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ABSTRACT 

Allocating limited resources to requests at the time of the request is a common problem in 

various domains such as bed management, blood transfusion, water resource allocation, 

and transportation assignment. One of the main challenges in resource allocation is the 

limited capacity of resources and the high cost of capacity expansion, which leads to 

resource shortages and failures in satisfying requests in an appropriate period of time and 

with an appropriate level of quality.  

Substitute resource allocation is one solution to resource shortages. In substitute 

resource allocation an alternative, but most of the time non-preferred, resource type is 

assigned to the request. The request type and the complexity assignment rules are two main 

factors which are used for choosing the alternative resource type. In many systems, the 

quality of the substitute allocation is not as desirable as that of the preferred allocation, but 

use of substitute allocations can help to prevent unsatisfied requests or to decrease the time 

to respond to the requests.  

This dissertation examines multiple facets of substitute resource allocation in 

healthcare systems. First, we develop a novel decision mining methodology to identify the 

rate of substitute resource allocation using historical data from multiple databases. Next, 

we demonstrate the effect of applying new substitute resource allocation policies for a 

blood management problem using a Monte Carlo simulation model. Specifically, we 

examine two resource allocation policies accounting for substitute resource allocation in 
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the assignment of limited blood inventory, including multiple blood types, in an isolated 

environment. A two-stage stochastic optimization model is developed to determine the 

optimal make-up of the initial blood bank in these environments, as defined by the level of 

inventory for each blood type. Finally, in Chapter 4, we analyze a generalized online 

assignment problem, inspired by the blood management setting, and characterize the 

problem features for which the proposed algorithm performs optimally with results 

matching those from the corresponding offline assignment problem. For those problems 

not conforming to these features an upper-bound on the performance of the algorithm is 

derived.  
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Chapter 1 - 

Introduction 

Allocation of limited resources to requests is a common problem in various domains such 

as bed management, blood transfusion, water resource allocation, and transportation 

assignment. Decisions about resource allocation are made daily in most organizations and 

resource allocation policies can be made and implemented for strategic, tactical or 

operational level decision making. One of the main challenges in resource allocation is the 

limited capacity of resources, and correspondingly the high cost of capacity expansion, 

which can lead to resource shortages and failures to satisfy requests in a timely fashion 

while ensuring the appropriate quality. Correspondingly, making optimal decisions in 

resource allocation can lead to significant improvements in system performance. 

In cases where resource allocation decisions are made at an operational level, 

decisions to allocate resources to requests must often be made at the time of the request 

without exact knowledge of future requests. Such an allocation problem is called an online 
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resource allocation problem. In online resource allocation problems, the decision maker 

must make the best decision at the time of the request in order to satisfy the current request 

while accounting for the ability to be prepared to satisfy upcoming requests. When the 

requested resource is not available, a substitute resource allocation may be made in which 

an alternative, but in most cases non-preferred, resource type is assigned to the request. A 

well-defined substitute resource allocation policy can prevent shortages and unmet 

requests. The features of the request and complexity assignment rules are two main factors 

that must be accounted for in choosing the alternative resource type. In many systems, the 

quality of the substitute allocation is not as desirable as that of the preferred allocation, but 

can help to prevent unsatisfied requests or to decrease the time to respond to the request.  

This dissertation analytically examines the practice of substitute resource allocation 

and analyzes the performance of policies for online resource allocation problems which 

allow for substitute resource allocation. 

1-1. Research Objectives 

Resource allocation is a critical operational decision-making process in many health care 

settings such as, hospital patient transfers, bed assignment, outpatient room assignment, 

organ transplant and blood transfusion. The Institute of Medicine (IOM), recommends six 

aims for improving healthcare quality including efficient and equitable care. Specifically, 

these recommendations focus on avoiding waste while ensuring the same quality of care 

among populations with various characteristics (Hughes 2008). This dissertation focuses 

on healthcare resource allocation at the operational level with the purpose of characterizing 
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historical resources allocation decisions by implementing a data driven approach and 

providing insights into how resource allocation decision making can be improved to lead 

to better future outcomes. 

The first objective of this research is to develop methods for characterizing 

historical practices of substitute resource allocation in a healthcare setting by analyzing and 

mining multiple historical databases. The second objective is to develop an online 

substitute resource allocation policy which accounts for equitability in the distribution of 

resources, in addition to classic measurements of effectiveness and efficiency. This 

substitute resource allocation policy, which can be employed in real-time, is defined to 

balance the requirements to satisfy current requests, while also ensuring that resources are 

available for meeting future demand. The final objective, is to comprehensively analyze 

and characterize the performance of these allocation policies under a variety of settings.  

1-2. Summary of Research Contributions 

The contributions of this work are summarized as follows: 

(1) We provide a polynomial time algorithm that allows for uncovering and 

discovering resource allocation decisions regarding choices among a preferred 

resource and substitute resources within historical databases. The effects of the 

decisions are stored in two heterogeneous spatio-temporal databases, but not the 

decisions themselves. This algorithm is demonstrated to be robust to missing data 

on various system sizes in accuracy, precision, and recall, and follows a logical 
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trend with regard to time-distorted simulated data. For the bed assignment 

application, in which time lags between occurring and recording events are 

expected to be small, this algorithm performs well. 

(2) We develop an online blood assignment policy, maximum assignment value 

(MAV), which aims to prevent blood shortages in isolated environments. This 

policy defines rules for the assignment of a substitute resource when the preferred 

resource, in this case defined by the blood type, is not available. The MAV 

algorithm is simple to implement and is especially appropriate for time sensitive 

decision-making in resource-deprived settings. A two-stage stochastic model is 

used to determine the optimal distribution of blood types in the initial blood 

inventory.  

Applying the MAV policy and an inventory greedy assignment (GA) policy on 

Monte Carlo simulation model, the performance is measured in the average number 

of red blood cells (RBC) in shortage per capita and the average number of patients 

facing shortage per capita. The MAV policy significantly overperforms the GA 

policy in both performance measures even when volume of the blood bank, the 

distribution of blood types, and the population size changes, demonstrating the 

robustness of this approach. Also, we demonstrate that strategic use of the optimal 

blood type distributions in the blood bank, rather than that observed in the 

population, results in better performance. 
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(3) In addition to comparison with alternate online policies, we analyze the 

performance of the MAV algorithm for online resource allocation compared to the 

optimal offline allocation which assumes a priori knowledge of all requests. We 

characterize the circumstances and settings under which the MAV algorithm 

performs as well as the optimal allocation and we define an upper bound on the 

performance of the MAV algorithm in relation to the underlying problem features. 

1-3. Outline 

The remainder of this dissertation examines multiple facets of substitute resource allocation 

in healthcare systems. Chapter 2 describes a newly developed algorithm to identify past 

decisions made by hospital managers choosing between preferred or substitute resource 

allocation by harnessing historical data from multiple databases. The analysis of the 

performance of this algorithm applied to hospital patient flow and census data to determine 

the bed manager’s decision to assign patients to hospital wards is presented. 

Chapter 3 presents an algorithm, MAV, which defines rules for substitute 

assignment of red blood cells to requests in order to prevent shortages in an isolated 

environment. The effectiveness of the two policies, GA and MAV, at decreasing the unmet 

requests for blood is examined. To compare these policies, a Monte Carlo simulation 

model, simulating the features of a primary healthcare center in South Sudan, is developed 

and the results for the average number of red blood cells (RBC) in shortage per capita and 

the average number of patients facing shortage per capita are analyzed. A two-stage 
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stochastic model is used to determine the optimal distribution of blood types in the blood 

bank.  

Chapter 4 presents a generalized online resource allocation problem based on the 

blood transfusion problem and analyzes the performance of the MAV allocation policy for 

the goal of minimizing unmet requests. The conditions of the resource allocation problem 

under which the MAV allocation policy is optimal as compared with the optimal offline 

resource allocation, is identified. The optimality of MAV under these conditions is proven 

and an upper bound for the MAV policy performance is presented for problem instances 

with alternate characteristics. 
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Chapter 2 -  

Uncovering Hidden Resource Allocation Decisions: An 

Application in Hospital Bed Assignment 

In this chapter, we extend the concept of rule-based entity resolution, in the context of 

resource allocation, to link two heterogeneous spatio-temporal databases and extract 

information related to non-automated decisions. This problem is motivated by a hospital 

bed assignment problem and the solution is applied to uncover bed managers’ decisions to 

assign patients to inpatient wards. 

2-1. Introduction 

Efficient and effective decision making is a key driver to performance in all organizations. 

Thus analyzing past decisions, their corresponding effects on performance, and procedures 

for reaching decisions can facilitate development of new and improved decision making 

policies (Glymour, Madigan et al. 1997). To support this process, decision mining, or 
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decision point analysis, applies data mining tools to the study of historical decision making 

data. The goal of decision mining is to extract the rules determining under which 

circumstances an alternative choice is selected (Rozinat and Aalst 2006) and to suggest 

rules or policies to support better future decisions (Smirnov, Pashkin et al. 2007). 

A key to decision mining is the availability of data from an organization’s 

information systems. Typically, information systems, which are designed to record the 

evolving state of the system in support of operations and billing, do not provide data 

regarding two critical phases of the decision making process, (i) problem identification and 

(ii) alternative development, and instead focus solely on the final solution (Mintzberg, 

Raisinghani et al. 1976). Often multiple independent databases, with varying structures, 

are generated to represent various aspects of an organization (Kalashnikov, Mehrotra et al. 

2005, Zhao and Ram 2005). Mining these multiple databases, with different semantics and 

data models, can provide important decision support information (Tomasic, Raschid et al. 

1996, Li and Clifton 2000).  

The objective of this study is to uncover the decisions made by bed managers in 

allocating beds in hospital wards to patient requests. The ultimate goal of this research is 

to use this information to help bed managers to make better decisions in the future. Patients 

from the emergency department, transferred patients and scheduled patients, depending on 

their medical condition, request a bed in a specific ward of the hospital. Based on the state 

of the hospital and bed availability, the bed manager assigns a bed in the requested ward 

(preferred resource) or assigns the patient to a bed in an overflow ward (substitute resource) 
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(Griffin, Keskinocak et al. 2012). The decision to assign an overflow ward bed to a patient 

and the choice of the overflow ward is made by the bed manager. In most hospital 

information systems, the outcome of the decision, or the occupied ward, is specified but 

the requested ward and the type of allocation, preferred or substitute, is not recorded. To 

support better bed assignments in the future through a retrospective analysis, it is necessary 

to uncover the past decisions made by bed managers.  

Similar problems exist in other applications where shared scarce resources of 

different types are available and upon the unavailability of one resource type, alternate 

types of resources can be assigned to the requests. For example, in a car rental company, 

at the time of pick-up, if the requested car is not available the employee may decide to 

assign a car of a similar class or a different class, often at a higher cost, to the customer’s 

request. Knowledge of the requested class and assigned car allows for analyzing the past 

decisions made by the employees. This analysis has potential to help the car rental 

managers to develop better allocation policies to improve their services. The allocation of 

limited storage space to different goods in inventory management and customer choices of 

substitute brands over their preferred brand in supermarkets are other examples of shared 

scarce resource allocation that can be analyzed and better understood through decision 

mining techniques.  

To tackle this class of problems, we define a general problem in the context of 

resource allocation to uncover the relationship between the identification phase and the 

final decision of the decision making process. In this setting, the decision maker chooses 
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to allocate a preferred or a substitute resource for each allocation request. It is assumed that 

the preferred resource is not recorded or represented in the databases. Consequently, 

without knowledge of the preferred resource, an analysis of past decisions is impossible. 

We denote resources in resource allocations problem as the spatial features which through 

time-dependent multi-criteria decision making are assigned to requests for resources (Aerts 

and Heuvelink 2002). The primary contribution of this study is the development of a 

polynomial-time decision mining algorithm to extract information from two heterogeneous 

spatio-temporal databases. In this algorithm we utilize an entity resolution concept to detect 

which records in the database denote the same real-world entity (Benjelloun, Garcia-

Molina et al. 2009, Whang, Menestrina et al. 2009). This algorithm discovers new features 

of these databases through a procedure of linking two heterogeneous databases, one event-

oriented and one snapshot database, and transferring extracted features. The strength of this 

algorithm is its performance on integrity issues, both in spatial and temporal manners. The 

algorithm is demonstrated to be robust to missing data and to efficiently handle temporal 

inaccuracies, defined through the time lags between occurrence and recording events.  

In Section 2-2 we present a brief review of past research pertaining to spatio-

temporal databases, multiple heterogeneous database mining, and entity resolution. In 

Section 2-3 we introduce and formulate the problem definition. In Section 2-4, we define 

and describe the RESOLVE algorithm. In Section 2-5, through a numerical experiment we 

analyze the performance of the proposed methods and test the robustness of the algorithm 

to varying types of noise in the data. In Section 2-6, we apply the algorithm on real-world 
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bed assignment databases and in the final section, we summarize the conclusions of the 

work and identify areas for future research. 

2-2. Literature Review 

Many researchers study the causes of emergency department (ED) overcrowding and 

explore the role of bed managers to prevent ED inpatient boarding and, as a result, decrease 

waiting times in the ED. Several independent information systems in the hospitals populate 

heterogeneous databases representing the states and processes of the patients and the beds. 

Despite the storage of a wealth of data, the information pertaining to bed managers’ 

decisions are not captured in most cases. We study spatio-temporal heterogeneous database 

mining to uncover past decisions of bed managers. A review of relevant literature in 

hospital bed management and spatio-temporal heterogeneous database mining, is provided 

below. 

2-2.1. Hospital bed management  

ED overcrowding is a critical problem in hospitals. Overcrowding can affect patients’ 

access to necessary care at the proper time (Hoot and Aronsky 2008, Peck, Gaehde et al. 

2013). Asplin et al. (2003) study overcrowding and develop a systemic conceptual model. 

They present the overcrowding as a function of input, throughput, and output components 

(Asplin, Magid et al. 2003). Hoot and Aronsky (2008) utilize Asplin’s conceptual model 

to study the causes, effects and solutions of overcrowding in the literature. They list 

hospital bed shortages and inpatient boarding as two of the main causes of overcrowding 
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and characterize the solutions in three categories: increased resources, demand 

management and operations research (Hoot and Aronsky 2008). Inpatient boarding occurs 

when a patient requests admission to an inpatient unit but stays in the ED because there is 

no capacity available for the patient in the inpatient unit. Some of the recommended 

interventions to decrease overcrowding are increasing hospital capacity, improving bed 

utilization, changing elective admission policies, sending patients to overflow wards 

(Morris, Boyle et al. 2012), transferring patients to inpatient hallways (Viccellio, Santora 

et al. 2009), and increasing the number of beds in the intensive care unit (ICU) (Olshaker 

and Rathlev 2006). When a patient requests a bed in a specific ward but occupies a bed in 

another ward, the occupied ward is denoted as the overflow ward and the patient as an 

overflow patient (Griffin, Keskinocak et al. 2012). 

The aim of most of the interventions to decrease overcrowding is the transfer of 

boarding patients to inpatient wards. A low capacity of inpatient beds is a significant 

limitation to moving patients (Asplin, Magid et al. 2003). Beds are critical limited 

resources in hospitals (Getoor and Machanavajjhala 2012, Hall 2012, Spinella, Dunne et 

al. 2012, Schmidt, Geisler et al. 2013) and large financial resources are required to equip 

beds to facilitate care for patients (Litvak and Bisognano 2011, Vancroonenburg, De 

Causmaecker et al. 2012). A bed manager’s challenge is to keep enough beds available for 

emergency admissions to decrease patient boarding and to assign elective patients to beds 

to increase the occupancy (Boaden, Proudlove et al. 1999, Proudlove, Gordon et al. 2003) 

while decreasing the rate of elective admission cancelation (Schmidt, Geisler et al. 2013). 

One of the solutions to address this challenge is to send patients to overflow wards. Once 
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an ED patient, or their corresponding physician, requests a bed in a specific ward and there 

is no bed available in the specified ward, the patient may board in the ED until a bed 

becomes available in that ward or the patient may occupy a bed in another inpatient ward, 

referred to as an overflow ward. This approach decreases patient boarding and allows more 

patients to be admitted to the ED and decreases ED overcrowding. However, this approach 

may also affect the performance of the inpatient wards. Patients occupying an overflow 

bed may affect coordination (Teow, El-Darzi et al. 2012) and efficiency (Xie, Chou et al. 

2014) of the care process. In some cases, occupying an overflow ward increases the 

patient’s length of stay and causes poor patient outcomes (Getoor and Machanavajjhala 

2012, Hall 2012, Spinella, Dunne et al. 2012, Teow, El-Darzi et al. 2012).  

Correspondingly, analyzing the effects of overflow assignments may help bed 

managers to design better decision policies for future implementation. To conduct such an 

analysis, new methods are needed to uncover past decisions of bed managers to send 

patients to overflow units. This information is not stored in most hospital information 

systems databases. Thus, in this study we introduce a general resource allocation problem 

and develop an algorithm to extract non-recorded data in two heterogeneous databases 

which can be applied to address the bed management application. 

2-2.2. Spatio-temporal heterogeneous database mining  

While many researchers have studied multiple heterogeneous database mining, the mining 

of heterogeneous spatio-temporal databases has not been explored. We provide an 
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overview of current research pertaining to spatio-temporal databases, multiple 

heterogeneous database mining, and entity resolution below.  

2-2.2.1. Spatio-temporal databases  

Information systems gather and store many types of data in various databases. Two 

common types of databases are spatial and temporal databases (Nandal 2013). Temporal 

databases represent time-related features or attributes (Snodgrass 1986, Chaudhuri 1988). 

Spatial databases represent geometric, geographic, or space related data features such as 

size, shape, or location (Güting 1994). Databases representing changes of spatial features 

over time are known as spatio-temporal databases (Erwig, Güting et al. 1998). Spatio-

temporal databases represent the changing nature of the real world in various application 

domains including transportation, monitoring, and environmental systems (Gutiérrez, 

Navarro et al. 2005). In this study, we focus on two data models of spatio-temporal 

databases, (i) snapshot and (ii) event-oriented. In a snapshot data model, a temporal 

sequence of the spatial state of a system is represented at fixed time intervals. In an event-

oriented data model, every event and its components, including time and place of the event 

occurrence, is represented (Pelekis, Theodoulidis et al. 2004).  

Recent spatio-temporal studies focus primarily on pattern recognition in spatio-

temporal databases (Celik 2014, Obulesu and Reddy 2014, Turdukulov, Calderon Romero 

et al. 2014, Zhou, Matteson et al. 2015). Norén et al. (2010) identify interesting temporal 

patterns according to the incidence of medical events on first prescription of a specific drug 

(Norén, Hopstadius et al. 2010). High computational cost is one of the challenges of spatio-
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temporal data mining. Hean et al. (2007) note the progressive refinement and the mining 

of spatio-temporal sequential patterns as two methods to decrease computational costs 

(Bohannon, Fan et al. 2007, Han, Cheng et al. 2007, Proudlove, Boaden et al. 2007, Yin, 

Han et al. 2007). While spatio-temporal database studies are focused on pattern 

recognition, scenario analysis, and search in the large databases, there are no studies of 

information retrieval by linking heterogeneous spatio-temporal databases. In this study, we 

apply the concept of entity resolution to link two spatio-temporal databases, and to retrieve 

the desired information for all entities in the databases in polynomial time.  

2-2.2.2. Multiple heterogeneous database mining  

The process of extracting unavailable information from databases is referred to as data 

mining or knowledge discovery in databases. The most commonly applied data mining 

algorithms, as identified by Wu et al. (2008), have a limited focus on the extraction of 

information from single databases with single data models (Wu, Kumar et al. 2008). But 

in many systems multiple distributed databases are generated. Applying traditional data 

mining algorithms on these databases individually provides some information, but mining 

the global pattern and retrieving information from the multiple databases, with 

heterogeneous database models, provides the opportunity for greater knowledge discovery 

(Zhang, Wu et al. 2003).  

One of the simplest, although not the cheapest, solutions for mining multiple 

homogenous databases is to integrate to one single database and apply a data mining 

algorithm. This solution may be challenging to implement due to (i) the large size of the 
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integrated database, (ii) the existence of irrelevant information, and (iii) the loss of patterns 

and information (Wu and Zhang 2003, Zhang, Wu et al. 2003). Database integration cannot 

be applied in some problems. For example, one of the challenges in mining temporal 

databases is the finding of similar time series in two or more databases (Loh, Kim et al. 

2004). Researchers suggest several methods to overcome these problems in mining 

multiple homogenous databases. For example, Wu et al. (2003) apply a synthesized 

weighting shared association rule model that uses the discovered high frequency rules of 

each database (Wu and Zhang 2003, Zhang, Wu et al. 2003). In another study, Wu et al. 

(2005) implement database selection and classification in order to reduce the search cost 

in the databases (Wu, Zhang et al. 2005). Czarnowsky (2006) proposes a simple heuristic 

approach to reduce database sizes and to apply data mining algorithms on the integrated 

joined database (Czarnowski and Jędrzejowicz 2006). Zhang et al. (2009) use kernel 

estimation, a non-linear method, to extract the multi-database global pattern (Zhang, You 

et al. 2009).  

Multiple heterogeneous database mining, in which databases have different 

underlying data models, is more challenging than multiple homogenous database mining. 

In multiple heterogeneous database mining two main steps are considered, (i) linking the 

databases and (ii) transferring the information, a costly process. To address this 

heterogeneous database mining, Li and Clifton (2000) propose SEMINT, learning 

metadata, to identify attribute connections in databases (Li and Clifton 2000). For each 

resource class in the data mining process, Mastroianni et al. (2003) develop a metadata 

structure (Mastroianni, Talia et al. 2003). Yin and Han (2005) develop regression-based 
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methods to link databases and transfer information. (Yin and Han 2005). Though Mehenni 

and Moussaoui (2012) follow Yin and Han’s method to identify links between databases, 

they apply support vector regression for the classification (Mehenni and Moussaoui 2012). 

When statistical methods and classification are not a good fit for unsupervised learning, a 

rule-based method to identify the relationship among features can be developed to retrieve 

information. In this study, we propose applying an entity resolution method to extract the 

desired information by linking two heterogeneous spatio-temporal databases. 

2-2.2.3 Entity resolution.  

Entity resolution, or the matching and resolving of records in structured and unstructured 

databases which refer to the same real-world entity (Benjelloun, Garcia-Molina et al. 2009, 

Whang, Menestrina et al. 2009), deals with missing information and differences between 

records referring to the same entity. Developing a fast and accurate entity resolution 

approach is a significant challenge in data processing fields (Benjelloun, Garcia-Molina et 

al. 2009, Getoor and Machanavajjhala 2012). 

Approaches in entity resolution (ER) include the rule-based method, pair-wise 

classification, clustering approaches, and richer forms of probabilistic inference (Getoor 

and Machanavajjhala 2012). Pair-wise classification, the traditional ER method, is based 

on the assumption of similarity of records which refer to the same entity (Brizan and Tansel 

2015, Chinnaswamy, Gopalakrishnan et al. 2015, Li, Li et al. 2015, Pelekis, Frentzos et al. 

2015, Wang, Lee et al. 2015). Pairwise ER is best used for joining databases with the same 
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set of entities (Getoor and Machanavajjhala 2012). The clustering approach is used when 

each entity is referred to by more than one record (Whang, Marmaros et al. 2013). Records 

in the same, or different, clusters will refer to the same, or different, entities, respectively 

(Adewumi, Budlender et al. 2012, Adewumi, Budlender et al. 2012, Beliën and Forcé 2012, 

Dufourq, Olusanya et al. 2012, Getoor and Machanavajjhala 2012, Henkelman and 

Rakhorst 2012, Mehenni and Moussaoui 2012, Morris, Boyle et al. 2012, On, Lee et al. 

2012, Peck, Benneyan et al. 2012, Pidcoke, Aden et al. 2012, Shi, Chou et al. 2012, 

Spinella, Dunne et al. 2012, Vancroonenburg, De Causmaecker et al. 2012, Guo, Sun et al. 

2014). The key assumption of these current methods is that similarity of records indicates 

that they refer to the same entity. When this assumption does not hold, in many cases, 

domain knowledge can be used to develop rules to match records of database and real-

world entities (Brizan and Tansel 2015, Chinnaswamy, Gopalakrishnan et al. 2015, Li, Li 

et al. 2015, Pelekis, Frentzos et al. 2015, Wang, Lee et al. 2015). While some ER studies 

focus on matching heterogeneous text databases, they do not explore matching 

heterogeneous spatio-temporal databases. We extend the study of Zhao & Ram (2005) and 

Li et al. (2015) to utilize rule-based entity resolution by focusing on spatio-temporal 

databases on the domain of resource allocation to associate entities of different databases 

and extract new information. 

This is the first study to our knowledge that addresses application of entity 

resolution in multiple heterogeneous database mining on spatio-temporal databases. Unlike 

previous studies, outlined above, we extract information related to decisions made by 

decision makers by applying the concept of a rule-based method of entity resolution to 
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identify the links between the databases. We then extract new features and information 

about resource allocation decisions.  

2-3. Problem Statement 

In this section, we first introduce a model of a general resource allocation system. We then 

present two different databases representing the system’s information. Finally, we describe 

the relationship between the two databases via the definition of a relational algorithm. 

Consider a system that processes different types of tasks. As seen in Figure 2-1, 

each task type requests to seize a preferred resource and the system allocates an appropriate 

resource to each task to get processed. In this system, each task goes through the events of 

requesting, seizing and releasing a resource. Allocations may be of two types, preferred or 

substitute. In preferred allocation, the requested resource is allocated to the task. 

Allocating resources other than the preferred resource to a task is considered a substitute 

allocation and the allocated resource is a substitute resource. We assume that the system 

favors preferred allocation, and that substitute allocation negatively affects the 

performance of the system. The decision of preferred or substitute allocation is made based 

on the state of the system, including the availability of resources.  
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Figure 2-1- Schematic process. The system allocates an appropriate, preferred or substitute, resource to the 

task for processing. Preferred allocation is favored over substitute allocation. 

Considering resource types as spatial features, two heterogeneous spatio-temporal 

databases from this system are available: an event-oriented database and a snapshot 

database. The event-oriented database represents task flows and records (i) requesting, (ii) 

seizing, and (iii) releasing data for each task. The snapshot database records the state of the 

system at consecutive equal duration time intervals. We refer to these time intervals as time 

blocks. The snapshot data model provides the number of requested and number of allocated 

resources for each resource type in each time block. The type of allocation, preferred or 

substitute, is not recorded in the databases. Correspondingly, we wish to extract the type 

of allocation, preferred or substitute, for each task.  

We outline a model and description of the event-oriented and snapshot databases 

in Sections 3.1 and 3.2, respectively. For these models, assume there are N types of tasks 

and 𝑀 types of resources. The total number of units of resource 𝑗, 𝑗 =  {1, 2, … ,𝑀} is 

limited to 𝐴𝑗 and refers to the capacity of the resource type 𝑗.  
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2-3.1 Event-oriented database  

In the event-oriented database, for each task the time and corresponding allocated resource 

of each event is recorded and stored. The schematic description of this database and its 

features is depicted in Figure 2-2. This database for each task 𝑖, includes data pertaining to 

each requesting, seizing and releasing event. The features of each requesting event are the 

request time for a resource (𝑅𝑞𝑇), the requested resource (𝑅𝑅𝑖), which is one of the 𝑀 

types of the resources, and the assigned time (𝐴𝑇𝑖). The features of each seizing event are 

the type of seized resource (𝑆𝑅𝑖) and the seize time (𝑆𝑇𝑖). Finally the only feature of a 

releasing event is the release time (𝑅𝑇𝑖). Note that the released resource is the same as the 

seized resource and assigned resource. The preferred resource or requested resource of task 

𝑖 (𝑅𝑅𝑖) is not recorded in the database. Therefore, the type of allocation, preferred or 

substitute, is not known. We refer to this event-oriented database as the Flow database and 

define it as follows: Flow(𝑖, 𝑅𝑞𝑇, 𝑅𝑅, 𝐴𝑇, 𝑆𝑇, 𝑆𝑅, 𝑅𝑇). The key of this database is 𝑖, or the 

taskID. The Flow database is sorted such that the primary sorting key is ascending request 

time and the secondary sorting key is descending assigned time. As mentioned above, the 

feature 𝑅𝑅, requested resource, is null for all tasks.  
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Figure 2-2- Event-oriented database represents the data of a task requesting, seizing and releasing a resource 

2-3.2. Snapshot database  

The snapshot database represents the state of the system at every time block. The schematic 

illustration of this database and its features is shown in Figure 2-3. In each time block 𝑡 for 

each resource type 𝑗, the database tracks the number of requests (𝑁𝑅𝑡𝑗), the number of 

assigned units (𝑁𝐴𝑡𝑗), and the number of seized units (𝑁𝑆𝑡𝑗). The number of requested 

units is represented in the database, but the type of allocation is not included in the snapshot 

database. We refer to this database as the Census database. The Census database is defined 

as follows: Census(𝑡, 𝑗, 𝑁𝑅,𝑁𝐴,𝑁𝑆). This is a compound key, (𝑡, 𝑗), time and resource 

type, database. 
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Figure 2-3- Snapshot database represents the number of requests and seized units for each resource at each 

time block t.  The number of seized resources may change when a resource is assigned or released. 

2-3.3. Relational algorithm  

Although in real world, the Census and Flow databases are generated heterogeneously and 

the data stored in these databases are recorded by different information systems, 

theoretically these two databases are strongly interdependent as the Census database can 

be generated from the Flow database. The relationship between the databases is described 

as follows. When a request is placed in the Flow database, the number of requests for the 

requested resource at the time of request increases in the Census database. Similarly, at the 

assignment time of a resource in the Flow database, the number of assigned units for the 

assigned resource in the Census database increases. For all time blocks in the interval 

between the seized and release times of a resource in the Flow database, the number of 
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seized units of that resource increments. Algorithm 2-1, the Relational algorithm, 

demonstrates how the Flow database can be used to generate the Census database.  

Algorithm 2-1- The Relational algorithm for generating snapshot model database from event-oriented 

database 

Input: Flow database 

Initialization (for simulated data): 

𝑵𝑹𝒕𝒋 = 𝟎, 𝑵𝑨𝒕𝒋 = 𝟎 , 𝑵𝑺𝒕𝒋 = 𝟎  ∀ t , j 

Relational algorithm for generating Census database: 

for i in Flow database: 

 𝒕𝑹𝒒𝒕= 𝑹𝒒𝑻𝒊 

 𝒕𝑺𝒕= 𝑺𝑻𝒊 
 𝒕𝑨𝒕= 𝑨𝑻𝒊 
 𝒕𝑹𝒕= 𝑹𝑻𝒊 
 𝒋𝑹𝒒𝒕= 𝑹𝑹𝒊 

 𝒋𝑺𝒛𝒅= 𝑺𝑹𝒊 
 𝑵𝑹𝒕𝑹𝒒𝒕  𝒋𝑹𝒒𝒕  = 𝑵𝑹𝒕𝑹𝒒𝒕  𝒋𝑹𝒒𝒕 + 𝟏 

 𝑵𝑨𝒕𝑨𝑻  𝒋𝑺𝒛𝒅  =𝑵𝑨𝒕𝑨𝑻  𝒋𝑺𝒛𝒅 + 𝟏 

 for 𝒕𝑺𝒕 ≤ 𝒕 < 𝒕𝑹𝒕: 
  𝑵𝑺𝒕 𝒋𝑺𝒛𝒅= 𝑵𝑺𝒕 𝒋𝑺𝒛𝒅 + 𝟏 

To generate the Census database from the Flow database the initial state of the system is 

needed. With real-world data, the state of the system at the starting time (𝑡 = 0) is used to 

generate the Census database. When simulating data (see Section 5.1), to set the initial state 

of the system we assume that for all pairs of 𝑡 and 𝑗, the values of 𝑁𝑅𝑡𝑗, 𝑁𝐴𝑡𝑗, and 𝑁𝑆𝑡𝑗 

are equal to zero. By using this assumption a warm up period should be considered until 

the steady state of the system is reached. In the described problem, the Flow database does 

not provide data concerning the requested resource, 𝑅𝑅𝑖. Therefore, applying the 

Relational algorithm on the Flow database cannot generate the number of requests for the 

resources in the Census database.  
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2-4. Decision Mining Algorithm  

We use the underlying relationship described in the Relational algorithms (Alg. 1), to link 

the heterogeneous Census and Flow databases and to extract information about the 

requested resource of each task. We define the RESOLVE algorithm which determines the 

tasks in the Flow database that can be resolved to records in the Census database. 

Considering the assumptions of the system and applying a defined function named 

resolvedFactor, we identify the allocation type of resolved tasks as preferred or substitute. 

Also, we determine the requested resources, or a list of potential requested resources, for 

each resolved task with the substitute allocation. Details of this algorithm are provided 

below.  

2-4.1. The RESOLVE algorithm   

The RESOLVE algorithm, resolves records from the Flow database with the Census 

database. Two event types, 𝑑, is defined for each task, requesting event and an assigned 

event, 𝑑 ∈ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖𝑛𝑔, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑}. To simplify calling the associated features in the 

Census database we define number of event 𝑑 for resource 𝑗 at time block 𝑡 in the Census 

database as, 𝑁𝐷𝑡,𝑗, this refers to and as number of requests for resource 𝑗 at time block 𝑡, 

𝑁𝑅𝑡,𝑗, and number of assigned units of resource 𝑗 at time block 𝑡, 𝑁𝐴𝑡,𝑗. Specifically, for 

each task in the Flow database, for which each has a corresponding requesting event and 

an assigned event, the function resolvedFactor defines the resolution with a particular 

resource type 𝑗 during the time interval [𝑡1, 𝑡2) for the requesting and assigned events in 
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the Census database. The resolvedFactor for requesting events, during time interval 

[𝑡1, 𝑡2), for resource type 𝑗, is equal to 1 if for all time blocks 𝑡 ∈ [𝑡1, 𝑡2), the number of 

requests for resource type 𝑗 is positive. The value of his function is 0, if there exist a time 

bock 𝑡 ∈ [𝑡1, 𝑡2) and number of requests for resource 𝑗 at this time block is 0. The 

resolvedFactor for assigned events is defined respectively.  

(2-1) 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝐹𝑎𝑐𝑡𝑜𝑟𝑡1,𝑡2
𝑗𝑑

 =

  {
1  𝑖𝑓  ∀ 𝑡 𝑖𝑛 [𝑡1, 𝑡2),  𝑁𝐷𝑡,𝑗 > 0  𝑑 ∈ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖𝑛𝑔, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑}, 𝑁𝐷𝑡,𝑗 ∈ {𝑁𝑅𝑡,𝑗 , 𝑁𝐴𝑡,𝑗}

0  𝑖𝑓  ∃ 𝑡 𝑖𝑛 [𝑡1, 𝑡2),  𝑁𝐷𝑡,𝑗 = 0   𝑑 ∈ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖𝑛𝑔, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑}, 𝑁𝐷𝑡,𝑗 ∈ {𝑁𝑅𝑡,𝑗 , 𝑁𝐴𝑡,𝑗}
 

In the algorithm, first, the resolvedFactor for the assigned event of the task is calculated. 

If the resolvedFactor for the assigned event is one, the assignment of the task is resolved 

such that the task in Flow is resolved to the records in Census. If instead the resolvedFactor 

equals zero, the task pertaining to the Flow database is not resolved to the Census. 

For all resolved tasks, the resolvedFactor for the requesting event is then 

calculated. If the resolvedFactor for the requesting event equals one, this implies that the 

task is resolved to the seized resource in Census, and denotes a preferred allocation for the 

task. If instead the resolvedFactor for the requesting event equals zero, this may imply a 

substitute allocation for the requesting event. Correspondingly, the resolvedFactor of the 

requesting event of the task for all of the other resource types in Census is computed. 

Among all resources, the ones with a resolvedFactor of one are denoted as potential 
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requested resources of the corresponding task. After resolving each task, Census is updated 

by applying the updateCensus function. 

(2-2)  𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑒𝑛𝑠𝑢𝑠𝑡1,𝑡2
𝑗𝑑

= (𝑁𝐷𝑡,𝑗 ← 𝑁𝐷𝑡,𝑗 − 1 , ∀ 𝑡 𝑖𝑛 [𝑡1, 𝑡2), 𝑑 ∈

{𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖𝑛𝑔, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑},𝑁𝐷𝑡𝑗 ∈ {𝑁𝑅𝑡,𝑗, 𝑁𝐴𝑡,𝑗}) 

A detailed definition of the RESOLVE algorithm is provided below (Algorithm 2-2). The 

output of the algorithm defines each event as resolved or unresolved. Additionally, for each 

resolved event, the designation of preferred or substitute allocation is provided. For all 

tasks with substitute allocations, a list of potential requested resources is defined. 

Algorithm 2-2- RESOLVE Algorithm: Resolves tasks of the Flow database into the Census database, labels 

the tasks with an allocation type and develops the list of potential requested resources for substitute 

allocations. 

Resolving tasks in Flow to number of assigned units in Census 

input: Flow database, Census database  

for tasks in Flow: 

 𝒋 =  𝑺𝑹𝒕𝒂𝒔𝒌 , 𝒕𝟏 = 𝑨𝑻𝒕𝒂𝒔𝒌, 𝒕𝟐 = 𝑺𝑻𝒕𝒂𝒔𝒌 

 if 𝒓𝒆𝒔𝒐𝒍𝒗𝒆𝒅𝑭𝒂𝒄𝒕𝒐𝒓𝒕𝟏,𝒕𝟐
𝒋𝒅

== 1, d = assigned: 

  the task is resolved 

  𝒖𝒑𝒅𝒂𝒕𝒆𝑪𝒆𝒏𝒔𝒖𝒔𝒕𝟏,𝒕𝟐
𝒋𝒅

, d = assigned 

  j= 𝑺𝑹𝒕𝒂𝒔𝒌 , 𝒕𝟏 = 𝑹𝒒𝑻𝒕𝒂𝒔𝒌, 𝒕𝟐 = 𝑨𝑻𝒕𝒂𝒔𝒌 

  if 𝒓𝒆𝒔𝒐𝒍𝒗𝒆𝒅𝑭𝒂𝒄𝒕𝒐𝒓𝒕𝟏,𝒕𝟐
𝒋𝒅

== 1, d = requesting: 

   allocation type of the task is preferred allocation 

   𝒖𝒑𝒅𝒂𝒕𝒆𝑪𝒆𝒏𝒔𝒖𝒔𝒕𝟏,𝒕𝟐
𝒋𝒅

, d = requesting 

  else: 

   allocation type of the task is substitute allocation 

   for k in M resource types: 

    𝒕𝟏 = 𝑹𝒒𝑻𝒕𝒂𝒔𝒌, 𝒕𝟐 = 𝑨𝑻𝒕𝒂𝒔𝒌 

    if 𝒓𝒆𝒔𝒐𝒍𝒗𝒆𝒅𝑭𝒂𝒄𝒕𝒐𝒓𝒕𝟏,𝒕𝟐
𝒌𝒅 == 1, d = requesting: 

     add resource k to the list of potential requested resources 

     𝒖𝒑𝒅𝒂𝒕𝒆𝑪𝒆𝒏𝒔𝒖𝒔𝒕𝟏,𝒕𝟐
𝒌𝒅 , d = requesting 

 else: 

  the task is not resolved 

output: resolved status, allocation type and potential requested resource list of substitute allocations 
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2-4.2. The algorithm performance  

While the algorithm performs well on simulated data (see Section 2-5), there are two cases 

in which the output of the algorithm may not provide the accurate allocation type or the 

requested resource of some tasks.  The occurrence of these cases, may cause errors in the 

corresponding time block as when the case occurs, but has minimal effect on other time 

blocks. 

First, for any task, if both the requesting and assigning events happen in the same 

time block, the corresponding records of the Census database may not represent this 

effectively. Therefore, the task cannot be resolved and the algorithm does not provide 

accurate information about the allocation type of that task. To estimate an upper bound on 

the effect of this type of error, an analysis of the duration between request and assign times 

for each task can be calculated and compared with the interval of the time blocks.  

Reductions in this type of error can be achieved through use of a smaller time block 

interval. 

In the second case, the algorithm may inaccurately designate tasks as alternate and 

preferred resources when two tasks are assigned to and seize the same resource type and 

for which both request times are in the same time block. Specifically, the error may occur 

when the true allocation type of one of the tasks is a substitute allocation while the 

allocation type of the other task is a preferred allocation. If the task with the substitute 

allocation is earlier than the task the with preferred allocation in the Flow database, the 

algorithm may label the allocation type of the first task as a preferred allocation and the 
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allocation type of the second task as a substitute allocation, incorrectly. The likelihood of 

such an occurrence is dependent on the underlying system features, but is expected to occur 

infrequently in practice. Similar to the first type of error, a decrease in time block duration 

will decrease the likelihood of this occurrence.   

Despite these possibilities for misclassification, the RESOLVE algorithm performs 

well in experiments with simulated data. A description of these experiments is provided in 

the next section.   

2-5. Tests on Simulated Data 

In the following section, we demonstrate the effectiveness of the RESOLVE algorithm via a 

numerical experiment. Specifically, we apply the algorithm to simulated datasets 

corresponding to bed assignment systems. To test the robustness of the method to system 

parameters, we vary the number of resource types and the characteristics of the resources 

when simulating the corresponding Flow and Census databases (Section 5-2). Since 

missing data and corrupted data are common challenges in real-world datasets, which can 

affect the effectiveness of the algorithm, we also test the impact of these features in Section 

2-5.3.  

2-5.1. Generating simulated databases  

In generating the simulated databases, we allow the system size to vary between 4 and 50 

resource types. Additionally, we assume that the capacity exceeds the expected requests 
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for each resource and that there are consistent underlying rules, referred to as the substitute 

set, defining which resources may be substituted for each other. 

Assumptions for the simulation, as inspired by assumptions in bed assignment 

applications and analysis of corresponding datasets, include (i) Poisson arrivals of requests, 

(ii) a Normal distribution for time between request and assignment of a resource, (iii) a 

Normal distribution for time between assignment and seizure of a resource, and (iv) a 

Normal distribution for time between seizure and release. Details of the probability 

distributions are included in Table 2-1. Parameters for these probability distributions are 

varied to create 5 different system settings. For each system setting, 30 pairs of databases, 

including Flow and Census, are generated. Warm-up periods are defined to ensure that the 

databases record steady state activity. The substitute subset for each resource is randomly 

generated. 

Table 2-1- Detailed information about the simulation model input 

Variables Distribution Mean Standard deviation 

Capacity of each resource, 𝑀𝑗 Constant Min(1.33*
𝑅𝑇𝑖−𝑆𝑇𝑖

𝑅𝑞𝑇𝑖𝑗
−𝑅𝑞𝑇𝑖−1𝑗

 , 48)  

The time interval between two 

(Hours)sequential requests for each 

resource, (𝑅𝑞𝑇𝑖𝑗 − 𝑅𝑞𝑇𝑖−1𝑗) (Hours) 
Exponential U[2, 38]  

The time interval between request 

and assignment of a resource* (𝐴𝑇𝑖 −
𝑅𝑞𝑇𝑖) (Hours) 

Normal U[0, 3] Mean/|N(3,1)| 

The time interval between 

assignment and seizure of a 

resource* (𝑆𝑇𝑖 − 𝐴𝑇𝑖) (Hours) 

Normal U[0, 9] Mean/|N(3,1)| 

The length of time a task 

seizes a resource (𝑅𝑇𝑖 − 𝑆𝑇𝑖) (Hours) 
Normal U[0, 300] Mean/|N(3,1)| 

Warm up period (Hours) Constant Max((𝑅𝑞𝑇𝑖𝑗 − 𝑅𝑞𝑇𝑖−1𝑗)* 𝑀𝑗)  
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* With respect to the seized resource type 

Based on the system setting parameters, Flow and Census databases are simulated and 

populated simultaneously using the Relational algorithm (Alg. 1). If at the request time for 

a resource, all the capacity of the preferred resource is seized, a resource type is chosen, 

from the substitute subset with equal probability among types, and if there is available 

capacity a substitute allocation is made. If the selected resource has no available capacity 

another resource type from the substitute subset is chosen in the same manner. In the 

unlikely case that all the resource types in the substitute subset are fully seized, a resource 

type with available capacity, not in the substitute set, is chosen. The simulation time span 

is one year and each time block in the Census is one hour in length. The number of tasks 

per database varies between 5,000 and 45,000, depending on the size of the corresponding 

system. 

2-5.2 Testing the algorithm  

By simulating the databases, the true preferred resource for each task is known and can be 

used to evaluate the performance of the RESOLVE algorithm in identifying the type of 

allocation.  For each of the generated databases, we calculate the accuracy, recall, and 

precision of the algorithm in identifying the allocation type. In this case, accuracy denotes 

the percentage of tasks with a correctly identified allocation type, preferred or substitute. 

Recall is the percentage of substitute allocations correctly identified by the algorithm. 

Precision is the percentage of correct substitute allocations identified by the algorithm. The 

calculations of these performance measures are: 
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(2-3)  Accuracy =  
number of tasks with correctly identified allocation type 

total number of tasks
∗ 100% 

(2-4)  Recall =  
number of tasks correctly identified as substitute allocation 

total number of tasks with substitute allocations 
∗ 100% 

(2-5)  Precision =  
number of tasks correctly identified as substitute allocation 

total number of tasks identified as substitute allocations
∗ 100% 

Since all datasets are independently generated and normality assumptions are valid, a t-test 

is applied to assess the performance of the algorithm on these three performance metrics. 

With a 95% confidence level, the accuracy and recall of the algorithm is greater than 97.4% 

and 80.1%, respectively, in the simulated databases. Additionally, the accuracy and recall 

of the algorithm do not change, or correlate, with the system size.  The precision of the 

algorithm is 100% for any number of resource types. 

Unlike the designation of the allocation type, or accuracy, the effectiveness of the 

algorithm to correctly identify the specific requested resources, for substitute allocations, 

is correlated with the system size, or number of resource types. Identification may include 

an exact definition or definition as part of the list of potential requested resources. As the 

size of the system increases the percentage of correctly identified requested resources 

decreases and the percentage of correctly identified potential requested resources increases 

(Figure 2-4). With 95% confidence, the average percentage of correctly identified 

requested resources and the percentage of correctly identified potential requested resources 

are statistically different for different sized systems. With 95% confidence, regardless of 
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the system size the sum of these two performance indicators is greater than 99.6% in the 

simulated datasets. 

Increasing the system size, the substitute subset list becomes longer and more tasks 

share their request time in the same time block. It is due to both of these reasons that less 

exact definitions and more potential definitions of the requested resources occur as the 

system size increases. As mentioned above, for all system sizes, the precision of the 

algorithm is 100% and all allocation types identified as substitute are correct in the 

simulated data. Therefore, the performance of the algorithm in identifying the requested 

resource of substitute allocations are not correlated with the performance of algorithm in 

identifying the allocation type. Regardless of the number of resources, whether through 

identification of the exact requested resource or the potential requested resource, with 95% 

confidence, for less than 0.2% of tasks, the requested resource is not defined by the 

algorithm. 
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Figure 2-4- Percentage of correctly identified requested resource (one resource or a list of potential resources) 

in simulated databases with varying system sizes and settings 

2-5.3. Missing and corrupted databases  

In addition to testing the effectiveness in relation to system size, we also test the 

effectiveness when there are data inaccuracies, as is often found in real world data. Hence, 

we analyze the effect of missing and corrupted data on the performance of the algorithm. 

To simulate missing data, we randomly remove with equal probability selected records 

from the Flow database while protecting the Census database from any changes and 

examine the effect of removing increasing amounts of data on the performance of the 

algorithm.  

 
Figure 2-5- Accuracy and recall of algorithm in identifying the type of allocations in the presence of missing 

data for different sized systems 

Five different system sizes are selected with 10, 20, 30, 40 and 50 resource types. For each 

system size, five different system settings, as defined by the substitute set, are considered. 

For each setting, there are 30 replications of simulations and from each a fixed percentage 

of records in the Flow database are removed. The results of applying the algorithm on 
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databases with different percentages of missing data are shown in Figure 2-5. With the 

percentage of data removed varying from 10% to 90%, no significant change is observed 

in the average accuracy, recall, or precision of the substitute allocations identified by the 

algorithm. Figure 2-6 demonstrates that there is no change in the mean percentage of 

correctly identified exact requested resources and an increase in the mean rate of 

identifying potential requested resources with increasing levels of missing data. Regardless 

of the percentage of missing data, a t-test confirms with 95% confidence that more than 

99.6% of requested resources, exact or potential, are identified.  

Time inconsistency across databases is a common data corruption problem in 

information systems, particularly in healthcare organizations. Therefore, we also examine 

the effect of time lags between valid time and transaction time of events in analyzing the 

robustness of the algorithm. Valid time refers to the time an event happens and transaction 

time refers to the time that the event is recorded. Among the transaction times stored in the 

database, the request time and assigned time are used in the algorithm to identify the 

allocation type. Therefore, to generate corrupted data, after randomly selecting 20% of 

tasks, we corrupt the selected data by adding a time lag to the request time of the task. In a 

separate analysis we add the time lag to the assigned time. To evaluate the impact of the 

size of the time lag, the value is generated randomly using a Normal distribution with 

means of 15, 30, 45, and 60 minutes.  



36 

 

 

 
Figure 2-6- Effects of several percentage of missing data on identifying the requested resource in substitute 

allocations 

The effects of the time lag vary depending on where the time lag is applied.  A t-test with 

the confidence of 95% reveals that adding a time lag to the request time of randomly 

selected tasks does not change the performance of the algorithm. The trend is similar for 

accuracy and recall.  

Unlike lags in request time, for all system sizes, accuracy and recall decrease as 

assigned time lags increase (Figure 2-7). Despite this behavior, precision of the outcome 

remains at 100%. Regardless of the size of the system, the mean accuracy falls from 97.4% 

with no time lag to approximately 93.9% with a one hour time lag. While the accuracy and 

recall of the algorithm are not robust to the time lag between occurrence and recording the 

assigned time, the change is not drastic, especially for smaller time lags which are more 

prevalent.  
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Figure 2-7- Effects of several time lag between transaction time and valid time of a proportion of requests on 

determining the type of allocation, on different sizes of the system 

By increasing the size of the time lag, no change is observed in the percentage of correctly 

identified requested resources, exact or potential (Figure 2-8). At all system sizes, a t-test 

with 95% confidence confirms that the effectiveness of the algorithm in identifying the 

requested resources, exact or potential, is 99.6%, 99.5%, 99.3%, 99.2% and 99.2% when 

the assigned time lag mean is 0, 15, 30, 45, and 60 minutes, respectively. Considering time 

lag in recording assigned time for 20% or less percentage of tasks, the performance of 

algorithm is acceptable, and can be used to dependably extract information and identify 

past decisions.  
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Figure 2-8- Effects of several time lag between transaction time and valid time of a proportion of requests on 

identifying the requested resource in substitute allocations 

2-6. Case Study, Bed Assignment 

To demonstrate applicability, we apply the algorithm on a hospital bed assignment 

problem. The algorithm is applied to historical bed assignment data to identify when a 

manager chose to assign a patient to an overflow ward, rather than a preferred ward.  

Specifically, patient flow data from more than 14,500 patients during one year was used.  

This patient flow data, stored in two separate databases were mapped to construct the event-

oriented and snapshot databases after data cleaning. A summary of the fields corresponding 

to these databases is provided in Table 2-2.   

Table 2-2- The equivalent variables in hospital databases with the defined resource allocation problem 

 Resource allocation  Bed assignment 

 preferred allocation regular assignment 

 substitute allocation overflow assignment 

 substitute resource overflow ward 

Flow Database: 

𝑅𝑄𝑖 request time of task i  request time of patient i  

𝑅𝑅𝑖 requested resource of task i requested ward of patient i 

𝐴𝑇𝑖  assigned time of task i assigned time of patient i 

𝑆𝑇𝑖 seize time of task i occupation time of patient i 

𝑆𝑅𝑖 seized resource of task i occupied ward of patient i 

𝑅𝑇𝑖 release time of task i discharge time of patient i 

Census Database: 
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𝑁𝑅𝑡𝑗 number of requests for resource j at 𝑡𝑡ℎ time 

block 
number of requests for ward j at 𝑡𝑡ℎ time block  

𝑁𝐴𝑡𝑗 number of units of resource j assigned to tasks 

at 𝑡𝑡ℎ time block 

number of beds in ward j assigned to patients at 

𝑡𝑡ℎ time block  

𝑁𝑆𝑡𝑗 number of units of resource j seized at 𝑡𝑡ℎ time 

block  

number of beds in ward j occupied at 𝑡𝑡ℎ time 

block 

The Flow, or event-oriented, database represents depersonalized data of 14,606 patients, 

and the Census database provide snapshots of the hospital state for 8,664 consecutive one 

hour time blocks (the snapshot data of 4 days is not available). For 158 patients, 1.1% of 

patients in the hospital Flow database, one of the requesting, assigning or seizing events 

was not recorded.    

2-6.1. Resolving patients in Flow database to Census database  

The results from applying the RESOLVE algorithm on the hospital data are presented in 

Table 2-3. As discussed in Section 4.2, the algorithm can produce errors in resolving 

records of the databases when the request and seizure events occur at the same time block. 

For 24.3% of patients the request time, and the occupation time are in the same time block. 

As various studies (Hakre, Manak et al. 2013, Malsby III, Quesada et al. 2013, Shi, Dai et 

al. 2013, Wang, Lee et al. 2015) support, patients are sent to the overflow ward when there 

is no bed available at the requested ward and the time waiting to be assigned is significant. 

Therefore, we assume that if both request and occupation events happen at the same time 

block, this patient is not an overflow patient and the type assignment is a regular 

assignment. For the 1.1% of the patients whose request, assigned or occupation time was 

not recorded, the requested ward and type of assignment cannot be determined. A total of 

274 patients are not resolved by the algorithm, and 1,159 patients of the Flow database are 
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resolved as the overflow patients. The remaining 64.8% of patients are labeled as regular 

assignment, non-overflow, patients.  

Table 2-3- The results of applying RESOLVE algorithm on Hospital Flow and Census databases 

 Not 

Available 

Not 

Resolved 

T(𝑅𝑞𝑇) = 

T(𝑆𝑇) 

Regular 

Assignment 

Overflow 

Assignment 
Total 

Number of 

Patients 
158 274 3546 9468 1160 14606 

Percentage of 

Patients 
1.1% 1.9% 24.3% 64.8% 7.9% 100% 

Among 1,160 patients with overflow determined assignment, for 358 patients the requested 

ward is determined and for 368 patients potential requested wards are listed. For the other 

434 the output of the algorithm does not reveal any requested ward. While the requested 

ward was not precisely determined for the majority of overflow patients, the results of this 

analysis provides the hospital administration with valuable estimates about the rate of 

overflow, patterns in the use of wards for overflow, and temporal trends in overflow 

assignments.  This is information that has not been available in the past and is information 

that will be valuable for potential analysis and redesign of policies.  

2-7. Conclusion and Future Work 

Decision making is a learning process and decisions are made based only on the 

information that is available. Variations in the input information can be the difference 

between the right decision and the wrong one (Siemens 2005). Thus, organizations need 

reliable information to analyze their performance, to evaluate decisions and to predict key 

variables for making better decisions in the future. Unfortunately, information systems 

often are structured to result in distributed databases which on their own do not provide 
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enough information to precisely identify past decisions made in the organizations. Multiple 

database mining is one solution to extract information about these man-made decisions. 

In our study, we use the concept of rule-based entity resolution, in the context of 

resource allocation, to link two heterogeneous spatio-temporal databases and to extract 

information about non-automated decisions. The problem is inspired by a hospital bed 

assignment application and the need to uncover information about bed managers’ decisions 

to send patients to overflow wards. To our knowledge, this is the first application of rule-

based entity resolution to link two heterogeneous spatio-temporal databases in order to 

extract information and uncover past decisions. 

Using this rule-based entity resolution approach, we define a polynomial-time 

algorithm to allow for the uncovering of these hidden and unrecorded decisions. 

Specifically, the algorithm identifies each resource allocation as preferred or substitute. For 

those designated as a substitute allocation, an exact definition of the requested resource 

type or a list of potential requested resources is provided. 

The algorithm’s accuracy, recall, and precision are tested on a variety of simulated 

databases. The algorithm is robust to missing data on various system sizes, and follows a 

logical trend in performance with regard to time distortions in the data.  In addition to 

dependably identifying preferred and substitute allocations, the algorithm identifies the 

requested resource, exact or potential, for a high percentage of the tasks regardless of the 

size of the system.  However, there is a negative statistical correlation between the 

percentage of correctly identified requested resources and the system size. 
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Correspondingly, there is a positive statistical correlation between the percentage of 

correctly identified potential requested resources and the system size. 

Additionally, when examining the effects of inaccuracies in the spatial aspects of 

the database, we find that the amount missing data has no statistically significant effect on 

the correct identification of allocation type and the requested resource, exact or potential, 

for substitute allocations. But when analyzing the effect of inaccuracies in the temporal 

aspects, the time lag between transaction and valid time of assignment is found to 

negatively affect the effectiveness of algorithm in identifying the type of allocation. These 

effects are enhanced by increasing the time lag.  

For application of the algorithm on hospital databases, in which there exists data 

missing and time lags are expected to be small, this algorithm performs well. For example, 

when the average assigned time lag is 15 minutes for 20% of the data, accuracy and recall 

measures are above 95% and 75% respectively and the precision is 100%. As the system 

size increases, accuracy of the algorithm changes very slightly but the recall decreases. If 

exact identification is required, then this algorithm works well on systems with smaller 

numbers of resources. As the complexity of the system, and the system size increases, the 

algorithm performs well in identifying the correct resource within the list of potential 

resources, but not the exact.  Since one of the purposes of this the methodology is to allow 

for studying past decision making, where previously no information was available, the 

results of this algorithm and the resulting information are valuable in conducting these 

analyses. This is supported by the results of the analysis of historical hospital data. 
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In this study we focused on one crucial assumption, that the system favors preferred 

allocation, in developing the rule-based algorithm. In practice, sometimes the underlying 

rules are slightly different or more complex. For future work we suggest considering more 

complex assumptions such as incorporating the limited capacity of each resource. 

Additionally, integration of machine learning methods may allow for updates and 

redefinitions of these rules. This may lead to better results for the time-distorted simulated 

data. We also suggest development of new data mining techniques to extract the substitute 

patterns from the output of the algorithm. This pattern can be used to uncover the decision 

policies to choose a substitute resource for a substitute allocation.  
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Chapter 3 - 

Analysis of Proactive Red Blood Cell Assignment 

Policies: A Simulation Model of Transfusion in an 

Isolated Environment 

In this chapter, we examine the effectiveness of two blood assignment (resource allocation) 

policies, greedy assignment (GA) and maximum transfusion value (MTV), for decreasing 

the unmet requests for blood. To compare these policies, a Monte Carlo simulation model, 

simulating the features of a primary healthcare center in South Sudan, is developed and the 

results for the average number of red blood cells (RBC) in shortage per capita and the 

average number of patients facing shortage per capita are analyzed. A two-stage stochastic 

model is used to determine the optimal distribution of blood types in the blood bank.  
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3-1. Introduction 

Blood transfusion is a critical process in medical care. It is often vital to patient recovery 

and, in some cases, prevention of patient fatalities. Correspondingly, the task of managing 

blood supplies, is critical for reduction of morbidity and mortality in a population. 

Additionally, the perishable nature of blood and life threatening risks associated with 

inappropriate blood product transfusion makes blood management challenging (Li, Dong 

et al. 2008). One of the key tasks of blood management corresponds to the critical decision 

to assign available compatible blood resources to patients’ requests. In order to provide a 

safe and reliable blood assignment, ABO and Rh compatibility of the patient’s blood with 

the assigned blood units should be tested and accounted for. An ABO incompatible blood 

transfusion can have dire consequences including intravascular haemolysis, haemolytic 

transfusion reactions, and haemolytic disease (Klein and Anstee 2008). Correspondingly, 

beyond a simple need for blood availability, it is necessary to have precisely compatible 

supplies for each patient to gain the benefits of transfusion. 

One of the key considerations in blood management is the shelf life of blood and 

blood products. Thus a key challenge in blood banking is the need to keep enough blood 

units of all blood types to appropriately respond to demand while, simultaneously, 

minimizing the stock of outdated blood and blood products due to cost and ethical concerns 

(Van Dijk, Haijema et al. 2009). As a result of uncertainties about future demand, 

identifying the appropriate levels of each blood type to store in a blood bank can be 

difficult. Correspondingly, seasonal and acute blood shortages are critical problems in US 
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hospitals and blood banking systems (McCarthy 2007, Erickson, Champion et al. 2008, 

Klein and Anstee 2008).  

Although blood shortages can not be eliminated, their frequency can be minimized 

(Van Dijk, Haijema et al. 2009). A variety of policies and products have been proposed to 

address this challenge. Joseph et al. (2009) note that not all blood transfusions, in a 

particular teaching hospital, were neccesary and that it is possible to conserve blood by 

controling transfusions to medical patients (Joseph, Hendry et al. 2009). McCary (2007) 

suggests prioritizing patients with legitimate hemotherapy needs for blood transfusions and 

communicating with hospital stakeholders at the time of blood shortages (McCarthy 2007). 

Gould et al.(2002) suggest using human polymerized hemoglobin as a blood substitute in 

massive blood transfusion (Gould, Moore et al. 2002). Alternatively, Bhangu et al.(2013) 

propose using salvaged blood in combat related injuries as a successful solution in gunshot 

wounds and cavity injuries (Bhangu, Nepogodiev et al. 2013). Despite these developments 

in blood conservation strategies, blood shortages continue to occur regularly and there 

exists an opportunity to improve the policies and practices in blood transfusion. 

This need for new policy developments is particularly critical in some isolated 

African rural areas, in which hemorrhage is one of the major causes of maternal death 

(Buor and Bream 2004) and blood availability is extremely important to save lives. 

Confounding this issue is the fact that blood management can be significantly more 

difficult in rural isolated environments than in developed areas. Due to the high prevalence 

of anemia, mostly caused by malaria or pregnancy-related challenges, blood transfusion 
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has become one of the most effective medical practices to reduce the number of lives lost 

(Fleming 1997, Erhabor and Adias 2012). Studies claim that lack of blood for transfusion 

is the cause of 26% maternal haemorrhage deaths in sub-Saharan Africa (Buor and Bream 

2004). Bates et al. (2008) note that almost 80% of blood used for transfusion is provided 

by replacement donors, either family members or paid donors (Bates, Chapotera et al. 

2008). The cost and time to collect and screen blood of replacement donors is high but 

essential due to the high risk of transfusion of unscreened blood in transmission of HIV, 

HBV, and HCV infections (Allain, Owusu‐Ofori et al. 2004). Since the risk and the cost of 

replacement donors and blood shortages is higher in this environment, it is essential to 

develop an appropriate blood assignment policy to preserve enough blood units to respond 

to all requests.  

The World Health Organization (WHO) provides several resolutions for African 

member states to help them minimizing the risk of blood transfusion while providing 

adequate amounts of safe blood to satisfy the population’s need for blood. According to 

WHO guidelines, 10 units of blood per 1000 population should be collected in a year. In 

2010, on average only 4.3 units of blood per 1000 individuals in the population were 

collected for WHO African regions (WorldHealthOrganization 2014). Thus, there is 

significant shortfall of blood units to treat patients.  

Timeliness of blood availability is critical since there is a high mortality risk among 

children who visit health centers with severe anaemia during first two and a half hour of 

their visit. Hospitals in three East African countries, typically transfuse an inadequate 
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volume of blood to children with anaemia. Although this policy preserves blood to serve 

more children with severe conditions, it also leads to a high re-transfusion rate in these 

hospitals (Kiguli, Maitland et al. 2015). Bates et. al (2008) after studying research and 

reports on obstetric haemorrhage and maternal deaths in Sub-Saharan Africa concluded 

that blood shortages is a major cause of maternal death and their main suggestion, beside 

blood donation, is to manage blood systems more efficiently (Bates, Chapotera et al. 2008). 

The need for new policy developments is also particularly critical in combat 

environments, in which massive blood loss by military members and civilians is a major 

cause of death (Henkelman and Rakhorst 2012). Specifically, in this setting similar to the 

isolated environments, demand for each blood type is unpredictable and the timing and 

quantity of blood stock replenishment is unreliable. Although for blood bank facilities or 

hospitals a robust blood supply chain network minimizes the risk of unavailability of blood, 

a dramatic increase in request for blood leads to a serious risk of the inability to meet the 

requests. Specifically, the risk is high in the aftermath of events on islands where sending 

blood after mass casualty may not by logistically possible. Such incidents happened in 

Puerto Rico and the Virgin Islands after Irma and Maria hurricanes in 2017. 

Beyond a study of past practices, researchers examine new approaches in blood 

management practices and test their solutions via computer simulations. Van Dijk et al. 

(2009) suggest a stochastic dynamic programming and simulated model to find a nearly 

optimal order-up-to level for blood products (Van Dijk, Haijema et al. 2009). Asllani et al. 

(2014) develop a simulation-based decision model for blood products inventory 



49 

 

 

management. They test the performance of the approach under scenarios in which demand 

is uncertain and uncontrollable (Asllani, Culler et al. 2014). Simonetti et al. (2014) suggest 

a first-in first-out (FIFO) blood management strategy to address average storage time. The 

use of this strategy is supported by results of a simulation based on the Center for Medicare 

and Medicaid Service’s blood use data (Simonetti, Forshee et al. 2014).  

Most of these aforementioned studies primarily focus on the identification of high-

level policies for inventory management or actions to be taken when facing a blood 

shortage. These studies fail to provide a strategy for management of inventory at the 

transfusion level, which would allow for the proactive prevention of shortages. 

Correspondingly, the goal of this study is to explore how simple blood assignment policies, 

which account for blood type compatibility, can result in the prevention of blood shortages. 

More specifically, via a simulation model, we analyze the effect of new policies of blood 

management which account for the compatibility of blood type substitution with the goal 

of minimizing future shortages and preventing unmet demand.  

3-2. Materials and Methods 

Employing a reliable blood assignment policy is crucial to prevent loss of lives in rural 

isolated environments. With particular consideration for children with severe anaemia and 

pregnant women in labor, medical teams at health center locations must be able to respond 

within 2 hours of the request for blood (Bates, Chapotera et al. 2008, Kiguli, Maitland et 

al. 2015), while ensuring they are properly prepared for additional emergency situations in 

the future. Due to the need to make quick decisions, it is imperative that a medical team 
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has a simple and consistent blood assignment protocol that can be quickly implemented. In 

this study, we examine two such easily implementable policies for blood assignment in 

rural isolated environments. We compare the performance of these two policies, as defined 

by the prevention of lives lost and blood shortages, via a simulation of a resource-

constrained location in South Sudan. While the first policy only considers the current 

available inventory of each blood type, the second policy considers the effects of a current 

assignment decision on the likelihood of fulfilling future blood requests. 

3-3. Blood assignment policies 

Blood assignment is the process of assigning appropriate blood units of a compatible blood 

type to a blood request. As shown in Figure 3-1, the set of compatible assignments can be 

described as an asymmetric matrix in which each blood type can be assigned to one, some, 

or all other blood types. For example, blood type 𝑂− is the universal donor and is 

compatible to be assigned to any blood type. Conversely, all blood types are compatible to 

be assigned to 𝐴𝐵+, the universal receiver, while 𝐴𝐵+, is only compatible to be assigned 

to 𝐴𝐵+. Using this concept, Adewumi et al. (2012) define a transfusion value (TV) for each 

blood type. Considering one blood type as the requested blood type, the transfusion value 

is the ratio of the number of blood types compatible to be assigned to this requested blood 

type and the total number of compatible transfusions between all blood types, which is 27 

(Adewumi, Budlender et al. 2012). Applying this definition,  𝑂− has the lowest TV, at 
1

27
. 

Likewise, the TV of 𝐴𝐵+ is 
8

27
, the largest TV among all blood types (Figure 3-1).  
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Figure 3-1- Transfusion value (TV) of each blood type, shows the ratio of number of compatible blood types 

for transfusion and the total number of compatible transfusions among all blood types to the specified blood 

type 

Two policies for blood assignment are examined in this study.  The first, and simplest 

policy, is denoted as the real-time greedy assignment (GA) policy. To implement the real-

time GA policy, among all compatible blood types including the requested type, the type 

with highest inventory is chosen. While there is value in assigning blood type with higher 

inventory level, this policy can lead to possible shortages among certain blood types in 

periods of high demand. 

To address the effects of blood assignment decisions on the ability to meet future 

requests, an alternate real-time blood assignment policy is proposed, the maximum 

transfusion value (MTV) policy.  The MTV policy aims to decrease future blood shortages 

by maximizing the TV of each assignment while simultaneously minimizing current blood 

shortages by fully satisfying the present request. Correspondingly, for each blood request, 

among those compatible blood types with inventory level higher than the request size, the 
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blood type with the highest TV is chosen. If the inventory level of all the compatible blood 

types is lower than the request size, the available compatible blood type with the highest 

TV is chosen. Among the compatible blood types, the maximum TV always belongs to the 

requested type. 

To compare and contrast the effects of the two policies, we develop a Monte Carlo 

simulation model, which utilizes repeated random sampling to simulate blood requests by 

patients, and correspondingly predicts the likelihood of outcomes, such as unmet requests. 

In this model a primary health care center (PHCC) with the capability of blood transfusion 

is simulated. The simulation model is calibrated to the characteristics of those seen in South 

Sudan, one of the countries in Africa with high maternal morbidity rate (WHO 2015). At 

the beginning of the simulation, an initial blood bank, denoted as the population-based 

blood bank, is defined.  The distribution of the inventory by blood type is equivalent to the 

blood type distribution as occurs among the South Sudan population blood type distribution 

(contributors 2018). It is assumed that the blood bank is not replenished throughout the 

simulation duration. Thus, the available units in the initial blood bank are the only 

resources available to fulfill patients’ requests for red blood cells (RBCs). For each patient, 

request size and request type refers to the number of units of RBCs requested and the 

patient’s blood type, respectively. The length of the simulation is assumed to be 42 days, 

corresponding to the shelf life of RBCs. 

The occurrence of patients requesting RBC transfusion is modeled with a Poisson 

distribution. For each patient, the request size is assumed to follow a Normal distribution. 
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The likelihood of each blood type, and correspondingly the request type of each patient, 

follows the same empirical distribution that defines the likelihood of blood types in the 

South Sudan population. The parameters for these statistical distributions are provided in 

Table 3-1.  

Table 3-1- Statistical distributions used in the Monte Carlo simulation model  

Variables Distribution Mean 
Standard 

deviation 

Population-based blood bank Constant X¶ ∗ {
𝑂+: 0.480,𝐴+: 0.277,𝐵+: 0.152, 𝐴𝐵+: 0.028,
𝑂−: 0.035, 𝐴−: 0.018, 𝐵−: 0.008,𝐴𝐵−: 0.002

 

Number of patients 

requesting for RBC (Month) 
Poisson 21.43  

Request size 
Folded 

Normal 
6 2 

Request type Empirical CDF={
𝑂+: 0.480, 𝐴+: 0.757, 𝐵+: 0909, 𝐴𝐵+: 0.937,
𝑂−: 0.972, 𝐴−: 0.990, 𝐵−: 0.998,𝐴𝐵−: 1.000

 

¶ X = blood bank size 

In South Sudan, each PHCC serves a population of 15,000 to 50,000 residents (Macharia, 

Ouma et al. 2017). To ensure a robust analysis with type I and type II errors, of 0.01 and 

0.05 respectively, the “base case” simulation includes 20,000 iterations for a population 

of 15,000 residents. The total number of RBC units in the initial blood bank is referred to 

as the blood bank size. The blood bank size is sufficient to respond to the expected patient 

requests for RBC and is determined by the product of the average request size and expected 

number of patients requesting RBC during the simulation duration. 

In each iteration, patients requesting RBCs are generated for the entire simulation 

duration, 42 days. Then for each patient, the request type and the request size are generated 

according to the statistical distributions defined above. Requests are fulfilled 



54 

 

 

chronologically by following one of the two assignment policies, GA or MTV. Neither 

policy presumes exact knowledge of future requests when an assignment decision is made.  

To assess the effectiveness of the policies, two performance measures are 

calculated to describe the unsatisfied requests for each policy and iteration with respect to 

(i) the RBC units and (ii) the number of patients affected. First, we calculate the ratio of 

the accumulated number of requested RBC units that are not satisfied and the population 

size for each iteration. The average of this ratio over all iterations is denoted as the average 

number of RBC units in shortage per capita. Additionally, we calculate the ratio of the total 

number of patients whose requests for blood are not fully satisfied, due to unavailability of 

compatible blood type units, and the population size. The average of this ratio over all 

iterations is labeled as the average number of patients facing shortage per capita. These 

two performance measures are calculated to compare the performance of MTV and GA 

policies.   

In the following section, the performance measures from applying MTV and GA 

policies in the simulated iterations are presented. Additionally, the performance of these 

policies are further analyzed through additional experiments.  

3-4. Results 

Performance measures resulting from applying GA and MTV policies on the base case 

simulated model is represented as follows. The simulated model and the results of applying 

policies are implemented using Python 2.7 on an Intel i7 CPU laptop with a 2.5 GHz 
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processor and 12 GB RAM. To test the effectiveness of the blood assignment policies, 

under a variety of settings assumption for the base case simulation, such as the size and 

distribution of initial blood bank and the population size, are changed and the 

corresponding performance measures are provided.  

Base case: Initial results for the base case, which correspond to the assumptions above, are 

presented in Table 3-2. Via a paired t-test applied to the outcomes of the simulation, we 

conclude that there is strong evidence that, on average, MTV policy performs better than 

GA policy on both performance measures (p-value = 6.952 *10−300). 

Table 3-2- Performance measures of applying MTV and GA policies on the base case simulated data, using 

population-based blood bank 

Performance measure   Policy Mean Standard deviation 

The average number of RBC 

units in shortage  

per capita 

MTV 15.891 14.884 

GA 16.239 15.029 

The average number of 

patients facing shortage  

per capita 

MTV 3.222 2.727 

GA 3.382 2.780 

A further analysis of the relative performance of these two policies is conducted via a 

sensitivity analysis. Specifically, we explore how changes to the (i) initial blood bank 

distribution, (ii) initial blood bank size, and (iii) the size of the population in the simulation 

affects the performance in relation to the base case, presented above. 

3-4.1. Alternative blood type distributions  

The blood type distribution in the initial blood bank may not always be exactly the same 

as the requests, as it is considered in the base case. Assuming the size of the initial blood 
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bank is fixed to meet the total expected requests, varying the distribution of the initial blood 

bank, by altering the frequency of each blood type, may improve the performance of blood 

assignment practices. Since the distribution of type and size of the requests is known, 

stochastic programming is suggested to generate the optimal blood bank distribution 

(Jabbarzadeh, Fahimnia et al. 2014, Gunpinar and Centeno 2015). Additional simulations 

are conducted to assess how sensitive the performance of these two policies is to this 

optimal blood bank. 

As expected, the optimal blood bank with the goal of minimizing the number of 

RBC units in shortage, without any limitation on the quantity of each blood type, contains 

only 𝑂−. Since providing enough units of 𝑂− to meet the total expected requests is not 

feasible in practice, we add a constraint to limit the quantity of each blood type in the 

optimal blood bank to beat most 10% more than the quantity of that type in the population-

based blood bank. Since the quantity of each blood type in the blood bank is an integer 

number, this upper bound is rounded to the nearest integer. If for a blood type, the rounded 

upper bound is the same as the quantity of that blood type in the population-based blood 

bank, the upper bound for the mentioned type is incremented by one unit.  

To model the problem of finding the optimal blood bank distribution, a two-stage 

stochastic model with recourse is implemented in order to account for the uncertain nature 

of the requests. In a two-stage stochastic programming model, the first-stage decision is 

made prior to learning information about future events.  The second-stage decision are 

limited by the first-stage decisions but are made after information becomes available (King 
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and Wallace 2012). In this stochastic model at the first-stage the optimal blood bank, 

defined by the quantity of each blood type in the bank, is chosen such that the assignment 

of RBC units to requests minimizes unsatisfied requests. This mathematical model for the 

second-stage corresponds to the offline blood assignment problem in which compatible 

available blood units in the blood bank are assigned to requests and each request is fulfilled 

by only one blood type. In an offline blood assignment problem, the request type and size 

of all patients, including future requests are known at the moment of the decision.  

As input to the model we have multiple scenarios with each scenario being defined 

as the set of patient requests that occur. The optimal solution to the model defines the 

optimal blood bank distribution, 𝐵𝑗, that should be chosen (in the first-stage) without 

having information about which scenario will occur. The second-stage decisions about 

allocation of RBC units to requests, 𝑥𝑗𝑡𝑠, is made after information about the scenario is 

realized. These two decisions in turn determine that expected number of unmet requests, 

Σ𝑡𝑠=1
Ts 𝑧𝑡𝑠. While the first stage decision about the blood bank distribution is not included in 

the objective function, it effects the second stage decision variables , 𝑧𝑡𝑠,which are included 

in the objective function. The indices, parameters and variables of the model are presented 

in Tables 3-3, 3-4, and 3-5.  

Table 3-3- Indices for model 

𝑠  𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, 𝑠 = 1, 2, … , 𝑆 

𝑗  𝑏𝑙𝑜𝑜𝑑 𝑡𝑦𝑝𝑒𝑠, 𝑗 ∈ 𝐽 =  {𝑂−, 𝐴−, 𝐵−, 𝐴𝐵−, 𝑂+, 𝐴+, 𝐵+, 𝐴𝐵+} 

𝑡𝑠  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠, 𝑡𝑠 = 1, 2, … , 𝑇𝑠 
 

Table 3-4- Parameters for model 

𝑑𝑡𝑠   𝑠𝑖𝑧𝑒  𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡 in  scenario s 
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𝑟𝑡𝑠   𝑡𝑦𝑝𝑒 𝑜𝑓𝑟𝑒𝑞𝑢𝑒𝑠𝑡  𝑡 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 

𝐸𝑖𝑗   𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑡𝑜 𝑎𝑠𝑠𝑖𝑔𝑛 𝑅𝐵𝐶 𝑡𝑦𝑝𝑒 𝑗 𝑡𝑜 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡𝑦𝑝𝑒 𝑖, 𝑖 = 𝑟𝑡𝑠  

𝐷  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑙𝑜𝑜𝑑 𝑏𝑎𝑛𝑘 𝑠𝑖𝑧𝑒 

𝐵𝑗
0  𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑏𝑙𝑜𝑜𝑑 𝑡𝑦𝑝𝑒 𝑗  𝑖𝑛 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑏𝑙𝑜𝑜𝑑 𝑏𝑎𝑛𝑘 

𝑀  𝑏𝑖𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 

𝑝𝑠  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 
 

Table 3-5- Decision variables 

𝐼𝑗𝑡𝑠   𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑜𝑓 𝑅𝐵𝐶 𝑡𝑦𝑝𝑒 𝑗 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 

𝑥𝑗𝑡𝑠    𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑅𝐵𝐶 𝑡𝑦𝑝𝑒 𝑗 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠  

𝑦𝑗𝑡𝑠   𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑟𝑖𝑏𝑎𝑙𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑖𝑓 𝑡ℎ𝑒 𝑏𝑙𝑜𝑜𝑑 𝑡𝑦𝑝𝑒 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜  

  𝑟𝑒𝑞𝑢𝑒𝑠𝑡  𝑡 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 

𝑧𝑡𝑠  

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑢𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑡 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠 

𝐵𝑗  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑅𝐵𝐶 𝑡𝑦𝑝𝑒 𝑗 𝑖𝑛 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑏𝑙𝑜𝑜𝑑 𝑏𝑎𝑛𝑘  

The two-stage stochastic mixed integer programming model of this problem is formulated 

as follow: 

(3-1) 𝑚𝑖𝑛    𝛴𝑠∈𝑆 𝑝𝑠 𝛴𝑡𝑠=1
𝑇𝑠  𝑧𝑡𝑠    

(3-2) s.t. 𝛴𝑗∈𝐽𝐸𝑖𝑗𝑥𝑗𝑡𝑠  + 𝑧𝑡𝑠   = 𝑑𝑡𝑠   𝑠 = 1, 2, … , 𝑆 , 𝑡𝑠 = 1, 2, … , 𝑇𝑠 

(3-3)  𝑥𝑗𝑡𝑠  ≤   𝑀𝑦𝑗𝑡𝑠    𝑠 = 1, 2, … , 𝑆 , 𝑡𝑠 = 1, 2, … , 𝑇𝑠, 𝑗 ∈ 𝐽  

(3-4)  𝛴𝑗∈𝐽  𝑦𝑗𝑡𝑠 ≤ 1   𝑠 = 1, 2, … , 𝑆 , 𝑡𝑠 = 1, 2, … , 𝑇𝑠  

(3-5)  𝛴𝑗∈𝐽 𝐵𝑗 ≤ 𝐷         

(3-6)  𝐵𝑗 ≤  𝐵𝑗
0   𝑗 ∈ 𝐽      

(3-7)  𝐵𝑗 − 𝑥𝑗1𝑠  = 𝐼𝑗1𝑠   𝑠 = 1, 2, … , 𝑆 , 𝑗 ∈ 𝐽    

(3-8)  𝐼𝑗(𝑡−1)𝑠 − 𝑥𝑗𝑡𝑠  = 𝐼𝑗𝑡𝑠   𝑠 = 1, 2, … , 𝑆 , 𝑡𝑠 = 2, 3, … , 𝑇𝑠, 𝑗 ∈ 𝐽  

(3-9)  𝑥𝑗𝑡𝑠 ∈  ℕ   𝑠 = 1, 2, … , 𝑆 , 𝑡𝑠 = 1, 2, … , 𝑇𝑠, 𝑗 ∈ 𝐽  

(3-10)  𝑦𝑗𝑡𝑠 ∈ {0, 1}   𝑠 = 1, 2, … , 𝑆 , 𝑡𝑠 = 1, 2, … , 𝑇𝑠, 𝑗 ∈ 𝐽  
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(3-11)  𝐼𝑗𝑡𝑠 ≥  0   𝑠 = 1, 2, … , 𝑆 , 𝑡𝑠 = 1, 2, … , 𝑇𝑠, 𝑗 ∈ 𝐽  

(3-12)  𝑧𝑡𝑠 ≥ 0    𝑠 = 1, 2, … , 𝑆 , 𝑡𝑠 = 1, 2, … , 𝑇𝑠  

(3-13)  𝐵𝑗 ≥ 0    𝑗 ∈ 𝐽      

The objective function (3-1) seeks to minimize the expected unsatisfied requests across all 

scenarios. Constraint (3-2) assigns blood units of compatible blood type to fulfill the 

requests. Constraint (3-3) and (3-4) ensure that each request is fulfilled by only one blood 

type. Constraint (3-5) limits the total number of units of blood in the optimal blood bank 

to the initial blood bank size, 𝐷, which is equal to expected number of requests. Constraint 

(3-6) bounds the number of units of each blood type in the initial blood bank to an upper 

bound, 𝐵𝑗
0. This upper bound ensures that, for each blood type, collecting the specified 

amount of blood in the optimum blood bank is practical. Constraint (3-7) updates the 

inventory for the first request and assignment. In Constraint (3-8) the inventory is updated 

for all other requests. Constraint (3-9) indicates that all assignments are nonnegative 

integers. Constraint (3-10) defines the conditional variable as a binary variable. Constraints 

(3-11) -(3-13) state the nonnegativity of all other decision variables. 

Computational study: The proposed model is implemented using Python 2.7 and Gurobi 

6.5 on an Intel i7 CPU laptop with a 2.5 GHz processor and 12 GB RAM. The output of 

the stochastic model is the optimal blood bank. Defining the scenarios via the base case 

simulation, the optimal blood bank converges after the inclusion of 100 scenarios, such 

that additional scenarios does not change the optimal blood bank. The optimal blood bank 

is compared with population-based blood bank for the base case in Table 3-6. 
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Table 3-6- Distribution of optimum blood bank and initial blood bank for the base case 

Blood type 𝑶+ 𝑨+ 𝑩+ 𝑨𝑩+ 𝑶− 𝑨− 𝑩− 𝑨𝑩− Total 

Population-based blood bank 87 50 27 5 6 3 2 0 180 

Optimal blood bank 95 47 24 0 7 4 3 0 180 

Similar to the previous section we use simulation model with 20,000 iterations to compare 

the effectiveness of the MTV and GA policy under the two blood bank distributions. By 

applying the paired t-test on the output of the simulation model, the results reveal that the 

two performance measures are significantly smaller by applying the MTV policy as 

compared to GA policy. Also, the paired t-test shows that both MTV and GA policy 

perform significantly better with the optimal blood bank rather than the population-based 

blood bank. 

Table 3-7- Performance measures of applying MTV and GA policies on the base case simulated data, using 

optimal blood bank 

Performance measure   Policy Mean Standard deviation 

The average number of RBC 

units in shortage  

per capita 

MTV 13.584 14.154 

GA 13.885 14.281 

The average number of 

patients facing shortage  

per capita 

MTV 2.795 2.631 

GA 2.959 2.681 

 

3-4.2. Initial blood bank size 

To examine the effect of the initial blood bank inventory, Monte Carlo simulations with 

newly generated iterations are performed. For each simulation, the initial blood bank sizes 

are either 30%, 20%, or 10% greater or less than the expected requests during the 

simulation duration. 
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The distribution of blood types in the population-based blood bank remains the 

same. Additionally, the optimal blood bank is computed via stochastic model with the 

change in the blood bank size. The frequency of blood types of the population-based and 

optimal blood banks are presented in Table 3-8. It can be seen, for all initial blood bank 

sizes, the frequency of 𝑂+, 𝑂−, 𝐴− and 𝐵− is higher and the frequency of 𝐴+, 𝐵+ and 𝐴𝐵+ 

is lower in the optimal blood bank. The frequency of 𝐴𝐵− is zero in both the population-

based and optimal blood banks. 

Table 3-8- Frequency of blood types in population and optimal blood bank. The optimal blood bank is 

computed considering various initial blood bank size 

Blood bank size Bank 𝑶+ 𝑨+ 𝑩+ 𝑨𝑩+ 𝑶− 𝑨− 𝑩− 𝑨𝑩− 

100% 
Population-based blood 

bank 
0.48 0.28 0.15 0.03 0.03 0.02 0.01 0 

70% Optimal blood bank 0.53 0.27 0.12 0 0.04 0.02 0.02 0 

80% Optimal blood bank 0.53 0.26 0.13 0 0.04 0.03 0.01 0 

90% Optimal blood bank 0.53 0.26 0.14 0 0.04 0.02 0.01 0 

100% Optimal blood bank 0.53 0.26 0.13 0 0.04 0.02 0.02 0 

110% Optimal blood bank 0.53 0.26 0.13 0 0.04 0.03 0.01 0 

120% Optimal blood bank 0.53 0.26 0.14 0 0.04 0.02 0.01 0 

130% Optimal blood bank 0.53 0.26 0.14 0 0.04 0.02 0.01 0 

The impact of the initial inventory levels and the inventory distribution on performance 

measures is provided in Figures 3-2 and 3-3. Applying paired t-test we conclude that for 

both performance measures the MTV policy performs significantly better than the GA 

policy and both MTV and GA policies perform significantly better with optimal blood bank 

rather than population-based blood bank. As the initial blood bank size increases, the 

average number of RBC units in shortage per capita and the average number of patients 

facing shortage per capita decrease, for both policies.  
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Figure 3-2- The effect of varying initial blood bank size (vs. base case), blood type distribution, and 

assignment policies on the number of units of RBC in shortage per capita 

 

 
Figure 3-3- The effect of varying the initial blood bank size (vs. base case) and blood type distribution, and 

assignment policies on the number of patients facing shortage per capita 

3-4.3. The population size  

Finally, additional simulations are analyzed to characterize the effects of changing the 

population size, while simultaneously changing the blood bank size to meet the total 

expected requests. As mentioned above, in South Sudan each PHCC serves populations of 

15,000 to 50,000 residents. Table 3-9 provides the distribution of blood types for 
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population-based and optimal blood banks for the studied population sizes. The distribution 

of blood types in the optimal blood bank when changing the population size is very similar 

to the results when altering the initial blood bank size. 

Table 3-9- Frequency of blood types in population-based and optimal blood bank. The optimal blood bank 

is computed for different population sizes 

Population Bank O+ A+ B+ AB+ O- A- B- AB- 

15000 
Population-based blood 

bank 
0.48 0.28 0.15 0.03 0.03 0.02 0.01 0 

10000 Optimal blood bank 0.53 0.27 0.12 0 0.04 0.02 0.02 0 

15000 Optimal blood bank 0.53 0.26 0.13 0 0.04 0.02 0.02 0 

20000 Optimal blood bank 0.53 0.26 0.14 0 0.04 0.02 0.01 0 

30000 Optimal blood bank 0.53 0.26 0.14 0 0.04 0.02 0.01 0 

40000 Optimal blood bank 0.53 0.26 0.14 0 0.04 0.02 0.01 0 

50000 Optimal blood bank 0.53 0.26 0.14 0 0.04 0.02 0.01 0 

Performance measures of applying MTV and GA policies on the simulated data after 

changing the population size and blood bank distribution are presented in Figures 3-4 and 

3-5. Despite other disadvantages, increasing the size of the population served by the PHCC, 

the performance measures of applying MTV and GA policies is improved. As expected, 

optimal blood bank results are significantly better than the population-based blood bank, 

also the MTV policy performs significantly better than the GA policy in both performance 

measures.  
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Figure 3-4- The effect of changing population size, initial blood bank distribution, and assignment policies 

on the number of units of RBC in shortage per capita 

 

 
Figure 3-5-The effect of changing population size, initial blood bank distribution, and assignment policies 

on the number of patients facing shortage per capita 

3-5. Discussion 

Blood shortages are a significant problem, particularly in isolated environments, and can 

directly lead to loss of lives. In such environments, resupply of blood may not be readily 

available and thus the limited starting blood bank supplies are the primary resource for 

addressing requests. Past researchers have examined inventory management policies, but 
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minimal attention has been given to determining how to assign blood units as requests are 

made. In this study, we examine the efficiency of two policies in reducing the occurrence 

of blood shortages in an isolated environment. In the GA policy all efforts are made to 

assign the compatible blood type with the highest level of available inventory to the 

request. The MTV policy seeks to minimize future shortages by assignment through a 

proactive blood type substitution approach.  

Specifically, the MTV policy performs significantly better in comparison to the GA 

policy in both performance measures. In the base case, the distribution of blood types in 

the population-based blood bank is assumed to be the same as that found among the 

population. As seen above, the optimal blood bank, computed by the described two-stage 

stochastic optimization model performs better, for both policies, with respect to the average 

number of RBC units in shortage per capita and the average number of patients facing 

shortage per capita. The 𝑂− blood type is the global donor, 𝑂− can be assigned to requests 

for any blood type. Correspondingly, higher proportions of 𝑂− in stock increases the ability 

to respond to blood requests and prevent unmet requests. Though higher volumes of 𝑂− in 

the blood bank are beneficial it is not necessarily easily achievable since is not the most 

prevalent among donors and the cost of acquiring large amounts of 𝑂− units is great. 

Therefore, the quantity of each blood type in the optimization model is limited to an upper 

bound which limits the quantity of each blood type to be at most the greater value of 10% 

of the base case or a one-unit increase. The optimal blood banks computed via the 

stochastic optimization model for the altering the sizes of blood bank and population, 

follow similar trends. In the optimal blood bank, the quantity of 𝑂−, 𝐴−, 𝐵−and 𝑂+ is 
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increased to the upper bound, and the quantity of 𝐴+ and 𝐵+ is decreased to meet the blood 

bank size limitation. The optimal blood bank does not contain any units of 𝐴𝐵− or 𝐴𝐵+. 

The performance improvement of optimal blood bank as compared to the population-based 

blood bank is made greater by applying the MTV policy rather than the GA policy. 

One of the primary factors demonstrated to improve performance measures is the 

initial blood bank size. As is expected, the greater the number of blood units available, the 

smaller the average number of RBC units in shortage per capita and the average number of 

patients facing shortage per capita. While this trend is true for both policies, decisions to 

stock more blood in the initial blood bank does have disadvantages including higher costs, 

challenges for storing larger quantities, and ethical concerns of having wasted, unused 

RBC. For the two performance measures, the improvement of these measures of MTV 

policy to that of GA policy increases by increasing the initial blood bank size and by using 

the optimal blood bank distribution.  

The population size serving by PHCC also affects the performance of the policies. 

As population sizes increase, in proportion to the blood bank size, the average number of 

RBC units in shortage per capita decreases. Besides disadvantages of serving higher 

population size by a specific PHCC, having more units of blood from each type, provides 

additional flexibility in meeting requests if a shortage occurs for a particular blood type. 

The MTV policy performance improvement is higher on larger population sizes and by 

optimal blood bank. These findings support the value of having centralized systems for 
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blood banking and distribution for multiple PHCCs assuming that timely delivery of blood 

units can be achieved.  

Even with various changes to the population size, blood bank size, and distribution 

of blood types in the blood bank, the findings are consistent with (i) the MTV policy 

significantly resulting in better performance measure than the GA policy and (ii) for any 

of the two assignment policies the optimal blood bank provides significantly better 

performance than the population-based blood bank. Additionally, the underlying system 

parameters of the blood bank size and the size of population that is served by PHCC are 

demonstrated to affect performance regardless of which of the two policies are used.  

These results support the need for consideration of developing proactive blood 

assignment policies and using an optimal distribution in blood banks, while considering 

feasibility limitations, in environments where requests may not be satisfied. The MTV 

policy is simple to implement and is demonstrated to produce better results than the GA 

policy. Following the results here, future research is needed to further examine alternate 

blood assignment policies that may perform better than the proactive blood type 

substitution policy, MTV. Finally, this work can be applied on additional instances in 

which there may be a large number of requests in a short period of time, such as the 

aftermath of a high-casualty event.  
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Chapter 4 - 

Characterizing Optimality of the MAV Resource 

Allocation Policy for the Generalized Online Resource 

Allocation Problem 

In this chapter we analyze the performance of the resource allocation policy suggested in 

Chapter 3 for a generalized resource allocation problem. We characterize the features of 

problem for which the allocation policy provides an optimal solution to the online resource 

allocation problem, with equivalent performance to that found with the offline version of 

the problem. Also, we analyze the performance of applying this allocation policy when 

these characteristics are violated and provide an upper-bound pertaining to the worst-case 

performance. 
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4-1- Introduction 

The resource allocation problem pursues the best allocation of a limited number of 

resources of various types to requests for each type of resource in order to optimize a 

specified objective subject to constraints on the availability of resources (Yin and Wang 

2006). This problem has been well studied (Debreu 1951, Hurwicz 1973) in various 

domains such as politics (Romer and Rosenthal 1978), welfare economics (Arrow 1962), 

healthcare (Mooney, Russell et al. 1980) and intra-household management (Thomas 1990). 

In many industries including healthcare, the major challenges in the resource allocation 

problem include limited resources and growing demand for these resources. 

The resource allocation problem can further be distinguished as focusing on either 

offline or online allocations. In the offline resource allocation problem, all requests and 

their features are known prior to the allocation of resources. In contrast, in the online 

resource allocation problem allocation decisions are made over time and allocations to 

requests must be made without exact knowledge of future demand. The offline resource 

allocation problem is shown to be NP-Complete (Wang and Liu 2005). Correspondingly, 

a variety of different methods are employed for formulating and solving this problem 

including linear programming, dynamic programming, branch-and-bound solution 

approaches, and genetic algorithms (Yin and Wang 2006).  

This chapter is motivated by the online blood assignment problem that occurs in 

isolated environments, as presented in Chapter 3. Blood assignment is the process of 
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assigning adequate units of a compatible blood type to a blood request. Since the risk and 

the cost of unsatisfied requests for blood is higher in isolated environments, it is essential 

to develop an appropriate online blood assignment policy to preserve enough blood units 

to respond to all requests. In the previous chapter, two online resource allocation policies 

are presented and through comparing the policies it is found that one performs significantly 

better. Although the performance of the policies is compared through a simulation model 

focuses on the blood assignment setting in the previous chapter, the performance of the 

policy for the generalized assignment problem for different settings is not.  

In this chapter we define a generalized online resource allocation problem in 

alignment with the problem discussed in Chapter 3. For this problem, we propose an online 

allocation policy based on the concepts of MTV, referred to as the MAV policy. Dissimilar 

from the blood resource allocation problem, in this generalized problem the structure of 

the compatibility of resources is not limited to those found in the blood transfusion 

application. Since the MTV policy performs well on the blood assignment problem, we 

specify characteristics of the online resource allocation problem such that this allocation 

policy provides an optimal allocation. An online resource allocation is designated as 

optimal if the objective function value of the online allocation is equal to the optimal 

objective function value in the offline resource allocation problem (Asadpour, Wang et al. 

2016). We perform further analysis of the suggested allocation policy, while violating some 

these characteristics.  
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The remainder of this chapter is organized as follows. Section 4-2 formulates the 

generalized resource allocation problem. Section 4-3 presents an overview of research 

focusing on variants of the generalized online resource allocation problem. Section 4-4 

introduces an online allocation policy, MAV. Section 4-5 defines characteristics of the 

allocation problem under which the output of implementing the MAV policy is optimal. 

Section 4-6 discusses the performance of the allocation policy when these characteristics 

are eliminated. Finally, Section 4-7 presents a summary of the work.  

4-2- Problem definition 

The online resource allocation problem examined here is inspired by the blood assignment 

problem in which requests are submitted sequentially and must be responded to at the time 

of the request. Compatible resources are assigned to the requests, and if there are no 

compatible resources available to satisfy the request, the request is unmet. In this chapter 

we present and analyze the performance of an algorithm for a generalized online resource 

allocation with the objective of minimizing shortages, or unmet requests. 

Suppose there is a set of n types of resources, 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}, and for each 

resource type, 𝑠𝑗, there is a limited and known initial inventory, 𝐼𝑗
0. Requests for these 

resources are made sequentially and each request is defined by the timing within the 

sequence of requests, 𝑟𝑡. Without loss of generality, we assume that one request is made 

per unit of time 𝑡 ∈ {1, 2, … , 𝑇} in a fixed time horizon 𝑇. Correspondingly, when 𝑡 = 1, 

the first request, 𝑟1, is made and the second request, 𝑟2, occurs at 𝑡 = 2. Each request at 
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time 𝑡 is for one unit of resource type 𝑠𝑗 ∈ 𝑆, denoted as the request type, 𝑟𝑡 = 𝑠𝑗. The 

probability distribution of the frequency of request types for each time are independent and 

identically distributed (I.I.D.) according to a discrete probability distribution with the 

probability of the request being for resource type 𝑠𝑗 defined as 𝑝𝑗 = 𝑝(𝑟𝑡 = 𝑠𝑗, 𝑠𝑗 ∈ 𝑆). 

A request type 𝑠𝑗 can be satisfied by assigning either (i) one unit of resource type 

𝑠𝑗 from the inventory or (ii) one unit of a compatible resource type 𝑠𝑘, such that 𝑘 ≠ 𝑗, 

from the available inventory. Inventory of all resources update after each time period. If 

resource type 𝑠𝑗 ∈ 𝑆 is assigned to the request at time 𝑡, 𝑟𝑡, then the inventory of resource 

type 𝑠𝑗 is decreased by one unit, 𝐼𝑗
𝑡 = 𝐼𝑗

𝑡−1 − 1, and the inventory of all other resource types 

remain the same, 𝐼𝑘
𝑡 = 𝐼𝑘

𝑡−1 for all resource types, 𝑠𝑘, where 𝑘 ≠ 𝑗. It is assumed the 

inventory for all resource types do not replenish during the time horizon, 𝑇.  

The complexity matrix, 𝑀, represents the ability of a resource of type 𝑠𝑘 to satisfy 

a request type 𝑠𝑗. The matrix 𝑀 is a 𝑛 × 𝑛, binary matrix and element 𝑚𝑗𝑘 is 1 if resource 

type 𝑠𝑘 is able to satisfy request type 𝑠𝑗. Likewise, 𝑚𝑗𝑘 is zero if resource type 𝑠𝑘 is not 

compatible to satisfy the request type 𝑠𝑗. The indices of rows in the matrix represent the 

request type and the indices of columns represent the resource types which are assigned to 

the requests.   

(4-1)     𝑀 = [

1 0
1 1

… 0
⋱ 0

⋮ ⋱
1 0

⋱ ⋮
… 1

] 
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If the assigned resource type is not the same as the request type, this allocation is denoted 

as a substitute allocation. If the resource type of the assigned unit is the same as the request 

type, the allocation is denoted as a regular allocation.  

Since one unit is requested at each period of time, the total number of units 

requested in the time horizon, 𝑇, is equal to 𝑇. In order to disregard the cases in which 

requests are not satisfied due to insufficient total inventory, we assume that the sum of the 

initial inventory across all resource types is equal to 𝑇. Thus: 

(4-2)    Σj∈S 𝐼𝑗
0 = 𝑇 

Additionally, we assume that there is no mismatch in the expected number of requests and 

the total initial inventory for each resource type. 

(4-3)    𝐼𝑗
0 = 𝑝𝑗 ∗ 𝑇 

If the full sequence of requests is known, the total requests for resource type 𝑠𝑗, is defined 

to be 𝑅𝑗. The total remaining inventory at time 𝑇, for resource type 𝑠𝑗 is 𝐼𝑗
𝑇. The number of 

total unmet requests at time 𝑇 is denoted by 𝑍 and is defined as the sum of unmet requests 

for each resource type 𝑠𝑗 at time 𝑇, 𝑧𝑗
𝑇: 

(4-4)    𝑍 = Σ𝑗≤𝑛𝑧𝑗
𝑇 = Σ𝑗≤𝑛 ,𝑅𝑗>𝐼𝑗

0  (𝑅𝑗 − 𝐼𝑗
0) 
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The goal of the resource allocation problem is to minimize the unmet requests and two 

variants of this problem are examined. The first problem variant focuses on solving the 

offline allocation problem which assumes all the requests are known a priori and the 

allocations are made to minimize the unmet requests. The total unmet requests in the 

optimal solution of this offline allocation problem is denoted as the optimum unmet 

requests, 𝑍∗. Unlike the offline allocation problem, in practice, resource allocation 

decisions must be made without full knowledge of future requests. This corresponds to the 

online resource allocation problem which deals with uncertainty of future requests, while 

assigning resources to the current requests. The optimum solution to the offline allocation 

problem is a lower bound on the best solution for the corresponding online allocation 

problem. As was shown in the previous chapter, the total number of unmet requests in the 

online allocation problem, 𝑍+, depends on the allocation policy. If the number of unmet 

requests in the online allocation policy, 𝑍+, is equal to the optimum unmet requests in the 

offline problem, 𝑍∗, the solution is referred to as optimal allocation.  

In Section 4-4 we introduce an allocation policy to decrease the expected total 

number of unmet requests for the online resource allocation problem with stochastic 

requests (similar to the policy from the previous chapter). We then define system 

characteristics for which the number of unmet requests when applying this policy in the 

online setting is guaranteed to result in the same performance as in the corresponding 

optimal offline allocation. 
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4-3- Related research 

There is an extensive amount of research focused on designing and analyzing online 

resource allocation problems. In this section we present similar online resource allocation 

problems to the problem described in Section 4-2 and common solution approaches for 

these online resource allocation problems. Specifically, we present a summary of research 

pertaining to the online-bin packing problem, the online variable-sized bin packing 

problem, and the online multiple knapsack problem. We also provide a brief review of 

research in the graph theory domain focused on the online resource allocation problem.  

4-3.1. Online bin packing problem 

In the online bin packing problem, items arrive one at a time and must be assigned to a bin 

without knowledge of upcoming items. Item sizes are in the range (0, 1] and the capacity 

of each bin is 1. The goal of the online bin packing problem is to minimize the number of 

utilized bins. Ullman first studied this problem and since then many researchers have 

developed effective allocation algorithms for addressing this problem (Klein 2016). 

Johnson et. al (1974) and Johnson (1974) study the performance of Best Fit, First Fit and 

Revised First Fit algorithms (Johnson 1974, Johnson, Demers et al. 1974). Seiden (2001) 

provides a performance analysis of the HARMONIC, REFINED HARMONIC, MODIFIED 

HARMONIC, MODIFIED HARMONIC2 and HARMONIC+1 algorithms (Seiden 2001) for the 

bin packing problem.  
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4-3.2. Online variable-sized bin packing problem  

Taking into consideration different types of bins with specified but varying capacities, the 

variable-sized online bin packing problem is defined. In this problem, items can be packed 

into bins of different sizes. In this problem, bin sizes are specified to be less than or equal 

to 1 and access to an infinite number of bins from each size is provided. The goal of the 

variable-sized bin packing problem is to minimize the total size of bins used for packing. 

In other words, if the cost of bins is proportionally related to the size of bins then the goal 

of the problem is to minimize the cost of packing (Friesen and Langston 1986). In the 

online variable-sized bin packing problem decisions are made about whether or not to open 

a new bin and decisions are made about the size of the new bins (Kinnerseley and Langston 

1988). The VARIABLE HARMONIC algorithm is proposed by Csirik (1989) based on the 

HARMONIC algorithm. Similar to the HARMONIC algorithm, this algorithm uses bounded 

space and Seiden shows that this algorithm is an optimum bounded space online algorithm 

(Seiden 2000). Seiden (2003) proposes the VRH1 and the VRH2 algorithms based on the 

HARMONIC and REFINED HARMONIC algorithms, and improves the upper-bound for this 

problem (Seiden, Van Stee et al. 2003).  

4-3.3. Online multiple knapsack problem 

With the consideration of limiting the number of available resources from various types, 

the multiple knapsack problem is studied. In the multiple knapsack problem items with 

various weights and profits associated with them are packed in different capacity knapsacks 

and the goal is to maximize the profit of packed items accounting for the limited capacity 
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of the knapsacks (Chekuri and Khanna 2005). Chakrabarty et al. (2008) denotes the ratio 

of profit to weight as the efficiency for each item and defines an efficiency threshold for 

each knapsack. The proposed solution approach states that if the efficiency of the item is 

larger than the specified threshold and enough capacity is available, the item is packed into 

the knapsack. (Chakrabarty, Zhou et al. 2008). In the knapsack problem the weight of items 

is assumed to be very small compared to the capacity of the knapsack (Chakrabarty, Zhou 

et al. 2008).  

The online bin packing problems and online knapsack problems share similarities 

with the generalized online allocation problem defined in Section 4-2. First, there are 

requests that may or may not be compatible with a particular resource, such as a bin or 

knapsack. Additionally, decisions about allocations of requests are made in an online 

fashion and a decision in one period will affect the effectiveness of meeting future requests. 

Also, the goal of minimizing unused space in bins or knapsacks can be seen as equivalent 

to goal of minimizing unmet demand in the generalized allocation problem presented 

above. 

While the presented research areas share similarities, there are also differences 

between these problems and the generalized resource allocation problem. In the online bin 

packing problem items (requests) have different sizes (types) but there are no differences 

between bins (resources). All the bins have the capacity of 1, and all the items can be 

packed in any bin with available capacity larger than the item size. Also, there is no limit 

on the number of available bins and the goal is to utilize the minimum possible number of 
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resources while satisfying all requests. In the online variable-sized bin packing problem 

different-size bins can be assigned to items with various sizes. Thus, bins can be packed 

with any item with a smaller size than the capacity of the bin. Again, the goal is to minimize 

the total capacity of utilized resources. Like the online bin packing problem, there is no 

limit on the number of available bins of each size and one bin can be packed with more 

than one item. In the multiple knapsack problem, knapsacks (resources) are utilized to pack 

the items with different profit values and each item is feasible to be packed in any knapsack 

the goal is to maximize the profit of the knapsacks. Although this problem limits the 

number resources, there is a choice of not packing an item into any knapsack despite the 

availability of capacity upon item arrival. Although in these problems different types of 

requests are satisfied by allocating resources, the specifications and goals of these problems 

are different than our defined problem.   

4-3.4. Applications of graph theory in online resource allocation problem  

Many studies have explored the application of graph theory to resource allocation problems 

in various domains, including online advertising and cloud distribution.(Stoffel 2005)  

The Adwords problem is one class of problem in which keywords in online 

advertising are assigned to advertisement buyers (bidders) with the goal of maximizing 

profits. This problem is represented with a bipartite graph with keywords and bidders being 

modeled with distinct sets of nodes. Karp et al. (1990) define a RANKING algorithm for 

the bipartite matching in this problem in which resources are assigned to a random ranking, 

and the resource with the highest rank is assigned to the request. The authors claim that the 



79 

 

 

RANKING algorithm performs as well as greedy algorithm and they also modified the 

RANKING algorithm to address random refusals or EARLY refusals (Karp, Vazirani et al. 

1990). Karande et al. (2011) prove the performance guarantee of the RANKING algorithm 

by providing an upper-bound and lower-bound for this algorithm performance on problems 

with unknown distribution models (Karande, Mehta et al. 2011). Devanur et al. (2011) 

introduce a bid to budget ratio to bound their greedy algorithm and solve the online bipartite 

b-matching problem (Devanur, Jain et al. 2011). Vee et al. (2010) formulate the online 

allocation problem with forecasts. In this problem there is a knowledge of some random 

group of  requests from the future. They suggest a two-phase solution including an offline 

compact allocation in the first phase and the online allocation in the second phase (Vee, 

Vassilvitskii et al. 2010). Although in this online allocation problem resources are limited 

and non-reusable similar to the problem defined in 4-2, in this class of problems one 

resource can be assigned to more than one request, and any resource is able to satisfy the 

requests, although potentially with a poor profit. Thus there is no focus on unmet requests, 

as occurs in the blood allocation setting. In applications of online matching in cloud 

distribution, cloud resources with various features are allocated to requests over time. 

Constraints on requests pertaining to geographical location, network distance band, and 

cost ranges are accounted for in the allocation of virtual machines to requests (Hao, 

Kodialam et al. 2017). The online adversary (Beloglazov and Buyya 2012), random weight 

assignment (Sahai 2011), and primal-dual algorithm (Shi, Zhang et al. 2014) are the most 

common methods in online cloud distribution problem. Unlike the allocation problem 
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defined in this chapter, in the cloud distribution problem resources are reusable and 

requests wait for a finite or infinite time to be satisfied. 

Although the focus of most studies on online assignment problems focus on 

generalized versions, some researchers have examined the problem as it applies to specific 

graph structures. Correspondingly, they focus on the development of algorithms for solving 

the online assignment problem for network graphs with specific features. In assignment 

problems one of the graph features that is often examined is the transitivity closure between 

resource types. Lin et al. (2001) suggest transitive closure graphs to represent non-slicing 

floorplans and applied an algorithm based on the features of these graphs to allocate the 

modules of a circuit into a chip to optimize time and area. By analyzing the experimental 

results they claim that transitive closure graph modeling is an effective solution in area and 

wireless optimization (Lin and Chang 2001). Goel et al. (2005) study the performance of a 

greedy online algorithm for a routing and load balancing problem. They prove that the 

algorithm is 𝑂(log𝑛) − 𝑓𝑎𝑖𝑟 and 𝑂(log𝑚) − 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 where n is number of jobs and n 

is number of machines (Goel, Meyerson et al. 2005).  Similarly, we examine the 

relationship between algorithm performance and graph network structure, and specifically 

the transitive closure property among resource types for the generalized assignment 

problem below. 

4-4. Allocation policy 

 For the online assignment problem, the use of different online allocation policies can lead 

to significantly different results, with respect to the total unmet demand (as shown in 
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Chapter 3). These allocation policies define how to assign a compatible resource to each 

request without exact knowledge of future requests with the goal of achieving the optimal 

system performance. In this section we introduce and generalize one of these studied 

polices from the previous chapter. The policy, named maximum assignment value (MAV) 

policy, is designed to fulfill requests while maximizing the capability of system to fulfill 

future unknown requests.  

As mentioned earlier, in the online blood assignment problem, Adewumi et al. 

(2012) define the transfusion value (TV) for blood types. Considering one blood type as 

the requested blood type, the transfusion value is the ratio of the number of blood types 

compatible to be assigned to the requested blood type and the total number of compatible 

transfusions between all blood types (Adewumi, Budlender et al. 2012). Inspired by this 

concept, for the generalized online resource allocation problem, we define the “assignment 

value”. Assignment value, 𝐴𝑉𝑠𝑗, is a feature for each resource type 𝑠𝑗 and represents the 

number of resource types that are compatible to be assigned to requests of this type. The 

compatibility matrix 𝑀 defined in Section 4-1 is used to calculate 𝐴𝑉𝑠𝑗 for all resource 

types. For resource type 𝑠𝑗 the 𝑗𝑡ℎ row of 𝑀 represents the compatibility of resource types 

to fulfill request type 𝑠𝑗. The sum over the values in this row defines 𝐴𝑉𝑠𝑗, 𝐴𝑉𝑠𝑗 = Σ𝑘=1
𝑛 𝑚𝑗𝑘. 

In the MAV policy, for a request the compatible resource type, 𝑠𝑗, with the largest 𝐴𝑉𝑠𝑗 and 

sufficient inventory is assigned. If no compatible resources has sufficient inventory, the 

request is not fulfilled and one unit of unmet request is recorded. An example of the 

allocation of resources using the MAV policy is presented in Section 4-4.1.  
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4-4.1. Example of MAV allocation rules for a case of four resource types 

An example of the MAV online resource allocation algorithm when there are four resource 

types, 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4}, is presented below. The compatibility matrix, 𝑀1 and 𝐴𝑉𝑠𝑗 for all 

𝑠𝑗 ∈ 𝑆 are provided in (4-5).  

(4-5)    𝑀1 = 

                   𝐴𝑉 

[

1 0
1 1

0 0
0 0

1 1
1 1

1 0
1 1

]    

1
2
3
4

 

Before any requests are made, at time 0 the initial inventory is defined as 𝐼𝑗
0, 𝑗 ∈ {1, 2, 3, 4}. 

At each time 𝑡 ∈ {1, 2, … , 𝑇} a request is made, a resource is assigned, and the inventory 

of each resource type is updated. The update of inventory levels at each time 𝑡 as defined 

by the MAV policy are dependent of the request type 𝑟𝑡 and the inventory levels at time 𝑡. 

These updates based on request type are presented in (4-6), (4-7), (4-8) and (4-9).  

(4-6)  𝑟𝑡 = 𝑠4 ∶  

{
 
 

 
 𝐼4

𝑡 =  𝐼4
𝑡−1 − 1, 𝑖𝑓 (𝐼4

𝑡−1 > 0)                                 

𝐼3
𝑡 =  𝐼3

𝑡−1 − 1, 𝑖𝑓 (𝐼3
𝑡−1 > 0, 𝐼4

𝑡−1 = 0)                

𝐼2
𝑡 =  𝐼2

𝑡−1 − 1, 𝑖𝑓 (𝐼2
𝑡−1 > 0, 𝐼4

𝑡−1 = 𝐼3
𝑡−1 = 0)  

𝐼1
𝑡 =  𝐼1

𝑡−1 − 1, 𝑖𝑓 (𝐼4
𝑡−1 = 𝐼3

𝑡−1 = 𝐼2
𝑡−1 = 0)      

 

(4-7)  𝑟𝑡 = 𝑠3 ∶  {

𝐼3
𝑡 =  𝐼3

𝑡−1 − 1, 𝑖𝑓 (𝐼3
𝑡−1 > 0)                                

𝐼2
𝑡 =  𝐼2

𝑡−1 − 1, 𝑖𝑓 (𝐼2
𝑡−1 > 0, 𝐼3

𝑡−1 = 0)               

𝐼1
𝑡 =  𝐼1

𝑡−1 − 1, 𝑖𝑓 (𝐼1
𝑡−1 > 0, 𝐼3

𝑡−1 = 𝐼2
𝑡−1 = 0)

  

(4-8)  𝑟𝑡 = 𝑠2 ∶  {
𝐼2
𝑡 =  𝐼2

𝑡−1 − 1, 𝑖𝑓 (𝐼2
𝑡−1 > 0)                   

           
𝐼1
𝑡 =  𝐼1

𝑡−1 − 1, 𝑖𝑓 (𝐼1
𝑡−1 > 0, 𝐼2

𝑡−1 = 0)
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(4-9)  𝑟𝑡 = 𝑠1 ∶   {𝐼1
𝑡 =  𝐼1

𝑡−1 − 1, 𝑖𝑓  𝐼1
𝑡−1 > 0 

In some problem incidences of this case it is not possible to meet all the requests with a 

compatible resource and unmet requests are inevitable. It is notable that despite the 

sequence of requests, in this example the number of unmet requests resulting from applying 

the MAV policy, 𝑍+, is the same as the optimum number of unmet requests in the offline 

allocation, 𝑍∗. In the next section we provide details of the instance characteristics that 

results in the MAV allocation being an optimal online allocation. 

4-5- Performance analysis 

The proposed online allocation policy, MAV, is described in Section 4-4, and in this 

section, the performance of this algorithm is analyzed. The circumstances under which the 

MAV policy results in an optimal allocation policy is characterized. 

4-5.1. Analysis of cases with optimality 

The MAV policy results in an optimal solution to the generalized resource allocation 

problem in Section 4-2 if the underlying problem instance has specific conditions. These 

conditions are established in definitions 𝐼, 𝐼𝐼, 𝐼𝐼𝐼 and 𝐼𝑉, and the optimality of MAV policy 

under these definitions is proven in Theorem 1.  

Definition 𝐼. If there is a request type 𝑠𝑗 and resource type 𝑠𝑘 can satisfy the request type 

𝑠𝑗, then resource type 𝑠𝑘 is compatible with resource type 𝑠𝑗.  
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Definition 𝐼𝐼. Any resource type 𝑠𝑗 is compatible with itself. 

Definition 𝐼𝐼𝐼. The assignment value of every resources is unique. In other words, for any 

two resource types 𝑠𝑗 and 𝑠𝑘, such that 𝑠𝑗 , 𝑠𝑘 ∈ 𝑆, 𝑗 ≠ 𝑘, the assignment value of resource 

type 𝑠𝑗 is not equal to the assignment value of resource 𝑠𝑘 𝐴𝑉𝑠𝑗 ≠ 𝐴𝑉𝑠𝑘.  

Definition 𝐼𝑉. If resource type 𝑠𝑗 is compatible with resource type 𝑠𝑘, then resource type 

𝑠𝑘 is not compatible with resource type 𝑠𝑗. This is denoted as the orientation of 

compatibility between resource types. 

Theorem 1. Suppose that for some instance of the generalized resource allocation problem 

presented in Section 4-2 the Definitions 𝐼 , 𝐼𝐼 , 𝐼𝐼𝐼  and 𝐼𝑉  are satisfied. Then the MAV 

allocation policy is an optimal policy.  

In support of proving Theorem 1, we define Lemmas 1 and 2. In Lemma 1, resource 

types are ordered to establish a compatibility rule based on the uniqueness of the 

assignment values. 

Lemma 1. Suppose that for some instance of the generalized resource allocation problem 

presented in Section 4-2 the Definitions 𝐼, 𝐼𝐼, 𝐼𝐼𝐼 and 𝐼𝑉 are satisfied. If (i) the assignment 

value of resource type 𝑠𝑖, is equal to 𝑖, 𝐴𝑉𝑠𝑖 = 𝑖, and (ii) the assignment value of resource 

type 𝑠𝑗, is equal to 𝑗, 𝐴𝑉𝑠𝑗 = 𝑗, and 𝑖 < 𝑗 , then resource type 𝑠𝑖 is compatible with resource 

type 𝑠𝑗. 
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Proof of Lemma 1. Assume there are n types of resources and 𝑛 types of requests for these 

resources. According to Definition 𝐼𝐼, request type 𝑠𝑖 can always be satisfied by resource 

type 𝑠𝑖. Therefore, the minimum possible value of 𝐴𝑉𝑠𝑖 is one. Likewise, the maximum 

possible 𝐴𝑉𝑠𝑖 is 𝑛, in cases that all of the 𝑛 resource types are compatible to be assigned to 

requests for a specific resource type. Since, there are 𝑛 types of resources and there is a 

unique assignment value corresponding to each resource type, the maximum possible 

assignment value is 𝑛, and the minimum possible assignment value is one, the assignment 

values for resource types must be a sequence of natural numbers from 1 through 𝑛. Without 

loss of generalization we define the index of each resource type to be the same as the 

assignment value corresponding to that resource type. For example, the resource type with 

an assignment value equal to 3 is labeled as 𝑠3. Consequently, 𝑠1 is the resource type for 

which its request can only be satisfied by 𝑠1. And 𝑠𝑛 is the resource type for which all the 

n resource types are compatible to satisfy its requests.  

All the n resource types are compatible with resource type 𝑠𝑛  and n-1 of the 

resource types are compatible with resource type 𝑠𝑛−1, according to Definition 𝐼𝑉. Since 

resource type 𝑠𝑛−1  is compatible with resource type 𝑠𝑛 , resource type 𝑠𝑛  is the only 

resource type which is not compatible with resource type 𝑠𝑛−1. We use this logic to prove 

Lemma 1 by induction. For resource type 𝑠𝑛, all resource types 𝑠𝑖, 𝑖 ≤ 𝑛, are compatible 

with resource type 𝑠𝑛. Assume Lemma 1 is satisfied for all resource types 𝑠𝑘 , then all 

resource types 𝑠𝑖, 𝑖 ≤ 𝑘, are compatible with resource type 𝑠𝑘. We want to show that for 

resource type 𝑠𝑚, 𝑚 < 𝑘, all resource type 𝑠𝑗 , 𝑗 ≤ 𝑚 are compatible with resource type 
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𝑠𝑚 . According to the naming conventions described above there are 𝑚 resource types 

compatible with resource type 𝑠𝑚. As stated in the induction assumption, resource type 

𝑠𝑚 is compatible with all resource types 𝑠𝑘 , 𝑘 > 𝑚. According to Definition 𝐼𝑉, these 

resource types 𝑠𝑘, 𝑘 > 𝑚 are not compatible with resource type 𝑠𝑚, therefore all the 𝑚 

resources type 𝑠𝑙, 𝑙 ≤ 𝑚 are compatible with resource type 𝑠𝑚. □ 

Lemma 2. Suppose that for some instance of the generalized resource allocation problem 

presented in Section 4-2 the Definitions 𝐼, 𝐼𝐼, 𝐼𝐼𝐼 and 𝐼𝑉 are satisfied and that for all 

resource types 𝑠𝑘, the assignment value is equal to 𝑘, 𝐴𝑉𝑠𝑘 = 𝑘. Applying the MAV 

resource allocation policy, if a request for any resource type 𝑠𝑖 is not satisfied at time 

𝑡, 𝑧𝑖
𝑡 > 0, for all resource types 𝑠𝑗, such that  𝑗 < 𝑖, and the inventory of the resource type 

𝑠𝑗 must be equal to zero at time t, 𝐼𝑗
𝑡 = 0.  

Proof of Lemma 2. Assume to the contrary that Lemma 2 is not satisfied and by applying 

the MAV resource allocation policy and some request type 𝑠𝑖 is not met by time 𝑡, (𝑧𝑖
𝑡   >

 0) while the inventory of resource type 𝑠𝑗 is not equal to zero. Since resource type 𝑠𝑗 is 

compatible with resource type 𝑠𝑖 and the inventory of the resource type 𝑠𝑗 is positive, 𝐼𝑗
𝑡 >

0, the total requests is equal to the total inventory at time zero, and the objective is to 

minimize the unmet requests, resource type 𝑠𝑗 must be assigned to request type 𝑠𝑖 and 

request for type 𝑠𝑖 must be satisfied at time 𝑡. Therefore no unmet request can have occurred 

for resource 𝑠𝑖 at time 𝑡.  □ 

Here we deploy these definitions and lemmas to prove the Theorem 1.   
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Proof of Theorem 1. Assume to the contrary that MAV is not an optimal policy and the 

quantity of unmet requests resulting from applying MAV policy, 𝑍+, is larger than the total 

unmet requests of the optimal offline policy, 𝑍∗. Therefore, we have 𝑍+ > 𝑍∗.  

Correspondingly, there must be at least one request at some time 𝑡 for request type 

𝑠𝑚 that is satisfied in the optimal offline allocation policy but cannot be satisfied by the 

MAV policy and thus 𝑧𝑚
+𝑡 > 0. According to Lemma 2 for all resource types 𝑠𝑖, and 𝑖 ≤

𝑚, inventory of resource type 𝑠𝑖 is empty, 𝐼𝑖
𝑡 = 0. Since in the optimal offline allocation 

policy, the request type 𝑠𝑚 is satisfied, there should exist at least one resource type 𝑠𝑗 and 

𝑗 ≤ 𝑚 with at least one unit of inventory available at time 𝑡, 𝐼𝑗
∗𝑡 > 0. This means there 

must be least one request type 𝑠𝑟 , at time 𝑡0, before time 𝑡, 𝑡0 < 𝑡, and this request is 

satisfied by resource type 𝑠𝑙, 1 ≤ 𝑙 ≤ 𝑚, by applying the MAV policy while it is satisfied 

by some resource type 𝑠𝑘, 𝑘 > 𝑚 in the optimal offline policy. In other words, at time 𝑡0, 

inventory of resource type 𝑠𝑘, 𝑙 ≤ 𝑚 < 𝑘 is nonzero, and while by applying MAV policy 

resource type 𝑠𝑙 is assigned. According to Lemma 1, 𝑙 < 𝑘, implies that 𝐴𝑉𝑠𝑙 < 𝐴𝑉𝑠𝑘. If 

resource type 𝑠𝑘 is available at time 𝑡0 and is compatible to be assigned to request of time 

𝑡0, based on the definition of the MAV policy, resource type 𝑠𝑘 must be assigned at time 

𝑡0 while resource type 𝑠𝑙 is assigned. This assignment which is made at time 𝑡0 contradicts 

the MAV assignment policy. Thus, the MAV is optimal and 𝑍+ = 𝑍′.  □ 
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4-6 Discussion 

Although using the MAV policy in instances of the online resource allocation problems for 

which all 4 definitions are satisfied results in an optimal number of unmet requests, when 

any of these definitions are violated, MAV does not necessarily lead to the optimal results. 

Specifically, we discuss the effects of violating Definitions 𝐼𝐼𝐼 and 𝐼𝑉 and how the 

performance of the MAV allocation policy is affected by this violation.  

4-6.1. Violating Definition 𝑰𝑽 while satisfying Definitions 𝑰, 𝑰𝑰 and 𝑰𝑰𝑰 

First, we study the performance of the MAV algorithm applied to a problem instance of 

the generalized assignment problem is which Definitions 𝐼, 𝐼𝐼 and 𝐼𝐼𝐼 are satisfied while 

Definition 𝐼𝑉, or the orientation of compatibility between resource types, is not satisfied. 

Since Definition 𝐼𝐼𝐼 is satisfied and assignment values are unique the naming convention 

used for definition of resource types is assumed to be the same as was presented in the 

proof of Lemma 1, without loss of generality. An example of a problem instance in which 

the compatibility between resource types in Definition IV is not satisfied is presented 

below. 

4-6.1.1. Example of MAV allocation rules for a case of four resource types without 

orientation of compatibility between resource types assumption 

An example of MAV online resource allocation problem with four resource types, 𝑆 =

{𝑠1, 𝑠2, 𝑠3, 𝑠4}, is provided as follow. Compatibility matrix, 𝑀2 and assignment values for 
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all resource types are presented in Formula (4-10), Note that the compatibility between the 

resource types are not oriented. 

(4-10)    𝑀2 = 

                   𝐴𝑉 

[

1 0
0 1

0 0
0 1

1 1
1 1

1 0
1 1

]    

1
2
3
4

 

In this case, the allocation preference, as defined by the MAV policy, for satisfying request 

type 𝑠2 is to assign resource type 𝑠4 upon availability over assigning resource type 𝑠2. It is 

notable that resource type 𝑠1 is not compatible with resource type 𝑠2. The allocation rules 

based on the MAV policy are provided in Formulas (4-11), (4-12), (4-13) and (4-14). 

(4-11)   𝑟𝑡 = 𝑠4 ∶  

{
 
 

 
 𝐼4

𝑡 =  𝐼4
𝑡−1 − 1, 𝑖𝑓 (𝐼4

𝑡−1 > 0)                                            

𝐼3
𝑡 =  𝐼3

𝑡−1 − 1, 𝑖𝑓 (𝐼3
𝑡−1 > 0, 𝐼4

𝑡−1 = 0)                          

𝐼2
𝑡 =  𝐼2

𝑡−1 − 1, 𝑖𝑓 (𝐼2
𝑡−1 > 0, 𝐼4

𝑡−1 = 𝐼3
𝑡−1 = 0)             

𝐼1
𝑡 =  𝐼1

𝑡−1 − 1, 𝑖𝑓 (𝐼1
𝑡−1 > 0, 𝐼4

𝑡−1 = 𝐼3
𝑡−1 = 𝐼2

𝑡−1 = 0)

 

(4-12)   𝑟𝑡 = 𝑠3 ∶  {

𝐼3
𝑡 =  𝐼3

𝑡−1 − 1, 𝑖𝑓 (𝐼3
𝑡−1 > 0)                                 

𝐼2
𝑡 =  𝐼2

𝑡−1 − 1, 𝑖𝑓 (𝐼2
𝑡−1 > 0, 𝐼3

𝑡−1 = 0)             

𝐼1
𝑡 =  𝐼1

𝑡−1 − 1, 𝑖𝑓 (𝐼1
𝑡−1 > 0, 𝐼3

𝑡−1 = 𝐼2
𝑡−1 = 0)

  

(4-13)   𝑟𝑡 = 𝑠2 ∶  {
𝐼4
𝑡 =  𝐼4

𝑡−1 − 1, 𝑖𝑓(𝐼4
𝑡−1 > 0)                     

           
𝐼2
𝑡 =  𝐼2

𝑡−1 − 1, 𝑖𝑓(𝐼2
𝑡−1 > 0, 𝐼4

𝑡−1 = 0)  
 

(4-14)   𝑟𝑡 = 𝑠1 ∶   {𝐼1
𝑡 =  𝐼1

𝑡−1 − 1, 𝑖𝑓 (𝐼1
𝑡−1 > 0) 
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The sequence of request types may affect the number of unmet requests. Assume 𝑅2 > 𝐼2
0, 

𝑅3 > 𝐼3
0 and 𝑅4 > 𝐼4

0, according to Formula (4-2), 𝑅1 < 𝐼1
0. To reach the same number of 

unmet requests in the online allocation and optimal offline resource allocation, in case of 

unavailability of resource type 𝑠3, request type 𝑠3 would need to be satisfied by resource 

type 𝑠1. In the MAV allocation policy upon unavailability of resource type 𝑠3 and 

availability of resource type 𝑠2, request type 𝑠3 is instead satisfied by resource type 𝑠2. This 

leads to a greater number of unmet requests than is found in the optimal solution to the 

offline assignment problem. Thus, we demonstrate that the MAV policy is not guaranteed 

to be optimal if Definition IV is not satisfied. 

4-6.1.2. Analysis of non-optimal cases with violating Definition 𝐼𝑉 

Applying MAV online allocation policy does not necessarily lead to optimal results when 

all definitions except Definition 𝐼𝑉 are satisfied. Violating Definition 𝐼𝑉 means there exist 

at least one pair of resource types that are compatible with each other. Assuming there is 

only one pair of resource types 𝑠𝑖 and 𝑠𝑗, 𝑖 < 𝑗, resource type 𝑠𝑖 is compatible with resource 

type 𝑠𝑗, and at the same time, resource type 𝑠𝑗 is compatible with resource type 𝑠𝑖. If the 

assignment values of resource types are unique and the naming of resource types follows 

the same rule as described in Lemma 1, without loss of generality we can define 𝐴𝑉𝑠𝑖 = 𝑖. 

Since resource type 𝑠𝑗 is compatible with resource type 𝑠𝑖, 𝑖 < 𝑗, and resource type 𝑠𝑖 is 

compatible with itself (Definition 𝐼𝐼) there should exist one resource type 𝑠𝑘, 𝑘 < 𝑖 such 

that resource type 𝑠𝑘 is not compatible with resource type 𝑠𝑖. Therefore Lemma 1 is not 

valid in the case of violation of Definition 𝐼𝑉. It is notable that, 𝑖 < 𝑗, then 𝐴𝑉𝑠𝑖 < 𝐴𝑉𝑠𝑗, 
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therefore, in MAV resource allocation policy, in case of availability of resource type 𝑠𝑗, 

𝐼𝑗
𝑡 > 0, request type 𝑠𝑖 is satisfied by resource type 𝑠𝑗. Lemma 1 is not satisfied in this case 

and the MAV allocation may not be optimal.  

Theorem 2. Assume that only resource types 𝑠𝑖 and 𝑠𝑗, 𝑖 < 𝑗, are compatible with each 

other and resource type 𝑠𝑘, 𝑘 < 𝑖, is not compatible with resource type 𝑠𝑖. The upper-bound 

for the difference between the optimal number of unmet requests in the offline problem, 

𝑍′∗, and the unmet requests resulting from use of the MAV allocation policy, 𝑍′, is smaller 

than 𝐼𝑘
0. 

Proof of Theorem 2. Applying the MAV allocation policy may not be optimal if at time 𝑡0 

there is a request type 𝑠𝑙, 𝑟
𝑡0 = 𝑠𝑙,  𝑙 > 𝑖 > 𝑘, and the inventory of resource type 𝑠𝑙 is 

empty, 𝐼′𝑙
𝑡0 = 0, while the inventory of resource type 𝑠𝑖 is positive, 𝐼′𝑖

𝑡0 > 0, and has the 

largest assignment value. Following MAV allocation policy, resource type 𝑠𝑖 is assigned 

to request type 𝑠𝑙. Assume at time 𝑡, 𝑡 > 𝑡0, there is a request for resource type 𝑠𝑖, 𝑟
𝑡 = 𝑠𝑖, 

while the inventory of resource type 𝑠𝑖 is zero, 𝐼′𝑖
𝑡 = 0, and the only resource type 𝑠𝑚, 𝑚 ≤

𝑖 with positive inventory is resource type 𝑠𝑘. Since resource type 𝑠𝑘 is not compatible with 

resource type 𝑠𝑖, this leads to unmet requests for resource type 𝑠𝑖. In this case, at time 𝑇, 

the inventory of resource type 𝑠𝑘 is positive, 𝐼′𝑘
𝑇 > 0, while there are some unmet requests 

for resource type 𝑠𝑖, 𝑧
′
𝑖
𝑇
> 0 . In the optimal offline resource allocation, the requests are 

known a priori, specifically in this case the requests are satisfied in a way such that the 
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extra requests for resource type 𝑠𝑖 are satisfied by resource types other than resource type 

𝑠𝑘.  

As shown above, the allocation of resource type 𝑠𝑘 to requests type 𝑠𝑖 causes the 

difference between the unmet demand resulting from the MAV policy and the optimal 

offline solution. The upper-bound, 𝑈𝐵, is defined for the difference between the number 

of unmet requests of resource type, 𝑠𝑖, in the optimal offline resource allocation and the 

MAV allocation policy, 𝑍′ − 𝑍′∗ = 𝑧𝑖
′𝑇 − 𝑧𝑖

′∗𝑇. The maximum difference between unmet 

requests at time 𝑇 for resource type 𝑠𝑖 by applying the two allocation policies is equal to 

the inventory of resource type 𝑠𝑘 at time 𝑇 in MAV allocation policy, 𝑧𝑖
′𝑇 − 𝑧𝑖

′∗𝑇 = 𝐼′𝑘
𝑇
−

𝐼′𝑘
𝑇∗

. The upper-bound on this value be defined as 𝑀𝑎𝑥(𝐼𝑘
′𝑇) = 𝐼𝑘

0 − 𝑅𝑘. Since the number 

of total requests for resource type 𝑠𝑘, 𝑅𝑘, is stochastic and nonnegative, instead we 

conclude that 𝐼𝑘
0 is an upper-bound for the difference between the unmet requests of the 

optimal offline resource allocation problem and the MAV policy for any instance of the 

generalized problem (presented in Section 4-2) in which Definition I, II, and III are 

satisfied, but Definition IV is not satisfied.   □ 

4-6.2. Violating Definition 𝑰𝑰𝑰 while satisfying Definitions 𝑰, 𝑰𝑰 and 𝑰𝑽 

Here, we study the consequences of violating Definition 𝐼𝐼𝐼, or the uniqueness of the 

assignment values. As mentioned in the proof of Lemma 1, the maximum possible 

assignment value is equal to n and the minimum possible assignment value is one. 

Violating uniqueness of assignment values means that the assignment value for at least two 
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resource types are equal. Since in Lemma 1 we named the resource types after their 

assignment values, in the instances where two or more resource types have equal 

assignment values, an alternate naming convention must be used. In the new naming 

convention, the resource types are sorted based on their assignment values increasingly. 

Since the assignment values are not unique, those resource types with equal assignment 

values are ordered increasingly based on the size of their initial inventory. We define the 

index of each resources type by their rank in this sorted list. Following this rule, although 

assignment values are not unique, the names of resource types are unique.  

Since the assignment values of some of the resources types are not unique, there 

exists a decision point at which the MAV policy does not distinguish between the 

assignment of multiple resource types. Therefore, an extra rule is needed to make a 

consistent MAV allocation. In the modified MAV allocation policy, the compatible resource 

type with the largest assignment value, adequate inventory, and among those with equal 

assignment value the one with the largest initial inventory is selected to satisfy the request. 

For example, to choose among resource types 𝑠𝑖, 𝑠𝑗 and 𝑠𝑘, 𝑖 < 𝑗 < 𝑘, with equal 

assignment values, 𝐴𝑉𝑠𝑖 = 𝐴𝑉𝑠𝑗 = 𝐴𝑉𝑠𝑘, if the inventory of resource type 𝑠𝑘 is positive, 

resource type 𝑠𝑘 is chosen, otherwise consecutively resource types  𝑠𝑗 and 𝑠𝑖 are chosen 

assuming they have nonzero inventory levels. The following example presents the 

performance of the modified MAV allocation policy when Definition 𝐼𝐼𝐼 is not satisfied. 
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4-6.2.1. Example of MAV allocation rules for a case of four resource types and nonunique 

assignment values 

An example of the application of the modified MAV policy in the online resource 

allocation problem with four resource types, 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4}, is provided as follows. 

Compatibility matrix, 𝑀3 and assignment values of resource types are presented in Formula 

(4-15). 

(4-15)    𝑀3 = 

                   𝐴𝑉 

[

1 0
1 1

0 0
0 0

1 0
1 1

1 0
1 1

]    

1
2
2
4

 

This setting is initiated similarly to the example presented in 4-4.1. As shown in the 

sequences (4-16), (4-17), (4-18) and (4-19), in a situation when the inventory of resource 

type 𝑠4 is zero upon arrival of a request for this resource type, following the modified MAV 

policy, assigning resource type 𝑠3 is prioritized to resource type 𝑠2.  

(4-16)  𝑟𝑡 = 𝑠4 ∶  

{
 
 

 
 𝐼4

𝑡 =  𝐼4
𝑡−1 − 1, 𝑖𝑓 (𝐼4

𝑡−1 > 0)                                              

𝐼3
𝑡 =  𝐼3

𝑡−1 − 1, 𝑖𝑓 (𝐼3
𝑡−1 > 0, 𝐼4

𝑡−1 = 0)                           

𝐼2
𝑡 =  𝐼2

𝑡−1 − 1, 𝑖𝑓 (𝐼2
𝑡−1 > 0, 𝐼4

𝑡−1 = 𝐼3
𝑡−1 = 0)              

𝐼1
𝑡 =  𝐼1

𝑡−1 − 1, 𝑖𝑓 (𝐼1
𝑡−1 > 0, 𝐼4

𝑡−1 = 𝐼3
𝑡−1 = 𝐼2

𝑡−1 = 0)

 

(4-17)  𝑟𝑡 = 𝑠3 ∶  {
𝐼3
𝑡 =  𝐼3

𝑡−1 − 1, 𝑖𝑓 (𝐼3
𝑡−1 > 0)                    

           
𝐼1
𝑡 =  𝐼1

𝑡−1 − 1, 𝑖𝑓 (𝐼1
𝑡−1 > 0, 𝐼3

𝑡−1 = 0)
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(4-18)  𝑟𝑡 = 𝑠2 ∶  {
𝐼2
𝑡 =  𝐼2

𝑡−1 − 1, 𝑖𝑓 (𝐼2
𝑡−1 > 0)                    

           
𝐼1
𝑡 =  𝐼1

𝑡−1 − 1, 𝑖𝑓 (𝐼1
𝑡−1 > 0, 𝐼2

𝑡−1 = 0)
 

(4-19)  𝑟𝑡 = 𝑠1 ∶   {𝐼1
𝑡 =  𝐼1

𝑡−1 − 1, 𝑖𝑓 (𝐼1
𝑡−1 > 0) 

Following these rules, the number of unmet requests depends on the sequence of the arrival 

of requests. Assuming 𝑅4 > 𝐼4
0, if resource type 𝑠3 is available some requests for resource 

type 𝑠4 are satisfied by assigning resource type 𝑠3, or resource type 𝑠2 if available. In the 

case of unavailability of both resource types 𝑠3 and 𝑠2, resource type 𝑠1 meets requests for 

type 𝑠4. Depending on the sequence of events, when implementing the modified MAV 

policy, the resulting allocation may lead to unmet requests for types 𝑠1 and 𝑠3. Thus, it is 

seen that the number of unmet requests depends on the sequences of request arrivals.  

4-6.2.2. Analysis of non-optimal cases with Definition 𝐼𝐼𝐼 violated 

Here, we study problem instances for which Definition 𝐼𝐼𝐼 is violated, such that the 

assignment values are not unique and Lemma 1 is not satisfied. Still the minimum possible 

assignment value is 1 and the maximum possible assignment value is 𝑛. There is no 

limitation on the assignment values, and as a result various combination of compatibility 

between resource types are feasible. Applying the modified MAV policy on such instances 

of the generalized allocation problem does not follow a pattern. Therefore, we examine 

specific instances of this problem in which the assignment values are unique except for one 

pair of resource types. This problem can be formed by eliminating compatibility between 
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two or more resource types in the instances of the generalized problem with which all 4 

Definitions are satisfied. 

Assume that there are resource types 𝑠𝑖 and 𝑠𝑗, such that 𝑖 < 𝑗, and resource type 𝑠𝑖 

is not compatible to resource type 𝑠𝑗. By applying the modified MAV policy, at time t, if 

there is a request type 𝑠𝑗, while the inventories of all resource types except resource type 

𝑠𝑖 are zero, 𝐼𝑘
𝑡 = 0, ∀𝑘 ≠ 𝑖, 𝐼𝑖

𝑡 > 0, then the request type 𝑠𝑗 cannot be satisfied. The 

maximum difference between the number of unmet requests of the optimal offline policy, 

𝑍′′∗, and the modified MAV policy, 𝑍′′ is calculated as, 𝑍′′ − 𝑍′′∗= 𝑧𝑗
′′𝑇 − 𝑧𝑗

′′∗𝑇 ≤ 𝐼′′𝑖
𝑇 −

𝐼′′𝑖
∗𝑇. As a result, 𝐼𝑖

0 is an upper-bound for this specific case.  

If instead resource types 𝑠𝑖, 𝑠𝑗 and 𝑠𝑘, are such that 𝑖 < 𝑗 < 𝑘, and both resource 

types 𝑠𝑖 and 𝑠𝑗 are not compatible with resource type 𝑠𝑘, then, 𝑍′′ − 𝑍′′∗= 𝑧𝑘
′′𝑇 − 𝑧𝐾

′′∗𝑇 ≤ 

𝐼′′𝑖
𝑇 + 𝐼𝑗

′′𝑇 − (𝐼𝑖
′′∗𝑇 + 𝐼𝑗

′′∗𝑇), and 𝐼𝑖
0 + 𝐼𝑗

0 is an upper-bound for the difference between the 

performance of the modified MAV policy and the offline optimal solution. Finally, assume 

resource types 𝑠𝑖, 𝑠𝑗 and 𝑠𝑘, are such that 𝑖 < 𝑗 < 𝑘, and resource types 𝑠𝑖 is not compatible 

with neither resource type 𝑠𝑗 nor resource type 𝑠𝑘, then  𝑍′′ − 𝑍′′∗= 𝑧𝑗
′′𝑇 + 𝑧𝑘

′′𝑇 −  (𝑧𝑗
′′∗𝑇 +

 𝑧𝐾
′′∗𝑇) ≤  𝐼𝑖

𝑇, and the upper bound is 𝐼𝑖
0. Thus, it is seen that the upper bound on the 

difference in performance between the modified MAV and the optimum solution varies 

based on the features of the data instance when Definition III is not satisfied.  
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4-7- Conclusion 

We have defined a generalized online resource allocation problem based on the blood 

transfusion problem with the goal of minimizing unmet requests. Inspired by an approach 

in the blood transfusion literature we have suggested an online resource allocation policy 

named maximum assignment value, MAV. The MAV allocation policy and the optimal 

offline allocation policy results in an equal number of unmet requests when the generalized 

resource allocation problem satisfies some specific conditions, Definitions I-IV. We have 

provided these conditions and proved the optimality of the MAV allocation policy under 

these conditions. Two of the main circumstances leading MAV policy to be optimal is the 

uniqueness of assignment values and the orientation of compatibility between resource 

types. We have analyzed violations of these two conditions and their effects on the 

performance of MAV allocation policy, or the modified MAV allocation policy. 

Providing improved bounds on the performance of the MAV policy, or modified 

MAV policy, for problem instances in with Definitions I, II, III, and IV are not satisfied is 

suggested for future work. Also in the allocation problem the request sizes are assumed to 

be for one unit, while in real world, the size of the request is stochastic. Providing improved 

algorithms, building on MAV policy, that accounts for the size of the requests is also 

recommended. 

  



98 

 

 

 

Chapter 5 -  

Conclusions and Future Work 

In this dissertation we focus on substitute resource allocation policies in resource allocation 

problems in health care settings. Our goal is to help in providing efficient and equitable 

care to improve quality and healthcare delivery in accordance with the aims of the Institute 

of Medicine. In this study we focus on online resource allocation problem in which 

decisions about the allocation of limited resources must be made without perfect 

knowledge about the future requests. We examine the problem of allocating resources at 

the operational level, in which decisions about the type and size of resources to be assigned 

must be made upon arrival of the requests while considering the ability to satisfy upcoming 

requests.  

One approach to preserving the ability to meet future requests is the use of 

substitute resource allocation in which an alternative resource type is assigned to the 
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request rather than the requested resource type. Substitute resource allocation also prevents 

unsatisfied requests when the requested resource type is not available. Different approaches 

to decision making about how and when to deploy substitute resource allocations affect the 

performance of systems in satisfying requests. We study three aspects of substitute resource 

allocation in this dissertation. First, we uncover information about past substitute resource 

allocation policies through mining heterogenous spatio-temporal databases of a hospital. 

Next, we suggest two online resource allocation policies with two different approaches for 

substitute resource allocations in blood assignment policies, and compare them through a 

Monte Carlo simulation model. Finally, we characterize the performance of one of these 

policies as it relates to the underlying problem instance characteristics.  

In Chapter 2 we provide a polynomial algorithm to uncover the historical resource 

allocation decisions choosing among a regular or substitute resource assignment in a 

hospital bed assignment application. The output of a resource allocation system is recorded 

on the two heterogenous spatio-temporal databases, snapshot and event-oriented. In these 

databases, the effects of decisions are stored but not the decisions themselves. We apply 

and test the performance of a decision-mining algorithm while incorporating a variety of 

different noise features in the data. Using tests of simulated data, we demonstrate the 

algorithm to be robust to missing data on various system sizes in accuracy, precision, and 

recall. The problem is motivated by hospital bed assignment problem and for this problem, 

in which time lags between occurring and recording events are expected to be small, this 

algorithm performs well. 
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In Chapter 3, we define and analyze the performance of blood assignment policies 

in an isolated environment to minimize the unsatisfied requests for red blood cells (RBC). 

We propose two online assignment policies with different approaches to deploy substitute 

resource allocation. In the first policy, greedy assignment (GA) assigns the compatible 

blood type with the highest inventory level to the request for RBC, while in the second 

policy maximum transfusion value (MTV), in the case of the availability of enough 

inventory, the blood type with the highest transfusion value is chosen to be assigned to the 

request. In the latter approach the system is more flexible in satisfying future requests upon 

unavailability of requested blood type. Applying these policies on a Monte Carlo 

simulation model, simulating a primary healthcare center in South Sudan, the performance 

is measured with respect to the average number of RBC units in shortage per capita and 

the average number of patients facing shortage per capita. The MTV policy performs 

significantly better than the GA policy in both performance measures even when volume 

of the blood bank, the distribution of blood types, and the population size changes.  

The distribution of blood types in the initial blood inventory which is provided to 

the isolated environment may affect performance measures and influences the capability 

to satisfy the requests for RBC. A two-stage stochastic optimization model is developed to 

determine the optimal distribution of blood types in the initial blood inventory. Regardless 

of the assignment policy, using the optimal distribution of the blood types compared to that 

of the observed population, results in significantly better assignment performances.  
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In Chapter 4, we analyze an online resource allocation policy accounting for 

substitute resource allocation, MAV. A generalized resource allocation problem is defined 

and the MAV algorithm is proven to perform optimally when the problem instance follows 

specified characteristics. When these characteristics are violated the MAV allocation 

policy may not be optimal. Moreover, the behavior of the MAV allocation policy under the 

violation of two of the main characteristics of this problem is studied.  

There are numbers of future research directions to extend this research. In the 2nd 

chapter we uncovered bed assignment decisions in connection of hospital databases. 

Connecting the inpatient databases including the uncovered decisions with the emergency 

department (ED) databases can be used to develop a predictive emergency patient 

admission model. This predictive model allows for better decisions to improve the patient 

flow from the ED to inpatient wards and specifically can decrease the number of patients 

boarding in the ED.  

In the Chapter 3, the assignment policies are tested via simulation of an isolated 

environment. Other applications of these methods can include blood assignment policies 

in mass casualty events, in which the demand rises in short amount of time and there is no 

opportunity to replenish the inventory in short term. Also, we suggest testing these blood 

assignment policies on blood center serving various sizes of population, considering both 

deterministic and stochastic blood inventory replenishment. 

The generalized resource allocation problem in Chapter 4, simplifies the problem 

to requests of size one while in real world the number of units requested can vary among 
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requests. Refining the MAV policy to account for the request size is suggested for future 

work. In the blood assignment problem, which was the motivation for this problem, the 

uniqueness of assignment values is not satisfied. Providing a better bound on the 

performance of the MAV policy or modified MAV policy for problem instances in which 

the uniqueness of assignment value is not satisfied is recommended.  
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