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ABSTRACT 

Hertz Theory (1882) is the classical theory used to solve contact problems of elastic solids 

without considering the effect of adhesive forces. It was nearly one century later that 

Johnson, Kendall and Roberts (1971) presented a new theory to study adhesion in the 

contact of elastic solids. In this thesis, we consider the contact of two elastic planar surfaces, 

one of which is rough and the other is smooth. Following the procedure of Greenwood and 

Williamson (1966), the asperity heights are assumed to have a Gaussian distribution with 

standard deviation σ and all asperities are assumed to have equal radius of curvature at their 

summits. However, we use the JKR model instead of the Hertz model for each asperity 

contact. Thus, this procedure is similar to that used by Tabor and Fuller (1975). By applying 

an approximate form of the JKR load-displacement relation to each single asperity, the 

total force between the surfaces is obtained during a loading/unloading cycle. However, 

the behavior during loading and unloading of the rough surface differ. In particular the 

pull-on and pull-off forces differ because adhesion in the contact produces hysteresis which 

results in energy loss. The maximum pull-on and pull-off forces in one contact/separation 

cycle are each a function of the elastic adhesion index which is a measure of the ratio of 
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surface roughness to adhesion deformation. This key parameter represents the ratio of the 

dispersion of asperity heights to the maximum extended distance of an asperity above its 

undeformed position before adhesion is broken. In addition the pull-off force also depends 

on the maximum extent of loading. It is also shown that for large values of the elastic 

adhesion index (rough surfaces), not only is the effect of adhesion decreased to a negligible 

fraction of that for smooth surfaces, but the hysteretic energy losses are significantly 

decreased. 
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LIST OF SYMBOLS AND ABBREVIATIONS 

MEMS Micro-Electro Mechanical Systems; 

SPM Scanning Probe Microscope; 

𝜸, 𝜸𝟏, 𝜸𝟐 Surface energy which is the work need per unit area to create a 

reversibly and isothermally surface; 

𝜸𝟏𝟐 Interfacial energy; 

𝒘 Dupré energy of adhesion; 

𝑼 Total potential energy; 

𝝈 Adhesive stress; 

𝝈𝟎 Maximum theoretical stress; 

H, h, d Separation between the surfaces; 

𝑷,𝑷 External applied load; 

𝑷 Total force between the surfaces; 

𝜺 Equilibrium separation; 

𝑹𝟏, 𝑹𝟐 Radius of the spheres respectively; 

𝑹 Effective radius of curvature; 
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𝒂, 	  𝒂𝑯 Radius of contact area; 

𝒂𝟎 Contact radius under zero applied load upon loading; 

𝒂𝒄 Contact radius when pull-off occurs; 

𝑭𝟎 Pull-off forces upon unloading for different contact models; 

𝑲 Elastic constant; 

𝝂 Poisson’s Ratio; 

𝑬∗ Effective Young’s Modulus; 

𝜹, 𝜟 Approach (Interference); 

𝒛 Asperity height; 

𝝁 Tabor parameter; 

𝜹, 𝜹𝑯 Approach (Interference); 

𝜹𝒄, 𝜟𝒄 Maximum extended distance above its undeformed and original 

height of a single asperity and amount of asperities; 

𝜹𝟎 Approach under zero applied load upon loading; 

𝑴−𝑫 Maugis-Dugdale (M-D) model; 

JKR Johnson- Kendall- Roberts Model; 

DMT Derjaguin-Muller-Toporov Model; 
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𝝀 Maugis elastic parameter; 

𝝓(𝒛) Gaussian distribution of asperity heights; 

𝝈 Standard deviation; 

𝑵,𝒏 Number of asperities; 

𝒑(𝒓) Pressure distribution; 

𝒑𝟎 Maximum contact stress; 

𝑷𝟏 Effective Hertz load; 

𝝍 Non-dimensional parameter: relation between E
EF

 and G
GF

; 

𝑷𝒍𝒐𝒂𝒅𝒊𝒏𝒈 Total force per unit area during loading; 

𝑷𝒖𝒏𝒍𝒐𝒂𝒅𝒊𝒏𝒈 Total force per unit area during unloading; 

𝑷𝟏 Total force during unloading by the distance to a maximum 

separation of ∆O; 

𝑷𝟐 Transition total force during unloading by the distance to a 

separation of ℎ − ℎQ; 

𝑳 Lower limit of the integration which to determine 𝑃TUU; 

𝒉𝟎 Minimum separation due to how much load applied during loading; 
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𝑷𝒎,𝑷𝒎X Maximum pull-off and pull-on forces which will reach in an actual 

loading/ unloading cycle; 

𝒉𝒎 Separation at where maximum pull-off force occurs; 

𝒉𝒎
, Separation at where maximum pull-on force occurs; 

𝒉𝟎 Separation at where zero total force between surfaces is upon 

loading; 

𝑷𝒎 Pull-off force during unloading from the separation ℎQ; 

𝒉𝒎 Separation at where maximum 𝑃Y occurs; 

𝜶 Elastic adhesion index. 
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1.   INTRODUCTION 

1.1 Overview 

If the elastic solid surfaces are brought sufficiently close together, there will exist attractive 

atomic forces between them. As the separation between the two elastic surfaces is 

decreased, the atomic forces will increase until the surfaces are brought into final contact. 

Tabor et al. [1] and Israelachvili et al. [2] presented a measure of van der Waals forces to 

study how the atomic forces varied with the separation between the surfaces. In order to 

separate the contacting bodies, a force which described as the force of adhesion is needed. 

Adhesion plays an effective role in nanoscale contacts, especially in micro-electro 

mechanical systems (MEMS) and in some other related fields, such as nanotribology, 

nanomanipulation, nanowear and scanning probe microscope (SPM) measurements. As 

one of the major factors, the effect of adhesion limits the widespread use of micro-electro 

mechanical systems (MEMS) because of a very large surface to volume ratio. Zhao et al. 

[3], Maboudian [4] and Feynman [5] are invaluable resources that presented adhesion 

effects producing public attention in the MEMS field. 

For a long time, a well-known theory known as Hertz contact of studying the contact 

area between elastic solid bodies was given by Hertz [6]. However, the Hertz theory did 

not consider the adhesion. Hertz theory is appropriate for the contact problems of 

sufficiently weak surface energy and relatively large applied force. However, surface 
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energy γ cannot be ignored for nano-contact problems. Energy is required for creating a 

new solid surface due to bonds broken and atoms reorganization near the surface. Surface 

energy γ is the work that needed to create a unit surface area reversibly and isothermally. 

When a solid surface contacts with another one, the Dupre energy of adhesion	  𝑤, also as 

known as the work of adhesion, is required to separate two solid surfaces in the reversible 

and isothermal case. Thereby, the work per unit area to separate two solid surfaces is 

described as the work of adhesion which is given by 𝑤 = 𝛾e + 𝛾g − 𝛾eg. 𝛾e and 𝛾g are 

the surfaces energies of two solid bodies respectively, whereas 𝛾eg  is the interfacial 

energy. For the contact of identical bodies, the work of adhesion 𝑤 = 2γ due to the lack 

of interfacial energy acting between the two bodies. The potential energy (U) is a function 

of the separation (H) between two solid surfaces which is given by the Lennard-Jones 

potential. This potential energy (U) quantity, is defined as 𝑈 𝐻 = −kl
m

n
o

g
− e

k
n
o

p
, 

where 𝜀 is the equilibrium separation between two surfaces is well defined by Yu and 

Polycarpou [7]. The potential energy will reach minimum if the separation of surfaces is 

equal to the equilibrium separation (𝜀) specifically. Furthermore, the adhesive stress (𝜎) is 

also a function of the separation of the surfaces by deriving the potential energy (𝑈) with 

respect to the separation (𝐻), is given by 𝜎 𝐻 = −pl
mn

n
o

m
− n

o

s
. The adhesive stress 

(𝜎) will reach the maximum value, also known as theoretical stress (𝜎Q), which is given by 

𝜎Q =
etl
s mn

.  
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1.2  Rigid Contact Model 

1.2.1 Bradley Model 

A van der Waals model, also well known as Bradley model [8] provided a method of 

calculating the tensile force between two perfectly rigid and smooth spheres which was 

given. Bradley model was based on the contact between two rigid spheres with radius 𝑅e 

and 𝑅g  respectively. The adhesive force between two bodies was determined by 

integrating the van der Waals forces. When two contacting bodies were separated, the 

relative pull-off force upon unloading was found to be 𝐹Q = −2𝜋𝑅𝑤, where 𝑅 was the 

effective radius of curvature (i.e.	  e
x
= e

xy
+ e

xz
).  

The negative sign represented the tension between two rigid spheres with smooth 

surfaces. Bradley model considered the intermolecular forces as the surface forces. The 

separation between two rigid surfaces of Bradley model was defined as H = 𝑟g 2𝑅 . 

Therefore, the adhesive interaction was given by 𝐹 = − 2𝜋𝑟𝜎 𝐻 𝑑𝑟~
Q =

−2𝜋𝑅 𝜎 𝐻 𝑑𝐻~
Q = −2𝜋𝑅𝑤. 

1.3  Elastic Adhesion Contact Model 

1.3.1 Johnson, Kendall and Roberts (JKR) Model 

As Hertz theory was compared with experiments between rubber and glass spheres contact, 

several theories and contradictions were presented in the late 1960s.  
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Johnson, Kendall and Roberts [9] revised and complemented the classical Hertz 

theory, then presented a new theory to study adhesion in the contact of elastic solids. The 

Johnson-Kendall-Roberts (JKR) theory was the first to incorporate the effect of adhesion 

into Hertz contact. Observed by the JKR model, Hertz theory was suitable for integrating 

contact area at large loads. However, the contact area at low loads predicted by JKR model 

was larger than that predicted by Hertz theory due to the elastic deformation caused by the 

tensile (attractive) intermolecular surface forces. The JKR model accounted for adhesive 

forces within the contact region and neglected the adhesion effect outside the contact area. 

Furthermore, if the externally applied load was removed, the contact area would still have 

a non-zero value. Meanwhile, the adhesive force between the contacting surfaces was very 

strong in case of the surfaces were dry and clean. 

The JKR model did consider the adhesion effect appropriately which also included 

the Dupré energy of adhesion (𝑤). The pull-off force to separate the contacting surfaces 

was determined by minimizing the potential energy (U) which was given by 𝐹Q =

− m
g
𝜋𝑅𝑤. Thus, it can be seen the pull-off force was less than that predicted by Bradley 

model for rigid contact (i.e. −2𝜋𝑅𝑤). Assume that if the Dupré energy of adhesion (𝑤) 

vanishes, the JKR theory will be reduced to Hertz contact. It is necessary to note that the 

conclusion obtained from JKR model only includes elastic deformation. We use JKR 



5 

 

model throughout this thesis for considering the contact of two elastic planar surfaces. The 

detailed statements on JKR model will be carried out in the following chapter. 

1.3.2 Derjaguin-Muller-Toporov (DMT) Model 

The tensile force between two perfectly rigid spheres was given by Bradley model. 

Derjaguin-Muller-Toporov [10], [11] incorporated Hertz model and Bradley model, and 

presented a modified model for the contact of two elastic spheres with high stiffness. DMT 

model assumed that there only existed attractive forces outside of the contact area, unlike 

the JKR model. However, the same contact profile and model geometry are still same as in 

the Hertz contact are assumed by the DMT model, but with an increased attractive traction. 

Thus, the contact radius was larger than that predicted by Hertz theory due to the additional 

attraction outside the contact region which is given by 𝑎m = x E�g�xl
�

, where	  𝑎 is contact 

radius and 𝐾 is the elastic constant defined by 𝐾 = k�∗

m
. Meanwhile, the approach (𝛿) is 

given by 𝛿 = 𝑎g 𝑅. From the equations, it is clear that the contact radius 𝑎Qm =
g�lxz

�
 

when there is no external load applied upon loading. During the subsequent unloading, the 

separation between the surfaces is produced at zero contact radius. Although there is 

adhesive attraction between surfaces before coming into contact, no deformation is likely 

to occur. Therefore, the shape of spheres does not change. The pull-off force during 

unloading cycle is therefore obtained as same as the adhesion force predicted by Bradley 

model. The same behavior of loading and unloading produces no hysteresis losses due to 
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the same values of pull-on and pull-off force. Unlike the JKR model, when the contact area 

is reduced to zero at separation the pull-off force is acquired and the behavior of both 

spheres become rigid.  

1.3.2   Tabor Parameter (𝜇) 

From the JKR and DMT models, it is obvious that different pull-off forces are achieved by 

the two models. This apparent contradiction is well resolved after the Tabor parameter (𝜇) 

[12] is introduced. Tabor [12] indicated that the JKR model is applicable to cases of a small 

ratio of the range of surfaces force to the elastic deformation while the DMT model suits 

the larger ratio. The appearance of a necked region was observed closely outside the contact 

edge of two spheres by light microscope (LM). The neck height ( ℎO ) is equal 

to	   xl
z

�∗z
e/m

which was given by Tabor [12]. According to the height of neck ℎO over the 

equilibrium separation (𝜀 ), a dimensionless Tabor parameter (𝜇 ) was given by 𝜇= 

xlz

�∗zn�

e/m
. Tabor parameter (𝜇) is a measure of the ratio of the elastic deformation to the 

effective range of surface forces. Tabor pointed that JKR model is in good agreement with 

the experimental results as Tabor parameter (𝜇) is approximately greater than 3, whereas 

DMT model is much closer to the reality as Tabor parameter (𝜇) is approximately less than 

0.1. 
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1.3.3   Maugis Model 

Maugis [13] presented an analytical model using the model of Dugdale crack [14], as well-

known as the Maugis model which accounts for a continuous transition between the JKR 

and DMT theories. Thus, the Maugis model is occasionally referred as the Maugis-Dugdale 

(M-D) model. The Maugis model is the most accurate theory in past decades which is 

applicable to any contact mechanics problems of spheres with either strong or weak 

adhesion. For the Maugis model, the adhesive molecular force is assumed acting within a 

ring region near the edge of the contact area border. With using the Dugdale model [14] of 

elastic-plastic fracture mechanics, the Maugis model assumes that the adhesive stress is 

equal to the theoretical stress (𝜎Q) when the local separation between surfaces is less than 

a critical value of ℎQ , whereas the adhesive stress is reduced to zero when the local 

separation is greater than ℎQ . Therefore, the work of adhesion is given by w = 𝜎QℎQ , 

where the theoretical stress (𝜎Q ) is given by 𝜎Q =
etl
s mn

 as talked above based on the 

Lennard- Jones potential. Thus, the prescribed value of separation ℎQ is obtained, ℎQ =

l
��
≅ 0.97𝜀 . The adhesion of Maugis model (also known as the M-D model) [3] is 

determined by a non-dimensional elastic parameter (λ) which is related to the Tabor 

parameter (𝜇). The Maugis elastic parameter (λ) is described as λ = 2𝜎Q
x

�l�z
e/m

≅

1.16𝜇. The JKR and DMT models are particular cases of the Maugis model which are 

determined by different values of the Maugis parameter (λ). The JKR model (compliant 
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materials) is applicable for λ → ∞, whereas as λ → 0 the DMT model (stiff materials) is 

valid. Therefore, Maugis model describes a transition model between the JKR (valid for λ 

is greater than about 3) and DMT (valid for λ is less than about 0.1) models.  

1.4 Statement of the Problem 

As one of the major factors, the effect of adhesion limits the widespread use of micro-

electro mechanical systems (MEMS) and nanotechnology due to scaling effects. Let’s 

consider about the dimensions change of the JKR model to prove the importance of 

adhesion. The adhesive pull-off force of the JKR model is expressed as 𝐹Q = − m
g
𝜋𝑅𝑤, 

where the unit of the Dupré energy of adhesion (𝑤) is J/mg. Meantime, the maximum 

value of the adhesive stress is expressed as 𝜎Q =
etl
s mn

. It is clear that as dimensions change 

from millimeters (mm) to nanometers (nm), the weight of contacting bodies decreases by 

a factor of 10ep and the relative adhesive pull-off force decreases by a factor of 10t. 

However, the importance of adhesion stress increases by a significant factor of 10eg . 

Similarly, the same scaling effects apply to the DMT and Maugis models. Thus, it can be 

proven that the adhesion effect cannot be ignored in MEMS and nanotechnology fields. 

In fact, the surface roughness is in micro- or nano-scale with respect to the nominal 

contact region of surfaces. Johnson, Kendall and Roberts [9] complemented the classical 

Hertz theory which is the original elastic contact theory, and then presented the well-known 

JKR theory to study the elastic adhesion. Greenwood et al. [15] analyzed the adhesionless 
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contact of two nominally rough surfaces with using Exponential distribution and Gaussian 

distribution of asperity heights of the surfaces respectively. Fuller and Tabor [16] 

investigated the effect of surface roughness on the reduction of the elastic adhesion.  

The aforementioned JKR model described the adhesion between theoretically smooth 

elastic surfaces. For this reason, we will revise the contact model in consideration of 

randomly distributed surface roughness while using the JKR model for individual asperities 

in the thesis. Using Maugis theory, Johnson and Greenwood [17] provided an adhesion 

map for the contact of elastic spheres which is very useful.  

Adhesion hysteresis is described as the difference between the work done to separate 

two surfaces during unloading and that initially acquired on bringing them together into 

contact upon loading. Both the JKR and Maugis models accounted for the existence of 

hysteresis due to the different behaviors during a contact/separation cycle. Hysteretic 

energy losses are a very common phenomenon which cannot be ignored in small-scale 

interface and surface interactions. However, for some contacting systems with small scale 

dimensions, hysteresis losses are most obvious. Especially, hysteresis losses will be 

embodied in a phase shift between the driving excitation and the oscillation of the tip when 

the tapping mode is manipulated by the atomic force microscope (AFM) [18], [19], [20], 

[21]. As the Tabor parameter (𝜇 ) increases, Muller et al. [22] presented a complete 

calculating method to show how the behavior changed from the DMT model to the JKR 
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model. They showed that when the Tabor parameter (𝜇) is greater than five, the maximum 

pull-off force is achieved very nearly the same as the JKR theory. Ciavarella et al. [23] 

pointed out that when the Tabor parameter (𝜇) is greater than five, the hysteresis loss is 

very close to the numerical solutions based on the JKR load-displacement curve with using 

the Lennard- Jones potential.  

In the thesis, we focus on the contact of two elastic planar surfaces, one of which is rough 

and the other is smooth. Following the procedure of Greenwood and Williamson [15], the 

asperity heights of surfaces are assumed to have a Gaussian distribution. We develop an 

approximate solution based on the JKR load-displacement relation and apply to each single 

asperity which as same as the Fuller and Tabor analysis. Thus, the different loading and 

unloading paths for different surface roughness are obtained. The total force between the 

surfaces is further obtained during a loading/unloading cycle. We revise the Fuller-Tabor 

model and obtain the adhesive forces (the pull-on and pull-off forces) for variable surface 

roughness. It is shown that the hysteresis loss and the adhesive forces are affected by a 

non-dimensional parameter (adhesion index, which is a measure of the ratio of surface 

roughness to adhesion deformation) and by the non-dimensional extent of loading. 
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2.   PROBLEM FORMULATION 

Following the procedure of Greenwood [24], the experimental results show that the 

Gaussian distribution is a very good approximation for asperity heights of many surfaces. 

Therefore, we use a Gaussian distribution of asperity heights to treat the surface roughness, 

i.e. 

 𝜙 𝑧 = e

g�
y
z
exp − �z

g�z
	  	  	   (1)	  

where 𝜎	  is the standard deviation and 𝜙 𝑧 	  𝑑𝑧 represents the probability of an asperity 

having a height between z and 𝑧 + 𝑑𝑧 above the mean, with the corresponding mean of 

asperity heights at 𝑧 = 0.  

Note that for sake of simplicity, we could assume the peak of each asperity as a sphere 

with the radius R when the rough surface contacting with a perfectly flat surface. Mean 

surface height is average level of the surface, whereas mean summit height, a crucial 

concept throughout this thesis, is the mean level of all the peaks of asperities. The 

separation d is the distance between the mean of asperity heights and the perfectly flat 

surface. If the height of those peaks exceeds the separation d, the asperities and flat smooth 

surface are compressed each other by a distance δ as shown in Figure 1. Assuming that 

there are totally N asperities per unit area, a series of peaks n which will make contact with 

that flat plane is given by [15], 

 𝑛 = 𝑁 𝜙 𝑧 	  𝑑𝑧~
�  (2)	  
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Firstly, Hertz [6] advanced a theory which considering the contact between two elastic 

smooth spheres. The two spheres are perfectly elastic with radius 𝑅e and 𝑅g respectively, 

thus the Hertz contact only investigated the elastic deformation of the spheres. The spheres 

are brought together and pressed each other under an applied load 𝑃. Therefore, a circular 

contact region was made which the contact radius 𝑎o is given by 

 𝑎o =
Ex
�

e
m

 (3)	  

where 𝐾 is the elastic constant defined as 

 𝐾 = k�∗

m
 (4)	  

where 𝐸∗ is the effective Young’s modulus and R is the effective radius of curvature 

defined as 

 
e
�∗
= e¢£yz

�y
+ e¢£zz

�z
 (5)	  

	  
e
x
= e

xy
+ e

xz
	   (6)	  

where 𝐸e and 𝐸g are the elastic Young’s moduli of contact bodies respectively, and 𝜈e 

and 𝜈g  are the Poisson’s ratios of two bodies respectively. The displacement 𝛿o  of 

distant points in spheres is introduced due to the compression which given by, 

 𝛿o =
E

�xy z

g
m (7)	  
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In the meantime, the pressure distribution is described as  

 p(r) = 𝑝Q 1 − §z

¨©z

y
z (8)	  

where the maximum contact stress 𝑝Q = 3𝑃 2𝜋𝑎og. 

It had been several decades that Hertz Theory [6] without considering the effect of 

adhesive forces was fully accepted and fashionable until the JKR theory was developed. 

When a nominally rough surface makes contact with a flat smooth surface, the local 

pressure is obviously high at the contact region because of the random height of asperities, 

resulting in the real contact area. In order to incorporate and improve the Hertz theory, a 

new theory was formulated by Johnson, Kendall and Roberts [9] in the presence of 

adhesion. JKR theory studied the effect of adhesion at the contact region as well as contact 

pressure with using a balance between the loss in surface energy and the stored elastic 

energy. Compared with Hertz Theory, an increase of contact area is produced by JKR 

model as Figure 2 shows. Following the JKR model, we apply an external Load P to 

compress a spherical asperity with the radius of the curvature 𝑅. The pressure distribution 

of the JKR model is given by Johnson, Kendall and Roberts [9], 

 p r = 𝑝Q 1 − §z

¨z

y
z +	  𝑝Q

, 1 − §z

¨z

¢yz (9)	  

	   𝑝Q =
g¨�∗

�x
	   , 𝑝Q

, = −2 «�∗

�¨

¢yz	   (10)	  
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where 𝛾 is the surface energy of each surface per unit area. Also note that the pressure 

distribution of the JKR model, a new term is included which contains 𝑝Q
,  due to the tensile 

force sustained in the contact region as shown in Figure 2. As usual we define the work 

done per unit area in separating two bodies as 𝑤, namely the work of adhesion. The contact 

radius 𝑎 of contact area in the JKR model can be written in the presence of surface energy, 

which are modified by Johnson, Kendall and Roberts [9], 

 𝑎m = Eyx
�

 (11)	  

	   𝑃e = 𝑃 + 3𝜋𝑤𝑅 + 6𝜋𝑤𝑅𝑃 + (3𝜋𝑤𝑅)g	   (12)	  

	   𝑎 =
E�m�lx� t�lxE�(m�lx)z x

�
	  	  

e
m
	   (13)	  

where 𝑃e is the effective Hertz load due to adhesion acting between the elastic contact 

bodies. The approach 𝛿  of distant points in two surfaces which represents the 

displacement between the peak of the single asperity and the flat smooth surface is given 

by Tabor and Fuller [16],  

 𝛿 = �¨��gEx
mx�¨

 (14)	  

In [16], the experiments were carried out on the contact of rubber spheres and flat 

Perspex surface which are both smooth. 
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From Eqn. (12), it is obvious that the effective Hertz load 𝑃e is greater than applied 

load 𝑃 due to the surface energy effect. Meanwhile in absence of the work of adhesion, 

the contact radius reduces to simple Hertz Contact equation, i.e. 

 𝑎 = Ex
�

e
m = mEx

k�∗

e
m (15) 

Note that the contact area between two elastic bodies maintains zero until loading 

from zero applied load. Therefore, no deformation occurs until contact on the basis of JKR 

theory. At the initial moments of loading, the applied load still is zero while the contact 

area is finite due to the sudden effect of adhesive forces. Under the effect of zero external 

loads (i.e. P=0), the contact becomes finite and is given by using Eqn. (13), 

 𝑎Q =
t�lxz

�
	  	  

e
m
 (16)	  

Using Eqn. (14), the approach under zero applied load is, therefore: 

 𝛿Q =
¨�z

mx
= 	   k�zlzx

m�z
	  	  

e
m
 (17)	  

Due to the work energy of adhesion, two elastic bodies will still be in contact even if 

the compressively applied load P reduces from positive to zero (i.e. unloading). Now it is 

necessary to make the applied force negative (tensile force) to separate the asperity and the 

smooth elastic surface. The separation occurs when the tensile force reaches a maximum 

critical value is given by [9], [25], as 

 𝑃O =
m
g
𝜋𝑤𝑅 (18)	  
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where 𝑃O  represents the pull-off force (tensile) for breaking the adhesion between the 

single asperity and the flat smooth surface. Then separation occurs. 

The corresponding contact radius and approach are given by Eqns. (13) and (14), i.e. 

 𝑎O =
m�lxz

g�
	  	  

e
m
	   (19)	  

	   𝛿O =
¨Fz

mx
= 	   �zlzx

eg�z
	  	  

e
m
	   (20)	  

By combining Eqns. (13), (14), (19) and (20), we can simply express these equations 

non-dimensionally by introducing a parameter 𝜓, i.e. 

 G
GF
= 3𝜓 − 1 e

s
ψ + 1

y
� (21)	  

where the non-dimensional parameter 𝜓 can be written in terms of the	  expression	   E
EF
	   

 𝜓 = E
EF
+ 1

g
	   (22)	  

Inverting this relation between Eqns. (21) and (22), E
EF

 can be obtained as a function 

of G
GF

 

 E
EF
= 𝐹 G

GF
	   (23)	  

where	  𝑃O is the maximum tensile force required to make separation occur upon unloading, 

and 𝛿O is the maximum extended distance above its undeformed and original height of a 

single asperity. In this paper, we obtained a Four-term Curve-fit Piecewise Function of the 
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above Eqn. (23) using MATLAB. The original function (i.e. Eqns. (21) and (22)) and the 

Four-term Curve-fit Piecewise Function are both plotted as shown in Figure 2. 

By using Eqns. (1), (2), and (23), there are n asperities will make contact with the 

smooth surface of N asperities per unit area. Therefore, the total contact force per unit area 

when two surfaces are making surfaces contact with each other is equal to the summation 

of the forces applied to the asperities whose height exceeds the separation d above the mean, 

 𝑃 = 𝑛𝑃 𝑧 = 𝑁 𝑃 𝑧~
� 𝜙 𝑧 𝑑𝑧 = ´EF

� g�
y
z

𝐹 G
GF
	  ~

� exp − �z

g�z
𝑑𝑧	  	  	  	   (24)	  

In order to study the adhesion effect between the flat surface and all of the peaks 

whose height is greater than d, the parameters of displacement in Eqn. (24) should be 

expressed in terms of 𝜎 which is the standard deviation of asperities heights, i.e. 

 ∆= 𝛿/𝜎	  ,	  	  	  ∆O= 𝛿O/𝜎	  ,	  	  	  ℎ = 𝑑/𝜎 (25)	  

where	   𝑑	   is	   the	  separation	  between	   the	   flat	   smooth	  surface	  and	   the	  mean	   level	  of	  

asperities	  heights,	  as	  talked	  above.	  If	  we	  assume	  the	  height	  of	  asperity	  is	   z,	  then	  the	  

separation	   𝛿	   can	  be	  expressed	  as,	  

	   𝛿 = 𝑧 − 𝑑	   (26)	  

Substituting Eqns. (25) and (26) into (24), therefore the Eqn. (24) becomes, 

 𝑃ÁT¨�ÂÃÄ =
´EF

g�
y
z

𝐹 ∆
∆F
	  ~

Q exp − e
g
∆ + ℎ g 𝑑∆	   (27)	  
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where 𝑃ÁT¨�ÂÃÄ is the dimensionless total force per unit area upon loading. It is obviously 

noted that 𝑃ÁT¨�ÂÃÄ is a function of h = d/σ	  with a single parameter α = 1/∆O= σ/𝛿O. 

When the two surfaces are brought together, the total force between surfaces is 

compressive which determined by Eqn. (27). We assume that two surfaces are compressed 

to a minimum separation 𝑑Q, which means the minimum separation 𝑑Q depends on how 

much load applied upon loading (i.e. determined by Eqn. (27)). After that, in order to 

determine the pull-off force between surfaces upon unloading, the separation 𝑑 is then 

increased. The separation will be increased up to the maximum extended distance 𝛿O 

above its undeformed and original height of asperities as the adhesion is finally broken 

between adhering asperities and perfect smooth surface. At this moment, the total force is 

tensile due to adhesion. Therefore, the total force upon unloading to be determined is 

different from the loading force in Eqn. (27). Note that the total pull-off force will be found 

if the lower limit of integration in Eqn. (27) is altered, i.e. 

 𝑃e =
´EF

g�
y
z

𝐹 ∆
∆F
	  ~

¢∆F
exp − e

g
∆ + ℎ g 𝑑∆ (28)	  

where 𝑃e  represents the total force upon unloading by the distance to a maximum 

separation of ∆O. However, as talked above, the total force upon unloading depends on 

how much load applied during loading (i.e. pull-on force) which varies as the 

dimensionless minimum separation ℎQ change.  
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Therefore, the transition total force upon unloading is given by  

 𝑃g =
´EF

g�
y
z

𝐹 ∆
∆F
	  ~

¢ Ç¢Ç�
exp − e

g
∆ + ℎ g 𝑑∆	   (29)	  

By combining Eqns. (28) and (29), the actual total force upon unloading is given by 

	   𝑃ÈÃÁT¨�ÂÃÄ =
´EF

g�
y
z

𝐹 ∆
∆F
	  ~

¢É exp − e
g
∆ + ℎ g 𝑑∆	   (30)	  

where the lower limit of the integration is equal to the smaller value of the lower limits in 

Eqns. (28) and (29), which are given by 

 L = ℎ − ℎQ 	  	  	  	  	  	  	  	   ℎ − ℎQ < ∆O	  	  
	  ∆O	  	  	  	  	  	  	  	  	  	  	  	  ∆O< ℎ − ℎQ

	   (31)	  

respectively. Therefore, the pull-off force which is maximum tensile force upon unloading 

follows the dimensionless parameters ∆O and ℎQ. It is varied as both ∆O and ℎQ change 

which is indicated by Eqns. (30) and (31). 
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3.   RESULTS AND DISCUSSION 

3.1 Numerical Force-Displacement Relation 

Figure 3 shows the force-displacement relation for a single asperity in the presence of the 

adhesion. 𝑃O  is the maximum tensile force required to make separation occur upon 

unloading, whereas 𝛿O  is the maximum extended distance above its undeformed and 

original height of a single asperity due to adhesion. Both 𝑃/𝑃O  and 𝛿/𝛿O  are non-

dimensional here as shown in Figure 3. 𝑃O is the tensile force at the point 3, whereas 𝛿O 

is the separation of the point 4. For a single asperity, the force between the contacting 

bodies increases sharply at the initial moment of touching as shown from point 1 to 2. The 

path 1-2 represents the procedure of loading. For the JKR model, the adhesion exists in the 

contact region when the asperity makes contact with the undeformed plane. At sufficiently 

small separation, the single asperity and the flat smooth surface will repel each other. The 

force between the contacting bodies is the equilibrium of repulsive and adhesive forces at 

the contact region. At the point 2, the system is under zero force and reach the equilibrium 

state which means the repulsive force is equal to the adhesive force. As more external load 

is applied on the single asperity, the separation 𝛿  will increase continuously and is 

determined by the extent of loading. The path 2-1-3-4-5 (i.e. from 2 to 5) represents 

breaking down the adhesion between the single asperity and the undeformed plane, and 

therefore separating the contact under prescribed force. The tip of single asperity is 

regarded as a sphere as discussed before. Note that if the subsequent unloading occurs at 
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the point 2, the contact is remained even though the force reduces to zero in the presence 

of adhesion. Then it is necessary that the force P should reduce to negative (tension) to 

break the adhesion. At the point 3, the force P reaches maximum tensile value required to 

separate the contact which the value is equal to 𝑃O . At the point 4, the single asperity 

reaches the maximum extension 𝛿O above its original height. Following that by the path 

4-5, the jump-out occurs. For a single asperity, the adhesion between the contacting bodies 

will be broken once the applied force P reaches the critical tensile value. 𝑃O is therefore 

the pull-off force which is required to separate the contact. However, the pull-on force is 

the force at point 1. 

When the tip of the single asperity and the undeformed plane coincide at δ = 0, 𝑃/𝑃O is 

required to be computed for further discussion of pull-on force in this thesis. Substituting 

δ = 0 into Eqn. (14), the relation between 𝑃 and 𝑃e is obtained (i.e. 𝑃e = −2𝑃). In the 

circumstance of this relation, 𝑃 = k
m
𝜋𝑤𝑅 is given by Eqn. (12). Therefore, we can get 

𝑃/𝑃O ≈ 0.889 in term of Eqn. (18) for 𝛿/𝛿O = 0. According to the curve-fit function we 

use throughout the thesis, 𝑃/𝑃O = 0.883  for 𝛿/𝛿O = 0.01 . The curve-fit function is 

proved to be effective when comparing the result to the theoretical one with the error is 

approximately equal to 0.67%. 



22 

 

3.2 Loading/Unloading Paths 

In Figures 4 through 9, the normalized force upon loading and unloading is plotted against 

separation for α = 1/∆Í= 0.25, 0.5, 1.0, 1.5, 2.0 and 2.5 respectively. When the two 

surfaces are brought in close, loading is from zero applied load and up to relative load in 

terms of the minimum separation between the surfaces. Bearing in mind the previous points, 

subsequent unloading follows by the continued loading. That is to say, the pull-off force 

depends on how much load is applied upon loading which is based on the minimum 

separation ℎQ. In this situation, it is clear that the subsequent pull-off force is also varying 

at different values of ∆O and ℎQ as explained by Eqns. (30) and (31).  

To illustrate how the pull-on and pull-off forces vary, we take Figure 4 as an example. 

In figure 4, 𝑃Y and 	  𝑃YX represent the maximum pull-off and pull-on force respectively, 

whereas ℎY  and ℎ′Y  are the corresponding separations where 𝑃Y  and 	  𝑃YX  occurs. 

According to Eqns. (27) and (30), loading and unloading curves are functions of separation 

h with a parameter α = 1/∆O= 0.25. In the meantime, transition curves are plotted at 

different values of minimum separation ℎQ = −1.5, −1, −0.5, 0, 0.5, 1	  and	  1.5 

respectively in terms of Eqn. (31). For ℎQ = 0, it presents the mean level of asperities 

heights and the rigid flat surface appear to overlap before unloading. Initially, loading 

occurs from zero applied load following the path A shown in Figure 4, then unloading 

occurs as the mean level overlaps the rigid smooth plane which following the path B and 
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subsequent path C. However, the pull-off and pull-on force do not reach the maximum 

values 𝑃Y and 	  𝑃YX in this case for ℎQ = 0. Similarly, loading and unloading are varying 

at different values of ℎQ for α = 1/∆O= 0.25. When the deformable rough surface and 

the flat smooth surface approach each other at a sufficient level which means the minimum 

separation ℎQ is small enough, the pull-on and pull-off force will reach the maximum 

values shown in the Figure 4. Similar results for higher values of parameter	  α = 1/∆O are 

described and plotted in Figures 5-9. In general, what these indicates how much load 

applied upon loading decide the relative pull-off force upon unloading.  

Note that results have been obtained for normalized force upon loading and unloading 

as a function of the separation h, for different values of two pivotal parameters α = 1/∆O 

and ℎQ defined in the JKR model. As discussed above, the normalized separation is larger 

than (∆O + ℎQ) during the unloading (Path C) in Figure 4, the lower limit of the integration 

in Eqn. (30) is −∆O  which is independent of the minimum separation ℎQ , namely, 

independent of the loading. However, during the transition (Path B), the normalized 

separation is less than (∆O + ℎQ), the lower limit of the integration in Eqn. (30) is −(ℎ −

ℎQ). As far as concerned, it is necessary to emphasize that only elastic deformation is 

included in JKR model, rather than plastic deformation. Therefore, the difference between 

the loading and unloading behavior which produces hysteresis losses in the presence of 

adhesive forces of the elastic contact problem. In Figures 4-9, for the given ∆O and ℎQ, 
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the hysteretic energy is equal to the corresponding figure area enclosed by loading, 

transition and unloading curves under coordinate system. For instance, the hysteretic 

energy for ∆O= 0.25 and ℎQ = 0 in Figure 4 is the area enclosed by Path A, B and C.  

3.3 Hysteresis Losses 

Figure 10 shows the non-dimensional hysteretic energy losses for a range of values of the 

minimum separation ℎQ  for different α = 1/∆O . Hysteresis losses are determined by 

numerical integration of the corresponding areas in Figures 4-9 and depend on the loading 

and unloading cycles. To determine the hysteresis losses in a contact/separation cycle, ∆O 

and ℎQ are required. For a given α = 1/∆O, the more strenuously loaded the contact, the 

greater is the hysteresis losses for this multi-asperity JKR model. ℎQ is determined by the 

applied force as given by the force-displacement relations described by Eqn. (28). With 

regard to the maximum hysteretic energy, it is theoretically equal to the area enclosed by 

the loading and the unloading curves as shown in Figures 4-9. Thus, as more load is applied 

to the contact, the possible hysteresis losses will increase from zero to the maximum value 

as the corresponding dashed lines shown in Figure. 10.  

Turning now to the question of what is the relation between the hysteretic energy and 

the key parameter α = 1/∆O for a given minimum separation ℎQ? Having considered the 

parameter α = 1/∆O= σ/δO , the quantity is the more directly measure of surface 

roughness which can be defined as elastic adhesion index [26]. For a high roughness 
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surface, the values of α = σ/δO is relatively large because of the large values of σ. The 

compressive total forces which are exerted by those higher asperities will offset the 

adhesive (tensile) forces obtained by the lower heights of asperities at any separation. 

Figure 10 also shows the smoother the surface is, the larger hysteresis losses is sustained 

for any given minimum separation ℎQ.  

3.4 Maximum Pull-On and Pull-off Forces 

Figure 11 shows the normalized pull-on and pull-off forces for the elastic adhesion index 

α. The solid curve shown in Figure 11 represents the pull-off force predicted by Fuller and 

Tabor [16]. In their research, they always loaded until the applied force P equal to zero 

which means the contact is under zero force at the moment. Taking Figure 8 as an example 

(i.e. α = Ï
ÐF
= 2), the separation between nominally flat rough surface and perfect smooth 

surface during a loading/unloading cycle was always greater than ℎQ . At h = ℎQ , 

𝑃ÁT¨�ÂÃÄ = 0, are compressive. As the separation decreases during loading or increases 

during the unloading, the total contact forces between the contacting bodies are negative, 

namely, are tensile forces. They focused on studying the pull-off force, whereas the pull-

on force was always equal to zero during a loading cycle. Then the separation was increased 

(i.e. unloading cycle) after the surfaces have been compressed to the separation ℎQ. The 

contact force was determined by Eqn. (30) and different from that upon loading. This force 

would reach a maximum tensile value 𝑃Y first and then asymptotically tended to zero as 
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the separation was increased until the adhesion was finally broken between the highest 

asperity and the smooth flat surface. The contact force 𝑃Y was the pull-off force for the 

whole nominally flat rough surface which contained varieties of random asperities, 

whereas 𝑃O was for a single asperity in comparison. Because of the dispersion relation of 

asperity heights, the ratio 𝑃Y/𝑁𝑃O represented adhesive reduction by Fuller and Tabor. 

In this thesis, we focus on the maximum pull-on and pull-off force which will be 

reached during an actual loading/unloading cycle. The total forces during loading between 

contacting surfaces are either compressive or tensile forces which depend on the separation 

between the surfaces. Initially, the total forces during loading are compressive when the 

contact is just happening. At this moment, the adhesive forces exerted by the asperities 

play the main effect. As more and more asperities making contact with the flat rigid surface 

gradually, the contact surfaces start to repel each other. The total force becomes zero as the 

separation is decreased in the presence of repulsive forces. Then the forces between the 

surfaces will become predominately compressive and continuously increase when the 

surfaces are compressed into sufficiently close contact. Therefore, the balance of the 

adhesive forces and the repulsive forces eventually leads us to the total forces between 

surfaces. The maximum tensile forces during the loading cycle is the pull-on force	  𝑃YX.  

For pull-off force, it will reach the maximum value as the applied load is sufficiently 

large. In other words, the separation between the contact surfaces need to be compressed 
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into a relatively small value during loading. Then unloading occurs from this relatively 

small separation, hence, the pull-off force will reach the maximum critical value as the 

contact surfaces are brought together closely enough. That is to say, the most of asperities 

of the nominally flat surface are making contact with the perfectly smooth and flat surface. 

Taking Figure 8 as an example, for adhesion index	  α = e
∆F
= 2.0, Fuller and Tabor [16]  

loaded until zero pull-on force which means they only studied the separation of the 

loading/unloading cycle was greater than 0.97. At h = ℎQ = 0.97, 𝑃TÃ = 𝑃TUU = 0. The 

separation was increased upon unloading after the surfaces have been compressed to the 

separation ℎQ = 0.97. The pull-off force 𝑃Y = −0.1018 when the separation h = ℎY =

1.47. In our investigation, to figure out the maximum pull-off force the surfaces are brought 

together into sufficiently close contact. When unloading starts from h = ℎQ = 0 as we 

note in the figure, the pull-off force 𝑃Y = −0.1439 when the separation h = ℎY = 0.9 

which is different from the result of Fuller and Tabor. It is clear from the above that the 

tensile pull-off force is greater than the one Fuller and Tabor [16] got before. This is the 

reason why the maximum pull-off force we obtained is different from the pull-off force 

which Fuller and Tabor [16] predicted as shown in Figure 11. 

From Eqn. (27), we will notice that the maximum pull-on force is a function of the 

elastic adhesion index α. For α = e
∆F
= 0, the surface is theoretically smooth which means 

all the asperities have the same height. All the asperities of the surface make contact with 
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the flat smooth surface at the same time. Following the previous derivation procedure in 

this thesis, the normalized pull-on force for single asperity 𝑃/𝑃O ≈ 0.889 in term of Eqn. 

(18) for 𝛿/𝛿O = 0, where 𝑃O is the maximum force (tensile) for breaking the adhesion 

between the single asperity and the flat smooth surface as talked above. Meanwhile, the 

curve-fit results that we use throughout the thesis, 𝑃/𝑃O = 0.883  for 𝛿/𝛿O = 0.01 . 

Therefore, the relative normalized pull-on force for amount of asperities 	  𝑃YX/𝑁𝑃O =

𝑁𝑃/𝑁𝑃O = 0.883 for 𝛿/𝛿O = 0.01 as shown in the Figure 11. Accordingly, the curve-fit 

function we used is proved to be effective when comparing the its result with the theoretical 

result 0.889 with the error is approximately equal to 0.67%. Similarly, the adhesion 

between all the asperities and the flat rigid surface are broken at the same time for α =

e
∆F
= 0. Hence, the relative normalized pull-off force for amount of asperities	  𝑃Y/𝑁𝑃O = 1 

also shown in the Figure 11. From Figures 4-9, we will notice that the normalized 

separation at where maximum pull-off occurs, is larger than ∆O + (ℎQ)YÂÃ, therefore the 

lower limit –L of the integration in Eqn. (30) is −∆O which is independent of the minimum 

separation ℎQ , namely, independent of the corresponding pull-on force. The evidence 

suggests, therefore, the maximum pull-off force is also a function of the elastic adhesion 

index. However, the actual pull-on and pull-off will be reached during a loading/unloading 

cycle are determined by surface roughness and the extent of loading, thus, they are 

functions of the parameter α = e
∆F
	   and the minimum separation ℎQ. 
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For rough surfaces with large values of α, the majority of asperity heights are not 

likely contained within the tensile portion BD shown in Figure 3 due to the asperity heights 

are highly dispersed. From Figure 2, we will notice that the adhesive forces sustained by 

multiple low asperities will be counteracted by the compressive forces exerted by the 

higher asperities at any separation. Compared with a smooth surface which means standard 

deviation σ = 0, the effect of adhesion can be regarded as negligible fraction (i.e. less than 

10% of that for smooth surfaces) for rough surfaces whose elastic adhesion index are 

approximately larger than 2.25. Finally, Figure 12 shows separation locations where 

maximum pull-on and pull-off force occurs as a function of the elastic adhesion index α.  
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4.   CONCLUSION 

We have determined the contact behavior of a multi-asperity JKR model. Rough surfaces 

are regarded to have variations in individual asperity heights which have a Gaussian 

distribution with standard deviation σ. Strong adhesion occurs between the asperities of 

the rough surface and the smooth surface. JKR theory has been used to formulate a load-

displacement relation for the single asperity to study the influence of surface roughness on 

the assessment of adhesion reduction. The results are determined by a four-term curve-fit 

function based on the JKR theory. It is also shown that surface topography is the key factor 

to affect the hysteresis losses which is due to the different behaviors during a loading and 

unloading cycle. Hysteresis losses is a function of the parameter α and the maximum 

applied load. The analysis has shown that the parameter α, which is the ratio of surface 

roughness to adhesion extension, determines the adhesion. Compared to a smooth surface 

(α = 0), the larger the roughness of surface, the smaller is the pull-off force and the 

hysteretic energy. 

For a constant surface roughness, the loading cycle determines the pull-on force and 

the minimum separation between the mean level of asperity heights and the nominally 

smooth surface. The pull-off force during the unloading cycle depends on the maximum 

extent of loading as well as on the parameterα . The different loading and unloading 

behaviors due to adhesive forces results in hysteresis energy losses. Eventually, with 
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increasing applied load, the loss due to hysteresis energy is increased from zero to a 

maximum critical value determined by the parameter α. 

When the applied load is sufficiently large, the maximum pull-on and pull-off forces 

are functions only of the parameter α, and are independent of maximum applied load. 

However, when the applied load is relatively small, the pull-on and pull-off forces are 

determined by the parameter α as well as the extent of loading. The theory predicts that 

the pull-on and pull-off forces fall to less than 10% of that for a smooth surface as the key 

parameter becomes greater than 1.26 and 2.25 respectively. This thesis predicts the 

adhesion is decreased to a negligible fraction of that for a smooth surface when the 

parameter α reaches 2.5. Meanwhile, the hysteresis losses decrease significantly with 

increasing values of parameter α. 

We revise the Tabor and Fuller model [16] and predict an analytical theory for the 

contact of two nominally flat surfaces. However, Tabor and Fuller only focused on the 

effect of surface roughness on the pull-off force as they loaded the contact bodies to zero 

compressive force. In this thesis, the pull-on/off forces (maximum pull-on/pull-off forces, 

in particular) and hysteresis energy losses are obtained to study the contact adhesion. It is 

found that the strength of adhesion for two nominally flat surfaces is not only a function of 

the surface roughness of the contacting bodies, but also is determined by the extent of 

loading. 
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Figure 1 The contact of nominally rough surface with a rigid smooth surface. The 

asperity heights of the rough have a Gaussian distribution with standard 

deviation σ. 
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Figure 2    Schematic of contact area for the Hertz Contact and JKR model. 
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Figure 3 The relation of Load-displacement for a single asperity in the presence of 

adhesion. The solid line represents the original relation between 𝑃/𝑃O 

and 𝛿/𝛿O expressed by Eqns. (13) and (14), whereas the asterisks(i.e.*) 

represent the Four-term Curve-fit Function described by Eqn. (15). 
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Figure 4 Normalized force 𝑃/𝑁𝑃O  vs. normalized separation upon loading/ 

unloading at α = 1/∆O	  = 0.25 at different values of minimum separation 

ℎQ(-1.5, -1, -0.5, 0, 0.5, 1 and 1.5). 𝑃Y represents the maximum pull-off 

force, whereas ℎY  represents the corresponding separation where 𝑃Y 

occurs. 	  𝑃′Y  represents the maximum pull-on force, whereas ℎ′Y 

represents the corresponding separation where 𝑃′Y occurs. 

 
  



40 

 

 

Figure 5 Normalized force 𝑃/𝑁𝑃O  vs. normalized separation upon loading/ 

unloading at α = 1
∆O = 0.5 at different values of minimum separation 

ℎQ(-1.5, -1, -0.5, 0, 0.5, 1 and 1.5). 
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Figure 6 Normalized force 𝑃/𝑁𝑃O  vs. normalized separation upon loading/ 

unloading at α = 1
∆O = 1.0 at different values of minimum separation 

ℎQ(-1, -0.5, 0, 0.5, 1, 1.5 and 2). 
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Figure 7 Normalized force 𝑃/𝑁𝑃O  vs. normalized separation upon loading/ 

unloading at α = 1
∆O = 1.5 at different values of minimum separation 

ℎQ (-1, -0.5, 0, 0.5, 1 and 1.5). 
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Figure 8 Normalized force 𝑃/𝑁𝑃O  vs. normalized separation upon loading/ 

unloading at α = 1
∆O = 2.0 at different values of minimum separation 

ℎQ (-0.5, 0, 0.5, 1, 1.5 and 2). 
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Figure 9 Normalized force 𝑃/𝑁𝑃O  vs. normalized separation upon loading/ 

unloading at α = 1
∆O = 2.5 at different values of minimum separation 

ℎQ(-0.5, 0, 0.5, 1 and 1.5). 
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Figure 10 Hysteretic energy vs. minimum separation ℎQ  at different values of 

parameter 	  α = 1
∆O . The dashed lines represent the corresponding 

maximum hysteresis losses during loading and its subsequent unloading. 

 
  



46 

 

 

Figure 11 Dimensionless pull-on and pull-off force vs. parameter	  α = 1/∆O for the 

contact of a deformable rough surface with a perfect smooth plane. The 

solid curve represents the pull-off force when unloading starts at zero total 

force after loading. The dot curve represents maximum pull-off force (i.e. 

𝑃Y as shown in Figure. 4) when the nominally rough surface is compressed 

into the flat rigid surface by an enough large approach δ upon loading. The 
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dashed curve represents the pull-on force (i.e. 𝑃YX  as shown in Figure. 4) 

upon loading. 
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Figure 12 Separations hY/∆O of pull-on and pull-off forces vs. parameter	  α = 1/∆O 

for the contact of a deformable rough surface with a perfect smooth plane. 

The solid curve represents the corresponding separations of pull-off forces 

for different values of α, whereas the dot curve represents the separations 

of maximum pull-off force. The dashed curve represents the separations of 

maximum pull-on force.  

 

 


