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Abstract  

Science and engineering communities have given the synthesis of vertically 

aligned single walled carbon nanotubes (VA-SWNTs) considerable attention 

due to their attractive physical properties, unique morphology, and better 

potential for building advanced devices than those with asymmetric and 

entwined carbon nanotubes (CNTs). Chemical vapor deposition (CVD) is one of 

several viable methods for growing VA-SWNTs, which is well known for its 

economic viability and good yield of VA-SWNTs. Utilizing Co catalyst (0.5 ~ 1 

nm thick) supported on an Al/SiO2 multilayer substrate and a hydrocarbon 

feedstock, VA-SWNTs are grown in excess of a millimeter height. 

To control the CVD process to selectively produce tall VA-SWNTs, one has to 

use the right combination of process inputs such as gas flow rate, chamber 

temperature, and chamber pressure. This dissertation investigates their main 

effects and interactions on VA-SWNT yield and length by conducting design of 

experiments and analysis on the metamodel of the CVD process.  The artificial 
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neural network (ANN) based metamodel was constructed using the 

experimental data. 

The interactions among control variables and response surface plots show that 

pressure and temperature are the most significant CVD process control 

variables to selectively produce VA-SWNTs.  In addition, the analysis confirms 

that higher temperature and higher pressure will result in a better yield of VA-

SWNTs. In contrast, the analysis points out that the flow rate and the pressure 

are the most statistically significant factors that influence the length of VA-

SWNTs. The response surface graphs indicate that higher flow with lower 

pressure will consistently yield tall VA-SWNTs. We found that gas flow rate is 

the most significant of the control variables and only the optimum value of the 

gas flow rate can ensure the growth of tall VA-SWNTs. We also found that the 

interaction of gas flow rate with chamber temperature and pressure is 

extremely important to ensure the quality of VA-SWNTs. This observation 

indicates that dynamic pressure of the fluid in the chamber affects the quality of 

VA-SWNTs grown on the substrate. We have also found out that flow rate less 

than 150 sccm and a growth time of 20 minutes are suitable for the repeatability 
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of medium length VA-SWNTs. Outcomes of this investigation are beneficial for 

moving the CVD process closer to producing VA-SWNTs on large mass-

produced scale. 
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1. Introduction 

Materials at the nanoscale exhibit unparalleled physical and chemical 

characteristics in contrast to the macro scale because of the Quantum 

phenomena [1]. In addition, mass-producing those materials 

(nanomanufacturing) does not receive as much funding as dedicated to their 

science [2]. Chemical vapor deposition (CVD) is a common nanomanufacturing 

process for growing vertically aligned single walled carbon nanotubes (VA-

SWNTs). It is expected to enable the scale-up of CNT production. However, the 

fact that CVD yields only a small fraction of VA-SWNTs makes it hard to scale 

up production [3]. To move nanoscience from labs to mass production, a 

multidisciplinary scientific approach is needed.  

Our proposed approach aims to analyze experimental data from a CVD 

process, build neural network models, and perform an experimental design 

analysis with the goal of relating the CVD input parameters to the 

characteristics of the VA-SWNTs to gain better understanding of their 

properties. There are many variables influencing the CVD process; some of 

those variables include catalyst type, particle size, surface roughness, reactant 
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composition, etchant composition, reactant pretreatment, and gas flow rate. 

Our objective is to evaluate all input variables statistically to find the significant 

ones. Figure 1.1 shows the input output diagram for VA-SWNTs growth using 

CVD process.  

 

Figure 1.1 CVD of VA-SWNTs input output diagram (Co: Cobalt, C: Carbon) 

The figure shows the controllable variables (process inputs), and the key 

performance indicators (process outputs). Superior morphology and fascinating 
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physical features of VA-SWNTs can result in interesting applications. 

Therefore, we need to address the control of their growth and length. Growing  

VA-SWNTs on a substrate surface is an important step toward manufacturing 

nanoscale devices [4].. Here are the main objectives of this dissertation 

1. Build a deep understanding of CVD based VA-SWNTs growth processes 

2. Screen available optimization methods to identify suitable designs 

3. Employ the most suitable design 

4. Analyze the design results and make recommendations 

To achieve the above objectives we plan to analyze a data set from a CVD 

machine and perform statistical analysis. In order to relate the CVD input 

parameters to the characteristics of the VA-SWNTs, we correlate the input to 

the output to allow the optimization and control the CVD process to gain better 

VA-SWNTs properties.  Figure 1.2 shows the framework flow of the modeling 

process. 
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Figure 1.2 Schematic of the modeling process framework 

The data analysis for this dissertation is driven by a null hypothesis based on 

current publications literature review. The review is related to the CVD grown 

VA-SWNTs synthesis process and growth mechanism. For that purpose, the 

CVD is presumed to be controllable by researchers to improve the yield. The 

expectation is that an understanding of the process controllable variables will 

be developed with performing the examination and analyzing the data. That 

will result in better designs to control the whole growth process. This 

dissertation research was created based upon certain assumptions. Input 
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variables are independent and will yield statistical significant results. Without 

such assumption the experimental design results will be hindered and obsolete. 

All the efforts are forced to obtain the best quantitative and qualitative data for 

the analytical model. Similar assumptions will be applied to the data analysis.  

This dissertation will add to the understanding of the VA-SWNTs fabrication 

Process, however, certain limitations to the study exist. The data were collected 

using traditional sampling methods, which only assess data perceptions of the 

independent and dependent variables at one point in time. 

The analysis of the CVD grown CNTs process was reported in the literature 

before but not for the current process under study. Hence, all variables have to 

be considered without the benefit of previous recommendations from old 

experiments. The dissertation will examine a metamodel of the CVD VA-

SWNTs synthesis process. The Purpose of the Study is to improve the current 

understanding of the VA-SWNTs yield controllability and length. The study 

significance iies in the results of such purposes achieved in using such VA-

SWNTs in nanomanufacturing.  

The dissertation content is organized as follows. Chapter 2 will go over the 

properties and growth mechanism of VA-SWNTs. In addition, it will also 
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describe their importance toward the advancement of nanotechnology. 

Moreover, a brief introduction to experimental designs is described including 

design of experiment for (Full/Fractional Factorial Designs, Taguchi), Artificial 

Neural Networks, and some instances where CNT growth was enhanced by an 

experimental design.  The method for VA-SWNTS growth and catalyst 

preparation with small illustration of the characterization method are discussed 

in Chapter 3.  Chapter 4 discusses the VA-SWNTs controllability by a 

metamodel of an ANN phase and an Experimental Design phase. Chapter 5 

will start by an analysis of the VA-SWNTs length assurance experiments results 

followed by a general analysis using a similar to chapter 4 metamodel. CVD gas 

flow rate relation with the growth time will be analyzed in chapter 6. In chapter 

7, we will detail some scientific formulation of the previous metamodels.   

Finally, Chapter 8 will present the conclusion and touch on the future research 

directions. 
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2. Literature Review 

This chapter will give a background on VA-SWNTs and Computational 

methods related to this dissertation. The VA-SWNTs section is related to their 

remarkable properties and how they were discovered. Then, an illustration of 

how they are grown with CVD, growth mechanism and possible future 

applications. Here, Computational methods are discussed and related to the 

research proposed metamodel. Specifically Artificial neural networks and 

design of experiments will be introduced. 

2.1 Vertically Aligned Single Walled Carbon Nanotubes  

Iijima et al. used arc discharge method to discover CNTs in 1991 (see Figure 2.1) 

and it fueled the research about those tubes [5]. Superior morphology and 

fascinating physical features of vertically aligned single walled carbon 

nanotubes (VA-SWNTs) can result in interesting applications. Therefore, we 

need to address the control of their structural growth and organization. 

Growing VA-SWNTs on a substrate surface is an important step toward 

manufacturing nanoscale devices like  field emission displays [4].  
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Figure 2.1 Homogenous MWNT samples in a network characterized by TEM 

done by Iijima in 1991 [6] 

In general, they bears higher physical quality than other nanoscale carbon 

materials [4].  Furthermore, their astonishing purity of 99.98% in a sample 

present them as being the purest and highest quality of carbon nanotubes [6].  

Their ratio of SWNT to catalyst weight exceeds 50,000%  to the other processes 

[6]. We can define Multi Walled Carbon Nanotubes (MWNTs) as multiple 

rolled concentric tubes of graphite while Single Walled Carbon Nanotubes 

(SWNTs) has only one tube [1]. Carbon comes in different molecular structure 

like diamond and graphite (Figure 2.2).  
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Figure 2.2 Schematic of the types of pure Carbon forms like Carbon 

Nanotubes, Graphite and Diamond [7] 

CNT science is a well-researched topic in literature especially for Multi Walled 

Carbon Nanotubes (MWNTs)[7]. However, manufacturing those tubes at a 

large scale is still an emerging research area [8]. Hence, several researchers are 

investigating the large-scale production of CNTs [9]. Our research considers the 

nanomanufacturing of VA-SWNTs at a mass production scale. Current methods 

for producing VA-SWNTs by CVD have high quality and yield in comparison 

to other methods like arc discharge and laser ablation.  
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The task to review VA-SWNTs in literature is made challenging by several 

issues. Mainly, there is huge variability of carbon nanotubes. In addition, there 

is large amount of published literature researching their physical properties as 

pure or compound materials. That literature is produced over a long period and 

is generated under very different environments. Therefore, most probably it 

discusses very different experimental conditions. Those reasons have driven us 

to focus our analysis on more recent work, assuming that older studies are 

made obsolete by the new ones. 

2.1.1 Experimental Methods 

There are three major ways to grow CNTs (SWNT, MWNTs, VA-SWNTs): 

electric arc discharge, laser ablation, and chemical vapor deposition (CVD).  Arc 

discharge was the method used to discover CNT in 1991 by Iijima [5]. Here is a 

brief discussion about those main techniques and their characteristics. 

Electric Arc Discharge 

In 1991 Iijima discovered MWNT by the Electric Arc Discharge process [10]. 

Figure 2.3 shows a drawing of the arc discharge machine [11].  The anode and 

cathode are made of graphite. It works by flowing electricity between the anode 
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and cathode where a plasma will occur resulting in a CNTs accumulated on the 

cathode. Other variables in the process include high temperatures (3000-4000 K) 

and the presence of inert gas in the chamber [11]. 

 

Figure 2.3 Schematic of the arc-discharge apparatus employed for CNT 

production [12] 

The structure and yield of CNTs synthesized by this reactor are comparable to 

the CVD processes. Therefore, current researchers resolve to the CVD especially 

that it is less expensive and can be operated at lower temperatures. 
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Laser Ablation Method 

An alternative to using electric arc discharge is laser ablation. As shown in 

Figure 2.4 it utilizes high-energy lasers in high temperature furnaces [11]. The 

laser will be used to vaporize metallically catalyzed graphite in the presence of 

high temperatures. Similar to the previous process this process is less usable 

than the CVD especially that lasers are very costly. 

 

Figure 2.4 Laser ablation schematic for growing CNTs [12] 

Chemical Vapor Deposition 

In the CVD furnace, a carbonaceous gas is flown over a metallic catalyst. The 

carbon under pressure will react with the catalyst and start growing to form the 
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CNT (Figure 2.5) [7]. In contrast, to the previous methods the CVD factors 

involved are of moderate ranges. Consequently, the viability of the process for 

high yield is promising especially if more research is done in the area. Current 

methods for producing CNT by CVD have high quality and yield in 

comparison to other methods.  

 

Figure 2.5 Schematics of ethanol CVD systems and experimental procedures 

for the growth of VA-SWNTs 

Historically, the research and discoveries in CNTs were happening in rapid 

pace (Table 2.1) [12]. CNTs researchers come from different fields with different 

scientific background [5]. Such criteria enabled the development of different 

techniques and different materials to be utilized.   
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Table 2.1  Historical timeline of CNT growth methods [19] 

Discovery Year Method Carbon Nanotubes 

1 1991 Arc discharge Multi walled 

2 1993 Pre-deposited CVD Multi walled 

3 1993 Arc discharge Single walled 

4 1995 Laser ablation Multi walled 

5 1995 Laser ablation single walled 

6 1996 Pre-deposited CVD Single walled 

7 2000 Flame Multi walled 

8 2002 Flame Single walled 

The current VA-SWNTs fabrication methods like electric arc discharge and 

laser ablation are not suitable for high-quality, high-purity and inexpensive 

VA-SWNTs mass production [4]. Therefore,  mass production issues such as 

continuous CVD production and increasing the substrate region while 

decreasing it is cost need to be studied  [4]. Moreover, the overall cost must be 

cut down to the level of common industrial materials like activated carbon [4].   

 In contrast to other methods, CVD based growth processes  produce higher 

quality VA-SWNTs with higher process yield [5]. In addition, CVD processes 
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require process variables such as temperature and pressure in moderate ranges, 

reflecting its potential as cost effective manufacturing technique[13].   

In 1996, multi-walled  Carbon nanotubes were first aligned utilizing a CVD 

process [14]. However, researchers could not grow VA-SWNTs until Murakami 

et al. demonstrated their growth in 2004 [15]  which were short ~1.5 μm and not 

suitable for manufacturing devices. Later, Hata  et al.  used the assistance of 

water to grow VA-SWNTs to 2500 μm [6]. The addition of water prolonged the 

catalyst lifetime resulting in taller tubes [6]. 

The majority of SWNTs  grown by CVD use a flow of a gaseous carbon 

feedstock over catalyst nanoparticles at medium to high temperature, which 

reacts with the catalyst nanoparticles [7]. During CVD growth, VA-SWNTs self-

assemble into vertical structures on the patterned substrate at the catalyst 

locations [4,16]. They self-orient and grow perpendicular to the substrate 

because of the of van der Waals forces rigidity [7].  

Researchers have already mastered the alignment of multiwall carbon 

nanotubes while VA-SWNTs alignment understanding is still a challenging task 

[17]. Multiple researchers have studied their growth conditions and found that 

uncontaminated CVD chamber, gas flow rate and water addition are  important 
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control factors and that the vertical or parallel alignment of SWNTs depends 

largely on the density of catalyst particles and their distribution in the substrate 

[17]. 

2.1.2 Growth Mechanism 

Forming CNT on a substrate surface is an important step toward 

manufacturing nanoscale devices. For instance, the vertical forming of CNTs is 

particularly essential for field emission displays. The rigidity of MWNT made 

them easier for alignment than the flexible SWNT. That VA-SWNTS has higher 

quality than other materials.  

 

Figure 2.6 (a) An image of the 2.5-mm-height VA-SWNTS (b) & (c) SEM 

images of VA-SWNTs [6] 
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Another method of achieving VA-SWNTs is with metallic templates. As shown 

on Table 2.2 researchers used a lot of different substrate materials to produce 

the tubes [12]. Recently, more focus is been on Silicon material substrates. By 

using Silicon, templates with a lot of different nanoscale carbon are produced. 

For example, hierarchically branched nanoscale porous can be produced with a 

patterned catalyst. 

Table 2.2 Researchers used many substrate materials to produce the tubes [19] 

Year Substrate Catalyst Source CVD CNTs 

1996 Silica Fe Acetylene Pre-deposited metal 

catalyst 

MWNTs 

1997 Silica Co Triazine Pre-deposited metal 

catalyst 

MWNTs, 

Pattern 

1998 Quartz Quartz Quartz Plasma-enhanced MWNTs 

1999 Porous Si Fe Ethylene Pre-deposited metal 

catalyst 

MWNTs, 

Pattern 

1999 Si Pd Methane Plasma-enhanced MWNTs 

2000 Si Co Acetylene Pre-deposited metal 

catalyst 

MWNTs 

2004 Quartz Co/Mo Ethanol Pre-deposited metal 

catalyst 

SWNTs 

2004 Si, Quartz, Fe, Al/Fe, Ethylene Pre-deposited metal SWNT, 
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Metal Foil Al2O3/Fe 

Al2O3/Co 

catalyst Pattern 

2005 Si Al2O3/Fe/

Al2O3 

Methane Plasma-enhanced SWNTs 

There are four main assumptions about SWNTs growth mechanism [7]. First, a 

carbon feedstock and active transition metal nanoparticles are necessary for 

their growth unless high temperature is used to heat graphitic carbon 

nanoparticles. Second, their diameter is set from the onset of the nanotubes 

growth and only a small change will happen if there is a defect. Third, both the 

catalyst nanoparticle and the SWNT have the same size (diameter). Fourth, one 

catalyst nanoparticle will result in only one nanotube unless the diameters are 

different.  

There are two types of CNTs diffusion on the substrate, surface or bulk carbon 

diffusion  [7]. Surface diffusion is related to substrate growth where catalyst 

nanoparticles are deposited on a substrate such as SiO2 [7]. The carbon cracks 

and nucleates around the solid catalyst and start growing SWNT [7].  Bulk 

diffusion can be called a gas phase growth because the formation of catalyst 

and nanotube occur in the air [7]. Here the metal nanoparticle dissolve the 

cracked carbon until saturation and the growth starts [7]. The growth continues 
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on both types until the carbon source is stopped or the particle is fully coated 

with amorphous or graphitic carbon [7].  

VA-SWNTs grows either from the catalyst base or from tip and its growth type 

depends on the position and size of the catalyst particles (See Figure 2.7) [7]. 

Thus, the particles detach from the surface of the support material and move at 

the tip of growing CNTs for tip-growth. The base growth happens when 

nanoscale particles remain attached to the supporting material and CNTs grow 

upwards from those metal particles. Figure 2.7 shows both CNTs growth 

mechanism.  

 

Figure 2.7 CVD grown VA-SWNTS base or tip growth mechanism schematic 

with catalyst as Cobalt 
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2.1.3 Applications 

Remarkable applications may result from VA-SWNTs superior morphology 

and fascinating physical features. Transport processes for gas and liquid 

through CNTs are subjects of deep theoretical and experimental research.  One 

study uses VACNTs to make gas and liquid membranes [18]. Figure 2.8 shows 

a Scanning electron microscope image of that membrane.  

 

Figure 2.8 Scanning electron microscope image of a VA-CNTs membrane 

(scale bar = 10 μm) [18] 

The VA-CNTs hydrophobic graphitic walls, and nanoscale internal diameters 

give rise to an exceptional physical process of ultra-efficient water and gas 



 

21 

 

transport [19]. Water and gas molecules move through nanotube pores 20 or 30 

times faster than through other pores of comparable size (see Figure 2.9). 

Hence, they will aspire future applications for water desalination, water 

purification, nanofiltration, and gas separation.  

 

Figure 2.9 Histogram of observed permeability in VA-CNTs [18] 

Another application is made from an array of 5 mm aligned titanium oxide/ 

vertically aligned carbon nanotube (TiO2/CNT) [20]. It was prepared by 

electrochemically coating the CNTs with a uniform layer of TiO2 nanoparticles 

[20]. The resultant arrays exhibit minimized recombination of photo induced 

electron–hole pairs and fast electron transfer from the aligned TiO2/CNT arrays 

to external circuits [20]. This enables the assembly of TiO2/CNT arrays for 
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various device applications, like photovoltaic cells for harvesting solar energy. 

Figure 2.10 shows image of 5 mm long CNT arrays with electrodeposition of 

TiO2. 

 

Figure 2.10 5 mm long TiO2/CNT arrays [20] 

2.2 Computational Methods 

Our proposed analysis approach uses Artificial Neural Network (ANN) and 

Design of Experiment (DOE). The network we will use in our work is A 

Multilayer Perceptron (MLP).  Statistical experimental design can be defined as 

the science of obtaining the largest possible amount of information about a 

system with the smallest number of experiments [21]. Contrary to ANN, there 

is a lot of research utilizing DOE in nanotechnology [8]. For example, 



 

23 

 

researchers used full and fractional factorial designs to optimize SWNTs [22-

25].   

2.2.1 Multi-Layer Perceptron 

MLPs are an important class of highly connected feed-forward neural networks 

(Figure 2.10). Typically, an MLP consists of a layer of input nodes, one or more 

layers of hidden neurons, and a layer of output nodes. The input signal 

propagates forward layer by layer with every neuron in the layers representing 

a smooth and differentiable nonlinear activation function. The hidden neurons 

help the network learn complex features of the relation between input patterns 

and outputs. MLPs use a popular supervised learning algorithm named back 

propagation, which works in two phases [26]. 
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Figure 2.11 Architecture of a Multilayer Perceptron 

2.2.2 Design of Experiments 

DOE was first used  first used in agriculture and has been for over 70 years. 

Before information technology DOE was a hard job which requires a skilled 

statistician with a wholesome physical knowledge of the process under study to 

make an inference about the process [8]. 

In DOE, factors are the controllable parameters of the process, which have 

different levels usually determined by scientific method or experience. Barker et 

al. illustrated all of the possible factorial designs in Table 2.3 where the columns 
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are number of factors , rows are number of runs, and III, IV etc. is the fractional 

factorial designs [27]. 

Table 2.3 The feasible factorial design either for full or fractional factorial 

designs, which can be utilized to optimize processes 

 

Now we can design the experiment in less time and even analyze the output 

with vast speed. Toward this end, choosing a design is the first step, which 

requires an understanding of the process input and output. The most used 

designs are full and fractional factorial design with high and low levels (two 

levels). Other designs like Box–Behnken Design (BBD) are more geared toward 

studying the curvature of the design after optimality to deeper understanding 
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of the variables interaction. Another technique is the Taguchi methodology 

where the researcher chooses an array and optimizes the process based on it, as 

mentioned on Bourgeois et al. which is also illustrated on Table 2.4  [28].  

Table 2.4 Taguchi Designs orthogonal arrays 

 

2.3 Design of Experiments for CVD Grown Carbon 

Nanotubes 

This sections will present instances of using experimental designs in 

nanotechnology. Currently, the research on using ANN to study 

nanotechnology is very limited. The number of journals, which include CNTs 
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DOE works, is also very limited. Moreover, most of those journals are related to 

the nanoscience. Hence, DOE utilization for producing CNTs is still limited and 

there is a lot of work to move it to mass production scale. Table 2.5 shows 

number of publications available where they used DOE with nanoscale carbon 

materials [13,22-25,29-43]. 

Table 2.5 Journals including nanotechnology papers utilizing DOE 

Item Year Papers Journal 

1 2007 1 AIP Conference Proceedings 

2 2004 1 Carbon nanotubes. MRS BULLETIN 

3 2007 1 Nanotechnology 

4 2007 1 Analytica chimica acta 

5 2010 1 Analytical and bioanalytical chemistry 

6 2008 1 Biotechnology Letters 

7 2005,2005, 

2008 

3 Carbon 

8 2007 1 IEEE Transactions on Reliability 

9 2007 1 Industrial & Engineering Chemistry 

Research 

10 2008 1 International Journal of 

Nanomanufacturing 

11 2007 1 Journal of Materials Science: Materials in 

Electronics 

12 2005 1 Journal of Nanoscience and 

Nanotechnology 

13 2009 1 Journal of Quality Technology 

14 2006 1 Journal of Vacuum Science & Technology 

B: Microelectronics and Nanometer 

Structures, 

15 2004,2005 2 Microporous and Mesoporous Materials 
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16 2009 1 Polymer Letters 

17 2007 1 Powder Technology 

18 2007 1 Quality Progress 

19 2006 1 Thin Solid Films 

Most of the papers use full factorial design because of its understanding ease 

and depth of information. Such technique is very useful for a technology in it 

start like CNTs. Those designs are useful in most nanotechnology experiments 

especially for the physical characteristics enhancements of innovative 

nanostructures. 

Table 2.6 illustrates instances of research using DOE and CNT. Table also 2.6 

shows how most researchers often use the full factorial than other techniques. 

Using fractional factorial design is used  if the number of runs is high like for 

two level seven factors experiment (27=128). However, this technique will help 

when the full design with high number of runs is not feasible and the goal is to 

get the main effects and low order factors interactions. Table 2.7 explains in 

more details why some researchers use full or the other techniques. 

Table 2.6 Publications using variable conventional processes and designs for 

the optimization of carbon nanotubes characteristic [23-26,31,32,34,38,45-49] 

Authors Year Design Runs TYPE Title 

Cotasanchez, et 2005 FFD 16 BUCKY Induction plasma 
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al. synthesis of fullerenes 

and nanotubes using 

carbon black–nickel 

particles 

Desai, et al. 2008 FFD 16 SWNT Understanding 

conductivity in a 

composite resin with 

Single Wall Carbon 

Nanotubes (SWCNTs) 

using design of 

experiments 

Kukovecz, et al. 2005 Fractional 22 SWNT Optimization of CCVD 

synthesis conditions for 

single-wall carbon 

nanotubes by statistical 

design of experiments 

(DoE) 

Liu, et al. 2007 FFD 8 CNT Electrocatalytic detection 

of estradiol at a carbon 

nanotube |Ni (Cyclam) 

composite electrode 

fabricated based on a 

two-factorial design. 

Ford, N. 2007 FFD 8 CNT Plasma enhanced growth 

of carbon nanotubes 

Nourbakhsh, et 

al. 

2007 Fractional 25 MWNT Morphology 

optimization of CCVD-

synthesized multiwall 

carbon nanotubes, using 

statistical design of 

experiments 

Yang, et al. 2005 FFD 27 SWNT Statistical design of C10-

Co-MCM-41 catalytic 

template for synthesizing 

smaller-diameter single-
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wall carbon nanotubes 

Darsono, et al. 2007 FFD 8 CNT Field emission properties 

of carbon nanotube 

pastes examined using 

design of experiments, 

Gou, et al. 2004 FFD 8 BUCKY Experimental design and 

optimization of 

dispersion process for 

single-walled carbon 

nanotube bucky 

dissertation 

Cota-Sanchez, G 2003 FFD 16 MWNT Synthesis of carbon 

nanostructures using a 

high frequency induction 

plasma reactor 

Doddasanagouda

, S. 

2006 FFD 8 SSNT Growth and 

Deterministic Assembly 

of Single Stranded 

Carbon Nanotube 

Kuo, et al 2005 Fractional 16 MWNT Diameter control of 

multiwalled carbon 

nanotubes using 

experimental Design 

Yang, et al. 2004 Fractional 28 SWNT Statistical analysis of 

synthesis of Co-MCM-41 

catalysts for production 

of aligned single walled 

carbon nanotubes 

(SWNT) 

Yeh, C. 2004 Fractional 30 Buckypaper CHARACTERIZATION 

OF NANOTUBE 

BUCKYDISSERTATION 

MANUFACTURING 

PROCESS 
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Table 2.7 Nano-manufacturing improvements techniques 

Technique Nano-manufacturing 

Fabrication method 

Examples 

Full Factorial Designs  Those designs are useful in 

most nanotechnology 

experiments especially for the 

physical characteristics 

enhancements of innovative 

nanostructures 

Induction 

Plasma (new 

method but 

currently with 

low yield) 

Fractional Factorial 

Designs  

This technique will help 

when the full design high 

number of runs is not 

feasable and the goal is to get 

the main effects and low 

order factors interactions 

Catalyst 

Chemical vapor 

deposition (big 

number of 

variables) 

Non-Conventional 

Designs 

Such designs are used when 

techniques efficiency is not 

essential for the model 

Injection 

Molding (old 

techniques) 

An example of the use of full factorial can be seen in the dissertation about 

Induction Plasma [33].  This process is new and currently has low yield in 

comparison to other CNT synthesis methods. So, the author resolved to full 

design to get the complete statistical analysis for factors interactions. In 

contrast, other publications used fractional factorial for CVD. CVD is an old 

technique with most variables is known and only small fraction of their 

interactions is important [44].  
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Figure 2.12 Most researchers utilize Full Factorial designs for their 

publications instead of other techniques like Fractional Factorial and Taguchi 

In addition, there are some instances where some investigators used orthogonal 

array to study CNT (See figure 2.11).   Such designs are used when technique’s 

efficiency is not essential for the model. For example, the Injection Molding 

paper used an old technique’s where there is no need for a full statistical 

analysis. Here the author can just study the new factors affecting the process 

rather than studying all the factors. In addition, only suspected interactions are 

examined since others might already have been proven insignificant. Figure 

2.12 show an overview of the number of papers over the years who used 

orthogonal arrays and Table 2.8 details their titles and other information. 

RSM

Others

Fractional

FFD

Taguchi
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Figure 2.13 Histogram of years 2004-2009 of papers related to Orthogonal 

Arrays 

Table 2.8 Summary of articles in the use of Orthogonal Arrays to optimize the 

processes and designs related to carbon nanotubes [30,39,41,44,51] 

Authors Year Array TYPE Title 

Ting, et al. 2006 9 CNT Optimization of field 

emission properties of 

carbon nanotubes by 

Taguchi method 

Maheshwar, et al. 2005 18 CNT Application of the Taguchi 

Analytical Method for 

Optimization of Effective 

Parameters of the Chemical 

Vapor Deposition Process 

Controlling the Production 
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of Nanotubes/Nanobeads 

Lin, et al. 2006 9 Nano

fibers 

Improvement on 

superhydrophobic behavior 

of carbon nanofibers via the 

design of experiment and 

analysis of variance 

Jahanshahi, M 2007 16 CNT Application of Taguchi 

Method in the Optimization 

of ARC-Carbon Nanotube 

Fabrication 

Prashantha, K. 2009 16 MW

NT 

Taguchi analysis of 

shrinkage and warpage of 

injection-moulded 

polypropylene/multiwall 

carbon nanotubes 

nanocomposites 

2.3.1 Experiments and Discussion 

Three papers used DOE to optimize CNTs fabrication will be discussed here 

[34, 36, 40]. The papers used two types of CVD to grow the CNTs, namely, 

catalyst chemical vapor deposition (CCVD) and vertical chemical vapor 

deposition (VCVD). Two papers research the use of CCVD to optimize the 

diameter and synthesis condition of CNTs. Those papers have similar input and 
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output variables but one of them synthesized SWNT and the other MWNT. 

Figure 2.13 shows a schematic of their CVD system.  

 

  Figure 2.14 Schematic diagram of the CCVD setup for carbon nanotube 

synthesis 

The third paper used VCVD, which has great promise for producing large 

quantities of CNT. Its vertical setup allow for the constant feeding of the 

catalyst material and carbon source to the furnace. However, it needs high 

temperature to operate and its initial capital investment is high. Figure 2.14 

shows how the vertical alignment is structured.  
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Figure 2.15 Schematic diagram of VCVD [50] 

Both methods focused on the furnace temperature as an important factor to 

study initially. Then, all of the research regardless of the analytical method used 

concluded that it is a statistical significant factor. After that, the gas flow rate 

was considered significant. For the CCVD a C2H2 source was utilized while the 

VCVD used a methane source. Both the temperature and carbon source flow 

rate ranges were moderately similar for the two processes. The third common 

factor between the processes was carrier gas flow rate. Three gases were 

considered. H2, N2 and Argon were varied dramatically between (50-2000Sccm) 

to study their effect on CNTs. Table 2.9 summarizing the techniques used and 

the results.  
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Table 2.9  CCVD and VCVD process for growing CNTs synthesis conditions, 

MRL: mean rectilinear length, C%: Carbon Deposit, QDN: quality descriptor 

number 

 Nourbakhsh et al. Kukovecz et al. Kuo et al. 

Year 2007 2005 2005 

Process CCVD CCVD VCVD 

CNTs MWNT SWNT MWNT 

Temperature 

Co 

700,800 850,900,950 1050,1150 

Carbon 

Source Flow 

Rate 

(3,12) C2H2 (5,10,15) C2H2 (125,250) CH4 

Carrier Gas 

Flow Rate 

(50,110) C2H2 (100,300,500) Ar (1000,2000) N2 

Runs 
64 = 2

6-3

+BBD 128 = 2
7-4

+BBD 32 = 2
5-1

+CCD 

Goal Diameter, MRL C%, QDN Diameter 

 (Kukovecz et al., 2005) used two level design with fractional factorial design 

[23]. They optimize the main seven factors influencing the carbon percentage 

and the ratio of radial breathing mode to the Raman spectrum d-band. The 

seven factors are reaction temperature, reaction time, preheating time, catalyst 

mass, C2H2 volumetric flow rate, Ar volumetric flow rate, and Fe: MgO molar 

ratio. The design confounds three factors using BBD and so reduces the run to 

22 instead of 128. Which is an example of DOE saving time and cost. 
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BBD used for two factorial fractional designs is illustrated in (Nourbakhsh et 

al., 2007) [31]. Six parameters (synthesis time, synthesis temperature, catalyst 

mass, reduction time, acetylene flow rate and hydrogen flow rate) were 

optimized by only 25 runs, less than 39 runs of the FFD. MWCNT 

morphological responses like the average diameter and mean rectilinear length 

(MRL). A final run was performed to check the optimality. The main factors 

which were significant are H2 flow rate, synthesis temperature and reduction 

time.  In addition, it might have been useful if the paper used response surface 

methodology to find the global optimum combination for all responses. 

Fractional factorial design was used in (Kuo, et al., 2005) to optimize MWNT 

Diameter by a CVD reaction. Equally important they utilized different tools like 

response surface methodology steepest ascent path to calibrate their findings. 

Thereupon, the diameter was controlled and precisely from 15 – 240 nm with a 

contentious CVD. 16 runs optimized the system while for full factorial it would 

need to be 32. 

From previous discussion, it is clear that DOE is practical for optimizing CNTs 

fabrication. However, it needs be done with new experiments after the 

preliminary experiments were done. The preliminary experiments will be a 
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used to setup the input and output factors of the DOE and their levels. With 

ANN, we can utilize the preliminary results to build a process metamodel. 

Then, we utilize metamodel to setup the DOE method and analysis. That 

analysis will give us a better understanding of the CNTs fabrication without 

having to do additional experiments. So, in the following chapters will be more 

discussion on that metamodel and analysis. 



 

40 

 

 

3. Experimental Setup 

This chapter will discuss growing VA-SWNTs experimental Setup and CVD 

setup. First, we describe the details of the growth system variables. Then, we 

discuss the catalyst preparation and generalization of the CVD setup especially 

the growth processes. The length controlled VA-SWNTs were synthesized by 

using an ethanol CVD technique.  

Most of the experiment setup here is similar to work published before utilizing 

ethanol based CVD to grow VA-SWNTs [23, 46]. Figure 3.1 is a schematic 

showing the ethanol CVD system and experimental procedure for the growth 

of the highly aligned CNTs. 
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Figure 3.1 Schematics of ethanol CVD systems and experimental procedures 

for the growth of VASWMTs 

The flow of the carbon source will react with the substrate in the furnace to 

form a nucleation region. The diameter of the VA-SWNTs is said to be 

determined by how fast the gas flow [44]. High or low flow means no growth of 

the CNTs.   
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3.1 System Variables 

Figure 1.1 shows the input-output diagram of the CVD process to grow VA-

SWNTs. As shown in the figure, temperature, gas flow rate and pressure are 

considered the important process inputs. VA-SWNTs length is considered the 

key performance indicator, i.e. process output. 

Input Variables 

1. CVD temperature: It is the temperature of the gas flowing through the furnace; 

it is measured by a thermocouple installed inside the furnace; the resolution of 

this measurement is 1°C. 

2. Gas flow rate: it is the volumetric flow rate of the gas flowing through the 

furnace; it is measured by flow gauge; the unit of this measurement is Standard 

Cubic Centimeters per Minute (SCCM).  

3. CVD pressure: it is the furnace pressure at the time of CNT growth; it is 

measured by a pressure gauge attached to the furnace; the control resolution of 

this apparatus is 1 Torr. 

4. Growth time: It is the duration from the time the substrate is inserted in to the 

furnace until the process is terminated; it is measured in minutes. 
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Noise Factors 

Noise factors are known or unknown variables affecting the VA-SWNTs 

growth and they have one thing in common; they are uncontrollable. Lot of 

variables affect the sample before, during, and after growth. Some are inside the 

furnace like the ambient temperature and rate of cooling. Others are from the 

environment like the gravity field. A Cause and Effect Diagram (Fishbone) 

Analysis is done to map each input variable to the output. The major inputs are 

classified to Measurement, Method, Machine, Manpower, Materials, and 

Environment.  As shown in Figure 3.2 an analysis investigation is done on each 

of those inputs to study and classify the most important of them. More 

emphasis is aimed to classify them to either controllable or non-controllable 

(noise) factors. 
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Figure 3.2 Cause and effect matrix of input variables  
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3.2 Catalyst Preparation 

Catalyst system is prepared by sputter coating a 20 nm thick Aluminum layer 

onto a SiO2 wafer as a buffer to grow VA-SWNTs. Then, the layer is exposed to 

the air for the formation of aluminum oxide. Using a sputter coater a 0.5-1 nm 

thick Cobalt (Co) catalyst film was deposited on top of the Al/SiO2 layer with 

wide dispersion. Figure 3.3 shows a schematic of the preparation process. 

 

 Figure 3.3 Schematic of the cross section of the substrate 

3.3 CVD Process Setup 

CVD setup is done through the following steps. First, put the substrate inside 

the furnace. Then, pressurize the furnace to prepare for the growth process. 

Meanwhile, a mixture of an argon-hydrogen (5% hydrogen) is supplied as the 

carrier gas to maintain the pressure at 700 Torr. Consequently, the temperature 

           SiO2 

 

 

AL 

Co 
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inside the quartz tube furnace reaches 850°C. After that, a controlled high-

purity anhydrous ethanol (99.95%) vapor is supplied from the bubbler as a 

carbon source for the growth of VA-SWNTs. Using different 

ethanol/argon/hydrogen mixture gas flow rates, different VA-SWNTs are 

synthesized. Resulting VA-SWNTs shown in two views and set of samples is 

shown in Appendix A. Also, Appendix A shows a set of pictures showing the 

whole CVD system, heat source and temperature sensor, pressure machine, 

gases locker, the ethanol bubbler, the gold plated furnace, the catalyst sputter.
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4. Process Design for Controllability 

In this dissertation, we study the controllability of VA-SWNTs growth via a 

hybrid process model of an experimental design and an artificial neural 

network (ANN). Controllability here means to selectively fabricate only VA-

SWNTs.  Our process analysis shows that CVD pressure and temperature are 

the most significant input factors [47]. In addition, interactions and response 

surface plots confirm these results and show that higher temperature and 

pressure will yield VA-SWNTs with high probability.  

Our proposed approach aims to analyze experimental data from a CVD 

process, build neural network models, and perform statistical analysis with the 

goal of relating the CVD input parameters to the characteristics of the CNTs to 

gain better understanding of CNT properties. Our objective is to evaluate all 

input variables theoretically and experimentally to find the statistically 

significant ones. 

The proposed methodology has two distinct stages. Stage 1 focuses on building 

a metamodel of the process using the experimental data and an ANN technique 

such as an MLP. A metamodel in this context captures the overarching behavior 

of the process by broadly encompassing the data available at hand. Using the 
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metamodel, Stage 2 generates multiple runs for a full-factorial experimental 

design.  

4.1 Metamodel and Design of Experiments 

 Artificial Neural Network Design Stage 

The following are the steps that make up the stage 1 of the research 

methodology.  

 Delete records with missing data. 

 Using the records retained in the previous step, train a set of MLPs for 

predicting the process outputs; given that input vectors are positioned 

densely in the input space, the neural networks is likely to learn the 

mapping between process inputs and outputs accurately. 

 Compute the prediction accuracy of each MLP and retain the network that 

gives the highest prediction accuracy. 
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 The neural network selected in the previous step serves as a meta-model of 

the process. Compute the paired difference between the actual process 

outputs and the neural-network estimated process responses.  

 Conduct the t-test on paired differences with level of significance  = 0.05. 

H0: d = 0 and H1: d > 0, where d is the mean of the paired differences. 

Compute t0, the t-statistic for the paired difference. If |t0|> tα/2 then reject 

H0; otherwise we fail to reject H0, and conclude that our metamodel is a 

viable statistical representation of the experiment. 

Design of Experiment Stage 

After building the MLP-based process metamodel, a DOE study is performed. 

Following are the steps required for their implementation. 

 Find the min-, mid- and max-points of each input variable for the records 

used for training the selected neural networks in stage 1. 

 Create the level settings for the DOE using the min-, mid-, and max-points 

of the input variables. 

 Conduct DOE analysis using the DOE runs. 
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System Variables 

The process input variables are growth time; furnace temperature, gas flow 

rate, and chamber pressure (see Figure 1.1). The process output is one of three 

possible types on of CNTs : VA-SWNTs, MWNTs or MWNTs-SWNTs mixture.  

Seven hundred and fifty samples of VA-SWNTs were used in our study (see 

Appendix B). First, we eliminated the records that lack measurement quality or 

completeness of data. This brought down the number of available records to 

702. We ignored the growth time since it has no effect on the type of CNTs that 

come out of the process.  Using these records, we trained an MLP neural 

network with three input nodes, four output nodes, and a different number of 

hidden neurons. We found that an MLP with three inputs, seven hidden nodes, 

and four outputs (3-7-4) gives the best prediction (83%) for the training data as 

shown in Figure 4.1. 
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 Figure 4.1 Classifications accuracy of process outcome 

The ANN response is obtained from the trained MLP. Then, we computed the 

response estimation error (the absolute difference between the predicted and 

actual values) for the prediction. Subsequently, the paired t-test was conducted 

on the actual process output and the neural-network estimated process 

responses. We computed t0 for the VA-SWNTs and found it to be t0= 0.76. So, 

the value of   |t0| < t0.025= 1.98, and hence we concluded that there is no statistical 

evidence to say that the behavior of the metamodel is different from that of the 

actual process. This has given us the confidence that the DOE analysis 

conducted using metamodel will be statistically valid.  
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Design of Experiments 

Using the boundaries of the final input space, we determined minimum, 

medium, and maximum values for each of the three variables. Using these 

settings, we created a full factorial experimental design (Table 4.1). The 

regression fit to the analysis show that the model is significant for prediction 

based on the Sig F value for output. 

Table 4.1 CVD three level-three variables full factorial design of experiment 

 Range and Level 

Independent Variable Factor -1 0 1 

Temperature (°C) X1 700 800 900 

Pressure (torr) X2 500 632 764 

Gas Flow Rate (sccm) X3 50 225 400 

4.2 Comparison of Main Effects Plots 

Figure 4.2 illustrates interactions plots for both key performance indicators with 

respect to the process variables. Response of those plots to the key performance 

indicators largely conforms to our general understanding of the process. Trends 

of interaction and main-effects plots for output ratios, as shown in Figure 4.1, 

are mostly converse of each other as expected. Effect of high reaction 

temperature on the controlled pressure is visible on the plot trends.  
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700. 800. 900.

Temperature (°C)

VA-SWNT

MWNTs

SWNTs & MWNTs 

none

 Pressure (torr)  500.

 Pressure (torr)  632.

 Pressure (torr)  764.

 

Figure 4.2 Interaction Plots between Temperature and Pressure for VA-

SWNTS 

Interaction plot serves as a secondary means to gauge the efficacy with which 

our metamodel simulate the actual process behavior in response to the changes 

in the input settings. Once we have the interaction plots for the generally 

anticipated behavior of the process, we go into variable specific analysis within 

the input variables space defined by the minimum and maximum values 

available in the experimental data. 
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4.3 Pareto and General Response Surface Plots 

The R-squared value for the process is 0.89 and the standard error is 0.15. The 

Pareto chart of the analysis is presented in Figure 4.3. The Figure shows that 

CVD temperature and pressure are the most statistically significant factors ( = 

0.05). Therefore, any alteration of their values will affect the desired output 

(VA-SWNTs). Response surface plots in Figure 4.4 help illustrate the details of 

the growth changing aspects of VA-SWNTs with respect to individual behavior 

of the control variables. The figure shows that there is a more rapidly increasing 

ascent of the VA-SWNTs response surface along increasing temperature and 

pressure. This provides insight into the role of high temperature and pressure 

and its positive impact on VA-SWNTs growth.  
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Figure 4.3 Process Analysis Pareto Plot 

 

Figure 4.4 Response Surface Plots of VA-SWNTs Length (Temperature VS 

Pressure)  
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5. Process Design for Length Assurance 

Chapter 4 researched the VA-SWNTs controllability while this chapter will 

research their length assurance. Chemical vapor deposition (CVD) is one of the 

several viable methods for growing VA-SWNTs. Utilizing Co supported on 

multilayer Al/SiO2 as the catalyst and a hydrocarbon feedstock, VA-SWNTs are 

grown in excess of a millimeter high. To control VA-SWNTs length, one has to 

use the right combination of process inputs such as hydrocarbon flow, growth 

time, temperature, and pressure.  

This dissertation presents a process metamodel-based full factorial 

experimental design and analysis to study the yield of tall VA-SWNTs. All of 

the process variables under the study play a role in influencing VA-SWNTs 

length; the current study which under review in the “International Journal of 

Advanced Manufacturing Technology” investigates their main effects and 

interactions [48]. The neural network metamodel-based analysis demonstrates 

that the hydrocarbon flow rate and the pressure are the most statistically 

significant factors that influence the length of VA-SWNTs. In addition, the 

response surface graph confirms the factors of significance and adds that higher 

flow with lower pressure will consistently yield tall VA-SWNTs.  
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We found that gas flow rate is the most significant of the control variables and 

only the optimum value of the gas flow can ensure the growth of tall VA-

SWNTs. We also found that the interaction of flow rate with temperature of the 

gases in the chamber is extremely significant to the quality of output indicating 

towards velocity related dynamic pressure of the fluid to be a way to simplify 

the understanding of the process. Outcomes of this investigation are beneficial 

for moving closer to producing VA-SWNTs on production scale.  

 5.1 Metamodel and Design of Experiments 

The methodology employed [26] has two phases. Phase 1 focuses on building 

the process metamodel using the experimental data. The metamodel in this 

context captures the overarching behavior of the process by broadly 

encompassing the data available at hand. Using the metamodel, in Phase 2 we 

generate multiple runs for a full-factorial experimental design to study the 

influence of the process input variables (Figure 5) on the length of the VA-

SWNTs. 

We explored different data modeling techniques keeping in view that the 

anticipated behavior of the control variables is highly nonlinear. First technique 

we considered is non-parametric regression, which is one of the most 
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established modeling techniques in statistical theory as presented by Dasguta et 

al. [27]. However, its dependence on the valid statistical design of training data 

is the major challenge to its applicability to the problem at hand. The basic 

fitting parameter, i.e. R2 for the response surface regression with linear, paired 

interaction and nonlinear coefficients was 0.32, a low number of valid results. 

Thus, we use neural networks as an alternative modeling technique. 

There are different types of neural networks like self-organizing maps and 

radial basis functions that can be used for modeling process input-output 

relationship [28]. Most MLPs contain highly connected feed-forward 

connections with a layer of input nodes, one or more layers of hidden nodes, 

and a layer of output nodes [29]. The input signal propagates forward layer-by-

layer with every node in the hidden and output layers representing a smooth 

and differentiable nonlinear activation function.  

Therefore, we used multi-layer perceptron based on back propagation 

algorithm, which is well known as a universal approximate of the non-linarites 

in the training data.  Using these experimental data records, we trained multi-

layer perceptions with three input nodes, one output node. The architecture of 

the MLP used in the current dissertation is shown in Figure 5.1. 
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Figure 5.1 Architecture of a multi-layer perceptron network 

As shown in Figure 5.2 R2 value of 0.5 for the network architecture with three 

input nodes, 21 hidden nodes and one output node renders it as a better meta-

model for the process with the available data at hand. Once the best available 

process meta-model is selected, we used a full factorial design of experiments to 

design a set of computer experiments with 30 replication for each record for 

studying the details of process behavior. We compute t0 for the VA-SWNTs 

length and find It to be t0 = 0.9188. So, the value of   |t0| < t0.025= 1.98.  On this 

basis, we decide that there is no statistical evidence to say that the behavior of 

the metamodel is different from that of the actual process with 97.25% 

confidence level. 
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Scatterplot of VA-SWNTs Length againest Estimated VA-SWNTs Length

y = -51.4918+1.015 * x; R = 0.7026; R2 = 0.4936; 0.95 Prediction Interval
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Figure 5.2 VA-SWNTs length (target) versus estimated VA-SWNTs length 

(output) regressions graph for the MLP 4-21-1 network 

Metamodel 

The following are the steps to construct the computer model:  

 Eliminate experimental data records with missing data. 

 Normalize the values of each process control variable in [0, 1] range. This 

transformation brings all control variables into the same numerical range to 

give equal weight to each variable in clustering process described below.  
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 Using the records retained in the previous step, train the neural networks 

for estimating the performance variables, given that control variable vectors 

are most likely positioned densely in the input space, the neural networks 

are likely to learn the mapping between process inputs and outputs 

accurately. 

 Compute the estimation errors, i.e., the paired differences between the 

actual process outputs and neural-network-estimated process responses.  

 By examining the distribution of the estimation errors, retain the training 

records whose estimation error is smaller than +2, and ignore the 

remaining training records; here  and  are the mean and standard 

deviation of the estimation errors respectively; this process eliminates 2.28% 

of the training records that are considered outliers. Here most of the records 

eliminated would be the ones with erroneous experimental measurements. 

 Using the records retained in the previous step, retrain the neural networks 

for estimating the process outputs; these trained neural networks serves as 

computer models of the CVD process. 

 Compute the paired difference between the actual process outputs and the 

neural-network estimated process responses. 
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 Conduct the t-test on paired differences with a level of significance, say  = 

0.05 (this can be tightened or relaxed if necessary). H0: d = 0 and H1: d > 0, 

where d is the mean of the paired differences. Compute t0, the t-statistic for 

the paired difference. If |t0|> tα/2 then reject H0; otherwise we fail to reject H0, 

which would mean that statistically we do not have evidence to the effect 

that the behavior of the metamodel is different from that of the actual 

process. 

Design of Experiment Phase 

After building the multi-layer perceptron based process metamodel, we 

perform a design of experiment study. The following steps are used to conduct 

the study. 

 Find the min-, mid- and max-points of each input variable for the records 

used in training the neural networks in phase 1. 

 Create the three level settings for the DOE using the min-, med-, and max-

points of the input variables. 

 Create 30 replications of each pattern by adding a Gaussian noise to each 

variable. The Gaussian noise was added with mean equal to zero and 
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standard deviation equal to 1% of the minimum value of each variable in the 

training data.  

 Conduct DOE analysis using the DOE runs.  

We started with 100 records of VA-SWNTs growth using the same 

experimental setup for chapter 3 (See Appendix C). First, we eliminated records 

with errors in measurements and missing data. This brought down the number 

of available records to 84 samples. The distribution of the control variables in 

these 84 records is shown in Figure 5.3. 
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Figure 5.3 Histograms showing the distribution of control variables in the 

training data for neural networks 

Using the boundaries of the final input space, we determine minimum, 

medium, and maximum values for each of the four input variables. Table 5.1 

shows the min, mid, and max values of the records used for the analysis. 

Table 5.1 Experimental records of the CVD process input and output 

variables 

Variable Min Mid Max 

CVD Temperature (°C) 870 889 900 

CVD Pressure (sccm) 700 717 764 
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Gas Flow Rate (Torr) 50 97 400 

 

5.2 Pareto Chart Analysis 

The comparison of significance of control variables, their quadratic effects, and 

or their paired interactions is presented in Pareto and the coefficients of 

regression Figure 5.4. The most significant of the variables is the quadratic 

effect of the gas flow in the chamber during growth.  After that linear effect of 

chamber pressure, interaction of pressure and flow and linear effect of chamber 

pressure bear almost the same significance of effect on the length of VA-SWNTs 

grown.  

 

Figure 5.4 Process Pareto Analysis, (A) CVD Temperature (°C), (B) CVD 

Pressure (sccm), (C) Gas Flow Rate (Torr) 
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5.3 Marginal Mean Plots 

Marginal mean plots are the generalized three level process behaviors with 

trend of each variable plotted at the mid value of its peers. Figure 5.5 presents 

the marginal mean plots of the responses of neural network meta-model to the 

full factorial design of computer experiments where A = CVD Temperature 

(°C), B= CVD Pressure (sccm), C= Gas Flow Rate (Torr).  Assessing from the 

marginal means we can see that pressure and flow are the two most significant 

control variables and flow has a two level effect on the length of VA-SWNTs.    

 

Figure 5.5 Marginal mean plots, (A) CVD Temperature (°C), (B) CVD 

Pressure (sccm), (C) Gas Flow Rate (Torr) 
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5.4 Comparison of Main Effects Plots 

In order to investigate the details of interaction between chamber pressure and 

flow of the constituent gases (Ethanol, Hydrogen, and Argon), we performed 

the main effects analysis on this interaction. Figure 5.6 shows the interaction 

plots for the key performance indicator (length of VA-SWNTs) with respect to 

the significance process variables, namely, pressure and flow rate. The 

interaction plots largely confirm our belief that the process pressure and flow 

rate are the most influential process input parameters. The sensitivity trends of 

chamber pressure, which directly relates to the availability of gases for growth 

reaction at min, mid, and max values of net flow rate of the gases, indicate 

towards the details of nature of two level effect of the flow rate on the length of 

the VA-SWNTs. The minimum extreme of flow rat e, which in a way indicates 

towards the sustained supply of fresh mix of gases, shows almost no growth. 

However, the extreme high-end values of the flow, i.e., 400 sccm refer to a  

saturation effect that can be forced to yield taller SWNTs if coupled with higher 

pressure. Pressure here seems to ensure sustained concentration of reactant at 

catalyst locations to maintain the growth mechanism. The fundamental 

conclusion which we can draw form this is that the velocity of arriving 
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constituent atoms at the cobalt catalyst locations needs to be maintained high 

but the momentum must  not exceed the strength of the van der Walls forces 

that initiate and maintain the growth reaction.  However, this growth 

phenomenon appears to optimize the length of VA-SWNTs grown at the 

optimum range of flow rate (225 sccm) revealing that pressure may only ensure 

the supply of right amount of constituent atoms to some extent. The main 

influences that flow rate has on the growth phenomenon are ensuring the 

optimum compensation of reaction constituents to the depleted stoichiometry 

in the vicinity of the catalyst location and guaranteeing the right amount of 

momentum these atoms have.           

 

Figure 5.6 Main effect plots for VA-SWNTs length of pressure and flow 
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5.5 General Response Surface Plot 

A. Response Surface (Length versus Flow and Pressure) 

A further deeper and concise insight in the growth mechanism can be attained 

by analyzing the response surface between chamber pressure and flow rate and 

the length of the VA-SWNTs as shown in the Figure 5.7.  The minimum and 

maximum values of the chamber pressure are not significant in terms of the 

concentrating effect they may have on the flowing mixture of gases with very 

small flow rate, i.e., 50 sccm. Similarly, at the highest flow rate values in the 

training data, i.e., 400 sccm stepping the chamber pressure up to 764 Torr can 

support the growth reaction to the extent that the resultant VA-SWNTs length 

of 900 µm can be achieved as explained in Figure 10. However, the two level 

effect of the flow rate can optimize the length to 990 µm and ≈ 1390 µm at 700 

Torr and 764 Torr respectively. 
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Figure 5.7 Response surface plot of VA-SWNTs length VS flow rate VS 

pressure 

B. Response Surface (Length w.r.t Flow and Temperature) 

In order to further test the theory of effect of momentum on the van der Waals 

forces that ensure the stiction of incoming constituent atoms at the cobalt 

location, we investigated the impact of temperature on the flow of the gases in 

the chamber even though the temperature turned out to be the relatively 

insignificant variable in the Pareto of coefficients (Figure 5.4).  Figure 5.7 is the 

response surface of the length w.r.t flow and temperature at the mid setting of 

the pressure of constituent gases in the chamber, i.e., 732 Torr. Figure 5.8 is the 



 

71 

 

main effect plot of the two control variables in order to elaborate the 

significance of impact of temperature on flow of constituents along the hidden 

edge of the response surface in Figure 5.9. As anticipated, the impact of 

temperature on the dominant nonlinear flow rate is minimum at the optimum 

flow rate, i.e., 225 sccm. However, its impact is magnified where the a large 

amount of constituents is arriving at the cobalt locations with already too high 

momentum and the temperature only adds to the volatility of the saturation 

condition of the supply of constituents. 

 

Figure 5.8 Main effect plots for VA-SWNTs length of temperature and flow 
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Figure 5.9 Response surface plot of VA-SWNTs length VS flow rate VS 

temperature 
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6. Process Design for CVD Flow 

This chapter discusses in depth the relation between the gas flow and time. The 

methodology employed [26] has two phases and somewhat similar to the one 

employed in the previous chapter.  

 As shown in Figure 6.1 R2 value of 0.8 for the network architecture with two 

input nodes, 12 hidden nodes and one output node renders it as a better meta-

model for the process with the available data on hand (See Appendix D). Once 

the best available process meta-model is selected, we used a full factorial design 

of experiments to design a set of computer experiments for each record for 

studying the details of process behavior. We compute t0 for the VA-SWNTs 

length and find it to be t0 = 0.17. So, the value of   |t0| < t0.025= 1.98.  On this basis, 

we decide that there is no statistical evidence to say that the behavior of the 

metamodel is different from that of the actual process with 97.25% confidence 

level. 
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Scatterplot of VA-SWNTs Length againest Estimated VA-SWNTs Length

y = -97.9+0.08 * x; R = 0.89; R2 = 0.8; 0.95 Prediction Interval
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 Figure 6.1 VA-SWNTs length (target) versus estimated VA-SWNTs length 

(output) regressions graph for the MLP 2-12-1 network 

The following are the steps to construct the computer model:  

 Eliminate experimental data records with missing data. 

 Normalize the values of each process control variable in [0, 1] range. This 

transformation brings all control variables into the same numerical range to 

give equal weight to each variable in clustering process described below.  

 Using the records retained in the previous step, train the neural networks 

for estimating the performance variables; given that control variable vectors 
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are most likely positioned densely in the input space, the neural networks 

are likely to learn the mapping between process inputs and outputs 

accurately. 

 Compute the estimation errors, i.e., the paired differences between the 

actual process outputs and neural-network-estimated process responses.  

 Using the records retained in the previous step, retrain the neural networks 

for estimating the process outputs; these trained neural networks serves as 

computer models of the MBE process. 

 Compute the paired difference between the actual process outputs and the 

neural-network estimated process responses. 

 Conduct the t-test on paired differences with a level of significance, say  = 

0.05 (this can be tightened or relaxed if necessary). H0: d = 0 and H1: d > 0, 

where d is the mean of the paired differences. Compute t0, the t-statistic for 

the paired difference. If |t0|> tα/2 then reject H0; otherwise we fail to reject H0, 

which would mean that statistically we do not have evidence to the effect 

that the behavior of the meta model is different from that of the actual 

process. 
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Design of Experiment Phase 

After building the multi-layer perceptron based process metamodel, we 

perform a design of experiment study. The following steps are used to conduct 

the study. 

 Find the min-, mid- and max-points of each input variable for the records 

used in training the neural networks in phase 1. 

 Create the three level settings for the DOE using the min-, med-, and max-

points of the input variables. 

 Conduct DOE analysis using the DOE runs.  

 We started with 42 records of VA-SWNTs growth using the experimental 

setup described in chapter 3. First, we eliminated records with errors in 

measurements and missing data. This brought down the number of 

available records to 25 samples. 

Using the boundaries of the final input space, we determine minimum, 

medium, and maximum values for each of the four input variables. Table 1 

shows the min, mid, and max values of the records used for the analysis. 
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Table 6.1 Experimental records of the CVD process input and output 

variables 

Variable Min Mid Max 

Growth Time (min) 
5 32 60 

Gas Flow Rate 

(Torr) 20 85 150 

6.1 Pareto Chart Analysis 

The comparison of significance of control variables, their quadratic effects, and 

or their paired interactions is presented in Pareto and the coefficients of 

regression Figure 6.2. The most significant of the variables is the quadratic 

effect of the time and gas flow in the chamber during growth.   

p=.05

Standardized Effect Estimate (Absolute Value)

t

F2

F by t

F

t2

t= T ime (min)  
F= Flow Rate (sccm)

 

Figure 6.2  Process Pareto analysis 
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6.2 Comparison of Main Effects Plots 

In order to investigate the details of interaction between growth time and gas 

flow we performed the main effects analysis on this interaction. Figure 6.3 

shows the interaction plots for the length of VA-SWNTs with respect to the 

process input variables, namely, time and flow rate. The sensitivity trends of 

growth time, which directly relates to the availability of gases for growth 

reaction at min, mid, and max values of net flow rate of the gases, indicate 

towards the details of nature of time low level effect of the flow rate on the 

length of the VA-SWNTs.  
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Figure 6.3 Main effect plots for VA-SWNTs length of time and flow 
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6.3 General Response Surface Plot 

A further deeper and concise insight in the growth mechanism can be attained 

by analyzing the response surface between growth time and flow rate and the 

length of the VA-SWNTs as shown in the Figure 6.4.  The minimum and 

maximum values of the growth time are not significant in terms of the 

concentrating effect they may have on the flowing mixture of gases with flow 

rate. Higher VA-SWNTs length will be achieved at less than 20 minute and flow 

rate fewer than 150 sccm. This would be suitable for repeatedly producing 

medium length VA-SWNTs. 
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Figure 6.4 Response surface plot of VA-SWNTs length VS flow rate VS time 
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7. Scientific Formulation of the Process Input 

Variables 

Previous chapters discuss the CVD grown VA-SWNTs input and output 

variables. In addition, they discuss which of them are most significant for the 

controllability or the length assurance. We used the pressure gauge to check the 

reliability of the pressure sensor during the growth time. We found that the 

pressure sensor is slightly fluctuating. Therefore, an investigation of the 

fluctuating was performed to Figure out if the setup value is a good 

representative of the CVD pressure. The following Figure 7.1 shows that the 

pressure average of two 30 minutes runs. From figure it is clear that the 

fluctuation is between 680 torr and 730 torr for a setup value of 700 torr.  This 

mean that we can approximate the pressure by its setup value. Therefore, we 

used the setup value as a measure of the CVD pressure. The exact values 

observed for the two runs are shown in appendix E.  
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 Figure 7.1 First and second runs graphs to measure the stability of pressure 

sensor during VA-SWNTs growth time (average = 705.2 torr, 703.5 torr) 

Based on the plots of marginal means, interactions, and response surfaces the 

overall relationship between the VA-SWNTs controllability and length with the 

four controlled inputs can be iterated as follows: 
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For Controllability 

VA-SWNTs ∞ F                      (7.1) 

VA-SWNTs ∞ P                 (7.2) 

VA-SWNTs ∞ 1 / T                   (7.3) 

VA-SWNTs ∞ t                 (7.4) 

For Length Assurance  

VA-SWNTs L ∞ F2                                    (7.5) 

VA-SWNTs L ∞ P                  (7.6) 

VA-SWNTs L ∞ 1/ T                 (7.7) 

VA-SWNTs L ∞ t                 (7.8) 

Where F = flow rate, P = pressure, T= temperature and L=  length and t= time. 

They can be combined to represent an aggregated relationship as: 

For Controllability 

VA-SWNTs ∞ F * P / T                     (7.9) 

For Length Assurance 

L ∞ F2 * P / T         (7.10) 
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7.1 Ideal Gas Law 

We can derive an approximate equation from the Ideal Gas Law formula [52].  

That law is part of the thermodynamics theory relating pressure, temperature, 

and   volume. 

P * Vol = n * Ru * T                 (7.11) 

Where Ru = specific gas constant , Vol= volume of gases, and n = chemical 

amount of gases. Since volume is the multiplication between flow and cross 

sectional area of the system (A). 

Vol = F * A                  (7.12) 

Substituting all the values, we get the following formula: 

P * F * A = n * Ru * T                 (7.13) 

Assuming that n and Ru divided by A is proportional to the desired output, we 

rewrite it as: 

 P * F / T = n * Ru / A                 (7.14) 

Figure 7.1 shows the slight correlation between controllability of VA-SWNTs 

and the above formulation extracted from the ideal gas law.  
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Matrix Plot
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 Figure 7.2 Matrix plots between flow, temperature and pressure for VA-

SWNTS (101 = VA-SWNTs, 102 = MWNTs, 103 = MWNTs & SWNTs, 104 = 

None) 

This refers to a possibility of relationship between the macro scale physical 

quantity of the gases in the CVD chamber and quantum level phenomenon. 

Our detailed designed experimental studies corroborated this hypothesis, 
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which explains the physics of the growth process for customization chamber 

designs for high rate manufacturing. 

7.2 Dynamic Pressure 

An approximate equation from the formula of Bernoulli dynamic (Pd) pressure 

can be derived for the VA-SWNTs length assurance [52]. Since, dynamic 

pressure is part of the Bernoulli theory relating pressure and velocity. 

Pd= ½ *  * P *M                        (7.15) 

Where  = heat capacity ratio, and M is the Mach number (M = v/a), a = speed of 

sound.   

M= V / a, a= (R * T * )1/2                  (7.16) 

Since velocity is the ratio between flow and cross sectional area of the system. 

V= F / A                          (7.17) 

Substituting all the values, we get the following formula. 

Pd= (1 / 2 * A2 * R) F2 * P / T                (7.18) 

Assuming that half of squared area multiplied by the specific gas constant to be 

a constant term (K) for the process, we rewrite it as 

 Pd= K * F2 * P / T                                          (7.19) 
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Figure 7.3 shows an approximate linear relationship between length of VA-

SWNTs and the dynamic pressure with an offsetting constant K.  
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Figure 7.3 Interaction plots between temperature and pressure for VA-

SWNTs 

This relation refers to a possibility of relationship between the macro scale 

physical quantity, i.e., dynamic pressure of the gases in the CVD chamber and 

quantum level phenomenon of CVD growth reaction at selected catalyst sites 

on the substrate. Detailed and carefully designed experimental studies are 
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required to validate this hypothesis, which if validated, can simplify the physics 

of the growth process for customizing chamber designs for high rate 

manufacturing. Table 7.1 summaries this chapter recommended input ranges 

with the main two goals (controllability and length assurance) and the four 

inputs. 

Table 7.1 Process inputs combinations based on the desired output 

Inputs ranges Gas flow 

rate (sccm) 

CVD pressure 

(torr) 

CVD 

temperature (°c) 

Growth time 

(min) 

VA-SWNTs  

controllability  

25-500 500-764 700-1000 25-60 

Recommended VA-

SWNTs  

controllability 

50-400 632-764 800-920 40-60 

VA-SWNTs   length  50-400 700-764 870-900 25-60 

Recommended  VA-

SWNTs   length 

150 700 880 60 
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8. Conclusion and Future Work 

In summary, this dissertation shows that VA-SWNTs mass production is a 

multidisciplinary research area requiring collaboration between nanoscience 

and nanomanufacturing. Generally, there are many variables influencing the 

CVD process. In the preceding chapters, several questions were raised on the 

VA-SWNTs growth input factors role. We found that, carbon flow rate, furnace 

temperature, CVD pressure, and growth time are the most influential factors. In 

addition, the study discusses some exercises of applying models of ANN and 

DOE to help understand the nanotubes growth mechanism.  

The start of VA-SWNTs growth mechanism is an area that requires further 

investigation. We found that CVD pressure and its interaction with the CVD 

temperature have the most significant influence on the controllability of VA-

SWNTs. In addition, higher temperature with elevated pressure will produce 

higher yield of VA-SWNTs. 

In addition, we found that CVD pressure and its interaction with the CVD flow 

have the most significant influence on the VA-SWNTs length. Higher flow with 

depressed pressure will produce taller VA-SWNTs.  Dynamic pressure 

equation drawn from Bernoulli equation showed that dynamic pressure at 
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macro level might be, directly, related to molecular level growth reaction of 

VA-SWNT and helps simplify the understanding of control parameters of the 

process.  

In addition to the previous discussion, future research related challenges are 

briefly outlined below. 

1. Control the catalyst particle diameter to control the VA-SWNTs diameter. 

2. Determine the VA-SWNTs physical, chemical, electronic, and optical 

properties of each catalyst used in growing the nanotubes and research the 

visibility of building devices like nanomembrane for water desalination and 

photovoltaic cells for solar energy. 

3. Figure out the nucleation crucial steps to help decide what is significant for 

mass production. 

4. Investigate the growth mechanism at room temperature to lower the cost of 

CVD process. 

5. Eliminate or mitigate the impurities from the catalyst or support materials. 

6. Employ the recent technologies in Quality Engineering to and standardized 

them among nanotechnology fields. 
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Appendix A 

Set of pictures showing CVD experimental setup (courtesy Prof. Jung’s 

Research Group) 

 

whole CVD system 

  

heat source and temperature pressure machine 
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gases locker ethanol bubbler 

 
 

gold plated furnace(inner diameter 

1.26 inch and length 24 inches)  
catalyst sputter 
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Samples of VA-SWNTs pictures (courtesy Prof. Jung’s Research Group) 

  

Picture of VA-SWNTs shown from 

side 

Picture of VA-SWNTs shown from 

oblique view 

 

Set of samples view from top 
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Appendix B 

Experimental Data (S.A. = small amount) 

Temperature 

(°C) 

Pressure 

(torr) 

Flow 

(sccm) 

Time 

(min) 

Result 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

850 500 200 60 VA-SWNT 

890 700 100 60 VA-SWNT 

890 762 80 60 VA-SWNT 

890 761 80 60 VA-SWNT 

890 760 80 60 VA-SWNT 

890 759 80 60 VA-SWNT 

890 758 80 60 VA-SWNT 
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890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 700 80 60 VA-SWNT 

890 756 75 60 VA-SWNT 

890 755 75 60 VA-SWNT 

890 754 75 60 VA-SWNT 

890 753 75 60 VA-SWNT 

890 752 75 60 VA-SWNT 

890 752 75 60 VA-SWNT 

890 700 75 60 VA-SWNT 

890 700 75 60 VA-SWNT 

890 700 75 60 VA-SWNT 

890 700 75 60 VA-SWNT 

890 700 75 60 VA-SWNT 

890 700 75 60 VA-SWNT 

890 700 75 60 VA-SWNT 

890 700 75 60 VA-SWNT 

890 700 75 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 
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850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 



 

105 

 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 
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850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 
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850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 
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850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 
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850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 
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850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 
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850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 
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850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 
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850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

850 500 50 60 VA-SWNT 

890 700 75 40 VA-SWNT 

890 700 75 40 VA-SWNT 

890 700 75 40 VA-SWNT 

890 700 75 40 VA-SWNT 

890 700 75 40 VA-SWNT 

890 756 400 30 VA-SWNT 

890 700 400 30 VA-SWNT 

890 700 400 30 VA-SWNT 
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890 758 200 30 VA-SWNT 

890 700 200 30 VA-SWNT 

850 500 200 30 VA-SWNT 

850 500 200 30 VA-SWNT 

900 700 150 30 VA-SWNT 

890 700 150 30 VA-SWNT 

870 700 150 30 VA-SWNT 

890 700 125 30 VA-SWNT 

890 700 120 30 VA-SWNT 

890 700 100 30 VA-SWNT 

890 700 100 30 VA-SWNT 

850 500 100 30 VA-SWNT 

850 500 100 30 VA-SWNT 

890 759 80 30 VA-SWNT 

890 700 80 30 VA-SWNT 

890 700 80 30 VA-SWNT 

890 758 75 30 VA-SWNT 

890 755 75 30 VA-SWNT 

890 755 75 30 VA-SWNT 

890 754 75 30 VA-SWNT 

890 752 75 30 VA-SWNT 

900 700 75 30 VA-SWNT 

890 700 75 30 VA-SWNT 

890 700 75 30 VA-SWNT 

890 700 75 30 VA-SWNT 

890 700 75 30 VA-SWNT 

890 700 75 30 VA-SWNT 

890 700 75 30 VA-SWNT 

890 700 75 30 VA-SWNT 

890 700 75 30 VA-SWNT 

890 700 75 30 VA-SWNT 

890 700 75 30 VA-SWNT 

890 700 75 30 VA-SWNT 
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880 700 75 30 VA-SWNT 

880 700 75 30 VA-SWNT 

880 700 75 30 VA-SWNT 

890 700 50 30 VA-SWNT 

890 700 50 30 VA-SWNT 

890 700 50 30 VA-SWNT 

890 700 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 
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850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

850 500 50 30 VA-SWNT 

890 754 75 25 VA-SWNT 

1000 500 400 30 Small amount of MWNT 

1000 500 400 30 Small amount of MWNT 

900 500 400 30 Small amount of MWNT 

900 500 400 30 Small amount of MWNT 

850 500 400 30 Small amount of MWNT 

850 500 400 30 Small amount of MWNT 

850 500 400 30 Small amount of MWNT 

800 500 400 30 Small amount of MWNT 

800 500 400 30 Small amount of MWNT 

800 500 400 30 Small amount of MWNT 

750 500 400 30 Small amount of MWNT 

750 500 400 30 Small amount of MWNT 

750 500 400 30 Small amount of MWNT 

700 500 400 30 Small amount of MWNT 

700 500 400 30 Small amount of MWNT 

700 500 400 30 Small amount of MWNT 
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700 500 400 30 Small amount of MWNT 

1000 500 300 30 Small amount of MWNT 

1000 500 300 30 Small amount of MWNT 

1000 500 300 30 Small amount of MWNT 

900 500 300 30 Small amount of MWNT 

900 500 300 30 Small amount of MWNT 

900 500 300 30 Small amount of MWNT 

850 500 300 30 Small amount of MWNT 

850 500 300 30 Small amount of MWNT 

850 500 300 30 Small amount of MWNT 

800 500 300 30 Small amount of MWNT 

800 500 300 30 Small amount of MWNT 

800 500 300 30 Small amount of MWNT 

750 500 300 30 Small amount of MWNT 

750 500 300 30 Small amount of MWNT 

750 500 300 30 Small amount of MWNT 

700 500 300 30 Small amount of MWNT 

700 500 300 30 Small amount of MWNT 

700 500 300 30 Small amount of MWNT 

700 500 300 30 Small amount of MWNT 

700 500 300 30 Small amount of MWNT 

1000 500 200 30 Small amount of MWNT 

1000 500 200 30 Small amount of MWNT 

1000 500 200 30 Small amount of MWNT 

900 500 200 30 Small amount of MWNT 

900 500 200 30 Small amount of MWNT 

900 500 200 30 Small amount of MWNT 

850 500 200 30 Small amount of MWNT 

850 500 200 30 Small amount of MWNT 

850 500 200 30 Small amount of MWNT 

800 500 200 30 Small amount of MWNT 

800 500 200 30 Small amount of MWNT 

800 500 200 30 Small amount of MWNT 
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750 500 200 30 Small amount of MWNT 

750 500 200 30 Small amount of MWNT 

750 500 200 30 Small amount of MWNT 

700 500 200 30 Small amount of MWNT 

700 500 200 30 Small amount of MWNT 

700 500 200 30 Small amount of MWNT 

700 500 200 30 Small amount of MWNT 

700 500 200 30 Small amount of MWNT 

700 500 200 30 Small amount of MWNT 

1000 500 100 30 Small amount of MWNT 

1000 500 100 30 Small amount of MWNT 

1000 500 100 30 Small amount of MWNT 

900 500 100 30 Small amount of MWNT 

900 500 100 30 Small amount of MWNT 

900 500 100 30 Small amount of MWNT 

850 500 100 30 Small amount of MWNT 

850 500 100 30 Small amount of MWNT 

850 500 100 30 Small amount of MWNT 

800 500 100 30 Small amount of MWNT 

800 500 100 30 Small amount of MWNT 

800 500 100 30 Small amount of MWNT 

750 500 100 30 Small amount of MWNT 

750 500 100 30 Small amount of MWNT 

750 500 100 30 Small amount of MWNT 

700 500 100 30 Small amount of MWNT 

700 500 100 30 Small amount of MWNT 

700 500 100 30 Small amount of MWNT 

700 500 100 30 Small amount of MWNT 

1000 500 50 30 Small amount of MWNT 

1000 500 50 30 Small amount of MWNT 

1000 500 50 30 Small amount of MWNT 

900 500 50 30 Small amount of MWNT 

900 500 50 30 Small amount of MWNT 
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900 500 50 30 Small amount of MWNT 

850 500 50 30 Small amount of MWNT 

850 500 50 30 Small amount of MWNT 

850 500 50 30 Small amount of MWNT 

800 500 50 30 Small amount of MWNT 

800 500 50 30 Small amount of MWNT 

800 500 50 30 Small amount of MWNT 

750 500 50 30 Small amount of MWNT 

750 500 50 30 Small amount of MWNT 

750 500 50 30 Small amount of MWNT 

700 500 50 30 Small amount of MWNT 

700 500 50 30 Small amount of MWNT 

700 500 50 30 Small amount of MWNT 

1000 500 25 30 Small amount of MWNT 

1000 500 25 30 Small amount of MWNT 

1000 500 25 30 Small amount of MWNT 

900 500 25 30 Small amount of MWNT 

900 500 25 30 Small amount of MWNT 

900 500 25 30 Small amount of MWNT 

850 500 25 30 Small amount of MWNT 

850 500 25 30 Small amount of MWNT 

850 500 25 30 Small amount of MWNT 

800 500 25 30 Small amount of MWNT 

800 500 25 30 Small amount of MWNT 

800 500 25 30 Small amount of MWNT 

750 500 25 30 Small amount of MWNT 

750 500 25 30 Small amount of MWNT 

750 500 25 30 Small amount of MWNT 

700 500 25 30 Small amount of MWNT 

700 500 25 30 Small amount of MWNT 

700 500 25 30 Small amount of MWNT 

1000 500 400 30 S.A of MWNT & SWNT 

900 500 400 30 S.A of MWNT & SWNT 
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850 500 400 30 S.A of MWNT & SWNT 

800 500 400 30 S.A of MWNT & SWNT 

750 500 400 30 S.A of MWNT & SWNT 

1000 500 300 30 S.A of MWNT & SWNT 

900 500 300 30 S.A of MWNT & SWNT 

850 500 300 30 S.A of MWNT & SWNT 

800 500 300 30 S.A of MWNT & SWNT 

750 500 300 30 S.A of MWNT & SWNT 

1000 500 200 30 S.A of MWNT & SWNT 

900 500 200 30 S.A of MWNT & SWNT 

850 500 200 30 S.A of MWNT & SWNT 

800 500 200 30 S.A of MWNT & SWNT 

750 500 200 30 S.A of MWNT & SWNT 

700 500 200 30 S.A of MWNT & SWNT 

1000 500 100 30 S.A of MWNT & SWNT 

900 500 100 30 S.A of MWNT & SWNT 

850 500 100 30 S.A of MWNT & SWNT 

800 500 100 30 S.A of MWNT & SWNT 

750 500 100 30 S.A of MWNT & SWNT 

700 500 100 30 S.A of MWNT & SWNT 

1000 500 50 30 S.A of MWNT & SWNT 

900 500 50 30 S.A of MWNT & SWNT 

850 500 50 30 S.A of MWNT & SWNT 

800 500 50 30 S.A of MWNT & SWNT 

750 500 50 30 S.A of MWNT & SWNT 

700 500 50 30 S.A of MWNT & SWNT 

1000 500 25 30 S.A of MWNT & SWNT 

900 500 25 30 S.A of MWNT & SWNT 

850 500 25 30 S.A of MWNT & SWNT 

800 500 25 30 S.A of MWNT & SWNT 

750 500 25 30 S.A of MWNT & SWNT 

700 500 25 30 S.A of MWNT & SWNT 

890 755 200 60 none 
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850 500 200 60 none 

850 500 200 60 none 

890 700 100 60 none 

890 764 80 60 none 

890 763 80 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 
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850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 50 60 none 

850 500 500 30 none 

850 500 500 30 none 

850 500 400 30 none 

850 500 400 30 none 

750 500 400 30 none 

700 500 400 30 none 

850 500 300 30 none 

850 500 300 30 none 

700 500 300 30 none 

850 500 200 30 none 

850 500 200 30 none 

900 500 100 30 none 

900 500 100 30 none 

850 500 100 30 none 

850 500 100 30 none 

850 500 100 30 none 

850 500 100 30 none 

800 500 100 30 none 

800 500 100 30 none 

750 500 100 30 none 

750 500 100 30 none 

750 500 100 30 none 

750 500 100 30 none 

700 500 100 30 none 

700 500 100 30 none 

700 500 100 30 none 

890 754 75 30 none 

850 500 50 30 none 

850 500 50 30 none 
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850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

850 500 50 30 none 

 

DOE Data 

Temperature Pressure Flow Time Result 

700 500 50 250 none 

700 500 50 420 S.A of MWNT & SWNT 

700 500 50 600 none 

700 500 225 250 Small amount of MWNT 
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700 500 225 420 S.A of MWNT & SWNT 

700 500 225 600 none 

700 500 400 250 Small amount of MWNT 

700 500 400 420 S.A of MWNT & SWNT 

700 500 400 600 Small amount of MWNT 

700 632 50 250 S.A of MWNT & SWNT 

700 632 50 420 none 

700 632 50 600 none 

700 632 225 250 S.A of MWNT & SWNT 

700 632 225 420 none 

700 632 225 600 none 

700 632 400 250 S.A of MWNT & SWNT 

700 632 400 420 Small amount of MWNT 

700 632 400 600 none 

700 764 50 250 none 

700 764 50 420 none 
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700 764 50 600 none 

700 764 225 250 none 

700 764 225 420 none 

700 764 225 600 none 

700 764 400 250 none 

700 764 400 420 none 

700 764 400 600 none 

800 500 50 250 Small amount of MWNT 

800 500 50 420 S.A of MWNT & SWNT 

800 500 50 600 none 

800 500 225 250 Small amount of MWNT 

800 500 225 420 S.A of MWNT & SWNT 

800 500 225 600 none 

800 500 400 250 Small amount of MWNT 

800 500 400 420 S.A of MWNT & SWNT 

800 500 400 600 S.A of MWNT & SWNT 
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800 632 50 250 VA-SWNT 

800 632 50 420 VA-SWNT 

800 632 50 600 VA-SWNT 

800 632 225 250 VA-SWNT 

800 632 225 420 VA-SWNT 

800 632 225 600 VA-SWNT 

800 632 400 250 VA-SWNT 

800 632 400 420 VA-SWNT 

800 632 400 600 none 

800 764 50 250 VA-SWNT 

800 764 50 420 VA-SWNT 

800 764 50 600 VA-SWNT 

800 764 225 250 VA-SWNT 

800 764 225 420 VA-SWNT 

800 764 225 600 VA-SWNT 

800 764 400 250 VA-SWNT 
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800 764 400 420 VA-SWNT 

800 764 400 600 VA-SWNT 

900 500 50 250 none 

900 500 50 420 VA-SWNT 

900 500 50 600 VA-SWNT 

900 500 225 250 Small amount of MWNT 

900 500 225 420 S.A of MWNT & SWNT 

900 500 225 600 VA-SWNT 

900 500 400 250 none 

900 500 400 420 S.A of MWNT & SWNT 

900 500 400 600 VA-SWNT 

900 632 50 250 VA-SWNT 

900 632 50 420 VA-SWNT 

900 632 50 600 VA-SWNT 

900 632 225 250 VA-SWNT 

900 632 225 420 VA-SWNT 
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900 632 225 600 VA-SWNT 

900 632 400 250 VA-SWNT 

900 632 400 420 VA-SWNT 

900 632 400 600 VA-SWNT 

900 764 50 250 VA-SWNT 

900 764 50 420 VA-SWNT 

900 764 50 600 VA-SWNT 

900 764 225 250 VA-SWNT 

900 764 225 420 VA-SWNT 

900 764 225 600 VA-SWNT 

900 764 400 250 VA-SWNT 

900 764 400 420 VA-SWNT 

900 764 400 600 VA-SWNT 

 

C Source File 

//Analysis Type - Classification  
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#include <stdio.h> 

#include <conio.h> 

#include <math.h> 

#include <stdlib.h> 

double input_hidden_weights[12][4]= 

{ 

 {-1.10626389895333e+000, -3.73643496006291e-003, 5.96566965299829e+000, 

2.12499984937343e+000 }, 

 {6.57731612579698e-001, -2.92481134061285e+000, -7.85101897381701e-001, 

1.64231401512658e+000 }, 

 {-1.16058873730090e+001, -8.92886691018749e+000, 5.43316705908870e+000, -

4.83392243846306e+000 }, 

 {-5.21276960171781e+000, -6.62498586125943e-001, -2.53690312098249e+000, 

5.80096137446396e-001 }, 

 {1.95455434574576e-001, 2.27916688256394e+000, 1.95448650355832e+000, 

1.07630239317822e+000 }, 

 {3.16576736733244e+000, -4.14960880259401e+000, -4.92500806780292e+000, -

3.48665624799860e+000 }, 

 {8.74702498089894e+000, -4.58648936262645e+000, -2.26116853452984e+000, -

1.11784635782786e+000 }, 

 {1.04861692985922e+000, -4.30718908920277e+000, -1.45599407693833e+000, -

3.83921115266548e+000 }, 

 {1.20344648378913e+000, 4.91528926944447e+000, -1.35668049826802e+000, -

1.45964626930918e+000 }, 

 {-1.40925587887915e+000, -3.73382786683886e+000, -2.07472417539196e+001, -

3.05847487083543e+000 }, 
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 {2.89719585458340e-001, -2.86859795404039e+000, -7.99821806345248e-001, 

3.14126157045974e-001 }, 

 {2.57779598097478e+000, -3.70422470781917e+000, -4.13173188587870e+000, -

7.20501918350059e-001 }  

}; 

double hidden_bias[12]={ -3.98566483194604e+000, -9.43831760189939e-001, 

5.17789669494765e+000, 9.65571074908640e-001, -5.69755420045899e-001, -

3.74927386846146e-001, -3.41779205020830e+000, -7.12520353454542e-001, -

1.07829605709090e+000, 2.65972689551957e+000, 1.71014648061759e-001, -

9.25008699698261e-002 }; 

double hidden_output_wts[4][12]= 

{ 

 {3.79361473524166e-001, -4.42293097221627e+000, -6.95536471294875e-004, -

6.26475374686074e-001, -1.12462198943676e+000, 3.09203595031522e-001, 

3.77856184512851e-002, 1.27552964135618e+000, -1.75567973130942e+000, 

1.73495548739488e-001, -1.99319110089557e+000, -6.59944854194473e-001 }, 

 {-4.94462713236383e-001, -4.10065790869239e+000, 1.18290472182240e-004, -

1.47770701847982e-001, 2.89119115325853e-001, -2.02500595416126e-001, 

2.22915702640809e-002, 3.85382053492280e+000, -4.13326836232414e+000, 

1.14046369358423e-001, 3.73791241241672e-001, 4.94510325402918e-002 }, 

 {1.62526284591701e-001, 4.69852312118827e-002, -5.33852531663558e+000, -

6.68527743098429e-002, -9.28439519529504e-003, 3.37202788325939e+000, -

2.29854749015291e+000, 2.73951374354158e+000, -2.90720424550613e-003, -

1.76806579230098e+000, 1.54873415426241e-001, 8.31978976118578e-001 }, 

 {5.00692372344648e-002, 6.92434479070777e-001, -2.31526502993601e-002, 

4.16740293309858e+000, 7.02582997480717e-001, 2.03961158903557e+000, -

9.80452572039321e-001, -1.43400429584647e-001, -2.10235980310695e+000, -

2.17975138935412e+000, -6.14022135063163e+000, 2.80423145063388e+000 } 

}; 
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double output_bias[4]={ 4.80480210266358e+000, 6.83717178164568e-001, 

9.78925664392187e-002, 1.50652260101541e+000 }; 

double max_input[4]={ 10000000000e+003, 7.64000000000000e+002, 

50000000000e+002, 60000000000e+001 }; 

double min_input[4]={ 70000000000e+002, 50000000000e+002, 

2.50000000000000e+001, 2.50000000000000e+001 }; 

double input[4]; 

double hidden[12]; 

double output[4]; 

void ScaleInputs(double* input, double minimum, double maximum, int size) 

{ 

 double delta; 

 long i; 

 for(i=0; i<size; i++) 

 { 

 delta = (maximum-minimum)/(max_input[i]-min_input[i]); 

 input[i] = minimum - delta*min_input[i]+ delta*input[i]; 

 } 

} 

 

void ComputeFeedForwardSignals(double* MAT_INOUT,double* 

V_IN,double* V_OUT, double* V_BIAS,int size1,int size2,int layer) 

{ 

  int row,col; 
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  for(row=0;row < size2; row++)  

    { 

      V_OUT[row]=0.0; 

for(col=0;col<size1;col++)V_OUT[row]+=(*(MAT_INOUT+(row*size1)+col)*V_I

N[col]); 

      V_OUT[row]+=V_BIAS[row]; 

      if(layer==0) V_OUT[row] = exp(V_OUT[row]); 

      if(layer==1) V_OUT[row] = exp(V_OUT[row]); 

   } 

} 

void RunNeuralNet_Classification ()  

{ 

ComputeFeedForwardSignals((double*)input_hidden_weights,input,hidden,hi

dden_bias,4, 12,0); 

ComputeFeedForwardSignals((double*)hidden_output_wts,hidden,output,out

put_bias,12, 4,1); 

} 

int main() 

{ 

  int index; 

  int i=0; 

  int keyin=1; 

  double max; 

  while(1) 

  { 
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 max=3.e-300; 

 printf("\nEnter values for Continuous inputs\n"); 

 printf("Cont. Input-0(Temperature (°C)): "); 

 scanf("%lg",&input[0]); 

 printf("Cont. Input-1(Pressure (torr)): "); 

 scanf("%lg",&input[1]); 

 printf("Cont. Input-2(Flow Rate (sccm)): "); 

 scanf("%lg",&input[2]); 

 printf("Cont. Input-3(Time (min)): "); 

 scanf("%lg",&input[3]); 

    ScaleInputs(input,0,1,4); 

 RunNeuralNet_Classification(); 

 for(i=0;i<4;i++) 

 { 

      if(max<output[i]) 

      { 

        max=output[i]; 

        index=i+1; 

      } 

 } 

 printf("\nPredicted category = "); 

 

    switch(index) 

    { 
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        case 1: printf("S.A of MWNT & SWNT\n"); break; 

        case 2: printf("Small amount of MWNT\n"); break; 

        case 3: printf("VA-SWNT\n"); break; 

        case 4: printf("none\n"); break; 

        default: break; 

    } 

    printf("\nConfidence level = %.14f",max); 

 printf("\n\nPress any key to make another prediction or enter 0 to quit 

the program.\n"); 

 keyin=getch(); 

 if(keyin==48)break; 

  } 

 return 0; 

} 

 

XML Document 

<?xml version="1.0" encoding="UTF-8"?> 

<PMML version="3.0"><Header copyright="Copyright (c) StatSoft, Inc. All 

Rights Reserved."><Application name="STATISTICA Automated Neural 

Networks (SANN)" version="2.0"/></Header><DataDictionary 

numberOfFields="5"><DataField name="Result" optype="categorical"><Value 

value="S.A of MWNT &amp; SWNT"/><Value value="Small amount of 

MWNT"/><Value value="VA-SWNT"/><Value 

value="none"/></DataField><DataField name="Temperature (°C)" 

optype="continuous"/><DataField name="Pressure (torr)" 

optype="continuous"/><DataField name="Flow Rate (sccm)" 

optype="continuous"/><DataField name="Time (min)" 
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optype="continuous"/></DataDictionary><NeuralNetwork modelName="Book1 

c_MLP 4-12-4" functionName="classification"><MiningSchema><MiningField 

name="Result" usageType="predicted"/><MiningField name="Temperature 

(°C)" lowValue="70000" highValue="100000"/><MiningField name="Pressure 

(torr)" lowValue="50000" highValue="76400"/><MiningField name="Flow Rate 

(sccm)" lowValue="2500" highValue="50000"/><MiningField name="Time (min)" 

lowValue="2500" highValue="6000"/></MiningSchema><NeuralInputs 

numberOfInputs="4"><NeuralInput id="0"><DerivedField><NormContinuous 

field="Temperature (°C)"><LinearNorm orig="70000000000e+002" 

norm="000"/><LinearNorm orig="10000000000e+003" 

norm="100"/></NormContinuous></DerivedField></NeuralInput><NeuralInput 

id="1"><DerivedField><NormContinuous field="Pressure (torr)"><LinearNorm 

orig="50000000000e+002" norm="000"/><LinearNorm 

orig="7.64000000000000e+002" 

norm="100"/></NormContinuous></DerivedField></NeuralInput><NeuralInput 

id="2"><DerivedField><NormContinuous field="Flow Rate 

(sccm)"><LinearNorm orig="2.50000000000000e+001" 

norm="000"/><LinearNorm orig="50000000000e+002" 

norm="100"/></NormContinuous></DerivedField></NeuralInput><NeuralInput 

id="3"><DerivedField><NormContinuous field="Time (min)"><LinearNorm 

orig="2.50000000000000e+001" norm="000"/><LinearNorm 

orig="60000000000e+001" 

norm="100"/></NormContinuous></DerivedField></NeuralInput></NeuralInpu

ts><NeuralLayer numberOfNeurons="12" 

activationFunction="exponential"><Neuron id="4" bias="-

3.98566483194604e+000"><Con from="0" weight="-

1.10626389895333e+000"/><Con from="1" weight="-3.73643496006291e-

003"/><Con from="2" weight="5.96566965299829e+000"/><Con from="3" 

weight="2.12499984937343e+000"/></Neuron><Neuron id="5" bias="-

9.43831760189939e-001"><Con from="0" weight="6.57731612579698e-001"/><Con 

from="1" weight="-2.92481134061285e+000"/><Con from="2" weight="-

7.85101897381701e-001"/><Con from="3" 

weight="1.64231401512658e+000"/></Neuron><Neuron id="6" 
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bias="5.17789669494765e+000"><Con from="0" weight="-

1.16058873730090e+001"/><Con from="1" weight="-

8.92886691018749e+000"/><Con from="2" 

weight="5.43316705908870e+000"/><Con from="3" weight="-

4.83392243846306e+000"/></Neuron><Neuron id="7" bias="9.65571074908640e-

001"><Con from="0" weight="-5.21276960171781e+000"/><Con from="1" 

weight="-6.62498586125943e-001"/><Con from="2" weight="-

2.53690312098249e+000"/><Con from="3" weight="5.80096137446396e-

001"/></Neuron><Neuron id="8" bias="-5.69755420045899e-001"><Con from="0" 

weight="1.95455434574576e-001"/><Con from="1" 

weight="2.27916688256394e+000"/><Con from="2" 

weight="1.95448650355832e+000"/><Con from="3" 

weight="1.07630239317822e+000"/></Neuron><Neuron id="9" bias="-

3.74927386846146e-001"><Con from="0" weight="3.16576736733244e+000"/><Con 

from="1" weight="-4.14960880259401e+000"/><Con from="2" weight="-

4.92500806780292e+000"/><Con from="3" weight="-

3.48665624799860e+000"/></Neuron><Neuron id="10" bias="-

3.41779205020830e+000"><Con from="0" 

weight="8.74702498089894e+000"/><Con from="1" weight="-

4.58648936262645e+000"/><Con from="2" weight="-

2.26116853452984e+000"/><Con from="3" weight="-

1.11784635782786e+000"/></Neuron><Neuron id="11" bias="-7.12520353454542e-

001"><Con from="0" weight="1.04861692985922e+000"/><Con from="1" 

weight="-4.30718908920277e+000"/><Con from="2" weight="-

1.45599407693833e+000"/><Con from="3" weight="-

3.83921115266548e+000"/></Neuron><Neuron id="12" bias="-

1.07829605709090e+000"><Con from="0" 

weight="1.20344648378913e+000"/><Con from="1" 

weight="4.91528926944447e+000"/><Con from="2" weight="-

1.35668049826802e+000"/><Con from="3" weight="-

1.45964626930918e+000"/></Neuron><Neuron id="13" 

bias="2.65972689551957e+000"><Con from="0" weight="-

1.40925587887915e+000"/><Con from="1" weight="-
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3.73382786683886e+000"/><Con from="2" weight="-

2.07472417539196e+001"/><Con from="3" weight="-

3.05847487083543e+000"/></Neuron><Neuron id="14" bias="1.71014648061759e-

001"><Con from="0" weight="2.89719585458340e-001"/><Con from="1" weight="-

2.86859795404039e+000"/><Con from="2" weight="-7.99821806345248e-

001"/><Con from="3" weight="3.14126157045974e-001"/></Neuron><Neuron 

id="15" bias="-9.25008699698261e-002"><Con from="0" 

weight="2.57779598097478e+000"/><Con from="1" weight="-

3.70422470781917e+000"/><Con from="2" weight="-

4.13173188587870e+000"/><Con from="3" weight="-7.20501918350059e-

001"/></Neuron></NeuralLayer><NeuralLayer numberOfNeurons="4" 

activationFunction="exponential"><Neuron id="16" 

bias="4.80480210266358e+000"><Con from="4" weight="3.79361473524166e-

001"/><Con from="5" weight="-4.42293097221627e+000"/><Con from="6" 

weight="-6.95536471294875e-004"/><Con from="7" weight="-6.26475374686074e-

001"/><Con from="8" weight="-1.12462198943676e+000"/><Con from="9" 

weight="3.09203595031522e-001"/><Con from="10" weight="3.77856184512851e-

002"/><Con from="11" weight="1.27552964135618e+000"/><Con from="12" 

weight="-1.75567973130942e+000"/><Con from="13" 

weight="1.73495548739488e-001"/><Con from="14" weight="-

1.99319110089557e+000"/><Con from="15" weight="-6.59944854194473e-

001"/></Neuron><Neuron id="17" bias="6.83717178164568e-001"><Con from="4" 

weight="-4.94462713236383e-001"/><Con from="5" weight="-

4.10065790869239e+000"/><Con from="6" weight="1.18290472182240e-

004"/><Con from="7" weight="-1.47770701847982e-001"/><Con from="8" 

weight="2.89119115325853e-001"/><Con from="9" weight="-2.02500595416126e-

001"/><Con from="10" weight="2.22915702640809e-002"/><Con from="11" 

weight="3.85382053492280e+000"/><Con from="12" weight="-

4.13326836232414e+000"/><Con from="13" weight="1.14046369358423e-

001"/><Con from="14" weight="3.73791241241672e-001"/><Con from="15" 

weight="4.94510325402918e-002"/></Neuron><Neuron id="18" 

bias="9.78925664392187e-002"><Con from="4" weight="1.62526284591701e-

001"/><Con from="5" weight="4.69852312118827e-002"/><Con from="6" 
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weight="-5.33852531663558e+000"/><Con from="7" weight="-6.68527743098429e-

002"/><Con from="8" weight="-9.28439519529504e-003"/><Con from="9" 

weight="3.37202788325939e+000"/><Con from="10" weight="-

2.29854749015291e+000"/><Con from="11" 

weight="2.73951374354158e+000"/><Con from="12" weight="-

2.90720424550613e-003"/><Con from="13" weight="-

1.76806579230098e+000"/><Con from="14" weight="1.54873415426241e-

001"/><Con from="15" weight="8.31978976118578e-001"/></Neuron><Neuron 

id="19" bias="1.50652260101541e+000"><Con from="4" 

weight="5.00692372344648e-002"/><Con from="5" weight="6.92434479070777e-

001"/><Con from="6" weight="-2.31526502993601e-002"/><Con from="7" 

weight="4.16740293309858e+000"/><Con from="8" weight="7.02582997480717e-

001"/><Con from="9" weight="2.03961158903557e+000"/><Con from="10" 

weight="-9.80452572039321e-001"/><Con from="11" weight="-

1.43400429584647e-001"/><Con from="12" weight="-

2.10235980310695e+000"/><Con from="13" weight="-

2.17975138935412e+000"/><Con from="14" weight="-

6.14022135063163e+000"/><Con from="15" 

weight="2.80423145063388e+000"/></Neuron></NeuralLayer><NeuralOutputs 

numberOfOutputs="4"><NeuralOutput outputNeuron="16"><DerivedField 

optype="categorical"><NormDiscrete field="Result" value="S.A of MWNT 

&amp; SWNT"/></DerivedField></NeuralOutput><NeuralOutput 

outputNeuron="17"><DerivedField optype="categorical"><NormDiscrete 

field="Result" value="Small amount of 

MWNT"/></DerivedField></NeuralOutput><NeuralOutput 

outputNeuron="18"><DerivedField optype="categorical"><NormDiscrete 

field="Result" value="VA-

SWNT"/></DerivedField></NeuralOutput><NeuralOutput 

outputNeuron="19"><DerivedField optype="categorical"><NormDiscrete 

field="Result" 

value="none"/></DerivedField></NeuralOutput></NeuralOutputs></NeuralNet

work></PMML>  
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Appendix C 

Experimental Data 

Temp. P (torr) Flow (sccm) time (min) length 

870 700 150 30 900 

880 700 75 30 150 

880 700 75 30 150 

880 700 75 30 500 

890 700 100 60 0 

890 754 75 30 0 

890 755 200 60 0 

890 763 80 60 0 

890 764 80 60 0 

890 700 75 30 100 

890 700 400 30 100 

890 700 400 30 100 

890 700 75 40 100 

890 700 75 60 100 

890 752 75 60 100 

890 754 75 25 100 

890 758 75 30 100 

890 759 80 30 100 

890 759 80 60 100 

890 700 50 30 150 

890 700 50 30 150 

890 700 75 30 150 
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890 700 75 30 150 

890 700 75 30 150 

890 700 75 30 150 

890 700 100 30 150 

890 700 120 30 150 

890 700 150 30 155 

890 700 75 40 200 

890 700 75 60 200 

890 752 75 60 200 

890 753 75 60 200 

890 754 75 60 200 

890 758 200 30 200 

890 755 75 30 250 

890 755 75 30 250 

890 700 75 40 300 

890 700 75 60 300 

890 700 75 60 300 

890 700 50 30 500 

890 700 75 30 500 

890 700 75 30 500 

890 700 75 30 500 

890 700 75 40 500 

890 700 75 60 500 

890 700 75 60 500 

890 700 75 60 500 

890 700 100 60 500 

890 752 75 30 500 

890 754 75 30 500 

890 756 400 30 500 

890 700 75 30 550 

890 700 50 30 600 
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890 756 75 60 700 

890 700 75 40 800 

890 700 75 30 900 

890 700 75 30 900 

890 700 80 30 900 

890 700 80 30 900 

890 700 75 60 900 

890 700 75 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 700 80 60 900 

890 755 75 60 900 

890 758 80 60 900 

890 760 80 60 900 

890 761 80 60 900 

890 762 80 60 900 

890 700 100 30 950 

890 700 125 30 1150 

890 700 200 30 1150 

900 700 75 30 150 

900 700 150 30 1000 



 

142 

 

 

DOE data 

Temperature Pressure Flow Time 

870 700 50 250 

870 700 50 42.50000 

870 700 50 600 

870 700 225 250 

870 700 225 42.50000 

870 700 225 600 

870 700 400 250 

870 700 400 42.50000 

870 700 400 600 

870 732 50 250 

870 732 50 42.50000 

870 732 50 600 

870 732 225 250 

870 732 225 42.50000 

870 732 225 600 

870 732 400 250 

870 732 400 42.50000 

870 732 400 600 

870 764 50 250 

870 764 50 42.50000 

870 764 50 600 

870 764 225 250 

870 764 225 42.50000 

870 764 225 600 

870 764 400 250 

870 764 400 42.50000 
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870 764 400 600 

885 700 50 250 

885 700 50 42.50000 

885 700 50 600 

885 700 225 250 

885 700 225 42.50000 

885 700 225 600 

885 700 400 250 

885 700 400 42.50000 

885 700 400 600 

885 732 50 250 

885 732 50 42.50000 

885 732 50 600 

885 732 225 250 

885 732 225 42.50000 

885 732 225 600 

885 732 400 250 

885 732 400 42.50000 

885 732 400 600 

885 764 50 250 

885 764 50 42.50000 

885 764 50 600 

885 764 225 250 

885 764 225 42.50000 

885 764 225 600 

885 764 400 250 

885 764 400 42.50000 

885 764 400 600 

900 700 50 250 

900 700 50 42.50000 

900 700 50 600 
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900 700 225 250 

900 700 225 42.50000 

900 700 225 600 

900 700 400 250 

900 700 400 42.50000 

900 700 400 600 

900 732 50 250 

900 732 50 42.50000 

900 732 50 600 

900 732 225 250 

900 732 225 42.50000 

900 732 225 600 

900 732 400 250 

900 732 400 42.50000 

900 732 400 600 

900 764 50 250 

900 764 50 42.50000 

900 764 50 600 

900 764 225 250 

900 764 225 42.50000 

900 764 225 600 

900 764 400 250 

900 764 400 42.50000 

900 764 400 600 

 

C Source File 

//Analysis Type - Regression  

#include <stdio.h> 
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#include <conio.h> 

#include <math.h> 

#include <stdlib.h> 

double input_hidden_weights[16][4]= 

{ 

 {6.88538167880656e+001, 5.19705031137239e+001, 1.96349725020864e-001, -

3.96837035101177e+001 }, 

 {-9.41151995629373e+001, -1.13003504340434e+002, 3.81656846849003e+001, 

5.23240862449531e+001 }, 

 {4.01810908021807e+001, -9.18610797701283e+001, -1.04453192467511e+001, 

5.36469081765266e+001 }, 

 {-1.56383045945218e+001, -9.06987638452360e+001, -1.01933995373302e+000, 

8.40483484092657e+001 }, 

 {5.22265263772885e+001, 8.89616582166964e+001, -3.93660084263335e+001, -

4.43438171715207e+001 }, 

 {1.42040275574771e+001, 1.84972652282273e+001, 3.96386196954803e+000, -

7.87681671339185e+000 }, 

 {3.36355319990229e+001, -1.25864192194514e+002, -4.65829507148270e+001, 

6.53305874680016e+001 }, 

 {-7.52932016934223e+001, 5.83281611885973e+001, 3.30854101777050e+000, -

1.31102191213292e+001 }, 

 {1.02433398178607e+001, 1.33528450578865e+002, 9.86575161041711e-001, -

1.26542861376054e+002 }, 

 {-5.45262588816080e+001, -8.60668501080394e+000, -3.21967335331254e+001, 

5.00334975291107e+001 }, 

 {-3.36133417636788e+000, -1.27130873750613e+002, -2.28795241300012e+001, -

5.93673720091773e+000 }, 



 

146 

 

 {-4.94871677241414e+000, 1.75006370691987e+001, 4.70229690719144e+000, 

1.61215658839238e+001 }, 

 {-7.82230091690304e+001, -1.54029768119110e+001, -1.27426390300539e+002, 

1.61760741125225e+000 }, 

 {3.45486568045511e+001, 6.27126567698776e+001, -9.12086705919135e+001, 

4.75735499149714e+000 }, 

 {3.55321485300413e+001, -6.05696311234928e+000, -1.46376742164126e+001, -

3.04507464104846e+001 }, 

 {-3.21699982266888e+001, 1.19627496082985e+002, -7.65554470841906e+001, -

1.42725907753947e+002 }  

}; 

double hidden_bias[16]={ 1.35327813428559e+001, 1.41134751024459e+001, 

1.76482123707594e+001, -2.41673416249054e+001, -1.59566330977438e+000, -

1.00669497804693e+001, 3.08661961534460e+001, 6.60304331325891e+001, 

8.84922792181880e+000, 1.11914973077307e+001, 7.33639561516985e+000, -

3.20387893627937e+001, 7.09087687782888e+001, 1.49338018849561e+001, 

1.45155945812972e+001, 6.17382693600943e+001 }; 

double hidden_output_wts[1][16]= 

{ 

 {-1.83866503181541e+002, -9.08345298647669e+001, 7.35533974495154e+001, 

4.73836303200020e+001, 4.87935957704203e+001, -5.98846120080697e+001, 

8.34668938379424e+001, -9.83377480284121e+001, 1.23223156059255e+002, -

8.15416774789619e+001, -2.55000470702606e+002, -2.75734810522121e+002, 

1.62680971165662e+002, -8.77271503993161e+001, -7.26224338366502e+001, 

8.02533927116236e+001 } 

}; 

double output_bias[1]={ -8.78297705012941e+001 }; 
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double max_input[4]={ 90000000000e+002, 7.64000000000000e+002, 

40000000000e+002, 60000000000e+001 }; 

double min_input[4]={ 8.70000000000000e+002, 70000000000e+002, 

50000000000e+001, 2.50000000000000e+001 }; 

double max_target[1]={ 1.15000000000000e+003 }; 

double min_target[1]={ 00000000000e+000 }; 

double input[4]; 

double hidden[16]; 

double output[1]; 

void ScaleInputs(double* input, double minimum, double maximum, int size) 

{ 

 double delta; 

 long i; 

 for(i=0; i<size; i++) 

 { 

 delta = (maximum-minimum)/(max_input[i]-min_input[i]); 

 input[i] = minimum - delta*min_input[i]+ delta*input[i]; 

 } 

} 

void UnscaleTargets(double* output, double minimum, double maximum, int 

size) 

{ 

  double delta; 

  long i; 

  for(i=0; i<size; i++) 
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  { 

    delta = (maximum-minimum)/(max_target[i]-min_target[i]); 

    output[i] = (output[i] - minimum + delta*min_target[i])/delta; 

   } 

} 

double logistic(double x) 

{ 

  if(x > 100.0) x = 1.0; 

  else if (x < -100.0) x = 0.0; 

  else x = 1.0/(1.0+exp(-x)); 

  return x; 

} 

void ComputeFeedForwardSignals(double* MAT_INOUT,double* 

V_IN,double* V_OUT, double* V_BIAS,int size1,int size2,int layer) 

{ 

  int row,col; 

  for(row=0;row < size2; row++)  

    { 

      V_OUT[row]=0.0;     

for(col=0;col<size1;col++)V_OUT[row]+=(*(MAT_INOUT+(row*size1)+col)*V_I

N[col]); 

      V_OUT[row]+=V_BIAS[row]; 

      if(layer==0) V_OUT[row] = tanh(V_OUT[row]); 

      if(layer==1) V_OUT[row] = logistic(V_OUT[row]); 

   } 
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} 

void RunNeuralNet_Regression ()  

{ 

ComputeFeedForwardSignals((double*)input_hidden_weights,input,hidden,hi

dden_bias,4, 16,0); 

ComputeFeedForwardSignals((double*)hidden_output_wts,hidden,output,out

put_bias,16, 1,1); 

} 

int main() 

{ 

  int i=0; 

  int keyin=1; 

  while(1) 

  { 

 printf("\nEnter values for Continuous inputs\n"); 

 printf("Cont. Input-0(Temp.): "); 

 scanf("%lg",&input[0]); 

 printf("Cont. Input-1(P (torr)): "); 

 scanf("%lg",&input[1]); 

 printf("Cont. Input-2(gas flow rate): "); 

 scanf("%lg",&input[2]); 

 printf("Cont. Input-3(time (min)): "); 

 scanf("%lg",&input[3]); 

    ScaleInputs(input,0,1,4); 

 RunNeuralNet_Regression(); 
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 UnscaleTargets(output,0,1,1); 

 printf("\nPredicted Output of length = %.14e",output[0]); 

 printf("\n\nPress any key to make another prediction or enter 0 to quit 

the program.\n"); 

 keyin=getch(); 

 if(keyin==48)break; 

  } 

 return 0; 

} 

 

XML Document 

<?xml version="1.0" encoding="UTF-8"?> 

<PMML version="3.0"><Header copyright="Copyright (c) StatSoft, Inc. All 

Rights Reserved."><Application name="STATISTICA Automated Neural 

Networks (SANN)" version="2.0"/></Header><DataDictionary 

numberOfFields="5"><DataField name="length" 

optype="continuous"/><DataField name="Temp." 

optype="continuous"/><DataField name="P (torr)" 

optype="continuous"/><DataField name="gas flow rate" 

optype="continuous"/><DataField name="time (min)" 

optype="continuous"/></DataDictionary><NeuralNetwork modelName="CVD 

VA-SWNTs in Workb_MLP 4-16-1" 

functionName="regression"><MiningSchema><MiningField name="length" 

usageType="predicted"/><MiningField name="Temp." lowValue="87000" 

highValue="90000"/><MiningField name="P (torr)" lowValue="70000" 

highValue="76400"/><MiningField name="gas flow rate" lowValue="5000" 

highValue="40000"/><MiningField name="time (min)" lowValue="2500" 

highValue="6000"/></MiningSchema><NeuralInputs 

numberOfInputs="4"><NeuralInput id="0"><DerivedField><NormContinuous 
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field="Temp."><LinearNorm orig="8.70000000000000e+002" 

norm="000"/><LinearNorm orig="90000000000e+002" 

norm="100"/></NormContinuous></DerivedField></NeuralInput><NeuralInput 

id="1"><DerivedField><NormContinuous field="P (torr)"><LinearNorm 

orig="70000000000e+002" norm="000"/><LinearNorm 

orig="7.64000000000000e+002" 

norm="100"/></NormContinuous></DerivedField></NeuralInput><NeuralInput 

id="2"><DerivedField><NormContinuous field="gas flow rate"><LinearNorm 

orig="50000000000e+001" norm="000"/><LinearNorm orig="40000000000e+002" 

norm="100"/></NormContinuous></DerivedField></NeuralInput><NeuralInput 

id="3"><DerivedField><NormContinuous field="time (min)"><LinearNorm 

orig="2.50000000000000e+001" norm="000"/><LinearNorm 

orig="60000000000e+001" 

norm="100"/></NormContinuous></DerivedField></NeuralInput></NeuralInpu

ts><NeuralLayer numberOfNeurons="16" activationFunction="tanh"><Neuron 

id="4" bias="1.35327813428559e+001"><Con from="0" 

weight="6.88538167880656e+001"/><Con from="1" 

weight="5.19705031137239e+001"/><Con from="2" weight="1.96349725020864e-

001"/><Con from="3" weight="-3.96837035101177e+001"/></Neuron><Neuron 

id="5" bias="1.41134751024459e+001"><Con from="0" weight="-

9.41151995629373e+001"/><Con from="1" weight="-

1.13003504340434e+002"/><Con from="2" 

weight="3.81656846849003e+001"/><Con from="3" 

weight="5.23240862449531e+001"/></Neuron><Neuron id="6" 

bias="1.76482123707594e+001"><Con from="0" 

weight="4.01810908021807e+001"/><Con from="1" weight="-

9.18610797701283e+001"/><Con from="2" weight="-

1.04453192467511e+001"/><Con from="3" 

weight="5.36469081765266e+001"/></Neuron><Neuron id="7" bias="-

2.41673416249054e+001"><Con from="0" weight="-

1.56383045945218e+001"/><Con from="1" weight="-

9.06987638452360e+001"/><Con from="2" weight="-

1.01933995373302e+000"/><Con from="3" 
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weight="8.40483484092657e+001"/></Neuron><Neuron id="8" bias="-

1.59566330977438e+000"><Con from="0" 

weight="5.22265263772885e+001"/><Con from="1" 

weight="8.89616582166964e+001"/><Con from="2" weight="-

3.93660084263335e+001"/><Con from="3" weight="-

4.43438171715207e+001"/></Neuron><Neuron id="9" bias="-

1.00669497804693e+001"><Con from="0" 

weight="1.42040275574771e+001"/><Con from="1" 

weight="1.84972652282273e+001"/><Con from="2" 

weight="3.96386196954803e+000"/><Con from="3" weight="-

7.87681671339185e+000"/></Neuron><Neuron id="10" 

bias="3.08661961534460e+001"><Con from="0" 

weight="3.36355319990229e+001"/><Con from="1" weight="-

1.25864192194514e+002"/><Con from="2" weight="-

4.65829507148270e+001"/><Con from="3" 

weight="6.53305874680016e+001"/></Neuron><Neuron id="11" 

bias="6.60304331325891e+001"><Con from="0" weight="-

7.52932016934223e+001"/><Con from="1" 

weight="5.83281611885973e+001"/><Con from="2" 

weight="3.30854101777050e+000"/><Con from="3" weight="-

1.31102191213292e+001"/></Neuron><Neuron id="12" 

bias="8.84922792181880e+000"><Con from="0" 

weight="1.02433398178607e+001"/><Con from="1" 

weight="1.33528450578865e+002"/><Con from="2" weight="9.86575161041711e-

001"/><Con from="3" weight="-1.26542861376054e+002"/></Neuron><Neuron 

id="13" bias="1.11914973077307e+001"><Con from="0" weight="-

5.45262588816080e+001"/><Con from="1" weight="-

8.60668501080394e+000"/><Con from="2" weight="-

3.21967335331254e+001"/><Con from="3" 

weight="5.00334975291107e+001"/></Neuron><Neuron id="14" 

bias="7.33639561516985e+000"><Con from="0" weight="-

3.36133417636788e+000"/><Con from="1" weight="-

1.27130873750613e+002"/><Con from="2" weight="-
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2.28795241300012e+001"/><Con from="3" weight="-

5.93673720091773e+000"/></Neuron><Neuron id="15" bias="-

3.20387893627937e+001"><Con from="0" weight="-

4.94871677241414e+000"/><Con from="1" 

weight="1.75006370691987e+001"/><Con from="2" 

weight="4.70229690719144e+000"/><Con from="3" 

weight="1.61215658839238e+001"/></Neuron><Neuron id="16" 

bias="7.09087687782888e+001"><Con from="0" weight="-

7.82230091690304e+001"/><Con from="1" weight="-

1.54029768119110e+001"/><Con from="2" weight="-

1.27426390300539e+002"/><Con from="3" 

weight="1.61760741125225e+000"/></Neuron><Neuron id="17" 

bias="1.49338018849561e+001"><Con from="0" 

weight="3.45486568045511e+001"/><Con from="1" 

weight="6.27126567698776e+001"/><Con from="2" weight="-

9.12086705919135e+001"/><Con from="3" 

weight="4.75735499149714e+000"/></Neuron><Neuron id="18" 

bias="1.45155945812972e+001"><Con from="0" 

weight="3.55321485300413e+001"/><Con from="1" weight="-

6.05696311234928e+000"/><Con from="2" weight="-

1.46376742164126e+001"/><Con from="3" weight="-

3.04507464104846e+001"/></Neuron><Neuron id="19" 

bias="6.17382693600943e+001"><Con from="0" weight="-

3.21699982266888e+001"/><Con from="1" 

weight="1.19627496082985e+002"/><Con from="2" weight="-

7.65554470841906e+001"/><Con from="3" weight="-

1.42725907753947e+002"/></Neuron></NeuralLayer><NeuralLayer 

numberOfNeurons="1" activationFunction="logistic"><Neuron id="20" bias="-

8.78297705012941e+001"><Con from="4" weight="-

1.83866503181541e+002"/><Con from="5" weight="-

9.08345298647669e+001"/><Con from="6" 

weight="7.35533974495154e+001"/><Con from="7" 

weight="4.73836303200020e+001"/><Con from="8" 
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weight="4.87935957704203e+001"/><Con from="9" weight="-

5.98846120080697e+001"/><Con from="10" 

weight="8.34668938379424e+001"/><Con from="11" weight="-

9.83377480284121e+001"/><Con from="12" 

weight="1.23223156059255e+002"/><Con from="13" weight="-

8.15416774789619e+001"/><Con from="14" weight="-

2.55000470702606e+002"/><Con from="15" weight="-

2.75734810522121e+002"/><Con from="16" 

weight="1.62680971165662e+002"/><Con from="17" weight="-

8.77271503993161e+001"/><Con from="18" weight="-

7.26224338366502e+001"/><Con from="19" 

weight="8.02533927116236e+001"/></Neuron></NeuralLayer><NeuralOutputs 

numberOfOutputs="1"><NeuralOutput outputNeuron="20"><DerivedField 

optype="continuous"><NormContinuous field="length"><LinearNorm 

orig="00000000000e+000" norm="00000000000e+000"/><LinearNorm 

orig="1.15000000000000e+003" 

norm="10000000000e+000"/></NormContinuous></DerivedField></NeuralOutp

ut></NeuralOutputs></NeuralNetwork></PMML> 
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Appendix D 

Experimental Data 

Temp Flow Time Press Length 

880 150 60 700 0 

880 150 5 700 325 

880 150 60 700 325 

880 150 60 700 325 

880 150 60 700 325 

880 150 60 700 325 

880 150 60 700 325 

880 150 60 700 325 

880 150 30 700 325 

880 150 30 700 325 

880 150 30 700 325 

880 150 30 700 325 

880 150 30 700 325 

880 150 30 700 325 

880 150 60 700 325 

880 50 5 700 325 

880 20 5 700 325 

880 150 60 700 500 

880 150 60 700 500 

880 150 60 700 500 

880 150 60 700 500 

880 150 60 700 500 

880 150 60 700 500 

880 150 60 700 500 

880 150 60 700 500 
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880 150 60 700 500 

880 150 60 700 500 

880 150 5 700 500 

880 150 30 700 500 

880 150 30 700 500 

880 150 30 700 500 

880 150 30 700 500 

880 150 30 700 500 

880 150 30 700 500 

880 150 30 700 500 

880 150 30 700 500 

880 150 30 700 500 

880 150 30 700 500 

880 150 60 700 650 

880 150 90 700 650 

880 150 20 700 675 

880 150 60 700 1000 

 

DOE data 

Flow Time Length 

20 50 325 

20 32.50000 325 

20 600 503.7915 

85 50 628.0037 

85 32.50000 357.7051 

85 600 640.5887 

150 50 675 

150 32.50000 429.475 

150 600 649.8988 
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XML Document 

<?xml version="1.0" encoding="UTF-8"?> 

-<PMML version="3.0">-<Header copyright="Copyright (c) StatSoft, Inc. All 

Rights Reserved."><Application version="2.0" name="STATISTICA Automated 

Neural Networks (SANN)"/></Header>-<DataDictionary 

numberOfFields="3"><DataField name="Length" 

optype="continuous"/><DataField name="Flow" 

optype="continuous"/><DataField name="Time" 

optype="continuous"/></DataDictionary>-<NeuralNetwork 

functionName="regression" modelName="Monte Carlo Data -- Replication 12 

(recent) in nonparamet_MLP 2-6-1">-<MiningSchema><MiningField 

name="Length" usageType="predicted"/><MiningField name="Flow" 

highValue="15000" lowValue="2000"/><MiningField name="Time" 

highValue="9000" lowValue="500"/></MiningSchema>-<NeuralInputs 

numberOfInputs="2">-<NeuralInput id="0">-<DerivedField>-<NormContinuous 

field="Flow"><LinearNorm norm="000" 

orig="20000000000e+001"/><LinearNorm norm="100" 

orig="1.50000000000000e+002"/></NormContinuous></DerivedField></NeuralIn

put>-<NeuralInput id="1">-<DerivedField>-<NormContinuous 

field="Time"><LinearNorm norm="000" 

orig="50000000000e+000"/><LinearNorm norm="100" 

orig="90000000000e+001"/></NormContinuous></DerivedField></NeuralInput>

</NeuralInputs>-<NeuralLayer activationFunction="logistic" 

numberOfNeurons="6">-<Neuron id="2" bias="-2.34605521309488e+000"><Con 

weight="-8.43053970865299e-001" from="0"/><Con weight="-

2.31405662902162e+000" from="1"/></Neuron>-<Neuron id="3" bias="-

4.02665223356582e-001"><Con weight="-8.31149712079690e-003" 

from="0"/><Con weight="-3.13040212864502e-001" from="1"/></Neuron>-

<Neuron id="4" bias="-2.45349983538043e-002"><Con weight="-
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1.46958441487193e-001" from="0"/><Con weight="2.21153869088144e+000" 

from="1"/></Neuron>-<Neuron id="5" bias="-1.77086489918581e-001"><Con 

weight="-4.27712184823327e-001" from="0"/><Con 

weight="1.41015887585967e+000" from="1"/></Neuron>-<Neuron id="6" 

bias="2.14377123761839e-001"><Con weight="-3.41038575786699e-001" 

from="0"/><Con weight="4.11123928698177e+000" from="1"/></Neuron>-

<Neuron id="7" bias="-1.16892250788823e+000"><Con weight="-

3.29827505060424e+000" from="0"/><Con weight="1.50765983953288e+001" 

from="1"/></Neuron></NeuralLayer>-<NeuralLayer 

activationFunction="identity" numberOfNeurons="1">-<Neuron id="8" bias="-

3.41668192093133e+000"><Con weight="2.63281674121808e+000" 

from="2"/><Con weight="2.42953493133018e+000" from="3"/><Con 

weight="2.21252553836957e+000" from="4"/><Con weight="1.81199062188609e-

001" from="5"/><Con weight="3.66986350798838e+000" from="6"/><Con 

weight="-2.10447746169748e+000" from="7"/></Neuron></NeuralLayer>-

<NeuralOutputs numberOfOutputs="1">-<NeuralOutput outputNeuron="8">-

<DerivedField optype="continuous">-<NormContinuous 

field="Length"><LinearNorm norm="00000000000e+000" 

orig="00000000000e+000"/><LinearNorm norm="10000000000e+000" 

orig="6.75000000000000e+002"/></NormContinuous></DerivedField></NeuralO

utput></NeuralOutputs></NeuralNetwork></PMML> 
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Appendix E 

First Run Second Run 

Time Pressure Time Pressure  

1 708 1 711 

2 700 2 709 

3 700 3 705 

4 699 4 702 

5 700 5 699 

6 700 6 698 

7 700 7 697 

8 701 8 700 

9 702 9 703 

10 709 10 707 

11 710 11 712 

12 711 12 722 

13 713 13 702 

14 714 14 692 

15 716 15 693 

16 717 16 704 

17 717 17 709 

18 713 18 710 

19 710 19 715 
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20 702 20 720 

21 697 21 714 

22 695 22 692 

23 697 23 683 

24 697 24 682 

25 700 25 685 

26 702 26 699 

27 704 27 708 

28 708 28 717 

29 709 29 713 

30 705 30 701 

AVERAGE 705.2 AVERAGE 703.467 
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