𝑧(𝜌𝑢𝑧))

= −
𝑠𝜖
𝛿𝑡
𝜖(1) + (1 −

1

2
𝑠𝜖) (10𝐯 ∙ 𝐅) 

(6.74c) 

𝜕𝑡1(𝜌𝑢𝑥) + 𝜕𝑥(𝑐𝑠
2𝜌 + 𝜌𝑢𝑥

2) + 𝜕𝑦(𝜌𝑢𝑥𝑢𝑦) + 𝜕𝑧(𝜌𝑢𝑥𝑢𝑧)

= −
1

2
𝑠𝑗𝐹𝑥 + (1 −

1

2
𝑠𝑗) 𝐹𝑥 

(6.74d) 

𝜕𝑡1 (−
7

3
𝜌𝑢𝑥) + 𝜕𝑥 (−

7

9
𝜌 +

1

3
𝜌(−7𝑢𝑥

2 + 5𝑢𝑦
2 + 5𝑢𝑧

2))

+ 𝜕𝑦(𝜌𝑢𝑥𝑢𝑦) + 𝜕𝑧(𝜌𝑢𝑥𝑢𝑧)

= −
𝑠𝑞

𝛿𝑡
𝑞𝑥
(1) −

7

3
 (1 −

1

2
𝑠𝑗) 𝐹𝑥 

(6.74e) 

𝜕𝑡1(𝜌𝑢𝑦) + 𝜕𝑥(𝜌𝑢𝑥𝑢𝑦)  + 𝜕𝑦(𝑐𝑠
2𝜌 + 𝜌𝑢𝑦

2) + 𝜕𝑧(𝜌𝑢𝑦𝑢𝑧)

= −
1

2
𝑠𝑗𝐹𝑦 + (1 −

1

2
𝑠𝑗) 𝐹𝑦 

(6.74f) 

𝜕𝑡1 (−
7

3
𝜌𝑢𝑦) + 𝜕𝑥(𝜌𝑢𝑥𝑢𝑦)

+ 𝜕𝑦 (−
7

9
𝜌 +

1

3
𝜌(−5𝑢𝑥

2 − 7𝑢𝑦
2 + 5𝑢𝑧

2)) 

+ 𝜕𝑧(𝜌𝑢𝑦𝑢𝑧) = −
𝑠𝑞

𝛿𝑡
𝑞𝑦
(1) −

7

3
 (1 −

1

2
𝑠𝑗) 𝐹𝑦 

(6.74g) 

𝜕𝑡1(𝜌𝑢𝑧) + 𝜕𝑥(𝜌𝑢𝑥𝑢𝑦)  + 𝜕𝑦(𝜌𝑢𝑦𝑢𝑧) + 𝜕𝑧(𝑐𝑠
2𝜌 + 𝜌𝑢𝑧

2)

= −
1

2
𝑠𝑗𝐹𝑧 + (1 −

1

2
𝑠𝑗) 𝐹𝑧 

(6.74h) 
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𝜕𝑡1 (−
7

3
𝜌𝑢𝑧) + 𝜕𝑥(𝜌𝑢𝑥𝑢𝑦) + 𝜕𝑦(𝜌𝑢𝑦𝑢𝑧)

+ 𝜕𝑧 (−
7

9
𝜌 +

1

3
𝜌(5𝑢𝑥

2 + 5𝑢𝑦
2 − 7𝑢𝑧

2))  

= −
𝑠𝑞

𝛿𝑡
𝑞𝑧
(1) −

7

3
 (1 −

1

2
𝑠𝑗) 𝐹𝑧 

(6.74i) 

𝜕𝑡1 (𝜌(2𝑢𝑥
2 − 𝑢𝑦

2 − 𝑢𝑧
2)) +

2

3
(𝜕𝑥(2𝜌𝑢𝑥) + 𝜕𝑦(𝜌𝑢𝑦) + 𝜕𝑧(𝜌𝑢𝑧))  

= −3
𝑠𝜈
𝛿𝑡
𝑃𝑥𝑥
(1) + (1 −

1

2
𝑠𝜈) (4𝑣𝑥𝐹𝑥 − 2𝑣𝑦𝐹𝑦 − 2𝑣𝑧𝐹𝑧) 

(6.74j) 

𝜕𝑡1 (𝜌(𝑢𝑦
2 − 𝑢𝑧

2)) +
2

3
(𝜕𝑦(𝜌𝑢𝑦) − 𝜕𝑧(𝜌𝑢𝑧))  

= −
𝑠𝜈
𝛿𝑡
𝑃𝑤𝑤
(1) + (1 −

1

2
𝑠𝜈) (2𝑣𝑦𝐹𝑦 − 2𝑣𝑧𝐹𝑧) 

(6.74k) 

𝜕𝑡1(𝜌𝑢𝑥𝑢𝑦) +
1

3
(𝜕𝑥(𝜌𝑢𝑦) + 𝜕𝑦(𝜌𝑢𝑥))  

= −
𝑠𝜈
𝛿𝑡
𝑃𝑥𝑦
(1)
+ (1 −

1

2
𝑠𝜈) (2𝑣𝑥𝐹𝑦 − 2𝑣𝑦𝐹𝑥) 

(6.74l) 

𝜕𝑡1(𝜌𝑢𝑦𝑢𝑧) +
1

3
(𝜕𝑦(𝜌𝑢𝑧) + 𝜕𝑧(𝜌𝑢𝑦))  

= −
𝑠𝜈
𝛿𝑡
𝑃𝑦𝑧
(1) + (1 −

1

2
𝑠𝜈) (2𝑣𝑦𝐹𝑧 − 2𝑣𝑧𝐹𝑦) 

(6.74m) 

𝜕𝑡1(𝜌𝑢𝑥𝑢𝑧) +
1

3
(𝜕𝑥(𝜌𝑢𝑧) + 𝜕𝑧(𝜌𝑢𝑥))  

= −
𝑠𝜈
𝛿𝑡
𝑃𝑧𝑥
(1)
+ (1 −

1

2
𝑠𝜈) (2𝑣𝑥𝐹𝑧 − 2𝑣𝑧𝐹𝑥) 

(6.74n) 

𝜕𝑥(𝜌𝑢𝑦𝑢𝑧) + 𝜕𝑦(𝜌𝑢𝑥𝑢𝑧) + 𝜕𝑧(𝜌𝑢𝑥𝑢𝑦) = −
𝑠𝑥𝑦𝑧

𝛿𝑡
𝑚𝑥𝑦𝑧
(1)

 (6.74o) 

 



148 

148 

 

Similarly, for the components of the second-order equations in moment space, we are 

interested only in the dynamical equations of the conserved moments. Hence, we present 

only the second-order equations of the conserved moments below 

 𝜕𝑡2𝜌 = 0 (6.75) 

 

𝜕𝑡2(𝜌𝑢𝑥) −
𝛿𝑡
2
𝜕𝑡1 [(1 −

𝑠𝑗

2
)𝐹𝑥] + 𝜕𝑥 [(1 −

𝑠𝑒
2
)
1

3
𝑒(1) + (1 −

𝑠𝜈
2
)𝑃𝑥𝑥

(1)]

+ 𝜕𝑦 [(1 −
𝑠𝜈
2
)𝑃𝑥𝑥

(1)] + 𝜕𝑧 [(1 −
𝑠𝜈
2
)𝑃𝑥𝑧

(1)]

+
𝛿𝑡
2
𝜕𝑡1 [(1 −

𝑠𝑗

2
) 𝐹𝑥]

+
𝛿𝑡
2
𝜕𝑥 [

2

3
(1 −

𝑠𝑒
2
) (𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)

+
2

3
(1 −

𝑠𝜈
2
) (2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)

+
1

3
(1 −

𝑠𝑒
2
) (

6𝜎|𝐅|2

𝜓2𝛿𝑡(𝑠𝑒−1 − 0.5)
)]

+
𝛿𝑡
2
𝜕𝑦 [(1 −

𝑠𝜈
2
) (𝑣𝑥𝐹𝑦 + 𝑣𝑦𝐹𝑥)]

+
𝛿𝑡
2
𝜕𝑦 [(1 −

𝑠𝜈
2
) (𝑣𝑥𝐹𝑧 + 𝑣𝑧𝐹𝑥)] = 0 

(6.76) 
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𝜕𝑡2(𝜌𝑢𝑦) −
𝛿𝑡
2
𝜕𝑡1 [(1 −

𝑠𝑗

2
) 𝐹𝑦]

+ 𝜕𝑥 [(1 −
𝑠𝜈
2
)𝑃𝑥𝑦

(1)]+𝜕𝑦 [(1 −
𝑠𝑒
2
)
1

3
𝑒(1)

+ (1 −
𝑠𝜈
2
)
1

2
𝑃𝑤𝑤
(1) − (1 −

𝑠𝜈
2
)
1

2
𝑃𝑥𝑥
(1)]

+ 𝜕𝑧 [(1 −
𝑠𝜈
2
)𝑃𝑦𝑧

(1)] +
𝛿𝑡
2
𝜕𝑡1 [(1 −

𝑠𝑗

2
) 𝐹𝑦]

+
𝛿𝑡
2
𝜕𝑥 [(1 −

𝑠𝜈
2
) (𝑣𝑥𝐹𝑦 + 𝑣𝑦𝐹𝑥)]

+
𝛿𝑡
2
𝜕𝑦 [(1 −

𝑠𝜈
2
)
2

3
(−𝑣𝑥𝐹𝑥 + 2𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧)

+
2

3
(1 −

𝑠𝜈
2
) (𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)

+
1

3
(1 −

𝑠𝑒
2
)(

6𝜎|𝐅|2

𝜓2𝛿𝑡(𝑠𝑒−1 − 0.5)
)]

+
𝛿𝑡
2
𝜕𝑧 [(1 −

𝑠𝜈
2
)𝑃𝑦𝑧

(1)
] = 0 

(6.77) 
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𝜕𝑡2(𝜌𝑢𝑧) −
𝛿𝑡
2
𝜕𝑡1 [(1 −

𝑠𝑗

2
) 𝐹𝑧]

+ 𝜕𝑥 [(1 −
𝑠𝜈
2
)𝑃𝑥𝑧

(1)] +𝜕𝑦 [(1 −
𝑠𝜈
2
)𝑃𝑦𝑧

(1)]

+ 𝜕𝑧 [(1 −
𝑠𝑒
2
)
1

3
𝑒(1) − (1 −

𝑠𝜈
2
)
1

2
𝑃𝑤𝑤
(1)

− (1 −
𝑠𝜈
2
)
1

2
𝑃𝑥𝑥
(1)] +

𝛿𝑡
2
𝜕𝑡1 [(1 −

𝑠𝑗

2
) 𝐹𝑧]

+
𝛿𝑡
2
𝜕𝑥 [(1 −

𝑠𝜈
2
) (𝑣𝑥𝐹𝑧 + 𝑣𝑧𝐹𝑥)]

+
𝛿𝑡
2
𝜕𝑦 [(1 −

𝑠𝜈
2
) (𝑣𝑦𝐹𝑧 + 𝑣𝑧𝐹𝑦)]

+
𝛿𝑡
2
𝜕𝑧 [(1 −

𝑠𝜈
2
)
2

3
(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧)

−
2

3
(1 −

𝑠𝜈
2
) (𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 − 2𝑣𝑧𝐹𝑧)

+
1

3
(1 −

𝑠𝑒
2
)(

6𝜎|𝐅|2

𝜓2𝛿𝑡(𝑠𝑒−1 − 0.5)
)] = 0 

(6.78) 

 

𝑒(1) ,  𝜖(1),𝑃𝑥𝑥
(1)

 , 𝑃𝑤𝑤
(1)

, 𝑃𝑥𝑦
(1)

, 𝑃𝑦𝑧
(1)

, 𝑃𝑥𝑧
(1)

 are unknown. In other to evaluate these 

unknowns, we rearranged Eqs. (6.74b) - (6.74o) and use the continuity and momentum 

equations Eqs. (6.74a), (6.74d), (6.74f), (6.74h) to simplify the resulting expression. 

Neglecting terms of  𝑂(𝑀𝑎3) and higher, we derive the following equations:  

−𝑠𝑒𝑒
(1) =  2𝑐𝑠

2𝜌𝛿𝑡(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦 + 𝜕𝑧𝑢𝑧)

+ 𝑠𝑒𝛿𝑡(𝑣𝑥𝐹𝑥 + 𝑣𝑦𝐹𝑦 + 𝑣𝑧𝐹𝑧) −
6𝜎(𝐹𝑥

2 + 𝐹𝑦
2 + 𝐹𝑧

2)𝑠𝑒

𝜓2
 

(6.79) 
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−3𝑠𝜈𝑃𝑥𝑥
(1)
=  2𝑐𝑠

2𝜌𝛿𝑡(2𝜕𝑥𝑢𝑥 − 𝜕𝑦𝑢𝑦 − 𝜕𝑧𝑢𝑧)

+ 𝑠𝜈𝛿𝑡(2𝑣𝑥𝐹𝑥 − 𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧) 

(6.80) 

 

−𝑠𝜈𝑃𝑤𝑤
(1) =  2𝑐𝑠

2𝜌𝛿𝑡(𝜕𝑦𝑢𝑦 − 𝜕𝑧𝑢𝑧) + 𝑠𝜈𝛿𝑡(𝑣𝑦𝐹𝑦 − 𝑣𝑧𝐹𝑧) (6.81) 

 

−𝑠𝜈𝑃𝑥𝑦
(1)
=  𝑐𝑠

2𝜌𝛿𝑡(𝜕𝑥𝑢𝑦 + 𝜕𝑦𝑢𝑥) +
𝑠𝜈𝛿𝑡
2
(𝑣𝑥𝐹𝑦 − 𝑣𝑦𝐹𝑥) (6.82) 

 

−𝑠𝜈𝑃𝑦𝑧
(1) = 𝑐𝑠

2𝜌𝛿𝑡(𝜕𝑦𝑢𝑧 + 𝜕𝑧𝑢𝑦) +
𝑠𝜈𝛿𝑡
2
(𝑣𝑦𝐹𝑧 − 𝑣𝑧𝐹𝑦) (6.83) 

 

−𝑠𝜈𝑃𝑥𝑧
(1) =  𝑐𝑠

2𝜌𝛿𝑡(𝜕𝑥𝑢𝑧 + 𝜕𝑧𝑢𝑥) +
𝑠𝜈𝛿𝑡
2
(𝑣𝑥𝐹𝑧 − 𝑣𝑧𝐹𝑥) (6.84) 
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Now we substitute Eqs. (6.79) - (6.84) into Eqs. (6.76) - (6.78) to determine the 

second-order hydrodynamic equations in 𝜖 as 

𝜕𝑡2𝜌 = 0 (6.85) 

 

𝜕𝑡2(𝜌𝑢𝑥) = 𝜕𝑥 [𝜌휁(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦 + 𝜕𝑧𝑢𝑧)

+
2

3
𝜌𝜈(2𝜕𝑥𝑢𝑥 − 𝜕𝑦𝑢𝑦 − 𝜕𝑧𝑢𝑧) +

2𝜎|𝐅|2

𝜓2
]

+ 𝜕𝑦[𝜌𝜈(𝜕𝑥𝑢𝑦 + 𝜕𝑦𝑢𝑥)] + 𝜕𝑧[𝜌𝜈(𝜕𝑥𝑢𝑧 + 𝜕𝑧𝑢𝑥)] 

(6.86) 

 

𝜕𝑡2(𝜌𝑢𝑦) = 𝜕𝑥[𝜌𝜈(𝜕𝑥𝑢𝑦 + 𝜕𝑦𝑢𝑥)]

+ 𝜕𝑦 [𝜌휁(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦 + 𝜕𝑧𝑢𝑧)

+
2

3
𝜌𝜈(−𝜕𝑥𝑢𝑥 + 2𝜕𝑦𝑢𝑦 − 𝜕𝑧𝑢𝑧) −

2𝜎|𝐅|2

𝜓2
]

+ 𝜕𝑧[𝜌𝜈(𝜕𝑦𝑢𝑧 + 𝜕𝑧𝑢𝑦)] 

(6.87) 

 

𝜕𝑡2(𝜌𝑢𝑧) = 𝜕𝑥[𝜌𝜈(𝜕𝑥𝑢𝑧 + 𝜕𝑧𝑢𝑥)] + 𝜕𝑦[𝜌𝜈(𝜕𝑦𝑢𝑧 + 𝜕𝑧𝑢𝑦)]

+ 𝜕𝑧 [𝜌휁(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦 + 𝜕𝑧𝑢𝑧)

−
2

3
𝜌𝜈(𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦 − 2𝜕𝑧𝑢𝑧) −

2𝜎|𝐅|2

𝜓2
] 

(6.88) 
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where the kinematic viscosity 𝜈 and bulk viscosity 휁 are given by  

 𝜈 =  
1

3
(
1

𝑠𝜈
−
1

2
) 𝛿𝑡 (6.89) 

 

 휁 =  
2

9
(
1

𝑠𝑒
−
1

2
) 𝛿𝑡 (6.90) 

 

Combining the results from Eq. (6.85) - Eq. (6.88) and Eq. (6.74), using  𝜕𝑡 =  𝜕𝑡1 +

 𝜖𝜕𝑡2  and substituting for pseudopotential force (Eq. 6.2) we obtain the macroscopic 

dynamical equation for the conserved moments.  

 
∂ρ

∂t
 +  𝛁 ∙ (𝜌�̅�) = 0 (6.91) 

 

 

∂(𝜌�̅�)

∂t
 +  𝛁 ∙ (𝜌�̅��̅�)

=  −𝛁 ∙ (𝜌𝑐𝑠
2 − 2G2𝑐4𝜎|∇𝜓|2)𝐈 +  𝛁 ∙ 𝚷 + 𝐅

+
G𝑐4

6
𝜓𝛁𝛁𝜓 

(6.92) 

 

 𝚷 =  ρν[∇𝐯 + (∇𝐯)T] +  𝜌 (휁 − 
2

3
) (∇ ∙ 𝐯)𝐈 (6.93) 
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Such that the hydrodynamic variables can be given as  

 𝜌 =  ∑ 𝑓𝛼
𝛼

 (6.94) 

 

 𝜌𝐯 ̅ = 𝜌𝐯 = 𝜌𝐮 =  ∑𝑓𝛼𝒆𝜶 + 
1

2
𝛿𝑡𝐅

𝛼

 (6.95) 
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7. CHAPTER SEVEN: INVESTIGATION OF AUTOMATIC DROPLET 

TRANSPORTATION ON WEDGE-SHAPED PATTERNED WETTABILITY 

GRADIENT SURFACES USING LATTICE BOLTZMANN METHOD 

7.1 Abstract 

We present a numerical investigation of the effect of different droplet-surface 

parameters on the automatic motion of a droplet on a wedge-shaped patterned 

microchannel surface by using a single component multiphase pseudo-potential-based 

lattice Boltzmann method. We studied the droplet dynamic behavior as a function of the 

wedge-surface relative wettability, pattern wedge angle, initial droplet position and 

gravitational acceleration. Our numerical results suggested that the average velocity of 

the droplet increases with increase in the wedge-surface relative wettability and wedge 

angle because of larger driving forces. As expected, for the cases in this paper, the results 

show that the average droplet velocity up an incline decreases as the angle of inclination 

increases. Also, we demonstrated that there exists a critical droplet volume below which 

gravitational effects on droplet dynamics become negligible. In general, our results are 

consistent with available test data in open literature as well as numerical studies using 

techniques other than lattice Boltzmann. More importantly, our findings suggest that 

there exits an interplay between the capillary and inertial forces in the droplet which 

could be the subject of future investigation.  
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7.2 Introduction 

In this chapter, we investigated the effects of different droplet parameters on the 

automatic motion of the droplet in a microchannel numerically. This will include the 

effects of wedge-surface relative wettability, pattern wedge angle, the initial droplet 

position, and gravitational acceleration on the droplet dynamic behavior. Here we use the 

pseudopotential based single component multiphase Lattice Boltzmann method (SCMP 

LBM) due to its simplicity and computational efficiency. The fluid interaction force was 

incorporated via the improved forcing scheme proposed by Li et al., (2013). This forcing 

scheme offers an alternative approach to achieving thermodynamic consistency and 

simulation of large density ratio. In addition, we employed Yuan and Schaefer method 

(2006) to incorporate the Carnahan-Starling non-ideal equation of state (CS-EOS) 

(Carnahan and Starling, 1970a, b).  

7.3 Numerical Method 

For the D3Q15 model, the discrete velocity 𝝃𝜶 is given as (D’Humières et al., 

2002) 

 [𝒆0, 𝒆1, 𝒆2, 𝒆3, 𝒆4, 𝒆5, 𝒆6, 𝒆7, 𝒆8, 𝒆9, 𝒆10, 𝒆11, 𝒆12, 𝒆13, 𝒆14]

= 𝑐 [
0
0
0
  
1
0
0
  
−1
0
0
  
0
1
0
  
0
−1
0
  
0
0
1
  
0
0
−1
  
1
1
1
  
−1
1
1
  
1
−1
1
  
−1
−1
1
  
1
1
−1
  
−1
1
−1
  
1
−1
−1
  
−1
−1
−1
] 

(7.1) 

 

  where the lattice velocity 𝑐 =  
𝛿𝑥

𝛿𝑡
⁄    and sound speed 𝑐𝑠 = 

𝑐
√3
⁄   and the 

weight factors 𝜔𝛼 are given by     𝜔0 = 
2
9⁄  , 𝜔1−6 = 

1
9⁄ , and 𝜔7−14 = 

1
72⁄  . We 
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define one lattice unit 𝛿𝑥 as 1 l.u., one time unit 𝛿𝑡 as 1 t.u. and one unit mass as 1 m.u. 

(Huang et al., 2011). 

Also, based on the original pseudopotential LB model proposed by Shan and 

Chen (Shan and Chen 1993; Shan and Chen 1994), the fluid-fluid interaction force that 

produces phase segregation can be defined via a pseudopotential (an effective mass) 

which is a function of the local fluid density. For a single component multiphase flow, 

the interaction force has the following form (Shan 2008):  

 𝐅𝑓 = −𝐺𝜓(𝑥)∑𝑤(|𝜉𝛼|
2)𝜓(𝒙 + 𝝃𝛼)𝝃𝛼

𝛼

 (7.2) 

where 𝜓(𝑥) is the effective mass,  𝐺 is the interaction strength and 𝓌(|𝜉𝛼|
2) are the 

weights. For the nearest-neighbor molecular interactions on D3Q15 lattice, the weights 

𝑤(|𝜉𝛼|
2) are 𝑤(1) =  1 3⁄    and  𝑤(3) =  1 24⁄  . 

Next, we used the adhesion force 𝑭𝑠   proposed in chapter 6. Details of the force is 

shown below. 

 𝑭𝑠 = − 𝐺𝑤𝜓(𝑥)∑𝑤(|𝜉𝛼|
2)𝑆(𝒙 + 𝝃𝛼)𝝃𝛼

𝛼

 (7.3) 

where 𝐺𝑤 is the absorption parameter, 𝑆(𝒙 + 𝝃𝛼) =  𝜙(𝑥)𝑠(𝒙 + 𝝃𝛼) is the switch 

function. Note that 𝑠(𝒙 + 𝝃𝛼) is equal to 0 or 1 for a fluid or solid phase respectively. 

For  

  𝑆(𝒙 + 𝝃𝛼) =  𝜙(𝑥 + 𝝃𝛼)𝑠(𝒙 + 𝝃𝛼) (7.4) 
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such that  𝜙(𝑥 + 𝒆𝛼) is equal to 0 for a fluid node and  𝜙(𝑥 + 𝒆𝛼) =

 𝜓𝑣𝑖𝑟𝑢𝑡𝑎𝑙 (𝜌𝑣𝑖𝑟𝑡𝑢𝑎𝑙
𝑎𝑣𝑔 (𝒙𝑠))   

for a solid node and     𝜌𝑣𝑖𝑟𝑡𝑢𝑎𝑙
𝑎𝑣𝑔 (𝒙𝑠) =  

1

𝑁𝑓
∑ 𝜌 (𝒙𝑠 + 𝝃𝛼𝑓)𝛼𝑓  

where  𝒙𝑠 is the site of the solid node, 𝑁𝑓 is the number of fluid nodes that directly 

connect to the solid node side and 𝛼𝑓 are all indices 𝛼 for which 𝒙𝑠 + 𝝃𝛼 is a boundary 

fluid node.  

 For cases in which the effect of gravitational force was considered, external force  

𝑭𝑒 =  𝜌𝒈 is applied uniformly over the entire domain. Where, 𝜌 is the density at current 

node and 𝒈 is the body force per unit mass.  Therefore, the total force F acting on a fluid 

particle in the multiphase flow can be given as:   

 𝐅 =  𝑭𝑓 + 𝑭𝑠 + 𝑭𝑒 (7.5) 

Meanwhile, different equation of states (EOS) can be incorporated into the 

pseudopotential model via Yuan and Schafer method (Yuan and Schaefer, 2006) shown 

below  

 

𝜓 =  √
2(𝑝 −  𝜌𝑐𝑠2 )

𝐺𝑐2
 (7.6) 

On the other hand, in thermodynamic theory, the Maxwell construction requires that 

∫ 𝑝
𝑣𝑙
𝑣𝑔

𝑑𝑉 = 𝑝0(𝑣𝑙 − 𝑣𝑔) . This together with Eq. (7.2) yields,  

 
∫ (𝑝0 −  𝜌𝑐𝑠

2 +  
𝐺𝑐2

2
𝜓2 )

𝜌𝑙

𝜌𝑔

1

𝜌2
 𝑑𝜌 = 0 (7.7) 
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We can therefore achieve thermodynamic consistency approximately by adjusting the 

density profile from the mechanical stability condition in Eq. (6.28) in chapter 6 via 𝜎 

(i.e. tune 휀) to match the profile in Eq. (7.6) (Li et al., 2012, 2013).  

In our single component multiphase (SCMP) simulations, we will use the 

Carnahan-Starling (Carnahan and Starling 1970a) equation of state (CS-EOS). 

 

𝑝 =  𝜌𝑅𝑇 
1 + 

𝑏𝜌
4 ⁄ + (

𝑏𝜌
4 ⁄ )

2

 −   (
𝑏𝜌

4 ⁄ )
3

(1 − 
𝑏𝜌

4 ⁄ )
3  − 𝑎𝜌2 (7.8) 

where 𝑎 = 0.4963(𝑅𝑇𝑐)
2 𝑃𝑐⁄  , 𝑏 = 0.1873𝑅𝑇𝑐 𝑃𝑐⁄ . Here we set 𝑎 = 0.25 and 𝑏 = 4. 

Therefore, the critical temperature and pressure are  𝑇𝑐 = 0.0236 and  𝑃𝑐 = 0.0011 

repsecitvely.  

7.4 Simulation results and discussion 

 In this section, we first check if the multiphase LB model with CS-EOS 

described in the previous section can reproduce the correct liquid and vapor densities 

corresponding to different temperatures as given by the Maxwell construction (see Table 

7.1). Then, we validated the model with Laplace’s law by simulating droplets with 

different radii. Finally, numerical simulations were conducted on passive droplet 

displacement in a microchannel. Since multiphase LB model is a diffused interface 

method, we considered the location of the interface as the point where the density is =

 
𝜌𝑙+ 𝜌𝑔

2
 . Our results are provided in lattice units unless otherwise specified.  
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Fig. 7.1 Schematic diagram shows wedge-shaped tracks on a microchannel surface, 

different angles of inclinations, wedge-surface parameters and actuating force 

 

7.4.1 Evaluation of thermodynamic consistency at low temperatures 

In other to numerical evaluate whether the improved forcing scheme described 

above is consistent with Maxwell construction (Sukop and Thorne, 2007) at low 

temperatures, we conducted numerical simulations for the problem of a stationary 

spherical droplet with a radius of R= 30 l.u. In the simulation, we adopted a 121 x 121 x 

121 lattice and use the CS-EOS with G= -1. Furthermore, periodic boundary conditions 
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were applied in all three directions and the density field was initialized as shown below 

(Huang et al., 2011):  

 

𝜌(𝑥, 𝑦, 𝑧) =  
𝜌𝑙 + 𝜌𝑔

2
+ 
𝜌𝑙 − 𝜌𝑔

2
 × [tanh(

2 (√(𝑟 − 𝑅))

𝑊
)] (7.9) 

where 𝑟 =  √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2, (𝑥0, 𝑦0, 𝑧0) is the center of the 

computational domain, 𝑊 is the initial interface thickness and 𝑅 is the radius of the 

droplet. 

We set the relaxation times in equation 12 as 𝑆𝜌 = 𝑆𝑗 =  1.0,  𝑆𝑒 = 𝑆𝜖 =  1.1, 

𝑆𝑞 =  1.1, 𝑆𝑥𝑦𝑧 =  1.2 , 𝑆𝜈 =  1.25 (i.e. 𝜏𝜈 = 0.8 ) and adjusted  𝜎  in other to match our 

solutions with the Maxwell construction solutions. We also extended the simulations to  

𝜏𝜈 = 1.0 and 𝜏𝜈 = 0.6. Through numerical investigation with different values of sigma, 

we find that the simulation result from 𝜎 = 0.102  (Fig. 7.2) compares well with the 

results presented in (Li et al., 2013) and the Maxwell construction solutions (Table 7.1). 

Moving forward, we used the temperature T T𝑐
⁄ = 0.5 for the remaining cases in this 

study.  
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Fig. 7.2. Coexistence curve of C-S EOS at different relaxation times for 𝜎 = 0.102. 

 

Table 7.1. Density ratios obtained with CS-EOS at different temperatures (𝜏 = 0.8). 

T/Tc 
𝝆𝒍
𝝆𝒈⁄  

𝝆𝒍
𝝆𝒈⁄  (Li et al, 2013) 

𝝆𝒍
𝝆𝒈⁄  Analytical  

0.60 0.408/0.00342 0.4079/0.00306 0.407/0.00324 

0.55 0.432/0.001604 0.4318/0.001484 0.431/0.00147 

0.50 0.456/0.000634 0.4547/0.000639 0.455/0.000606 

 

7.4.2 Evaluating Spatial Accuracy 

The spatial accuracy of the LBM multiphase model is tested for the case of a 

spherical droplet. To test the accuracy of the, we simulated different grid sizes 

𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 41 ×41 ×41 , 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 81 ×81 ×81, 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 =

121 ×121 ×121 and 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 181 ×181 ×181. For each case, the radius of the 
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droplet is set as 𝑅 =
𝑁𝑥

4⁄ . Periodic boundary condition was implemented on all 

boundaries. Furthermore, we considered the mesh size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 181 ×181 ×181 

as the finest mesh and assumed the results are accurate. The error of mesh size 𝑁𝑥 is 

defined as Error(𝑁𝑥) =  |𝜌(𝑁𝑥) −  𝜌(181)|, where 𝜌(𝑁𝑥) means the density of the 

liquid or gas obtained by mesh 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧. Based on the log-log plot of the errors in 

Figure 7.3, we confirm that the multiphase model is approximately second-order 

accurate.   

 

Fig. 7.3. Error of the densities in liquid and gas as a function of the mesh size. The line 

𝜎 = slope =  −2 represent the exact second-order spatial accuracy and it is supplied to 

guide the eyes.  
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7.4.3 Evaluation of Laplace law 

To validate the model with Laplace law, we simulated 5 droplets with 20 < R < 40 

lattice units in a 121 × 121 × 121 lattice. Periodic boundary conditions were applied in 

all three directions of the computational domain and no body force was applied. Initially, 

the droplets were places at the center of the domain and the density field initialized 

according to the Eq. (7.9).  

 

Fig. 7.4. Numerical validation of Laplace’s law 

In theory, the difference between the liquid and gas pressure is related to the 

surface tension and the radius of the droplet via the Laplace equation  

 ∆𝑝 =  
𝛾

𝑅
 (7.10) 
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where 𝛾 is the surface tension, 𝑅 is the radius of the droplet and ∆𝑝 is the pressure 

difference across the interface. The surface tension 𝛾 =  0.011 was obtained from our 

simulation with a coefficient of determination 0.9988. 

7.4.4 Evaluation of contact angles 

As explained in section 2, different contact angles can be simulated by adjusting 

the parameter 𝐺𝑤. In this simulation, we adopted a 121 × 121 ×61 lattice. No-slip 

boundary conditions were applied on the top and bottom wall (z-direction) and periodic 

boundary condition in the remaining two directions (x and y). In addition, no body force 

was applied. The computation domain was initialized with a hemispherical droplet with 

radius 𝑅 = 30 placed on the bottom wall with the initial density field computed as shown 

in equation 23. The parameter 𝐺𝑤 is adjusted to simulate different contact angles. As the 

simulation progressed, the initial droplet shape evolved into an equilibrium state and 

achieved an equilibrium contact angle. The contact angles were measured with Image J 

LB-ADSA (Stalder et al., 2010). Details of the equilibrium contact angle and the 

corresponding 𝐺𝑤 is provided in Table 7.2.  

 

Fig. 7.5 LBM simulation of contact angles with different adhesion interacting force 

strength 𝑮𝒘 
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Table 7.2.  Adhesion interacting force strength 𝑮𝒘 for the contact angles using C-S EOS 

at 𝑇 = 0.5𝑇𝑐 and 𝜏 = 0.8 

𝑮𝒘 Contact Angle (o) 

-0.84 122.8 

-1.08 67.4 

-1.16 51.4 

-1.20 43.5 

 

7.4.5 Passive droplet displacement in a microchannel 

We now focus our investigations on parameters that may affect passive droplet 

displacement by wedge-shaped surface wettability gradient in a microchannel. In our 

simulations, we considered the following cases, namely: the effect of different wedge-

surface relative wettability, the effect of wedge angle, the effect of initial droplet position, 

and the effect of gravitational force for a droplet on an inclined surface.  We first 

consider cases that involve negligible Bond number (Bond number is the ratio of 

gravitational force and surface tension forces 𝐵𝑜 =
Δ𝜌𝑔𝐿2

𝛾
 ). Since the surface tension 

forces will be dominant for these cases, we did not include the gravitational force (g = 0). 

Later, we simulated cases that include gravity. We considered a 101 × 301 ×101 

computational domain. For boundary conditions, bounce-back boundary conditions were 

set at the bottom and top walls while periodic boundary conditions were applied on the 

remaining boundaries. A hemispherical droplet with initial radius 𝑅 = 25 was placed on 

the bottom wall at lattice coordinates (50, 260, 0). 
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7.4.6 Effect of Wedge-Surface Relative Wettability  

We first analyzed the effect of different wedge-surface relative wettability on the 

displacement of the droplet. The contact angle of the surface of the bottom wall for the 

microchannel is set to 𝜃1 = 122.8o (blue region in figures). Different contact angles 𝜃2= 

67.4o, 𝜃2 = 51.4o and 𝜃2 = 43.5o (red region in figures) were set for the wedges to 

simulate different degrees of hydrophilicity. To quantify the displacement, we measured 

the displacement of the trailing and leading edges of the droplet along the centerline x=50 

lattice unit. Figure 7.6 show the dynamic behavior of the droplet as it moves along the 

microchannel for the different wedge relative wettability.  We observed that, as the 

wetting condition on the wedge is increasingly more hydrophilic, the velocity of the 

leading edge of the droplet along the microchannel increased (Fig. 7.7a and Table 7.3). 

For example, at lattice time = 40,000 the displacements of the leading edges of the 

different wedge contact angles (67.4o), (51.4o), and (43.5o), are 164, 196, and 206 lattice 

units respectively. Interestingly, the displacement of the trailing edge of the droplet 

produced similar behavior initially but towards the base of the wedge (leading edge is 

already at the base) we noticed contraction of the contact line of the droplet due to 

surface tension forces (Fig. 7.7b). Also, we noticed more stretching in the droplet as we 

reduced the contact angle on the wedge, particularly towards the base of the wedge (Fig. 

7.7a). Figure 7.8 provides an insight into the dynamics of the droplet motion. It appears 

that droplet exhibited some form of creeping motion because there are regions of 

increasing (stretching) and decreasing (contracting) droplet length.  

In general, increase in contact angle on the surface of the microchannel generated 

an increase in the average velocities of the trailing and leading edges of the droplet 



170 

170 

 

(Table 7.3).  This is expected because of the wettability gradient produced by the wedge 

gradient. Hence, the net adhesion force due to the hydrophilic nature of the wedge and 

the hydrophobic nature of the surface are in the same direction. That is, on the 

hydrophobic region, the adhesion force (pointing inward) at the leading edge of the 

contact line is less than at the trailing edge. Similarly, on the hydrophilic region, the 

adhesion force (pointing outward) at the leading edge is greater than at the trailing edge. 

This imbalance in the adhesion force produces a resultant force towards the base of the 

wedge. If this force is greater than the opposing viscous and frictional forces, an increase 

in the wedge surface contact angle generates an increase in the average velocity of the 

droplet (Fig. 7.7).  

Meanwhile, this increase in contact angle on the surface of the microchannel 

appears not to significantly affect the deformation of the droplet (Fig. 7.8). The final 

droplet shape is consistent with experimental results in (Xianhua et al., 2016). 
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Fig. 7.6 Dynamic behavior of a droplet for different relative wedge wettability (𝜃1 =
122.8o , 𝜃2 = 43.5o , 𝜃2 = 51.4o and 𝜃2 = 67.4o) at different lattice times 
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Fig. 7.7 Displacement of droplet as a function of lattice time for different relative wedge 

wettability (𝜃1 = 122.8o , 𝜃2 = 43.5o , 𝜃2 = 51.4o and 𝜃2 = 67.4o). (a) Trailing edge of 

droplet (b) Leading edge of droplet  
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Fig. 7.8 The droplet length as a function of lattice time for different relative wedge 

wettability (𝜃1 = 122.8o , 𝜃2 = 43.5o , 𝜃2 = 51.4o and 𝜃2 = 67.4o) 
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Table. 7.3. Comparison of the average velocities of the trailing and leading edges of the 

droplet for different wedge-surface wettability configurations 

Contact Angle of 

Surface 𝜽𝟏 (o) 

Contact Angle of 

Wedge 𝜽𝟐(o) 

Trailing Edge 

Average Velocity 

Leading Edge 

Average Velocity 

122.8 67.4 3.28E-03 3.71E-03 

122.8 51.4 4.09E-03 4.59E-03 

122.8 43.5 4.05E03 5.15E-03 

 

The above results demonstrate that larger wettability difference between the wedge and 

surface results in larger driving forces. This in turn has a remarkable influence on the 

motion of the droplet. We therefore remark that the knowledge of this relationship may 

provide a model for the optimization of wettability gradient droplet manipulation 

microfluidic applications.   

7.4.7 Effect of Wedge Angle  

We also tested the effect of different wedge angles. For this analysis, we selected 

the case with (122.8o vs. 43.5o) from the previous section above because it generated the 

highest average velocity. Here, we keep the wedges apex in the same position and 

adjusted the height of the wedges to obtain different wedge angles. We tested three 

different wedge angles (𝛽 = 5.2o, 𝛽 = 6.4o and 𝛽 = 8.2o). Figure 7.9 shows the dynamic 

behavior of the droplet with different wedge angles (𝛽 = 5.2o, 𝛽 = 6.4o and 𝛽 = 8.2o). 

Like our observation from the previous section, the increase in the wedge angle does not 

appear to significantly alter the deformation of the droplet.  
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Fig. 7.9 Dynamic behavior of a droplet for different wedge angles (𝛽 = 5.2o, 𝛽 = 6.4o and 

𝛽 = 8.2o) at different lattice times 
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Fig. 7.10 Displacement of droplet as a function of lattice time for different wedge angles 

(𝛽 = 5.2o, 𝛽 = 6.4o and 𝛽 = 8.2o). (a) Trailing edge of droplet (b) Leading edge of droplet 
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Fig. 7.11 The droplet length as a function of lattice time for different wedge angles (𝛽 = 

5.2o, 𝛽 = 6.4o, 𝛽 = 8.2o)  

As we increased the wedge angle, we noticed an increase in the displacement of 

the trailing and leading edges of the droplet (Fig.7.10a and b). Initially, the droplet starts 

off stretching and it appears that it attained a critical stretching condition after which it 

began to contract. In general, the magnitude of this stretching-contracting process 

increased with the increase in the wedge angle (Fig. 7.11).  
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Table. 7.4. Comparison of the average velocities of the trailing and leading edges of the 

droplet for different -wedge angles.  

Wedge Angle 

𝜷 (o) 

Trailing Edge 

Average Velocity 

Leading Edge 

Average Velocity 

5.2 4.05E-03 5.15E-03 

6.4 4.83E-03 8.92E-03 

8.2 5.71E-03 7.43E-03 

 

Table 7.4 shows the average velocities of the trailing and leading edges of the droplet for 

different wedge angles. We observed 1.73 folds increase in the leading edge average 

velocity for a wedge angle increase from 𝛽 = 5.2o to 𝛽 = 6.4o. It appears that there exists 

a critical wedge angle, above which the average velocity of the leading edge begins to 

decrease. For example, table 4 show a 1.2 folds decrease in the average velocity of the 

leading edge of the droplet when the wedge angle was increased from  𝛽 = 6.4o to 𝛽 = 

8.2o. The above result demonstrates that the average velocity of the droplet can be 

increased by increasing the wedge angle. 

7.4.8 Effect of Droplet Initial Position 

 In this section, we investigate the effect of droplet initial position on the droplet 

dynamics. In the previous sections, the microchannel contained four wedges and the 

droplet was pinned by the apexes of two middle wedges. To simulate a different initial 

wedge position, we increased the number of wedges to five so that apexes of three middle 

wedges will pin the droplet. Similarly, we selected the (122.8o vs. 43.5o) configuration 

from previous sections for easy comparisons. 
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We first compared the deformation of the droplet on 4-wedge microchannel to the 

5-wedge microchannel (Fig. 7.12). As expected, we observed more spreading and 

flattening of the droplet in the 5-wedge microchannel. Although, we observed similar 

displacement profiles for the leading and trailing edges of the droplet for the 4-wedge and 

5-wedge microchannel, however, the 5-wedge cases generated slightly larger average 

velocities for both the leading and trailing edges of the droplet (Fig. 7.13).    

Next, we increased the wedge angle and consistent with our results from the 4-

wedge microchannel, we observed similar pattern of increase in the average velocities of 

the leading and trailing edges (Fig. 7.14 and Fig. 7.15). Interestingly, in Figure 7.16a for 

the droplet length, we noticed an initial stretching-contracting cycle prior to attaining 

critical stretching when the wedge angles are 𝛽 = 5.2o and 𝛽 = 8.2o for the 5-wedge 

microchannel. Nonetheless, we observed more stretching (greater magnitude of droplet 

length) in the 5-wedge microchannel (Fig. 7.16b). To compare the effect of the position 

of the droplet on the average velocities of the trailing and leading edges of the droplet, we 

fixed the wedge angle to 𝛽 = 5.2o for both the 4-wedge and 5-wedge microchannel. Table 

5 shows a slight increase in the leading and trailing edge average velocities in the 5-

wedge case. Similar to our observations in the 4-wedge case, the average velocities 

decreased when the wedge angle was increased from  𝛽 = 6.4o to 𝛽 = 8.2o.      
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Fig. 7.12. Dynamic behavior of a droplet pinned by two and three wedges at different 

lattice times. Note: the height of the wedges was reduced for the 5-wedge case in other to 

keep the wedge angles the same for both cases (𝛽 = 5.2o) 
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Fig. 7.13 Comparison of the displacement of droplet as a function of lattice time for 5-

wedge and 4-wedge when  𝛽 = 5.2o (a) Trailing edge of droplet (b) Leading edge of 

droplet 
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Fig. 7.14. Dynamic behavior of a droplet pinned by three wedges for different wedge 

angles (𝛽 = 5.2o, 𝛽 = 6.4o, 𝛽 = 8.2o) at different lattice times 
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Fig. 7.15 Displacement of droplet as a function of lattice time for different wedge angles 

(𝛽 = 5.2o, 𝛽 = 6.4o, 𝛽 = 8.2o) in the 5-wedge case (a) Trailing edge of droplet (b) Leading 

edge of droplet 
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Fig. 7.16 The droplet length as a function of lattice time (a) Different wedge angles for 

the 5-wdge case (𝛽 = 5.2o, 𝛽 = 6.4o, 𝛽 = 8.2o) (b) 4-wedge case compared to 5-wedge 

case 
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Table. 7.5. Comparison of the average velocities of the trailing and leading edges of the 

droplet for different wedge configurations and wedge angles  

Number of 

Wedges 

Wedge Angle 

𝜷 (o) 

Trailing Edge 

Average Velocity 

Leading Edge 

Average Velocity 

4 5.2 4.05E-03 5.15E-03 

5 

5.2 4.65E-03 5.58E03 

6.4 5.38E-03 6.44E-03 

8.2 5.00E-03 4.92E-03 

 

7.4.9 Effect of Gravitational Force 

 In all previous cases, the effect of gravity was neglected. For comparison, we 

repeated (122.8o vs. 43.5o) case but this time around we included the body force 𝐅𝑏𝑜𝑑𝑦 =

𝜌𝒈 where 𝒈 is the acceleration of gravity and 𝜌 is the density of the phase. The 

gravitational acceleration 𝒈 = (0, 0, 𝑔𝑧)  is set to different values to simulate different 

droplet volumes. Namely: 1.0 E − 05, 5.0 E − 06, 2.5 E − 05, and 1.0 E − 06 lattice 

units (Table 7.6 and Fig. 7.17). We can observe in figure 16 that the profiles of the 

droplet length for the cases with gravity converges to the no-gravity case as the volume 

of the droplet decreases. As such, we believe there exists a critical droplet volume, for the 

cases presented in this study, below which the effect of gravity becomes negligible. Here 

our result show that below 0.156 (nL) droplet volume, gravitational acceleration can be 

neglected (Fig. 7.18).  
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Table. 7.6. Different droplet volumes in physical units simulated by varying  𝐠 . 

g 𝜹𝒙 (𝐦) 𝜹𝒕 (𝐬)  𝑽 (𝐧𝐋)  

1.0 E-06 1.4031E-06 1.1845E-06 0.156 

2.5 E-06 1.9042E-06 2.1818E-06 0.391 

5.0 E-06 2.3992E-06 3.4635E-06 0.780 

1.0 E-05 3.0228E-06 5.4980E-06 1.560 

 

 

Fig. 7.17 Dynamic behavior of a droplet with and without gravitational accelerations 
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Fig. 7.18 The droplet length as a function of lattice time for different values of g 

 

To further investigate the effect of the gravitational force, we simulated the 

displacement of a droplet ascending along an inclined microchannel with different angles 

of inclinations (𝛼 =  −6o, 𝛼 = − 8o and 𝛼 =  −12o). First we discuss our results when 

the volume of the droplet is 0.78 (nL).  Contrary to our expectations, 𝛼 = −12o case was 

the only case that generated meaningful spontaneous motion of the droplet up the incline 

(Fig. 7.19 and Table 7.7). This suggests that there is an interplay between the profile of 

the contact line of the droplet and the driving forces. In contrast, for the 0.39 (nL) droplet, 

the average velocities of the droplet up the incline generally decreased as the angle of 

inclination of the microchannel was increased (Table 7.7). At  𝛼 = −12o, the droplet was 

pinned to the bottom wall of the microchannel (Fig. 7.20). Finally, for the 0.16 (nL) 

droplet, the profile of the droplet was consistent with the no-gravity case (Fig. 7.21). In 
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addition, like our observations in the 0.39 (nL) droplet, the average velocities of the 

droplet decreased with increase in the angle of inclination. However, the velocities are an 

order of magnitude larger (Table 7.7). 

 

Fig. 7.19 Dynamic behavior of a droplet for different angles of inclination (𝛼 = −6o, 

𝛼 = −8o and 𝛼 =  −12o) for 0.78 (nL) droplet at different times (in milliseconds) 
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Fig. 7.20 Dynamic behavior of a droplet for different angles of inclination (𝛼 = −6o, 

𝛼 = −8o and 𝛼 =  −12o) for 0.39(nL) droplet at different times (in milliseconds) 
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Fig. 7.21 Dynamic behavior of a droplet for different angles of inclination (𝛼 = −6o, 

𝛼 = −8o and 𝛼 =  −12o) for 0.16 (nL) droplet at different times (in milliseconds) 

 

Table. 7.7. Comparison of the average velocities (m s⁄ ) of the droplet up an incline with 

different angles of inclination 

𝑽 (𝐧𝐋) 𝜶 = −𝟔𝐨  𝜶 = −𝟖𝐨  𝜶 = −𝟏𝟐𝐨 

0.156 1.6184E-03 1.2642E-03 1.0763E-03 

0.391 8.2001E-04 5.4667E-04 -- 

0.780 -- -- 1.2561E-03 
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7.5 Conclusion 

 In this study, a pseudopotential single component multiphase lattice Boltzmann 

method was successfully adopted to investigate the effects of different droplet parameters 

on the automatic motion of the droplet in a microchannel. We considered the effects of 

wedge-surface relative wettability, wedge angle, initial droplet position on wedges, and 

gravity and microchannel angle of inclination for a descending or ascending droplet.  

Accordingly, we implemented an MRT pseudopotential LBM and incorporated 

the fluid interaction force via the improved forcing scheme proposed by Li et al. (2013) 

to overcome the density ratio restriction on the original Shan and Chen model (Shan and 

Chen 1993). Furthermore, we employed the Carnahan-Starling equation of state 

(Carnahan and Starling 1970a, b) and incorporated it into the model via the method 

proposed by Yuan and Schafer (Yuan and Schaefer 2006).  

Our numerical results demonstrate that:  

a. The relative wettability between the different regions of the michrochannel 

surface influences the motion of the droplet. We discovered that the average 

velocity of the droplet increases monotonically with increase in this relative 

wettability. In addition, we noticed that the profile of the droplet was not 

significantly deformed even as the contact angle of the hydrophilic wedges were 

decreased. 

b. The average velocity increased with the wedge angle. For example, we obtained 

1.73 folds increase in the average velocities of the droplet leading edge when the 

wedge angle was increased from 𝛽 = 5.2o to 𝛽 = 6.4o. Unlike increase in the 
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magnitude of relative wettability, increasing the wedge angle to 𝛽 = 7.2o resulted 

in a decrease in the average velocities of the trailing and leading edges of the 

droplet. Therefore, we conclude that there exists a critical wedge angle above 

which the average velocities begin to decrease due to hysteresis effect.  

c. For the cases in this paper, there exists a critical droplet volume (0.156 nL) below 

which gravitational effects are negligible. In general, for the ascending droplet, 

we observed that the average velocity of the droplet up the incline decreases with 

increase in the angle of inclination. More importantly, we discovered a possible 

interplay between the droplet profile and the capillary driving forces. For 

example, we noticed a reversal in the direction of the motion of the droplet when 

the angle of inclination 𝛼 =  −8 even though 𝛼 =  −12 generated an uphill 

motion for the case when the droplet volume is 0.78 nL. 

In summary, we were successfully able to investigate different parameters that 

affect droplet dynamic behavior on a patterned-wettability surface using an improved 

single component multiphase (SCMP) multi-relaxation time (MRT) lattice Boltzmann 

equation. Through this model we obtained a realistic density ratio that is approximately 

720. Along the way, we discovered possible interplay between the droplet profile and the 

capillary driving forces. This result calls for a more detailed investigation of this droplet 

dynamic behavior.    
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8. CHAPTER EIGHT: CONCLUSIONS AND FUTURE WORKS 

The motivation behind this study was to apply the lattice Boltzmann method to 

model passive (spontaneous) droplet motion on microchannels with wettability patterned 

surface. We started by first evaluating different pseudo-potential based multicomponent 

multiphase wetting models. Our results demonstrated that the models with virtual fluids 

on the solid node outperformed the ones without. In this first study, we implemented the 

original Shan and Chen velocity shift forcing scheme. However, in recent years, many 

improvements have been made to the original Shan and Chen model to address some of 

its limitations. Therefore, in the subsequent study we incorporated these improvements in 

pseudo-potential based lattice Boltzmann method and addressed the following areas of 

improvement: 

1. The problem of thermodynamic inconsistencies. 

2. Incorporated interaction force that is consistent with the hydrodynamic equations. 

3. Improved model to obtain large density ratio. 

4. Implemented a multi-relaxation-time model as the single-relaxation-time model is 

known to be viscosity-dependent. 

Following these improvements in our custom code, we investigated the effects of 

different droplet parameters on the spontaneous motion of a droplet on a microchannel 

with multi-wedge-shape wettability patterned bottom wall. These droplet parameters are: 

wedge-surface relative wettability, wedge angle, droplet initial position and effect of 

gravitational force. Since the phases are well separated (large density ratio) we used the 

single component multiphase model for this study. With the improvements, we could 
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obtain a realistic density ratio (water-air system) that is approximately 720. Furthermore, 

we discovered possible interplay between the droplet profile and the capillary driven 

forces. Our results, demonstrated a critical droplet volume (0.78 nL) below which the 

effect of gravitational force becomes negligible. In general, our results are consistent with 

available test data in open literature as well as other numerical studies using techniques 

different from lattice Boltzmann method.  

For future work, the work in this study for large density ratio should be extended 

to the multicomponent multiphase models (we have conducted preliminary research in 

this area). In addition, a more extensive study on the interplay between the capillary and 

inertia forces for a droplet on a microchannel with ideal and rough surfaces could be the 

subject of future studies. Equally important, is an experimental study to validate the 

results of the numerical work in this study.  Finally, this study presents an insight into the 

potential use of lattice Boltzmann method for design and optimization of passive on-chip 

droplet manipulation techniques. This is particularly essential for the design of future 

point-of-care technologies. Most of these technologies often involve blood-air systems. 

Therefore, the work in this study should also be extended to the simulation of non-

Newtonian fluids.     

 

 

 

 

 


