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ABSTRACT 

By 2020, the average of data stored for each person will reach 5,200 GB. This will 

put increased demands on cost and reliability of data storage. Compared to its 

competitors, tape storage technology is more energy efficient and operates at lower 

cost, with longer media life, hence improved reliability. Nevertheless, there are 

market and technology pressures to improve all aspects of tape recording. One of the 

key factors that influence tape storage density is the drive’s ability to follow written 

data tracks. Lateral tape motion (LTM) which can be described as a deviation of the 

tape from its prescribed, linear path could cause the read/write heads to lose track of 

the data and lead to lower reliability. LTM is caused by periodic and non-periodic 

effects. All of the guiding elements, including rollers, stationary guides, read/write 

head assemblies, and packing reels present rich sources of dynamic effects due to 

friction, sliding contacts, impulses, and damping effects due to air 

bearing/entrainment. 

The research presented in this thesis is motived by the need to understand the causes 

of LTM, in order to help increase the volumetric storage density of magnetic tape 

storage systems. To this end tape is modeled as tensioned, axially moving beam with 

viscoelasticity. Two major studies were undertaken to investigate the effects of 

imperfections in roller geometry, and dynamic friction between the tape and a 

grooved roller. In addition, the effects of periodic impulses, such as those that could 

develop due to flange contacts, on tape dynamics were investigated. A new model for 

the coupling between lateral and longitudinal tape vibrations was also presented.  

Accuracy of Numerical Solution: All of the models presented in this work were 

solved numerically, by using the finite element method in spatial and the Newmark’s 

method in temporal dimension. A comprehensive study of the convergence 

characteristics of the numerical methods was carried out. The numerical and 

analytical dispersion relations (DR) were compared, in order to measure the accuracy 

of the fully discretized direct solution method. The waveguide-finite element (WFE) 
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method was used to find the DR for the finite element solution. Good agreement was 

found between the numerical and analytical solution. Effects of using finite difference 

discretization in space were also investigated. For the system under study, it was 

found that high frequency behavior can be simulated with high accuracy by using the 

finite element discretization, at a relatively modest computational cost.  

Eigenvalue Analysis: In this work we also introduce a way to carryout eigenvalue 

analysis of gyroscopic systems by using the finite element discretization. It was 

shown that the results match the classical work. This method was used to find the 

natural frequencies of the system with internal damping.  

Roller Mechanics: A mechanics based model to describe the lateral positioning of a 

tape over a tilted roller is introduced. It is shown that this condition requires the slope 

of the neutral axis of the tape and the slope of the centerline of the tilted roller to be 

the same over the wrapped segment. An experimental setup was used to verify the 

model. The effects of the roller tilt angle, tape wrap angle, and the lengths of the free-

tape spans upstream and downstream of the tilted roller on the steady state lateral tape 

position were investigated experimentally and by simulations. The experiments show 

that the circumferential position of the wrap on the upstream side of a tilted roller has 

the strongest effect on pushing the tape in the lateral direction. The total wrap angle 

around the roller has a smaller effect. It was also shown that the tape segments 

upstream and downstream of the tilted roller interact, and the combined effect results 

in a different overall lateral tape response in steady state. 

Lateral Friction over Rollers: Effects of friction forces on the lateral dynamics of a 

magnetic recording tape, wrapped around a grooved roller were investigated 

experimentally and theoretically. It was shown that including the effects of ‘stick-slip’ 

and velocity dependence of the friction force render the tape’s equation of motion 

non-linear. In the experiments, tape was wrapped around a grooved roller in a 

customized tape path, and tensioned. The tape running speed along the axial direction 

was set to zero, thus only the lateral friction effects were studied. The grooved roller 

was attached to an actuator, which moved across the tape. The test was performed in 

slow and fast actuation modes. Slow mode was used to identify the static, or 
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breakaway friction coefficient. In the fast mode, the roller was actuated and a periodic 

stick and slip phenomenon was observed. The stick-to-slip and slip-to-stick 

transitions occurred when the tape vibration speed matched the roller actuation speed. 

The breakaway forces in the slow and fast actuation modes were similar one another. 

Both experiments and theory show that upon slip, tape vibrates primarily at its natural 

frequency, and vibrations are attenuated relatively fast due to frictional and internal 

damping. This work showed that by making a single experimental measurement of 

friction for a given roller design and tape type, our model can be used to predict the 

behavior over a wide range of wrap angles and tape tensions. 

Flange Impacts: In this work the tape response due to flange hits was investigated by 

a mathematical model of the tape path. It was shown that flange hits can cause a 

wide-band frequency response in the tape, and the tape can have a very non-periodic 

motion. While the head induces vibration during servo tracking, most of the non-

rotating guides reduce LTM due to frictional damping. Friction in the system helps 

reduce some of the complexity of the response. 

Coupling between In Plane and Lateral Vibrations: The coupling between lateral and 

longitudinal deflection component that is due to non-linear longitudinal strain is 

considered. The equations of motion of the longitudinal and lateral tape motion were 

derived from first principles. The entire tape path is modeled directly, where the 

interaction of the tape with the recording head and the guides are represented as 

concentrated forces, and moments. It was shown that the tension impulse can cause a 

high frequency high amplitude wave in the longitudinal direction, and also excites 

lateral motion. The effect of the longitudinal wave can potentially cause local 

stretching of the bits. The amplitude of the longitudinal and lateral deflections due to 

tension impulse varies linearly with the impulse strength. It was also shown that the 

tension fluctuation, which primarily affects the longitudinal tape deflection, can 

excite resonances in the lateral tape motion. Tape velocity and tension have relatively 

small effects on the resonant frequencies in the range considered, but deflection 

amplitudes increase with increasing values of applied tension and transport velocity 
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as expected. The position of the frictional guides was found to have a significant 

effect on the damping and natural frequencies. 
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Chapter 1 Introduction 

The motivation and background of the work presented in this thesis is given this chapter. 

In particular, overview of the state of the art in data storage and the role of magnetic tape 

recording in this landscape are given in Section 1.1 and 1.2 respectively. Tape drive 

system technology and the mechanical characteristics of the tape are presented in Section 

1.3 and 1.4 respectively. The importance of lateral tape motion (LTM) is described in 

Section 1.5. The objective and organization of this thesis are presented in Section 1.6 and 

1.7. 

1.1 Data Storage Overview 

The amount of data is vast and growing dramatically, quickly moving from terabyte to 

petabyte to exabyte and even zettabyte
1
 levels. In 2012, over 5 EB (exabytes, 1018 bytes) 

of new information were stored [1] out of 2,837 EB (2.7 zettabytes) digital universe (that 

is, all the digital data created, replicated and consumed) and this number is doubled in 

2014 [2]. This study also suggests the world’s information is doubling every other year. 

By 2020, the average of data storage for each person will reach 5,200 GB in this world. 

                                                 
1
 1 TB = 1024 GB 

  1 PB = 1024 TB 

  1 EB = 1024 PB 

  1 ZB = 1024 EB 
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The demand of data storage is driven by patients’ medical history in health care, 

surveillance camera in security field, large file format in YouTube, human genomic codes 

in life science and so on. According to INSIC (Information Storage Industry Consortium) 

roadmap [1] and IDC report for EMC [3], there is a clear growing gap (shown in Figure 

1-1)  between data generated and data stored and among these unfiled data, 36% has  

value to be analyzed.  

This fast pace of growth comes with challenges for data storage industry. Among these 

are efficiency, cost, energy consumption, reliability and of course capacity. ‘Big data’, 

data mining and machine learning, puts a premium on technologies that promotes data 

processing efficiency. Predictions of web clicking, custom habits, and spam email 

demand fast and accurate access to the data stored. The storage device has to meet these 

requirements in order to boost the performance along with reduction of power 

consumption and cost, or any combination of these. The vital importance of long-term 

backup or recovery and archiving technologies is also highlighted by increasing data 

volumes and regulations. The reliability of data storage should be able to guarantee the 

possible future inspection or investigation of the data. A reliable digital storage device 

should also come at a potentially reduced cost. 

Presently, the common digital storage technologies are flash memory, hard disk drives 

(HDD), optical disk and magnetic tape. They all have their own advantages and 

drawbacks. Within this framework, mechanics of magnetic tape is the main concern in 

this thesis.   

1.2 Tape Storage 

Magnetic tape technology turns 60 in 2012, and its popularity in technology circles is as 

good as ever. Thanks to the new file systems the two biggest complaints that data on tape 

is hard to find and read do not hold true anymore. IBM firstly implemented Linear Tape 

File System (LTFS) during 2008/2009 which made magnetic tape data storage system 

easy to access and modify independent of the file content of the data [4]. With LTFS, 

tape technology expanded its usefulness to merge with HDD technology as part of a 
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multi-platform storage architecture, including active archiving (online tape/disk blend), 

new big data and cloud storage. 

In 2007, digital tape shared roughly 11% [5] of the storage market. The outstanding 

reliability of tape system makes it a perfect storage strategy for backup/restore, disaster 

recovery, archiving offline/long-term preservation and scientific research/exploration. 

About 73% of enterprise backup data is stored on tape [1]. Archival data recording on 

tape was a $2.2B business, in 2012 [6] worldwide, with nearly 30% revenue growth [7]. 

Compared to its competitors, tape storage system has longer media life, more reliable, 

more energy efficient and lower long-term cost. Tape has the longest life than any other 

storage technologies. A tape drive has average life span of 7 to 10 years and a media life 

span of 30 years [7]. The BER (Bit Error Rate - bits read per hard error) for enterprise 

tape is rated at 110
19

 and 10
17

 for LTO
2
 (Linear Tape-Open) tape. This compares to 10

16
 

for the most reliable enterprise Fibre Channel disk drive [8]. One of the drawbacks of 

tape is that currently tape storage solution takes more actual space than HDD. A typical 

tape drive system, take IBM TS1150 an enterprise product for example, has dimension of 

3.8" H  7.8" W  18.4" D with a standard cartridge size of 4.25" W  4.95" L  1.0" D.  

In fact the storage capacity to storage volume ratio can be improved by using thinner tape 

with higher bit density. Nevertheless, overall cost of tape storage is much lower than any 

other storage scheme (Figure 1-3). 

Capacity of tape recording systems has to be improved in order to keep pace with other 

recording technologies, server demands and growing amounts of data. The INSIC 

technology roadmap shows (Figure 1-2) that by 2022 digital tape capacity should reach 

128 TB per cartridge, data rate per channel at 31.8 MB/sec, total data rate at 2049.6 

MB/sec, areal density at 53.22 Gb/in
2 
[1]. The current product LTO-6 (Linear Tape Open, 

an open tape data format) released in December 2012 has native data capacity of 2.5 TB. 

Some notable achievements toward the 2022 goal announced in 2012 were as follows:  

o Oracle announced StorageTek T10000D enterprise with 8.5 TB cartridge in 2013,  

o IBM enterprise TS1150 at 10 TB cartridge capacity in 2014,  

                                                 
2
 LTO is the trademark of HP, IBM, and Quantum in the Unites States and other countries. 
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o Fujifilm in conjunction with IBM recorded 85.9 Gb/in
2
 on tape media,   

o Sony developed areal recording density for tape of 148 Gb/in
2
,  

o LTO-9 and LTO-10 are planned to have cartridges with 62.8 and 120 TB, 

capacity, respectively.  

Tape capacity has experienced continued increases ever since the introduction of LTFS. 

Data areal density is the driven to achieve the capacity goal. The primary impact on tape 

transport will be felt with increasing track density to nearly 53,000 tracks per inch (TPI), 

which is equivalent to 0.48 µm track pitch [1]. As in any engineering problem, there are 

multiple ways to achieve the same goal. The mechanics aspects of this problem are 

discussed in this proposal. Specifically, the modern tape drive must precisely position 

recording heads containing multiple read/write elements over the corresponding data 

tracks on the tape. By 2022, industry report foresees the PES (position error signal) must 

improve to 15.2 nm from ~100 nm in 2012 [1]. This prediction challenges tape transport 

with thinner tape, lower tension, and faster tape velocity.  

1.3 Magnetic Tape Data Storage System 

Modern magnetic tape is most commonly packed in cartridges (a single reel of tape in a 

plastic enclosure while cassette refers 2 reels enclosure). Depending on recording method 

there are two tape technologies: linear and scanning. Linear method arranges data in the 

length direction as parallel tracks and it is widely used in enterprise and open tape path 

because it allows tape to move faster (Figure 1-5). Opposite to linear method, scanning 

recording writes short dense tracks in width direction or diagonal manner. This 

arrangement is implemented in all videotape and some data tape. For data tape, linear 

arrangement of data is clearly more advantageous especially when quick access becomes 

a major factor. Scanning tape recording is beyond the scope of this work. 

A typical linear tape drive is shown in Figure 1-4. A pen is also placed in this photo as a 

reference. When a cartridge is inserted to the drive an auto threading mechanism takes 

the tape from cartridge pack (supply pack), wraps it around several guiding elements 

(rollers in this case) and head assemblies, and finally attaches to the machine pack (take-

up pack). In a data center or library, many cartridges share one tape drive. When 
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read/write request is made a robotic arm can locate the desired supply pack and place it in 

to a tape drive.  

1.4 Magnetic Tape Media 

The magnetic tape used for reading consists of two layers coated on a substrate. The 

layers are the magnetic layer and the back coat (backside coating and sublayer coating). 

Figure 1-6 shows arrangement of the different layers of a digital tape. Magnetic layer is 

in contact with the recording head and the data is stored in this layer. The back coat is on 

the opposite side of the substrate relative to the magnetic layer. Its function is to prevent 

static build up and tape wear. Substrate contributes the most to the overall tape thickness 

and rigidity.  

1.5 Lateral Tape Motion 

Oracle StorageTek T10000D tape media has 4608 tracks including data tracks and servo 

tracks on the magnetic layer. As mentioned above, data is stored in a linear manner on the 

tape. As the tape is translating the read/write heads can read/record the data in parallel 

tracks. Oracle dual read/write elements have 32 channels and require 144 passes to fully 

fill the tape. If the tape is “pushed” off of its intended linear path in the lateral direction 

during the read/write operation, the head assembly could lose the position of a track, 

resulting in data loss. In order to accommodate for unintended lateral tape motion (LTM) 

the head assembly can be made to follow a servo-track written on the tape. Presently, 

head actuation is feasible up to 300-500 Hz. Any LTM with higher frequency can 

potentially degrade the read/write operation. Figure 1-5 shows the data and servo track 

layout along the tape (LTO).  

1.6 Research Objective 

Lateral tape motion (LTM) can be described as a deviation of the tape from its prescribed, 

linear path as it moves between two reels. LTM could cause the heads to lose track of the 

data and lead to lower reliability. In order to accommodate for LTM one strategy is to use 

wider data tracks. But, this leads to lower storage density. In order to keep up with the 

increasing demands on storage capacity, data reliability, and read/write speed, reduction 
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of LTM is one of the key factors. The INSIC-2022 roadmap identifies that the standard 

deviation of the LTM should be below 20 nm by 2022 [1].  

The LTM disturbance has periodic and non-periodic sources, which is expected to get 

worse with smoother, thinner tape as anticipated by the INSIC-2022 roadmap [1]. The 

periodic disturbance is caused by imperfections in the tape-path components, 

manufacturing related imperfections in the tape, and the interactions of the tape with the 

guides, reels and heads. Tape expansion or contraction itself could cause data track 

shrinking or enlarging. Coupling with LTM, tape stretching has impact on lateral 

vibration as well. Most common causes of LTM disturbances tend to have relatively low 

frequencies and high amplitudes; and, the track-following servo system can move the 

head assembly in this range. The high frequency and relative low amplitude disturbances, 

which historically stayed inside the track-width, become more important as the LTM 

margins are reduced to 20 nm levels as foreseen by the technology roadmap.  

For guiding or tracking purpose, industry has no other choice than installing guiding 

elements into tape drive. All the guiding elements, including rollers and stationary guides 

(e.g. posts), together with read/write head assemblies, and packing reels (machine reel 

and cartridge reel) present rich sources of dynamic effects due to friction, sliding contacts, 

impulse, and damping effects due to air bearing/entrainment. More specifically, as tape 

leaves the cartridge it is subjected to a variety disturbances such as pack wobbling, 

contact with pack and/or roller flanges, friction on roller/guide surface, roller tilt, tension 

fluctuation, friction induced vibration from the head and surface friction between 

different layers of tape at packs. These are certainly unwanted disturbances for the system. 

The best case scenario due to these negative effects is the LTM, deviating the media from 

its prescribed path. The worst case scenario could destroy the media or even be 

detrimental to the entire system.  

The primary goal of this study is to analyze how these factors affect the LTM. This work 

has the following contributions: 

i. Investigate the effect of numerical discretization on convergence and accuracy of the 

linear model [9], 
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ii. Provide experimental verification to a new roller model, 

iii. Conduct friction tests over a grooved roller to determine an effective lateral 

coefficient of friction and investigate the stick and slip phenomenon observed in the 

experiments, 

iv. Introduce nonlinear model with the ability to couple the longitudinal motion to LTM 

or vice versa. Implement this model on tension fluctuation, floating layer and guide 

friction, 

v. Based on the existing mathematical models of guides, roller and head, introduce 

more general modeling method as distributed and generic to improve the simulation 

and analyze the high frequency LTM due to flange impact. 

1.6.1 Other interests 

In general, tape can be simulated as axially moving media under tension [10], specifically 

a tensioned beam [11], string [12], or plate [13]. This includes a class of much broader 

industries: web transport systems [14], band saw vibration [15], moving cables [16-18],  

paper recycling production and printing [19]. There are some variations between tape 

drives and these other operations. Active roller guidance in web handling application is 

common whereas rollers are passive in tape drive. Head assembly could induce vibration 

in the tape while web industry does not have such an element with high frequency lateral 

motion. Nevertheless, the analysis performed for a tape system can be also applied to the 

above fields with relatively small modifications.  

1.7 Thesis Organization  

In this work we present a generalized mathematical model of a tape translating between 

two reels, supported by various guiding elements for predicting LTM. Key to this work is 

the description of the mechanics of the tape over fixed-guides, rotating-rollers and heads 

based on Wickert and Brake [9, 20, 21]. The equation of motion is solved numerically. 

We also couple the longitudinal and lateral tape motions. This coupling results in a 

nonlinear system, which we also solve numerically. 

A comprehensive literature review is provided in Chapter 2. The survey is not only 

limited to tape modeling, it also covers general models for axially moving media and 
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various guiding elements. Several unique tape transport phenomena such as air 

entertainment and tension fluctuation are listed separately. Linear model of LTM is 

derived and the numerical solution method is presented in Chapters 3.  

In Chapter 4, the convergence and accuracy of numeric solution of the linear model is 

discussed by using wave characterization analysis. A new state space form of eigenvalue 

solution method for modal shape analysis is also presented. A mathematical model is 

described that matches the tape slope to the roller slope for a continuous tape supported 

by multiple rollers in Chapter 5. The model is verified experimentally by using a 

configurable tape path. The effective lateral coefficient of friction (COF) between 

magnetic tape and grooved roller is measured in Chapter 6. A model of simulating the 

friction has good agreement with the measurements. The effect of tape edge contacts with 

a flanged roller on lateral dynamics is investigated in Chapter 7. 

The coupling between lateral and longitudinal dynamics of a translating tape is 

considered in Chapter 8. This coupled model is tested to investigate the effects of tension 

fluctuations, number of floating layers in the tape-up pack and location of the frictional 

guides.    

The Chapter 9 and Chapter 10 give a summary of the work and outline of some of 

potential research topics in the area tape mechanics.   
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Figure 1-1 Source: Tape Summit 2013 

 

Figure 1-2 Hard Disk Drive, Tape Product and Tape Technology Roadmap Areal 

Densities [1]. 
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Figure 1-3 Total 10-year cumulative hardware cost for 1PB long-term retention (Source: 

Wikibon 2014) 
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Figure 1-4 Commercial available tape drive (Oracle StorageTek T10000). 

 

Figure 1-5 LTO tape servo and data track (Source: FUJIFILM, USA) 

 

 

Figure 1-6 Three layers of digital tape (Source: Sony) 
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Chapter 2 Literature Review   

A typical axially translating system can be found in tape drives, web handling systems in 

a variety of roll-to-roll (R2R) manufacturing systems. Any one of these systems requires 

various types of guiding elements such as rollers and stationary guides to support the 

tape/web as it travels between the reels. In addition, tape drive systems in particular use 

servo controlled read/write head assemblies. These elements which serve the systems in 

different ways such as guiding, tracking or reading/writing data, also introduce dynamic 

imperfections into the system, which could be disturbing or even detrimental to tape/web 

motion along the entire path.   

This chapter starts with a review of mechanics of axially moving media for the past two 

decades in Section 2.1. The effects of various tape-path components on tape mechanics 

are reviewed in Section 2.2. The effects of tension and speed control on tape dynamics is 

presented in Section 2.3. The effects of wound-in stresses on the tape packs are briefly 

discussed in Section 2.4. Finally, the effects of the free length of tape between the 

components on the dynamics are reviewed   in Section 2.5. 

2.1 General Modeling  

First, some key general concepts related to translating media will be introduced. If the 

Lagrangian reference frame is used to model axially moving media, the entire media 
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length including wound roll would have to be described. In order to avoid this, the 

governing equations are expressed with respect to Eulerian reference fame. In addition 

this system has the Coriolis or gyroscopic accelerations and it is usually characterized as 

a distributed gyroscopic system. This term arises from gyroscope device which describes 

the motion due to deflection of moving objects when the motion is described relative to a 

rotating frame. The velocity is usually defined by material derivative for any tensor field,  

Dy y
y

Dt t


  


u                                               (2.1) 

where, y is the deflection at position x and time t, u is the flow velocity vector and y  

represents displacement gradient. Its acceleration is then, 

2 2
2 2

2 2
2

D y y
y y

Dt t t

 
    
 

u u                                   (2.2) 

In the following studies, magnetic tape drive system is simulated as axially moving beam 

with constant velocity Vx . Therefore Equation (2.2) is simplified as  

2 2 2 2
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


 represent local, Coriolis and centripetal acceleration 

respectively, y can  be viewed as displacement u, v and w as shown in Figure 3-1. This 

representation has an analog in fluid dynamics.   

Renshaw [10] et al.  showed that the energy of an axially moving string/beam with 

constant length is conserved in an Eulerian reference frame for clamped and simple-

supported boundary conditions, and the response is bounded under a subcritical 

translating speed. This ensures the legitimacy of investigation of displacement and slope 

response instead of energy. In contrast to constant length problem, a string with variable 

length is only energy bounded. Examples of varying length class can be found in elevator 

cables, satellite tethers and mining hoists systems. This is beyond the scope of this work. 
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This review will concentrate on constant length class only. Varying length study can be 

found in references [16-18, 22].  

State-space modal analysis and Green’s function methods were used by Wickert and 

Mote [23] to analysis the stability and dynamic response of axially moving media. This 

method became a widely used analytical approach to deal with the difficulties from 

Coriolis acceleration component of a gyroscopic system. Spatial discretization method 

and discontinuous basis functions [24, 25] were proposed by Jha and Brake to help solve 

the eigenvalue problem and model the nonlinear constraints, respectively. More recently, 

numerical methods gained acceptance in the solution of more complex, non-linear 

problems [9, 26-28]. 

2.1.1 String model 

String model is the most popular studied model to understand the physics of translating 

media. A translating moving string on elastic foundation model was used to study 

nonlinear vibration, stability [11], and supercritical behavior of translating media [29]. 

These works conclude that there is a critical speed at which the first natural frequency 

becomes zero. Increasing the extent of foundation and the foundation stiffness could 

result in increasing the natural frequencies, but critical speed value remains the same. 

Regardless of multiple or infinite critical speed, depending on whether discrete or 

continuous support, instability happens only after the first one and there is an upper 

bound critical speed value. Longitudinal friction in string model was studied by Chen et 

al. [30, 31] in constant speed and by Zen and Müftü [32] in accelerating systems, 

respectively.  

Parametric resonance can occur in translating media, when the frequency of the 

excitation in the longitudinal direction is close to twice that any natural frequencies 

(principal) or sum of any two natural frequencies (summation). A study of parametric 

excitation can be found in reference [33] by limit cycle contour analysis. Viscoelasticity 

in parametric excitation was firstly studied by Zhang et al. [34, 35]. Mockensturm et al. 

[12] corrected Zhang’s equation of motion and found viscoelasticity significantly alters 

the excitation amplitude. A recent publication of Chen et al. [36] discussed parametric 
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resonance of accelerating string by the method of multiple scales. In their 2-term 

truncation solutions, they showed that only increasing the fluctuation amplitude of the 

axial speed could increase the response amplitude and the instability range. Response and 

instability range are not sensitive to mean axial speed.  

2.1.2 Beam model 

Beam model, which includes the effects of bending rigidity, has been shown to be a more 

reasonable model for a variety of translating media problems [37]. Tension effects on a 

translating beam were studied in references [12, 15, 16, 23, 38]. Lin [13] in his plate 

analysis indicated that beam models predict an upper bound for the critical speed, but the 

error could be significantly large if the non-dimensional ratio of the flexural stiffness to 

the stiffness derived from the applied longitudinal tension, or the slenderness ratio are 

large in the beam model. This is because as the width of a plate is increased the beam 

approximation increasingly worsens. Lateral vibration of interconnected beams by a 

Winkler foundation was investigated by Gaith and Müftü [39].  

Kartik has numerous contributions on the effects of friction on translating beams [40-42]. 

One of the most important conclusions is that low vibration modes are significantly 

damped in low transport speeds by lateral friction. The other contributions of his work 

will be discussed in Section 2.2.  

Wickert [43] analyzed the stability and resonances of a nonlinear translating beam by 

asymptotic and perturbation analysis. He pointed out that nonlinear stiffness becomes 

important near critical speed where modal stiffness is predominately governed by 

nonlinear flexure. Foundation stiffness which induced longitudinal friction and its effects 

of its location were deduced by  Chakraborty and Mallik with a nonlinear model [44]. 

Stiffness not only increases fundamental frequency, but also the critical speed, but the 

second critical frequency is independent of the stiffness value. Additionally, non-linear 

effects and natural frequencies strongly depend on foundation stiffness and its location, 

while they depend weekly on friction. All the other conclusions obtained from string 

model still hold valid in beam assumptions. Parker and Lin [45] continued Mockensturm 

et al.’s work [33] in multiple parametric excitations by second order approximation for 
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both string and beam model and investigated secondary instability (driven frequency is 

the same as natural frequency). They mainly found that primary instability (driven 

frequency is close to twice a natural frequency) region is wider than the summation 

(driven frequency is combination of mth and nth modes of natural frequency) and 

secondary type instability regions. Furthermore, secondary resonances could be widened 

substantially if second parametric excitation excites primary instability. Such condition 

can be observed when fundamental driven frequency excites secondary instability while 

its first harmonic coincident with primary instability. Chen et al. [46] obtained the similar 

parametric resonances conclusions by modeling the translating media as a Timoshenko 

beam. Orloske et al. [47, 48] extended Chen’s interests to a three-dimensional beam 

model by considering both torsion and buckling besides bending. Furthermore, they 

showed that buckling dominates the in-plane deflection and twist.  

2.1.3 Plate model 

Plate model inherently has all the degrees of freedom and provides a comprehensive 

modeling approach. It also provides the ability to analyze the effects coming through the 

tape surface. Müftü et al. numerically solved the transient equation of motion of a 

translating shell in the context of a foil bearing [26, 49, 50]. Lin provided a general 

stability analysis of moving plate [13]. He indicated that critical speed depends positively 

on stiffness ratio and negatively on slenderness ratio. He also showed that a stable region 

beyond the critical speed is possible. Parametric excitation of a translating plate by a 

laterally moving elastic foundation was addressed by Kartik and Wickert [51]. Their 

analysis explicitly stated that stiffness widens the unstable region and develops multiple 

primary and combination resonances, while the excitation of torsion mode is strongly 

affected by low stiffness value. Banichuk et al. [52] proved buckled shape of a plate on 

an elastic foundation is symmetrical by carrying out supercritical stability analysis. Lin 

and Mote [53, 54] studied the wrinkling of rectangular web by plate theory. They found 

wrinkling criteria under nonlinear loading is related to flexural stiffness. Their model is 

able to predict wrinkling line and region. Mockenstum and Mote showed twist angle, 

tension and aspect ratio increase the chance of wrinkling for a translating twisted plate 

[55]. They also studied stability of new equilibrium configuration after wrinkling [56].   
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2.2 Tape Tribology 

Topics discussed in previous section benefit the real tape path or web handling problems. 

Most of the subjects reviewed in this section can be found to have equivalent physical 

models above. For instance, flange contact is similar to foundation model to a certain 

extent, tension or velocity fluctuation is a good example of parametric excitation, friction 

in running direction is equal to the friction in media on foundation model, etc.  Lateral 

friction, depends on relative velocity, can be viewed as analogous to elastic foundation, 

though it is related to relative velocity rather than displacement. Some of the works 

addressed in previous section are cited once more based on the fact that applications are 

built on fundamental studies. 

2.2.1 Roller 

Roller is one of the most import guiding elements on the web/tape path. Ideally, when a 

web/tape translates in contact with a roller, the frictional force in the interface will cause 

the roller to rotate. This attribute provides the roller guidance functionality without 

causing slip. This behavior is similar to the well-known rolling friction, and depends 

strongly on the traction between the roller and the web/tape. In addition, under steady 

state operation conditions the traction in tape-to-roller interface will force the centerline 

(e.g. neutral axis) of the web/tape to follow the roller surface. This will cause the tape to 

be shifted away from its intended path, in case the roller is tilted. Mechanics of 

interaction between a roller and a translating medium has attracted some interest. 

Moustafa derived the equation of motion of a string over a roller and numerically 

obtained the displacement distribution [57]. Young implemented string model on an axi-

symmetrically shaped roller [58]. Eaton described a translating beam model for the 

mechanics of a tape wrapped around a post with no slip, and experimentally verified his 

model [59].  

Shelton and Reid (SR) observed that the tape/web would “enter” a spinning roller at 

ninety-degree-entry angle, if it completely sticks on the roller surface [60-63]. There is a 

need for a model that considers the effects of rollers on the entire length of tape, 

considering that tape interacts with multiple rollers as it travels between the two reels. 
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Models of multi-roller tape spans based on the Shelton and Reid’s description have been 

developed [62, 64, 65]. These models stitch together a collection of straight beam 

segments with the velocity matching condition at the roller positions, but eventually fail 

to capture the system level effects that the rollers impart on the tape/web. This is because 

the velocity matching condition does not allow effects such as slip to pass through the 

roller. Subsequently, Yang and Müftü developed a numerical model interpolating the 

Shelton and Reid (SR) boundary conditions in a multi-roller system [27]. 

The formulation introduced by Brake and Wickert [66], in which the effects of various 

guiding elements are introduced onto the tape as concentrated forces and moments, is 

suitable for achieving the goal of properly modeling roller-to-tape interactions. However, 

no guidance has been given to date on how to introduce this interaction on a continuous 

(non-seamed) tape-path. Pieces of how to model this interaction have been introduced by 

Eaton [59], Ono [19, 67], Raeymakers et al. [28, 68] and Brake and Wickert [9]. In 

particular, Eaton [59] and Brake and Wickert [9] have made good progress toward 

incorporating frictional, but “non-rotating” guides (posts) on the tape path. Lee, 

McClelland, and Imaino found a very good agreement between their theoretical 

Timoshenko beam assumption and experimental results [69]. A web-to-roller interaction 

model in Lagrangian reference frame using plate assumption was established by Yu, 

Zhao and Ren [70]. Taylor’s experimental data demonstrated that the correlation between 

axial run-out and lateral tape motion (LTM) of grooved roller is higher than smooth roller 

[71]. A new measure method and coherence analysis were used to assess stick-slip in 

tape-roller interface by Jape et al. [72]. This technique is able to produce a tension-

velocity spectrum contour diagram and identify the region where the tape is most likely 

to slip or stick.  

2.2.2 Stationary guide 

Unlike a rolling guide, a stationary guide increases tape tension due to sliding friction 

along the running direction. The term ‘stationary’ only means that the guide is not 

spinning, however, slewing, pivoting or other non-rotating motions could be allowed. 

This term also often refers to a ‘post’ in tape industry. The effects of an imperfectly 
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oriented stationary guide on the tape are not as well defined as those described by the SR 

conditions.  

2.2.2.1 Frictional surface 

A very comprehensive review paper of theory and experiments was presented by 

Raeymaekers and Talke [73]. Ono described the tape deflection over guide surface by a 

string model [19, 67]. Raeymaekers and Talke presented a beam model to simulate LTM 

over a cylindrical guide. They found that the guide radius and wrap angle predominantly 

influences LTM rather than tape tension, velocity or thickness [68], and the contributions 

of coefficient of friction are analog to that of damping respectively [28]. Effects of guide 

tilt on tape deflections, were  simulated by Brake and Wickert [9] by using an effective 

concentrated force including the friction effects. They improved Eaton’s model [59] by 

introducing an equivalent bending moment and found a good agreement with 

experimental data. A model, where the forces acting on the tape due to animperfectly 

oriented guide were modeled as a distributed force acting on a translating beam, was 

developed by Brake and Wickert [20]. This model enabled studies of the effects of 

friction on tape’s deviation from an idealized prescribed path. A plate model over 

cylindrical guide surface was developed and solved numerically to simulate the effects of 

self-acting air lubrication by Müftü and Benson [50].  

2.2.2.2 Head motion 

In magnetic tape recording applications the read/write head can be actuated in the lateral 

direction with respect to the direction of  tape transport, for track following and track-

scaling purposes. The friction induced vibration (FrIV) due tohead motion has been 

analytically examined in the interests of vibration transmission from head to tape [20, 21]. 

Yang and Müftü studied FrIV by using a stick-slip algorithm [74]. Jose et al. studied the 

head position error signal (PES) by using LTM as an input to a parametric filter with 

error-based system identification [75]. A new design of dual stage actuator head with 

capability of high-bandwidth track following was introduced by Raeymaekers et al.  [76]. 

Pivoting motion of frictional surface was analyzed by Kartik et al. [41] as an alternative 

solution to head positioning to accommodate for slope misalignment. Parametric 
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instability of tape mechanics due to head motion was investigated by Kartik and Wickert 

[51].  

2.2.3 Edge contact/wear 

Flanges are used on stationary guides and rollers to improve guiding performance by 

setting hard limits to LTM. On the other hand, the trade-off due to using a flanged guide 

could be tape edge wear or even buckling. Edge contact was studied experimentally by 

Taylor and Talke  [77] and theoretically by Yang and Müftü [78] and Brake [21]. These 

studies showed the same conclusion that edge friction helps regularize tape vibration 

produced by contact. Tape wear problem was found to be responsible for increasing LTM 

and causing impulse events by Wang and Talke [79]. A prediction method of edge wear 

and its improvement were also developed [80, 81]. Lakshmikumaran and Wickert [82] 

deduced that web wrinkling is governed by a relatively high mode by studying edge 

guided web behavior. During manufacturing tape is slit into small (12.69 mm wide) 

segments by circular “knives.” Any imperfection in the rotation of the knives is reflected 

on the tape width. The resulting width variation is known as tape weave imperfection. 

This imperfection could be a source of random and periodic excitations when the medium 

moves in contact with a flanged guide. This topic was investigated by Kartik and Wickert 

as function of foundation stiffness, tape speed and guide geometric parameters [51, 83].  

2.2.4 Air bearing/entrainment  

The interaction of a flexible magnetic recording tape and air when the tape is transported 

over a rigid surface, gives rise to a foil bearing [26]. Study of this problem refers to 

formulation of a self-acting air bearing in the tape to guide interface. This effect could 

cause the media to lose contact with the surface of the guiding elements, while generating 

a super-ambient pressure in the interface. Thus, hydrodynamic lubrication needs to be 

considered in modeling. Flying height of tape was found to be sensitive to translating 

speed and tension analytically, and experimentally  until operating parameters reached a 

certain threshold by Müftü et al. [49] and Ducotey et al. [84] respectively. Wickert [85] 

analyzed stability of tape when air bearing developed on a stationary guide. A modified 

Euler formula which integrated tape speed, hydrodynamic lubrication, surface 

characteristic and guide dimensions was developed and solved by Raeymaeckers, Etsion 
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and Talke [86]. Air bearing is usually an unwanted effect for rollers as it reduces traction. 

Several efforts have been made to avoid the formation of the air bearing. Laser surface 

texturing was proposed to improve the guide tribology performance [87] by Raeymaekers 

et al. A novel air-breathing type of guide was introduced and validated through 

experiments to enhance tape-to-guide contacts by Nagao and Chang [88]. Air entrainment 

is also encountered at the take-up reel during winding. Keshavan and Wickert [89] 

experimentally studied the cumulative and outmost thickness of air layer as well as the  

rate of air leaking from the sides of the tape-pack, at steady state. They developed a 

mathematical model that can predict the upper and lower bounds of measurements. Later, 

they analyzed the discharge rate of entrained air and introduced the mathematical model 

that describes the boundaries [90]. The reason why only bounding models can be 

developed instead of exact prediction is mainly due to the uncertainty of surface 

roughness [91, 92]. Another difficulty of modeling is due to viscoelastic behavior of tape, 

causing stress relaxation over time [93].  

2.3 Tension/Speed Control 

There are three principles of tension control while winding. First of all, large torque is 

applied at the hub in order to build a solid foundation. Secondly, media can be wound 

softly at the end of wrap. Finally, the torque changes smoothly from end to end. This 

change is call taper. Under ideal conditions, tension and speed of the tape in a tape drive 

always remain constant and linear taper is commonly applied. However, variation of 

tension or speed can arise from start/stop of the system, winding/unwinding of the pack, 

or acceleration/deceleration during operation. Furthermore, one of the many 

consequences of air bearing or entrainment is tension change. These realistic issues 

challenge the linear taper control method. Control community developed tension and 

velocity control algorithms by simulating the entire tape path as a single degree of 

freedom system [94-99], or lumped system [100-105].  

Measurement of tape tension can be required to diagnose potential problems on the tape 

path. Imaino [106] designed a non-contact tape tension measurement using a laser 

Doppler technique to detect photoacoustically generated antisymmetric Lamb waves. 
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Raeymaekers et al. [107] invented an optical, non-contact tension sensor and found the 

strong correlation between tape tension and LTM. 

2.4 Winding 

Mechanics of a wound reel itself is an important subject. Winding is a process that turns a 

straight material into a coil. Tape and web handling industries use, most of the time, the 

simplest winding scheme, center wind, to wind their media. In this method, the wound 

roll usually is driven by a speed controlled motor. The tension applied to media controls 

the tightness of a wound roll. Tension tapering (discussed above) is known to affect 

misalignment between layers, folding and wrinkling at the wound roll. Altman proposed 

a formula for computing the radial and hoop stresses for wound roll shape [108]. Based 

on experiments, ‘Pfeiffer model’ [109] resolved the growth of compressive strain. 

‘Hakiel model’ [110] incorporated the nonlinear material properties. Benson developed a 

nonlinear model to predict large deformations caused by large interlayer contact 

pressures [111]. A relation between interlayer pressure and hoop stress at the core 

boundary was proposed by Yagoda [112]. Lee and Wickert simulated the stress field in 

wound rolls by finite element analysis [113]. Slippage in wound roll was modeled and 

measured by Changwoo et al. [114]. 

2.5 Media Span 

In traditional web handling industry, researchers separated the entire web path into 

several free-spans and modeled each span as a translating, tensioned beam. For each span 

the boundary conditions are obtained from downstream and upstream rollers individually. 

A state space control algorithm is then applied to modify the rollers and consequently 

correct the web path. SR boundary conditions [60-63] were originally introduced in web 

handling industry, and state that friction moment on the roller would correct the web to 

follow the ninety-degree rule for small steering angles. Benson developed a Timoshenko 

beam model of SR boundary conditions [115]. Sievers used the SR boundary conditions 

in a multiple rollers system and discussed the related control algorithms [116, 117]. SR 

conditions were further modified by Young, Shelton, and Fang for a moderate 

(circumferential slippage) and large steering (lateral slippage) angle of static and dynamic 
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analysis [62, 64]. Subsequently, modeling and related control algorithm of multi-roller 

system was discussed by Young [118]. Solutions to free-span deflections were modified 

according to different roller imperfections by Seshadri and Pagilla [119]. Han, Xiong and 

Shi [120] narrowed their study to a two-roller system with angular misalignment.  

A simple roller model assumes no tension change over the roller. However, due to 

eccentricity or out-of-round shape, tension oscillation is observed in real experiments. 

Carlo, Pagilla and Reid [101] developed a lumped model to describe tension oscillation in 

roller-web interaction system and verified experimentally by considering the non-ideal 

roller causing changing of length of web span. In modern processing lines, frequently 

accelerating or decelerating the running web is a common manufacture requirement. It 

certainly causes speed variation as well as tension fluctuation. How this tension/speed 

variation changes the resonant frequency of the entire system was discussed by Pagilla 

and Diao [121]. Wrinkling is also an important topic in web handling. A typical 

wrinkling is formed as ‘L’ shape and the classic bulking can be applied to the lower 

portion which is independent of speed [122]. The speed dependent portion and critical 

twist angle prior to wrinkling were discussed by Good and Straughan [123]. A closed 

form of critical machine direction (CMD) stress of web twist was found. Furthermore 

authors’ analytical solution showed reasonable prediction compared to their 

measurements.  
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Chapter 3 Equation of Lateral Tape Dynamics: 

Linear Case   

The tape mechanics is described with respect to a tape-based coordinate system (x, z) 

that coincides with the neutral axis of the idealized tape as shown in Figure 3-1(a). The 

origin of the tape-coordinate system is located at the tape tangency point on the supply 

reel. Figure 3-1(b) shows the tape in a configuration that is unwrapped onto a plane. This 

figure will be used as tape path baseline for the following discussion in next sections and 

chapters. 

Figure 3-1(c) shows schematic depictions of a typical tape path and the definitions of the 

deflection components u, v, w with respect to a fixed Cartesian coordinate system (x, y, z), 

where x-, y- and z- axes represent the longitudinal, lateral and out-of plane directions. The 

tape is assumed to be translating in the longitudinal direction with transport velocity Vx. 

Each one of the deflection components is a function of (x, t). The strain free configuration 

of the tape follows an idealized path between the two reels with perfectly aligned 

components. Tape mechanics is analyzed in an unwrapped, straight configuration, and the 

effects of the various guides and the reels are imposed with appropriate external forces 

and boundary conditions, respectively [97]. In this chapter we only focus on lateral tape 

motion and the interaction among lateral, longitudinal and out-of-plane is assumed to be 

negligible.  
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The equation of motion of axially moving beam is derived in Section 3.1. Section 3.2 

describes how the governing equation is discretized by the finite element method. The 

solution method is outlined in Section 3.3. 

3.1 Theory  

The equation of motion is obtained by using the Hamilton’s principle which minimizes 

the following functional, 

 
2

1

0

t

t

K U W dt                                                             (3.1) 

where K, U and W represent the variations in kinetic energy, strain energy, and 

external work on the system, defined in the usual sense of the variational calculus, 

respectively [124]. The details of the derivation are omitted here for the sake of brevity. 

However, it should be mentioned that the viscoelastic nature of the polymeric tape 

material is considered. The constitutive behavior for a translating viscoelastic beam is 

given as follows [12] from Kelvin-Voigt model,  
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where   is the loss modulus of the tape, and 
xx  and xx  are the longitudinal stress and 

strain, respectively. The motion is observed in an Eulerian reference frame, therefore the 

material time derivative,  
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is used in rate calculations. The kinetic energy (K) of the system due to LTM is expressed 

as follows, 
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where,  is the mass density of the tape, t is time and L is the length of media. The strain 

energy of the translating beam is given as follows,  
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where T represents the tension, E is the Yong’s modulus, I is the second moment of 

inertia, Vx is media translating speed. Moreover, first, second and third terms represent 

the contributions due to tension, beam bending and viscoelasticity in bending, 

respectively. 

Equation of motion of a translating tape is then found by using Equation (3.1) as follows, 

 
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             (3.6) 

The first three terms in Equation (3.6) represent effects of inertial forces, internal shear 

force and bending moment resultants, and the restoring force due to tape tension, 

respectively. The general function  ,f x t on the right-hand-side (RHS) represents any 

form of external forces, or loads produced by guiding elements during tape travel. 

Examples of such forces are due to roller interactions, flange contact forces, surface 

stiffness of guiding element, impulse or friction on head surface. Details of  ,f x t  will 

be explained in the following chapters. The following sections will fill the RHS by the 

different guiding types. Equation (3.6) was derived by using the Kirchhoff-Love 

hypothesis, which eventually leads to the Euler-Bernoulli (EB) beam theory. Noting the 

width-to-length ratio for the tape, we also considered using the Timoshenko beam (TB) 

theory. Comparison of steady state tape deflection as predicted by the EB and TB models, 

given in Appendix A, shows a modest (~3%) difference in the mid-point tape deflection. 

The error becomes large near the fixed boundaries, but not near the simply supported 

boundaries. In this work we use the EB theory due to its ease of implementation. As 

shown in the subsequent chapters, good match between experiments is obtained with this 

approach.  
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As mentioned before tape is formed of three layers. Its equivalent mass per unit length, 

Poisson’s ratio, and bending stiffness are expressed as follows [9], 
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In order to model the tape dynamics between two reels we only need two boundary 

conditions at the supply and take-up reels located at  x = 0 and L. Brake describes the 

boundary conditions in case the supply pack axis is not perfectly aligned. In this case the 

position and slope of the tape coming off of the supply reel are given as follows [9], 

                     at x = 0:  0 0 0sw d R     and  
0s

w
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
                               (3.10) 

where d0 is the linear offset of the axis, 
0 is the tilt of the reel axis described similar to 

the roller imperfection (Chapter 5), and R0 is the radius of the web coming off the reel. 

On the take-up reel side, at x = L, the web velocity and slope match the take-up reel’s 

velocity and slope as follows, 

                                       at x = L:  
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where L  represents the misalignment angle of the take-up reel. This equation represents 

the Shelton and Reid (SR) [61, 63] boundary condition. The initial condition for the tape 

is specified as follows, 

                      at t = 0:   ( ,0) 0 for 0w x x L                              (3.12) 
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3.2 Spatial Discretization 

The equation of motion is solved numerically; lateral deflection is interpolated by 

piecewise continuous third-order Hermite polynomials [125].  

Deflection w is defined over an element as follows, 

 
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where, N  is the shape function matrix, d is the degree of freedom vector for an element, 

iw  and i  (i = 1, 2)  are the displacement and slope of the tape deflection on the 

boundaries of an element. The sign convention for degrees of freedom d  is defined to be 

positive along the positive coordinate direction for displacements and counter-clockwise 

direction for slopes. The shape functions are as follows, 
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                         (3.14) 

The details of the derivation, which leads to the following matrix representation of the 

equation of motion, are outlined in any standard FE textbook (e.g. [125]),  

  md gd kd f                                               (3.15) 

where m , g , and k  are the element mass, gyroscopic damping, and structural stiffness 

matrices, respectively, d , d , d  and f  represent the element displacement, velocity, 

acceleration and external forces vectors, respectively.  The element matrices can be 

evaluated as follows,
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The form of element load vector f  depends on of the nature of the external force (which 

depends on different guiding elements) and will be discussed case by case in the 

following chapters. The global equation of motion is obtained by summing the forces 

acting on the nodes in the usual way [125]. The global equation of motion is represented 

as follows, 

  MD GD KD F                                             (3.17) 

where M , G , and K  are the global mass, gyroscopic damping, and structural stiffness 

matrices, respectively, D  , D , D  and F  represent the global displacement, velocity, 

acceleration and external forces vectors, respectively. In order to use the more commonly 

used convention lower case letter ( d ) will be used to represent the global degrees of 

freedom vectors from this point forward. 

The boundary values of the translating beam in Equation (3.10) and (3.11) can be 

specified as, 
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where, M represents the total number of elements. The boundary conditions are applied to 

Equation (3.17) by using the penalty method to stiffness matrix (K) and force vector ( F ) 

as follows, 
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where, k is a penalty parameter and set to be 4 order of magnitude larger than 

displacement, i is one of 1,2, 2M+1, and 2M+2, not index notation. 

3.3 Numerical Time Integration 

Once the continuous partial differential equation (PDE) is reduced to a set of ordinary 

differential equations (ODE) numerical time integration method can be implemented. The 

initial values of this problem are as follows, 

  00 d d                                                            (3.20) 

  00 d v                                                            (3.21) 

A widely used direct time integration method for solving Equation (3.15) is Newmark’s 

method. This method  is expressed as [126], 

1 1 1 1n n n n     Md Gd Kd F                                     (3.22) 
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where,  β and γ are the parameters that determine the stability and accuracy of the 

algorithm [126]. There are several different possible implementations. In this 

investigation we use the predictor-corrector and implicit method. The predictor vectors 

are defined as follows, 
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 1 1n n nt    d d d                                       (3.26) 
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Equations (3.23) and (3.24) can then be written as corrector vectors, as follows, 

1 1 2 1n n nt    d d d                                        (3.27) 

1 1 1n n nt   d d d                                         (3.28) 

To begin the time integration, 
0d  can be obtained by, 

0 0 0 0  Md F Gd Kd                                           (3.29) 

and the following  recursion relation determines 1nd  

 2 1 1 1 1n n n nt t           M G K d F Gd Kd                       (3.30) 

The flowchart (Figure 3-2) describes the pseudocode of implicit Newmark’s method. β = 

0.25 and γ = 0.5 are used to obtain stability second order accurate 2( )O t  integration 

scheme [125].  
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Figure 3-1 (a) Schematic depiction of the tape coordinate system (x, z) and the drive base 

coordinate system (x1, x2, x3), (b) Schematic diagram of the tape path with supply (1) and 

take-up reels, two cylindrical guides (1,3) and a cylindrical head (2) depicted in drive 

base coordinates (x1, x2), (c) Schematic diagram of the longitudinal, lateral and out-of-

plane tape deflections. 
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Figure 3-2 Flowchart of Newmark's time integration 
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Chapter 4 Investigation of the Accuracy of 

Numerical solution of an Axially Translating, 

Viscoelastic beam  

In this chapter, we investigate the effects of spatial and temporal discretization on the 

accuracy of the numerical solution of the equation of motion of a translating beam. The 

equation of motion is solved by using numerical time integration and the finite element 

(FE) method. The effects of spatial and temporal discretization on the accuracy of high 

frequency predictions have not been well addressed. We address this problem by modal 

analysis and wave propagation analysis.  

The motivation for this study is given in Section 4.1. Equation of motion is 

nondimensionalized in Section 4.2. Analysis of wave propagation in a translating 

viscoelastic beam is given in Section 4.3 by using analytical, finite difference (FD) and 

waveguide finite element (WFE) approaches. Modal analysis of a beam translating 

between two supports is demonstrated for spatially and temporally discretized cases in 

Section 4.4. The conclusions are presented in Section 4.5. 
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4.1 Introduction  

Eigenvalue analysis has been commonly used to identify the natural frequencies of 

translating media. Meirovitch [127, 128] used the state space representation to find the 

eigenvalues of gyroscopic systems. Wickert and Mote [23] implemented this approach to 

moving string/beam systems. This representation enabled researchers to investigate many 

other axially moving models [13, 17, 34, 35]. Tonoli, Zenerino and Amati [129] used the 

finite element method to obtain the state space representation of a continuous belt system. 

Wave propagation characteristics of a structure are of high interest at higher frequencies. 

They reveal the characteristics of propagation of a disturbance or transmission of energy. 

The analytical expression of dispersion relation between frequency (ω) and wavenumbers 

(k), group velocity, phase velocity, etc., are available for simple structures (rods, beams, 

plate, etc.,) [130]. Spectral-finite element (SFE) method [131, 132] provides an approach 

to tackle more complicated problems. Lee and Oh [133], Chakraborty and Mallik [134, 

135], Banerjee and Gunawardana [136] applied the SFE to axially moving systems. 

However, SFE requires development of new elements on a case by case basis [137]. 

Duhamel, Mace and Brennan [138] proposed the waveguide-finite element (WFE) 

method to analyze periodic structures. This method uses the existing finite element 

formulation rather than developing new ones and has been extended to analysis of rod 

[139], beam [137], plate [140] and cylindrical panel systems [141]. Analysis of non-

tensioned translating beams was carried out by using the WFE method for fixed length 

[142] and varying length [143] beams.  

However, eigenvalue analysis, SFE method, or WFE only discretize the space domain, 

and the time domain remains continuous, despite the fact that the time-step analysis is as 

important as the spatial discretization in solving dynamic problems. Here, we present 

eigenvalue and wave characterization analyses of fully discretized translating beam 

solution. In the present study, the equation of motion of a tensioned,  viscoelastic beam is 

discretized in spatial domain by FEM [125] and in time domain by Newmark’s method 

[144]. The accuracy of both time step and spatial discretization on natural frequency 

analysis is then studied by using canonical, first order form that is defined by one 

symmetric and one skew-symmetric matrix differential operator [23]. The discretized 
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form is solved by WFE method [137] and FD for the wave motion. Each study is 

validated by the corresponding analytical solutions. The accuracy of the wave motion is 

established by comparing the dispersion relations of the continuous and discretized 

systems.  

4.2 Governing Equation and Non-dimensionalization 

Homogeneous form of the equation of motion of an axially moving, tensioned, 

viscoelastic beam given by Equation (3.6) can be expressed as follows,  

2 2 2 4 2 5 5
2

2 2 4 2 4 5
2 0x x x

w w w w w w w
V V EI T I IV

t x t x x x x t x
  
       

       
         

         (4.1) 

where, ρ is the linear density, T represents the tension, E is the Yong’s modulus, I is the 

second moment of area, η is the loss modulus, Vx is media translating speed, w is the 

transverse deflection, x is the coordinate along the beam, t is time. The Equation (4.1) can 

be cast in dimensionless form by using, 

   

       

4

2 2 4

   =   

 

      

c

c

x c c c

X x L W w L t t

t L EI

V V t L T Tt L It L





   

 



  

                          (4.2) 

where L is the length of the beam. Nondimensional form of the governing equation 

becomes,  

 
2 2 2 4 5 5

2 2

2 2 4 4 5
2 0

W W W W W W
V V T V

X X X X X
 

  

     
      

       
              (4.3) 

Thus, it is seen that the system dynamics will depend on the nondimensional velocityV , 

tension T  and loss modulus  . Note that Equation (4.3) is reduced to the form given by 

Wickert and Mote [23] for a loss free material ( 0  ). 
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4.3 Wave Motion Analysis 

We analyze the wave motion due to the basic guidance provided by the CFL (Courant-

Friedrich-Lewy) condition in numerical analysis [125]. For hyperbolic problems, this 

provides a bound for time step size as follows, 

t c x                                                               (4.4) 

where, c is the wave speed and Δx is a characteristic length of spatial discretization. This 

bound on Δt, in fact states that a numerical wave should not propagate more than the 

length between two spatial nodes in a given time step. However, von Neuman stability 

analysis (also known as Fourier stability analysis) shows that a simple CFL condition 

cannot be established for dispersive systems [145]. Nevertheless, the convergence of 

characteristics of the numerical solution can be established by using the dispersion 

relation. To this end, first we study the dispersion relation for the continuous system. The 

wavenumber (K), phase ( pV ) and group ( gV ) velocities are identified as functions of 

wave frequency (Ω) and non-dimensional transport speed (V ), tension ( T ) and loss 

modulus ( ). We consider two spatial discretization schemes, namely the finite element 

and finite difference methods. Temporal discretization is done by the well know 

Newmark’s method. Dispersion relation for the FE discretization is found by using the 

wave-guide finite element (WFE) method. A semi-analytical expression is used to find 

the dispersion relation of the FD discretization. The numerical solution obtained by WFE 

and FD are compared to analytical solution. 

4.3.1 Analytical version of the dispersion relation 

In dispersive media propagating, evanescent, and attenuating waves can be identified as 

three distinct wave types. From this point of view, a general wave of the form [131], 

   
,

i kX
W X Ae




 
                                                    (4.5) 

can be used as the solution of Equation (4.3), where Ω and K represent the dimensionless 

oscillation frequency and wavenumber, A represents the wave amplitude and 1i   . 

While A is a real number, both the Ω and K can be complex variables. The dispersion 
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relation, which represents a relationship between frequency and wavenumber, is obtained 

from Equations (4.3)  and (4.5) as follows,  

   5 4 2 2 2 21 2 0iV K i K V T K V K                              (4.6) 

Solution of wave number K as function of frequency Ω can be obtained by solving the 

quintic Equation (4.6) numerically. Wavenumber K can be a complex variables as 

'K K i  . 'K  and   are real, and represent the propagation and evanescence (phase 

change) effect. 0   implies absence of damping while ' 0K  indicates rapid damping. 

The wave is attenuating if K is complex valued. By definition, any disturbance generated 

at an arbitrary position would decay as it travels in the material. This implies that solution 

K of Equation (4.6) has to satisfy 
 

0
i KX

e


 as X  . The wave and group velocity 

can then be found as follows [130], 

pV
K


  and g

d
V

dK


                                                    (4.7) 

The wave motion in the translating, tensioned beam is said to be dispersive, as both phase 

and group velocities are functions of the wave number and they are not equal to each 

other. The wave numbers are ordered as 1 2 3 4K K K K   . 

4.3.2 Analysis of wave motion using FEM 

Duhamel and Brennan [137] introduced the wave-guide finite element (WFE) method for 

analyzing wave propagation in solids in the context of FEM. Manconi and Garziera [142] 

applied this method to a translating elastic untensioned beam. WFE uses only spatial 

discretization, but time remains continuous. The effect of time integration method on the 

accuracy of wave motion is worthy of investigation. In this section we briefly introduce 

the finite element discretization scheme in both spatial and time domain and then apply 

them to the waveguide concept for characterizing the move motion. 
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4.3.2.1 Spatial discretization 

The semi-discrete form of Equation (4.3) can be obtained by using Galerkin’s approach 

on small segments of a beam (as described in Section 3.1). Deflection W is interpolated 

by piecewise continuous third-order, Hermite polynomials [125] over a small segment 

(element) of length ΔX as ( , )W X   Nd , where,  1 2 3 4N N N NN =  is the basis 

(shape) function matrix,   1 1 2 2

T
W W d = is the degree of freedom vector for a 

single element, 
iW  and 

i  (i = 1, 2)  are the displacement and slope of the tape deflection 

on the boundaries of the element (Figure 4-1b). Spatial domain,  0,1X  , is discretized 

into M intervals of equal length X , such that position of the j
th

 node is found as follows, 

( 1)jX j X   , where  1, 1j M  . The shape functions are as follows, 

 

                       1 2 3 4N N N NN =                                                     (4.8) 

with 

2 3 2 2

1 2

2 3 2 3

3 4

1 3 2 , 2

3 2      , 

N N
X X X X X

N N
X X X X

    

   

         
              

             

       
           

          

 

where, ΔX = 1/M, is the dimensionless element length, χ  [0, ΔX] is the dimensionless 

coordinate along one element. The matrix form of the equation of motion for a single 

element becomes [21],  

    2 22 0EI T EIV T V V       md s k d k k h d                      (4.9) 

where     t


    and    2 2t


   . The Coriolis acceleration S and viscoelastic 

damping h are skew-symmetric due to the gyroscopic operator. m, kEI and kT are matrices 

of mass, bending flexure and tension respectively. These are defined as follows, 
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Equation (4.9), which is the semi-discretized form of the equation of motion which can 

also be generalized to whole tape as follows by using the usual assembly procedure, 

0  MD GD KD                                                (4.11) 

where 

 2 2

                                                             (a)

2                                                 (b)

              (c)

EI

T EI

V

T V V







 

   

M M

G S K

K K K H           

 (4.12) 

and D  is the global nodal displacement vector of dimensions 2(M+1). Each matrix in 

Equation (4.12) is of dimension (2(M+1)2(M+1)) as there are two degrees of freedom at 

each node. 

4.3.2.2 Time discretization 

Similarly, time domain, 0, f    , is discretized into N intervals of equal length 

( / )f N   , such that time at n
th

 time step can be computed as ( 1)n n    , where 

 1, 1n N  . A displacement form of Newmark’s method can be obtained as applied to 

the solution of Equation (4.11) by eliminating the velocity and acceleration from  the 

governing equations as described in reference [144], 
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M D D D G D D D

K D D D

R R R

     (4.13) 

where,   is time step, n is the current time step,  ,   are numerical parameters that 

control characteristics of the algorithm such as accuracy, numerical stability and the 

amount of algorithmic damping which are set to be 1/ 2   and  1/ 4   for 

unconditional stability, R  is the external force vector which is not used in this work. The 

homogeneous form becomes, 

      1 1 1 1

2 1 2 2 1

2 1 2 1

1 1
2 0

2 2

n n n n n n

n n n
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M D D D G D D D

K D D D
      (4.14) 

The solution for the fully discretized version of the equation of motion (Equation (4.3)) is 

obtained by assuming that the solution at time step n is of the form, 

   ˆ ˆ i nn A X e
 

D w                                                   (4.15) 

where  ̂  indicates that the variables are used in the numerical approach, the relation 

n    is also used.  ˆ Xw is spatially dependent Fourier coefficients [131] in vector 

representation. System level dynamic stiffness relationship is obtained from Equation 

(4.14) and (4.15) as follows, 

ˆ w 0                                                                  (4.16) 

where   the dynamic stiffness matrix in both SFE and WFE methods [131, 137] as 

follows, 
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                          (4.17) 

4.3.2.3 Waveguide finite element method 

In WFE wave propagation along a solid is analyzed by defining an appropriate transfer 

matrix between two adjacent elements. Consider a tensioned (T ) translating (V ) beam 

with internal damping ( ) to be discretized as shown in Figure 4-1(a). Two adjacent 

elements are s and s+1 with nodes (j-1, j) and (j, j+1) respectively (Figure 4-1c). The 

general degrees of freedom and load vectors for element s and s+1 are, 

11
11

1 1
1 1

ˆ ˆˆ ˆ
, ,  and 

ˆ ˆˆ ˆ

s ss s
j jj j

s s s s
j j j j
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 

             
       
              

f fw w

w w f f
                                   (4.18) 

respectively. Note that at a given node p,  ˆˆˆ
p p pW w =  and  ˆ ˆ ˆ

p p pF Mf = , where 

ˆ
pW , ˆ

p , ˆ
pF , and ˆ

pM  are spatially dependent Fourier coefficients of nodal displacement, 

slope, force and moment respectively. With these definitions Equation (4.16) can be 

expressed for a given element (s+1) as follows, 

1 1

ˆ

ˆ

j jLL LR

j jRL RR  

    
    

     

w f

w f

 

 
                                              (4.19) 

where, the LL , LR , RL , and RR denote the appropriate 22 sub matrices of  defined 

in Equation (4.17). Knowing the continuity of displacements and equilibrium of forces on 

the element boundary j,  

1

1
ˆ ˆs s

j j



w w , 
1

1
ˆ ˆs s

j j



 f f                                             (4.20) 

a transfer matrix T  which relates the nodal displacements and forces in cross-sections s 

and (s + 1) can be defined as follows, 
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From Equation (4.20) and (4.21), it follows that, 
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                                 (4.22) 

Henceforth the transfer matrix T only depends on the dynamic stiffness matrix in 

Equation (4.16). When a free wave propagates along the waveguide, the displacements 

and forces are transmitted successively through the segments as follows, 
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                                                (4.23) 

where   ( 0 1  ) is an amplification factor. Considering the Equation (4.21)-(4.23), 

the free wave motion can be described as an eigenvalue problem as follows,  

  1
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w
T I

f
                                                 (4.24) 

where, I  is the identity matrix. The solution to Equation (4.24) is sought in the form, 

ˆ
jiK X

j e
 

                                                     (4.25) 

where, wavenumber ˆ
jK can be complex valued argument as ˆ ˆ ˆ'j j jK K i  . This gives 

the dispersion relation. 

4.3.3 Analysis of wave motion using FDM 

The wave Equation (4.3) can also be discretized by the finite difference (FD) method in 

spatial domain. Discretized version of the displacement W(X, τ) is expressed as 
n

jW at 

time step-n and spatial node-j. The equation of motion (Equation (4.3)) can be expressed 

in the following operator format, 
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    0W W W  M G K                                                  (4.26) 

where the following are the operators are based on Equation (4.3), 
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Equation of motion can be discretized around the spatial node- j as follows,  

    0j j jW W W  M G K                                                 (4.28) 

where the operators are approximated by the following central finite difference formulas, 
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Displacement form of the Newmark’s method gives the fully discretized equation of 

motion in the following symbolic form, 
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The dispersion relation for the fully discretized version of the equation of motion is 

obtained by approximating Equation (4.5) as follows,  

 ˆ
ˆ~

i n Kj Xn

jW Ae
   

                                           (4.31) 
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By using Equations (4.27), (4.31), (4.29)  and (4.30), we find the characteristic equation 

from which the dispersion relation can be obtained as follows, 
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   (4.32) 

The dispersion relation between frequency ( ) and wavenumber ( K̂ ) is obtained from 

Equation (4.32). 

4.3.4 Numerical accuracy of WFE and FD methods 

Table 4-1 lists typical values and the corresponding dimensionless parameters for 

magnetic recording tape, web handling and band saw applications. Values in this table 

are equal in the upcoming analysis. 

The wavenumber 1K̂ obtained by the WFE and FD approach are compared to the 

analytical solutions in Figure 4-2 for different number of elements and Figure 4-3 for 

different time step sizes. As shown in both figures, WFE and FD have good match with 

theory. Overall the finer the mesh the better is the prediction in Figure 4-2. The WFE 

method holds smaller error than the FD method. However, the error at low frequencies in 

the WFE method increases as increasing the number of elements. This is a known 

numerical issue discussed by Mace [146]. However, at higher frequencies the error of 

WFE drops dramatically. Nevertheless, the drop in error at high frequencies is not 

monotonic. This type of error increase is a known issue in FEM and it is related to 

aliasing effects. The finer mesh (N = 100) has the minimum error at the high frequency. 
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FD method behaves in the same manner but has larger error than WFE. Figure 4-3 

demonstrates the effect of time step for a fixed mesh size (N =100). The critical 

frequencies of WFE are clearly shown in WFE error plot in this case. The error of FD is 

not very sensitive to step times at high frequency. 

In order to demonstrate the wave propagation in a tensioned, viscoelastic travelling beam, 

simulations are carried out by using direct time integration with the FEM as descripted in 

Chapter 3. 

In this example, the two ends of the beam are assigned as free boundaries. An impulse is 

applied at t = 0 as follows, 

 

2

0
2

0,0
2

L
B XL

w A e t

  
      

 
 

                                     (4.33) 

where 0A  is the amplitude, 0B  is the width of the impulse and  t  is the Kronecker 

delta. The initial tape deflection is zero. The parameters used in this simulation are 

0.4070T  , 7V  , 52.12 10   , 4

0 10A   and 4

0 10B   with 300 elements and 

52 10    . Note that a high value is chosen for the transport velocity V  in order to 

accentuate its influence on wave propagation. On the other hand a low value of loss 

modulus   is chosen to present light damping. 

Figure 4-4 shows the effects of V  and  . In case where these variables are zero the 

initial impulse separates into a left-propagating and a right-propagating, symmetric waves. 

The shorter wave lengths have higher speeds and travel ahead of the group. In case the 

beam has a transport velocity 7V   in the positive X  direction of transport has larger 

amplitude. Adding a small amount of internal damping has a significant effect on 

damping the fast travelling short wavelengths. 

4.4 Modal Analysis/ Eigenfunction Expansion 

In all approximate solutions of dynamical systems including classical Galerkin, Rayleigh-

Ritz, finite difference and finite element methods a finite number of eigenvectors are 
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involved in the solution. This results in deterioration of the frequencies predicted by the 

method. This is especially true for higher frequencies. Therefore, the goal of the second 

part of this study is to assess the effects of the FE discretization on the eigenvalue (and 

vector) predictions. To this end we employ two approaches. In the first case the equation 

of motion is spatially discretized and the classical eigenvalue problem is defined in state 

space. In the second case the equation of motion is fully discretized, and the eigenvalues 

are obtained by using the state space approach. 

4.4.1 Semi-discrete form of eigenfuction expansion 

Natural frequencies of the semi-discrete equation of motion, (4.11), can be obtained by 

eigenfunction expansion [125]. To this end Equation (4.11)  is rewritten in state space 

form [23, 128], 

  0AU BU                                                       (4.34) 

The state vector U  and matrices A  and B  are defined as follows, 
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                       (4.35) 

where M , G  and K  matrices are given by Equation (4.12). The sizes of vector U  and 

matrices A , B  are of dimension 4(M+1) and 4(M+1)4(M+1). Meirovitch [127, 128] 

applied state-space form to discrete gyroscopic systems. D’Eleuterio and Hughes [147, 

148] extended this method to gyroscopic continua with a distributed angular momentum. 

String and beam model with translating speed problems were studied by Wickert and 

Mote [23]. Tonoli, Zenerino and Amati [129] investigated the natural frequencies of 

travelling beam by FEM in state-space representation. The general solution of Equation 

(4.34) is of the form [23], 

   , jX X e  U                                            (4.36) 

where, j  is the mode shape vector, j  is the dimensionless oscillation frequency, and 

Equation (4.36) leads to the eigenvalue problem, 
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 j j   0A B                                                    (4.37) 

Note that both 
j  and 

j  can be complex valued. There are 2(M+1) pairs of complex 

conjugate eigenvalues 
j and eigenvectors 

j . The eigenvalues can be expressed as, 

j j ji    , where 
j  and 

j  are real numbers representing damping and oscillation 

components of the vibration.  

Figure 4-5 shows the numerical solution of the eigenvalues of a tensioned translating 

beam obtained by solving Equation (4.37) with 50 elements. For this case the boundaries 

are simple supported 10T   and 0   representing the problem analyzed originally by 

Wickert and Mote [23]. The critical speed at which the first natural frequency vanishes is 

predicted by this approach cV   = 10.49. This is very close to 10.48 value reported in 

reference [23]. The same bifurcation behavior is observed at higher frequencies after the 

critical speed.  

4.4.2 Fully-discrete form of eigenfuction expansion 

The approach presented above deals only with the semi-discrete version of the equation 

of motion. However, the effect of time integration on the frequency domain in context of 

translating continua has not been studied. After boundary conditions are applied, 

Equation (4.16) can be solved for natural frequencies of the fully discretized system. First 

the dynamic stiffness matrix   is separated into the following components that influence 

the motion at different time steps, 
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(4.38) 

Then Equation (4.16) can be rewritten in a more compact form as follows, 
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Equation (4.39) is another eigenvalue problem but it would cause ill-conditioning in 

numerical computation if solved directly. Zhong and William [149] investigated a similar 

problem to look for wave constants for repetitive structure and they expressed the 

equation in state-space representation, 
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where  ˆie w w . Unlike Equation (4.37), the submatrices in Equation (4.40) are all 

skew-symmetric. The natural frequencies can be obtained as the eigenvalues of Equation 

(4.40). 

The first ten natural frequencies of magnetic tape are calculated by using the approach 

defined by Equation (4.37) and Equation (4.40) by using the values in Table 4-1 without 

internal damping. A convergence study is presented in Table 4-2 for N = 20, 50, 100, 150. 

Results produced by semi- and full-discretization methods are close to each other. They 

both demonstrate the asymptotic behavior of the numerical method. The eigenvalues are 

pure imaginary [128]. The plus and minus signs are due to the accuracy of the numerical 

solver. Both methods appear to converge to the second digit up to 9
th

 critical frequency 

for 50N  .  

Table 4-3 and Table 4-4 list the first ten natural frequencies of viscoelastic tape for 

different mesh scheme and time-steps. The positive real parts of the eigenvalues (natural 

frequencies) indicate energy dissipation. The higher modes (greater than the 2
nd

 ) are 

overdamped due to the internal damping. Equation (4.40) has better convergence 

characteristics than Equation (4.37) in terms of different mesh scheme shown in Table 

4-3. Full-discretization method converges with a very coarse time step, Δτ = 110
-4

 as 

shown in Table 4-4.  

The effects of damping on the first three mode shapes are shown in Figure 4-6. The mode 

shapes were found by using the approaches described by Equations (4.37) and (4.40). 



50 

 

Because the translating velocity is small compared to the tension applied, the first 3 

modes without internal damping have the real components of   close to zero as shown in 

Figure 4-6a. On the other hand, The third mode shape in Figure 4-6b is heavily distorted 

due to the internal damping. The nonzero imaginary component represents the phase shift 

of the mode from its undistorted shape. This figure also shows that the solutions to 

Equation (4.40) are comparable to the semi-discretization results.  

The first ten natural frequencies for the LTM and out-of-plane tape vibrations are 

investigated in dimensional space with the parameters of the magnetic tape system, given 

in Table 4-1. The investigated effects include the length of the tape, as indicated by 

roller-to-roller (4 cm) and reel-to-reel (24 cm) spans. The boundaries are simulated as 

simple support. Both semi- discretization (4.37) and full-discretization (4.40) methods are 

used in analysis, and the results are listed in Table 4-6  4-13 for parameters in Table 4-1. 

In order to organize these results, the results are presented for the short and long tape 

segments separately, as follows. 

Short tape length: 

The first ten critical frequencies of the LTM for the 4 cm tape span are presented in Table 

4-6 and Table 4-7. These table show that using Δt =10
-7

 s and N = 150 gives reasonably 

converged results for both the classical modal analysis and temporally discretized 

analysis techniques presented by Equations (4.37) and (4.40), respectively. For LTM 

vibrations of this short tape span, the natural frequencies are dominated by the real 

component, indicating that the LTM of third mode and higher are overdamped. 

The first ten critical frequencies of the out-of-plane tape vibrations for the 4 cm span 

length are presented in Table 4-8 and Table 4-9. In general, the convergence 

characteristics of the temporally discretized eigenvalue extraction technique are better 

than the modal analysis method, which converges to slightly lower values at high 

frequencies. Nevertheless, Δt =10
-7

 s and N = 50 gives reasonably converged results for 

both. It is interesting to note that the out-of-plane vibrations are not overdamped and are 

dominated by the oscillation frequency. 

Long tape length: 
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The first ten critical frequencies of the LTM for the 24 cm span length are presented in 

Table 4-10 and Table 4-11. It is seen that for this longer span, while the damping is high 

the vibration frequencies are not overdamped. For both eigenvalue extraction methods N 

= 50 gives well converged results, and for the fully discretized method the results appear 

converged at Δt =10
-7

 s. The natural frequency of (LTM) vibration of the longer tape span 

is 224.3 Hz. This value is considerably smaller than the natural frequency (LTM) of the 

shorter span, which can be found in Table 4-6 or Table 4-7 as 6413.2 Hz. 

Finally, the first ten critical frequencies of the out-of-plane vibrations for the 24 cm span 

are presented in Table 4-12 and Table 4-13. These tables show that damping effect is 

minimal. The fully discretized eigenvalue extraction technique converges for Δt =10
-7

 s 

and N = 50. Interestingly, the modal analysis technique is showing signs of convergence 

difficulties. Comparing the natural frequencies of the out-of-plane vibrations for the short 

and long spans, we see ω1  = 817.99 Hz for the short span, whereas,  ω1  = 136.3 Hz for 

the long span as reported in Table 4-9 and Table 4-13, respectively. 

In summary, we see that both eigenvalue extraction techniques work quit well in the 

nondimensional space. In dimensional analysis, we see that the classical modal analysis 

based method could have some convergence difficulties, but overall both techniques give 

very good results. Convergence of the solutions up tot 10
th

 eigenvalue can be obtained by 

using at least 50 elements. In dimensional analysis, we also note that the tape stiffness as 

elucidated by tape length plays a significant role in internal damping. Shorter tape span 

shows significantly higher damping than the longer tape span. Finally, the out-of-plane 

tape vibration frequencies were found to be in the 800  ̶  8,000 Hz range for the short tape 

span and 136  ̶  1,360 Hz range for the longer tape span. These values are in the range of 

interest for the LTM analysis. Therefor analysis of the coupling between LTM and out-

of-plane tape vibrations would be recommended for future studies. 

4.5 Summary and Conclusions 

In this chapter the effects of the numerical solution of the equation of motion of a 

translating tensioned, viscoelastic beam are analyzed. This work has two components. 

The first one demonstrated the effects of spatial and temporal discretization on the wave 
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propagation characteristics in this beam. The second study introduces and compares two 

methods to extract eigenvalues of the translating beam system. In both cases the equation 

of motion is nondimensionalized and it is shown that the system dynamics is governed by 

the nondimensional tension, velocity and loss modulus. Later in the chapter the 

eigenvalue analysis is provided for the case of tape system in the dimensional space. 

The wave propagation characteristics of the translating beam are probed by using FE and 

FD discretization in the space and Newmarks’s method in time domains. The WFE 

method was used to obtain the dispersion relation for the FE method. Comparison of the 

dispersion relations of the numerically obtained solutions to the analytical dispersion 

relation showed that, very reasonable match can be obtained by using as few as 20 

elements. By reducing the time step or increasing the element numbers the accuracy of 

these two methods can be improved. The error is less thatn 1% even at the high frequency. 

Nevertheless, the analysis with WFE method is in general more accurate than FD method, 

which may have implications on the accuracy of the over solution. 

Both eigenvalue extraction techniques work quite well in the nondimensional space. In 

dimensional analysis, we see that the classical modal analysis based method could have 

some convergence difficulties, but overall both techniques give very good results. 

Convergence of the solutions up to 10
th

 eigenvalue can be obtained by using at least 50 

elements. In dimensional analysis, we also note that the tape stiffness, as elucidated by 

tape length, plays a significant role in internal damping. Shorter tape span shows 

significantly higher damping, that the longer tape span. Finally, the out-of-plane tape 

vibration frequencies were found to be in the 800  ̶  8,000 Hz range for the short tape span 

and 136  ̶  1,360 Hz range for the longer tape span. These values are in the range of 

interest for the LTM analysis. Therefor analysis of the coupling between LTM and out-

of-plane tape vibrations would be recommended for future studies. 

   

  



53 

 

 

Figure 4-1 Schematic plot of a wave guide structure   
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(a)                                                                         (b) 

 
 (c)                                                                          (d) 

Figure 4-2 Mesh scheme accuracy study for dispersion curve of the real component of k1 

for WFE (a) and FD (b), and error plots for WFE (b) and FD (d) 
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                                     (a)                                                                        (d) 
 

  

(c)                                                                         (d) 

Figure 4-3 Time step accuracy study for dispersion curve of the real component of k1 for 

WFE (a) and FD (b), and error plots for WFE (b) and FD (d) 
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(a) 0.4070T  , 0V  , 0   

 
(b) 0.4070T  , 7.0V  , 0   

 
(c) 0.4070T  , 7.0V  , 52.12 10    

Figure 4-4 wave propagation example 
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Figure 4-5 Frequency spectrum (first five) of a simple supported translating elastic beam 

with 10T  , 0  . 
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                                                                       (a) 

 
                                                                       (b) 

Figure 4-6 First 3 mode shapes of magnetic recording tape ( 0.4070T  , 0.0461V  )  for 

semi-discretization (blue) and full-discretization (black). Dash line: imaginary part, Solid 

line: real part. N = 150, Δτ = 1e-7. (a)  0  , (b) 0.0212   
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Table 4-1 Typical values for tape, web and bandsaw systems 

Dimensional 

Variables 
Tape (LTO-5) Web[150] Bandsaw [151] 

Tension, T  (N) 0.5 12.25 2.510
4 

Length, L  (m) 4.010
-2

 1.0 1.0 

Thickness, h  (m) 6.410
-6

 0.2710
-3

 1.010
-3

 

Width, b  (m) 12.710
-3

 0.7 0.25 

Speed, 
xV  (m/s) 7.5 2 50 

Elastic modulus, E  

(GPa) 
4.42 4.14 200 

Loss modulus,   

(Nm/s
2
) 

23000 ― ― 

Density,   (kg/m
3
) 1400 1108 7800 

Material (substrate) PET PE coated paper Steel 

Dimensionless Variables (    4

ct L EI , A bh ,  3 12I b h ) 

   2 2

cT Tt AL  0.4070 0.0195 0.3098 

x cV V t L  0.0461 0.0051 0.1368 

   4

cIt AL    0.0212 0 0 

cV  (critical speed) 3.1568 3.1432 3.1591 
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Table 4-2 First ten critical frequencies of magnetic recording tape ( 0.4070T  , 

0.0461V  , 0  ) for different mesh schemes obtained by semi- and full- discretization 

with Δτ = 110
-6

 

Semi-discretization ( Equation (4.37) , Δτ = 110-6) 

 
N = 20 N = 50 N = 100 N = 150 

Ω1 0.000 +    9.951i -0.000 +    9.952i 0.000 +    9.948i -0.000 +    9.957i 

Ω2 -0.000 +   39.560i 0.000 +   39.558i -0.000 +   39.565i 0.000 +   39.563i 

Ω3 0.000 +   88.910i -0.000 +   88.909i 0.000 +   88.906i -0.000 +   88.913i 

Ω4 -0.000 +  158.012i 0.000 +  157.991i 0.000 +  157.990i 0.000 +  157.992i 

Ω5 -0.000 +  246.887i -0.000 +  246.825i 0.000 +  246.821i -0.000 +  246.821i 

Ω6 -0.000 +  355.579i -0.000 +  355.392i -0.000 +  355.391i 0.000 +  355.382i 

Ω7 0.000 +  484.163i 0.000 +  483.695i -0.000 +  483.695i -0.000 +  483.695i 

Ω8 -0.000 +  632.789i -0.000 +  631.769i 0.000 +  631.738i 0.000 +  631.732i 

Ω9 0.000 +  801.612i -0.000 +  799.578i 0.000 +  799.521i -0.000 +  799.520i 

Ω10 -0.000 +  990.939i -0.000 +  987.156i -0.000 +  987.050i -0.000 +  987.043i 

Full-discretization ( Equation (4.40), Δτ = 110-6) 

Ω1 0.000 +    9.951i 0.000 +    9.951i 0.000 +    9.951i -0.000 +    9.951i 

Ω2 0.000 +   39.561i -0.000 +   39.560i -0.000 +   39.560i 0.000 +   39.560i 

Ω3 -0.000 +   88.912i 0.000 +   88.909i 0.000 +   88.908i -0.000 +   88.908i 

Ω4 0.000 +  158.013i -0.000 +  157.996i -0.000 +  157.996i -0.000 +  157.994i 

Ω5 -0.000 +  246.886i 0.000 +  246.824i 0.000 +  246.822i 0.000 +  246.817i 

Ω6 -0.000 +  355.578i 0.000 +  355.393i 0.000 +  355.387i -0.000 +  355.408i 

Ω7 -0.000 +  484.167i -0.000 +  483.705i -0.000 +  483.695i 0.000 +  483.691i 

Ω8 0.000 +  632.783i 0.000 +  631.765i 0.000 +  631.738i 0.000 +  631.733i 

Ω9 -0.000 +  801.617i -0.000 +  799.576i -0.000 +  799.528i -0.000 +  799.528i 

Ω10 0.000 +  990.938i 0.000 +  987.148i 0.000 +  987.040i 0.001 +  986.981i 
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Table 4-3 First ten critical frequencies of magnetic recording tape ( 0.4070T  , 

0.0461V  , 0  ) for different mesh schemes obtained by semi- and full- discretization 

with Δτ = 110
-7

. 

Semi-discretization (Equation (4.37)) 

 
N = 20 N = 50 N = 100 N = 150 

Ω1 1.032 +    9.898i 1.032 +    9.889i 1.032 +    9.898i 1.032 +   9.866i 

Ω2 16.511 +   35.951i 16.511 +   35.951i 16.511 +   35.950i 16.510 +   35.976i 

Ω3 47.023 +    0.360i 47.008 +    0.373i 47.007 +    0.376i 47.004 +    0.380i 

Ω4 47.025 +    0.432i 47.012 +    0.442i 47.011 +    0.444i 47.008 +    0.307i 

Ω5 47.033 +    0.289i 47.015 +    0.306i 47.013 +    0.309i 47.011 +    0.448i 

Ω6 47.035 +    0.488i 47.022 +    0.498i 47.020 +    0.497i 47.020 +    0.495i 

Ω7 47.049 +    0.229i 47.028 +    0.249i 47.025 +    0.252i 47.022 +    0.249i 

Ω8 47.070 +    0.179i 47.044 +    0.202i 47.041 +    0.206i 47.040 +    0.203i 

Ω9 47.093 +    0.138i 47.061 +    0.168i 47.057 +    0.171i 47.056 +    0.169i 

Ω10 47.117 +    0.101i 47.076 +    0.139i 47.072 +    0.145i 47.075 +    0.143i 

Full-discretization ( Equation (4.40), Δτ = 110-6) 

Ω1 1.032 +    9.897i 1.032 +    9.897i 1.032 +    9.897i 1.032 +    9.897i 

Ω2 16.511 +   35.951i 16.511 +   35.951i 16.511 +   35.951i 16.511 +   35.951i 

Ω3 47.023 +    0.360i 47.008 +    0.373i 47.006 +    0.375i 47.005 +    0.375i 

Ω4 47.025 +    0.432i 47.011 +    0.443i 47.009 +    0.444i 47.009 +    0.444i 

Ω5 47.033 +    0.289i 47.015 +    0.305i 47.012 +    0.307i 47.012 +    0.308i 

Ω6 47.035 +    0.488i 47.022 +    0.497i 47.020 +    0.499i 47.019 +    0.499i 

Ω7 47.049 +    0.229i 47.028 +    0.248i 47.026 +    0.250i 47.025 +    0.251i 

Ω8 47.070 +    0.179i 47.045 +    0.202i 47.042 +    0.205i 47.041 +    0.205i 

Ω9 47.093 +    0.138i 47.062 +    0.167i 47.058 +    0.170i 47.058 +    0.171i 

Ω10 47.117 +    0.102i 47.077 +    0.140i 47.073 +    0.143i 47.072 +    0.144i 
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Table 4-4 First ten critical frequencies of magnetic recording tape ( 0.4070T  , 

0.0461V  , 0.0212  ) for different time-steps obtained by full- discretization with 

N=100 

Full-discretization ( Equation (4.40), N=100 ) 

 
Δτ = 110-4 Δτ = 110-5 Δτ = 110-6 Δτ = 110-7 

Ω1 1.032 +    9.897i 1.032 +    9.897i 1.032 +    9.897i 1.032 +    9.897i 

Ω2 16.511 +   35.951i 16.511 +   35.951i 16.511 +   35.951i 16.511 +   35.951i 

Ω3 47.005 +    0.375i 47.005 +    0.375i 47.005 +    0.375i 47.005 +    0.375i 

Ω4 47.009 +    0.444i 47.009 +    0.444i 47.009 +    0.444i 47.009 +    0.444i 

Ω5 47.012 +    0.308i 47.012 +    0.308i 47.012 +    0.308i 47.012 +    0.308i 

Ω6 47.019 +    0.499i 47.019 +    0.499i 47.019 +    0.499i 47.019 +    0.499i 

Ω7 47.025 +    0.251i 47.025 +    0.251i 47.025 +    0.251i 47.025 +    0.251i 

Ω8 47.041 +    0.205i 47.041 +    0.205i 47.041 +    0.205i 47.041 +    0.205i 

Ω9 47.058 +    0.171i 47.058 +    0.171i 47.058 +    0.171i 47.058 +    0.171i 

Ω10 47.072 +    0.144i 47.072 +    0.144i 47.072 +    0.144i 47.072 +    0.144i 
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Table 4-5 First ten critical frequencies of magnetic recording tape ( 0.4070T  , 

0.0461V  , 0.0212  ) for different mesh schemes obtained by semi- and full- 

discretization with Δτ = 110
-7

. 

Semi-discretization ( Equation (4.37)) 

 
N = 20 N = 50 N = 100 N = 150 

Ω1 0.000 +    9.951i -0.000 +    9.952i 0.000 +    9.948i -0.000 +    9.957i 

Ω2 -0.000 +   39.560i 0.000 +   39.558i -0.000 +   39.565i 0.000 +   39.563i 

Ω3 0.000 +   88.910i -0.000 +   88.909i 0.000 +   88.906i -0.000 +   88.913i 

Ω4 -0.000 +  158.012i 0.000 +  157.991i 0.000 +  157.990i 0.000 +  157.992i 

Ω5 -0.000 +  246.887i -0.000 +  246.825i 0.000 +  246.821i -0.000 +  246.821i 

Ω6 -0.000 +  355.579i -0.000 +  355.392i -0.000 +  355.391i 0.000 +  355.382i 

Ω7 0.000 +  484.163i 0.000 +  483.695i -0.000 +  483.695i -0.000 +  483.695i 

Ω8 -0.000 +  632.789i -0.000 +  631.769i 0.000 +  631.738i 0.000 +  631.732i 

Ω9 0.000 +  801.612i -0.000 +  799.578i 0.000 +  799.521i -0.000 +  799.520i 

Ω10 -0.000 +  990.939i -0.000 +  987.156i -0.000 +  987.050i -0.000 +  987.043i 

Full-discretization ( Equation (4.40), Δτ = 110-7) 

Ω1 0.000 +    9.951i 0.000 +    9.951i 0.000 +    9.951i -0.000 +    9.951i 

Ω2 0.000 +   39.561i -0.000 +   39.560i -0.000 +   39.560i 0.000 +   39.560i 

Ω3 -0.000 +   88.912i 0.000 +   88.909i 0.000 +   88.908i -0.000 +   88.908i 

Ω4 0.000 +  158.013i -0.000 +  157.996i -0.000 +  157.996i -0.000 +  157.994i 

Ω5 -0.000 +  246.886i 0.000 +  246.824i 0.000 +  246.822i 0.000 +  246.817i 

Ω6 -0.000 +  355.578i 0.000 +  355.393i 0.000 +  355.387i -0.000 +  355.408i 

Ω7 -0.000 +  484.167i -0.000 +  483.705i -0.000 +  483.695i 0.000 +  483.691i 

Ω8 0.000 +  632.783i 0.000 +  631.765i 0.000 +  631.738i 0.000 +  631.733i 

Ω9 -0.000 +  801.617i -0.000 +  799.576i -0.000 +  799.528i -0.000 +  799.528i 

Ω10 0.000 +  990.938i 0.000 +  987.148i 0.000 +  987.040i 0.001 +  986.981i 
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Table 4-6 First ten critical LTM frequencies of magnetic recording tape (Table 4-1) in 

roller-to-roller span (4 cm) for different time-steps obtained by full- discretization with 

N=150. 

Full-discretization ( Equation (4.40), N=150 ) 

 
Δt = 110-5 s Δt = 110-6 s Δt = 110-7 s Δt = 110-8 s 

ω1 6.4272102+6.3311103i 6.6846102+6.4123103i 6.6873102+6.4132103i 6.6873102+6.4132103i 

ω 2 6.8900103+2.1249104i 1.0645104+2.3280104i 1.0698104+2.3295104i 1.0699104+2.3296104i 

ω 3 1.7301104+ 4.2090104i 3.0552104+2.4518102i 3.0459104+2.4295102i 3.0458104+2.4293102i 

ω 4 6.0392104+ 3.7872103i 3.0554104+2.9056102i 3.0461104+2.8793102i 3.0461104+2.8790102i 

ω 5 6.0401104+ 3.3691103i 3.0556104+2.0115102i 3.0464104+1.9933102i 3.0463104+1.9931102i 

ω 6 6.0472104+ 2.8498103i 3.0561104+3.2623102i 3.0468104+3.2327102i 3.0467104+3.2324102i 

ω 7 6.0601104+ 2.3528103i 3.0565104+1.6386102i 3.0472104+1.6237102i 3.0471104+1.3308102i 

ω 8 6.0759104+ 1.9329103i 3.0575104+1.3431102i 3.0483104+1.3309102i 3.0482104+1.3308102i 

ω 9 6.0921104+ 1.5987103i 3.0586104+1.1158102i 3.0493104+1.1057102i 3.0492104+1.1056102i 

ω 10 6.1070104+ 1.3396103i 3.0596104+9.4236101i 3.0503104+9.3379101i 3.0502104+9.3374101i 
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Table 4-7 First ten critical LTM frequencies of magnetic recording tape (Table 4-1) in 

roller-to-roller span (4 cm) for different mesh schemes obtained by semi- and full- 

discretization with Δt = 110
-7

. 

Semi-discretization ( Equation (4.37)) 

 
N = 20 N = 50 N = 100 N = 150 

ω1 6.6873102 + 6.4132103i 6.6873102 + 6.4132103i 6.6873102 + 6.4132103i 6.6873102 + 6.4132103i 

ω 2 1.0699104 + 2.3296104i 1.0699104 + 2.3296104i 1.0699104 + 2.3296104i 1.0699104 + 2.3296104i 

ω 3 3.0470104 + 2.3333102i 3.0460104 + 2.4156102i 3.0459104 + 2.4272102i 3.0458104 + 2.4293102i 

ω 4 3.0471104 + 2.7999102i 3.0462104 + 2.8676102i 3.0461104 + 2.8772102i 3.0461104 + 2.8790102i 

ω 5 3.0476104 + 1.8757102i 3.0464104 + 1.9766102i 3.0463104 + 1.9905102i 3.0463104 + 1.9931102i 

ω 6 3.0478104 + 3.1641102i 3.0469104 + 3.2225102i 3.0468104 + 3.2308102i 3.0467104 + 3.2324102i 

ω 7 3.0487104 + 1.4807102i 3.0473104 + 1.6041102i 3.0472104 + 1.6205102i 3.0471104 + 1.6236102i 

ω 8 3.0501104 + 1.1573102i 3.0484104 + 1.3082102i 3.0482104 + 1.3273102i 3.0482104 + 1.3308102i 

ω 9 3.0515104 + 8.9191101i 3.0495104 + 1.0800102i 3.0493104 + 1.1016102i 3.0492104 + 1.1056102i 

ω 10 3.0531104 + 6.5957101i 3.0505104 + 9.0504101i 3.0502104 + 9.2930101i 3.0502104 + 9.3371101i 

Full-discretization ( Equation (4.40), Δt = 110-7 s) 

ω1 6.6873102 + 6.4132103i  6.6873102+ 6.4132103i 6.6873102 + 6.4132103i 6.6873102+ 6.4132102i 

ω 2 1.0698104 + 2.3296104i 1.0698104 +2.3295104i 1.0698104 + 2.3295104i 1.0698104+ 2.3295104i 

ω 3 3.0471104 + 2.3336102i 3.0461104 + 2.4159102i 3.0459104 + 2.4274102i 3.0459104 + 2.4295102i 

ω 4 3.0472104 + 2.8001102i 3.0463104 + 2.8679102i 3.0462104  + 2.8775102i 3.0461104 + 2.8793102i 

ω 5 3.0477104 + 1.8758102i 3.0465104 + 1.9768102i 3.0464104  + 1.9907102i 3.0464104 + 1.9933102i 

ω 6 3.0479104 + 3.1644102i 3.0470104 + 3.2228102i 3.0469104  + 3.2311102i 3.0468104 + 3.2327102i 

ω 7 3.0488104 + 1.4808102i 3.0474104 + 1.6042102i 3.0473104  + 1.6207102i 3.0472104 + 1.6237102i 

ω 8 3.0501104 + 1.1574102i 3.0485104 + 1.3083102i 3.0483104  + 1.3274102i 3.0483104 + 1.3309102i 

ω 9 3.0516104 + 8.9199101i 3.0496104+ 1.0801102i 3.0494104  + 1.1017102i 3.0493104 + 1.1057102i 

ω 10 3.0532104 + 6.5963101i 3.0506104 + 9.0513101i 3.0503104  + 9.2939101i 3.0503104 + 9.3379101i 
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Table 4-8 First ten critical out-of-planl frequencies of magnetic recording tape (Table 4-1) 

in roller-to-roller span (4 cm) for different time-steps obtained by full- discretization with 

N=150. 

Full-discretization ( Equation (4.40), N=150 ) 

 
Δt = 110-4 s Δt = 110-5 s Δt = 110-6 s Δt = 110-7 s 

ω1 1.7968e-04 + 8.0066102i 1.914210-4 + 8.1781102i 1.915410-4 + 8.1799102i 1.912610-4 + 8.1799102i 

ω 2 2.4242e-03 + 1.5112103i 3.056610-3 + 1.6346103i 3.064610-3 + 1.6360103i 3.065310-3 + 1.6360103i 

ω 3 9.7303e-03 + 2.0907103i 1.542210-2 + 2.4493103i 1.551310-2 + 2.4541103i 1.551410-2 + 2.4541103i 

ω 4 2.3837e-02 + 2.5440103i 4.851710-2 + 3.2609103i 4.902510-2 + 3.2722103i 4.902910-2 + 3.2724103i 

ω 5 4.5141e-02 + 2.8952103i 1.177510-2 + 4.0685103i 1.196810-1 + 4.0905103i 1.197010-1 + 4.0907103i 

ω 6 7.3454e-02 + 3.1690103i 2.424210-1 + 4.8710103i 2.481210-1 + 4.9090103i 2.481810-1 + 4.9093103i 

ω 7 1.0847e-01 + 3.3855103i 4.453310-1 + 5.6675103i 4.596010-1 + 5.7276103i 4.597410-1 + 5.7282103i 

ω 8 1.4992e-01 + 3.5596103i 7.524010-1 + 6.4572103i 7.839010-1 + 6.5464103i 7.842310-1 + 6.5473103i 

ω 9 1.9761e-01 + 3.7017103i 1.1922         + 7.2393103i 1.2554         + 7.3654103i 1.2560         + 7.3667103i 

ω 10 2.5138e-01 + 3.8196103i 1.7954         + 8.0129103i 1.9129         + 8.1848103i 1.9141         + 8.1865103i 
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Table 4-9 First ten critical out-of-plan frequencies of magnetic recording tape (Table 4-1) 

in roller-to-roller span (4 cm) for different mesh schemes obtained by semi- and full- 

discretization with Δt = 110
-6

. 

Semi-discretization ( Equation (4.37)) 

 
N = 20 N = 50 N = 100 N = 150 

ω1 1.914510-4 + 8.1799102i 1.824510-4+ 8.1799102i 1.798410-4+ 8.1799102i 1.926810-4+ 8.1799102i 

ω 2 3.056310-3 + 1.6360103i 2.026110-3+ 1.6360103i 3.172910-3+ 1.6360103i 3.049410-3+ 1.6360103i 

ω 3 1.548510-2 + 2.4541103i 2.368710-2+ 2.4541103i 1.538110-2+ 2.4541103i 1.553910-2+ 2.4541103i 

ω 4 4.918210-2 + 3.2724103i 2.446710-2+ 3.2724103i 4.887510-2+ 3.2724103i 4.902410-2+ 3.2724103i 

ω 5 1.182710-1 + 4.0908103i 1.670210-1+ 4.0908103i 1.199210-1+ 4.0908103i 1.197510-1+ 4.0908103i 

ω 6 2.472610-1 + 4.9094103i 1.800410-1+ 4.9093103i 2.487310-1+ 4.9093103i 2.481910-1+ 4.9093103i 

ω 7 4.580310-1 + 5.7283103i 5.222510-1+ 5.7282103i 4.575610-1+ 5.7282103i 4.594810-1+ 5.7282103i 

ω 8 7.799310-1 + 6.5477103i 7.594710-1+ 6.5473103i 7.861410-1+ 6.5473103i 7.843310-1+ 6.5473103i 

ω 9 1.2457         + 7.3675103i 1.2297        + 7.3668103i 1.2545        + 7.3668103i 1.2562        + 7.3667103i 

ω 10 1.9123         + 8.1880103i 1.9450        + 8.1866103i 1.9122        + 8.1866103i 1.9143        + 8.1866103i 

Full-discretization ( Equation (4.40), Δt = 110-6 s) 

ω1 1.915710-4 + 8.1799102i 1.915710-4+ 8.1799102i 1.915410-4+ 8.1799102i 1.915410-4+ 8.1799102i 

ω 2 3.062610-3+ 1.6360103i 3.064510-3+ 1.6360103i 3.064510-3+ 1.6360103i 3.064610-3+ 1.6360103i 

ω 3 1.548510-2+ 2.4541103i 1.551010-2+ 2.4541103i 1.551210-2+ 2.4541103i 1.551310-2+ 2.4541103i 

ω 4 4.887110-2+ 3.2722103i 4.900010-2+ 3.2722103i 4.902010-2+ 3.2722103i 4.902510-2+ 3.2722103i 

ω 5 1.191410-1+ 4.0905103i 1.195710-1+ 4.0905103i 1.196510-1+ 4.0905103i 1.196810-1+ 4.0905103i 

ω 6 2.467610-1+ 4.9090103i 2.478110-1+ 4.9090103i 2.480610-1+ 4.9090103i 2.481210-1+ 4.9090103i 

ω 7 4.568410-1+ 5.7277103i 4.587910-1+ 5.7276103i 4.594410-1+ 5.7276103i 4.596010-1+ 5.7276103i 

ω 8 7.793210-1+ 6.5467103i 7.821310-1+ 6.5464103i 7.835410-1+ 6.5464103i 7.839010-1+ 6.5464103i 

ω 9 1.2493        + 7.3662103i 1.2519        + 7.3654103i 1.2546        + 7.3654103i 1.2554        + 7.3654103i 

ω 10 1.9076        + 8.1862103i 1.9065        + 8.1848103i 1.9115        + 8.1848103i 1.9129        + 8.1848103i 
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Table 4-10 First then critical LTM frequencies of magnetic recording tape (Table 4-1) in 

reel-to-reel span (24 cm) for different time-steps obtained by full- discretization with 

N=150. 

Full-discretization ( Equation (4.40), N=150 ) 

 
Δt = 110-5 s Δt = 110-6 s Δt = 110-7 s Δt = 110-8 s 

ω1 5.190610-1+ 2.2431102i 5.190810-1+ 2.2432102i 5.190810-1+ 2.2432102i 5.191510-1+ 2.2431102i 

ω 2 8.2686        + 7.6164102i 8.2733        + 7.6178102i 8.2734        + 7.6178102i 8.2732        + 7.6178102i 

ω 3 4.1722101+ 1.6491103i 4.1834101+ 1.6506103i 4.1835101+ 1.6506103i 4.1835101+ 1.6506103i 

ω 4 1.3108102+ 2.8842103i 1.3215102+ 2.8920103i 1.3216102+ 2.8921103i 1.3216102+ 2.8921103i 

ω 5 3.1632102+ 4.4537103i 3.2251102+ 4.4822103i 3.2258102+ 4.4825103i 3.2258102+ 4.4825103i 

ω 6 6.4280102+ 6.3315103i 6.6854102+ 6.4127103i 6.6881102+ 6.4136103i 6.6881102+ 6.4136103i 

ω 7 1.1538103+ 8.4759103i 1.2381103+ 8.6678103i 1.2390103+ 8.6698103i 1.2390103+ 8.6698103i 

ω 8 1.8811103+ 1.0831104i 2.1109103+ 1.1221104i 2.1135103+ 1.1225104i 2.1135103+ 1.1225104i 

ω 9 2.8370103+ 1.3335104i 3.3789103+ 1.4033104i 3.3853103+ 1.4040104i 3.3853103+ 1.4040104i 

ω 10 4.0115103+ 1.5930104i 5.1453103+ 1.7043104i 5.1595103+ 1.7055104i 5.1597103+ 1.7055104i 
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Table 4-11 First ten critical LTM frequencies of magnetic recording tape (Table 4-1) in 

reel-to-reel span (24 cm) for different mesh schemes obtained by semi- and full- 

discretization with Δt = 110
-7

. 

Semi-discretization ( Equation (4.37)) 

 
N = 20 N = 50 N = 100 N = 150 

ω1 5.190710-1+ 2.2432102i 5.190810-1+ 2.2432102i 5.190910-1 +2.2432102i 5.190910-1+ 2.2432102i 

ω 2 8.2732        + 7.6179102i 8.2733        + 7.6178102i 8.2734        + 7.6178102i 8.2734        + 7.6178102i 

ω 3 4.1836101+ 1.6507103i 4.1835101+ 1.6506103i 4.1835101+ 1.6506103i 4.1835101+ 1.6506103i 

ω 4 1.3218102+ 2.8924103i 1.3216102+ 2.8921103i 1.3216102+ 2.8921103i 1.3216102+ 2.8921103i 

ω 5 3.2274102+ 4.4837103i 3.2258102+ 4.4826103i 3.2258102+ 4.4825103i 3.2258102+ 4.4825103i 

ω 6 6.6951102+ 6.4169103i 6.6883102+ 6.4137103i 6.6882102+ 6.4136103i 6.6882102+ 6.4136103i 

ω 7 1.2414103+ 8.6780103i 1.2390103+ 8.6700103i 1.2390103+ 8.6698103i 1.2390103+ 8.6698103i 

ω 8 2.1205103+ 1.1243104i 2.1137103+ 1.1226103i 2.1135103+ 1.1225104i 2.1135103+ 1.1225104i 

ω 9 3.4030103+ 1.4075104i 3.3858103+ 1.4041103i 3.3854103+ 1.4040104i 3.3853103+ 1.4040104i 

ω 10 5.2003103+ 1.7115104i 5.1607103+ 1.7056103i 5.1597103+ 1.7055104i 5.1597103+ 1.7055104i 

Full-discretization ( Equation (4.40), Δt = 110-7 s) 

ω1 5.190710-1+ 2.2432102i 5.190810-1+ 2.2432102i 5.190810-1+ 2.2432102i 5.190810-1+ 2.2432102i 

ω 2 8.2732        + 7.6179102i 8.2733        + 7.6178102i 8.2734        + 7.6178102i 8.2734         + 7.6178102i 

ω 3 4.1836101+ 1.6507103i 4.1835101+ 1.6506103i 4.1835101+ 1.6506103i 4.183510-1+ 1.6506103i 

ω 4 1.3218102+ 2.8924103i 1.3216102+ 2.8921103i 1.3216102+ 2.8921103i 1.3216102+ 2.8921103i 

ω 5 3.2274102+ 4.4837103i 3.2258102+ 4.4826103i 3.2258102+ 4.4825103i 3.2258102+ 4.4825103i 

ω 6 6.6951102+ 6.4169103i 6.6883102+ 6.4137103i 6.6881102+ 6.4136103i 6.6881102+ 6.4136103i 

ω 7 1.2414103+ 8.6780103i 1.2390102+ 8.6700103i 1.2390103+ 8.6698103i 1.2390103+ 8.6698103i 

ω 8 2.1204103+ 1.1243104i 2.1137102+ 1.1226104i 2.1135103+ 1.1225104i 2.1135103+ 1.1225104i 

ω 9 3.4029103+ 1.4075104i 3.3857102+ 1.4041104i 3.3853103+ 1.4040104i 3.3853103+ 1.4040104i 

ω 10 5.2002103+ 1.7115104i 5.1606102+1.7056104i 5.1596103+ 1.7055104i 5.1595103+ 1.7055104i 
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Table 4-12 First ten critical out-of-plane frequencies of magnetic recording tape (Table 

4-1) in reel-to-reel span (24 cm) for different time-steps obtained by full- discretization 

with N=150. 

Full-discretization ( Equation (4.40), N=150 ) 

 
Δt = 110-4 s Δt = 110-5 s Δt = 110-6 s Δt = 110-7 s 

ω1 1.476310-7+ 1.3625102i 1.477010-7+ 1.3633102i 1.525110-7+ 1.3633102i  2.195810-6+ 1.3633102i 

ω 2 2.348910-6+ 2.7200102i 2.366310-6+ 2.7265102i 2.365510-6+ 2.7266102i  5.815610-6+ 2.7266102i 

ω 3 1.178310-5+ 4.0676102i 1.197510-5+ 4.0897102i 1.200710-5+ 4.0899102i -8.256410-6+ 4.0899102i 

ω 4 3.677310-5+ 5.4008102i 3.784210-5+ 5.4527102i 3.784010-5+ 5.4532102i  4.790310-5+ 6.8166102i 

ω 5 8.835210-5+ 6.7151102i 9.236110-5+ 6.8155102i 9.239010-5+ 6.8165102i  6.679810-5+ 5.4532102i 

ω 6 1.797110-4+ 8.0066102i 1.914510-4+ 8.1781102i 1.916910-4+ 8.1799102i  2.494110-4+ 8.1799102i 

ω 7 3.256110-4+ 9.2718102i 3.545610-4+ 9.5404102i 3.549110-4+ 9.5432102i  3.333210-4+ 9.5432102i 

ω 8 5.417010-4+ 1.0508103i 6.045810-4+ 1.0902103i 6.049310-4+ 1.0907103i  6.201710-4+ 1.0907103i 

ω 9 8.439810-4+ 1.1711103i 9.679510-4+ 1.2264103i 9.692010-4+ 1.2270103i  9.648410-4+ 1.2270103i 

ω 10 1.248210-3+ 1.2881103i 1.474510-3+ 1.3625102i 1.477210-3+ 1.3633103i  1.471010-3+ 1.3633103i 
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Table 4-13 First ten critical out-of-plane frequencies of magnetic recording tape (Table 

4-1) in reel-to-reel span (24 cm) for different mesh schemes obtained by semi- and full- 

discretization with Δt = 110
-6

. 

Semi-discretization ( Equation (4.37)) 

 
N = 20 N = 50 N = 100 N = 150 

ω1 -1.740010-5+ 1.3633102i -3.143810-4+ 1.3633102i -1.767910-3+ 1.3634102i -1.062110-3+ 1.3633102i 

ω 2  5.469410-5+ 2.7266102i  6.511610-3+ 2.7265102i  1.942510-2+ 2.7261102i  1.344510-2+ 2.7267102i 

ω 3  4.793010-4+ 4.0899102i -2.041010-2+ 4.0901102i  1.121810-2+ 4.0902102i -1.657710-1+ 4.0897102i 

ω 4 -1.398710-3+ 5.4532102i  1.620410-2+ 5.4533102i -3.335510-1+ 5.4563102i  1.1418         + 5.4454102i 

ω 5  4.690110-4+ 6.8166102i  8.763810-4+ 6.8165102i  6.401610-1+ 6.8106102i -2.5990         + 6.8292102i 

ω 6  3.337410-3+ 8.1800102i -3.220210-2+ 8.1797102i  1.650610-1+ 8.1855102i  2.5713         + 8.1854102i 

ω 7 -3.615810-3+ 9.5435102i  1.224210-1+ 9.5436102i -1.9169        + 9.5370102i -2.8145         + 9.5451102i 

ω 8  1.763610-3+ 1.0907103i -2.100110-1+ 1.0906103i  2.2255         + 1.0914103i  2.931210-2 + 1.0876103i 

ω 9  8.951210-4+ 1.2271103i  2.087810-1+ 1.2270103i  6.764110-3+ 1.2267103i  9.7032          + 1.2333103i 

ω 10  9.297610-4+ 1.3636103i -1.133210-1+ 1.3638103i -1.0649        + 1.3623103i -8.6444          + 1.3533103i 

Full-discretization ( Equation (4.40), Δt = 110-6 s) 

ω1 1.548410-7+ 1.3633102i 1.546510-7+ 1.3633102i 1.525110-7+ 1.3633102i 1.721210-7+ 1.3633102i 

ω 2 2.424710-6+ 2.7266102i 2.272610-6+ 2.7266102i 2.365510-6+ 2.7266102i 2.311910-6+ 2.7266102i 

ω 3 1.187010-5+ 4.0899102i 1.199110-5+ 4.0899102i 1.200710-5+ 4.0899102i 1.207810-5+ 4.0899102i 

ω 4 3.764810-5+ 5.4532102i 3.793110-5+ 5.4532102i 3.784010-5+ 5.4532102i 3.751010-5+ 5.4532102i 

ω 5 9.235710-5+ 6.8166102i 9.253810-5+ 6.8165102i 9.239010-5+ 6.8165102i 9.231710-5+ 6.8165102i 

ω 6 1.904610-4+ 8.1800102i 1.914010-4+ 8.1799102i 1.916910-4+ 8.1799102i 1.920610-4+ 8.1799102i 

ω 7 3.523810-4+ 9.5434102i 3.536010-4+ 9.5432102i 3.549110-4+ 9.5432102i 3.550410-4+ 9.5432102i 

ω 8 6.013610-4+ 1.0907103i 6.043610-4+ 1.0907103i 6.049310-4+ 1.0907103i 6.045810-4+ 1.0907103i 

ω 9 9.655710-4+ 1.2271103i 9.680210-4+ 1.2270103i 9.692010-4+ 1.2270103i 9.699710-4+ 1.2270103i 

ω 10 1.475110-3+ 1.3635103i 1.472110-3+ 1.3633103i 1.477210-3+ 1.3633103i 1.478410-3+ 1.3633103i 
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Chapter 5 Mechanics of Lateral Positioning of a 

Translating Tape due to Tilted Rollers: Theory 

and Experiments 

A mechanics based model to describe the lateral positioning of a thin, tensioned, 

translating tape over a tilted roller is introduced, based on the assumption that the 

transport velocity of the tape should match the surface velocity of the roller when there is 

sufficient traction. It is shown that this condition requires the slope of the neutral axis of 

the tape and the slope of the centerline of the tilted roller to be the same over the wrapped 

segment. An extension of this model is discussed including the possibility of 

circumferential and lateral sliding, depending on the velocity difference between the tape 

and the roller. The new model is incorporated into a generalized model of a tape path that 

consists of numerous rollers as well as the appropriate boundary conditions for the take-

up and supply reel dynamics. The nonlinear equation of motion is solved numerically, 

and the steady state solution is found by an implicit time stepping algorithm. An 

experimental setup with one tilting roller, two or three nearly ideally oriented rollers and 

two reels is used for verification of the model. The effects of roller tilt angle, tape wrap 
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angle, and the lengths of the free-tape spans upstream and downstream of the tilted roller 

on the steady state lateral tape position are investigated experimentally and by 

simulations. The experiments show that the circumferential position of the wrap on the 

upstream side of a tilted roller has the strongest effect on pushing the tape in the lateral 

direction. The total wrap angle around the roller has a smaller effect. It was also shown 

that the tape segments upstream and downstream of the tilted roller interact, and the 

combined effect results in a different overall lateral tape response in steady state. 

In this chapter, we introduce a mathematical model of a rolling guide. A comprehensive 

description of the coordinate system associated with the drives, rollers and tape are also 

provided. The motivation for developing a roller model and a comprehensive literature 

review are provided in Section 5.1. The mathematical model, experiment setups and 

results are described in detail in Section 5.2, 5.3, and 5.4 respectivley. Section 5.5 

summarizes this chapter. 

5.1 Introduction 

Lateral tape motion is generally not acceptable in a tape drive. Nevertheless, it is also 

generally unavoidable. Various strategies have been developed to deal with LTM. LTM 

can be suppressed to a certain extent by using flanged rollers, which could damage the 

edge of the tape, and introduce high frequency low amplitude lateral tape vibrations. On 

the other hand, use of flangeless rollers could eliminate these issues, but they can also 

amplify the low frequency LTM [152]. One of the key factors in understanding the 

effects of imperfections on lateral tape/web dynamics has been mechanistic modeling of 

the tape transport process. In particular, mechanics of a translating tape/web interacting 

with a roller has been the subject of several critical works. Shelton and Reid (SR) showed 

that the lateral web deflections can be modeled by using the beam theory, and they 

described the mechanics of  the web as it comes into contact with a cylindrical roller [61]. 

Their work, which describes the web dynamics in the free span between two rollers, was 

the first to identify the boundary conditions between the web and the downstream roller. 

Sievers extended this work to a system with multiple rollers and used the Timoshenko 

beam theory [116]. Benson obtained the downstream boundary conditions by using the 

minimum total potential energy principle, and described the mechanics of  a spliced web 
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by using the Timoshenko beam theory [115]. In the limit when Euler-Bernoulli and 

Timoshenko beam models are identical the boundary conditions described by SR and 

Benson models are identical. The aforementioned works do not directly model the 

interaction of a web with a roller. Mechanics of a string travelling over a cylindrical roller 

was described by Ono [67] and Moustafa [57], and over a general axisymmetric roller by 

Yang [58]. Raeymaekers et al. extended Ono’s model by adding the effects of bending 

stiffness  [28]. However, these models have not considered systems with multiple rollers, 

and they do not take into account the roller misalignment. In Shelton’s work the effect of 

roller misalignment on the free-span web dynamics can be introduced by using the 

boundary conditions. Eaton described the geometry of the tape over a roller that has an 

arbitrary tilt with respect to the drive base, but did not consider the tape’s flexure over the 

roller. He described the reel-to-reel dynamics of the tape by using the tape geometry over 

the rollers as boundary conditions of multiply connected tape segments [59].  Brake and 

Wickert [20, 21] introduced a framework where various types of guides on a tape path 

can be modeled by applying concentrated forces and moments. Brake and Wickert [9] 

added tape flexure to Eaton’s description of the tape geometry over a tilted roller. The 

present work introduces a general model for modeling the lateral dynamics of a web 

travelling between two reels, supported by multiple rollers. In this proposal, we make two 

contributions. The first one of these is the introduction of a mathematical formulation that 

incorporates the velocity matching rule of Shelton and Reid [61, 63] at the location of the 

rollers. This condition is imposed by matching tape slope to the slope of the centerline of 

the tilted roller, by using a penalty formulation. This allows the system to find the steady 

state deflected shape of the tape along the tape path. Note that we impose this condition 

as a continuous constraint applied on the entire segment of tape wrapped over a roller, 

rather than a concentrated force/moment. The second contribution allows modeling of the 

dynamic interactions between a roller and a tape, and involves the possibility of slip over 

the roller. 

5.2 Model 

The tape mechanics is described with respect to a tape-based coordinate system (x, z) 

that coincides with the neutral axis of the idealized tape as shown in Figure 5-1. The 
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origin of the tape-coordinate system is located at the tape tangency point on the supply 

reel. Figure 5-1 shows the tape in a configuration that is unwrapped onto a plane.  

Each roller is assumed to have a set of roller coordinate axes (Figure 5-2) designated as 

1 2 3( , , )r r rx x x . In case the roller is exactly perpendicular to the drive base 
1 2 3( , , )r r rx x x  are 

coincident with the ground (or drive-base) coordinate system (x1, x2, x3). Otherwise, the 

orientation of the roller coordinate axes is described with respect to the ground system by 

using the tilt angle   and the orientation angle  as shown in Figure 5-2. Note that the 

tilt angle   represents a rotation about the 2x  axis. The orientation angle , which is a 

measure of the location of the 
1

rx  axis with respect to 
1x  axis, on the 1 2( , )x x  plane as 

shown in Figure 5-2, also represents a rotation about the 3x  axis. This notation was first 

used by  [59] and then by [9, 59].  

It is generally assumed that tape sticks on to the roller if there is sufficient traction in the 

tape-roller interface [61]. Therefore, it is critical to describe the position of a tilted roller 

with respect to the tape. Note that the circumferential centerline of the roller develops a 

height variation wg(θ) with respect to the  1 2( , )x x  plane in case the roller axis is tilted 

[59],  

( ) sin cosgw R                                                            (5.1)                                                                           

where R is the radius of the roller as shown in Figure 5-2c. Note that in this case the 

circumferential position   is referred to the 
1

rx  axis as shown in Figure 5-2b. Also note 

that the x-axis of the tape-based coordinate system and the circumferential position are in 

general related as dx Rd . As a result, the slope of the centerline of the tilted roller can 

be expressed in the tape based coordinate system as follows [59],  

( ) sin sin
g

g

dw
x

dx
                                                 (5.2)                                     

Equations. (5.1) and (5.2) enable the position and slope of an imperfectly oriented roller 

to be described with respect to the tape-based coordinate system.  
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Shelton’s normal entry law [60] states that the tape transport velocity and the roller 

velocity match in the absence of slipping. Therefore, when the tape encounters a tilted 

roller, its slope w x   will follow the slope of the roller 
g , but it will settle at a shifted 

equilibrium position. This assertion follows, directly and naturally from Shelton’s law 

[60], and Benson’s [115] description of tape motion over a roller. In this work the slope 

condition is imposed by using a penalty formulation. Lateral slip is also considered as a 

perturbation around the deflected, steady-state tape path.  

The equation of lateral tape motion first introduced in the theory section in this chapter is  

modified as follows [27], 
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(5.3)                  

where, w is the lateral tape deflection, x is the longitudinal coordinate axis, t is time,  is 

the  mass density of tape, A is the cross section area of tape.  is the tape translating 

velocity, E is the elastic modulus,  is the loss modulus, I is the second moment of area 

of the tape cross-section, T is the tape tension, the subscript i refers to the roller number, 

w(x, t) is the lateral deflection of the tape, t represents time, Hi is a windowing function 

that is equal to 1 over a roller and 0 elsewhere, k is the penalty stiffness used to impose 

the slope matching condition, θg is the guide slope given by Eqn. (5.3), 
if

q   and 
if

m  are 

the frictional forces and moments acting on the tape over the rollers. Note that the rollers 

considered in this paper do not have any flanges, as a result no flange force are included 

in Equation(5.3). 

The effects of the rollers on the tape are represented by the fourth term in Equation (5.3). 

The first term of this square bracket represents a corrective distributed moment of 

magnitude  /
igk w x    , applied in case the tape slope deviates from the slope of the 



xV
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guide. This term becomes zero at steady state. The frictional forces and moments that act 

on the roller in a distributed manner are derived in the Figure 5-10. These terms are 

expressed as follows, 

sgn
i i if z g

i

T w w
q V

R t x
 

   
     
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  (a) ; sgn

12i if x

i

Tb D w
m

R Dt x


 
  

 
 (b)         (5.4) 

where, 
x and 

z are the dynamic friction coefficients in the longitudinal and lateral 

directions, respectively, and b is the width of the tape. The last term of Equation (5.3) 

represents the lateral component of the distributed contact force which develops due to 

the guide tilt [59]. The boundary conditions as stated in the Section 3.1. 

5.3 Experiments 

An experimental, reconfigurable tape-path was used to assess the effects of a tilted guide 

on the lateral tape deflections. The tape-path was composed of two reels and several 

grooved-rollers. One of the rollers was designed so that its spin axis can be tilted as 

described by [152]. This roller was positioned on the drive-base in such a way that only 

the tilt angle   was non-zero. The other rollers were manufactured with sufficiently high 

tolerances that they could be considered normal to the drive base.  

Four edge sensors were used to measure the lateral tape deflection as also described by 

[152]. The standard deviation of the noise floor of the sensors was ~50 nm in a 10 kHz 

bandwidth. Two sensors were placed on each side of the tilting guide, and numbered 

from upstream to downstream as S1 to S4 (Figure 5-3(a)). Sensors-S2 and -S3 were placed 

as close as possible to the tangency points of the tape over the roller. Moreover, Sensors-

S1 and -S2 are located as close as possible to S3 and S4, respectively. The S1-S2 and S3-S4 

distances were measured carefully to enable assessment of the tape slope in addition to 

tape deflection. Tape slopes at the upstream and downstream points of the roller were 

found by using a finite difference approximation, as follows, 

2 1

meas meas
meas

upstream

upstream

w w

d



   and 

4 3

meas meas
meas

downstream

downstream

w w

d



                         (5.5) 
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where, dup/downstream represent the S1S2 and S3S4 spacings, respectively, and the meas

iw

represent the measured LTM values on the sensors.  

In this work, the effects of the tilt-angle  , the tape-wrap angle 
w , and the upstream 

and downstream  free span lengths  on the steady state lateral tape position were 

investigated experimentally and through simulations. The values of these three variables 

are reported in Table 5-2 and Table 5-1and in the respective figure captions. Tape 

properties and roller dimensions are listed in Table 5-1. 

5.4 Results 

The tape path used in the experiments is shown in Figure 5-3. Note that the tilting roller 

is located at position i = 2. The effect of roller-tilt on the lateral tape position was tested 

for different wrap angle values for this configuration. The wrap angle was changed by 

changing the position of the roller-1 (i = 1). The roller-tilt   is imposed on roller-2 (i = 2) 

while keeping the orientation angle   zero. Tape runs from the supply-reel (pack-1) to 

the take-up reel (pack-2). The tape lengths upstream and downstream of the roller-2 

remain constant during these tests at 
2L = 

3L = 810
-2

 m.  Four different wrap angle 

values ( 2w ) were considered: 30, 45, 60 to 90
 
degrees. In Figure 3, the tape wraps 

around the tiling-roller by 2w  = 90 degrees. The drive base coordinate system ( 1 2,x x ) is 

presented on Figure 5-4. Note that in order to provide sufficient traction and to prevent 

excessive slipping [62], the wrap angles on the rollers-1 and -3 (i = 1, 3) had to be kept 

larger than 15 degrees. Therefore, one extra roller was added to the system for the case of 

2w  = 60 degrees. As a result the tilting roller is located at position i = 4, for this case.  

Four guide tilt-angle values were applied to each wrap as reported in Table 5-2. Due to 

the construction of the setup it was not possible to apply the exact same   values. The 

radii of the supply pack and the take-up pack during the tests are also reported in Table 

5-2. Different pack radii are reported as measurements are done on different part of tape 

and damaged tape was removed from tape path.  

Computed steady-state tape profiles, spanning the range between the two reels, is shown 

in Figure 5-5. The tilted roller is predicted to cause significant lateral displacement of the 
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tape. The lateral displacement is clearly more significant on the downstream side of the 

tilted roller. However, some lateral displacement spills over to the upstream side as well. 

Rollers, located upstream and downstream from the tilted roller, are perfectly aligned. 

Therefore, the tape slope is nearly zero on these rollers. In other words, these two rollers 

are able to “correct” the slope change caused by the tilted roller. Nevertheless, a residual 

shift remains in the tape path. The shift on the downstream side, which is on the order of 

50 – 250 m depending on the case,   is dictated by the take-up reel and is much larger 

than the shift on the upstream side. The velocity matching boundary conditions given by 

Equation (3.11) allows for this lateral shift to be simulated.  

The steady-state lateral tape deflections measured at the sensor positions S1–S4 are 

plotted in Figure 5-6 along with the simulated results. The span of the tilted roller, 

located between sensors S2 and S3, is also marked. The slopes of the tape at the up-stream 

and down-stream locations are computed from the measured positions, and compared to 

the computed values in Figure 5-7. Note that the average and the standard deviation of 

the test data are computed based on 5 different measurements.  

Figure 5-6 and Figure 5-7 show that both of the lateral tape deflection, and the tape-slope 

simulation results agree well with experimental measurements. With this said, it is 

interesting to note (Figure 5-6) that the lateral shift of the tape decreases with wrap-angle, 

w . In fact, this lateral shift is actually due to the location of the upstream tangency point 

2

upstream  with respect to the reference position of   (x1-axis in these examples) where the 

( )gw   has its maximum.  Therefore, changing 
2

upstream  from 180 degrees (Figure 5-6a) 

to 120 degrees in (Figure 5-6d) forces the tape to make initial contact with the roller at a 

higher position, eventually resulting in a larger lateral shift.  

The length of the tape upstream and downstream of a roller contributes to its stiffness, 

and therefore has an effect on the lateral position/slope of the tape over the roller at 

steady state. In order to investigate this effect, four different configurations of the 

upstream and downstream span lengths were tested, for a fixed wrap angle (
3w  = 60 deg.) 

over the tilted roller. The computed tape deflection profiles at steady state are shown in 

Figure 5-8, for upstream and downstream free span length (L3, L4) combinations of (8, 8), 
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(8, 4) (4, 8) and (4, 4) cm. As expected the longer tape span is more compliant and 

displays a larger lateral deflection (Figure 5-8a, d). Moreover, for a given upstream span 

length (e.g. L3 = 8 mm) the lateral shift 
Lw (Figure 5-8e) is reduced with decreasing 

downstream span length, as expected. Figure 5-9 shows that the measured and computed 

lateral tape deflections at steady state compare well.  

The tilted-roller causes an accumulated lateral-shift Lw at the tangency point of the tape (x 

= L) with the take-up reel as shown in Figure 5-5 and Figure 5-8. The effects of the tilt-

angle  , wrap-angle wi  and upstream and downstream free span lengths iL  and 1iL   on 

the total lateral shift Lw  are assessed by simulation and presented in Figure 5-5e and 

Figure 5-8e. It is interesting to note that Lw  is linearly proportional to the tilt-angle . As 

indicated before, the total tape shift is affected by the initial position at which the tape is 

making contact, which is governed by upstream

i . Thus in this tape path-configuration the 

larger wrap angle makes the initial contact position between the tape and the roller at a 

lower position and results in a smaller amount of lateral shift. Also, as indicated, the 

length of the free span on the downstream side 1iL   has significant effect on the total 

lateral shift. Shorter 1iL   is stiffer and therefore causes lower lateral shift. 

5.5 Summary 

A model for the interactions of a thin, tensioned, travelling tape with a flangeless 

cylindrical-roller is introduced. The model is based on the expectation that the tape speed 

and the roller speed match for tilted rollers, and thus obeys Shelton and Reid’s normal 

entry law [61]. This tape-roller interaction model is integrated into a system level tape 

transport model which accommodates simulating the dynamics of tape supported by 

multiple rollers, between two reels [21]. The steady state tape deflections are found by 

using solving the non-linear governing equations transiently with a numerical approach. 

Lateral tape deflection and slope are measured upstream and downstream of a tilted-roller 

on an experimental, configurable tape-path as a function of roller tilt-angle, tape’s wrap 

angle over the roller and the lengths of free tape span upstream and downstream of the 

tilted-roller. Model predictions compare very favorably with experimental measurements.  
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This work showed that the most significant parameter that affects the lateral shift of the 

tape over a tilted roller is the point of contact of the tape with the roller. This point is 

determined by the tape position on the upstream side of the tilted-roller. This work also 

demonstrated that the length of the free span of the tape upstream and downstream of the 

tilted roller has a strong influence. For a fixed upstream span increasing downstream span 

length causes more lateral shift under similar conditions. 
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Figure 5-1 Tape path coordinate system 

 

Figure 5-2 Roller coordinate axes 
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Figure 5-3 Experimental and corresponding simulation tape path 

 

 
Figure 5-4 Four different entering angle layouts 
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Figure 5-5 Tape steady-state shape of four different entering angles 



85 

 

 

Figure 5-6 LTM at sensor locations and simulated tape deflections of four different 

entering angles. 
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Figure 5-7 Entering and leaving slopes of four different entering angles 

(a) (b) 

(c) (d) 
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Figure 5-8 Tape steady-state shape of 4 different span length combinations 
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Figure 5-9 LTM at sensor locations and simulated tape deflections of four different span 

length combinations 

 

Figure 5-10 Schematic plots of tape lateral motion over roller surface.
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Table 5-1 Tape properties and roller radii 

Tape properties  

Substrate material Polyethylene Naphthalate (PEN) 

Total tape thickness  6.4 µm 

Composite Young’s modulus  5.6 GPa  

Tape width 12.7  10
-3

 m 

Bending rigidity (EI) 5.2  10
-3

 Nm
2 

Rollers   

R1, R3 (guiding rollers) 6  10
-2

 m 

R2 (tilting roller) 7  10
-2

 m 

 

Table 5-2 Testing parameters used in experiments 

Wrap angle 

2w  (deg.) 

Tangency points 

2 2,upstream downstream   

Tilt-angle 

 (mrad) 

Radii of pack-1 and-2  

(m) 

90 -180, -90 1.6, 2.5, 3.2, 3.7 2.0 10
-2

, 3.5 10
-2

 

60 -150, -90 1.9, 2.4, 2.8, 3.4 3.5 10
-2

, 3.8 10
-2

 

45 -135, -90 1.0, 1.8, 2.6, 3.6 3.5 10
-2

, 2.0 10
-2

 

30 -120, -90 1.0, 1.8, 2.7, 3.6 2.0 10
-2

, 3.8 10
-2

 

 

Table 5-3 Tape span lengths 

 Upstream Length, L1 (cm) Downstream Length, L3 (cm) 

(a) 8 8 

(b) 8 4 

(c) 4 8 

(d) 4 4 
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Chapter 6 Stick and Slip Dynamics of a 

Stationary Tape Interacting with a Laterally 

Actuated Grooved-Roller: Experiments and 

Theory 

In this chapter the effects of friction forces on the lateral dynamics of a magnetic 

recording tape, wrapped around a grooved roller are studied experimentally and 

theoretically. Including the effects of stick and slip and velocity dependence of the 

friction force render the tape’s equation of motion non-linear. In the experiments, tape 

was wrapped around a grooved roller in a customized tape path, and tensioned. The tape 

running speed along the axial direction was set to zero, thus only the lateral effects were 

studied. The grooved roller was attached to an actuator, which moved across the tape. 

The test was performed in slow and fast actuation modes. Slow mode was used to 

identify the static, or breakaway friction coefficient. In the fast mode, the roller was 

actuated and a periodic ‘stick-slip’ phenomenon was observed. The stick-to-slip and slip-

to-stick transitions occurred when the tape vibration speed matched the roller actuation 

speed. The breakaway forces in the slow and fast actuation modes were similar one 

another. Both experiments and theory show that upon slip, tape vibrates primarily at its 
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natural frequency, and vibrations are attenuated relatively fast due to frictional and 

internal damping.  

Literature survey is provided in Section 6.1. Experiments and theory are described in 

Section 6.2. A discussion of the results is given in Section 6.3.    

6.1 Introduction 

In modern tape drive systems, rollers with circumferential grooves are often preferred in 

order to reduce slip between the tape and the roller. Resistance to lateral tape motion 

(LTM) has been proven to be considerably higher with grooved rollers. In general, two 

effects are thought to be responsible for this. First, by using a grooved surface the effects 

of air lubrication in the roller-tape interface are substantially reduced [62, 84]. This 

provides an adequate amount of contact force, and eventually the Coulomb friction 

between the tape and the roller provides resistance to LTM. Second, as the tape bends 

into the grooves, a natural corrugated shape develops which further increases the lateral 

friction and resistance to LTM.  

Ono [19, 67] studied the mechanics of LTM over a frictional guiding-post by using a 

translating string model. He pointed out that the friction coefficient in the tape-to-guide 

interface could have different values in the lateral and longitudinal directions. 

Raeymaekers and Talke [28, 68]  extended Ono’s work by using a beam model. 

Raeymaekers and his colleagues also investigated the effect of surface roughness, sliding 

speed, tape tension, material properties and guide geometry on the tape-to-post 

coefficient of friction [86] and proposed laser surface texturing to enhance the traction 

between tape and guide [87]. Their conclusions match well with their experimental 

results. Yang [58] extended Ono’s analysis to accommodate generalized ‘cylindrical’ 

rollers. Shelton and Reid [61, 63] modelled lateral tape dynamics over a roller. Three 

stages of interactions between a tape and a roller, namely stick, circumferential slippage 

and lateral slippage, were identified by Young, Shelton and Fang [62, 64]. Friction was 

found to be helpful to reduce the high-frequency lateral tape vibration by Wickert and 

Kartick [153]. Eaton [59] described mechanics of a string over a post. Brake and Wickert 

[20] improved Eaton’s model and developed a model for the friction induced vibration, in 
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the case of a laterally actuated cylindrical guide. Moustafa [57] proposed a thread model 

over a rotating roller surface. Yang et al. [154] studied the lateral tape deflection over an 

imperfect roller. McClelland and Imaino [69] presented a model for tape to roller 

interaction by using the Timoshenko model. Jape et al. [72] experimentally investigated 

frictional interactions between a roller and a tape and identified regions of predominant-

stick or -slip for different operation parameters. Kartik and Eleftheriou [41] proposed a 

friction-induced model representing actively-positioned read/write head. Engelen and 

Lantz [155] described the tape-head friction by including contributions from head edges 

and surface. 

As also observed in our experiments, within a dynamic system it is often possible to 

observe the bodies transition between stick and slip states [156]. The nature of static and 

dynamic friction forces contribute to stick-slip phenomenon [157-159]. Various 

analytical approaches have been formulated for modeling stick-slip in single degree of 

freedom systems. Cameron and Singh investigated the critical value of the driven surface 

velocity [160, 161]. Shaw showed the effects of  viscous damping on stability of the 

system [162]. Armstrong-Helouvry reported on stick-slip in lubricated metal contacts 

[163].  

In this chapter we describe an experimental method to measure the friction force between 

the tape and a grooved roller. An experimental setup where one of the rollers can be 

actuated in the lateral direction is built. This setup was used to measure tape deflections 

and friction force as a result of the motion of the actuated roller. Resulting friction 

induced vibration, stick and slip motion between the tape and the actuated roller is 

measured in dynamic test conditions. A mathematical model of stick and slip in the tape 

to roller interface is also introduced. 

6.2 Experimental Materials and Methods 

Tape transport speed was set to be zero for this study. Two sets of experiments were 

conducted by using the configurable tape path shown in Figure 6-1. Five grooved, 

flangeless rollers were used in these tests (Figure 6-3). Upstream and the downstream 

rollers, denoted as supporting rollers, were used to set the wrap angle around the test 
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roller. Two additional rollers were placed such that the wrap angle of the supporting 

rollers is sufficiently large. This is aimed to establish a system between two supporting 

rollers isolated from the other tape path components such as the reels. Tape was 

tensioned by applying appropriate level of torques to the two reels. The tension 

fluctuation for running tape is 50 mN (std. dev.) and the stationary tape has tension 

measured error of ±30mN. In the first (slow mode) test (Figure 6-2a) the lateral traction 

capacity of the tape-roller interface was tested by moving the testing roller relative to the 

tape with a micrometer until slip is detected. In the second (fast mode) test (Figure 6-2b)), 

the central roller was attached to an actuator, and tape dynamics was investigated as the 

roller was actuated in the lateral direction. Figure 6-1d shows the top view of experiment 

setup. In this work the tape transport speed was set to zero in order to isolate to the basic 

frictional interaction characteristics between the tape and the roller. The experimental 

parameters and the mechanical properties of the tape used in these tests are given in 

Table 6-1.Note that the reported elastic modulus value E = 4.42 ± 0.122 GPa was 

measured by using a CETR-UMT (Bruker, Campbel, CA). The loss modulus η value of 

23,000 Pa.s was obtained by using our model and fitting to the experimental results. The 

thickness h = 6.4 m and width b = 12.7 mm of the tape are standard for the LTO-5 tape 

[1]. The mass density of the tape is 1,400 kg/m
3
 [21].  

6.2.1 Experimental characterization of static friction behavior 

The tractive capacity of the tape-roller interface in the lateral direction, with zero tape 

transport velocity, was measured by using the test configuration shown in Figure 6-2a. 

The test roller was attached to a hand operated micrometer moving in the lateral direction. 

The total lateral force acting on this roller was measured using a Honigmann RFS 150 

XY strain gauge sensor (10N range) connected to a Tensiotron TS 621 HD amplifier. The 

lateral roller displacement d and the lateral tape displacement w are measured by two 

photogate position sensors (custom built). The relationship between the tape deflection 

and the lateral force acting on the roller due to a tensioned stationary tape was measured 

by manually displacing the roller with the micrometer. An example measurement is 

shown in Figure 6-4 with tape tension T = 0.25 N, and wrap angle θw = 15 degrees. This 
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measured force versus displacement relationship is used to calibrate the effective stiffness 

of the tape. The details of these measurements are explained in Section 6.3.1. 

6.2.2 Experimental characterization of dynamic friction behavior 

The dynamic slip characteristics of the tape-roller interface in the lateral direction, 

without tape transport, were investigated using the test configuration shown in Figure 

6-2b. The test roller was mounted on an actuator that can move the roller in the axial 

direction. Four custom-built photogate position sensors were placed on the tape path to 

measure LTM. Sensor-2 measures the LTM near the actuated roller. Sensor-3 measures 

the roller displacement. Sensors-1 and -4 are located at the entry side of roller-2 and exit 

side of roller-4, respectively. Typical LTM signals obtained from sensors-1 and -4 are 

shown in Figure 6-5a; the tape displacements at sensor-1 and sensor-4 are much smaller 

O(± 0.2 m) than the LTM imposed by the actuator at roller-3. This implies that the 

imposed LTM does not pass through rollers-2 and -3. LTM signals from sensor-2 for two 

different roller actuation amplitudes are shown in Figure 6-5b and 4c. The balance 

between the interface friction and tape restoring forces is maintained such that the tape 

moves synchronously with the roller in Figure 6-5b, in which case the maximum roller 

amplitude is about 55 m. On the other hand when the roller amplitude is increased to 

150 m the tape can follow the roller only for 80 m beyond which it slips (Figure 6-5c). 

The corresponding tape and roller velocities (Figure 6-5d) reveal that following the slip 

event, the tape velocity oscillates around 0 m/s with gradually decreasing amplitude. At 

the same time the roller velocity decreases and changes direction due to sinusoidal 

excitation. At the point when the tape and roller velocities match, at approximately 0 m/s, 

the tape starts moving with the roller in the opposite direction. The static friction force is 

calculated from the measured displacement at which slip occurs and the measured 

effective tape stiffness. 

6.2.3 Theory 

The tape mechanics between the upstream and downstream support rollers is modeled as 

a tensioned, Euler-Bernoulli beam, with internal dissipation (Figure 6-6). The tape 

deflections on the upstream and downstream rollers are negligible as mentioned above. 
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Based on Shelton’s law [61, 63] and a recent study by the authors [154] it is reasonable to 

assume that the tape on the two supporting rollers can be modeled to have clamped 

boundaries for which tape deflection and slope are zero (Figure 6-6). The test roller is 

located at the center of the span, with equal free span lengths L1 and L2. The test roller is 

wrapped by the tape at angle w. The total length of the tape between the supports is L = 

L1 + L2 + Rw. The test roller interacts with the tape by contact and shear stresses, which 

are due to belt-wrap pressure and friction. The equation of motion of the tape as 

described in Chapter 3 and Chapter 6  is,  

2 2 2 4 5 5
2

2 2 4 4 5
2 ( )x x x f

w w w w w w w
A V V EI T I IV H x q

t t x x x x x t x x
  

         
           

           
 

(6.1) 

where w is the lateral tape deflection, x is the longitudinal coordinate axis, t is time,  is 

the  mass density of tape, A is the cross section area of tape.  is the tape translating 

velocity, E is the elastic modulus,  is the loss modulus, I is the second moment of area 

of the tape cross-section, T is the tape tension, and fq  is the magnitude of the friction 

force acting in the lateral direction.  H is a window function with value 1 when the tape is 

over a guide ( 1 1 wL x L R   ) and 0 otherwise. In this work, the tape translation 

velocity  is zero. The friction force per length 
fq acting between the tape and the roller 

is assumed to be due to Coulomb friction, 

 sgnf c relq F v                                              (6.2) 

where the magnitude of contact force per length is cF  and relative lateral velocity between 

the roller and the tape is, 

  
rel roller

w
v v

t


 


                                              (6.3) 

with 
roller r

d
v d

dt
  as the roller velocity and dr as the roller displacement. In this work, the 

contact force per length cF  is assumed to be equal to T/R.  



xV

xV
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While friction force is proportional to normal force, it can also be speed dependent [164]. 

Dependence of the friction force on speed can be conveniently represented in terms of the 

coefficient of friction  . In the simplest model, static (break-away) friction force can be 

greater than the dynamic friction force. In lubricated contacts, the Stribeck effect could 

cause a relatively smooth but physically complex transition between static and dynamic 

friction coefficients. These possibilities are depicted in Figure 6-7. Speed dependence of 

the friction force (Figure 6-7b) can be represented in terms of the coefficient of friction 

  as follows,  

                                              (6.4)                                    

where the parameter a controls the rate of decay of the coefficient of friction with 

increasing velocity from static friction coefficient s  to an asymptotically reached 

dynamic friction coefficient d . The parameter a is set to be zero in this study. 

In general, two bodies that are in contact exchange tangential (friction) and normal 

tractions on the contact plane. Due to the nature of the friction force, and depending on i) 

the relative velocity between the two surfaces, and ii) the balance of friction , external 

 and restoring  forces, the two bodies continue their relative motion, albeit affected 

by frictional loading, or they become stuck, and move synchronously. If the relative 

velocity between the surfaces is zero, despite the fact that an external force is applied on 

the system, the two bodies are said to be in a stick state. In this case, the friction force is 

smaller than the limiting, static friction (or break-away) force. On the other hand, if the 

relative velocity between the surfaces is greater than zero, the friction force is equal to the 

dynamic friction force. In general, the friction force vector is expressed as follows,  

     if 0,   with 

   if 0                                

e r rel e r fs

f
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where  is the breakaway friction force and    is given by Equation (6.4). The 

restoring force 
rF  includes inertial, damping and structural stiffness effects and 

eF  

represents all external effects, except for friction forces. Based on this discussion, the 

friction force per unit length 
fq acting on the tape can be obtained from Equation (6.5) as 

follows,  

 

 

if 0

sgn if 0

et rt rel

f

rel rel

F F v

q T
v v

R


   


 
 


                                                     (6.6)                                                    

We have dropped the vector notation because all forces and velocities are along the 

lateral direction. The subscript t indicates that the external and restoring forces are 

specific to Equation (6.1). The restoring force Frt is represented by the left hand side of 

Equation (6.1) and external force etF  is zero in this study. 

The friction force in this vibrating tape system depends on the lateral sliding direction of 

the tape. This renders the equation of motion non-linear. Additional system nonlinearity 

is due to the nature of the friction force. In particular, the discontinuity at 0relv   is of 

concern. Regularization of this discontinuity in the friction force was proposed by 

Karnopp [165]. Haessig and Friedland suggested two improved models based on 

Karnopp’s model [166]. Their models removed the discontinuity in friction force in 

Karnopp’s model, but this model did not balance the external force [167]. Quinn [168] 

proposed a new regularization method which can both remove the discontinuity and 

maintain the consistency. Quinn’s model described the friction as a function of relative 

velocity if slip occurs, and a function of external force if stick occurs. A fixed-step 

friction model was designed by Kikuuwe et., al [167] aiming to obtain absolute zero 

relative velocity at the sticking phase. However, their method only works for the case of a 

stationary base.  

In a numerical solution, an exact value of zero relative velocity is rarely reached; 

therefore, a narrow range of relative velocity  is defined to represent the stick 

fsF

relv 
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region. The slip state occurs when the net force e rF F  is greater than the static friction 

force, and the relative velocity lies outside the stick-range. While this description is often 

applied to stick and slip of single degree of freedom systems, here it is generalized to one 

dimensional continuous systems. For any tape material point on the roller, Quinn’s model 

is used to regularize Equation (6.6) in stick phase by   as function of relative velocity, 

but also as function of net force [168] as follows, 

 

 
 

    

        if

 sgn if

rel

s rel

f

rel rel

v x
v xT

q x
R

v x v x

 


 


 

 
  


                                         (6.7) 

where  

 

 
   

   

          

       if

sgn if

rt et

rel rt et s

s
rel

rel rt et rt et s

F x F x T
v x F x F x

T R
v x R

T
v x F x F x F x F x

R

 



 

 
  


 

    


                (6.8) 

s  and d  are determined according to Equation (6.4). This model is also visualized in 

Figure 6-7c. Note that the dynamic friction force can generated by Figure 6-7a or using 

Equation (6.4).  A transient solution to the system of equations (6.1), (6.3), (6.4), (6.7) 

and (6.8) is obtained numerically as outlined in Chapter 3. 

6.3 Results 

6.3.1 Static friction test 

Figure 6-4 shows the force acting on the roller and the lateral displacement of the tape 

edge as function of time, as the roller is moved by the micrometer as described in Section 

6.2.1. The micrometer motion starts at time t1. Between t1 and t2, the friction in the tape-

roller interface is sufficient to keep the tape motion in phase with the roller. The static 

friction force is greater than or equal to the tape restoring force during this interval. The 

maximum static friction force that the interface can bear is reached at t2, after which the 

force balance at the interface is broken and slip occurs. The tape displacement at this 
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breakaway point wb and the corresponding force acting on the roller are recorded. A jump 

in signal is observed at time t2 as a consequence of the slip event. After t2 the tape and the 

force signal stay constant, while the roller displacement sensor signal keeps increasing 

until t3 when the micrometer motion is stopped. The slipping portion of this curve is not 

of interest in this part of the experiments.  

The force acting on the roller as a function of roller displacement dr, is shown for three 

different tensions and wrap angles in Figure 6-8. This shows that the force-displacement 

relationship is nonlinear. While the curves for different wrap angles are approximately 

coincident, the end point of each curve, which represents the breakaway point wb, 

becomes larger with increasing wrap angle. Up to the point where the tape slips, the 

measured friction force 
fF  is equal to the restoring force rF  exerted by the tensioned 

tape on the roller for a tape deflection equal to w,   

 r fF F g w 
 
                                                     (6.9) 

where  represents a polynomial fit to the curves in Figure 6-8 (see Table 6-2). The 

maximum friction force 
fsF  that the interface can sustain is found at the breakaway point. 

The static coefficient of friction (COF) s   can then be determined by assuming 

Coulomb friction in the interface as follows,  

fs s c c s wF p A T                                                    (6.10) 

where  is coefficient of friction (COF), pc (= T/Rb) is contact pressure, and Ac (= Rθwb) 

is contact area, where b, R and θw indicate the tape width, roller radius, and  wrap angle, 

respectively.  

The non-linearity of g(w) is attributed to wrinkle formation in the tape, which reduces the 

tension and thus the lateral stiffness of the tape [123]. Beisel [169] describes the critical 

shear stress ( /crF hb ) that causes wrinkling in a tensioned, orthotropic plate due to a 

lateral force applied by a roller. For isotropic materials the critical lateral force is given as 

follows,  

 g w
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                                     (6.11) 

 where , E is elastic modulus,  is Poisson’s ratio, and h is thickness of 

the tape. For small values of tape deflection, the load-deflection response can be 

calculated by using the equation of equilibrium of the tensioned Euler-Bernoulli beam, 

with clamped-clamped boundaries. The load on the tape due to frictional forces is 

assumed to be concentrated mid-span (L/2), resulting in the following shape for the tape,   

                        (6.12) 

where . Before the breakaway happens, the mid-span tape deflection w(L/2) 

is equal to the roller displacement dr, 

                               (6.13) 

Thus, we can define an effective tape stiffness  as follow, 

                                                (6.14) 

We calculate that experimental tape stiffness values in the regime where the friction 

force is subcritical ( ), as predicted by Equation (6.11). The tape stiffness values 

calculated from Equation (6.14) deviate less than 3% from the experimental tape stiffness 

values (see Table 6-3).  

The breakaway position wb is in the non-linear region of the experiments. Figure 6-9 

shows the  results of the dynamic tests. The results in Figure 6-9 will be further discussed 

in Section 6.3.2. Figure 6-9a and Figure 6-9b show all breakaway displacements 

measured and the corresponding friction force values g(wb), as a function of tape tension 

and wrap angle. The static coefficient of friction  in the lateral direction, which 
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determines the lateral tractive capacity for the tape-roller interface, can be found as 

follows,  

                                                              (6.15) 

and shown in Figure 6-9c.  

6.3.2 Dynamic friction test 

The dynamic friction characteristics of the tape-roller interface were investigated by the 

actuated roller set-up described in Section 6.2 and Figure 6-1c, with the parameters listed 

in Table 6-1. The tape deflection on the support rollers was negligibly small compared to 

the roller displacement (Figure 6-5a). Sensors-2 and -3 measure the tape deflection w(x
*
) 

and roller displacement dr, respectively, where x* indicates the location of sensor-3 

adjacent to the actuated roller (Figure 6-1b). A typical output (Figure 6-5b,c) of these 

sensors shows that as the roller is actuated, the tape is driven laterally by the surface 

friction force. Depending on the actuator motion amplitude, the tape can move 

synchronously with the roller (Figure 6-5b), or can break away (Figure 6-5c). In case the 

tape breaks away, it vibrates around a fixed position with decreasing (damped) amplitude 

until the roller’s lateral speed and the tape speed match. The tape then re-synchronizes 

with the roller when their speeds are equal. This happens when the tape vibration velocity 

is near zero. The tape then moves synchronously with the roller, until breakaway occurs 

on the opposite side of the sinusoidal roller displacement. This stick and slip behavior 

continues with the period of roller motion. The phase shift between the roller and tape 

signals stems from the fact that after breakaway, the roller moves continuously in the 

lateral direction, while tape vibrates around the breakaway point. 

The breakaway friction forces in the lateral direction as measured through dynamic 

experiments are given in Figure 6-9a. The corresponding coefficient of friction  values 

are calculated using Equation (6.15). Each experiment has duration of 5 seconds and was 

repeated three times. The actuator frequency was 50 Hz. The friction force and COF 

results that are reported represent the average of 750 cycles. Table 6-4 lists the average 

 b

s

w

g w

T



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COF values (µmean) and corresponding standard deviation (µstd) for the 9 cases. The 

overall COF measured is µs =  0.40± 0.035.  

The interactions between the tape and the roller were simulated by using the theoretical 

model presented in Section 6.2.3. The model was solved numerically as described in the 

Appendix. Note that the grooved nature of the rollers is not modelled, and instead a 

constant COF is used for the tape-roller contact area. The measured roller displacement 

was used as an input to the model. For each tension and wrap angle the measured 

breakaway friction coefficient values reported in Figure 6-9c and Table 6-4 were used. 

For example, for the case where the tension is 0.5 N and the wrap angle is 15 degrees, a 

breakaway coefficient of friction in the range of  µs =  0.41 ± 0.041 was used. The 

simulation results and the experimental measurements are compared in Figure 6-10. As 

expected, the breakaway predicted by the model depends on the COF value. The model 

predicts the breakaway displacement reasonably well (Figure 6-10a). Both the 

experiments and the model show that, following the slip event, the tape vibrates with a 

considerably higher frequency than the roller actuation frequency. The vibration 

amplitude is damped until the tape and roller “stick” again, as explained above. The 

model accounts for frictional and internal damping (loss modulus is reported in Table 

6-1), but does not account for the grooved nature of the roller surface. Under tension, the 

tape bends into the grooves, leading to additional internal damping.  A recent study [170] 

showed that the contact pressure along the edges of the lands is higher than the belt wrap 

pressure (T/Rb). We therefore expect higher frictional damping in the experiments as 

observed.   

The COF value that results in the experimentally measured breakaway position was 

found by numerical experimentation. Figure 6-9b demonstrates that  = 0.4 gives the 

best match for this case. For all tension and wrap angle combinations, the value that 

closely simulates the experimental breakaway position was found to be very close to the 

average of the measured COF value reported in Figure 6-9c. Table 6-4 shows the COF 

values used in the theoretical calculations that give the best match to the experimentally 

measured breakaway position.  

s

s
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Figure 6-11 shows a comparison of the computed and measured tape deflection and tape 

vibration velocity traces for the case of T = 0.25 N and θw = 10 degrees with the best fit 

COF value.  The stick and slip behavior is captured well in the model, with good 

predications for the breakaway displacement, sticking velocity, and phase plane behavior 

of the system. The model predicts a slightly lower onset velocity than the measurements. 

Note that breakaway occurs at displacements where the tape is likely to have buckled as 

described in Section 6.3.1. As the model does not take this effect into account, the 

simulated force-displacement response is stiffer than the measurements.  

It is also interesting to note that roller trajectory is not symmetrical, which is clearly seen 

in the phase-plane (Figure 6-11c). The root cause of this behavior is due to the coupling 

of the roller dynamics to the tape and presence of gravity. These effects are not modeled 

in this work.  

Finally, the frequency content of the vibration after the slip event is investigated. Figure 

6-12 shows a typical plot of the tape velocity vibration frequency versus vibration 

amplitude obtained by using the fast Fourier transform (FFT) for the case of T = 0.25 N 

and θw = 10 degrees. The vibration is dominated by the roller frequency and its higher 

harmonics, as expected. Measured and simulated results agree well. The frequency 

analysis also shows that the first resonance of the tape is excited. In Figure 6-12 this 

occurs at ~2450 Hz. Incidentally, tape vibrates with this frequency in the sliding phase as 

shown in detail in Figure 6-10b. This indicates that the stick-to-slip transition creates an 

impulse-like load which excites a wide band response in the tape. This high frequency 

tape motion is of particular interest and concern as it is very challenging for the track 

follow control system of a tape drive to follow such high frequency motion. The slip 

phase event in time and frequency domain as plotted in Figure 6-13 for the case of T = 

0.25 N and θw = 10 degrees within 17~25 ms. Simulation accurately catches the tape 

velocity response at the beginning of sliding phase. The FFT plot shows a clearer 

frequency signal that that model predicts the natural frequency close to the test. 

Theoretical natural frequencies of the tape are computed by two different approaches. 

First, an eigenvalue analysis of the tape vibration is performed as described in Chapter 4. 

Second, the natural frequency is obtained from the FFT plot of the computed tape 
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response (e.g. Figure 6-11). These two computed frequencies are compared with the 

measured values for all parameters used in this work in Table 6-5 

The natural frequency decreases with increasing wrap angle. This is due to an increase of 

the total length of tape, as a results of which the system become more compliant. The 

effect of tension on natural frequency is not significant in this range of tension values. 

The natural frequency obtained by eigenvalue analysis represents the free vibration of a 

clamped, tensioned beam. The natural frequency of the numerical simulations represents 

the vibration characteristics of a non-linear system, rendered so by the velocity 

dependence of the friction force. The differences between the eigenvalue analysis and 

computed results are within 10%.  Note that the measured natural frequencies are closer 

to the values found from numerically simulated tape response described in Section 2.3, 

indicating the influence of friction induced non-linearity in the system.     

6.4 Conclusion 

In this chapter, the lateral traction characteristics of a grooved roller and a magnetic 

recording tape are investigated experimentally and theoretically. The tape is modeled as a 

viscoelastic, tensioned beam subjected to belt wrap pressure and friction forces. The 

inclusion of stick and slip and velocity dependence of the friction force renders the tape’s 

equation of motion non-linear. In the experiments, the tape is tensioned (0.25 – 0.75 N) 

and wrapped (10 – 20 degrees) around a grooved roller in a customized tape path. The 

tape running speed is set to zero. A grooved roller is attached to an actuator that moves 

the roller laterally across the tape. The test was performed in static (slow) and dynamic 

(fast) actuation modes. The static mode was used to measure the tape restoring force in 

the lateral direction (tape stiffness) and to identify the tractive capacity and the 

static/breakaway friction coefficient.  We found COF values in the range of 0.40± 0.035. 

In dynamic mode, the roller was actuated with 50 Hz frequency and more than 200 μm 

amplitude. A periodic stick and slip phenomenon was observed. Stick-to-slip and slip-to-

stick transitions occur when the tape lateral speed matches the roller lateral speed. This 

occurred near zero tape and roller velocity. The fast actuation mode, which exhibited 

stick and slip phenomena, shows that the tractive behavior of the tape is similar to the 

results of the slow actuation mode for all tested parameters. Both experiment and theory 
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show that upon slip, tape vibrates primarily at its natural frequency, and vibrations are 

attenuated relatively fast due to frictional and internal damping. This work also indicates 

that the friction resulting from the complex interaction and bending of a tape tensioned 

over a grooved roller can be well described by an effective coefficient of friction for a 

range of wrap angle and tension values. Moreover, within the experimental uncertainty 

the results can be captured with a single coefficient of friction for the range of tensions 

and wrap angles studied.  For the tape type and roller design studied here we find a COF 

value of 0.42 ± 0.02 fits the experimental results well. This indicates that by making a 

single experimental measurement of friction for a given roller design and tape type, our 

model can be used to predict the behavior over a wide range of wrap angles and tape 

tensions. The effects of tape streaming velocity and the coupling between roller and tape 

dynamics are interesting topics for future studies.  
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                                         (a)                                                                (b) 

Figure 6-1 (a) Schematic depiction of the configurable tape path. (b) Topview of the test 

setup. 

  

                                         (a)                                                             (b) 

Figure 6-2 (a) The setup used for studying the stick and slip behavior between the tape 

and the actuated roller, (b) The setup used for studying the stick and slip behavior 

between the tape and the actuated roller 
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351 um

163 um

29-41 um

 
(a) 

12 mm

11.5 mm15.7 mm

angle =  atan(0.351 / 12pi) 

= 0.53 deg

 
(b) 

Figure 6-3 Dimensions of grooved roller. (a) Groove profile. (b) Roller. 
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(a) 

 
(b) 

Figure 6-4 Results of a typical static friction test (T = 0.25 N, R = 6 mm and θw = 15 deg). 

(a) Lateral tape displacement near the roller at sensor-2 (Figure 6-1b) and the roller 

displacement. (b) Force acting on the roller representing the friction force. 
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                                  (a)                                                                    (b) 

 
                                (c)                                                                      (d) 

Figure 6-5 (a) Lateral tape displacement measured by sensors S1 and S4, located near the 

upstream and downstream rollers for a tension of 0.5 N and a wrap angle of 20 degrees; 

(b) Sensors S2 and S3 measure the actuator and tape deflection, when tape sticks on roller; 

(c) Displacement of out-of-phase motion between tape and roller, when stick-to-slip 

transitions occur; (d) Tape vibration velocity (c). 

  

Figure 6-6 Schematic depiction of the tape mechanics model, with the support rollers on 

both ends and the actuated roller in the middle. 
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Figure 6-7 (a) tape and roller displacement signal (upper) and force measured by strain 

gauge (lower), (b) plotted by tape displacement vs force measured 
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(a) 

 
(b) 

 
(c) 

Figure 6-8 Results of slow mode tests for tension values of (a) 0.25, (b) 0.50 and (c) 0.75 

N for 15, and 20 degrees. 
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(a)                                                                (b) 

 
(c) 

Figure 6-9 (a) The breakaway displacements and (b) friction force for the slow mode tests. 

(c) Calculated coefficient of friction. Each case was 3 repeated tests and each test has a 

duration of of 5 sec with 50 Hz frequency. 
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(a) 

 
(b) 

Figure 6-10 Comparison of simulation results with the fast mode experiments by using 

the range of COF values found in the static COF measurements. T = 0.5 N,  = 15 

degrees. Simulation results: best match (black), upper limit (red) and lower limit 

(magenta) and measurements (blue). (a) 0.1 s simulation period, (b) magnification into 

the simulation span of 46-55 ms.     

w
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(a)                                                           (b) 

 
(c) 

Figure 6-11 (a) Simulated (black) and measured displacement (green), (b) velocity, (c) 

phase plane histories of the lateral tape deflection for the case of 0.25 N tension and 10 

degrees of wrap. The blue curve indicates the roller motion 

 

Figure 6-12 Frequency spectrum of tape deflection (Figure 6-11b) obtained by the fast 

Fourier transform algorithm for both simulated and measured signals. 
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Figure 6-13 Slip phase velocity and frequency spectrum of tape deflection (Figure 6-11b) 

obtained by the fast Fourier transform algorithm for both simulated and measured signals. 
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Table 6-1 Parameters used in this work. 

Test parameters  

Tension, T (N)     0.25, 0.5, 0.75 

Up/down-stream span lengths, L1, L2  (cm) 5 

Wrap angle,  (degrees)    10, 15, 20 

Roller radius, R (mm) 6 

Testing side of the tape Front (recording)  

Roller surface 
Grooved (Figure 6-3 shows 

roller dimensions) 

Roller Frequency(Hz) for dynamic test 50 

LTO-5 tape properties  

Width, b (mm) 12.7 

Thickness, h (µm) 6.4 

Elastic modulus, E (GPa) 4.42  

Loss Modulus,  (kPa.s) 23 

Poisson Ratio,  0.3 

Density,  (kg/m
3
) 1400 

  

Table 6-2 Polynomial coefficients of the curve fitting in Figure 6-8:  

T (N) p0 (N) p1 (N/µm) p2 (N/µm
2
) p3 (N/µm

3
) 

0.25 4.979510
-8

 -9.544110
-6

 1.155910
-3

 2.782810
-4

 

0.50 8.688310
-9

 -5.692810
-6

 2.050910
-3

 -1.896410
-4

 

0.75 2.144810
-8

 -6.523510
-6

 2.049110
-3

 -1.4868910
-3 

 

Table 6-3 Critical shear force Fcr that causes wrinkling according to Equation, tape 

stiffness  according to Equation, and experimental values  in the linear range 

defined by Fcr. Note that  from Equation  is divided by 2, due to symmetry of the test 

setup. 

T ( N )  ( mN )  ( N/m ) ( N/m ) 

0.25 12.2 939 962 

0.50 20.5 951 979 

0.75 27.7 963 985 
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Table 6-4 Mean (µmean) and standard deviation (µstd) bound of measured breakaway 

coefficients of friction values and the best fitting value obtained through simulation (µbest). 

 θw = 10 deg θw = 15 deg θw = 20 deg 

T (N) µmean±µstd µbest µmean±µstd µbest µmean±µstd µbest 

0.25  0.41±0.055 0.44 0.43±0.026 0.42 0.41±0.045 0.4 

0.50  0.41±0.042 0.4 0.41±0.041 0.4 0.41±0.041 0.4 

0.75  0.39±0.012 0.4 0.39±0.031 0.42 0.39±0.035 0.42 

 

Table 6-5 Natural frequency of the tested configuration from eigenvalue, simulation and 

test. 

Tension  

(N) 

Wrap angle  

(degrees) 

 

Eigenvalue 

analysis (Hz) 
FFT of 

simulation (Hz) 

FFT of 

experiments 

(Hz) 

0.25 

10 2271 2368 2452 

15 2230 2280 2302 

20 2225 2250 2102 

0.5 

10 2272 2400 2455 

15 2231 2300 2320 

20 2227 2257 2202 

0.75 

10 2274 2426 2460 

15 2233 2361 2364 

20 2228 2350 2252 
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Chapter 7 Effects of Tape Contact with Roller 

Flanges on Lateral Tape Dynamics            

In the previous sections we discussed LTM due to friction and roller stiffness on guiding 

elements. Despite of induced vibration from head, most the passive elements with friction 

and stiffness contribute to reduction of LTM. There is one more common structure in 

tape drive has significant constraint on LTM, flange. We will investigate this type of 

constrain in this Chapter.  

The investigation aims to uncover the sources of high frequency of LTM by introducing 

the linear or nonlinear guide stiffness and COF (coefficient of friction) one at a time 

including. Linear stiffness does not change the frequency motion by considering 

characteristic length reduction. Increasing the nonlinearity of support stiffness, edge 

stiffness, makes the response of tape more intensive. The response due to nonlinearity 

gets regularized by introducing COF.  

7.1 Introduction  

As tape moves laterally, it experiences roller surface friction and stiffness simultaneously 

and then flange engagement happens. The complete model would have to include all 

these effects. LTM over fixed guides has been modeled by Ono [67], Brake and Wickert 

[21] and Raeymakers and Talke[68], and  LTM over rollers has been investigated by 

Shelton [61, 63], Sievers et al. [65, 116], Eaton [59], Benson [115], and Müftü [171]. 
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7.2 Model  

LTM between the supply (x = 0) and take-up (x = L) reels is (Figure 7-1) modeled by the 

equation of motion of a travelling, tensioned Euler-Bernoulli beam [9, 20] as follows, 

2 2 2 2

2 2 2 2
1

i i

NG

i f g i
i

D w D w w w
I EI T H q f f

Dt x Dt x x x x
 



      
                 

              (7.1)          

where w is the lateral tape deflection, x is the longitudinal coordinate axis, t is time,  is 

the  mass density of tape, A is the cross section area of tape. E is the elastic modulus,  is 

the loss modulus, I is the second moment of area of the tape cross-section, T is the tape 

tension. The first term represents the inertial forces including effects of tape transport on 

gyroscopic acceleration. Effects of material damping, bending, and tension are modeled 

by the second, third and fourth terms, respectively. iH  is a window function equal to 1 

over a guide or head and 0 otherwise, NG is the number of guides on the tape path,  
if

q  is 

the friction force over the fixed guide or head, 
igf  represents the tape to guide interaction, 

if  is the impulse force due to sudden impact of tape to guide edges. The fixed guides and 

write/read heads in this study are modeled as concentrated forces acting at center position 

( 2
i iw wR  ) where the guide/head are located. The interaction of the tape with a fixed 

guide (Figure 7-1) is modeled as a nonlinear spring force, 
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                          (7.2)     

where 
rc  and 

lc  are clearances between the tape and the guide flanges (Figure 7-1b), 
rek ,

lek  are the corresponding edge stiffnesses, 
fgk is the  guide stiffness, representing tape’s 

resistance to LTM over the guide. Note that the interaction force (
igf ) only applies to 

fixed guide. It also causes a damping force in the lateral direction as follows, 


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where 
iw , 

iR , and 
iz are the tape wrap angle, radius and coefficient of friction in lateral 

direction of the i
th

 guide/head respectively, xV  is the tape translating velocity. In this 

work the supply reel is assumed to feed the tape perfectly along the intended path, 

whereas the Shelton boundary condition is used on the supply reel as follows, 

,

, , , ,

            0 and           0 at 0

0 and = 0 at 

x

t x x xt x xx

w w x

w V w w V w x L

  

   
                                            (7.4) 

The dynamics is energized by applying periodically varying impulses (
if ) at different 

locations, which represent the axial run out of a roller, or tape impacting the flanges of a 

reel, 

0 if  

0 otherwise

ib ib i

i

F t t t t
f

  
 


                                        (7.5) 

where, 0F  is impulse force magnitude (N), ibt  is time impulse begins (s), it represents 

the impulse duration (s). The capstan formula is applied to modify the tension increase 

due to friction in the running direction as follows, 

0

1

x wi i

NG

i

T T e
 



                                                   (7.6) 

where, 0T  is the applied tension, 
ix is the coefficient of friction of i-th guide in the tape 

running direction. Solution to the governing equations is obtained numerically as 

described in Sections 3.2 and 3.3. 

7.3 Materials and Methods 

The schematic plot of tape path is shown in Figure 7-1a. Two fixed (non-rotating) guides 

with radii R1 and R2, are located at L1 and L3 The head is positioned at L2, and has radius 

R2. Figure 7-3 describes the top view of tape path. The tape runs from left to right with 
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supply and take-up reels numbered by 1, 2, respectively. The three guiding elements are 

fixed guide-1, the head 2 and the fixed guide-3.  

Transient response of the tape, to periodic impulses generated at the second fixed-guide is 

computed numerically with Δt = 0.2 μs. This guide is denoted as guide-3 in Figure 7-2. 

The results are saved and reported with a rate of 40 MHz. In this chapter we report the 

tape’s transient response at the head location for different tape-to-guide clearance values 

and friction conditions. Table 7-1 lists the baseline parameters used in this study.  

7.4 Results  

In Figure 7-3, a case where the clearance between the tape and the flanges is 10 μm, is 

presented. Based on the phase-plane (w-vs-w,t) plot, it is seen that the tape settles into a 

“periodic” response, and that it is displaced by about +6 μm due to the impulse events. In 

fact in this case the tape never engages the flanges. The frequency spectrum of the tape 

response, also shown in this figure, is primarily dominated by that of the input impulse 

events. 

A case with a narrow tape-to-guide clearance, cl = cr = c = 0.1 μm, with and without 

friction is presented in Figure 7-4. In the case without friction, the regular periodic tape 

response is entirely lost due to the non-linear forces imparted on the tape by the guides. 

Such transient contacts are known as flange-hits. When guide friction is added to the 

system, μx = μz = 0.1, it is seen that some regularity to the system is recovered, in Figure 

7-4. Tape dynamics involves more frequencies on the lower frequency range and more 

energy is sent to higher frequencies. A similar case with a slightly wider tape-to-guide 

clearance, cl = cr = c = 0.5 μm, is shown in Figure 7-5. In both cases it is shown that 

friction helps regularize the dynamic response of the system. But, the non-linear guides 

can cause extremely irregular tape response. This includes widening of the frequency 

response as well.  

7.5 Summary and Conclusions  

In general, periodic impulses can act on the tape due to unwinding of irregularly wrapped 

tape at the reels and axial run-out of a roller. In this work the tape response due to flange 
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hits is investigated by a mathematical model of the tape path. It is shown that flange hits 

can cause a wide-band frequency response in the tape, and the tape can have very non-

periodic motion. Friction in the system helps reduce some of the complexity of the 

response. 
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(a) 

 
(b) 

Figure 7-1(a) Schematic depictions of the tape path and (b) the guide-to-tape clearances, 

cr and cl. 

 

Figure 7-2 Top view of the tested tape path  

x

z
rc

b

lc
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Figure 7-3 Effects of clearance cl = cr = 10 μm on tape transients at the head without 

friction. 

 

 

 
Figure 7-4 Effects of tape-to-guide clearance and friction on the transient response as at 

the head. (a) cl = cr = 0.1 μm and no friction, (b) cl = cr = 0.1 μm and μx = μz = 0.1. 

(a) 

(b) 
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Figure 7-5  Effects of tape-to-guide clearance and friction on the transient response as at 

the head (a) cl = cr = 0.5 μm and μx = μz = 0, (b) cl = cr = 0.5 μm and μx = μz = 0.1. 

  

(a) 

(b) 
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Table 7-1 Baseline parameters 

Tape properties 

Tape thickness h (m) 9 

Tape width b (mm) 12.7 

Bending rigidity EI (N∙m
2
) 0.0128 

Tape tension T (N) 1 

Loss modulus η (Pa∙s) 13,000 

Linear density ρ (kg/m) 1.600210
-4 

Tape velocity Vx (m/s) 5.4 

Tape length L1, L2, L3, and L(cm) 7.60, 12.15, 16.69, and 23.88 

Fixed guides/head properties 

Radius R1, R2, and R3 (mm) 5, 6.2, and 5 

Guide stiffness kg (N/m) 10
2
 

Guide edge stiffness ke (N/m) 10
4
 

Wrap angle θw1, θw2 and θw3 (º) 67.3, 33.8, 77.2 

Coefficient of friction μx ,μz 0, 0.1 

Edge Clearance cl = cr (µm) 10, 0.1, 0.5 

Impulse (2
nd

 guide) 

Impulse force magnitude 0F  (N) 110
-3

 

Duration it (s) 110
-3

 

Impulse begins ibt (s) 0 
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Chapter 8 Coupling Between Longitudinal and 

Lateral Tape Vibrations 

The effects of tape, roller, guide or reel imperfections on the LTM are reasonably well 

understood. Yet, the effects of disturbances in the longitudinal (in-plane) direction, which 

can couple into LTM, have not been well described. Longitudinal tape vibrations can be 

due to, but not limited to a) tension dynamics due to servo control of the tape reels, b) 

and/or tension impulses due to the unwinding of tape layers that experience sticking. The 

problem is further complicated because of the uncertainty of the tape length on the 

downstream side, as a result of the “floating layers” in the take-up reel. In this work, the 

equations of motion of the longitudinal and lateral tape motion are derived from first 

principles. The coupling caused by non-linear longitudinal strain is considered. The 

equations of motion are solved by using the finite element method, and an explicit time 

integration algorithm. The entire tape path is modeled directly, where the interaction of 

the tape with the recording head and the guides are represented as concentrated forces, 

and moments. The effects of disturbances, typical for a tape transport system, on the 

coupling or lack there off are investigated.  
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The derivation of equation of motion and solution method is presented in Section 8.2. 

Convergence study and verification are in Section 8.3. The longitudinal disturbances 

coupled into LTM are discussed in Section 8.4.1 and 8.4.2. COF and guide positioning 

effect on resonance tuning can be found in Section 8.4.3. 

8.1 Introduction   

The effects of imperfections, such as the alignment of the rollers, fixed guides, read-write 

(RW) heads, and tape reels, as well as some the small and random variations have been 

modeled extensively with linear steady state model [28, 68, 73, 86], linear transient 

model [42, 97]. In practice, LTM can be handled by moving the read-write (RW) head 

laterally, with a servo-control strategy that is designed to follow magnetic servo-tracks 

pre-written on the tape [97]. On the other hand, the effects of the events that cause sudden 

or random changes in tape tension have not been well understood [1]. In general, 

longitudinal tape vibrations can be caused by various effects. For example, micro-slip 

between a smooth tape and a RW-head can cause scrape flutter. During start-up, the tape 

that has been stuck on a head, a guide, or a pack layer can suddenly release a tension 

wave, which will propagate through the tape path with unknown consequences. These 

types of tension or transport speed fluctuations may cause parametric resonance in tape 

drive system. Several efforts have been made to understand such nonlinear, 

parametrically excited systems [12, 34, 35, 45, 46, 51]. However, these works were 

restricted to very simple tape drive layouts. Tension and transport speed control were also 

studied related to lateral tape motion [60, 73, 116, 118, 119] and simple stretch in 

longitudinal direction [101, 102]. The coupling between longitudinal and lateral 

deflection components has not been reported. In this paper a comprehensive 

mathematical model that is capable of predicting the longitudinal tape dynamics and its 

coupling to LTM with a variety of disturbances is introduced. 
 

8.2  Model 

Figure 3-1shows schematic depictions of a typical tape path and the definitions of the 

deflection components u, v, w with respect to a fixed Cartesian coordinate system (x, y, z), 

where x-, y- and z- axes represent the longitudinal, lateral and out-of plane directions, 
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respectively. The tape is assumed to be translating in the longitudinal direction with 

transport velocity Vx. Each one of the deflection components is a function of (x, t). The 

strain free configuration of the tape follows an idealized path between the two reels with 

perfectly aligned components. Tape mechanics is analyzed in an unwrapped, straight 

configuration, and the effects of the various guides and the reels are imposed with 

appropriate external forces and boundary conditions, respectively [97]. In this chapter, we 

focus on the coupling between the longitudinal u(x,t) and the lateral tape deflection v(x,t). 

The tape is modeled as a translating beam that can stretch in the longitudinal direction. 

The longitudinal strain ɛxx in the tape is represented as follows [43, 172, 173], 

xx m b                                                                   (8.1) 

where the membrane and bending strains are defined as follows, 
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                                            (a)
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                                                  (b)
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(8.2) 

Because of the nonlinearity of this system, the minimum energy form as expressed in 

Equation (3.1) is not valid, and the principle of virtual work is used,    

 
2

1

0

t

t

K U W dt                                                       (8.3)                                                  

where K, U and W represent the variations of the kinetic energy, the strain energy, and 

the work done on the system, defined in the usual sense of the variational calculus, 

respectively [173]. The details of the derivation are omitted here for the sake of brevity. 

However, it should be mentioned that the viscoelastic nature of the polymeric tape 

material is considered. The constitutive behaviour for a translating viscoelastic string is 

given as follows [12],  

xx
xx xx

D
E

Dt


                                                                 (8.4) 
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where 
xx  is the longitudinal stress in the tape, and E and   are the elastic and loss 

moduli, respectively. With these provided,  the kinetic energy is given as follows, 

0

0

V

K V VdV                                                             (8.5) 

where,  V0 is the control volume in the Eulerian reference frame, and V is tape material 

velocity. By the knowing that variation is only in the spatial variables, 
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expanding Equation (8.5)  gives  
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(8.7) 

The longitudinal and lateral kinetic energy are independent. Stress and strain tensors 

reduce to one single scalar quantity due to the assumptions of the beam theory. Therefore, 

the strain energy term becomes, 

 
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U dV                                                        (8.8) 

where,  0  is pre-stress due to pretension. The variation on strain is found as follows,                 
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                                               (8.9) 

Thus, substitution Equation (8.9) into Equation (8.8) and setting, 
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we find, 
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The four integrations over the cross-section area represent normal force, pretension, 

bending moment and moment due to pretension respectively, 

0 0,  ,  ,  0xx xx

A A A A

N dA T dA M ydA ydA                                  (8.12) 

Moment due to pretension is zero because pre-stress is assumed to be uniform over the 

cross-section. By using constitutive relation given by Equation (8.4) the membrane stress 

resultant is found as follows, 
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Because integration of odd functions over a symmetric area, the last two terms are zero. 

Consistent with Mockensturm’s string model [33], the membrane stress resultant 

becomes,   
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Bending moment is expressed as, 
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Same reason as the membrane force derivation procedure makes the first two terms of 

this expression be equal to zero. Furthermore, second moment of area, is by definition  

2

A

I y dA                                                               (8.16) 

The moment formula, obtained here is the same as Brake’s linear beam model [21]. 
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Substitution Equation (8.14) and (8.17) back into Equation (8.11), the strain energy can 

be found as follows, 
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By combining Equation (8.3), (8.7) and (8.18), equations of motion in the x and y 

direction for a  translating tensioned beam is found as follows, 
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where ,
i i

g g

x yf f  (i = 1, N
g
) represents the forces acting on the tape due to guides, each 

located at 
igx L  shown in Figure 8-1, N

g
 is the total number of guides, and ( )x  is the 

Dirac delta function, not to be confused with the variational symbol in Equation (8.3) and 

(8.21). The detail derivation can be found in Section 8.2.1. The following boundary 

conditions are found from the principle of virtual work, 
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We assume the tape tension is applied at the both ends as external force. Therefore, the 

tension term T can be dropped from Equation (8.19), (8.20) and (8.21), The governing 

equations are modified as follows, 
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8.2.1 External force due to fixed guide 

In this work the guides are modelled as non-rotating, cylindrical supports. Therefore, the 

external forces acting on the tape contain contributions due to sliding friction. The 

frictional force acting on guide is integrated over the wrap region and applied to the 

middle point of wrap length (shown in Figure 8-2) as a concentrated force, namely, 
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where, 
 
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is wrap pressure along the wrap angle. Because of existence of friction, belt 

wrap tension formula is applied,   0
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i x y   . 0i
T  represents the 

tension value before increasing due to the belt wrap. In spite of relv  being a function of 

location, explicit time integration allows us to treat the value of relv  as constant obtained 

from the previous time step. Thus, it is valid to take the term rel relv v outside of the 

integral. Distributed friction force acting over a guide then becomes, 

 0 0
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i ii
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                              (8.24) 
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In addition, the aggregate effect of the tape’s resistance to lateral motion over a guide is 

represented as a linear spring force [9, 78]. This gives the following force vector 

components,   

   
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2 2
1x wi

i i

g x
x

x

Du Dt V
f T e

Du Dt V Dw Dt

 
  

 

                               (8.25) 
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                 (8.26) 

where the subscript–i indicates the guide number, 
0i

T  is the tape tension upstream of the 

guide, 
ix  and 

iy  are the friction coefficients, 
iw  is the wrap angle, and 

igf  is defined 

in Equation (7.2).  

8.2.2 Spatial discretization  

Longitudinal and lateral components of beam deflection are approximated over an 

element of length L as follows,   
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where v

iN (i=1-4) are the C
1
 continuous, Hermite shape functions given in Equation 

(3.14). u

iN (i=1-2) are the following linear shape functions,  
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

                                                 (8.28) 
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ui, vi and θi are the nodal values of deflection components and slope respectively at the 

ends (1, 2)of the element. The shape functions that interoperate displacements in x and y 

direction of the beam model can be generated as follows, 

 
1 2 3 4

v v v v vN N N N  N =  and 
1 2

u u uN N  N =                            (8.29) 

The corresponding displacement vectors are defined as, 

 1 1 1 2

T
v v v = , and  1 2

T
u uu =                                  (8.30) 

The element matrix presentation of governing equation in this case is different and it is as 

follows, 

        md g c d k s d d F                                     (8.31) 

where, mass matrix is in lumped form for explicit time integration. In addition the 

element mass, nonlinear stiffness and damping matrices are [173], 

2 21 2 1 2 24 1 2 1 2 24AL L Lm                                (8.32) 
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u
0
, v

0
 are the element displacements obtained from previous step, 

0 1u nu 
= N u , and 0 1v nv 

= N v                                               (8.39) 

where, n represents the current time step. Then nonlinear stiffness matrix is, 
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                                                  (8.40) 

Similarly, the damping matrix due to viscoelasticity,  

 11

2 2

0

L
T

u ud d
A dx

dx dx
  c N N                                     (8.41) 

 
0

12

2 4

0

L
T

u vdv d d
A dx

dx dx dx
  c N N                                   (8.42) 

 21

4 2

0

L
T

v udv d d
A dx

dx dx dx
  c N N                                   (8.43) 

   
2

0 2 2
22

4 4 2 2

0 0

L L
T T

v v v vdv d d d d
A dx I dx

dx dx dx dx dx
 

 
  

 
 c N N N N         (8.44) 

11 12

21 22

6 6

 
  
 

c c
c

c c
                                                      (8.45) 

And stiffness matrix due to internal damping and gyroscopic effect, 
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where,  0 1v ndv dx d dx 
= N v . Numerical method, finite element, discretizes the 

external force acting at i-th fixed guide into nodes (j-th for example) shown in Figure 8-2, 
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                           (8.52) 

The material derivative terms in Equation (8.51) and (8.52) are interpolated as follows, 

j j

j x

dv dv
Dv Dt V

dt dx
   and 

j j

j x

du du
Du Dt V

dt dx
                            (8.53) 

They are obtained from previous time step. The time integration solution is outlined in 

Section 8.2.3. j jdv dx  due the assumption of beam model and 

 1j j jdu dx u u L  . 

To accurately represent the tension varying from node-(j-1) to node-j, to node-(j+1) due 

to friction, the integration in Equation (8.52) is divided down to two parts, i.e., from 0 to 

2
iw   and 2

iw  to 
iw , which implies, 
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The external force vector on i-th fixed-guide is as follows, 
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The /2 terms in Equation (8.57) is due global nodal force is the sum of two adjacent 

elements’ nodal force. Using the higher case to donate the global matrices and vectors, 

the global matrices representation of governing equation is as follows, 

        MD G C D K S H D F                             (8.58) 

8.2.3 Time integration  

Consider the natural of this coupled physics, the implicit method requires nonlinear 

solver, like Newton-Raphson method, in each time step. This puts lots difficulties on 

coding. As a first attempt of tackling this problem, explicit method is implemented. Since 

explicit method requires much smaller time step, the nonlinearity can be well taken care 

within each time step. 
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Newmark method is a widely use algorithm, but here we introduce the improvement of 

Newmark method, α-method as predictor and corrector. The explicit time integration 

scheme is as follows [26]: 

1. Predict displacement and velocities using 1n
D  and 1n

D  by 
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   D D D D                                      (8.59) 

 1 1n n nt    D D D                                             (8.60) 

2. Update the nonlinear matrices K ,  C  and H by n
D  at time step n, 

3. Solve for acceleration at time step n + 1 using, 
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   (8.61) 

4. Calculate the correctors 1n
D  and 1n

D  by  
1 1 2 1n n nt    D D D                                                (8.62) 

1 1 1n n nt    D D D                                                  (8.63) 

5. Increment time by Δt, let n + 1→ n, and go to Step 1 until nΔt= tfinal. 

The stability condition requirements as follows [126], 
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                                                      (8.65) 

8.3 Convergence Study and Verification 

Mesh convergence is carried out for the geometry described as top view in Figure 3-1b 

and side view in Figure 7-1a, without any guides. We model the effect of such sudden 

changes in tension by applying a square tension impulse at the supply reel (x = 0) as 

follows,  
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where r is the tension amplitude ratio (r > 1) and the duration of impulse is * . The 

other boundary conditions of the system are prescribed as follows, 
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where v0 and Ψ0 represent a static tilt at the supply reel (x = 0), represents the Shelton 

boundary condition at the take-up reel (x = L).  

For this investigation the supply pack is tilted by 0 0.1   mrad, and an impulse is 

applied in the tensile direction at the supply pack. The boundary conditions of Equation  

(8.67) modified as follows, 
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(8.68) 

The amplitude of the impulse is 1.2T0 with duration of 15 ms. The mean tension is 0.25 N, 

and the tape velocity is 7.5 m/s. The other parameters can be found in Table 8-1.  

Dynamics of the mid-point of the tape span is monitored for different number of elements 

(20, 30, 40, 50 and 60) and time step sizes (5, 10, 50 ns). Results are compared in Figure 

8-3. The change in the predicted response by increasing the number of elements from 20 

(blue solid line) to 30 (blue dash-dot line) is significant. The change is much less from 40 

elements to 60. The difference between the 50 (blue dashed line) and 60 (blue dashed line) 

elements is within 1 nm. In this study, 50 elements, with corresponding length of x = 

4.77 µm, is used. The temporal convergence study shows (Figure 8-3(b)) that the results 
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are virtually identical for all three time step sizes. In the rest of this study t = 10 ns is 

used. 

The same numerical approach outlined above is used for a tape translating between two 

supports. Equation (8.22) are subjected to following boundary conditions, 

 0(0, ) sin 2 ,  (0, ) 0                    (a)

( , ) 0,  ( , ) 0,  ( , ) 0                    (b)

T

v
v t v t t

x

v
u L t v L t L t

x




  



  



(8.69) 

A frequency sweep in the range 0 3 kHzT   is conducted for v0 = 1 µm, for different 

tape transport speeds. Figure 8-4 demonstrates the effects of velocity on the natural 

frequencies. Figure 8-4 also shows that the natural frequencies decrease by increasing 

velocity for all the modes in the range investigated. This trend is consistent with Wickert 

[23].  

8.4 Results and Discussion 

In this work we accommodate for the floating tape layers in the take-up reel [121] by 

extending the length of the tape between the guide-3 and reel-2 by integer multiples of 

2πRR2, where RR2 is the current radius of the take-up pack (Figure 8-5). 

8.4.1 LTM due to an impulsive change in tension 

There are several facts that can cause a sudden change in tape tension. For example, as 

the tape is unwound at the supply reel, the wound-in stress in the circumferential 

direction of the pack needs to adjust to tensile the tape. The tension impulse is described 

in Section 8.3. 

The effects of these two variables are investigated in the following ranges: 0.5 0.5r    

and 
*  = 5, 10, and 15 ms. Boundary conditions are as stated in Equation (8.68) . 

Figure 8-6 shows the longitudinal and lateral tape deflection histories monitored at the 

head (guide-2) position, for r = 0.5 and
* =15 ms. Figure 8-6 (upper) shows that the in 
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plane displacement component experiences two sudden changes at the onset and end of 

the square wave impulse, which causes high frequency (2066 Hz), in plane vibration with 

maximum amplitude of ~35 and 20 µm, respectively. As a consequence of this in plane 

action, vibration in the lateral direction is excited as shown in Figure 8-6 (lower). This 

vibration shifts the tape by ~25 nm in the lateral direction, at the location of the head.  

The primary frequency of the vibration shown in Figure 8-6 (lower) is 666 Hz.  

In the course of this investigation it was found that, for a fixed r value, the maximum tape 

deflection is independent of the duration of the impulse,
* . Therefore, in Figure 8-7 we 

only present the effect of r on the maximum tape deflection for * = 15 ms. This figure 

shows that the maximum tape deflection is a linear function of r. The static tilt angle at 

supply reel is responsible for the unequal slopes in Figure 8-7(b) for the positive and 

negative r-values. This linear behavior in this nonlinear system is due to the definition of 

longitudinal strain in Equation(8.2), which in this case is dominated by /u x  , due to 

the nature of the input. This in turn ends up dominating the longitudinal and lateral 

responses. It is also important to notice that when a lateral deflection is the source of 

energy input into the system, a linear relationship of the kind described above is not 

expected. In that case, a larger lateral motion is expected to enhance the nonlinearity. But, 

this is beyond the scope of the current investigation.  

8.4.2 LTM due to tension dynamics  

In a typical tape drive, the tape speed servo action causes tension fluctuations, even at 

steady state operating conditions [119, 174]. In order to investigate the effects of the in 

plane tension fluctuations on the LTM, the system of equations are solved with a simple 

harmonic tension variation, Tb0(t). The following boundary conditions are used, 
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  (8.70) 

where ΩT is the frequency of tension fluctuation applied at the supply reel (x = 0).  
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The tension fluctuation frequency is swept in the range 0  T  5 kHz, with relatively 

coarse increments of 100 Hz. Near the peaks the increments are reduced to 10 Hz. 

Simulations are carried out with parameter values that are relevant for the technological 

application: T0 = 0.25, 0.5, and 0.75 N; Vx = 2.5, 5.0, and 7.5 m/s [1]; and, with 0, 1 and 2 

floating layers.  

Figure 8-8 shows the frequency response of the longitudinal and lateral tape motions for 

three different tape transport velocities. In this frequency range, the tape has a single 

resonant frequency in its longitudinal dynamics, around 2100 Hz as shown in Figure 

8-8(a). This is close to 2250 Hz, obtained from
1/2( / ) / 4 bE L , which is found for a non-

travelling string with fixed-free boundary conditions.  In response to tension fluctuations, 

three resonant peaks are excited in the lateral direction. These peaks are located around 

700, 2100 and 3000 Hz. Transport velocity affects not only the damping in the system, 

but also the stiffness due to the inherent nature of the gyroscopic behavior as expressed in 

the material time derivative of Equation (8.4). In fact, increasing tape velocity raises the 

Coriollis acceleration, and eventually decreases damping and stiffness of the tape. The 

natural frequency and amplitudes of the lateral component of tape deflection increase, as 

a result of increasing the tape velocity from 2.5 m/s to 7.5 m/s. No significant frequency 

shift is observed at the second resonant frequency, but the response amplitude increases. 

A vibration mode in the lateral motion is excited around 2950 Hz. This mode absorbs 

increasingly more energy with increasing tape velocity. Also note that only one resonant 

frequency is coincident in both longitudinal and lateral directions.  

The effect of mean tension, T0, on the resonant frequencies of the system is shown in 

Figure 8-9. This result shows a clear coupling between the two vibration directions. 

Magnitude of the mean tension does not change the natural frequency of vibration in the 

longitudinal direction as shown in Figure 8-10(a). However, energy is absorbed into the 

longitudinal vibrations by increasing mean tension. Increasing tension stiffens the tape in 

the lateral direction, and results in increasing resonant frequencies of the lateral vibration 

modes. This increase is small at the natural frequency, but it can be seen more clearly at 

around 2,800 Hz (fourth resonant frequency). Also note that a resonant frequency around 
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1,600 Hz appears at the T0 = 0.25 N. This frequency is merged with the third natural 

frequency for higher tension values. 

The effect of the floating layers in the take-up pack is analysed for 0, 1 and 2 layers. 

Floating layers increase the tape span. In order to stay consistent in numerical analysis, 

the element size is kept constant, but the number of elements is increased. Figure 8-10 

shows that the increasing number of floating layers dramatically reduces the resonant 

frequencies of the longitudinal and lateral tape dynamics. Both lateral and longitudinal 

vibration resonant frequencies move to lower values with increasing number of layers.  In 

spite of using a sampling rate of 10 Hz in the 100  1000 Hz range, the frequency 

spectrum of the case of 2 layers shows sharp variations in Figure 8-10(b). Increasing the 

number of layers adds more resonant frequency values into the scoped window (5 kHz 

range). This result is attributed to the fact that longitudinal and lateral tape vibrations 

have natural frequencies somewhat proportional to the reciprocal of total tape length. 

8.4.3 Resonance tuning due to coefficients of friction (COF) and guide position 

The effects friction introduced by stationary a cylindrical guide on the system is 

investigated in this section. Figure 8-11 depicts a tensioned tape travelling between two 

supports located at x = 0, L which represent the positions of the reels. The guide stiff 

nesses are set to be zero. 

For the case of Ng = 0, the effects of tape transport velocity on the first three resonant 

frequencies are plotted (Figure 8-12a) for T0 = 0.5, 1, and 2 N. In general, the resonant 

frequencies and the critical velocities increase by increasing tension. The critical 

velocities were found to be 118.5, 143.7, and 171.8 m/s for the three tensions, 

respectively. 

Friction effects were investigated by placing a head/guide at x = dg2 (Figure 8-11). There 

is no friction applied at the other two guides’ locations. Coefficient of friction (COF) 

values in the longitudinal and lateral directions (µx, µy) were varied in a relatively wide 

range (0 – 2.5). Note that some large COF values can be obtained by using a sub-ambient 

foil bearing or laterally oriented grooves.Figure 8-12(b) shows the first three resonant 

frequencies as a function of tape velocity for an upstream tension value of T0 = 0.25 N, 
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and COF values of µx = 1 and µy = 1.3. This analysis shows that by introducing a 

frictional support at dg = L/2 the critical velocity increased to 122.1 m/s from 118.5 m/s 

with no-frictional guiding. This effect is attributed to increase in tape tension over the 

guide due to the longitudinal component of friction force. Figure 8-12 (b) also 

demonstrates that the natural frequencies of the tape are significantly reduced at low tape 

velocities, in the range of 0 – 8 m/s. This prediction is attributed to the over-damping 

introduced into the system by the lateral component of the friction force. At faster speeds, 

over-damping effect is surpassed by inertial forces due to Coriollis acceleration. The 

range of tape velocity in which there is significant over-damping is wider for mode-1 

than mode-3, indicating that the lower modes can absorb more energy. Also note that 

mode-2 remains unaffected from damping. This is attributed to the location of the guide 

which is placed at the nodal point of mode-2.  

The effect of frictional damping on the natural frequency (mode-1) is plotted for different 

longitudinal (µy) and lateral (µx) COF values in Figure 8-13, in a moderate tape velocity 

range of 2.5  10 m/s. This group of figure denotes the coupling between the longitudinal 

and lateral frictions. In the case of that system is dominated by the longitudinal friction 

(lowµy) the natural frequency increases with increasing longitudinal friction because of 

tension increased. Alternatively, in the cases of that the lateral friction dominates the tape 

drive (highµy) the natural frequency can be reduced substantially even at moderate tape 

speeds, as shown in this figure. The transition state of these two studies occurs at the 

intersection of these curves, and the value increases with increasing tape speed.  

The effect of guide position (d) on the first three resonant frequencies was investigated 

for T0 = 0.25 N, Vx = 6 m/s and µx = µy = 1.0. Figure 8-14 gives the frequency spectra of 

the tape for a single guide of different positioning. The optimal guide position is located 

at the center of tape path as all the modes have substantially reduced amplitudes. A group 

study results of 3-guide positioning is demonstrated in Figure 8-15. The schematic plot is 

shown in Figure 8-11 and study is performed by fixing the guide-2 at the center of tape 

and moving guide-1 and guide-3 along the upstream and downstream of tape path 

respectively. There is no significant frequency shift observed of 2
nd

 and 3
rd

 mode. When a 

guide is placed at downstream side, 2
nd

 mode becomes entirely anti-resonant. Moreover, 
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by tuning the positions of guide-1 and guide-3, the amplitude of 2
nd

 and 3
rd

 mode are not 

simply monotonic. These phenomena could due to mode shapes. Consistence with single 

guide investigation, positioning the guides toward the center efficiently over-damped the 

first mode.  

8.5 Summary and Conclusions 

Equation of motion of a tensioned tape, translating between two reels, and supported by 

friction guides is presented. In particular the non-linear coupling between the longitudinal 

and lateral tape deflection components is modelled. The coupling is investigated for two 

scenarios that are common in current tape drive systems: a) tension impulse due to 

mismatch of longitudinal stresses in the reel and the tension on the tape-path; and b) 

tension fluctuations due to tape–speed servo control.  

It was shown that the tension impulse can cause a high frequency high amplitude wave in 

the longitudinal direction, and also excites lateral motion. The effect of the longitudinal 

wave can potentially cause local stretching of the bits. 

The amplitude of the longitudinal and lateral deflections due to tension impulse varies 

linearly with the impulse strength. It was also shown that the tension fluctuation, which 

primarily affects the longitudinal tape deflection, can excite resonances in the lateral tape 

motion. Tape velocity and tension have relatively small effects on the resonant 

frequencies in the range considered, but deflection amplitudes increase with increasing 

values of T0 and Vx, as expected. On the other hand, the increasing numbers of floating 

layers on the take-up pack lower the natural frequencies and “invite” more resonances 

into the 0  5 kHz range. The tape drive designers must be aware of parametric resonant 

frequency and try to avoid the engine speed from these frequencies.  

A nonlinear coupling between the longitudinal friction, lateral friction and tape velocity 

was described which could result in sufficient energy dissipation to lower the natural 

frequencies of the high mode-numbers. The position of the frictional guide was found to 

have a significant effect on the damping and frequency reduction. The first three modes 

were found to be optimally damped when a single guide is positioned at middle of tape 

span.
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Figure 8-1 Schematic plot of tape path with fixed guides 

 

Figure 8-2 Side view of discretized tape over a fixed guide 
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Figure 8-3 Convergence study for testing the effects of (a) the mesh size, x, and (b) the 

time increment, t. 

 

Figure 8-4 Frequency response of the tape traveling between two supports for different 

tape transport speeds (a) longitudinal and (b) lateral. 
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Figure 8-5 Schematic plot of floating layer 

 

Figure 8-6 Tape’s longitudinal (top) and lateral (bottom) dynamics in response to a 

tension impulse T0 = 0.25 N, r = 0.5, t* = 125 ms, and τ* = 15 ms, at Vx = 7.5 m/s. 

 

Figure 8-7 Maximum tape deflection in (a) lateral and (b) longitudinal directions, in 

response to a tension impulse T0 = 0.25 N, r = -0.5 - 0.5, t* = 135 ms, τ* = 15 ms,  Vx = 

7.5 m/s. 
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Figure 8-8 Frequency spectra in (a) lateral and (b) longitudinal directions, for tape at 

different tape transport velocitys, Vx = 2.5, 5.0, and 7.5 m/s with T = 0.75 N, r = 0.1, and 

zero floating layers. 

 

Figure 8-9 Frequency spectra in (a) lateral and (b) longitudinal directions, for tape at 

under T = 0.25, 0.5, and 0.75N tension with, Vx = 7.5 m/s r = 0.1, and zero floating layers. 
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Figure 8-10 Frequency spectra in (a) longitudinal and (b) lateral directions for tape with 0, 

1 and 2 floating layers at the take-up pack, with Vx = 7.5 m/s, T = 0.5 N, and r = 0.1. 

 

Figure 8-11 Schematic depiction of tensioned, translating tape with three (Ng = 3) 

intermediate guides. 
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Figure 8-12 Effect of tape transport velocity on the resonant frequencies: (a) for Ng = 0 

and T0 = 0.25, 1, and 2 N; and, (b) for Ng = 1, dg/L = 0.5, and T0 = 0.25 N. 
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Figure 8-13 Natural frequency variation with different lateral (µy) and longitudinal (µx) 

COF values, for (a) 2.5 m/s, (b) 5.0 m/s, (c) 7.5 m/s, (d) 10.0 m/s 
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Figure 8-14 The effect of guide position (d/L) on frequency spectrum the tape for Vx = 6 

m/s and µx = µy = 1.0, T0 = 0.25 N. 
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Figure 8-15 Effect of three guides positioning (d2/L=0.5) on frequency spectrum the tape 

for Vx = 6 m/s and µx
g1

 = µx
g3

 = 0.2, µy
g1

 = µy
g3

 = 0.15, µx
g2

 = µy
g2

 = 0.5 T0 = 0.25 N. (a) 

d1/L=0.2, (b) d3/L=0.6, (c) d1/L=0.3, (d) d3/L=0.7, (e) d1/L=0.4, (f) d3/L=0.8. 
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Table 8-1 Baseline Parameters in Figure 3-1b for this study. 

Tape properties 

Tape thickness h (m) 6.4 

Tape width b (mm) 12.7 

Bending rigidity EI (N∙m
2
) 37.792 10  

 EA 25.797 10  

Tape tension T (N) vary 

Loss modulus η (Pa∙s) 13,000 

Density ρ (kg/m
3
) 1400

 

Tape velocity V (m/s) vary 

Tape length L1, L2, L3, and L(cm) 7.60, 12.15, 16.69, and 23.88 

Fixed guides/head properties 

Radius R1, R2, and R3 (mm) 5, 6.2, and 5 

Guide stiffness kg (N/m) 10, 0, 100  

Guide edge stiffness ke (N/m) 0 

Wrap angle θw1, θw2 and θw3 (º) 78.9, 33.8, 77.2 

Coefficient of friction μx ,μz vary 

Edge Clearance cl = cr (µm) Large enough to avoid contact 

Packs 

Radii (supply, take-up) 1RR , 2RR  (cm) 4.7, 2.2 

 

 

 

 

 

 

 

 



157 

 

 

 

 

 

 

 

Chapter 9 Summary and Conclusion 

A comprehensive literature review of axially moving media is provided in Chapter 2. 

This chapter covers experimental work related to axially moving media, and the 

theoretical work related to string, beam and plate models for simulation and analysis of 

dynamics of axially moving media, mechanics of different types of guiding elements and 

mechanics of support/take-up reels.  

The equation of motion of a linear viscoelastic, axially moving material is derived by 

using the beam theory and solved by the finite element method as described in Chapter 3. 

This equation can be used to simulate web handling and magnetic tape recording 

applications. The accuracy of the numerical solution is investigated in the frequency 

domain in Chapter 4. Effects of rollers and recording heads on the tape dynamics are 

modeled as external loads, as presented in Chapters 5  7. Chapter 8 discusses the 

nonlinear coupling between lateral and longitudinal tape deflections.  

9.1 Investigation of the Accuracy of Numerical Solution 

The wave response of the translating, tensioned, viscoelastic beam is investigated in a 

non-dimensional analysis.  Waveguide finite element (WFE) and finite difference (FD) 

methods are used to investigate the accuracy of numerical modeling in the frequency 

domain. State-space form of seeking eigenvalues of gyroscopic systems is applied to the 

fully-discretized system. The numerical results are compared with the analytical solution. 
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9.1.1 Conclusions 

Good agreement is found between the numerical and analytical solution. In particular, the 

WFE method shows better accuracy than the FD approach at high frequencies. The WFE 

method can be used to find the critical frequencies of a translating beam system with 

internal damping.  

9.2 Tilted Roller 

A tilted roller model based on the expectation that the tape speed and the roller speed 

match [60] at steady state for tilted rollers is introduced and validated experimentally in 

Chapter 5. This model includes the effects of lateral friction force, frictional-moment and 

lateral component of the wrap pressure due to roller tilt. The slope of the centerline of the 

tilted roller can be expressed in the tape based coordinate system [59]. Lateral tape 

deflection and slope are measured at upstream and downstream of a tilted-roller on an 

experimental, configurable tape-path as a function of roller tilt-angle, tape’s wrap angle 

over the roller and the lengths of free tape span upstream and downstream of the tilted-

roller. This tape-roller interaction model is integrated into a system level tape transport 

model which accommodates simulating the dynamics of tape supported by multiple 

rollers, between two reels [21].  

9.2.1 Conclusions 

Model predictions compare very favorably with experimental measurements. This work 

shows that the tape position on the upstream side of the tilted-roller most significantly 

affects the lateral shift of the tape over the roller. A strong influence of the length of the 

free span of the tape upstream and downstream on LTM is also demonstrated. The length 

of the tape upstream and downstream of a roller contributes to its stiffness, and therefore 

has an effect on the lateral position/slope of the tape over the roller at steady state. The 

longer tape span is more compliant and displays a larger lateral deflection. For a fixed 

upstream span increasing downstream span length causes more lateral shift under similar 

conditions. 
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9.3 Roller Friction 

A model for the effective lateral friction coefficient between a magnetic recording tape 

(LTO-5) and a grooved roller is developed and examined experimentally in Chapter 6. In 

these tests the tape transport velocity was set to zero, but the roller was actuated laterally. 

The experiments were performed in static (slow) and dynamic (fast) actuation modes. 

Both methods gave a breakaway coefficient of friction value close to 0.40.  

A periodic stick and slip phenomenon was observed in the fast-actuation mode tests. The 

stick-to-slip and slip-to-stick transitions occur when the tape lateral speed matches the 

roller lateral speed, which happens near zero tape and roller velocities. The inclusion of 

stick and slip, and velocity dependence of the friction force renders the tape’s equation of 

motion non-linear. Both the experiments and the theory show that upon slip, the tape 

vibrates primarily at its natural frequency, and vibrations are attenuated relatively fast 

due to frictional and internal damping. 

9.3.1 Conclusions 

This work shows that the friction resulting from the complex interaction and bending of a 

tape tensioned over a grooved roller can be well described by an effective coefficient of 

friction for a range of wrap angle and tension values. This work also shows that the 

sudden lateral slip could excite the tape into high frequency vibrations.  

9.4 Flange Contact 

Tape response due to flange hits is investigated by a mathematical model of the tape path 

in Chapter 7. It is shown that flange hits can cause a wide-band frequency response in the 

tape, and the tape can have very non-periodic motion. Friction in the system helps reduce 

some of the complexity of the response. 

9.5 LTM and Longitudinal Coupling 

The non-linear coupling between the longitudinal and lateral tape deflection components 

is modelled in Chapter 8. The coupling is investigated for two scenarios that are common 

in current tape drive systems: a) tension impulse due to mismatch of longitudinal stresses 
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in the reel and the tension on the tape-path; and b) tension fluctuations due to tape–speed 

servo control.  

Also in Chapter 8 coupling between the longitudinal friction, lateral friction and tape 

velocity were described which could result in sufficient energy dissipation to lower the 

natural frequencies of the high mode-numbers. 

9.5.1 Conclusions 

It was shown that the tension impulse can cause a high frequency high amplitude wave in 

the longitudinal direction, and also excites lateral motion. The effect of the longitudinal 

wave can potentially cause local stretching of the bits. The amplitude of the longitudinal 

and lateral deflections due to tension impulse varies linearly with the impulse strength.  

It was also shown that the tension fluctuation, which primarily affects the longitudinal 

tape deflection, can excite resonances in the lateral tape motion. Tape velocity and 

tension have relatively small effects on the resonant frequencies in the range considered, 

but deflection amplitudes increase with increasing values of T0 and Vx, as expected. On 

the other hand, the increasing numbers of floating layers on the take-up pack lower the 

natural frequencies and “invite” more resonances into the 0  5 kHz range. The tape 

drive designers must be aware of parametric resonant frequency and try to avoid exciting 

these frequencies.  

In contrast to the lateral COF damping the natural frequencies, the longitudinal COF 

increases frequencies for low values, but becomes a negative factor after a critical value. 

This critical value increases with the tape transport velocity. The position of the frictional 

guide was found to have a significant effect on the damping and frequency reduction. The 

first three modes were found to be optimally damped when a single guide is positioned at 

middle of tape span.  
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Chapter 10 Future Work 

Tape industry anticipates thinner, smoother media and faster translating speed. Along 

with this development, some new guiding elements are introduced to reduce the LTM and 

improve the system behavior. However dynamic response of some existing guiding 

components is still not clear to the community. In addition the appropriate simulation 

method of axially moving media is still an open issue especially for nonlinear problems. 

Moreover, these changes and uncertainties lay challenges for our system level simulation 

tool (LTMSim). In this chapter, we will discuss the future work mainly in three aspects: 

new/existing guiding elements (Section 0), higher order modeling (Section 0) and 

analysis of LTM (Section 0).  

10.1 Guiding Elements 

Active guiding roller is the type of roller that can pivot along its axis as introduced in 

Chapter 5. This concept is used to optimize web guiding control [119]. The detailed 

mechanics is described by Kartik and Wickert [153] and Kartik and Eleftheriou [41]. The 

control method is also investigated extensively in both web [61-64] and tape [152] 

industries. Although Chapter 5 has examined the static behavior of the interaction 

between the active roller and media, the dynamic response of model needs validation by 
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experiments. To achieve this goal, understanding the friction force acting between roller 

and running tape/web is essential. The measured effective lateral friction force and the 

stick and slip model introduced in Chapter 6 have good agreement. Future work could 

focus on the coupling between roller dynamics and tape dynamics. Effects of surface 

roughness of the tape and the roller on friction are should also be investigated. 

Hashimoto [175] analyzed and tested porous foil bearing guides and concluded that it 

behaviors better when controlling web (tape) to guide spacing. The pressurized air 

bearing guides exhibits significant lower LTM than rollers [73]. IBM group used a 

special tape drive with pressured air bearing guides which was used in the record 

breaking areal recording density demonstrations [176, 177]
 
. Simulation of pressurized 

roller could provide a guidance of using it in real tape drive product. 

Flat read/write head is the only active component current in tape drive system [178]. The 

flat contour is designed for keeping tape to head in contact and enables higher recording 

densities [179]. The spacing [180], tape deflection [181] on head and friction [155] are 

studied independently. A possible research topic in this area could be building a 

numerical model that simulate the tape to head interaction and integrated into system 

level tool (LTMSim). 

10.2 Modelling 

Chapter 8 presents a nonlinear beam model for axially moving materials. This model can 

be verified by using tension fluctuation in real tape drive. Figure A-4 in the Appendix has 

demonstrated that as the number of point loads increases the Timoshenko beam theory 

(TBT) would predict different results than those predicted by the Euler-Bernoulli theory 

(EBT). In commercial tape drives, there are more than three guiding elements over the 

entire tape span, and the distance between the guides are about 4 cm. To accurately 

predict the short tape span on guiding elements, Timoshenko beam is more favorable than 

Euler-Bernoulli beam. The out of plane tape deflection can be modelled by 3D beam, 

plate, or even more accurately by shell models. The higher order model is also useful to 

simulate wrinkling behavior. The air-entrainment at reels is another modeling topic that 

can help control design minimize the misalignment between different layers. 
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The computational complexity would increase exponentially by applying these models. 

In order to maintain the efficiency, LTMSim could have different modules for different 

prediction tasks. 

10.3 Analysis of LTM Signal 

Models, especially system level simulation, need be validated by measurements. Often, 

the disturbance signals obtained in experiments are not fully understood. Kartik [40] 

provided a methodology of identifying spinning frequencies of guiding elements as well 

as two reels. A series of band-stop filters may be carefully designed to filter out these 

known disturbances. However, the high frequency contents, due to friction, edge 

engagement, grooved contact and other effects are tangled with each other. This problem 

could be tackled by using experiment setup described in Section 6.2 that isolates one 

disturbance from others.  
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APPENDIX 

Timoshenko Beam Theory 

Timoshenko beam model considers the effects of shear deformation in bending of beams. 

The shear deformation becomes important for beams with relatively high depth-to-length 

ratio (short beams). The governing equations of the Timoshenko beam theory are as 

follows, 

  0                                                 (a)

0                                                 (b)

w
GA q x

x x

w
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x x x
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where,  is the shear correction coefficient, which depends on the geometry 

(
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
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
 for rectangular cross-section), G  is the shear modulus (
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



 for 

homogeneous isotropic linear elastic material), and   is the bending rotation of the 

normal to the neutral axis of the beam. Other variables are stated in Chapter 3. 

Finite Element Solution 

The derivation of element stiffness matrix for Timoshenko beam element is not presented 

here, may be found in reference [182] as follows, 
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where, 
2

12EI

GAL



 . Note that for 0   (or G  ), Equation (A.2) reduces to the 

element stiffness matrix derived for the Euler-Bernoulli beam. The nodal displacement 
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and force vectors are defined in the same way as in Chapter 3,  1 1 2 2

T
w w d =  

and  1 1 2 2

T
F M F Mr = .   

The convergence study is shown in Figure A-1 for clamped-clamped beam with point 

load acting at the middle. Tape parameters are listed in Table A-1. 32 elements are able to 

capture the tape deflection curve as demonstrated in Figure A-1b.  

The comparison between Euler-Bernoulli and Timoshenko beam theories are depicted in 

Figure A-2 for a tape with clamped-clamped boundary conditions, subjected to point load 

at the middle of its span. No appreciable difference can be visually detected.  The ratio of 

Euler-Bernoulli beam deflection over Timoshenko beam deflection at the middle point 

(maximum deflection) is defined as, 100%TBT EBT EBTerror w w w   . This shows that 

the maximum error is ~3.4%.  

The comparison for the case with with three point loads for the deflection of a beam with 

clamped-clamped boundaries is shown in Figure A-3. Although the ratio at the maximum 

deflection is still 3.43%error  , the TBT has overall deflection profile starts to deviate 

from EBT. Figure A-4 plots the error along the tape arc length for both loading cases. 

The error grows to large values (~30-40%) near the clamped-boundaries. The error drops 

to ~3.43% at the middle. Note that the case with three points loads, has overall larger 

error than the case with single point load.  

As the boundary conditions at the ends of a tape system, over the supply and take-up 

reels, are not necessarily represented by clamped boundary conditions, we also 

considered the effects of using simple-support conditions on the overall error in the 

solution. For the model with simple-simple boundary conditions (shown in Figure A-5 

and Figure A-6), the EBT and TBT theories predict deflection profiles that are very 

similar in Figure A-5b and Figure A-6b. The corresponding error is about 0.8% as shown 

in Figure A-5c and Figure A-6c, respectively.  
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(a)  

 
(b)  

Figure A-1 (a) Clamped-clamped beam with a point load acting at the middle, (b) 

Convergence study of Timoshenko beam element for the geometry in (a) 

 

Figure A-2 Comparison of the tape deflection profiles computed by using the EBT and 

TBT for the geometry defined in Figure A-1a  
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(a)  

 
(b)  

Figure A-3 (a) Clamped-clamped beam with three point loads acting at quarters of the 

total length, (b) Comparison of the tape deflection profiles computed by using the Euler-

Bernoulli and Timoshenko beam theories for the problem defined in Figure A-3a.  
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                                    (a)                                                                   (b) 

Figure A-4 Error plots of (a) one point load, (b) three point loads presented in Figures A-

2 and A-3.  

 
(a) 

  
                                    (a)                                                                   (b) 

Figure A-5 (a) Simple-simple beam with point load acting at the middle (b) Comparison 

of the tape deflection profiles computed by using the EBT and TBT for the geometry 

defined in Figure A-5a and (c) the corresponding error. 
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(a) 

  
                                    (a)                                                                   (b) 

Figure A-6 (a) Simple-simple beam with point loads acting at quarters of the total length  

(b) Comparison of the tape deflection profiles computed by using the EBT and TBT for 

the geometry defined in Figure A-6a and (c) the corresponding error plot. 
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Table A-1 Tape parameters used in this study 

Dimensional 

Variables 
Tape  

Length, L  (m) 24.010
-2

 

Thickness, h  (m) 6.410
-6

 

Width, b  (m) 12.710
-3

 

Elastic modulus, E  

(GPa) 
4.42 

Shear modulus, G  

(GPa)  2 1

E


 

Poisson’s ratio,    0.3 

Shear coefficient,    10 1

12 11








 

Point load, P (N) 110
-3

 

  



171 

 

REFERENCES 

1. Anonymous, International Magnetic Tape Storage Technology Roadmap, 2012-

2022. 2012. 

2. McLellan, C. Storage in 2014: An overview. 2014 January 8 [cited 2015 2/12]; 

Available from: http://www.zdnet.com/article/storage-in-2014-an-overview/. 

3. Gantz, J. and D. Reinsel, THE DIGITAL UNIVERSE IN 2020: Big Data, Bigger 

Digital Shadow s, and Biggest Grow th in the Far East. 2012, IDC. 

4. Anonymous. Data Protection & Archiving. in Tape summit. 2012. London. 

5. Hilbert, M. and P. Lopez, The World’s Technological Installed Capacity to Store 

Information. Science, 2011. 332(60). 

6. Council, T.S., 2012 Tape Market State of the Union Memo. 2012. 

7. Council, T.S., Tape Storage Meets Long-Term Data Retention Challenges. 2013. 

8. Council, T.S., Data Growth and Technology Innovations Fuel Tape’s Future. 

2014. 

9. Brake, M.R. and J.A. Wickert, Tilted Guides with Friction in Web Conveyance 

Systems. International Journal of Solids and Structures, 2010. 47: p. 2952-2957. 

10. Renshaw, A.A., C.D. Rahn, J.A. Wickert, and C.D. Mote JR, Energy and 

Conserved Functionals for Axially Moving Materials. Transactions of the ASME, 

1998. 120: p. 634-636. 

11. Ghayesh, M.H., Stability Charateristics of an Axially Accelerating String 

Supported by an Elastic Foundation. Mechanism and Machine Theory, 2009. 44: 

p. 1964-1979. 

12. Mockensturm, E.M. and J. Guo, Nonlinear Vibration of Parametrially Excited, 

Viscoelastic, Axially Moving Strings. Journal of Applied Mechanics, 2005. 72: p. 

374-380. 

13. Lin, C.C., Stability and Vibration Characteristics of Axially Moving Plates. 

International Journal of Solids and Structures, 1997. 34(24): p. 3179-3190. 

14. Roisum, D.R.X., The Mechanics of Web Handling. 1998: Tappi Press. 

15. Mote JR, C.D., A Study of Band Saw Vibrations. Journal of Tthe Franklin Institute, 

1965. 279(6): p. 430-444. 

http://www.zdnet.com/article/storage-in-2014-an-overview/


172 

 

16. Zhu, W.D. and J. Ni, Energetics and Stability of Translating Media with an 

Aribtrarily Varying Length. Journal of Vibration and Acoustics, 2000. 122: p. 

295-304. 

17. Zhu, W.D. and N.A. Zheng, Exact Response of a Translating String with 

Arbitrarily Varying Length Under General Excitation. Transactions of the ASME, 

2008. 75: p. 031003-(2-14). 

18. Zhu, W.D., H. Ren, and C. Xiao, A Nonlinear Model of a Slack Cable With 

Bending Stiffness and Moving Ends with Application to Elevator Traveling and 

Compensation Cables. Journal of Applied Mechanics, 2011. 78: p. 041017-1-13. 

19. Ono, K., Lateral Motion Transfer Characteristics of Axially Moving Tape over 

Guide Post with Coulomb Friction. Toraiborojisuto (Journal of Japanese Society 

of Tribologists), 1997. 42(5): p. 363-368. 

20. Brake, M.R. and J.A. Wickert, Frictional vibration transmission from a laterally 

moving surface to a traveling beam. Journal of Sound and Vibration, 2008. 310(3): 

p. 663-675. 

21. Brake, M.R.W., Lateral Vibration of Moving Media with Frictional Contact and 

Nonlinear Guides, in Department of Mechanical Engineering. 2007, Carnegie 

Mellon University: Pittsburgh, PA 15213. 

22. Zhu, W.D., J. Ni, and J. Huang, Active Control of Translating Media With 

Arbitrarily Varying Length. Journal of Vibration and Acoustics, 2001. 123: p. 

347-358. 

23. Wickert, J.A. and C.D. Mote JR, Classical vibration analysis of axially moving 

continua. Journal of Applied Mechanics, 1990. 57: p. 738-744. 

24. Jha, R.K. and R.G. Parker, Spatial Discretization of Axially Moving Media 

VIbration Problems. Transactions of the ASME, 2000. 122: p. 290-294. 

25. Brake, M.R. and D.J. Segalman. A New Approach to Modeling Discrete 

Nonlinear Constraints in Continuous System: The Method of Discontinuous Basis 

Funcstions. in ASME 2011 International Design Engineering Technical 

Conference & Computers and Information in Engineering Conference. 2011. 

Washington, DC, USA. 



173 

 

26. Muftu., S., The Transient Foil Bearing Problem in Magnetic Recording, in 

Department of Mechanical Engineering. 1994, University of Rochester: 

Rochester, New York. 

27. Yang., H. and S. Muftu. A General Model of Lateral Web Dynamics between Two 

Reel. in Proceedings of the 13th International Web Handling Conference (IWEB). 

2013. Oklahoma State University, Stillwater, OK. 

28. Raeymaekers, B. and F.E. Talke, Lateral Motion of an Axially Moving Tape on a 

Cylindrical Guide Surface. Journal of Applied Mechanics, 2007. 74(5): p. 1053. 

29. Parker, R.G., Supercritical Speed Stability of the Trivial Equilibrium of an 

Axially-Moving String on an Elastic Foundation. Journal of Sound and Vibration, 

1998. 221(2): p. 205-219. 

30. Chen, J.-S., Natural Frequencies and Stability of an Axially-Traveling String in 

Contact with a Stationary Load System. Transactions of the ASME, 1997. 119: p. 

152-157. 

31. Cheng, S.-P. and N.C. Perkins, The Vibration and Stability of a Friction-Guided, 

Translating String. Journal of Sound and Vibration, 1991. 144(2): p. 291-291. 

32. Zen, G. and S. Muftu., Stability of an accelerating string subjected to frictional 

guiding forces. Journal of Sound and Vibration, 2006. 289: p. 551-576. 

33. Mockensturm, E.M., N.C. Perkins, and G.A. Ulsoy, Stability and Limit Cycles of 

Parametrically Excited, Axially Moving Strings. Journal of Vibration and 

Acoustics, 1996. 118(3): p. 346-351. 

34. Zhang, L. and J.W. Zhu, Nonlinear Vibration of Parametericlly Excited Moving 

Belts, Part I: Dynamic Response. Transactions of the ASME, 1999. 66: p. 396-

402. 

35. Zhang, L. and J.W. Zhu, Nonlinear Vibration of Parametrically Excited 

Viscoelastic Moving Belts, Part II: Stability Analysis. Journal of Applied 

Mechanics, 1999. 66: p. 403-409. 

36. Chen, L.-Q., Y.-Q. Tang, and J.W. ZHu, Nonlinear Transverse Vibration of 

Axially Accelerating Strings with Exact Internal Resonances and Longitudinally 

Varying Tensions. Nonlinear Dynamics, 2014. 



174 

 

37. Taylor, R.J., M. Chung, and F.E. Talke, Dynamic Simulation of In-plane 

Transverse Displacament of Tape. Microsystem Technologies, 2006. 12: p. 1117-

1124. 

38. Bokaian, A., Natural Frequencies of beam under tensile axial loads. Journal of 

Sound and Vibration, 1990. 142(3): p. 481-498. 

39. Gaith, M. and S. Muftu., Lateral Vibration of Two Axially Translating Beams 

Interconnected by a Winkler Foundation. Journal of Vibration and Acoustics, 

2007. 129: p. 380-385. 

40. Kartik, V., In-Plane and Transverse Vibration of Axially-Moving Media with 

Advanced Guiding and Actuation Elements, in Department of Mechanical 

Engineering. 2006, Carnegie Mellon University: Pittsburgh, PA 15213. 

41. Kartik, V. and E. Eleftheriou. Friction-induced dynamics of axially-moving media 

in contact with an actively-positioned surface. in ASME 2008 International 

Mechanical Engineering Congress and Exposition. 2008. Boston, Massachusetts, 

USA. 

42. Kartik, V. and J.A. Wickert, Surface Friction Guiding for Reduced High-

Frequency Lateral Vibration of Moving  Media. Journal of Vibration and 

Acoustics, 2008. 129: p. 371-379. 

43. Wickert, J.A., Non-Linear Vibration of a Traveling Tensioned Beam. International 

Journal of Non-Linear Mechanics, 1992. 27(3): p. 503-517. 

44. Chakraborty, G. and A.K. Mallik, Non-Linear Vibration of a Traveling Beam 

Having an Intermediat Guide. Nonlinear Dynamics, 1999. 20: p. 247-265. 

45. Parker, R.G. and Y. Lin, Parametric Instability of Axially Moving Meida 

Subjected to Multifrequency Tension and Speed Fluctuations. Journal of Applied 

Mechanics, 2001. 68: p. 49-57. 

46. Chen, L.-Q., Y.-Q. Tang, and C.W. Lim, Dynamic Stability in Parametric 

Resonance of Axially Accelerating Viscoelastic Timoshenko Beams. Journal of 

Sound and Vibration, 2010. 329: p. 547-565. 

47. Orloske, K., M.J. Leamy, and R.G. Parker, Flexural-Torsional Buckling of 

Misaligned Axially Moving Beams. I. Three-Dimensional Modeling, Equilibria, 



175 

 

and Bifurcations. International Journal of Solids and Structures, 2006. 43: p. 

4297-4322. 

48. Orloske, K. and R.G. Parker, Flexural-Torsional Buckling of Misaligned Axially 

Moving Beams II. Vibration and Stability Analysis. International Journal of Solids 

and Structures, 2006. 43: p. 4323-4341. 

49. Muftu., S. and R.C. Benson, A Study of Cross-Width Variations in the Two-

Dimensional Foil Bearing Problem. Journal of Tribology, 1996. 118: p. 407-414. 

50. Muftu., S. and R.C. Benson, A Numerical Solution for the Transient Displacement 

of a Circumferentially Moving Cylindrical Shell. Journal of Vibration and 

Acoustics, 1994. 116: p. 567-572. 

51. Kartik, V. and J.A. Wickert, Parametric Instability of a Traveling Plate Partially 

Supported by a Laterally Moving Elastic Foundation. Journal of Vibration and 

Acoustics, 2008. 130(5): p. 051006. 

52. Banichuk, N., J. Jeronen, P. Neittaanmaki, and T. Tuovinen, On the instability of 

an axially moving elastic plate. International Journal of Solids and Structures, 

2010. 47: p. 91-99. 

53. Lin, C.C. and C.D. Mote JR, The Wrinkling of Thin, Flat, Rectangular Webs. 

Journal of Applied Mechanics, 1996. 63(3): p. 774-779. 

54. Lin, C.C. and C.D. Mote JR, The Wrinkling of Rectangular Webs Under 

Nonlinearly Distributed Edge Loading. Journal of Applied Mechanics, 1996. 

63(3): p. 655-659. 

55. Mockensturm, E.M. and C.D. Mote JR, Steady Motions of Translating, Twisted 

Webs. International Journal of Non-Linear Mechanics, 1998. 34: p. 247-257. 

56. Mockensturm, E.M. and C.D. Mote JR, Free Response of Twisted Plates with 

Fixed Support sparation. Journal of Vibration and Acoustics, 2001. 123: p. 175-

180. 

57. Moustafa, M., The Bahvior of Threads over Rotating Rolls. Journal of 

Engineering Sciences, 1975. 1(2): p. 37-43. 

58. Yang, R.-J., Steady Motion of a Thread over a Rotating Roller. Journal of Applied 

Mechanics, 1994. 61: p. 16-22. 



176 

 

59. Eaton, J.H., Behavior of a tape path with imperfect components. Advances in 

Information Storage Systems, 1998. 8: p. 77-92. 

60. Shelton, J.J., Lateral Dynamics of A Moving Web. 1968, Oklahoma State 

University. 

61. Shelton, J.J. and K.N. Reid, Lateral Dynamics of an Idealized Moving Web. 

Journal of Dynamic Systems, Measurement, and Control, 1971. 93(3): p. 187-192. 

62. Young, G.E., J.J. Shelton, and B. Fang, Interaction of Web Spans: Part I - Statics. 

Journal of Dynamic Systems, Measurement, and Control, 1989. 111: p. 490-496. 

63. Shelton, J.J. and K.N. Reid, Lateral Dynamics of a Real Moving Web. Journal of 

Dynamic Systems, Measurement, and Control, 1971. 93(3): p. 180-186. 

64. Young, G.E., J.J. Shelton, and B. Fang, Interaction of Web Spans: Part II—

Dynamics. Journal of Dynamic Systems, Measurement, and Control, 1989. 111(3): 

p. 497-504. 

65. Sievers, L.A., M.J. Balas, and A.H. Von Flotow, Modeling of Web Conveyance 

Systems for Multivariable Control. IEEE Transactions on Automatic Control, 

1988. 33(6): p. 524-531. 

66. Brake, M.R. and J.A. Wickert, Lateral Vibration and Read/Write Head Servo 

Dynamics in Magnetic Tape Transport. Journal of Dynamic Systems, 

Measurement, and Control, 2010. 132(011012-1). 

67. Ono, K., Lateral Motion of an Axially Moving String on a Cylindrical Guide 

Surface. Journal of Applied Mechanics, 1979. 46: p. 905-912. 

68. Raeymaekers, B. and F.E. Talke, Attenuation of LTM due to frictional inteaction 

with a cylindrical guide. Tribology International, 2009. 42(5): p. 609-614. 

69. Lee, D.E., G.M. McClelland, and W. Imaino. Simulation and Experimental 

Measurements of Lateral Tape Motion Proximate to a Flangeless Grooved Roller. 

in ASME Information Storage and Processing Systems Conference 2011. Santa 

Clara, CA, USA. 

70. Yu, L., Z. Zhao, and G. Ren, Mutibody Dynamic Model of Web Guiding System 

With Moving Web. Journal of Dynamic Systems, Measurement, and Control, 2010. 

132: p. 051004-1-051004-9. 



177 

 

71. Taylor, R.J. and F.E. Talke, Investigation of roller interactions with flexible tape 

medium. Tribology International, 2005. 38(6-7): p. 599-605. 

72. Jape, S.S., B. Ganapathysubramanian, and J.A. Wickert, Exploring the Effect of 

Stick-Slip Friction Transition Across Tape-Roller Interface on the Transmission 

of Lateral Vibration. IEEE Transactions on Magnetics, 2012. 48(3): p. 1189-1199. 

73. Raeymaekers, B. and F.E. Talke, Measurement and Sources of Lateral Tape 

Motion: A Review. Journal of Tribology, 2009. 131(1): p. 011903. 

74. Yang., H. and S. Muftu. Frictional Induced Vibration Effects on A Tape in 

Contact with A Slewing Head. in Proceeding of the ASME 2013 Conference on 

Information Storage and Processing Systems. 2013. Santa Clara, California, USA. 

75. Jose, J., R.J. Taylor, R.A. de Callafon, and F.E. Talke, Characterization of lateral 

tape motion and disturbances in the servo position error signal of a linear tape 

drive. Tribology International, 2005. 38(6-7): p. 625-632. 

76. Raeymaekers, B., M.R. Graham, R.A. de Callafon, and F.E. Talke, Design of a 

dual stage actuator tape head with high-bandwidth track following capability. 

Microsystem Technologies, 2009. 15(10-11): p. 1525-1529. 

77. Taylor, R.J. and F.E. Talke, High Frequency Lateral Tape Motion and the 

Dynamics of Tape Edge Contact. Microsystem Technologies, 2005. 11: p. 1166-

1170. 

78. Yang., H. and S. Muftu., Lateral Tape Dynamics over Non-Linear Guides, in 

2012 ASME-ISPS /JSME-IIP Joint International Conference on 

Micromechatronics for Information and Precision Equipment, MIPE2012. 2012: 

Santa Clara, California, USA. 

79. Wang, J.H. and F.E. Talke, Tape Edge Wear and its Relationship to Lateral Tape 

Motion. Microsystem Technologies, 2005. 11(8-10): p. 1158-1165. 

80. Wang, J.H. and F.E. Talke, Measurement and prediction of tape edge wear using 

accelerated wear testing. Wear, 2005. 259(7-12): p. 1362-1366. 

81. Wang, J.H. and F.E. Talke, Simulation of tape edge wear of magnetic tapes. Wear, 

2007. 262(5-6): p. 499-504. 

82. Lakshmikumaran, A.V. and D.J. Wickert, Edge Buckling of Imperfectly Guided 

Webs. Transactions of the ASME, 1998. 120: p. 346-352. 



178 

 

83. Kartik, V. and J.A. Wickert, Vibration and Guiding of Moving Media with Edge 

Weave Imperfections. Journal of Sound and Vibration, 2006. 291(419-436). 

84. Ducotey, K.S. and J.K. Good, The Importance of Traction in Web Handling. 

Journal of Tribology, 1995. 117: p. 676-684. 

85. Wickert, J.A., Free Linear Vibration of Self-Pressurized Foil Bearings. Journal of 

Vibration and Acoustics, 1993. 115: p. 145-151. 

86. Raeymaekers, B., I. Etsion, and F.E. Talke, Influence of operating and design 

parameters on the magnetic tape-guide friction coefficient. Tribology Letters, 

2007. 25(1): p. 161-171. 

87. Raeymaekers, B., I. Etsion, and F.E. Talke, Enhancing tribological performance 

of the magnetic tape-guide interface by laser surface texturing. Tribology Letters, 

2007. 27(1): p. 89-95. 

88. Nagao, R. and J.-Y.J. Chang, Experimental Investigation of Air-Bearing 

Mechanism to Enhance Proximity bewteen Traveling Tape and a Guider. Journal 

of Advanced Mechanical Design, System, and Manufacturing, 2010. 4(1): p. 290-

300. 

89. Keshavan, M.B. and J.A. Wickert, Air Enterainment During Steady-State Web 

Winding. Journal of Applied Mechanics, 1997. 64: p. 916-922. 

90. Keshavan, M.B. and D.J. Wickert, Transient Dischange of Entrained Air From a 

Wound Roll. Journal of Applied Mechanics, 1998. 65(4): p. 804-810. 

91. Bhushan, B. and K. Tonder, Roughness Induced Shear and Squeeze Film Effects 

in Magnetic Recording－Part I: Analysis. Journal of Tribology, 1989. 111: p. 

220-227. 

92. Bhushan, B. and K. Tonder, Roughness Induced Shear and Squeez Film Effects in 

Magnetic Recoarding-Part II: Applictation. Journal of Tribology, 1989. 111: p. 

228-237. 

93. Acton, K. and B. Weick, Orthotropic Viscoelastic Behavior of Polymer Tape in a 

Wound Roll. Mechanics of Advanced Materials and Structures, 2014. 21(1): p. 

53-66. 



179 

 

94. Baumgart, M.D. and L.Y. Pao., Robust Control of  Nonlinear Tape Transport 

Systems With and Without Tension Sensors. Journal of Dynamic Systems, 

Measurement, and Control, 2007. 129: p. 41-55. 

95. Baumgart, M.D. and L.Y. Pao. Robust Lyapunov-Based Feedback Control of 

Nonlinear Web-Winding Systems. in Proceedings of the 42nd IEEE Conference 

on Decision and Control. 2003. Maui, Hawaii USA. 

96. Lu, Y. and W.C. Messner. Disturbance Observer Design for Tape Transport 

Control. in Proceedings of the American Control Conference. 2001. Arlington, 

VA. 

97. Lu, Y. and W.C. Messner. Robust Servo Design for Tape Transport. in 

Proceedings of the 2001 IEEE International Conference on Control Applications. 

2001. Mexico City, Mexico. 

98. Mathur, P.D. and W.C. Messner, Controller Development for a Prototype High-

Speed Low-Tension Tape Transport. IEEE Transactions on Control Systems 

Technology, 1997. 6(4): p. 534-542. 

99. Zhong., H. and L.Y. Pao., Regulating Web Tension In Tape Systems with Time-

varying Radii, in 2009 American Control Conference. 2009: Hyatt Regency 

Riverfron, St. Louis, MO, USA. 

100. Whitworth, D.P.D. and M.C. Harrison, Tension variations in pliable material in 

production machinery. Appl. Math. Modelling, 1983. 7: p. 189-196. 

101. Branca, C., P.R. Pagilla, and K.N. Reid, Governing Equations for Web Tension 

and Web Velocity in the Presence of Nonideal Rollers. Journal of Dynamic 

Systems, Measurement, and Control, 2013. 135: p. 011018-1-011018-10. 

102. Lee, G.T., J.M. Shin, H.M. Kim, and J.S. Kim, A Web Tension Control Strategy 

for Multi-span Web Transport Systems in Annealing Furnace. ISIJ International, 

2010. 50(6): p. 854-863. 

103. Lee, W.S. and M.V.C. Rao, Modeling and design of tape transport mechanism. 

Mathematics and Computers in Simulation, 2006. 72: p. 26-37. 

104. Lin, K.C., Observer-Based Tension Feedback Control With Friction and Inertia 

Compensation. IEEE Transactions on Control Systems Technology, 2003. 11(1): 

p. 109-118. 



180 

 

105. Lin, K.C., T. Ming-Ching, and C. Kung-Yi, Web Tension Control of a Start-up 

Process using Observer Techniques with Friction and Inertia Compensation, in 

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics 

Society. 2001. p. 529-534. 

106. Imaino, W., Photoacoustic determination of tension in magnetic tape. 

Microsystem Technologies, 2004. 10: p. 334-337. 

107. Raeymaekers, B., T.R. J., and T.F. E., Non-contact tape tension measurement and 

correlation of LTM and tape tension transients. Microsystem Technologies, 2006. 

12: p. 814-821. 

108. Altman, H.C., Formulas for Computing the Stresses in Center Wound Rolls. 

TAPPI Journal, 1968. 51: p. 176-179. 

109. Pfeiffer, J.D., Prediction of roll defects from roll structure formulas. Tappi J., 

1979. 62(10): p. 83-85. 

110. Hakiel, Z., Nonlinear model for wound roll stresses. Tappi J., 1987. 70(5): p. 113-

117. 

111. Benson, R.C., A Nonlinear Wound Roll Model Allowing for Large Deformation. 

Journal of Applied Mechanics, 1995. 62: p. 853-859. 

112. Yagoda, H.P., Resolution of a Core Problem in Wound Rolls. Journal of Applied 

Mechanics, 1980. 47(4): p. 847-854. 

113. Lee, Y.M. and J.A. Wickert, Stress Field in Finite Width Axisymmetric Wound 

Rolls. Journal of Applied Mechanics, 2002. 69: p. 130-138. 

114. Lee, C., H. Kang, H. Kim, and K. Shin, Effect of taper tension profile on the 

telescoping in a winding process of high speed roll to roll printing system. Journal 

of Mechanical Science and Technology, 2009. 23: p. 2036-3048. 

115. Benson, R.C., Lateral Dynamics of a Moving Web With Geometrical Imperfection. 

Journal of Dynamic Systems, Measurement, and Control, 2002. 124(1): p. 25. 

116. Sievers, L.A., Modeling and Control of Web Conveyance Systems, in Department 

of Electrical and Computer Systems Engineering. 1987, Rensselaer Polytechnic 

Institute: Troy, New York. 



181 

 

117. Sievers, L.A., M.J. Balas, and A.H. von Flotow, Modeling of Web-Roller 

Interactions and Lateral Web Dynamics, in 28th Structures, Structural Dynamics 

and Materials Conference. 1987: Monterey, CA, USA. 

118. Young, G.E., J.J. Shelton, and C. Kardamilas, Modeling and Control of Mutiple 

Web Spans Using State Estimation. Journal of Dynamic Systems, Measurement, 

and Control, 1989. 111: p. 505-510. 

119. Aravind, S. and P.R. Pagilla, Optimal Web Guiding. Journal of Dynamic Systems, 

Measurement, and Control, 2010. 132: p. 011006-1-011006-10. 

120. Han, F., F. Xiong, P. Yi, and T. Shi. Axial Motion of Flat Belt Induced by Angular 

Misalignment of Rollers. in Proceedings of the 2009 IEEE, International 

Conference on Mechatronics and Automation. 2009. Chengchun, China. 

121. Pagilla, P.R. and Y. Diao, Resonant Frequencies in Web Process Lines Due to 

Idle Rollers and Spans. Journal of Dynamic Systems, Measurement, and Control, 

2011. 133: p. 061018(1)-061018(10). 

122. Good, J.K., D.M. Kedl, and J.J. Shelton. Shear Wrinkles in Isolated Spans. in 

Proceedings of the Fourth International Conference on Web Handling. 1997. 

Web Handling Research Center, Oklahoma State University, Stillwater, 

Oklahoma. 

123. Good, J.K. and P. Straughan. Wrinkling of Webs Due to Twist. in Proceedings of 

the Fifth International Conference on Web Handling. 1999. Web Handling 

Research Center, Oklahoma State University, Stillwater, Oklahoma. 

124. Bower, A.F., Applied Mechanics of Solids. 2009: CRC press. 

125. Cook, R.D., D.S. Malkus, M.E. Plesha, and R.J. Witt, Concepts and applications 

of finite element analysis. 2002, Hoboken, NJ 07030, USA John Wiley & Sons. 

Inc. 

126. Hughes, T.J.R., The finite element method: linear static and dynamic finite 

element analysis. 2000, Mineola, New York, USA: Dover Publications Inc.,. 

127. Meirovitch, L., A Modal Analysis for the Response of Linear Gyroscopic Systems. 

Journal of Applied Mechanics, 1975. 42(2): p. 446-450. 

128. Meirovitch, L., A new method of solution of the eigenvalue problem for 

gyroscopic systems. AIAA Journal, 1974. 12(10): p. 1337-1342. 



182 

 

129. Tonoli, A., E. Zenerino, and N. Amati, Modeling the Flexural Dynamic Behavior 

of Axially Moving Continua by Using the Finite Element Method. Journal of 

Vibration and Acoustics, 2014. 136(1): p. 011012. 

130. Graff, K.F., wave motion in elastic solids. 1975, New York: Dover Publication 

Inc. 

131. Doyle, J.F., Wave propagation in structures: an FFT-based spectral analysis. 

1989, USA: Springer-Verlag New York. 

132. Banerjee, J.R., Dynamic Stiffness Formulation for Structural Elements: A General 

Approach. Computer and Structures, 1997. 63(1): p. 101-103. 

133. Lee, U. and H. Oh, Dynamics of an axially moving viscoelstic beam subject to 

axial tension. International Journal of Solids and Structures, 2005. 42: p. 2381-

2398. 

134. Chakraborty, G. and A.K. Mallik, Wave propagation in and vibration of a 

travelling beam with and without non-linear effects, part I: free vibration. Journal 

of Sound and Vibration, 2000. 236(2): p. 277-290. 

135. Chakraborty, G. and A.K. Mallik, Wave propagation in and vibration of a 

travelling beam with and without non-linear effects, Part II: forced vibraton. 

Journal of Sound and Vibration, 2000. 236(2): p. 291-305. 

136. Banerjee, J.R. and W.D. Gunawardana, Dynamic stiffness matrix development 

and free vibration analysis of a moving beam. Journal of Sound and Vibration, 

2007. 303: p. 135-143. 

137. Mace, B.R., D. Duhamel, M.J. Brennan, and L. Hinke, Finite element prediction 

of wave motion in structural waveguides. Journal of Acoustical Society of 

America, 2005. 117(5): p. 2835-2840. 

138. Duhamel, D., B.R. Mace, and M.J. Brennan, Finite Element Analysis of the 

Vibrations of Waveguides and Periodic Structures, in ISVR Technical 

Memorandum. 2003. 

139. Hinke, L., B.R. Mace, and M.J. Brennan, Finite Element Analysis of Waveguides, 

in ISVR Technical Memorandum. 2004. 



183 

 

140. Mace, B.R. and E. Manconi, Modelling wave propagation in two-dimensional 

structures using finite element analysis. Journal of Sound and Vibration, 2008. 

318: p. 884-902. 

141. Manconi, E. and B.R. Mace, Wave characterization of cylindrical and curved 

panels using a finite element method. Journal of Acoustical Society of America, 

2009. 125(1): p. 154-163. 

142. Manconi, E. and R. Garziera, Modelling moving one-dimensional waveguides 

using waves and finite elmenet analysis, in ECCOMAS Thematic Conference on 

Computational Methods in Structural Dynamics and Earthquake Engineering, M. 

Papadrakakis, M. Fragiadakis, and V. Plevris, Editors. 2011: Corfu. Greece. 

143. Rogers, K.S., N.S. Ferguson, A.A. Perryman, and B.R. Mace, Modelling Axially 

Moving Beams of Varying Length using the Finite Element Method, in 7th 

EROMECH Solid Mechanics Conference, J.e.a. Ambrosio, Editor. 2009: Lisbon, 

Portugal. 

144. Subbaraj, K. and M.A. Dokainish, A survey of direct time-integration methods in 

computational structural dynamics—II. Implicit methods. Computers & 

structures., 1989. 32(6): p. 1387-1401. 

145. Trefethen, L.N., Finite difference and spectral methods for ordinary and partial 

differential equations. 1996. 

146. Waki, Y., B.R. Mace, and M.J. Brennan, Numerical issues concerning the wave 

and finite element method for free and forced vibration of waveguides. Journal of 

Sound and Vibration, 2009. 327: p. 92-108. 

147. D'Eleuterio, G.M.T. and P.C. Hughes, Dynamics of Gyroelastic Continua. Journal 

of Applied Mechanics, 1984. 51(2): p. 415-422. 

148. Hughes, P.C. and G.M.T. D'Eleuterio, Model Parameter Analysis of Gyroelastic 

Continua. Journal of Applied Mechanics, 1986. 53(4): p. 918-924. 

149. Zhong, W. and F. Williams, On the direct solution of wave propagation for 

repetitive structures. Journal of Sound and Vibration, 1995. 181(3): p. 485-501. 

150. Rice, B.S., Reduction in Web-to-roller Traction as a Result of Air Lubrication. 

2003. 



184 

 

151. Ulsoy, A.G. and C.D. Mote, Analysis of bandsaw vibration. Wood Science, 1980. 

13(1): p. 1-10. 

152. Pantazi, A., M. Lantz, W. Haberle, W. Imaino, J. Jelitto, and E. Eleftheriou. 

Active tape guiding. in ASME Information Storage and Processing Systems 

Conference. 2010. Santa Clara, CA, USA. 

153. Kartik, V. and J.A. Wickert, Surface Friction Guiding for Reduced High-

Frequency Lateral Vibration of Moving Media. Journal of Vibration and 

Acoustics, 2007. 129(3): p. 371. 

154. Yang, H., J.B.C. Engelen, A. Pantazi, W. Haberle, M.A. Lantz, and S. Muftu, 

Mechanics of lateral positioning of a translating tape due to tilted rollers Theory 

and experiments. International Journal of Solids and Structures, 2015. 66: p. 88-

97. 

155. Engelen, J.B.C. and M.A. Lantz, Asymmetrically Wrapped Flat-Profile Tape–

Head Friction and Spacing. Tribology Letters, 2015. 59(1): p. 1-8. 

156. Leine, R.I., D.H. van Campen, and A. de Kraker, Stick-Slip Vibration Induced by 

Alternate Friction Models. Nonlinear Dynamics, 1998. 16: p. 41-54. 

157. Byerlee, J.D., The mechanics of stick-slip. Tectonophysics, 1970. 9(2): p. 475-486. 

158. Ernest, R., The Nature of the Static and Kinetic Coefficients of Friction. Journal 

of Applied Physics, 1951. 22(11): p. 1373-1379. 

159. Block, H., Fundamental Mechanical Aspects of Boundary Lubrication. Journal of 

the Society of Automotive Engineers, 1940. 46: p. 54-68. 

160. Cameron, R., Friction induced vibration by Roderick, in Mechanical Engineering. 

1959, The University of British Columbia: Glasgow. 

161. Singh, B.R. and V. Push, Stick-slip sliding under forced vibration. Journal of 

Science and Engineering, 1957. 1: p. 227-232. 

162. Shaw, S.W., On the dynamic response of a system with dry friction. Journal of 

Sound and Vibration, 1986. 108(2): p. 305-325. 

163. Armstrong-Helouvry, B., Stick Slip and Control in Low-Speed Motion. 

Transactions on Automatic Control, 1993. 38(10): p. 1483-1496. 



185 

 

164. Southward, S.C., C.J. Radcliffe, and C.R. MacCluer, Robust Nonlinear Stick-Slip 

Friction Compensation. Journal of Dynamic Systems, Measurement, and Control, 

1991. 113: p. 639-644. 

165. Karnopp, D., Computer simulation of stick-slip friction in mechanical dynamic 

system. Journal of Dynamic Systems, Measurement, and Control, 1985. 107: p. 

100-103. 

166. Haessig, D.A.J. and B. Friedland, On the modeling and simulation of friction. 

Journal of Dynamic Systems, Measurement, and Control, 1991. 113: p. 354-362. 

167. Kikuuwe, R., N. Takesue, A. Sano, H. Mochiyama, and H. Fujimoto. Fixed-step 

friction simulation, from classical Coulomb model to modern continuous models. 

in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. 2005. 

168. Quinn, D.D., A new regularization of Coulomb friction. Journal of vibration and 

acoustics, 2004. 126(3): p. 391-397 0739-3717. 

169. Beisel, J.A., Single span web buckling due to roller imperfections in web process 

machinery, in Graduate College. 2006, Oklahoma State University: Stillwater, 

OK. 

170. Kasikci, T. and S. Müftü, Wrap Pressure between a Flexible Web and a 

Circumferentially Grooved Cylindrical Guide. Journal of Tribology, 2015. 

171. Muftu., S., Monthly Report for December 2011 for the INSIC Project: Tape Path 

Mechanics. 2011. 

172. Nayfeh, A.H. and D.T. Mook, Nonlinear Oscillations. 1979, New York, USA: 

Wiley. 

173. Reddy, J.N., An introdunction to nonlinear finite element analysis. 2004, United 

State: OXFORD. 

174. Mathur, P.D. and W.C. Messner, Controller Development for a Prototype High-

Speed Low-Tension Tape Transport. IEEE Transactions on Control Ssytems 

Technology, 1998. 6(4): p. 534-542. 

175. Hashimoto, H., Experimental study of porous foil bearings for web-handling. 

Tribology international, 2000. 33(3): p. 191-196 0301-679X. 



186 

 

176. Lantz, M., S. Furrer, J. Engelen, A. Pantazi, H. Rothuizen, R. Cideciyan, G. 

Cherubini, W. Haeberle, J. Jelitto, and E. Eleftheriou, 123 Gb/in
2
 Recording Areal 

Density on Barium Ferrite Tape. 

177. Furrer, S., M. Lantz, J.B.C. Engelen, A. Pantazi, H.E. Rothuizen, R.D. Cideciyan, 

G. Cherubini, W. Haeberle, J. Jelitto, and E. Eleftheriou, 85.9 Gb/in
2
 Recording 

Areal Density on Barium Ferrite Tape. Magnetics, IEEE Transactions on, 2015. 

51(4): p. 1-7  

178. Biskeborn, R.G. and J.H. Eaton, Flat-profile tape recording head. Magnetics, 

IEEE Transactions on, 2002. 38(5): p. 1919-1921  0018-9464. 

179. Hintereger, H. and S. Muftu, Contact tape recording with a flat head contour, in 

1996 IEEE International Magnetics Conference (INTERMAG 96). 1996: Seattle, 

WA, USA. p. 3476-3478. 

180. Müftü, S. and D.J. Kaiser, Measurements and theoretical predictions of head/tape 

spacing over a flat-head. Tribology international, 2000. 33(5): p. 415-430 %@ 

0301-679X. 

181. Hinteregger, H.F. and S. Muftu, Flat heads for contact tape recording: 

Performance measurements at different wrap angles, tape tensions, speeds, and 

stiffnesses. Journal of Information Storage and Processing Systems, 2000. 2(1-2): 

p. 75-82 %@ 1099-8047. 

182. Bhatti, M.A., Advanced topics in finite element analysis of structures: with 

Mathematica and MATLAB computations. 2006: John Wiley & Sons, Inc. 

 

 


