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Abstract 

In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the 

degree distribution and evolution perspective. In specific, we focus on implementation of a 

scale-free degree distribution topology for energy efficient WSNs. 

WSNs is an emerging technology that finds its applications in different areas such as 

environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous 

chemical monitoring in war zones. This technology allows us to collect data without human 

presence or intervention. Energy conservation/efficiency is one of the major issues in 

prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology 

control algorithms have been presented, but there is dearth of research focused on energy 

conservation/efficiency of WSNs. 

Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution 

and evolution perspective. Self-organization observed in natural and biological systems has 

been directly linked to their degree distribution. It is widely known that scale-free distribution 

bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these 

properties, we propose two complex network theoretic self-organizing models for adaptive 

WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into 

the constraints and limitations of WSNs. We developed simulation models to conduct numerical 

experiments and network analysis. The main objective of studying these models is to find ways 

to reducing energy usage of each node and balancing the overall network energy disrupted by 

faulty communication among nodes. 

The first model constructs the wireless sensor network relative to the degree (connectivity) and 

remaining energy of every individual node. We observed that it results in a scale-free network 

structure which has good fault tolerance properties in face of random node failures. The second 

model considers additional constraints on the maximum degree of each node as well as the 

energy consumption relative to degree changes. This gives more realistic results from a 

dynamical network perspective. It results in balanced network-wide energy consumption. The 

results show that networks constructed using the proposed approach have good properties for 

different centrality measures. 

The outcomes of the presented research are beneficial to building WSN control models with 

greater self-organization properties which leads to optimal energy consumption. 
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Chapter 1 Introduction 

 

1.1 Overview 

 

Recent studies and advances in modeling networks, especially dynamical networks, have been 

of great interest across all fields of science. One of the most known dynamical systems is the 

wireless sensor network (WSN), where some primary concerns related to the structural and 

evolutionary properties remain unexplored. The structure and evolution of WSNs are very 

important issues to explore in order to deeply understand the complex behavior of the system, 

and achieve desired global properties such as self-tolerance and self-organization as an 

emergent behavior. WSNs have many requirements to fulfill as they are vulnerable and limited 

in resources, as well as they are required to operate in an environment where unpredicted and 

new events can occur.  

 

As a result, control techniques that depend on programming each part of the system cannot 

always be efficient as new situations constantly arise. In addition, traditional control techniques 

are synchronized in time due to the fact that sensors were expensive and few so the amount of 

data collected were limited. With the advances of technology, sensors are now available in low 

prices and large quantities and this has led to a major shift from the limited amount of data to 

the large data collection. This shift brought issues regarding switching from the time 
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synchronized behavior (time-driven) to a more asynchronous one (data-driven) as the former 

consumes more power. However, this has been an open research argument as there is no 

evidence yet that one approach is better than the other. Therefore having a system 

environment where both can exist together will draw on advantages of each and make the 

most use of it.  

 

The extent to which WSNs reached in complexity places them at a point where traditional 

control techniques cannot effectively provide the desired scale of functionality. This increased 

complexity is a result of the aforementioned technological advances that enabled to use a large 

amount of sensors and therefore increased the level of interactions between them. What gives 

the complexity issue more significance is the complex and dynamic environment where the 

WSN is required to operate in. The dynamics of the environment contribute to the dynamics of 

nodes and links of the sensor network leading to undesirable changes in the underlying 

topological structure. Therefore, simplifying the system’s complexity contributes to decreasing 

its robustness. 

 

This raises the need to shift from traditional control models and design new ones that 

incorporate: (1) having a system environment where both data-driven and time-driven modes 

of operation can coexist; and (2) achieving global properties such as adaptation, self-

organization and self-tolerance as an emergent behavior to be at high priority as oppose to 

programming each part of the system.  These two considerations support the use of complex 
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systems framework in the control design to be more attractive as it involves the 

aforementioned properties. 

 

Beyond the mathematical models of WSNs, complex systems provide a strong theoretical 

framework by which we study how relationships between parts of a system give rise to its 

collective behavior and how the systems interacts with its environment. This dissertation aims 

to develop a complex systems driven control model for WSNs. A simulation model is 

constructed in order to model the WSN and observe the emerging behavior of the system and 

understand its complexity. Simulation can reveal the existence of some quantifiable trends in 

time which characterizes the system’s desired behavior. This will enable us to extract such 

important measures based on degree distributions and evolution, and use towards network 

control.  

1.2 Complex vs. Complicated Systems 

 

Engineers, for many years, have been dealing with complicated systems composed of separable 

components that have well-defined functional specifications for each part as well as pre-

determined interactions between them. For example, the number of transistors in 

microprocessors over the years has ranged from 2,250 to 3 billion. With the scale observed as 

the only difference, the design of such systems can be characterized by having well-understood 

principles. 
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On the other hand, complex systems involve uncertainty. Therefore, they must be adaptable in 

order to function in unknown complex environments. A complex adaptive system is composed 

of components that interact with each other and adapt to unforeseen contingencies (1) (2). For 

example, a swarm of autonomous robots, that can be used for the exploration of Mars. There is 

no centralized control, and the robots collaborate to perform tasks in unknown environment. 

Also, they must have a high degree of redundancy in order to compensate for failure. The 

robots need cameras, sensors, actuators, and computational elements to monitor the 

environment and communicate with neighboring robots. They need fuel cells to keep sensors 

running. From local observations, each robot must make decisions and act accordingly. 

Therefore, the emergent behavior of the swarm, with the new configuration is the result of 

individual actions of robots.  

 

Similarly, the system of WSNs is also a complex adaptive system. The work in this dissertation 

studies the energy behavior of WSNs from a complex network and evolution perspective with 

particulate emphasis on the degree distribution of the network.  Graph theory is used to 

characterize the WSN by analyzing the network centrality measures of nodes and links. The 

Barabasi and Albert Scale-free model (3) is used as a way to generate the WSN. Two energy 

evolution models are developed in order to generate energy efficient and fault tolerant WSNs. 

Therefore, we use emergent engineering as a framework for our approach. 
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1.3 Insight/Summary on WSNs 

Wireless sensor networks (WSNs) are complex systems composed of spatially distributed sensor 

devices. These devices represent the nodes in the network. The number of nodes in a WSN can 

vary from several hundred to thousands depending on the application type.   Usually the 

network consists of sensors and a base station. Sensors perform three main tasks which are: 

sensing, storing and transmitting information. Sensor nodes are able to communicate with the 

environment by sensing various physical parameters and communicate with each other to send 

the sensed information to a base station. The sensors collect data from the environment for 

different purposes such as detecting certain quantities, environmental monitoring and in 

general, data collection (4). 

 

WSNs are very useful because they are composed of autonomous devices that can self-organize 

to a chosen topology without a central control. As a result, nodes are required to operate in the 

environment according to a control algorithm. Sensor devices have many limitations such as 

power (limited battery life) and range (sensing/ transmission radius). Also, they are vulnerable 

devices since they can be easily damaged. Therefore, new approaches with means to increase 

the network’s lifetime are very important for WSNs research. The framework we consider 

depends on network science and complex systems theory to produce energy efficient sensor 

networks (5). 
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We assume that there is no outside control over the network so the system must handle new 

events and function without explicitly programming them into the sensor nodes. Sensor devices 

are limited in range and power, and are susceptible to damage ability (6). The vulnerability of 

sensor devices is a result of their limited power and ability to damage from the environment. 

Weather related conditions can cause damage to sensor devices or it can simply shift them to 

different areas. Such events result in changes in the underlying topology structure. 

 

From a hardware perspective, nodes in a WSN fail due to battery outage or damage from the 

environment. Failures as a result of battery outage is not random as a sensor node battery life 

is known and it’s possible to calculate its usage based on functionality and time. 

 

Failure of nodes as a result of environmental damage is random as it is hard to predict. From a 

software perspective, nodes in a WSN can fail due to events such as: overload or congestion on 

a node. This is related to the efficiency of routing and scheduling algorithms to handle 

unpredicted environmental conditions such as high data rate for a specific area where sensors 

are deployed. In this context, regardless of the reason, sensor nodes are not damaged but are 

malfunctioned for a period of time. Failure of sensor nodes can either stay on a local level or 

propagate to a global level affecting the whole network. The extent to which the failure level 

reaches can be controlled if the network topology was structured such that failure on a local 

level does not carry consequent failure events that affect the global network. Therefore, we 

emphasize how the topological structure has great influence on increasing fault tolerance and 

system robustness. The main question that arises here is: which type of failure has a higher 
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probability of occurrence in a sensor network?  The answer to this question depends on the 

kind of environment a sensor network is required to operate in. If it is harsh, the probability of 

random failure is high, otherwise it is low. 

 

The main goal of the sensor network is to give global information from local data sensed by 

distributed nodes, so algorithms intended for WSNs cannot be centralized but must be 

distributed. To achieve that goal the network must be capable of the following (6) (7) (8):  

First: sensor nodes must be deployed in the region in such a manner that maximizes the 

coverage of the area. Since sensor devices are limited in their sensing range, the deployment 

strategy must account for these limitations by insuring that the environment can be completely 

sensed by distributed nodes. This is usually handled by the deployment and coverage 

algorithms. 

Second: sensor nodes must form a network that enables reliable communication between the 

sensor nodes. Reliable communication is concerned with the network’s efficiency to deliver the 

desired information in terms of time and service level.  In view of that, the topological structure 

must account for the distributed sensor devices limitations of transmission range to facilitate 

communication between them. Also, routing and scheduling algorithms must be efficient in 

order to minimize delay, avoid congestion and maximize throughput. Poor routing and 

scheduling could result in energy waist as a result of high traffic or overload on a node where it 

can be caused by some data-driven events (7). As a result, for routing and scheduling 

algorithms to be more efficient, they must take into consideration both the time-driven and 

data-driven events. 
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Third: the network must be robust so that it can tolerate failure of some nodes. Robustness of 

the network ensures that damage to some nodes will not result in disconnecting the network 

by which can cause situations where there is missing information, delay in signal or congestion. 

Fourth: the network must have an energy efficient configuration to enable an extended life. The 

network must operate in a way that minimizes the power consumption of different nodes since 

each node has a limited power due to its battery life. 

The above requirements and constraints can be addressed by using proper algorithms to 

control the topology in order to avoid structures that has long range links and minimize power 

consumption. Also, routing and scheduling techniques must be implemented to avoid the 

occurrence of some stressful conditions such as congestion as they contribute to power 

consumption. Therefore, those problems can be carried out by control mechanisms that are 

able to cope with such data-driven events through reconfiguration in terms of topological 

structure and functionality in order to increase robustness. In this context, complex systems 

approaches enable us to understand the complex behavior of the system and develop new 

models from the view of degree distribution and evolution. 

1.4 Structure and Dynamics of Complex Systems 

The extent to which networked systems reached in complexity rendered away traditional 

techniques from the ability to provide the desired scale of functionality. The complexity matter 

is a result of the large size these systems have reached and the great amount of interactions 
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between their entities. These systems are required to operate in a complex environment and 

therefore simplifying their complexity makes them less capable to survive in such environment 

(2). 

Complex systems approach shows how relationships between parts of a system give rise to the 

global behavior of the system and how the system interacts with its environment. Usually when 

people think of any problem they consider it to be the parts or entities of a system overlooking 

the relationships between them. Conversely, the theory of complex systems pays attention to 

the relationships between the system parts i.e. connections or information flow and relates 

problems to them (2). This is demonstrated through significant results on increasing networks 

robustness, fault tolerance, efficiency and adaption.  

 

These studies were attracted by global behavior properties such as self-organization and self-

tolerance of natural and biological networks and derived ideas to model engineered systems 

afterwards. Biological systems in particular have a very robust and adaptive behavior as a result 

of the collective behavior of autonomous agents (9). 

 

Complex systems field have been applied to a wide variety of science including, sociology, 

biology, transportation, etc. It has been shown that many real complex networks such as the 

internet or www share common topological properties with natural complex network 

structures. Most widely known properties are the small-world phenomenon and the scale-free 
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feature. These systems are characterized by being decentralized, self- organized, adaptive and 

robust (10). 

1.5 Motivation 

There is a great interest in self-organized and self-adaptable networking structures like the 

WSN. And the discoveries of scale-free and small world features in many real networks have 

attracted all kinds of disciplines in studying the properties of various networks. WSNs have 

many limitations and vulnerability issues which makes the control over the network very 

challenging. The ability of the WSN to provide the desired functionality level depends heavily on 

its capability to handle unforeseen environmental changes. This involves adapting the 

topological structure and functionality based on time-driven and data-driven events in order to 

cope with changes in environmental demands. Therefore, to build robust and adaptive WSNs 

we suggest that control schemes must integrate properties such as self-organization, self-

optimization and self-repair through the systems’ emergent behavior. The theory of complex 

systems along with studies of biological systems shows a remarkably robust behavior. This is 

recognized to be the result of interactions between autonomous agents of the system that 

adapt and learn from the environment. From a dynamical network perspective such as the WSN 

where complex behavior and unpredicted conditions occur, complex systems considerations 

represent a promising path to acquire since they involve the aforementioned properties (11). 
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1.6 Open Issues on Wireless Sensor Networks 

Current research on WSNs involves many problems and open issues that are technically 

challenging or more fundamentally unresolved. We present some of these issues that falls 

under different areas of study (12; 13; 14): 

1. Routing and scheduling: it has been shown that a hierarchical structure for WSN is 

advantageous by having cluster-heads. Cluster-heads enable sensors within the cluster 

region to conserve power by sending data to the cluster-head and avoid direct interaction 

with the base station. Additionally, clustering techniques vary and finding the best design of 

clusters for WSNs is still an open issue.  As a result, having cluster heads requires different 

approaches to problems and control schemes such as deployment.  

2. Power control: one of the schemes is to allow sensors to switch states between sleeping, 

relaying and sensing. Usually this is done by using global information about the network 

which is not practical for all the nodes in the network to compute. Therefore, finding 

solutions based on local information is considered a better approach.   

3. Mathematical models: current research relies on mathematical models that are not too 

ideal. These models assume that signal is uniformly transmitted in all directions which in 

reality is not true. Sensor transmissions are affected by factors such as antennas and the 

geographical layout where nodes are deployed.  
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4. Topology control: most work concentrates on energy saving and assumes that signal 

inference is reduced automatically. However, energy saving and signal inference are two 

different problems that should be considered separately.  

5. Heterogeneous structure: there is little research done on heterogeneous networks even 

though it is a more practical design for WSNs. This is due to the fact that node transmission 

will vary due to many factors, even if sensors where all identical. Additionally, all the work 

done on heterogeneous networks assumes that nodes can be accurately located where this 

is a whole new challenging area.  

6. Mobile node location: aims to find solutions to accurately locate nodes in the network 

especially when nodes are mobile. 

7. Other issues that are more fundamental are concerned with bridging the gap between 

communication, computing and control that use different approaches and modeling 

techniques. Computation and gathering data are asynchronous since sensor nodes are 

distributed in a manner that make them operate at different levels of spatial and temporal 

conditions. Data-driven mode of operation implies that unless something interesting 

happens in the environment, data is not collected and sensors do not participate. 

Communication and control operate in a synchronized timely structure and are based on 

time-driven modeling. Due to the limited recourses of wireless sensors one can assume that 

data-driven modeling is advantageous over time-driven since it consumes less power.  

Switching to a data-driven approach will not just require new sampling mechanisms but 

most likely new hardware technology embedded in sensors to cope with the nature of the 

data-driven data collection. However, defending that one approach is better than the other 
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remains an unresolved argument. Therefore, having a system where both modes can exist 

together, will supplement the advantages of each, and this is still as open problem that 

needs an in depth study. 

1.7 Purpose and Scope 

We aim in this dissertation to explore and investigate complex systems considerations in 

general and their models in particular to control Wireless Sensor Networks (WSNs). The major 

focus is on structure and evolution where related issues for WSNs remain unexplored. WSNs 

exhibit many constraints, limitations and vulnerability issues that make the network control 

problem very challenging. We intend to use the underlying concepts of complex systems theory 

to optimize network control based on time-driven and data-driven events. We plan to evaluate 

the performance of the network based on the degree distribution and evolution. The ultimate 

goal is to use the results of this work in order to provide new approaches for WSN control to 

enable building robust and adaptive networks that can ultimately confirm greater levels of 

Quality of Service (QoS) expectations.  We investigate the system using dynamic network 

analysis. The outcomes of this research will offer a new theoretical direction to develop control 

solutions based on complex systems considerations.  Further, our findings will supplement 

existing knowledge regarding the issue whether to switch from a time-driven to a data-driven 

event sampling by facilitating a system environment where both can coexist [1]. The current 

focus is on WSNs in the context of highly dynamical environments where unpredictable and 

new conditions constantly arise. 
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The increased complexity level of many systems made the control over the whole network 

unmanageable through traditional approaches. The environment of many systems can be 

categorized as dynamic and unpredictable. This classifies it as complex, and for any system to 

survive in a complex environment it must be complex as well. Satisfying the complexity matters 

require the system to pick the right choices to handle unknown environmental conditions. 

Picking the right choice depends on the system’s ability to adapt to changes by reconfiguration 

in terms of structure and functionality in order to meet the requirements of the environment 

and exit that configuration with the same speed as the changes in the environmental demand. 

The study of natural and biological systems demonstrates properties of self-organization and 

re-configurability leading to surprisingly adaptive, efficient and robust networks. Traditional 

algorithmic approaches depend on explicitly programming each part of the system, by which 

limit the behavior to known conditions. Conversely, complex systems approaches involve 

learning, adapting and evolution in order to achieve re-configurability of the system as a result 

of the collective behavior of its entities. This makes the system capable of handling the 

upcoming unknown events, and it is the way to achieve robustness. 
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Chapter 2 Control of Wireless Sensor Networks 

Topology control is one of the main issues in WSNs since sensor devices are characterized by 

having limited resources of power and range, in addition to the nature of their distributed 

deployment. Control schemes must be designed in order to keep the rate of power 

consumption low while maintaining the desired requirements. These requirements are usually 

concerned with achieving: good coverage, reliable communication, minimize delay and increase 

resilience to failures. Common topology control approaches are related to adjusting power 

transmission or dynamically scheduling the sensor’s cycle (7) (8) (15) (16) (17) (18) (19) (20).   

2.1 Network Design Considerations 

Design assumptions vary due to the different requirements needed for different applications. 

Below we present an overview of the assumptions considered for current control models (6) 

(21). 

2.1.1 Network Structure. The structure can be either flat i.e. non- hierarchical or 

hierarchical. The first assumes that sensors have the same functionality. The second is usually 

based on introducing some powerful sensors as cluster-heads where they have more role than 

other sensors. Cluster-head nodes are usually equipped with better hardware capabilities. 

2.1.2 Deployment Strategy. Sensors are most commonly distributed in the region either 

by random, regular or planned deployment. 
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2.1.3 Sensor’s Characteristics. Sensor devices are characterized by: sensing range, 

transmission range, time synchronization, damage ability, and location information. 

2.1.4 Design Objectives. Design objectives vary due to the different requirements 

needed for different applications. Moreover, different priorities are also considered when the 

optimization becomes a tradeoff between different objectives. These objectives are related to 

the Quality of Service (QoS) expectations. The following are the most common considerations 

for the design of WSNs: 

a. Maximize life time 

b. Maximize coverage 

c. Maintain connectivity 

d. Efficiency 

e. Balance the energy consumption of each sensor node 

f. State update: the sensor network must provide updates and early warnings about 

sensors conditions. This will aid to prevent failure or to allow for recovery strategies 

that can be controlled from the outside such as the deployment of additional 

sensors. 
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2.2 Power Control Schemes 

In this section we briefly discuss relevant state-of-the art topology control schemes and discuss 

their limitations. Common approaches are related to either adjusting power transmission or 

dynamically scheduling the sensor’s cycle (22) , (17), (23), (24) (25) (26).  

2.2.1 Power Transmission Schemes 

These approaches concentrate on saving the sensor device energy by changing the power 

transmission level based on a synchronized timely fashion. 

1. Common Power (COMPOW) (27): is a power control mechanism applied for sensor 

nodes with a uniform transmission power. This technique minimizes the power through 

the network’s connectivity and shows good performance when nodes are uniformly 

deployed. However, having common powers can result in a single relatively isolated 

node and cause all nodes in the network to have large power levels. So non-uniform 

deployment of nodes can result in more energy consumption, as some nodes will 

experience larges transmission rages. 

2. Cluster Power (CLUSTERPOW) (27): is an improved version of the above, where it 

combines power control and route protocols.  However for a large network size, this 

method can cause situations of heavy overhead and high routing update frequency. 

Therefore, CLUSTERPOW is best used for applications where the network size is limited. 

Since the frequency of change in topology happens at a higher rate than the frequency 

of update, lowering the update frequency will not improve performance. Yet, it is 
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possible to use the approach of reducing the frequency of updates for a large network 

size if the changes in topology are known to be low. 

3. Link Information No Topology (LINT) and Local Information Link-State Topology (LILT) 

(28): are based on k-neighbors graph, i.e. the graph where every node is connected to 

its k closest neighbors. These algorithms dynamically adjust a node power so that the 

degree falls within a specified range. This technique can reduce power consumption, but 

will not guarantee connectivity. The network connectivity is not certain as the number 

of neighbors cannot be accurately estimated and silent neighbors cannot be detected. 

4. Communications-Based Train Control (CBTC) (29) (30): is an algorithm that uses 

direction, where accurate direction of information is needed. The authors claim that the 

protocol provides a minimal direction-based distributed rule, to ensure that the whole 

network is connected while keeping the power usage of each node as small as possible. 

CBTC guarantees connectivity and fault tolerance but at a higher cost since sensors that 

can provide accurate direction are equipped with multiple antennas that are expensive. 

5. Neighborhood graphs (31): Power control algorithms based on neighborhood graphs 

such as Directed Relative Neighbor- hood Graph (DRNG) and Directed Local Minimum 

Spanning Tree (DLMST), guarantees connectivity, and low average power transmission. 

However, they require accurate location information.  

Power control schemes discussed above, do not take into account the wasted energy during a 

sensor’s idle mode, or consider the redundancy of sensed data to be a factor. Therefore, state 

scheduling comes into picture to deal with these two issues.   



28 

 

2.2.2 State Scheduling Mechanisms 

 Approaches based on scheduling states consider the wasted energy due to a sensor idle time 

and redundancy in data. As mentioned the design of sensor networks can be flat or hierarchical 

and different state scheduling algorithms are developed for each type. Below we briefly discuss 

the relevant schemes (23) (16) (17) (15) (32) (33) (34):  

2.2.2.1 Non-hierarchical networks 

1. Randomized Independent Scheduling (RIS) (16): presents an algorithm which plans the 

scheduling process at the beginning of each cycle. With a given probability, sensors 

independently decide on whether to become active or go to sleep. RIS presents a control 

protocol that heavily depends on time synchronization which can affect the performance 

and therefore degrade the overall quality of desired results. 

2. Maximization of Sensor Network Life (MSNL) (35): formulates the state scheduling problem 

as a network lifetime maximization problem with constraints on battery lifetime and 

sensing coverage. However, MSNL requires accurate location information, and 

neighborhood nodes will enter into the sleep mode simultaneously. 

3. Lightweight Deployment-Aware (LDAS) (36): plans the sensors scheduling process based on 

partial redundancy. The algorithm guarantees coverage without any knowledge of location 

information. However, LDAS performance is limited to applications with uniform 

deployment.  

4. Adaptive Self-Configuring Sensor Networks Topologies (ASCENT) (37): is an algorithm that 

creates the scheduling cycle by using a threshold value. That value sets the active sensor 
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and depending on the condition, a help message is sent to turn on more neighbors. The 

neighbors receiving the help message can be activated to transmit data. However, ASCENT 

does not guarantee connectivity, or balance the energy consumption.  

5. Probing Environment and Adaptive Sensing (PEAS) (38): is used for applications where there 

is high density of sensors operating in harsh environmental conditions. Each sensor can 

switch between three modes of operation: SLEEPING, PROBING, or WORKING. Each node is 

given a timer and is initially set to the SLEEPING mode.  When the timer expires the node 

enters into the PROBING mode. A PROBING node sends a message which can result in two 

conditions: first, a reply is received and the node reenters into SLEEPING mode; second, the 

node is set to the WORKING mode and continues in that mode until its energy depletes. 

PEAS advantage resides in its ability to ensure asymptotic connectivity. This implies that 

when the size of the sensor field approaches infinity, the probability that the WORKING 

sensors are connected approaches 1. The problem with PEAS is its inability to balance the 

energy consumption. 

6. Probing Environment and Collaborating Adaptive Sleeping (PECAS) (38): presents an 

algorithm that is an extension of PEAS. The difference between them is that in PECAS when 

a node enters the WORKING mode, it doesn’t necessary stay there till its energy depletes. A 

WORKING node informs its remaining working time in the reply to a PROBE message and 

eventually goes back to the SLEEPING mode when it expires. PECAS provides overall better 

QoS results compared to PEAS but results in less energy saving outcomes. 

7. Coverage Configuration Protocol (CCP) (39) (40): the algorithm demonstrates the 

relationship between coverage and connectivity under two cases. The protocol formulates 
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the problem as to maximize the number of sleeping nodes, while maintaining both K-

coverage and K-connectivity. The first case considers a transmission range value that is 

double the sensing range which demonstrates good results. In the second case the 

transmission range value falls below sensing range by a factor of two, and the network 

connectivity cannot be guaranteed. The authors combined CCP with SPAN where the 

network’s original connectivity remains unchanged, yet it cannot configure the network to 

the designated connectivity.  

2.2.2.2 Hierarchical networks 

1. Low-Energy Adaptive Clustering Hierarchy (LEACH) (41): this control protocol depends on 

strict time synchronization. The distribution of cluster-heads under LEACH is not guaranteed 

to be a uniform. LEACH uses a single hop communication between cluster-heads while 

aggregation of nodes by which limits the scale of networks. It was shown that the time 

period of the setup phase is non-deterministic. Under some events such as collisions, longer 

durations for the setup time occurs leading to interruption in sensing services. Depending 

on the density of sensors, such cases might lead the protocol to become unstable during the 

set-up phase. As a result, LEACH may not provide a promising performance for applications 

where sensor networks require deployment in large regions.  

2. Deng et al. proposed a Linear Distance-based Scheduling (LDS) (42): the algorithm considers 

only the sleep scheduling within clusters and assumes that the cluster architecture is 

available through some technique. LDS performance showed inability to provide uniform 

energy consumption, so Deng et al. proposed an enhanced LDS. The LDS scheme only 
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considers static clustering, basically implying that the selection of cluster-heads cannot 

change. The performance of LDS revealed the possibility of producing events of unbalanced 

sensing coverage which can lead to consequence undesired outcomes. This is explained as 

the further away a node is located from the cluster-head the less sensing coverage it has 

and vice versa. The consequence of such case can result in a non-uniform energy 

consumption within a cluster by which can lead to an unbalanced lifetime for nodes within 

the cluster-head region. 

3. Geographical Adaptive Fidelity (GAF) (43): presents an algorithm where clustering is based 

on geographical locations. The algorithm creates the clustering architecture by dividing the 

sensing area into virtual square grids. Based on each node’s location information, the 

matching grids are configured to position different node. Nodes in adjacent grids are 

considered to reside within the transmission range of each other. The ability to control the 

network under GAF depends on the sensor devices hardware capabilities as accurate 

geographic locations are required. GAF assumes that if nodes are close enough, a direct 

communication can be established. However, in real situations, this assumption is not valid 

due to the fact that close distance between any two nodes does not necessarily imply a 

one-hop i.e. direct communication between them. Moreover, the GAF cannot guarantee a 

balanced energy consumption result between sensor nodes. 

4. Topology discovery (TopDisc) (44): Deb et al. proposed this algorithm based on the 

minimum dominating set (MDS) in the field of graph theory. Usually, topology control based 

on clustering techniques favors the methodology of choosing a network communication 

backbone with the fewest possible links with regards to reducing the costs of control and 
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maintenance. MDS and connected MDS (MCDS) present the best explanation for cluster in 

graph theory. It was shown that when a network is supplied with infinite energy, the energy 

consumption of MDS is the least. However, such clustering schemes offer a tradeoff 

between low energy consumption and computational complexity. MDS is NP-hard and 

MCDS is NP-complete, thus offering only an approximate solution. For high density 

deployment sensor networks, TopDisc can create hierarchical networks by quick formation 

of clusters and can arrange them in a tree structure. However, the resulting networks will 

exhibit many limitations as they lack flexibility and cost too much for repeated execution. 

Additionally, TopDisc do not take into consideration the remaining energy of nodes. 

5. Hybrid Energy-Efficient Distributed Clustering (HEED) (45): introduced by Younis and Fahmy 

where they present the clustering algorithm by constant iteration without considering the 

scale of the network. The broad reach of HEED considers the lifetime, extendibility and load 

balance. Implementing HEED does not require any specifications for node deployment or 

capability, and does not require time synchronization. The weakness of HEED is related to 

its heavy dependency on non-synchronization which was acknowledged to impact the 

clustering quality. Moreover, the clustering process takes time to terminate introducing an 

extra factor that contributes to increase in energy consumption. 
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Chapter 3 The Science of Networks 

3.1 The New Science of Networks 

Network thinking means, focusing on relationships between parts rather than the parts 

themselves. This field of research shows how the complexity of a system largely arises from the 

complexity of the interactions among its parts.  

Recently, there has been great interest in the structure of large complex networks across many 

fields of science. Certainly, many systems such as the internet and the airline rout maps are 

clear examples of the many natural, technological and cultural phenomena that can usefully be 

described as networks. The brain is biological network of neurons (nodes) and synapses (links). 

Social communities represent natural networks of people (nodes) and their relationships (links). 

For example, one can construct his/her Facebook social network as shown in figure 3.1. 

Another interesting way to visualize that same network is shown in figure 3.2. 
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Figure 3. 1 The Facebook social geographical network 

 

 

Figure 3. 2 The Facebook social network of nodes and links 
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Recently, there has been great interest in finding global principles which governs different kinds 

of networks. The reason behind this surge in interest is the influence of two famous papers 

published in the late 90s. The first published in Nature: “Collective Dynamics of Small World 

Networks” by Watts and Strogatz. The second one published in Science: “Emergence of Scaling 

in Random Networks” by Barabasi and Albert. More examples of small-world and scale-free 

properties in the real world network are constantly being discovered. Noticeably, natural, social 

and technological evolution favors such structure. This remarkable finding has been explained 

to be the reason behind the need to satisfy two demands: fast information transfer within a 

system, and the high cost to create and maintain reliable long distance connections.  

Fascinated by the discoveries of global principles such as degree distribution, our contribution is 

to use these finding in order to build models for WSNs in the context of highly dynamic 

environment. The goal is to optimize energy consumption of each node, balance the energy 

consumption of the whole network and increase network redundancy through a scale-free 

degree distribution. 

In short, scientific understanding of networked systems could offer great value not only to our 

understanding of natural and social systems, but also to our capability to engineer and 

effectively use complex networks, ranging from better web search and internet routing to 

controlling the reach of disease, the effectiveness of structured crime, and in our case the 

control of WSNs.  



36 

 

3.2 Small-World Networks 

Watts and Strogats were the first to define the small-world network mathematically (46), and 

analyze the different kind of networks which have this property. The average path length was 

used as a measure to determine the extent or degree of a network’s small-world property.  

3.3 Scale-free Networks 

Scale-free (SF)networks have a power-low degree distribution. They are known to have a 

“characteristic tale”.  The SF degree distribution shows the existence of few large degree nodes 

connecting many low degree nodes. The small-world (SW) phenomenon for any kind of 

network shows that two nodes chosen at random are connected by an average of six degrees of 

freedom. This illustrates the ability of the network to have on average short link lengths. These 

two features revealed properties of robustness, fault tolerance, efficiency and adaptation in the 

underlying networks. For example: the World Wide Web (WWW) is composed of Web pages as 

nodes and hyperlinks as links in the underlying network structure. The structure has a property 

where most of the nodes have a low degree, and very few nodes have high degree values which 

are known to be the ‘hubs’ in the network. This particular structure enables search engines 

such as Google to provide fast and reliable Web search capabilities. Google was the first to 

develop the idea of “PageRank” which is only feasible due to the aforementioned network 

structure, most widely known as scale-free degree distribution. Therefore, complex systems 

with a network structure of scale-free degree distributions facilitate the right environment for 

fast, reliable and efficient information structure of the resulting network.  
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3.4 Network Resilience  

Networks structures having scale-free degree distributions have a very important property, 

which is its resilience to random deletion of nodes. This implies that when a large block of 

nodes along with their links are destroyed, basic network properties of heterogeneous degree 

distribution, short average path length and good clustering remain unchanged.  This makes 

sense since most of the nodes in the network are of small degree so the random probability to 

hit a low degree node is higher than hitting a high degree node. However, if an attack hits a 

hub, devastating failure can occur.  

3.5 The Impact of Complex Systems 

We are interested in studying the structure and evolution properties of WSNs in order to find a 

node-link structure that would optimize energy performance and consumption in WSNs. The 

energy performance requirements of WSNs concentrate on minimizing the energy consumption 

per node and balance the energy consumption of all nodes in the network in order to extend 

the network lifetime. All this must be achieved without degrading the overall Quality of Service 

(QoS) expectations such as efficiency in terms of service level and time, fault tolerance and 

reliability. There is always a tradeoff between satisfying all the QoS requirements which usually 

are considered an application specific optimization problem. Therefore, by taking our 

framework of study, we hope to offer results which can be applied to control schemes in order 

to achieve more self-organization results which lead to more self-optimization properties of the 

network.  
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Traditional design methods of technology have been top-down approaches. They are based on 

systems engineering, decomposing the design into functional components, charactering the 

intended relationships among them, and verifying that the system is built and operated as 

intended. The performance is predictable and is capable to carry out predefined tasks in a 

bounded environment.  

There is mounting evidence, however, that traditional approaches for systems engineering are 

reaching a point where they cannot effectively provide the desired level of functionality.  

Current methods are failing because of the large number of parts (components) and extensive 

software for each component in a system. Therefore, each of the designed components is a 

part of a larger system. This results in large number of interactions and changes that can lead to 

unexpected consequences. Therefore, the complexity of systems keeps on increasing. As a 

result, new approaches for engineering projects today involve the design of systems as a 

network of parts. Interactions between the parts of a system are nonlinear and can give rise to 

unpredictable responses.  Networked approaches for systems engineering will allow having 

structures that can adapt in real-time to deal with unforeseen changes. In short, they enable 

adaptive and complex systems. 

A case in point would be the WSN, a technology that is being considered for different 

applications such as environmental and health monitoring that enables continuous monitoring 

and data gathering. A system of wireless sensors must have the flexibility to operate in an 

unknown environment, collaborate in performing tasks, and adapt to unforeseen situations. 

The sensors are hardware devices designed to meet the requirements for different tasks and 
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conditions. There is no centralized control, so the system must have high degree of redundancy 

for fault-tolerance, and to compensate for failure of some of the individual sensors.  

Emergent engineering is a convergence of complexity theory and science with such disciplines 

as communications, sensor technology, mechanics, computational intelligence, and control 

theory. The goal of emergent engineering is to produce robust complex systems, operating in 

uncertain environments, and capable of adaptation and change. From this perspective, this 

provides a good framework towards new solutions for WSN control. 

3.6 Network Science Applications 

Scientists are finding more and more examples of small-world and scale-free networks in the 

real world. Noticeably, natural, social and technological evolution favored such structure. This 

remarkable finding was explained to be the reason satisfying the need for fast information 

transfer within a system and the high cost to create and maintain reliable long distance 

connections. 

Network science can be applied to many real-world networks. The best example to understand 

the underlying properties of small-world and scale-free networks is the brain. The brain have 

been mapped by neuroscientists and several groups and found evidence of small-world and 

scale-free network properties. The brain can be modeled as a network of nodes and links. 

Nodes correspond to neurons, and links represents synapses. Knowing that many neurons die 

and the brain doesn’t get affected, resilience may be one of the reasons behind this. However, 

the hubs represent a different story. If a stroke hits a hub, devastating failure can occur. 
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Another reason is optimizing brain processing between local vs. global information. Scale-free 

networks have shown efficiency for information transfer (such as amount, time and energy) in 

its underlying network structure. On the contrary, if all nodes (corresponding to neurons) were 

fully connected, the brain would be using a massive amount of energy to send signals over the 

huge number of connections. Also, the small-world and scale-free network structures enable 

synchronization, where in the brain groups of neurons fire simultaneously. And this is important 

for efficient information transfer. 

From this perspective, our contribution is to build a model derived from the universal principles 

such as degree distribution to optimize energy in WSNs. Initially the models are used in the 

context of random deployment of sensor nodes in a field were battery replacement is not 

practical. Therefore, the impact here is to produce energy efficient models for WSNs and 

measure the performance of the resulting network from the degree distribution and evolution 

perspective. 

In the context of WSNs operating in harsh environments, the above mentioned properties 

represent desirable system properties which inspire us to use such ideas towards network 

control. 

Although WSNs are complex systems, they have many constraints that contribute to the 

behavior of the system. The theory and models of complex systems give us a new insight on 

studying evolutionary algorithms while considering the constraints of the sensors network.  
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3.7 Models of Complex Systems 

 

3.7.1 Random Network Erdös–Rényi (ER) Model  

The random network model starts with N number of nodes and connects each pair of nodes 

with probability P. This process results in a network having a number of links (K) 

approximately equal to pN(N–1)/2. The node degrees follow a Poisson distribution which 

implies that a node degree is close to the average degree. The function clustering coefficient 

distribution (C (K)) is approximated by a horizontal line. The mean path length <L> is 

proportional to log N  [12-18]. 

Characteristics of ER:  the short mean path length shows the small-world property of random 

networks. The network shows a robust behavior to intentional attacks since all nodes of the 

network are equally important. However, the overall low clustering coefficient contributes to 

the network vulnerability from random failure. 

3.7.2 The Scale-free Network Model 

To explain the foundation of power-law degree distribution, Barabási and Albert (BA) [8, 9] 

proposed a scale-free (SF) model, by which a complex network can be generated with a 

power-law degree distribution in the form of �(�)~ !"#. The resulting scale-free network 

demonstrated great levels of robustness and efficiency even with a high failure rate. The BA 

model is based on the two rules of growth and preferential attachment, where the former is 
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responsible for the addition of new nodes and the latter governs the way new nodes attach to 

existing ones [12-25]. 

Characteristics of SF: The model shows a Power-law degree distribution with characteristics of 

random error tolerance and small-world property leading to robust and efficient networks. On 

the negative side, it characterizes a high failure vulnerability problem of intentional attacks. 

3.8   Wireless Sensor Networks as Large Scale Networks 

Prior to the recent rise of network science as a new field of study, different researchers were 

interested in studying network structures. For example, mathematicians studied abstract 

network structures in the field of graph theory. Psychologists such as Milgram (47) were 

interested in understanding human behavior in network structures.  Airline executives studied 

networks representing airline route maps in order to find a node-link structure that would 

optimize profits given certain constraints.   

Similar to the work of Airline executives, we are interested in studying the WSN in order to find 

a node-link structure that would optimize energy performance. The energy performance 

requirements of WSNs concentrates on minimizing the energy consumption per node and 

balance the energy consumption of all nodes in the network in order to extend the network 

lifetime. All this must be achieved without degrading the overall Quality of Service (QoS) 

expectations such as efficiency in terms of service level and time, fault tolerance and reliability. 

There is always a tradeoff between satisfying all the QoS requirements which usually is 

considered an application specific optimization problem. Therefore, by taking our framework of 
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study, we hope to offer results which can be applied to control schemes in order to achieve 

more self-organization results which lead to more self-optimization properties of the network.  

Traditional design methods of technology have been top-down approaches. They are based on 

systems engineering, decomposing the design into functional components, charactering the 

intended relationships among them, and verifying that the system is built and operated as 

intended. The performance is predictable and capable to carry out predefined tasks in a 

bounded environment.  

There is mounting evidence, however, that traditional approaches for systems engineering are 

reaching a point where they cannot effectively provide the desired level of functionality.  

Current methods are failing because of the large number of parts (components) and extensive 

software for each component in a system. Therefore, each of the designed components is a 

part of a larger system. This results in large number of interactions and changes that can lead to 

unexpected consequences. Therefore, the complexity of systems keeps on increasing. As a 

result, new approaches for engineering projects today involve the design of systems as a 

network of parts. Interactions between the parts of a system are nonlinear and can give rise to 

unpredictable responses.  Networked approaches for systems engineering will allow having 

structures that can adapt in real-time to deal with unforeseen changes. In short, they enable 

adaptive and complex systems. 

A case in point would be the WSN, a technology that is being considered for different 

applications such as environmental and health monitoring that enables continues monitoring 

and data gathering. A system of wireless sensors must have the flexibility to operate in an 
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unknown environment, collaborate in performing tasks, and adapt to unforeseen situations. 

The sensors are hardware devices designed to meet the requirements for different tasks and 

environments. There is no centralized control, so the system must have high degree of 

redundancy for fault-tolerance, and to compensate for failure of some of the individual sensors.  

Emergent engineering is a convergence of complexity theory and science with such disciplines 

as communications, sensor technology, mechanics, computational intelligence, and control 

theory. The goal of emergent engineering is to produce robust complex systems, operating in 

uncertain environments, and capable of adaptation and change. From this perspective, this 

provides a good framework towards new solutions for WSN control. 
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Chapter 4| Modeling Wireless Sensors as Complex 

Systems 

In this section we provide a review and critique of relevant work that has been done on WSNs 

from the theoretical view of complex systems. Most algorithms developed for WSNs based on 

the evolution and structure principles of complex systems concentrate on achieving scale-free 

networks. The major focus for this choice was to allow the network to increase its robustness 

and power efficiency, and minimize delay. These algorithms optimize some parameters and do 

not study the performance effect on other important parameter measures based on events of 

overload or congestion.  

 

More importantly, most of them do not take the dynamics of the network into the time 

evolution of the algorithm such as changes in energy that affect the transmission and sensing 

range which can result from time-driven and data-driven events. For example, many algorithms 

that consider achieving a SF network topology rely heavily on the time-driven sampling without 

regards of data-driven sampling. Since WSNs are limited in energy and sometimes operate in 

harsh environments, control solutions that allow the network to operate in a synchronized and 

asynchronous fashion can offer increased QoS results.  

The following sections, describe relevant control schemes for WSNs based on the evolutionary 

properties of complex systems theory. We briefly describe each method and provide our 

critique. 
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4.1 “Scale-free topology for large-scale wireless sensor 

networks” (48) 

General description: the authors present a fault tolerant topology control algorithm (AWSF) for 

large-scale WSNs. The resulting network under this algorithm showed characteristics of a SF 

topology that is strongly connected and bi-directional. The performance was evaluated through 

simulation which showed qualities of: time efficiency, robustness and small average degree. 

Drawbacks of AWSF: The algorithm does not account for the dynamical behavior of sensor 

devices. In particular, the affect of energy and data-driven events on the sensor node 

capabilities and vulnerability was not considered. The issues we consider that degrade the 

overall qualities of AWSF are listed below: 

1. A static and equal uniform transmission range “r” was given for all sensor nodes. In real 

networks, this assumption is not accurate even if all sensors were given the same initial 

capabilities. Part of this is due to the different locations that sensor nodes occupy by 

which the geographic layout can interfere with the signal strength. The other part 

involves the energy depletion affect on decreasing the transmission range strength. 

Therefore, a better design would be to vary “r” by representing the range as a function 

that depends on the energy use and a random variable to account for geographical 

limitations. 

2. The algorithm uses random weight sequence to generate the power-law distribution, 

where nodes with higher weights have a higher probability to connect to others. For a 

large network size this method can produce a SF topology with high degree of nodes 
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having higher weights. It is obvious that such topology will increase the risk of 

consuming energy for the hot connected nodes. In order to deal with this issue, the 

authors suggest that some redundancy mechanism can be used to backup such nodes. 

However, this cannot just simply be considered a solution due to: first, the fact that it 

must be tested before hand and prove it can work; second, the algorithm doesn’t show 

how to reconnect to a redundant node in the case of the main node dies; third, maybe 

one redundant node is not sufficient due to the speed of death; fourth, the redundant 

node needs to know information about the nodes that it needs to connect with. This 

step might involve the update frequency and will most likely require time and increase 

in power consumption. Therefore, the possibility to employ the redundancy mechanism 

depends on factors such as the frequency of change in topology and the frequency of 

update. 

3. The algorithm produces a scale-free topology under the constraint that “r” must be 

increased in some situations. This assumption was necessary to keep the number of 

edges low and maintain a low average path length with the cost of consuming more 

power. They compensate shorter average path length with more energy consumption 

for the longer range links. A better design would be to enable the algorithm self-

optimize this according to desired conditions so that the edge length only increases 

when necessary, not for the purpose of producing a SF degree distribution. 

4. The robustness of SF degree distribution relies under the fact that failure to low degree 

nodes do not result in disconnecting a huge area, increase delay or great loss of 

information. The proposed algorithm was tested to show the performance of the 
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network when random nodes where removed. The results revealed the existence of a 

huge connected component. However, this lacks the following: 

a. Random failure in WSNs is the result of some environment conditions which can 

either damage nodes or reposition them. Usually this type of occurrence is 

considered random to low degree nodes since they occupy the majority of nodes 

and a higher failure probability is expected as oppose to the few high degree nodes. 

AWSF robustness was only measured in terms of the existence of a large connected 

component after random failure, but did not consider delay or missing information 

into account. However, a small chance of random failure to the hot connected 

nodes might cause the network to become disconnected. 

b. A targeted failure in WSNs can happen if a large degree node was damaged due to 

some environmental conditions, but it is mainly concerned with the energy 

depletion of high degree nodes which are higher candidates to die faster than low 

degree nodes. The performance evaluation under simulation did not take into 

account when measuring its robustness failures as a result of energy outage. 

 

4.2 “Evolution of wireless sensor networks” (49) 

 

General description: a fault tolerant topology control algorithm is presented to produce a scale-

free topology for cluster-head nodes. The selection of Cluster-heads was initially formed 

according to existing algorithms. The algorithm proceeds by connecting cluster-heads according 
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to the BA scale-free model in terms of growth and preferential attachments. Cluster-heads in 

WSNs are used to reduce the energy consumption of other nodes by making only cluster-heads 

communicate with the base station and other nodes only communicate within a cluster. The 

resulting network showed characteristics of SF networks in terms of robustness and small 

average path length. 

Drawbacks: our perception about this method is that it will not offer very promising results 

since it considers the SF topological structure for cluster-heads. The reason is that SF topologies 

are appropriate when minorities of nodes are more important than the others, but cluster-

heads are all equally important and protecting them is at high priority. It is more reasonable to 

apply a SF model within cluster-heads rather than between them. Cluster-heads must be 

connected according to a different process that aims to increase their robustness against 

random and targeted failures.  

4.3 “The Reliability Performance of Wireless Sensor Networks 

Configured by Power-Law and other Forms of Stochastic Node 

Placement” (50) 

 

General description: the algorithm is limited to applications where delay is permitted and 

volume of sensed data is low. The performance results revealed a SF nodal degree distribution 

with an exponent of “.1”. Different conditions were considered to evaluate the performance 

which was done by varying values of the number of nodes and sensing range. The different 

variations had no affect on the exponent value of ‘.1’.   The simulation was done by fixing the 
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data-driven conditions and looking at the network’s time-driven behavior. Failure analysis was 

conducted by measuring the virtual sensing success (vss) which describes the event of 

successfully sensing and receiving a generated target point. Random failure was tested by 

measuring the vss after some portion of nodes were removed (rb) and comparing vss to rb to 

find relationships. For targeted failure due to battery exhaustions, the number of targeted 

points was increased to imply a more energy use of a sensor. rb and vss were compared to find 

relationships. 

Drawbacks: The authors assume that if delay is permitted, the rate at which a sensor node 

senses data is low. However, this assumption is not accurate because delay and rate of sensing 

are different issues. If the rate of sensing is low enough, some targets can be missed. If sensing 

rate was not lowered so that data won’t be missed but delay is permitted, then the sensed data 

can be sent at time intervals so that the information can reach the base station late. The only 

situation where their assumption can be valid is when targeted data (the phenomena to be 

sensed) does not change by time which implies that data cannot be missed and can be detected 

at later times. However, this is a very strict assumption because generally the environment is 

dynamic and targeted data points can change in terms of kind, level and location. Other issues 

involve the following: 

1. The sensing, transmitting and receiving range were given constant values. These values 

must be varied according to geographical layout and remaining power. 

2. Energy was only used by transmitting and receiving without considering sensing as a 

source of energy use. This could be a result of the initial assumption where the rate and 

volume of sensing is low so that energy used for sensing is low. However sensing, 
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transmitting and receiving consume the most amount of energy compared to 

computation. 

3. The authors did not consider the effect of both failures happening at the same time, 

that is varying rb and the number of targets and evaluating the performance under this 

situation. 

4. The performance results showed that the different value of lambda for the SF 

distribution had an effect on the performance by which was calculated to be close to 

“.1”. The different values of the number of nodes and sensing range did not affect the 

value of lambda.  We relate that to the fact that sensing was not considered as a source 

of energy use.  

 

4.4 “A scale-free routing algorithm in WSN” (51) 

 

General description: the algorithm begins by a sink node acquiring information about positions 

and energy of all nodes and breaks them into several layers. This step is done only at the 

beginning of the algorithm and the iterative nature of this algorithm is only within next steps.  

Drawbacks: Energy and location of nodes are changing during the time evolution of the 

network and these layers will not remain the same. The algorithm lacks that dynamical 

behavior.  
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1. The algorithm does not clarify how layers are divided based on energy and locations. 

Cluster heads only connect to upper layer heads only. The reason behind this was not 

explained as well. A fusion function was used to detect data redundancy which was 

done by head-clusters or semi-cluster heads. Basically nodes within a cluster send the 

sensed information to these nodes and so that they only send the fusion results to the 

higher cluster unit. This method can be better implemented if: 

a. Data redundancy was node by the node sensing the information so that it only 

sends the fusion results as appose to the whole data to the head. Since data 

computation consumes less energy than transmitting data, nodes will better 

optimize their power if data fusion was done at that node. Redundancy can also 

occur when two nodes sense the same data, so a fusion function at the head 

should be done in order to detect redundancies of more than one single node. 

This procedure will help in detecting redundant nodes and schedule the sensor 

node power. Control schemes that use power scheduling can shut down one of 

these redundant nodes or lower their sensing range to balance power. 

b. Power scheduling can also be considered as redundant nodes can switch 

between ON and OFF to balance their energy use. This provides a power control 

scheme that is based on local information of each cluster. The computation 

complexity is lowered by using only local information and delay is eliminated. 

Optimality is achieved at the level of each cluster and by optimizing each cluster 

according to the data-driven conditions; the global optimality can be achieved. 

Since each cluster occupies a separate region of the sensing field, each region is 
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optimized so the global behavior of the networks is optimized as well. Cluster 

heads communicate with other clusters based on time and event driven 

mechanisms. If the load on a cluster is high due to the volume of sensed data in 

that region, another cluster can be chosen to route data to base station. We 

should not limit the commutation to certain clusters but choose according the 

best one at the current time. 

 

4.5 “Energy and Coverage Aware Routing Algorithm in Self 

Organized Sensor Networks” (52) 

 

General description: the routing algorithm divides the sensing region into virtual grids where 

sensors belong to different grids according to the transmission and sensing ranges. Sensors in 

each grid switch the role of being the cluster-head according to some mechanism. In each grid, 

only the cluster-head operates in an ON mode and the rest are turned OFF to conserve power. 

The advantage of this mechanism is that nodes switch states between ON (cluster-head rule) 

and OFF to balance energy usage.  

Drawbacks: the disadvantage is that when only one sensor node is ON and the remaining and 

OFF, problems such as delay, congestion or missing information can occur. These problems can 

occur when the volume and rate of sensed data is high and only one node is operating. 

Basically, the routing algorithm depends on only time-driven sampling and does not consider 
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any data-driven conditions into the account.  We suggest that the algorithm must optimize the 

number of active nodes in each grid by considering events such as the volume and rate at which 

data is sensed.  This will also account for transmitting the data by more than one node. For 

instance, if targeted data is low enough so that one active node could possibly be efficient to 

sense data in that cluster grid, this might still result in congestion. Congestion on a node can 

occur if the channel incoming capacity is larger than outgoing capacity. Each cluster is not just 

in charge of sensing but also sending and receiving data from other units to transfer 

information to the base station. So each grid must also have enough sensor nodes to facilitate 

fast and reliable information transfer between grids.  
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Chapter 5 Characterize Wireless Sensor Networks as 

Complex System 

Although WSNs are complex systems, they have many constraints that contribute to the overall 

behavior of the system. The theory and models of complex systems give us a new insight on 

studying evolutionary algorithms while considering the constraints of the sensor network.  

 

5.1 Graph Theoretical Description 

 

We present a graph description for WSNs based on graph theory and dynamic network 

measures (53) (54) (55). The graph characterizes the WSN in general meaning without forcing 

any control so there is a free behavior in order to graphically represent the WSN maximum 

capabilities and limitations.  We explain the WSN graph measures and identify the properties 

that distinguish them from different networks.  

G (N, E): is a graph with N and E representing nodes and edges respectively. N  represent 

sensor devices, and E represent communication between nodes which is determined by the 

sensor node transmission range (signal). Transmission range is affected by power and 

geographical layout.  
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Degree: The degree of a node K represents its connectivity which is the number of links 

incident on a node. Generally, K & '0, ( ) 1*.  A senor node degree is limited by the nodes 

lying within its transmission range; i.e. K & '0, (+ ) 1*, where Ns is the number of nodes that 

are geographically present within the range. (+ is affected by the density distribution of 

sensor nodes. <K> is the average degree of the network which is usually calculated by <k> = 

2E/N. 

Shortest path and mean path length: The Link/path length L is the number of edges involved 

to transfer data or pass through two nodes. It is a measure of network distance. - & '0, ( )
1*. Shortest path length is the shortest link length between any two nodes. From the WSN 

view this can be done by formulating an optimization function to select the shortest longest 

path. Basically the path is selected to minimize nodes within a path and this implies that 

sensor nodes connected by longest links. The average/mean link length <L> is the average 

shorted path evaluated over the whole network.  

Clustering Coefficient: The clustering Coefficient (Cc) describes the ability of the network to 

have alternative paths. The clustering coefficient basically shows that if nodes A and B are 

connected and B and C are connected, then A is most likely connected to C. The clustering 

coefficient is measured by: Cci = 2ni/k (k–i), where ni: is the number of links between the 

neighbors of node i of degree k. k (k–i)/2 shows the possible number of connection between 

all neighbors of node i. This value is influenced by transmission range, the deployment 

strategy and how nodes are densely distributed. The average clustering coefficient <C>: 

characterizes the overall tendency of nodes to form clusters. <C> = sum Cci/N. C (K) is a very 
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important measure that represents the average clustering coefficient of nodes with degree K. 

C (K)  is calculated for different values of K .  

Degree distribution: The degree distribution, P (k), describes the probability of a node with 

degree K. P(k) is measured by counting the number of nodes N(k) with k = 1, 2… links and 

dividing by the total number of nodes. The degree distribution enables us to differentiate 

between different types of networks. For instance, the Poisson distribution of random 

networks describes a system without highly connected nodes, while a scale-free distribution 

describes the existence of high degree nodes and many low degree nodes. For WSNs this is 

influenced by the deployment strategy that can be random or planned and by the network 

structure that can be hierarchical or not. For example: a random deployment with a non-

hierarchical structure might result in a Poisson distribution of node degree which implies most 

nodes have a degree = <K>. The sensors transmission range value will impact the value of <K>.  

Whereas a hierarchical structure with planned deployment might result in a SF distribution 

where few nodes have a high degree and the remaining nodes have a low degree. The 

deployment strategy has a great influence on the degree values and distribution.  

The network analysis described above, shows characteristics of the sensor network in terms of 

capabilities and limitations. This gives us a clear vision of how the sensor network differs from 

other types of networks. This will allow us to explore the different models of complex system 

from the WSN perspective.  
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5.2 Topological Structure Models 

The degree distribution is a very important property in the field of complex systems. This 

importance is given in accordance to the effect it has on the system behavior and the resulting 

characteristics.  From the above analysis and based on our extensive research on network 

theory models, we investigate topological structures based on degree distributions such as 

random networks and scale-free (SF) networks [12, 14, 18, 22]. We analyze each type of 

network from the WSN point of view. 

 

Erdős–Rényi (ER) (56) model from a WSN perspective: The intentional attack error tolerance 

property is a result of non-hierarchical structure which implies that all nodes are equally 

important demonstrated by the straight line clustering coefficient. However, the low clustering 

coefficient in random graphs represents a major problem to the sensor network as that will 

contribute to the sensor network vulnerability. Sensor nodes are very vulnerable to failure and 

it is at high priority to apply a mechanism that can increase the network resilience.  

 

Therefore, the ER model is optimized if the sensor network is required to operate in an 

environment where harsh conditions are eliminated as that implies less random failure 

probability.  When a hierarchical structure of sensor network is considered, the ER model 

provides an insight to increase fault tolerance to an intentional attack type of failure by 

introducing some nodes with the same importance as cluster-heads. The ER model shows that a 
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node degree value depends on the choice of p which implies that the node degree can be 

bounded. It shows characteristics of small-world and resilience to intentional attacks. Looking 

at these points from a WSN point of view shows an acceptable way to model the network to 

achieve the mentioned features while considering the following issues: 

•••• The sensor node degree depends on the number of nodes within its range. The range 

value will influence the probability to establish connections and this will allow to account 

for geographical constraints of the WSN 

•••• Varying the transmission range can be achieved in order to minimize power or increase 

efficiency for instance. 

•••• The small-world property in a result of long edge lengths within a link path which for the 

sensor network implies large transmission rage and more power consumption. 

The SF model from a WSN perspective: The robustness of SF networks depends on the 

existence of high degree nodes that represents a small percentage of the total number of 

nodes in the network. This is demonstrated as the probability of random failure to such 

important nodes is low compared to the large size of the network where a higher failure 

probability is expected for the majority of nodes having a low degree. Since failure of a high 

degree node contributes to the network’s vulnerability, it is considered an intentional attack 

type of failure. As a result, the strength of SF networks relies heavily on the underlying 

premise that the probability of random failure is high compared to targeted attacks. From a 

WSN perspective, failure probability analysis differs from the above due to the constraints, 

limitations and vulnerability of the sensor nodes. Therefore, a WSN that is required to operate 

in harsh environmental conditions can draw inspiration from the SF model in order to increase 
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error tolerance against random failure. Other issues regarding the implementation of the BA 

SF model to WSNs are more structural and involve the following: 

•••• The SF degree distribution follows the rich get richer phenomenon which cannot be 

implemented to the sensor nodes as that implies some nodes will have a large number of 

connections which results in rapid energy consumption.  

•••• SF models do not consider any geographical constrains in forming connections between 

nodes. On contrary, sensor nodes are limited in range and nodes outside a certain range 

cannot establish a connection.  

•••• The efficiency of SF networks relies on its property of small average path lengths between 

nodes which is a result of long edge links. The existence of long edge links in a WSN 

contributes to rapid power depletion which results in an unbalanced energy use and 

therefore is not considered a good design. 

•••• The vulnerability of SF networks to targeted attacks is a result of the low clustering 

coefficient between nodes with high degrees and such nodes for a WSN contribute to the 

most important nodes as they are the cluster-heads. Therefore, increasing their clustering 

coefficient is important. 
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Chapter 6  Energy Model 

6.1 Energy Model Overview 

The goal of the energy models presented here is to produce energy efficient sensor networks 

through a scale-free degree distribution. The inherit properties of self-organization, fault-

tolerance, efficiency and robustness found in networks with a scale-free degree distribution 

leads to our choice. Therefore, we derive two theoretical models to produce scale-free WSNs 

when establishing connections between sensor nodes. The basic idea for both models is to 

construct the WSN according to the connectivity (node degree), and remaining energy of each 

sensor node, in order to produce scale-free networks which have a performance of random 

error tolerance as well as a good energy distribution among the nodes. The difference between 

both models is how the energy is depleted over time.  

 

In the first model, we assume that nodes remaining energy value are different but remain 

constant throughout the time evolution of the algorithm. In the second model, we also assume 

that each node has a different remaining energy value but this value decreases over time each 

time a node establishes a connection. Therefore the second model accounts for the dynamical 

behavior of sensor nodes remaining energy. And therefore the time evolution of node degree 

depends on its energy. 
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In order to derive both models, we use Barabasi and Albert (BA) scale-free evolution model (3) 

and adapt it to conform to the constraints of sensor nodes with means to build an energy 

efficient communication topology. The BA Scale-free model is used to generate networks 

through two main processes: growth and preferential attachment. Growth is the process 

responsible for network growth. Preferential attachments guides the way nodes increase their 

degree which follows the “rich gets richer phenomenon”. This means that the higher the 

degree of the node the more probable this node will increase in degree. However, in addition 

we consider factors of node transmission radius and reaming energy value in our model in 

order to produce energy efficient and fault-tolerant WSNs. The relationship between the BA 

inspired models is captured in figure 6.1. In the BA model, the probability of a node to establish 

connection is related to the degree as   . In our derived models this probability 

depends on the degree and remaining energy values as      .  

For CEM,                          and for DEM                                      . 
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Figure 6. 1 Relationship between the three models 

 

It is important to understand that nodes in a WSN operate at different spatial and temporal 

levels. Basically, when nodes are deployed in the environment, each node occupies a different 

location. Different locations lead to varying data gathering operations. This leads to different 

communication loads. Finally this all results in different energy consumption for each node. The 

energy consumption can be assumed to be unknown since the environment is unknown to 

begin with. Therefore, each node assumed location and energy value are important for model 

derivation.  

 

6.1.1 Homogeneous vs. Heterogeneous Structures for WSNs 

 

In the context of WSN, homogeneity in the communication network structure means that 

almost all sensor nodes are topologically equivalent, like regular lattices or random graphs. For 
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a large graph size, the degree distribution can be approximated by Binomial or Poisson shaped 

graphs. This implies that each of the possible  0(0"1)2   interaction links is present with equal 

probability which in a WSN represented an issue which can lean to undesirable events such as 

overload or congestion on a node and increased energy consumption.  

Oppositely, heterogeneous interaction structures for WSN displays a power law degree 

distribution. This is more desirable as it avoids the aforementioned problems and enables fast 

and reliable information transfer between sensors devises while optimizing energy and increase 

fault-tolerance.  

6.2 Energy Model Framework 

We present the basic structure foundation of our energy model here. This structure allows us to 

derive our energy model to produce energy efficient and fault-tolerant WSNs. In practical 

applications, nodes in a WSN tend to spend most of their energy in communication which is 

transmitting data after the network organizes into a desired network structure. The proposed 

model is intended to optimize nodes remaining energy after two stages of the WSN operational 

phases which are deployment and data-collection. Below we present a description of the WSN 

conditions when using the proposed model: 

 

1. Sensor nodes are deployed in a region according to some deployment algorithm or it 

can just be random deployment. However, for simplicity we assume that there are no 
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nodes that are isolated. So nodes are expected to fall within each other’s transmission 

range. Usually, the deployment algorithm takes care of this issue. 

2. After the network is organized, nodes collect data from the environment, and transmit 

the data among themselves. Therefore, the remaining energy of each node is varied. So, 

nodes are all given initial random values of remaining energy. 

3. The degree of a node is limited to the number of nodes that exist within its transmission 

radius. So, the neighborhood of each node which is usually referred to as its local area 

connections is bounded by a small constant. Since each sensor node has a transmission 

range, the number of nodes that can communicate with it depends on the nodes that 

rely within its range.  

 

The way which the model generation is established is based on simulating the following 

evolutionary processes: 

1. Growth: starting with a small number of nodes, we introduce new nodes to the network 

with number of edges (v)< number of nodes already in the network (34). We specify an 

upper bound on the maximum number of edges a node can take on (maximum degree). 

2. Preferential attachment: a new node will establish connections with nodes already in 

the network with a probability that is proportional to the node degree and its remaining 

energy. 
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6.3 Constant Energy Model 

Based on the model framework described in section 6.2, we derive the Constant Energy Model 

(CEM) with the goal to produce energy efficient WSNs by implementing a scale-free degree 

distribution of the network. The goal is to measure the performance of remaining energy from 

the degree distribution and centrality measure distributions perspective since they are 

important measures to in the study of complex networks. Such distributions can describe 

certain properties of the resulting network such as speed of information transfer, reliability and 

robustness. 

 

Two assumptions are carried on for this model. First, nodes remaining energy value is varied 

but left constant. Second, in addition to the node degree value, the probability a node 

establishes a new connection depends on its remaining energy value which is assumed here to 

be a constant value. In order to solve the mathematical equations, continuum theory (57) is 

used to simplify the calculus. In brief, continuum theory is a method developed by Barabasi and 

Albert, and it can be used for networks where they undergo large number of time steps. The list 

of parameters used for this model is as follows: 

Ν: Total number of nodes in the network. 

�5 : Degree of node x, x & '1, N*. 
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v5: Number of edges of incoming nodes (initial degree of node x). 

<κ>: Average degree of the whole network. 

LA: (Local Area) : number of nodes in the local area of a newly coming node. That value 

depends on the radius (range) of each sensor node which decreases by time. 

:: Remaining energy of a node ;. 

:<: Expected value of : . 

We calculate the degree distribution of our CEM Model as follows: 

Similar to the calculations described for the BA scale-free model (3), we represent the 

probability of node ; to establish a new connection through the probability: 

=(+>) = (?@A)∑ C?DE@D , F & -G     (6.1) 

We calculate the change in node degree over time as: 

H(@5)H(I) = v;:        (6.2) 

Where J, is the number of new edges introduced to the network.  

∑ >(:F)!F = (-G) K ! L  :<       (6.3) 
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We calculate the avg. degree of the whole network, the expected value of remaining energy 

and the avg. number of nodes in each new comer local area. 

The calculations presented here follow the BA calculations done in order to estimate the 

degree distribution (3) (9). Based on continuum theory, the calculations are simplified. In 

the case of large scale networks that undergoes a large number of time steps, the average 

degree can be calculated as: 

K ! L =  2 M NOPQJR S> JTUJ+ �JR NSTJ (V) W NOPQJR S> JTUJ+ XY YZJ QJU[N[NU NOPQJR S> NSTJ+ XY YZJ QJU[N[NU W NOPQJR S> Y[PJ +YJ�+ (Y)  

K ! L \ 2V       (6.4) 

This implies that the average degree of the network is approximately double the number of 

edges per node. 

Based on the value of -G, the local area can be either fixed or dynamic. A fixed value 

indicates a limit on the number of nodes in the new comer’s local area which implies a limit 

on the degree which is basically the maximum degree of the node (Kmax). 

The time evolution of node degree can be calculated as: 

H(@5)H(I) = ?@52 (^_)        (6.5) 

H(@5)@5 = ?2 (^_) `(Y)       (6.6) 

!; =  J ab( cd) ef
       (6.7) 
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The calculation of the constant g can be explained as follows: at a given time, a new node is 

introduced to the network with a fixed number of edges. So we can write the following: 

!;(Y;) = v; h i = ln v; ) ?2(^"_)  Y;     (6.8) 

!; = J a b  (cjd) (I"I5)µ;       (6.9) 

The probability that a node x degree is less than k is: 

�(!5(Y) K !) = � l :2(-G):< (Y ) Ym) K ln l !µ;nn 

= �(Y ) o2(^_)?<? ln p @µ;qr K Y;)      (6.10) 

If nodes are added at equal time intervals → probability density for node ; at Y5 (time) is 

given by: �5(Y5) = 1µ0eI 

→ �(!5(Y) K !) = 1 ) � pY5 s Y ) 2^_?<t ln p @µ;qq 

= 1 ) oI"bcdaua vwp xµ;qr
µ0eI        (6.11) 

The Pdf for nodes with remaining energy E: 

→ �(!?) = Hy(zA(I){z)H@ = 1µ0eI 2^_?<? µ;@      (6.12) 

�(!) = | =(:)=(!?) T: ?}~A?}��  = | � 1µ0eI ?}~A?}��
2^?<?  µ;@ T: (6.13) 
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Where =(:) is the distribution of E, and  :�m� , :��5 are the limits of the energy 

distribution. 

G =  | =(:) 1µ0eI ?}~A?A,}��
2^?<?  T:     (6.14) 

In general, scale-free networks have power law degree distributions which can be 

approximated by: 

The distribution: �(!)~G!"� where,  2 K � K 3. The average degree K ! Lis well defined and 

bounded. The variance is: �2 =K !2 L )K � L2. The variance value depends on maximum 

limit on the degree !��5as: K ! L= | !2�(!)~!��5#"�@}~A@��m�  .  

Therefore, based on the calculations observed in Eqs. (6.13) and (6.14), we can see that the 

algorithm can result in a scale-free degree distribution with a degree exponent � = 1 and an A 

value given in Eq. (6.13). In the simulation section we confirm the calculation results in order to 

validate our theoretical results. 

6.4 Dynamic Energy Model 

The constant energy model presented above can produce energy efficient networks. However, 

nodes in the WSN can consume their energy very fast if their degree is high. Therefore, to 

provide more realistic results and to better model the energy dynamics for each sensor node, 

nodes’ energy values cannot stay constant. Here, we present a Dynamic Energy Model (DEM) 
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with means to balance the energy consumption of all nodes in the network in a better way. 

Therefore the main difference here is the limit given on the degree of a node which depends on 

its remaining energy value. The remaining energy value also depends on the degree value.  

 

The model gives each node a maximum value of degree ( max,iK ) and a maximum value of 

remaining energy (
irmaxE ). These values are dependent on each other. The dependency between 

both variables can be observed in the following relationship:  

���5,m = �:���5       (6.15) 

Where � defines the relationship between the maximum degree node i identifies relative 

to the maximum remaining energy value of that node. 

The remaining energy value of node i can be estimated as the initial remaining energy of that 

node after subtracting the amount of energy consumed as in: 

:�,m = :�,m ) �         (6.16) 

Where Y: defines (or approximates) a function that depends on the degree 

and the rate of power consumption of node i. Basically it is the rate of change 

in energy value over time which can be computed as the time derivative of 

the remaining energy. 

H?�HI = �         (6.17) 
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Similar to the CEM described in section (6.3), the degree distribution and the remaining energy 

distribution are calculated and used as a way to evaluate the performance of the resulting 

network.  

6.4.1 Model Variables 

We categorize the variables we use to derive the DEM presented here into input, 

computational and output variables.  The dependency between variables is shown through 

numerical equations which captures how variables change over time relative to each other.  

Input variables 

N�: Initial number of nodes in the network. 

LA: Number of nodes in each local area (local-area-connections). 

J�: Initial number of links between N� nodes. 

(J� K N�).  Note: In the simulation model, each node is initialized with a very small 

degree and the number of links in the network = 2k/n which must be < N�. 
:�,�: Initial remaining energy value of node i. 
!5,�: Node initial degree. Each node has an initial degree (i.e. number of edges) that is less 

than the number of nodes in the local area.  

:��5: Maximum energy value of a node.  
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Computational variables 

(I�m: Current number of nodes in the network i.e. to compute number of nodes at every time-

step (if discrete model) or (at any time Y[ for continues model). 

�I�I��,I: Degree of the network at a given time. 

∆:: The change in energy for any node at a given time. 

:�: Remaining energy value of a node. 

The total change in energy is: 

∆: = :��5 )  :�       (6.18) 

And the energy change per time step is: 

∆:(Y) = :I(;) )  :I"1(;)      (6.19) 

Note: for the deterministic model, there is no change in energy. We do not account for energy as 

the node degree increases. 

∆�: The change in degree for a node at time Y: 

∆� =  !I(;) ) !I"1 (;)      (6.20) 

∆�(;) = � W1 … . . . [> g1S … …  [> g2)V … …  [> g3, V � 1� 
C1: node x established a new connection 
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C2: node x has no new connections 

C3: node x loss of 1 or more connections. The value of v vs. Er is critical to determine if node x 

power is critical or one of its neighbors is damaged. 

Output variables 

:�: Remaining energy of a node and remaining energy distribution. 

Total change in energy of a node= 

∆: = :��5 )  :�       (6.21) 

!I(;): Degree of a node and degree distribution. 

6.3.2 Behavior and Algorithm 

Similar to CEM, we use the same two processes for network evolution: growth and preferential 

attachment. Based on the conceptual model, the behavior of the system over time is captured 

through calculating how variables change through the energy model described in this section. 

Continuum theory is used to examine the degree distribution created by the proposed 

algorithm. This algorithm enables network growth to be treated as a continuous process in 

order to allow simplification using calculus. For networks that undergo large number of time 

steps, this approximation should match closely with discrete network growth. 
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In order to account for energy consumption due to communicating with other nodes, we 

assume that a node will consume a certain amount of energy (x Jules) per degree unit (1 

degree). Therefore, we consider the energy consumption rate denoted by (:��) to be a static 

value. 

The algorithm is described as follows: 

At each time interval (t), variables are calculated as follows:  

- At ���4 ��  � = � 

:��5(;�) = :�,I��(;�)  … … … … …  N & '1, (�* 

 (�: # NSTJ+ [N[Y[X��� [N NJY�SR! 

:��5 >SR (;�): iSN+YXNY VX�OJ SR >S��S�+ X T[+YR[QO[SN: Y[PJ [NVXR[JNY VX�OJ 

∆:(Y = 0) = 0 

:�,5�(Y = 0) =  :��5,5� = :�,5�(Y = 0)  … … … … …  N =  1,2,3, … , ((Y = 0)} 

�I��(;�) = [N[Y[X� TJURJJ S> NSTJ N [+ U[VJN X +PX�� VX�OJ & '1, ((Y = 0) ) 1* 

:�,I�m(;�) = :�,�(;�)  … … … … …  N & '1, (* 

 

- At � �e¡ ��  � L 0 
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At time (Y = [ W 1), a new node (;��Ie0�) is added to the network with number of edges 

less than the number of nodes already in network.  �I�me1(;��Ie0�) K (�. (For simplicity 

we write it as �I (��) to indicate the newly introduced node as � , i.e. 

�IC;�,mE = �I"1 C;�,mEW �I (��) o ?�,¢j£C5�,�Ez¢j£ C5�,�E∑ ?�,¢j£C5�,�E¤�¥£ r   (6.22) 

For all nodes in network, compute: 

 N [+ NSTJ [NTJ;: ;�[+ NSTJ VX�OJ �� [+ YZJ NJ� NSTJ iSP[NU [N YZJ NJY�SR!,  
iXN QJ �R[YYJN X+ ;��0(I)"m�§¨5" �ZJRJ ((Y)  

�5�¥�(Y) = � 5�¥�(Y ) 1)W �© (Y) ª ?�,A�¥�(I"1)zA�¥� (I"1)
∑ ?�,A�(I"1)¤(¢j£)�«�,�¥£ zA� (I"1)¬  (6.23) 

 ;� =  1,2,3 … . , ((Y ) 1)® 

∆!5�¥�(Y) = �I (��) ª ?�,A�¥�(I"1)zA�¥� (I"1)
∑ ?�,A�(I"1)¤(¢j£)�«�,�¥£ zA� (I"1)¬   (6.24) 

So, the total number of nodes in the network is  ((Y) = ((Y ) 1) W 1 or ((Y) =
((Y ) 1) W [ 

And the change in energy is: 

∆:5�(Y) = ∆!5�(Y) :��       

= �I (��) ª ?�,A�¥�(I"1)zA�¥� (I"1)
∑ ?�,A�(I"1)¤(¢j£)�«�,�¥£ zA� (I"1)¬     (6.25) 
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Equation (6.24) basically describes how the degree of a node that already exists in the network 

i.e. all the nodes at a given time which is Y K  Ym can change in response to the degree of the 

new node introduced. So, at time Ym, if we pick a node from the set of nodes 

 & ;�,( Ym"1) … … .  [. The degree of that node can be estimated as: ( the value of the node old 

degree) + [ the degree of the new node introduced times a probability that depends on the 

ratio of its remaining energy and degree values over all nodes in the network]. In general, we 

can write: 

!I(;) = !I"1 (;) W  ∆!(;) and  ∆!(;) = ∆!I(;)  (6.26) 

∆!I(;) =  !I (��) o ?�,¢j£(5)@¢j£ (5)∑ ?�,¢j£(5� )@¢j£ (5� )r      (6.27) 

 ;�, ¯ ;, ;� & ( (�) 

:�,I(;) = :�,I"1(;)  )  ∆:I(;)     (6.28) 

∆:I(;) = ∆!I(;) :�� 

:�,I(;) = :�,I"1(;) – '(!I ) !I"1):��*    (6.29) 

 

This model is tested under different distributions of nodes initial values of degree and 

remaining energy in order to study the performance results from a degree distribution and 

evolution perspective. Additionally, the number of nodes in the local area is given random 

values as well as constant for all nodes in order to see the effect of both cases. We vary the 

upper limit on a node degree in order to observe the resulting outcome. Also, we vary the 
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lower limit on a node minimum allowable energy value that can enable a node to establish new 

connections. Therefore, we give the degree and energy values of nodes threshold values that 

can be adjusted depending on different applications in order to allow users to conduct different 

experiments. As a result, the network can be adapted for different applications. Since WSNs are 

usually used for different purposes, and depending on the application in hand, different 

priorities are given to expected performance results.  
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Chapter 7 Simulation Model 

In this chapter, we present the approach we use for the simulation model.  The purpose is to 

study the performance of the networks generated under CEM and DEM when varying 

parameters such as: number of nodes in the network, the local area of each node, remaining 

energy values, and maximum degree.  For a WSN, a simulation model requires a proper 

representation of the senor node geographical layout. Basically, we need to characterize the 

environment which represents the sensing field, data points to be sensed and sensor devices. 

Also, we need to keep track of each sensor node values of remaining energy and degree over 

time.  In order to properly characterize the network, we consider the following issues: 

a. Local area of each node. For each node (i), this is the number of ( j≠ i) nodes in its local 

area that they can communicate with each other. 

b. Density deployment of sensor nodes relative to location. Which nodes are in dense area 

and which are sparse.   

c. Data-driven formulation.  Analyze the outcome of different deployment schemes. The 

data-driven conditions can be set through this. 

d. Monitor the degree of each node over time. In order to analyze the time evolution of 

nodes in the network. 

e. Monitor the energy of each node over time. In order to analyze the energy changes of 

nodes in the network over time. 
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In order to study the above issues, we use matrices and vector calculus to formulate the WSN 

model. Matlab was used as a software tool to build and simulate the model. Below we explain 

in details of the methodology and framework of the simulation model. 

7.1 Methodology 

First: in order to represent the sensing field, we use a matrix of size (k*k) where k is the total 

number of nodes in the network. Therefore, we give a vector representation of sensor nodes 

as: 

1. We formulate matrix [M1], where its rows and columns represent sensor nodes. 

2. Each node will be represented by a column vector composed of 0 or 1 entries 

(components).  

3. The dimensionality of each vector must equal to the total number of nodes in the 

network. 

4. The matrix is symmetrical with 0 diagonal values because a node cannot connect to 

itself. 

The following is a sample '²1* matrix: 

Node vectors '³1 ³2 ³3 ³4 ³5*, i.e. 

'²1* = '³1    ³2    ³3    ³4    ³5*      (7.1) 
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'²1* =
µ¶
¶¶
·0    1    1    1    11    0    1    1    11    1    0    1    01    1    1    0    01    1    0    0    0¹̧¹¹

º
   (7.2) 

 So a sensor node vector (ex. »m�1,) '²1* enables us to characterize the node state since it can 

show information about:  

1. The number of nodes within node 1 radius as the sum of 1’s in the vector i.e. 

 ∑ (R, i = 1�1 ) = 1. This is basically the size of the vector (# nodes in local area). 

Where r, c are rows and columns of the matrix respectively. 

2. If node 1 has a number of nodes in local area equal to a high value, this implies that 

this node is in dense area. Else, if the number of nodes in local area is low, this 

impels that this node is in sparse area. 

3. For »m�1, a value of 1 in its j’th component (ex. F = 5 ) means that vector node »5 is 

within the transmission/communication range of node 1. 

4. Similarly, a value of 0 at  F = 3 for example, means that nodes 1 and 3 are not within 

each other’s transmission/communication range. 

5. If we look at the whole network represented by the matrix, which is composed of all 

the column vectors, we can find out if the network follows more of a hierarchical 

structure or not. The way the 1s are distributed in the matrix can reveal great 

information about the density deployment of sensor nodes. 

6. The data-driven conditions can be set by initializing [M1] to different values.  
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Basically [M1] is the matrix used to represent the environment where sensor nodes are located. 

We provide more information on [M1] in the next section. 

Second: in order to keep track of each sensor node values of remaining energy and degree over 

time we formulate two matrices: 'MK* to keep track of the degree and [ME*: to keep track of 

the energy. 

The degree matrix '²�]: 

1. Columns represent sensor nodes; again we consider vector notation of each node. So 

columns are numbered from [ = 1 to total number of nodes, each node is identified by 

its number. 

2. Rows are time steps. Time Y starts from 0 to (total number of nodes +1). So rows 

are F =  1,2,3 … , [ W 1®.  

3. Values of the matrix elements represent the current degree for '²�* or current energy 

for '²:* of a node. So the value in matrix element (1, 3), for example, shows the 

degree or energy of node 3 at t=0. Similarly, the value in (5, 7) shows the degree or 

energy of node 7 at t=4.   
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7.2 Model Construction 

7.2.1 Simulation Framework 

The simulation model is built for a network of size  [ s 1000 sensor nodes.  The idea is to make 

this model adaptable so that the user can specify different parameters in order to test different 

scenarios. Therefore, the model variable values are controllable by the user.  

In order to mimic a real environment situation for WSNs, we establish the formulation 

explained in this section which is heavily based on matrix calculations. As a result, Matlab is 

used as a programming platform for building and simulating the model.  

To represent the environment of sensor nodes on a geographical layout, we need to know 

which nodes are close in radial proximity with each other so they can establish connections. 

Therefore, based on the formulations presented in the previous sections, if we assume [ =
1000, then each node is represented by a column vector of size F = [ = 1000. The vector is 

composed of 0 XNT 1 values. For all vectors »m, where [ = 1 YS 1000, each component of  »m 
corresponds to a F value, where F is the dimension of the vector (F = [ = 1000). 

In order to build the network of sensor nodes, we follow these steps: 

- Step 1: Construct matrix '²1* of size ([ ½ [) where we set i=1000=total number of sensor 

nodes. 

- Step 2: treat each column of '²1* as a node i.e. »1 is node 1, »2 is node 2… etc. 
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- Step 3: Construct '²2* to reflect the number of 1’s in each vector node. Basically we need 

to compute '²2* = '³1*�'²1* which should be of size (1 M 1000).  Each value in 'M2* is 

important for later steps. The value in each index (1, i) is the number of nodes in the local 

area of a node [ = i. 

- Step 4: Initialize each sensor node at time (Y = 0). 

a. Construct matrix [²�* where columns gm are nodes [ = 1 YS 1000 and rows ¾F¿+ 

are time steps Y =  0,1,2, … ,1000®. So the size of [²�* is = ([ ½ ([ W 1)) since 

Y starts at 0. 

• At Y = 0, only the first row is filled with !m  values. Each node i has an initial !m   

o The first node is initialized as !m�1 = 0; we arbitrarily pick other 7 

nodes and initialize their degree to a small value which has to be less 

than the total number of nodes chosen (here 7)  and each node initial 

degree must be smaller than the number of nodes in the local area. 

So,  !m  < ²2m. The rest of the nodes are given !m = 0. This will take 

care of the growth process where the network begins with a very 

small number of nodes and links. 

o So, '²�* has the first row initialized to represent ( Y = 0).  

• For Y � 1, that is rows � 2 in '²�* are initialized to 0. 

b. Construct matrix [²:] where columns are nodes [ =  1,2,3, … ,1000} and rows are 

time steps Y =  0,1,2, … ,1000®. [²:] has the same size as '²�* (1000 ½ 1001) 
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• At Y = 0, only the first row (R = 1) is filled with :m values 

o For :m values: we need to try different values (for now we use random 

values between '0.3,1* Jules).  

o Fill (R = 1, i = [) for all [ =  1,2,3, … ,1000} with random numbers 

& '0.3,1*. 

• All rows starting from R = 2 (i.e. Y = 1) are 0s. 

- Step 5: Now we start the simulation. The number of time steps (Y) = number of nodes([) W
1. Here, [ = 1000. 

So at (Y = 1): 

Pick node [ = Y = 1 

1. Assign ²�(R = 2, i = 1) = !1 (J;.  !1 = 2). 

2. Assign ²:(R = 2, i = 1) = :1 (J;.  :1 = 0.7) 

3. From Step 2 search »m�1, to find the indexes F where the value of (R = F, 1) = 1. 

These locations point to the vector nodes (F ¯ [) where they can connect to it. So for 

example if node 1 had the vector value: 

a. ³1 = '0 1 0 1 1 *, that means nodes 2,4,5 are within its local area.  

b. Use  ³2, ³À, ³Á 
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c. If we initialize node 1 with values of G1 = (2, 0.7, 3)  corresponding to 

(!1, :1, the 1st value in '²2*), !1 =  value in ²�(r = 1, c = 1), :1 =
²: (r = 1, c = 1)*) 

4. For each vector nodes 2,4,5 compute the following probability: 

=RSQXQ[�[Y� ([) = ª ?�,A�¥�(I"1)zA�¥� (I"1)
∑ ?�,A�(I"1)¤(¢j£)�«�,�¥£ zA� (I"1)¬ , [ =  2,4,5®    

(Y ) 1) = 0, means use the initial conditions values which are in the 1
st

 rows of ²� 

and '²:* (first row vectors of '²�* and '²:*. 

Basically, 

1+Y: �RSQXQ[�[Y� ([ = 2) = o ?�,Ab(I"1)zAb (I"1)∑   (?�,AÄ(I"1)zAÄ (I"1)e  ?�,AÅ(I"1)zAÅ (I"1)®r    
2NT: �RSQXQ[�[Y� ([ = 4) = o ?�,AÄ(I"1)zAÄ (I"1)∑   (?�,AÆ(I"1)zAÆ (I"1)e  ?�,AÅ(I"1)zAÅ (I"1)®r   
3RT: �RSQXQ[�[Y� ([ = 5) =  o ?�,AÅ(I"1)zAÅ (I"1)∑   (?�,AÆ(I"1)zAÆ (I"1)e  ?�,AÄ(I"1)zAÄ (I"1)®r    

 

Since !1 = 2, then we pick the max 2 values of (=RSQXQ[�[Y� [). If !1 = 1, pick only the one 

maximum value (=RSQXQ[�[Y� [ = 1). 

 

Example for nodes 2,4,5:   
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- Node 2 values= '9,0.7,6*, where 9 =  MK(r = 1, c = 2), 0.7 =  ME (r = 1, c =
2) 

- Node 4 values= '3, .3, 8*, where 3 = MK(r = 1, c = 4), .3 =  ME (r = 1, c =
4) 

- Node 5 values= '2, .3, 10*, where 2 = MK(r = 1, c = 5), .3 = ME(r = 1, c =
5) 

- We take values in [MK* and [ME* corresponding to indexes (r = t W 1, c =
i) for t = 0 XNT [ = 2, 4, 5  

 �RSQ ([ = 2) = Ë .Ì½Í(.#½#)e(2½.#)Î  L �RSQ ([ = 4) = Ë .#½#(.Ì½Í)e(2½.#)Î L Prob (i = 5) = Ë .Ì½Í(.#½#)e(.Ì½Í)Î 

 

Therefore, node 1 will connect with nodes 2 and 4. Therefore, update nodes degree and energy 

values in [MK* and [ME* from Y = 0 YS Y = 1 as: (Note: do not update node 5 since it was not 

chosen) 

- In  'MK] update: 

a. node [ = 2 is updated  in location (R = 2, i = 2) as: 

i. MK(2,2)  = MK(r = 1, c = 2) W 1  

- This is exactly: K2(t) = k2(t ) 1) W 1  

- K(r, i) = k(r ) 1, i) W 1, where i = c 
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b. The same applies for node i = 4, where it gets updated in location (r=2, 
c=4) as: 

i. MK(2,4)= MK(1,4) W1 
- In [ME* 

a. For i=2 

i. ME(2,2) = ME(1,2) - RT  
RT: is rate of change in energy (example 0.01). Similarly we can use 

the notation E2(t) = E2(t-1) - RT 
b. For i = 4 

i. ME(2,4) = ME(2,4) - RT. Assume RT = .01 
- Increase time step by 1 as: t=tW1 

7.2.2 Sample Numerical Example 

In an adjacency matrix a value of 1 indicates the existence of a link between two nodes and 0 

does not indicate a link; the local area of each node is represented. Similarly, 1 represents the 

existence of a node in the local area and 0 does not indicate a link.  

The matrix M1 below represents the topology structure that shows how nodes are distributed 

in the field. 
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 '²1* =
µ¶
¶¶
·0    1    0    1    11    0    1    1    10    1    0    1    01    1    1    0    01    1    0    0    0¹̧¹¹

º
 

 

From '²1* , nodes 2 and 3 are within the local area of node 1 as ²1(2,1) = ²1(3,1) = 1, 

whereas nodes 1 and 5 are not within each other’s local area. 

The number of nodes in the local area of each node is (sum of each column):  

 
Ò1 = ' 2     2     4     2     2 * 

 

At time Y = 0, the first rows corresponding to [ME* and [MK* are initialized in this example as: 

'²:* =
µ¶
¶¶
¶·4. ÓÔÔÕ  4. Ö4ÕÓ  4. ×ØØÓ  4. ÙÚÚØ  4. ××¡Ô 0             0             0            0            00             0             0            0            00             0             0            0            00             0             0            0            00             0             0            0            0 ¹̧¹

¹¹
º
 

 

'²�* =
µ¶
¶¶
¶·4             ¡             Ù            ¡            ¡0             0             0            0            00             0             0            0            00             0             0            0            00             0             0            0            00             0             0            0            0 ¹̧¹

¹¹
º
 

AtY = 1: 
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First: the value of MK(1,1) is initialized with a value K D(1). 

'²�* =
µ¶
¶¶
¶·4             ¡             Ù            ¡            ¡¡             0             0            0            00             0             0            0            00             0             0            0            00             0             0            0            00             0             0            0            0 ¹̧¹

¹¹
º
 

 

So, node 1 is given an initial degree value MK(2,1)K D(1). (We need to check for 1<2) 

Second: check M1 column 1 for entry values =1. Get their locations which point to the selected 

nodes in local area. In this example it corresponds to nodes (2 and 3). 

Third: since (MK(2,1)=1) K (D(1)=2) then we need to select 1 out of 2 nodes (in this 

example 2 or 3) and the probability of the winner node follows: 

Check for condition A: Starting with node 2: if MK(1,2) L= (dth ex=3) OR ME(1,2), then node 

2 is eliminated. For node 3: if MK(1,3) L= (dth ex=3) OR ME(1,3)K=0.1, then node 3 is 

eliminated. 

- If AAAA is true, then MK( 2, 2 to end) = MK(1,2 to end). 
If AAAA is false, which means nodes are within acceptable range values of degree and energy, the 

probability calculations are computed as in the previous section. 
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Similarly, the [MK] and [ME] are updated at different time intervals such as: 

 

'²:* =
µ¶
¶¶
¶· 0.8225  0.4058  0.7668  0.3996  0.7712 0.7725   0.4058  0.7168    0.3996  0.77120             0             0            0            00             0             0            0            00             0             0            0            00             0             0            0            0 ¹̧¹

¹¹
º
 

 

'²�* =
µ¶
¶¶
¶·0             1             3            1            11             1             4            1            10             3             0            0            00             0             0            0            00             0             0            0            00             0             0            0            0¹̧¹

¹¹
º
 

 

'²:* =
µ¶
¶¶
¶· 0.8225  0.4058  0.7668  0.3996  0.7712 0.7725   0.4058  0.7168    0.3996  0.77120.7225   0.3558  0.6668    0.3996  0.72120             0             0            0            00             0             0            0            00             0             0            0            0 ¹̧¹

¹¹
º
 

 

'²�* =
µ¶
¶¶
¶·0             1             3            1            11             1             4            1            12             4             7            1            20             4             0            0            00             0             0            0            00             0             0            0            0¹̧¹

¹¹
º
 

And the time varying adjacency matrix is updated such as: 
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'ÒG²* =
µ¶
¶¶
¶·0             0             0            0            00             0             1            0            01             0             0             0            10             0             0            0            00             0             0            0            00             0             0            0            0 ¹̧¹

¹¹
º
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Chapter 8  Results and Analysis 

In this chapter, we study the performance of networks generated by both CEM and DEM 

models, and analyze the time evolution of the connectivity and degree distribution. In figures 

8.1-8.16 we study how the factors of remaining energy distribution, number of nodes in the 

local area and node incoming time influence the connectivity growth of a node.  

In our numerical experemints and simulation, we examine the behavior of CEM and DEM under 

two different distributions of remaining energy: Uniform and Normal. Additionally, we vary the 

parameter values of maximum degree, minimum remaining energy, and the amount of energy 

decrese when a node establishes a new connection. Additionally, the size of the network 

determined by the total number of nodes in the network is varied for different simulation runs.  

Therefore, different scenaros are set by varying different system values. The list of parametres 

are represented in table 8.1.  

For a Uniform distribution, if the limits where a and b then the mean is (58): 

12(�eÜ) = :<       (8.1) 

For a Normal distribution (59): 

=ÒÝ = 1Þß(2à) J(Ajá)bbâb       (8.2) 

And the mean is: ã=:< and variance is: �2. 
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Parameters 

Total number of nodes in the network K 

Number of nodes in the local area LA 

Maximum allowable degree per node. Degree threshold dth 

Remaining energy of nodes Er 

Energy depletion per degree increase E 

Energy reduction per degree ered 

Energy threshold ets 

Remaining energy distribution 

Table 8.1: Network Parameters 

 

1. NORMAL ENERGY DISTRIBUTION of remaining energy values and using CEM 

 

The network starts with a small number of connected nodes. Starting at t=0, at each time step, 

a new node is introduced with a random and small number of edges that is less than the 

number of nodes in the local area. The limits of the remaining energy distribution are: 0.3 and 1 

Jules. The remaining energy limits are controllable variables which mean that the user has the 

ability to specify the limit values. For each of the simulation runs, the values of total number of 

nodes K, The degree threshold dts and remaining energy threshold ets are indicated for each 

Figures 8.1-8.3. 
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Figure 8. 1 Time evolution of connectivity vs. time when nodes remaining energy value does not decrease for (k=100, 

ets=0.2) 

 

 

Figure 8. 2 Time evolution of connectivity vs. time when nodes remaining energy value doesn’t decrease for (k=300, ets=0.2) 
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Figure 8. 3 Time evolution of connectivity vs. time when nodes remaining energy value doesn’t decrease for (k=300, dts=k/5, 

ets=0.2) 

 

 

2. UNIFORM ENERGY DISTRIBUTION of remaining energy values and using CEM 

 

The network starts with a small number of connected nodes. Starting at t=0, at each time step, 

a new node is introduced with a random and small number of edges that is less than the 

number of nodes in the local area. The limits of the remaining energy distribution are: 0.3 and 1 

Jules. The values of the total number of nodes K, the degree threshold dts and remaining 

energy threshold ets are indicated next to the figures 8.4 and 8.5. 
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Figure 8. 4 Time evolution of connectivity vs. time when nodes remaining energy value doesn’t decrease for ( k=300, dts=k/3, 

ets=0.2, ered=0.2) 

 

 

 

Figure 8. 5 Time evolution of connectivity vs. time when nodes remaining energy value doesn’t decrease for (k=300, dts=k/5, 

ets=0.2) 

 

0 50 100 150 200 250 300
65

70

75

80

85

90

95

100

time

de
gr

ee

0 50 100 150 200 250 300
45

50

55

60

65

70

75

80

time

de
gr

ee



98 

 

From the results of Figures 8.1- 8.5, we can see that based on the number of nodes in the local 

area that is the choice of LA, the degree of a node is influenced. Clearly, if we choose a small 

value of local-area, a node will establish connections with a higher probability than of larger 

local-area value. As a result, a node with a small local-area value will increase its degree faster 

than a node with a higher value. 

 

Figure 8. 6 Uniform Vs. Normal Distributions degree time evolution for (K=200, dts=K/2, ets=0.3) using CEM 

 

Figure 8.6 shows the impact of the remaining energy distribution on the degree growth. 

Different expected values produce different connectivity growth. However, different energy 

distributions all results in a scale-free degree distribution. 
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3. NORMAL ENERGY DISTRIBUTION of remaining energy values and using DEM  

The network starts with a small number of connected nodes. Starting at t=0, at each time step, 

a new node is introduced with a random and small number of edges that is less than the 

number of nodes in the local area.  

1. Total number of nodes in the network K=300. 

2. Number of time steps =300.  

3. Degree threshold (dts) was used as an upper limit on the node degree which 

value was varied (indicated on each figure).   

4. Energy threshold (ets) = 0.2.  

5. Remaining energy values were assumed between 0.3 and 1 Jules.  

6. Each time a node establishes a connection which is an increase in degree by 1 

a node decreases energy by 0.01 Jules.  

In Figures 8.7 and 8.8, we show the results of the simulation using DEM. In Figure 8.7, we can 

see that the remaining energy value is slightly above the threshold (0.1) and as time increases; 

the average remaining energy of all nodes in the network is more balanced.  

Therefore, from this perspective the algorithm can produce more balanced energy results using 

the degree of nodes as a performance measure. In Figure 8.8, we can see the time evolution of 

nodes degree. Since the upper limit on node degree was set to k/2, the maximum node degree 

was below that value.  
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Most relevant here, the positive effect of the model where the average degree of the network 

increases in a balanced way as well which implies that there are no nodes consuming their 

energy completely as a result of rapid increase in degree. At each time step, the average degree 

as well as the average remaining energy of nodes, of the network can be observed from both 

Figures 8.7 and 8.8. 

 

Figure 8. 7 Remaining energy of nodes over time when: k=300k=300k=300k=300, dts=k/2dts=k/2dts=k/2dts=k/2 
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Figure 8. 8 Time evolution on the connectivity Ki(t) vs. t for: k=300, dts=k/2, ets=Ki(t) vs. t for: k=300, dts=k/2, ets=Ki(t) vs. t for: k=300, dts=k/2, ets=Ki(t) vs. t for: k=300, dts=k/2, ets=0000.2.2.2.2 
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Figures 8.9 - 8.16 below shows the results of the simulation. 
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Figure 8. 9 Remaining energy of nodes over time for: k=300, dts=k/2, ets=0.2k=300, dts=k/2, ets=0.2k=300, dts=k/2, ets=0.2k=300, dts=k/2, ets=0.2    
 

 

Figure 8. 10 Time evolution on the connectivity Ki(t)Ki(t)Ki(t)Ki(t) vs. tttt for: k=300, dts=k./2, etsk=300, dts=k./2, etsk=300, dts=k./2, etsk=300, dts=k./2, ets=0.2=0.2=0.2=0.2 
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Figure 8. 11 Remaining energy of nodes over time for: k=300, dts=15, ets=0.2k=300, dts=15, ets=0.2k=300, dts=15, ets=0.2k=300, dts=15, ets=0.2    
 

 

 

Figure 8. 12 Remaining energy of nodes over time for: ets=0.2ets=0.2ets=0.2ets=0.2, no limit on kkkk    
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Figure 8. 13 Time evolution on the connectivity Ki(t)Ki(t)Ki(t)Ki(t) vs. tttt for: ets=0.2, ets=0.2, ets=0.2, ets=0.2, and no limit on kkkk    
 

 

5. NORMAL ENERGY DISTRIBUTION of remaining energy values and using CEM 

 

 

Figure 8. 14 Time evolution of connectivity vs. time when nodes remaining energy value doesn’t decrease 
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6. Starting with a UNIFORM ENERGY DISTRIBUTION of remaining energy values and using 

CEM 

 

 

Figure 8. 15 Time evolution of connectivity vs. time when nodes remaining energy value doesn’t decrease 

 

 

Figure 8. 16  Uniform vs. Normal distribution for (k=200, dts=k/3,ets=0.2) 

0 10 20 30 40 50 60 70 80 90 100
25

30

35

40

45

50

time

de
gr

ee

0 20 40 60 80 100 120 140 160 180 200
45

50

55

60

65

70

Time

D
eg

re
e

 

 

Uniform Distribution

Normal Distribution



106 

 

 

Figure 8. 17  Uniform vs. Normal distribution degree evolution over time for (k=100, dts=k/2,ets=0.2) 

 

 

Figure 8. 18  Uniform vs. Normal distribution remaining energy over time for (k=100, dts=k/2,ets=0.2) 
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Figure 8. 19  Uniform vs. Normal distribution remaining degree evolution over time for (k=300, dts=k/2, ets=.1,ered=0.05) 

 

 

 

Figure 8. 20  Uniform, vs. Normal distribution remaining energy over time for (k=300, dts=k/2, ets=.1, ered=0.05) 
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Therefore, from the results we can see that the higher the limit on the degree k, means the 

smaller the maximum allowable degree, the more remaining energy of nodes. When k is 

increased up to the total number of nodes then the remaining energy approaches its threshold 

which is fine since we specify the value. And the nodes in the networks with a high degree value 

will end up increasing their degree slower because of the constraint on the maximum degree.  

Since the maximum degree was varied, the speed at which nodes will increase in degree also 

depend on it. As a result, the model prevents the nodes to consume their energy unexpectedly. 

Further this leads to more balanced energy consumption of the whole network. The less 

restrictions, the maximum degree a node can take, and therefore the more the network will 

behave in a scale-free way. However due to power limitations of WSNs, to achieve more 

tolerant results against intentional attack type of error, the network must limit the high degree 

nodes from consuming their energy very fast. 

 

7. Network Properties 

 

The main focus here is to explore the network shown in figures 8.19 and 8.20, and analyze the 

network measures of: betweenness centrality (Figure 8.21), closeness centrality (Figure 8.22), 

average neighborhood connectivity (Figure 8.23) and degree distribution (Figure 8.24). 
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Figure 8. 21  Betweenness centrality for the network in Figures 8.19 and 8.20 

 

 

Figure 8. 22  Closeness centrality vs. number of nodes 
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Figure 8. 23  Average neighborhood connectivity 

 

Degree related centrality measures might be criticized because they only take into account the 

immediate ties that a node has, or the ties of the node's neighbors, rather than indirect ties to 

all others.  In some cases, a single node might be tied to a large number of others, but those 

others might be disconnected from the network as a whole. In a case like this, the actor could 

be quite central, but only in a local neighborhood. 

 

The betweenness centrality of a node is a measure of how central the node is in the network. It 

can be calculated as the number of shortest paths from all the nodes to all others that pass 

through that node. More than connectivity, the betweenness centrality is useful to measure the 
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load on a node. For a sensor node that is a very important measure since it can help avoid 

undesirable situations such as overload or congestion on a node. From Figure 8.23 we can see 

that only few nodes have high betweenness value which indicated higher loads on a node, 

whereas the majority of the nodes have lower betweennes. Since most nodes have low 

betweenness then we can see that the model can result in a network structure where majority 

of nodes have low loads. This makes the network more robust.  

 

In general, closeness centrality methods highlight the distance of a node to all others in the 

network by focusing on the distance from each node to all others.  Depending on how one 

wants to think of what it means to be "close" to others in any networked system, a number of 

slightly different measures can be defined. Closeness centrality is a measure of how fast 

information spreads from a given node to other reachable nodes in the network. From Figure 

8.22 we see that nodes in general have a good coefficient value. Most nodes have few 

connections, yet the pattern of their direct and indirect ties allow them to access all the nodes 

in the network more quickly than anyone else. They have the shortest paths to all others, which 

mean that they are close to everyone else. They are in an excellent position to monitor the 

information flow in the network since they have the best visibility into what is happening in the 

network. 

 

The neighborhood connectivity of a node gives the average connectivity of all his neighbors. 

Since the neighborhood connectivity distribution is a decreasing function in k (Figure 8.23), 



 

edges between low connected and highly 

means that sensor nodes with higher remaining energy value are connected to nodes with low 

remaining energy value. Most relevant here, the positive effect of this in addition to

clustering coefficient value results in increasing the network redundancy leve

out of power, the network won’t become disconnected.

The degree distribution is shown in figure 8.24. As expected from the calculations described in 

section 6 on DEM, the degree distribution might be versatile. However, specifying initial 

network parameters accordingly may results in a scale
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edges between low connected and highly connected nodes prevail in the network

means that sensor nodes with higher remaining energy value are connected to nodes with low 

Most relevant here, the positive effect of this in addition to

esults in increasing the network redundancy level. If a node runs 

out of power, the network won’t become disconnected. 

The degree distribution is shown in figure 8.24. As expected from the calculations described in 

on 6 on DEM, the degree distribution might be versatile. However, specifying initial 

network parameters accordingly may results in a scale-free network. 

Figure 8. 24  Degree distribution 
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so that it can tolerate failure of some sensor nodes. The centrality 

connected nodes prevail in the network (60). This 

means that sensor nodes with higher remaining energy value are connected to nodes with low 

Most relevant here, the positive effect of this in addition to good 

. If a node runs 

The degree distribution is shown in figure 8.24. As expected from the calculations described in 

on 6 on DEM, the degree distribution might be versatile. However, specifying initial 
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measure results suggest that the network can tolerate damage to some nodes, hence will not 

result in disconnecting the network. This implies that the network can be designed in order to 

eliminate situations where there is missing information, delay in signal or congestion. 

 

Network Visualization Example 

With respect to the issue of how the degree distribution can affect the power efficiency of the 

WSN, we analyze the network structure that results when using DEM for 300 node-clusters. The 

size of each cluster is 50 which is the number of nodes that belong to the cluster. In Figure 9.25 

we present a visual example of one cluster. And in Figure 8.26 we show the whole network of 

300 node-clusters. 
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Figure 8. 25  A cluster of 50 nodes constructed using DEM 

 

 

Figure 8. 26  The network of 300 clusters constructed using DEM 
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In this example, we study the relationship between node orientations, node degree and the 

network behavior in terms of energy efficiency of one cluster. We presuppose that nodes in the 

cluster are deployed in the environment as shown in figure 8.25. Therefore, each node occupies 

a position in the environment. Nodes with one link identify other clusters, or different base 

stations. Nodes with high degrees represent the cluster-heads. When using the proposed 

model, the local area of each node is predestined by the user. As we can see, the majority of 

nodes have a low degree, where only few nodes have a higher degree. However, even the high 

degree nodes such as node 2 for example, have a maximum degree of 19. The results of the 

simulation show that nodes have an average remaining energy value of 0.4 Jules. Two nodes 

had a remaining energy value of 0.1. And the average degree of the whole network was 5. The 

average clustering coefficient was 0.5. This indicates that the network has good clustering so 

that there are multiple communication paths between nodes. A higher value is not desirable for 

the WSN since it can result in rapid energy consumption due to increasing connections. 

Therefore, the network can tolerate stressful conditions such as congestion or overload on a 

node.  This shows that the network has good results in terms of balanced remaining energy 

value of nodes as well as good clustering. Moreover, the network results in better redundancy 

leading to increased fault-tolerance ability. 

The number of links between clusters is determined by the cluster state. The cluster state is 

defined by two values the average degree of the cluster and the average remaining energy. 

However, these values are dynamic and change every time step. The network shown in Figure 

8.26 is an example of what can result after the evolution of each cluster when using DEM. 
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Therefore, the results of each cluster construction under DEM can be used to construct the 

network of 300 clusters. Therefore, after each cluster determines a cluster head, the links to 

other clusters are established.  

 

Finally with respect to the ability to provide self-organization for the network, these results 

were consistent with the view that the model enables us to fine tune different system 

parameters based on each application requirement. The model is capable to provide adaptable 

parameter specifications. The time-driven event behavior was captured through the growth 

process, whereas data-driven events were formulated based on the topology matrix [M1] and 

different system parameters and the effects was observed in the preferential attachment 

process. Therefore, we can see the dependency between both modes of behaviors as we 

change parameters the two processes growth and preferential attachment are affected. Our 

implications suggest that the models avoid the problem of having high degrees for nodes that 

are old in the network. Usually in a scale-free network the older the node is in the network, the 

higher its degree. However, our results show that older nodes in the network do not follow that 

phenomenon. This avoids stressful situations such as rapid energy consumption for a sensor 

node. Therefore, the results show the degree is scale-free but balanced for the whole network. 

This indicates that the algorithm considers the energy limitations when establishing 

connections. 
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8. Analysis on Network Robustness 

 

In this section we discuss how we can build robust WSNs from a network measure perspective 

when considering factors of energy efficiency, fault-tolerance and local-area of each node. 

Based on our findings we found that for each node the size of the local-area and the maximum 

degree impact the robustness of the system. Since WSNs have many limitations of range and 

power, using smaller sizes of local-area implies decreasing the sensor node communication 

range. Basically, sensor node energy should not be consumed for longer range links if a node 

can establish connections with neighboring nodes. Using our proposed approach our network 

results in good betweenness centrality distribution, which implies that most nodes had low 

loads. And that coefficient increases with the degree (Figure 8.21). So higher nodes had higher 

values, which suggest that only cluster-heads can tolerate higher loads as they are usually 

equipped with more powerful hardware capabilities. The closeness centrality distribution 

(Figure 8.22) had a good coefficient value which indicated that there was fast information flow 

between a node and all other nodes in the network. Therefore, using lower values for the 

number of nodes in the local-area i.e. lower transmission range did not impact the speed of 

information flow. So we can still get good results when using lower range links for the majority 

of nodes and limiting the long range links to nodes with higher degree as they represent 

cluster-heads. This agrees with our initial choice of using a hierarchical structure of the network 

using clusters of nodes. The relationship between network robustness, the size of the local 

area, energy efficiency are captured in the figures below (8.27-8.29).  



 

 

Figure 8. 27 Relationship between the local
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elationship between the local-area size and avg. remaining energy 

 

8. 28 Size of local-area vs. avg. remaining energy 
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Figure 8. 29  Relationship between robustness and local-area size 
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from a given node. The degree and closeness centralities in WSNs can describe the reachability 

of a node in the network.  In other words this measure shows how easily information can reach 

that node. Centrality of a given vertex in the graph can be described by the betweenness 

measure which can be measured based on the number of paths that pass through it. Therefore, 

betweenness in a WSN describes the extent to which the node is needed as a link in the chains 

of nodes to facilitate the spread if information in the network in order to reach the base 

station. If a sensor node with high betweenness is removed from the network, many flows of 

information are disrupted or must take longer detours. The importance of a vertex in its 

immediate neighborhood can be measured by the clustering coefficient. The clustering 

coefficient gives an estimate of how well connected is the immediate neighbourhood of a given 

vertex. 

 

The framework for the identification of critical locations is based on the following procedure: 

Nodes that have one or more of the following properties: 

1. Nodes with a high betweenness. 

2. Nodes with low clustering coefficient. 

We choose a high betweenness value to be .075≥ and a clustering coefficient ≤ .1. First we pick 

the nodes with high betweeness and assign a value of .5. Second, if the corresponding 

clustering coefficient values of these nodes were low then we assign a value of .5. Then a node 

adds both values. The results show that 5 nodes had a value of 1 which corresponds to nodes 
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with high degree. Therefore, from our assumptions we consider those nodes to be cluster-

heads.   
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Chapter 9 Conclusions and Future Work 

 

In this dissertation, we give two methods for modeling WSNs. The first model, CEM, enables 

nodes in a WSN to establish connections based on values of remaining energy and degree for 

existing nodes within its radius. Simulation shows performance results that can organize the 

network in an energy efficient way. The model can result in a scale-free network which have 

features that allow for fault- tolerance against random failure of the sensor nodes; therefore, 

offering more robust WSNs. In the second model, DEM, we decrease the remaining energy 

value of each node based on increasing the degree. Therefore, this algorithm can provide more 

realistic results and make the energy consumption for all the nodes in the network more 

balanced than the CEM. 

 

Results show that older nodes in the network do not necessary increase their degree 

unexpectedly. Part of this is related to the maximum limit given on the degree and the other 

part is related to the minimum remaining energy threshold which prevents nodes from 

establishing new connections. As a result, the models take in to consideration redundancy of 

the network against undesirable events such as over load on a node which can lead to energy 

depletion. 

 

Indeed, this makes the proposed models able to provide adaptable parameter specifications. 

This enable to fine tune different system parameters based on each application requirements.  
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The models proposed in this dissertation aim to offer a new framework towards WSN control 

by considering the degree distribution and evolution properties. By using the universal 

principles found in many natural and biological networks we hope that improved Quality of 

Service expectations can be achieved as a result of self-organization through a scale-free degree 

distribution. 

 

Future work can look at the degree distribution of all the clusters in the network. Moreover, 

forming the whole network of clusters at the same time the clusters are being constructed 

would make the control of the network more dynamic. So the clusters and cluster heads are 

dynamically adapting. 

 

In regards to maintaining the network that is formed using our approach, our suggestion would 

be after forming the clusters, and the network of clusters to continuously update the network 

state and adapt the connections accordingly. Therefore, this may lead to self-healing 

capabilities. This will further lead to greater self-organization results.  

 

Further work will also explore whether our findings reflect endorsement of a specific situation. 

One way to test this is to manipulate attacks on the system by destroying certain percentage of 

nodes in order to amplify the vulnerability of the network before organizing the network under 

the suggested models.  
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Appendix  A.  

Uniform Energy Distribution with no Energy Decrease 

 

 

clear all  

% k is the number of nodes  

k=300;  

%degree threshold  

dts=k./5;  

%Energy Threshold  

ets=0.2;  

  

%Steps to create topology matrix (topo)  

R1=round(rand(k,k));  

  

A1=R1;  

  

M1=A1-diag(diag(A1));  

M1U=triu(M1,1);  

  

topo=M1U+M1U';  

  

%find the diagonal of M1U*M1U'  

D1=sum(topo);  

  

%degree matrix MK  
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MK=zeros(k,k);  

  

for  j=2:k  

    MK(1,j)=randi(D1(j)-1,1);  

end  

  

  

%remaining energy node matrix  

ME=zeros(k,k)  

for  j=1:k  

    ME(1,j)=.3+(1-.3).*rand(1,1)  

end  

  

  

  

for  t=2:k  

%MK(2,1) at time = 1  

MK(t,t-1)=randi(D1(t-1)-1,1)  

  

%finding probablity for each active node  

x=topo(t-1,1:k);  

l=find(x==1)  

P=zeros(1,k);  

  

for  i=1:k  

    if  x(i)==1  
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        %energy and degree threshold condition  

        if  ME(t-1,i)>ets  

            if  MK(t-1,i)<dts  

                temp1=MK(t-1,i).*ME(t-1,i);  

                temp2=(sum(MK(t-1,l).*ME(t-1,l)))-t emp1;  

                P(i)=temp1./temp2;  

            end   

        end   

    end  

end  

  

temp1=P  

win=[];  

%choosing the winner nodes - nodes with highest ene rgies  

  

for  i = 1: MK(t,t-1)  

    if  any(P)~=0  

        [temp2,I]=max(temp1);  

        win=[win I];  

        temp1(I)=0;  

    end  

end  

  

MK 

win  

P 

  

%update values of winner nodes  
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MK(t,1:k)=MK(t,1:k)+MK(t-1,1:k);  

MK(t,win)=MK(t,win)+1;  

  

for  i=1:k  

    if  MK(t,i)>dts  

        MK(t,i)=dts;  

    end  

end  

  

%update of energy  

%reduction erud  

ered=.2;  

  

ME(t,1:k)=ME(t-1,1:k);  

% if any(ME(t-1,:)>ets)==1  

% ME(t,win)=ME(t,win)-ered;  

% end  

  

  

end  

ME 

MK 

close all  

  

figure  

plot(1:k,mean(ME'), '*' )  

xlabel( 'time' )  
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ylabel( 'remaining energy' )  

  

figure  

plot(1:k,mean(MK'), '*' )  

xlabel( 'time' )  

ylabel( 'degree' )  

  

X=[]  

for  i=1:k  

    X=[X; 1:k]  

end  

  

figure  

surface(X,X,MK)  

xlabel( 'time' )  

ylabel( 'node' )  

zlabel( 'degree' )  

  

figure  

surface(X,X,ME)  

xlabel( 'time' )  

ylabel( 'node' )  

zlabel( 'energy' )  

             

figure  

surface(X,MK,ME)  

xlabel( 'time' )  

ylabel( 'degree' )  
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zlabel( 'energy' )  

%  figure  

%  hist(mean(ME))  

%  ylabel('frequency')  

%  xlabel('remaining energy')  

%   

%  figure  

%  hist(mean(MK))  

%  ylabel('frequency')  

%  xlabel('degree')  
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Appendix B 

 

Normal Energy Distribution with no Energy Deacrease 

 

clear all  

% k is the number of nodes  

k=300;  

%degree threshold  

dts=k./5;  

%Energy Threshold  

ets=0.2;  

  

%Steps to create topology matrix (topo)  

R1=round(rand(k,k));  

  

A1=R1;  

  

M1=A1-diag(diag(A1));  

M1U=triu(M1,1);  

  

topo=M1U+M1U';  

  

%find the diagonal of M1U*M1U'  

D1=sum(topo);  
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%degree matrix MK  

  

MK=zeros(k,k);  

  

for  j=2:k  

    MK(1,j)=randi(D1(j)-1,1);  

end  

  

  

%remaining energy node matrix  

ME=zeros(k,k)  

for  j=1:k  

    ME(1,j)=.3+(1-.3).*randn(1,1)  

end  

  

  

  

for  t=2:k  

%MK(2,1) at time = 1  

MK(t,t-1)=randi(D1(t-1)-1,1)  

  

%finding probablity for each active node  

x=topo(t-1,1:k);  

l=find(x==1)  

P=zeros(1,k);  

  

for  i=1:k  
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    if  x(i)==1  

        %energy and degree threshold condition  

        if  ME(t-1,i)>ets  

            if  MK(t-1,i)<dts  

                temp1=MK(t-1,i).*ME(t-1,i);  

                temp2=(sum(MK(t-1,l).*ME(t-1,l)))-t emp1;  

                P(i)=temp1./temp2;  

            end   

        end   

    end  

end  

  

temp1=P  

win=[];  

%choosing the winner nodes - nodes with highest ene rgies  

  

for  i = 1: MK(t,t-1)  

    if  any(P)~=0  

        [temp2,I]=max(temp1);  

        win=[win I];  

        temp1(I)=0;  

    end  

end  

  

MK 

win  

P 
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%update values of winner nodes  

MK(t,1:k)=MK(t,1:k)+MK(t-1,1:k);  

MK(t,win)=MK(t,win)+1;  

  

for  i=1:k  

    if  MK(t,i)>dts  

        MK(t,i)=dts;  

    end  

end  

  

%update of energy  

%reduction erud  

ered=.05;  

  

ME(t,1:k)=ME(t-1,1:k);  

% if any(ME(t-1,:)>ets)==1  

% ME(t,win)=ME(t,win)-ered;  

% end  

  

  

end  

ME 

MK 

close all  

  

figure  

plot(1:k,mean(ME'), '*' )  
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xlabel( 'time' )  

ylabel( 'remaining energy' )  

  

figure  

plot(1:k,mean(MK'), '*' )  

xlabel( 'time' )  

ylabel( 'degree' )  

  

X=[]  

for  i=1:k  

    X=[X; 1:k]  

end  

  

figure  

surface(X,X,MK)  

xlabel( 'time' )  

ylabel( 'node' )  

zlabel( 'degree' )  

  

figure  

surface(X,X,ME)  

xlabel( 'time' )  

ylabel( 'node' )  

zlabel( 'energy' )  

             

figure  

surface(X,MK,ME)  

xlabel( 'time' )  
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ylabel( 'degree' )  

zlabel( 'energy' )  

%  figure  

%  hist(mean(ME))  

%  ylabel('frequency')  

%  xlabel('remaining energy')  

%   

%  figure  

%  hist(mean(MK))  

%  ylabel('frequency')  

%  xlabel('degree')  
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Appendix C 

Normal Energy Distribution with Energy Decrease 

 

clear all  

% k is the number of nodes  

k=10;  

%degree threshold  

dts=k./2;  

%Energy Threshold  

ets=0.2;  

  

%Steps to create topology matrix (topo)  

R1=round(rand(k,k));  

  

A1=R1;  

  

M1=A1-diag(diag(A1));  

M1U=triu(M1,1);  

  

topo=M1U+M1U';  

  

%find the diagonal of M1U*M1U'  

D1=sum(topo);  

  

%degree matrix MK  
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MK=zeros(k,k);  

  

for  j=2:k  

    MK(1,j)=randi(D1(j)-1,1);  

end  

  

  

%remaining energy node matrix  

ME=zeros(k,k)  

for  j=1:k  

    ME(1,j)=.3+(1-.3).*randn(1,1)  

end  

  

  

  

for  t=2:k  

%MK(2,1) at time = 1  

MK(t,t-1)=randi(D1(t-1)-1,1)  

  

%finding probablity for each active node  

x=topo(t-1,1:k);  

l=find(x==1)  

P=zeros(1,k);  

  

for  i=1:k  

    if  x(i)==1  
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        %energy and degree threshold condition  

        if  ME(t-1,i)>ets  

            if  MK(t-1,i)<dts  

                temp1=MK(t-1,i).*ME(t-1,i);  

                temp2=(sum(MK(t-1,l).*ME(t-1,l)))-t emp1;  

                P(i)=temp1./temp2;  

            end   

        end   

    end  

end  

  

temp1=P  

win=[];  

%choosing the winner nodes - nodes with highest ene rgies  

  

for  i = 1: MK(t,t-1)  

    if  any(P)~=0  

        [temp2,I]=max(temp1);  

        win=[win I];  

        temp1(I)=0;  

    end  

end  

  

MK 

win  

P 

  

%update values of winner nodes  
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MK(t,1:k)=MK(t,1:k)+MK(t-1,1:k);  

MK(t,win)=MK(t,win)+1;  

  

for  i=1:k  

    if  MK(t,i)>dts  

        MK(t,i)=dts;  

    end  

end  

  

%update of energy  

%reduction erud  

ered=.05;  

  

ME(t,1:k)=ME(t-1,1:k);  

if  any(ME(t-1,:)>ets)==1  

ME(t,win)=ME(t,win)-ered;  

end  

  

  

end  

ME 

MK 

close all  

  

figure  

plot(1:k,mean(ME'), '*' )  

xlabel( 'time' )  
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ylabel( 'remaining energy' )  

  

figure  

plot(1:k,mean(MK'), '*' )  

xlabel( 'time' )  

ylabel( 'degree' )  

  

X=[]  

for  i=1:k  

    X=[X; 1:k]  

end  

  

figure  

surface(X,X,MK)  

xlabel( 'time' )  

ylabel( 'node' )  

zlabel( 'degree' )  

  

figure  

surface(X,X,ME)  

xlabel( 'time' )  

ylabel( 'node' )  

zlabel( 'energy' )  

             

figure  

surface(X,MK,ME)  

xlabel( 'time' )  

ylabel( 'degree' )  



146 

 

zlabel( 'energy' )  

%  figure  

%  hist(mean(ME))  

%  ylabel('frequency')  

%  xlabel('remaining energy')  

%   

%  figure  

%  hist(mean(MK))  

%  ylabel('frequency')  

%  xlabel('degree')  
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