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Abstract 
 

Most drill wear monitoring research found in the literature is based on 

conventional vibration technologies. However, these conventional approaches still have 

not attracted real interest from manufacturers for multiples of reasons: some of these 

techniques are not practical and use complicated Tool Condition Monitoring (TCM) 

systems with less value in industry. In addition, they are also prone to give spurious drill 

deterioration warnings in industrial environments. Therefore, drills are normally replaced 

at estimated preset intervals, sometimes long before they are worn or by expertise 

judgment. 

 

Two of the great problems in the implementation of these systems in drilling are: 

the poor signal-to-noise ratio and the lack of system-made sensors for drilling, as is 

prevalent in machining operations with straight edge cutters. In order to overcome the 

noise problems, many researchers recommend advanced and sophisticated signal 

processing while the work of Rehorn et al. (2005) advises the following possibilities to 

deal with the lack of commercial system-made sensors: 

 Some research should be directed towards developing some form of 

instrumented tool for drill operations. 

 Since the use of custom-made sensors is being ignored in drilling operations, 

effort should be focused on intelligent or innovative use of available sensor 

technology. 

It is expected that the latter could minimize implementation problems and allows an 

optimal drill utilization rate by means of modern and smart sensors. 

 

In addition to the accelerometer sensor commonly used in conventional methods, 

this work has considered two other sensor-based methods to monitor the drill wear 

indirectly. These methods entail the use of an instrumented drill with strain gauges to 

measure the torque and the use of an encoder to measure the Instantaneous Angular 

Speed (IAS). The signals from these sensors were analyzed using signal processing 

techniques such as, statistical parameters, Fast Fourier Transform (FFT), and a 
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preliminary Time-Frequency (TF) analysis. A preliminary investigation has revealed that 

the use of a Regression Analysis (RA) based on a higher order polynomial function can 

very well follow and give prognosis of the development of the monitored parameters. 

 

The experimental investigation has revealed that all the above monitoring systems 

are sensitive to the deterioration of the drill condition. This work is however particularly 

concerned with the use of IAS on the spindle of the drill, compared to conventional 

monitoring systems for drill condition monitoring. This comparison reveals that the IAS 

approach can generate diagnostic information similar to vibration and torque 

measurements, without some of the instrumentation complications. This similitude seems 

to be logical, as it is well known that the increase of friction between the drill and work-

piece due to wear increase the torque and consequently it should reduce or at least affect 

the spindle rotational speed. 

 

However, the use of a drill instrumented with a strain gauge is not practical, 

because of the inconvenience it causes on production machines. By contrast, the IAS 

could be measured quite easily by means of an encoder, a tachometer or some other smart 

rotational speed sensors. Thus, one could take advantage of advanced techniques in 

digital time interval analysis applied to a carrier signal from a multiple pulse per 

revolution encoder on the rotating shaft, to improve the analysis of chain pulses. As it 

will be shown in this dissertation, the encoder resolution does not sensibly affect the 

analysis. Therefore, one can easily replace encoders by any smart transducers that have 

become more popular in rotating machinery. Consequently, a non-contact transducer for 

example could effectively be used in on-line drill condition monitoring such as the use of 

lasers or time passage encoder-based systems. 

 

This work has gained from previous research performed in Tool Condition 

Monitoring TCM, and presents a sensor that is already available in the arsenal of sensors 

and could be an open door for a practical and reliable sensor in automated drilling.  
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In conclusion, this dissertation strives to answer the following question: Which one of 

these methods could challenge the need from manufacturers by monitoring and 

diagnosing drill condition in a practical and reliable manner? Past research has 

sufficiently proved the weakness of conventional technologies in industry despite good 

results in the laboratory. In addition, delayed diagnosis due to time-consuming data 

processing is not beneficial for automated drilling, especially when the drill wears rapidly 

at the end of its life. No advanced signal processing is required for the proposed 

technique, as satisfactory results are obtained using common time domain signal 

processing methods. The recommended monitoring choice will definitely depend on the 

sensor that is practical and reliable in industry.  

 

 

Keywords: Condition monitoring, drill wear, vibrations, torque, instantaneous angular 

speed (IAS), encoder, time domain, frequency domain, time-frequency domain analysis, 

regression analysis 
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CHAPTER 1: INTRODUCTION AND LITERATURE 
 

 

 

1.1 Introduction 

 

Machining operations such as turning, drilling, boring, milling and grinding are 

material removal processes. Some of these processes, such as drilling, have been used for 

thousands of years, and are today still widely used in industrial environments (Krar and 

Oswald, 1977). Machining remains very important in the manufacturing environment, 

and in terms of income it ranks number one, as the cost of machining amounts to more 

than 15% of the value of all manufactured products in industrialized countries (Trent and 

Wright, 2000). Drilling is one of the most common machining processes and generates 

more income than any of the other processes individually. It is estimated that 40% of all 

metal removal operations in aerospace are by drilling (Ertunc and Loparo, 2000). 

 

Drilling is simply defined as a metal removal process for producing holes in 

components. The process involves feeding a revolving cutting tool along its axis of 

rotation into a stationary work-piece. A circular hole is therefore generated in the work-

piece (Armarego and Brown, 1969). 

 

The state-of-the-art clearly indicates that one of the most important problems 

encountered during industrial drilling operations, is the detection of sudden failures and 

continuous determination of the drill wear condition. This detection could prevent 

damage to the work-piece and avoid unnecessary shutdown time due to replacement of a 

failed drill. In large industrial applications where hundreds or even thousands of drills 

operate in series, defect drills would be detected when output work-pieces or assembly 

parts are appearing with poor quality (Joshua, 1996). Once more, this will normally result 

in downtime. This is also critical in the economics of drilling operations. It is therefore 

necessary to improve the monitoring of the drill tool utilization at its optimal rate to be 

cost effective. 
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Most on-line monitoring systems are based on conventional vibration monitoring 

technologies. They normally use force, torque, current signals, power, and vibration 

sensors to assess the tool condition. But none of these sensors have provided a definitive 

answer to the manufacturing industry’s need for more comprehensive automatic control. 

These sensors used for on-line monitoring systems also suffer from a lack of 

manufacturers’ interest for industrial implementation, because they are not practical to 

implement even if possibly reliable with good indication of tool wear. The situation 

becomes worse for drilling operations, as one cannot continuously instrument drills 

without excessive financial expense. In turning operations for instance, it is economic to 

instrument tool holders when changing only the tool. However, such holder design 

(custom-made sensor) still has to find its way into drilling operations. The 

instrumentation of the chuck was unfortunately not successful in terms of signal response 

discrimination and wear development. 

 

Added to that it is also clear from laboratory experience, just how complex the drilling 

process is and how inaccurate the estimation of the life and wear of a drill is. The reasons 

for this being the following: 

 Wear is not a continuous process and leads to a stochastic behavior of the drill 

life. 

 The non-homogeneities and variances in material affect the life of the drill. 

 During a continuous drilling process, the temperature changes influence the drill 

wear while during an intermittent drilling process this temperature effect 

becomes dependent on the downtime between consecutive drilling operations. 

 Different types of drill wear can be measured using a direct method but for 

indirect methods, it is not easy to correlate the measured wear to a specific 

sensor signal. 

 

In such conditions, how can one predict or avoid a sudden drill failure in a very large 

scale drilling operation? The general trend in drilling operations is to replace the drill at 

estimated preset intervals. But even in this case, there is no way one can predict, avoid or 

even detect a sudden failure. Consequently, research in the field of drill condition 
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monitoring is still opened to find a simple solution that is attractive to industry and 

automatically monitor drilling operations. 

 

Much effort has been devoted to the implementation of an intelligent signal 

analysis through neural network (NN) tools in order to separate the unwanted information 

from the useful, for easy detection of a worn tool. However, it seems that really 

successful on-line drill monitoring will most likely involve intelligent transducers that 

could very easily be integrated with instrumented drill tool devices. This could justify the 

present investigation of the IAS parameter as a monitoring tool in comparison to 

conventional parameters such as torque and vibration measurements. 

 

From the literature (Jantunen, 2002), it is clear and very logical to monitor forces 

in a cutting process in order to follow the development of cutting tool wear, because 

cutting forces increase as tool wear increases. This is due to the increase of friction 

between tool and work-piece. But the logical consequence of the friction increase is the 

reduction of the spindle speed while the cutting force or torque should increase. And 

bearing in mind the simple relationship between torque and angular speed (power = 

torque  angular speed), it is however surprising that so little has been done to explore 

the use of the IAS of the spindle as one of the monitoring parameters available in the 

arsenal of TCM methods. During the drilling operations, the increase of friction between 

the drill and the work-piece is attenuated by the re-sharpening of the drill edge during the 

revolving of the cutting drill. This process could delay to some extent the deterioration of 

the drill condition as well as it could change the elapsed time period of the drill 

revolution. This could be verified with the outlier points of the drill output signals. 

However, at the end of the drill life the effect of a dull drill is visible on both the machine 

feeding and high levels of vibration of the system. Nevertheless, with all the advanced 

technologies in rotating machines where small changes in rotational speed can be 

identified, there should be reason to be more optimistic. 

 

Conceptually the IAS could be measured quite easily by means of an encoder, 

while it can also be shown that it provides diagnostic information comparable to 
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information provided by the direct measurement of torque on an instrumented drill shank. 

Vibration measurements are merely used here for the purpose of comparison with the 

proposed measurands. Hence, this research provides comparative results of wear 

monitoring between strain gauged-based torque measurements via telemetry, vibration 

measurements, and the encoder-based method of IAS measurement. The comparative 

results illustrate the effectiveness of the encoder sensor as a possible, likely accurate and 

practical reliable transducer in drilling. 

 

 The state-of-the-art of sensors and signal processing methodologies used for the 

drill TCM in this work can be summarized as follows: 

 

First, the use of strain gauge-based torque measurements via real time telemetry is 

considered. The results show that strain gauge measurements produce output signals that 

are sensitive to the drill wear and offer good correlation with the drill condition. 

However, the implementation of this concept for drill wear monitoring implies a 

significant instrumentation load and the inconvenience of attaching strain gauges to each 

rotating drill bit to be used. 

 

Secondly, the use of an encoder-based system to assess the IAS is considered. The 

encoder-based system uses a fixed angular encoding device that rotates with the shaft 

such as a gear or an optical rotary encoder. A transducer is then used to sense the passage 

of each encoder segment with respect to a reference point as the shaft rotates (Resor et 

al., 2004). The principle of this method is the use of the digital time interval 

measurements (TIM) of pulse train output signals from an encoder to calculate the IAS. 

The TIM investigation is also based on the principle that the elapsed time (ET) between 

two pulses during the rotational speed is dependent on the deterioration of the drill 

condition. The results show good correlation between the pulse output and the drill 

condition and the method seems less complicated to implement despite the high cost of 

the encoder. However, non-contacting transducers that have become more popular in 

rotating machinery applications are feasible as a means of monitoring the drill condition. 
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For instance, the optical tracking of a zebra stick can also give a chain of pulses as output 

signal, carrying the same information as an encoder. 

 

Thirdly, the use of accelerometers for vibration measurements is one of the 

conventional technologies used in TCM. The tested results also show good correlation 

between the output signal and the drill condition. Unfortunately, accelerometers seldom 

find favor in industrial drilling environments. The advantages and disadvantages of 

vibration measurements are discussed later in this study. 

 

Various papers published different analysis methods using conventional 

measurements, despite the highly non-stationary and transient events encountered during 

drilling operations. Most of these analyses are based on the assumption that drill signals 

are stationary. In the time domain, statistical parameters are calculated but do not yield a 

robust on-line drill wear detection method for the workshop environment.  Many 

researchers recommend advanced signal processing to overcome the poor signal-to-noise 

ratio of the workshop. Another very popular method used in signal analysis is spectral 

analysis via fast Fourier transform (FFT) that decomposes the time series signal into its 

frequency components. Spectral analysis can provide information about the frequency 

components but does not give any information about their temporal localization. Hence, 

some focus must be emphasized on time frequency distributions (TFDs) that compensate 

for the lack of time localization. 

 

In conclusion, the main aim with this research is to consider the feasibility of 

using IAS as a reliable and practical way of drill wear monitoring for possible 

implementation in the context of automated large-scale manufacturing. This work is 

intended to offer a useful contribution to drill wear monitoring compared to the 

traditional analysis schemes. If the monitoring of the time period changes between 

encoder pulses for sharp and worn drills is successful, then it would become possible to 

implement a system that can quickly and automatically monitor the IAS and send out an 

alert when an incipient mechanical failure is detected by means of the time period 

changes. This decision-making of drill condition could be applied using the following 

 
 
 



 

 

16 

 

signal processing methodologies: statistical parameters, frequency content (FC) of IAS 

signal and differentiation of time frequency representation (TFR) structures. The results 

have shown that the use of a high order polynomial regression on both statistical 

parameters and computed power spectral density (PSD) to mimic drill wear development, 

proved to be well suited to the monitoring of parameters that follow drill life trends. The 

measurement of IAS has the advantage of monitoring and control of the drill condition in 

real time as it relies only on the time period changes between pulses. Thus, one can take 

advantage of new technologies and the large number of recent publications on IAS to 

improve the sensor reliability. 

1.2 Importance of drill wear monitoring 

 

Drill condition monitoring is considered important for the following reasons 

(Jantunen, 2006):  

 Drill changes are presently based on conservative estimates of drill life, which do 

not take into account sudden failures. Not only does this lead to wastage of useful 

drills, but also leads to an unnecessarily high number of changes.  Consequently 

valuable production time is lost. 

 The optimal drill life cannot be fully realized without efficient methods for drill 

wear monitoring because of variations in drill life. This factor is not economically 

very important as far as the cost of a single drill is concerned, but nevertheless 

becomes economically meaningful when the cost of the entire production process 

is concerned. 

 Drill wear influences the quality of the surface finish and the dimensions of the 

parts that are manufactured. This also requires some means of automatic tool 

condition monitoring. 

Hence, cost effective unmanned production therefore becomes possible in practice if 

there is a reliable method available for drill wear monitoring and drill failure detection. 
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1.3 Approach and research objectives 

 

Due to the complexity of the cutting process in drilling operations, it is usually 

not possible to obtain a full mathematical description of the relevant dynamic process, in 

order to predict the drill condition. Therefore the approach followed in this work is 

basically to find suitable and indirect monitoring methods to determine drill wear. The 

direct method is illustrated by means of scanning electron microscopy (SEM) 

photographs which serve to interpret particular phenomena observed during the post 

processing of signals. 

On-line direct measurement is not feasible because of the obstruction of view 

between the drill, the work-piece and the chips. Generally, direct methods such as visual 

inspection, computer vision or direct determination of the tool wear, have not yet proven 

to be attractive neither economically nor technically but are still used in industrial 

practice, specifically in aerospace. In this work, a sample of drill bit wear was directly 

measured by SEM analysis to illustrate different types of wear met in drilling operations. 

 

In automated operations where manufacturers always strive to reduce operating 

costs while trying to improve product quality and meeting customer satisfaction, one of 

the principal methods used to determine the tool wear is the indirect measurement of 

phenomena related to tool wear.  Measurements that can continuously monitor the 

process and indirectly indicate the level of the tool wear include cutting force, torque, 

temperature, vibration, spindle motor power, feed motor power, strains and spindle speed. 

 

Indirect methods are also required in this project to develop a drill tool system for 

practical monitoring. They consist of identifying the best and practical sensor signal 

technologies considering vibration measurements, strain gauge-based torque 

measurements via real time telemetry, and the IAS of the spindle via an optical encoder-

based system. 

 

Features are extracted through the use of conventional signal processing methods 

such as the statistical parameters in the time domain, FFTs in the frequency domain and 
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spectrograms in the time-frequency (TF) domain. Due to the stochastic behavior of 

drilling operations, regression analysis (RA) will be recommended not only because of its 

success in mimicking drill wear development but also because of disparities encountered 

in the representation of data. Therefore, it seems logical to monitor the trend of features 

and parameters in drilling operations rather than the absolute values. 

Further study could make use of the above features to develop automatic 

diagnostic methods based on the application of fuzzy logic (FL) or neural network (NN) 

environment for the decision making required to discriminate the drill tool condition. 

1.4 Literature survey 

 

This literature survey presents a review of the state-of-the-art in the field of drill 

wear monitoring. The survey focuses on and evaluates methods used by other 

researchers, with a spotlight on sensors and signal processing methodologies used for 

TCM: trends in the sensor-based methods, how they measure and assess drill wear, and 

the decision making based on different diagnostic methods. 

 

Drill wear monitoring found in the literature can be classified into two categories 

as follows: 

 Direct method: an off-line system of drill monitoring consisting of a visual 

inspection, through computer vision or determination of drill wear by means of an 

optical measurement such as a magnifier measurement. 

 Indirect method: it is generally an on-line drill wear monitoring system. It consists 

of monitoring indirect measurements of phenomena related to drill wear. In other 

words an off-line monitoring is usually first performed and the measured drill 

wear is then correlated to the measured signals. 

 

Direct methods are usually used to understand and visualize different modes of wear 

when a drill is worn. In aerospace for instance, a visual inspection is often used to assess 

the drill condition. However, due to the high complexity and unreliability of models that 

could describe drill wear, indirect methods are rather widely used for on-line monitoring 
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and automatic drill processes. They are suitable for preventing, sudden failure or incipient 

mechanical failure, and fracture or breakage failure. 

1.4.1 Drill wear 

 

Different types of drill wear can be observed on a drill during the cutting 

operation as described in paragraph 2.3.4, but most researchers prefer to measure drill 

wear at the corners of the cutting lips of the drill after cutting a specified number of holes. 

It seems to be an easy and reliable way of measuring compared to the other types of wear. 

In most of the published papers found in the drill wear survey; researchers have fixed the 

standard parameter of a severely worn drill at 0.3mm. However, none of the referred 

researches provided details of how and at which frequency wear was measured or 

according to what criteria should the drill be removed for different measurements. Others 

measured the changes in diameter (tolerances) of the holes drilled instead of the corner 

wear or analyzed the image of the drill tool surface. Indeed, the idea behind this is that a 

drill that has been subjected to corner wear should affect both the hole diameter 

dimension and the contact surfaces between the drill and the work-piece. 

 

A general survey of how drills wear is reported in the following paragraphs 

together with different drill wear criteria, depending on the researchers: 

 

Ertunc and Loparo (2000) proposed a direct method to measure the drill wear 

when the worn area on the drill cutting lip (edge) is obtained after drilling a certain 

number of holes. One can either remove the drill from the machine, or install a measuring 

device on the machine to analyze the image of the tool surface. The characterization of 

the drill wear and the assessment of its condition are done by means of the changes in the 

intensity of the light. Indeed, when the drill wears the deformation of its external surface 

is affecting the light reflectivity. They also observed different types of drill wear and 

concluded that the maximum wear occurs at the corners of the cutting lips at the location 

of the highest cutting speed. Therefore outer corner wear was selected as the criterion. 

Liu et al. (2000) have also used this method but the flank wear was chosen because of the 

high reflectivity of the worn drill area.  
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Flank wear has also found favor with many other researchers as a valid criterion 

in the determination of drill wear. Li and Tso (1999) artificially induced amounts of flank 

wear as a standard for evaluating drill wear condition. Panda et al. (2006) predict flank 

wear on drills without providing much detail on wear measurements and methods used. 

Kim, Ahn, Kim and Takata (2002) also induced artificial flank wear in their study of drill 

wear estimation, based on spindle motor power. But the method was only marginally 

successful, because the correlation between the motor current and the tool wear or 

breakage was not completely understood. However, the evaluation tests have shown that 

the proposed method was useful as a real time estimator of drill wear. Liu et al. (2000) 

identified the existence of two main regions of tool wear in a cutting tool, as flank wear 

on the tool flank face and crater wear on the tool rake face. But in their paper, they focus 

on corner wear instead of flank and crater wear, to predict drill bit condition. Corner wear 

seems to be easy to measure and drill life is also characterized strongly by corner wear on 

the drill. 

 

 Some published works consider the quality of the finished surface and the hole 

diameter (tolerance) as criteria for drill wear. Atlas et al. (1996) for instance, cite an 

experiment where drill wear appears to be determined by measuring the diameter of the 

hole drilled. 

 

Everson and Cheraghi (1999) consider that the drill point, the chipping at the lip 

areas and the point geometry variation are beyond control during drilling operations 

because they cannot be detected unless the hole cut by the drill bit is manually inspected. 

In their results of acoustic emission (AE) correlation to the quality of the hole diameter, 

they showed that the AE energy and the root mean square (RMS) of the AE signal are 

correlated to the lip height variation, under a wide variety of conditions. Indeed, the drill 

bit relative lip height has a significant influence on the diameter of the hole. 

 

Finally, some other researchers have preferred to consider different types of drill 

wear altogether. In their experiments El-Wardany et al. (1996) induced different types of 

wear artificially and found that failure of a drill occurs in one of two modes: fracture or 
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chipping and excessive wear. They followed up drill wear while drilling of holes were in 

progress, starting from plastic deformation on the drill flank as well as the wear of the 

chisel edge. They concluded that accelerated wear occurred only on the chisel edge and 

on the margin of the drill. Abu-Mahfouz (2003) artificially induced five different drill 

wear conditions for prediction and classification of drill bit wear. He found that flank 

wear is a good indication of the drill condition and has been used to indicate the severity 

of drill wear. Typically, the failure of a drill occurs due to excessive wear on the flank, 

chisel wear, crater wear, outer corner wear, and fracture or chipping of the cutting lip or 

edge. 

 

In conclusion, the above drill wear survey clearly illustrates that there is no formal 

procedure or a predominant drill wear mode that could lead to a standard metric for drill 

wear. Drills normally wear in different ways when drilling under normal cutting 

conditions or when wear is accelerated. It seems that corner drill wear predominates 

during accelerated conditions, while the fracture of the lip edges would predominate 

during normal cutting conditions. Note that the major weakness of these methods is that 

the different types of wear have been artificially induced only for the identification of the 

wear with the signal changes. The reason for that could lie in the following statement: 

most effective and reliable methods for tool wear monitoring are so slow in practice so 

that they are not suitable for the detection of sudden failures (Jantunen, 2002). 

1.4.2 Measuring methods 

 

In drilling operations, TCM measurements can be classified in four principal 

categories according to the publication of Rehorn et al. (2005): 

 Force measurements: torque, drift force and feed force. 

 Vibration and sound 

 Acoustic and ultrasonic vibration 

 Spindle motor and feed drive current 

A statistical study from their work has shown that 70% of measured signals are force 

measurements, 14.8% are vibration and sound measurements, 7.4% are acoustic and 

ultrasonic vibration measurements, and 3.7% are spindle motor and feed drive current 
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measurements.  It is clearly shown how preponderant the use of force measurements is. 

The above categories of signals used for TCM in drilling operations have been reviewed 

as follows: 

The first category uses force measurements such as torque, feed or thrust force, 

and drift force. It relies on the change of the force magnitude as the drill wears down. The 

practice of measuring cutting forces is common in machining operations, but the use of 

torque is almost unique to drilling.  The literature certified that force measurements have 

been very popular and successful monitoring methods in laboratory tests, but are still not 

widely used in the production environment. Unfortunately, most of the related 

transducers used are still inconvenient in practice for robust and reliable wear detection.  

In their review papers, Rehorn et al. (2005) and Jantunen (2002) report on researchers 

who successfully tested force measurements in the laboratory. Most of them concluded 

that thrust force and torque are the best indicators of the drill tool condition. 

Dynamometers are the most popular sensors used but seem to have an adverse influence 

on the measured vibration depending on their placement on fixtures. El-Wardany et al. 

(1996) listed another transducer used to measure the torque based on the measurement of 

eddy currents to detect fracture by means of the dynamic components of the signal. The 

technique is also suitable for static measurement. It was found useful for both wear and 

failure monitoring (Jantunen, 2002). Care should be taken to ensure that a close tolerance 

is obtained in the work-piece hardness to avoid spurious behavior of thrust force and 

torque. This method that was patented in Germany has been successfully applied on drills 

of 10 mm diameter. 

 

The second category uses vibration measurements: It comprises the 

characterization of the drill bit with the change of magnitude or frequency contained in 

the vibration signals, to identify sharp or worn drill conditions. Accelerometers are 

commonly used to measure vibration. They offer many advantages and are simple to 

install. However, vibration is not popular in drilling operations due to the excessive noise 

generated during the cutting process. The frequency responses realized on the drill itself 

and on the work-piece display many modes of vibration, without considering the spindle 

rotational frequency and other vibration modes from machine accessories. It is clear that 
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as the drill cuts, mechanical vibration modes of the drill, work-piece and machine are 

excited. That is why divergent opinions are found in the literature on the use of vibration 

measurements. Jantunen (2006) for instance, tested different sensors and his results show 

that vibration, sound and AE measurements are more reliable for tool wear monitoring 

than the most commonly used forces.  El-Wardany et al. (1996) used vibration 

measurements to extract features such as kurtosis and cepstrum that are sensitive to drill 

wear and breakage but insensitive to the cutting conditions and sensor location. The 

results seemed to be effective and robust for the proposed monitoring features, but they 

concluded that additional research is required to develop practical vibration monitoring 

techniques which are sensitive to tool conditions and relatively insensitive to cutting 

conditions, sensor location, etc. Abu-Mahfouz (2003) also used vibration data to extract 

features in both the time and frequency domains to produce a TCM system that will lead 

to more efficient and economical drilling tool usage. His results strongly suggest that 

vibration signals have tremendous promise for TCM and manufacturing process 

diagnostics. Overall, vibration measurements have been positively tested in drilling but 

with quite a limitation. Most of them rely more on the advanced and sophisticated 

processing of signals than on the measurement methods. 

 

The third category uses acoustic emission (AE) and ultrasonic vibration: this 

category comprises mechanical vibration measurements in frequency ranges above 20 

kHz. There is very little information in the literature regarding the use of AE and 

ultrasonic vibration in drilling. Due to the inconvenience of mounting the transducers, 

this category is also not used in practice even though it has been reported that AE is 

reliable for tool breakage monitoring (Jantunen, 2006). AE was reported to be 

approximately 33% successful when used to monitor drill failure in the paper of El-

Wardany et al. (1996). Everson et al. (1999) illustrated the application of AE in the 

precision of the hole drilled. They managed to correlate the diameter of a hole drilled 

with an AE signal measurement parameter. The results of the study show a correlation 

between the AE energy and the root mean square (rms) with the lip height variations 

under a wide variety of conditions. 
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The fourth category uses the spindle motor and feed drive current measurements: 

in general the spindle current varies with the torque, while the feed drive current varies 

with the penetration of the drill. They also rely on the change of the force magnitude and 

power as the drill wears. This momentum method has been rarely examined and bearing 

in mind the simple relationship between power, torque and angular speed, it seems 

logical that the increase of torque due to friction should in principle affect the other 

parameters.  Ertunc and Leparo (2000) used a commercial power cell that could measure 

the spindle or servo power by sensing the change in the instantaneous power fed into a 

machine or a process. Kim et al. (2002) measured the spindle motor power despite 

recognizing that the cutting force measurements using a dynamometer is more accurate, it 

is more suitable for laboratory applications than for real production. They used a 

mathematical model of torque acting on the lip edge, on the chisel edge region and on the 

margin edge region of a drill and then correlated this to the motor input power and the 

motor rotational speed by the following relation: 
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where mT is motor torque, m is the motor rotational speed and wP is the spindle motor 

power. This monitoring of power requires measurement of the spindle armature current 

and the voltage as well as the measurement of the average spindle speed in order to 

calculate the corresponding torque. Here the knowledge of the torque under the no load 

condition is required and is subtracted from the total torque calculated. This example 

illustrates how it is more complicated to measure the torque than the current of the 

spindle. Experimental results have shown that current measurements could effectively be 

used for tool breakage detection. The measurement results were almost constant during 

the entire drill life-time until the drill totally failed.  This system could afford damage to 

at least one work-piece because of drill failure. Routio et al. (1995) also analyzed the 

electrical currents of the spindle motor to determine the spindle power and the feed 

power. Once again, spindle current and power have proven to be effective in the 

determination of drill life-time. 
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1.4.3 Diagnostic methods 

 

Jantunen (2002) documents different diagnostic methods used in drilling 

operations for decision-making: 

 Rule Based Expert Systems (RBES) 

 Fuzzy Logic (FL) 

 Regression analysis (RA) 

 Neural networks (NNs) 

The RBES is the simplest method of diagnosis for TCM. It uses predefined limits 

as an indication of a tool failure or a worn tool. El-Wardany et al. (1995) used a feature 

known as the instantaneous Ratio of the Absolute Mean Value (RAMVi) as threshold for 

controlled identification of the vibration signal. The ability of the monitoring features to 

detect drill wear and breakage was verified experimentally and the results confirmed its 

effectiveness and robustness. It is calculated as follows: 

 

   
b

i

i
AMV

AMV
RAMV   1.2 

 

where AMVb represents a baseline instantaneous absolute mean value calculated at the 

start of the drilling process, and AMVi is the current absolute mean value calculated at 

the i-th revolution of the spindle. 
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where ix  is the instantaneous amplitude of the vibration signal, and the subscript 

bi  means i or b.  

 

FL uses a similar system of predefined limits, but with the difference that the 

limits are not exactly defined and they are in this case usually overlapping. Jantunen 

(2006) achieved a simulation model to develop an automated diagnostic method based on 

a simplified FL method. Liu and Tso (1999) established models based on the relationship 

between the current signals and the cutting parameters under different tool wear states 
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with a partial experimental design and regression analysis. And then they finally used a 

fuzzy classification method with success. 

 

Regression is often more effective to be able to follow the trend in the monitored 

signals and parameters than just to look at the absolute value by using the RA for 

example. This method has been successfully used by Jantunen (2006) in his PhD thesis. 

He developed higher order polynomial regression functions with a limited number of 

terms to mimic drill wear development and monitoring parameters that follow this trend. 

A great advantage of regression is that it solves the problem of how to save large volumes 

of measured data for a number of tools. Very little has been found in drilling literature 

about regression techniques as a tool for condition monitoring. This technique seems very 

useful for the detection of breakage and not for the determination of wear. 

 

The use of artificial NNs can be seen as an attempt to automate the process of 

writing the diagnostic rules i.e. if a sufficient amount of good data exists; it will be 

possible to train a net that could be capable of diagnosing the tool condition. Depending 

on the NN architecture, one can be able to distinguish between a worn drill and a usable 

one, on-line with almost 100% reliability. In this category of diagnosis, one can 

distinguish:  

 A self-organizing neural network has been used in the development of a 

diagnostic system based on the use of feed force and torque together with the fast 

Fourier transform (FFT). This approach is regarded as a promising empirical 

modeler. 

 The restricted Coulomb energy (RCE) network is a parallel NN modeled after the 

human learning and classification process. The RCE network correctly recognized 

normal and tool failure cases with a rate of more than 90% accuracy. 

 Adaptive resonance networks have been tested for the detection of severe micro-

drill damage just before a complete tip breakage occurs. According to adaptive 

resonance theory (ART), adaptive resonance occurs when the input to a network 

and the feedback expectancies match. 
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NNs have found favor in TCM research in the machining operation field. The list 

of published papers is countless. In drilling operations, Liu et al. (1998) experimented 

with the back propagation neural network (BPNN) for the on-line detection of drill wear. 

They achieved almost 100% reliability, even when changing the experimental conditions 

such as drill size, feed rate and spindle speed. They concluded the robustness of the 

method for the on-line drill wear detection systems and hence these systems can be used 

in very complex production environments, such as flexible manufacturing systems. Panda 

et al. (2006) also experimented with the BPNN to predict drill bit flank wear. They found 

the NN performance satisfactory when validated with experimental results. Ertunc and 

Loparo (2001) proposed two methods using hidden Markov models (HHMs), as well as 

several other methods that directly use force and power data to establish the health of a 

drilling tool to avoid catastrophic failure of the drill. In order to increase the reliability of 

these methods, a decision fusion center algorithm (DFCA) is proposed which combined 

the outputs of the individual methods to make a global decision about the wear status of 

the drill. Experimental results demonstrate the effectiveness of the proposed monitoring 

methods and the DFCA. Brophy et al. (2002) used two stage NNs to detect anomalies in 

the drilling process using data from a real manufacturing process in order to avoid false 

alarms when transporting laboratory conditions to the production environment. The 

network has been used to classify drilling operations as normal or abnormal. Abu-

Mahfouz (2003) used a multiple layer neural network successfully for twist drill wear 

detection and classification. He found that the NN performance is sensitive to the type of 

input data. The results demonstrate the effectiveness and robustness of using vibration 

signals in supervised NNs for drill wear detection and classification.  Huyser-Honig and 

Hingwe (2003) proposed what they called the most promising method that they were 

currently using, involving HMMs in a LabVIEW program. But they also recognized the 

advantage of using NNs that are often good at solving complex problems for 

conventional technologies. 

1.5 Scope of the work 

 

Based on the information presented in the above drill wear survey, it is clear that 

the use of cutting forces and vibrations in drill TCM has attracted most researchers in 
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drilling, while the use of drive and spindle power has to date received less interest. This 

lack of interest is somewhat surprising bearing in mind the relationship between power, 

torque, and angular speed. If the effects of drill wear increase friction between the drill 

tool and the work-piece, it can be expected that the monitored forces and rotational speed 

will also change as the drill gradually wears. In the same manner, a non-engaged drill is 

expected to rotate faster than a sharp drill that is engaged, a worn engaged drill is 

expected to rotate slower than a sharp engaged drill. Accordingly, this dissertation will 

essentially investigate the use of IAS as an indirect monitoring parameter compared to 

other parameters such as vibration and torque, used in drill TCM. 

 

During experiments, conventional accelerometers have been used for vibration 

measurement while new measuring methods were also used to measure the torque and the 

IAS. This was respectively done using a strain-based torque measurement via telemetry 

and an encoder-based IAS measurement method. 

 

However, direct drill wear monitoring methods by means of SEM photographs 

were used in order to illustrate that wear, fracture and chipping are typical failure modes 

found in drilling operations. Their impact on the required quality of drilled holes is not 

negligible, specifically in the aerospace environment. Direct methods of monitoring these 

modes of failure are conversely not recommended for high volume production, even if 

applicable for experimental purposes. Extending these operations to large-scale 

production environments could be very expensive if appropriate measures are not taken. 

 

The literature reviewed in the paper of Rehorn et al. (2005), illustrated that 

currently available sensors are adequate to extract significant information from drilling 

processes, but present many limitations in practice. Having identified the weaknesses of 

these conventional sensors, the route forward should be improvements based on TCM 

trends research. Hence, faced with the lack of custom-made sensors for drilling, this 

dissertation will focus on the use of the IAS via an encoder-based sensor that represents 

an alternative and practical sensor. The measurement of torque via a strain gauge-based 

sensor will serve as the comparison. If the test is successful, a non-contact sensor that 
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could yield the same results could replace the encoder sensor or some other spindle 

current measurement device. This development approach will conduct a series of drill 

investigations in order to identify the sensitivity of the spindle rotational speed to drill 

wear compared to the successful torque and vibration measurements. 

 

No new signal analysis is needed at this stage; commonly used signal analysis 

techniques are applied. But the highly non-stationary and transient events encountered in 

drilling would necessitate the use of time-frequency methods to investigate its 

effectiveness in terms of identifying wear and breakage. Spectrogram analysis would 

therefore be advised to the measured signals. The convergence of TF results lead to 

recommendations for future research based on the actual results observed. 

 

We have reason to believe that the use of the encoder-based sensor and the use of 

RA could overcome some of the obstacles encountered in drilling that might be the cause 

of unsuccessful implementation of TCM in real production environments. 

1.6 Document overview 

 

The dissertation is divided into six chapters of which the contents are described 

below: 

Chapter one describes the objectives of the present work and evaluates an 

overview of the literature in the area of drilling TCM. It also outlines the goal of the 

current work in light of the literature survey. 

 

Chapter two presents the general terminology on drill bits, and reviews the 

mechanics of the drilling process and different aspects of tool wear. 

 

Chapter three reviews the theoretical steps used in TCM: sensors, measuring 

methods, signal analysis and feature extraction, and decision-making. 

 

Chapter four describes the all-experimental set-up and the features of the research 

experiments. 
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Chapter five presents and comments on the results of the drilling operations tests. 

Signals from drill experiments are analyzed using traditional processing techniques and a 

representation of the IAS signals in the TF domain by means of a spectrogram is 

provided. 

 

Chapter 6 concludes the work and proposes recommendations for future research. 
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CHAPTER 2: GEOMETRY AND DRILL WEAR 
 

 

 

2.1 Drill geometry 

 

A drill may be divided into three sections: the shank, the body, and the point 

(Krar and Oswald, 1997). The geometrical characteristics of a typical drill are shown in 

figure 2.1 for the shank and the body and in figure 2.2 for the other drill parameters.  

a) Shank 

The shank is the end of the drill, which fits into the holding device that rotates the drill. 

The drill shanks may be straight for drill diameters up to 12.7mm or tapered for drill 

diameters over 12.7mm. The torque and thrust forces applied by the machines are 

transmitted to the drill point through this shank. 

b) Body 

The drill body extends between the point and the shank. The body contains the flutes, 

margin, body clearance and web, each of which affects the cutting action of the drill. The 

body needs to be stiff enough to transmit the torque and thrust to the point. 

c) Point 

The point is the entire cone-shaped cutting end of the drill. The shape and condition of 

the drill point are very important, since they determine the efficiency of the cutting action 

of the drill. The point as described in figure 2.2 consists of the chisel edge, lips or cutting 

edges, lip clearance and the heel. 

 

Figure 2.1: Drill geometry (Altintas, 2000)  

 

L    : Body 
I - L: Shank 
R    : Drill radius 
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Figure 2.2: Drill characteristics (Armarego and Brown, 1969) 
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2.2 Mechanics of drilling process 

 

Drilling is a complex three dimensional material removal operation. Drill 

geometry differs significantly from turning and face milling that can operate with 

orthogonal and oblique cutters. Relatively little work has been done on the mechanics of 

drilling using the mechanics of orthogonal or oblique cutting models. The general 

approach has been to investigate the drill geometry applied forces with respect to the 

important variables for single-point tools and hence qualitatively describe the drilling 

results in terms of the theories of orthogonal and oblique cutting. But in this work we will 

focus on the forces of interest during drilling operations: the thrust force used to push the 

drill into the work material along the axis of rotation, the torque applied to the drill as 

well as the spindle drive speed. Based on the book of Altintas (2000) and a paper 

published by Kim et al. (2002), the mechanics of the drill may be analyzed separately as 

follows: forces applied to the chisel, the cutting lip and the margin edge region forces. 

Hence the total thrust and torque forces exerted on the drill are found by summing the 

contributions of the chisel, lip and margin forces. Margin forces are defined as the contact 

friction arising between the margin edge and the machined hole due to wandering 

phenomena caused by unbalanced cutting forces, traverse deformation of the drill and 

other factors. 

2.3 Drill wear 

2.3.1 Introduction 

 

Cutting tools should be used only while their edges produce parts within the 

specified surface finish and dimensional tolerance. When the quality of the cutting edges 

is lost due to wear or breakage, the tool reaches its limit and must be replaced by a new 

one (Altintas, 2000). Tool wear is a result of physical (mechanical), thermal and chemical 

interactions between the cutting tool and work-piece, that remove small parts of material 

from the cutting tool. Altintas (2000) defines tool wear simply as a gradual loss of tool 

material at the work piece material and tool contacts; while tool breakage is defined as 

the loss of a major portion of the tool wedge, which terminates the total cutting ability of 
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the tool. From the above definitions it follows that the cutting conditions, the tool 

material and the work-piece will largely influence these interactions. 

2.3.2 Tool failure mechanisms 

 

  There are several types of tool wear mechanisms (Altintas, 2000; Armarego and 

Brown, 1969):  

 Abrasion wear results from friction between the tool flank and the work piece, 

and from the action of sliding chips in the shear zone. This wear depends on the 

parts’ hardness, strength properties and the geometry of the two mating surfaces, 

which also dictate appropriate machining speeds. 

 Adhesion wear is based on the concept of the formation of welded junctions and 

the subsequent destruction of these junctions. When the destruction is due to 

shearing below the interface, a wear particle is transferred. In most cases, the soft 

metal of the work-piece is rubbed on the harder rotating surface of the drill. 

 Diffusion wear is a process of atomic transfer at contacting asperities occurring at 

high temperatures. One can see that the diffusion may be classified as part of the 

abrasion and also under certain circumstances as part of the adhesion, because it 

occurs in the adhesion of contacting asperities. 

 Fatigue wear is due to a fluctuating stress from compressive to tensile in the 

material below a surface. This change in sign of the stress as an asperity passes a 

given point can cause fatigue failure of the material below the surface. 

Any of these mechanisms may dominate the process, depending on the machining 

application and composition of the machined material.  

2.3.3 Acceptable wear 

 

Premature tooling failures due to adhesion, diffusion or fatigue factors may be 

minimized by careful analysis of work-piece materials and operating parameters, as well 

as proper shop and tool preparation practices. Acceptable tool wear should be a gradual, 

predictable degradation from normal abrasion. 
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2.3.4 Drill failure modes 

 

Tools wear by a process of attrition on both the rake and the clearance face and, at 

times, by chipping of the cutting edge (Armarego and Brown, 1969). The wear rate is 

greater near the cutting edge than further down the clearance face and also at very high 

speeds. The general classifications of the various types of drill wear modes for large drills 

are: 

 Outer corner wear: due to high friction (rubbing) and impact forces between the 

drill and the hole machined wall. In other words, it is due to a hard or abrasive 

skin on the work material. 

 Flank wear or wear land formation: the clearance face is usually worn to form an 

approximately flat surface extending back from the cutting edge. 

 Margin wear: also due to the impact of tool skin hardness on the work material. 

 Crater wear on the rake face of one cutting edge: normally due to high 

temperature conditions along the rake surface. 

 Chisel edge wear: normally occurs due to the very high shear stresses in the flow 

zone of the tool work-piece interface acting at high temperatures, which causes 

erosion of the chisel edge. 

 Chipping at lip: removal of relatively large discrete particles of tool material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3: Types of drill wear modes and length: (a) outer corner wear, (b) flank wear, (c) margin 
wear, (d) crater wear, (e) chisel edge wear, (f) chipping at lip (Ayesh et al., 2002) 
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All these types of wear affect the performance of the cutting in various ways; specifically 

the cutting forces are normally increased by wear of the tool. 

2.3.5 Drill wear stages 

 

The general trend of a curve depicting different stages of drill wear states as 

function of drill life is given in figure 2.4: 

 First stage: Initial stage of wear. 

 Second stage: Slight wear or regular stage of wear. 

 Third stage: Moderate wear or micro breakage stage of wear. 

 Fourth stage: Severe wear or fast wear stage. 

 Fifth stage: Worn-out or tool breakage. 

 

 

Figure 2.4: Drill wear states function of tool life (Ayesh et al., 2002) 

2.3.6 Machining and tool life 

 

The concept of drill wear in drilling operations could not be separated from 

machining and tool life concepts and vice versa. It is therefore important to elaborate 

somewhat on these concepts. 
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  The machinability refers in general to the work-piece material, and it is simply 

defined as the ease with which a material can be machined (Trent, 1977). Hence, a 

material is said to have a good machinability if it can be characterized by the following 

criteria: 

 Tool wear is low or the tool life is long. 

 The surface finish produced is good. 

 The cutting forces are low. 

 Furthermore, the ease of chip disposal and good dimensional accuracy is also 

considered important. Here the chip shape also influences the clearance of the 

chips from around the tool under standardized cutting conditions. 

Still these parameters are subject to numerous variables such as tool material and 

geometry, cutting conditions, and so forth. It is therefore not surprising that the term 

machinability is a difficult concept to describe in quantitative terms (Armerego and 

Brown, 1969). 

 

  The expression tool life refers to the cutting tool. It represents the useful life of a 

tool, expressed as the time (or other units such as the number of components produced) 

from the start of a cut to some end point defined by a failure criterion. The tool life 

between tool re-sharpening or a replacement can be specified as the total time to failure 

or the number of components produced to failure (Armerego and Brown, 1969). 

 

  High cutting forces may cause complete failure, or shock loads that produce a 

fracture extending from the rake face to the clearance face. This condition is aggravated 

by discontinuous chip formation, interrupted cutting conditions, crater and wear land 

formation and poor tool design. Complete failure may also be caused by excessive cutting 

temperature, which soften the tool in the cutting region and allow it to flow plastically 

under the action of the cutting forces. It is thus seen that tool failure is related to tool 

wear and the conditions of the finished component. Various tool failures have been used 

to determine tool life and the tool life values determined will depend on the criteria used 

such as chipping wear, crater wear, a combination of wear land and crater wear, tool wear 

volume, limiting surface-finish and component size criteria as well as the force criteria. 
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  The variables affecting tool life may be listed as (Armerego and Brown, 1969): 

 The cutting conditions: speed, feed and depth of cut, etc. 

 The tool geometry. 

 The tool material. 

 The work material, and 

 The cutting fluid. 

The paper of Scheffer and Heyns (2004) provides the reasons for the variation of tool life 

in the case of TCM: 

 Fluctuations or in-homogeneities in the work-piece and drill tool composition. 

 The raise of temperature due to the increase in the number of drilled holes. 

 The variation of time periods allowed for cooling down the drill between different 

runs that also influences the temperature effect. 

 Other reasons can be found in the drill bit geometry during cutting operation 

taking into account the excess rate in the cutting speed. 

2.4 Mathematical modeling of wear 

 

Mathematical models are very useful to study tool wear. Most models attempt to 

predict variables such as the cutting forces (thrust and torque) in the case of the drilling 

machine. These models are functions of cutting parameters (drill size, feed rate, spindle 

speed, drill wear) so that one can examine their effects on cutting forces for drill wear 

detection. Three types of models are generally used in machining operations: analytical, 

computational and empirical models. Analytical models are very complex and have not 

found application in TCM, while computational approaches are applicable to certain 

machining operations only. However, empirical models generated from experimental data 

are widely used. 

 

  An empirical model can be drawn from the correlation between the cutting 

parameters at the optimal drilling conditions. For example, one of the most popular 

equations that are widely used in machining is the well known Taylor equation that is 

based on experimental work. He demonstrated that the tool life varies with the cutting 

speed as follows: 
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  t

n CVT           (2.1) 

where T is the tool life in minutes, V is the cutting speed, n represents a constant at the 

conditions tested and Ct is a constant parameter dependent on the variables. This Taylor 

equation can be extended to include the cutting conditions, the temperature, the tool 

geometry, work-piece hardness and many other machining parameters that are defined in 

the literature. A review of the most commonly used Taylor tool life equations can be 

found in the work of Scheffer and Heyns (2003). 

 

  Tool life predictions based on these Taylor equations are however inconsistent in 

some cases, while others provide good approximations in certain ranges. Noori-Khajavi 

and Komanduri (1995) for example, made a rough estimation of drill life using Taylor’s 

tool life equation at the recommended speed. They concluded that it would take 

thousands of holes for one drill bit to wear completely if the recommended cutting speed 

and feed were used. A preliminary set of laboratory tests done for this dissertation, at the 

recommended speed confirmed these assertions. Hence, in order to accelerate the wear in 

this investigation, the drilling life was estimated to be only hundred or less drilled holes 

when the drilling cutting speed was set to more than 130% of the recommended speed. 

 

  Analytical or theoretical models found in the literature estimate cutting forces 

such as the thrust force used to push the drill into the work-piece, or the torque applied to 

the drill and spindle drive. However, these complex models were developed for sharp 

drills and do not furnish any correlation with the deterioration of the drill condition. 

Consequently, their application in drill condition monitoring is not feasible, also because 

of the difficulty to ascertain certain parameters in the mathematical equations. 

  

It seems that numerical approaches such as the Finite Element Method (FEM) and 

other types of computational simulations predicting important variables such as cutting 

forces, temperature, pressure, chip flow angles etc., still have to find application in 

drilling operations. 
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CHAPTER 3: TOOL WEAR MONITORING 
 

 

 

3.1 Introduction 

 

The essential goal of effective monitoring in most manufacturing processes is the 

achievement of improved and cost effective product quality. In other words, the tool 

should be used at its optimal capability before its replacement. Thus it is fundamental to 

find the best approach for the development of an appropriate monitoring system for any 

specific set-up. Scheffer (2002) published an overview of process monitoring in the area 

of manufacturing.  Traditionally the steps required in the design of a TCM process, are 

depicted as in figure 3.1. This scheme has been successfully implemented in turning 

production development.  

 

Figure 3.1: Tool Condition Monitoring steps 

 

3.2 Sensor selection 

 

Scheffer (2002) reviewed a variety of available sensors for process monitoring. 

The most commonly used are force, power, vibration and acoustic emission sensors. He 

included other sensors as tabulated in table 3.1. 
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Table 3.1: Sensor-assisted TCM (Scheffer, 2002) 

 

Flame detector ph sensor Smoke sensor 

Sound level sensor Level meter Image sensor 

Lubrication oil detector Accelerometer (vibration) Temperature sensor 

Touch sensor Seismic sensor Tool wear sensor 

Edge position sensor Humidity sensor Tool damage sensor 

Limit sensor Gas sensor Current sensor 

Clamping force sensor Chip monitoring sensor Pressure sensor 

Speed sensor  Dust sensor Torque sensor 

Thermal deformation 

sensor 

Temperature distribution sensor AE sensor 

Coolant temperature sensor Surface roughness sensor Encoder-based sensor 

 

  These sensors and many more have found some application in the manufacturing 

industry where they are used for various monitoring objectives. Applications of TCM in 

industry however depend mostly on robust and reliable sensor measured signals of the 

above measurands. As far as drilling machines are concerned, the majority of researchers 

investigating TCM have usually used cutting force measurements to indirectly indicate 

the level of tool wear (Brophy et al., 2002) as well as an analysis of the vibration signals. 

Their results have not met unanimity on the best signals to select between forces and 

vibration but rather confirmed that the choice of the correct transducer is critical to the 

monitoring of the system operation in order to sense the desired information and not the 

noise. However, both methods are still faced with limitations in industrial 

implementation. 

 

  To overcome these constraints to successful and practical implementation, new 

investigations in the sensors field are needed. Rehorn et al. (2006) have shown the 

importance of using newly-designed or custom-made sensors in drilling as it is prevalent 

for those machining operations with straight edged cutters. Hence, research must be 

directed towards an instrumented tool for these operations or effort focused on the use of 

intelligent and available sensors in the arsenal of existing technology sensors. Despite its 
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advantages and disadvantages, the encoder-based sensor could present a starting point for 

another orientation in drill sensor technology.  

3.2.1 Strain gauge-based sensor 

 

Strain gauges are widely used in manufacturing to measure specific loading 

conditions due to some form of complex loading. The loading conditions could cause 

simultaneous bending, torsion and axial loads. In most applications, strain gauges use 

wire connections for measurements that are not suitable in the case of rotating tools. A 

wireless system, such as radio telemetry, was therefore necessary for acquiring the signal. 

In fact, in order to diagnose the torque measurements, strain gauge sensors were bonded 

to a drill bit with superglue adhesive. The results have shown that this is a reliable way of 

acquiring torque data without excessive noise. 

 

  Telemetry is a process by which an object’s response characteristics, such as 

thrust force and torque are measured, and the results are transmitted to a distant station, 

where they are displayed, recorded and analyzed (http://www.telemetry web, 2004). The 

use of telemetry in machining processes could present several advantages for rotating 

machinery, such as drilling operations: 

 The latest development in sensor technology is to develop wireless systems that 

can achieve high sampling rates across multiple channels. 

 Integrated sensor systems can handle noisy input data. 

However, telemetry can still not be used for monitoring the torque in the actual 

manufacturing processes, because of the inconvenience and the cost to instrument each 

drill bit with strain gauge sensors. 

3.2.2 Encoder-based sensor 

 

  Encoders are widely used in manufacturing to measure the velocity on rotating 

machines. In general, they generate a signal representing the relationship between the 

angular displacement of the shaft of a rotating machine and the time. A transducer is then 

used to sense the passage of each encoder segment with respect to a reference point as the 

shaft rotates (Resor et al., 2004). The transducers could rely on the Hall Effect, fiber-
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optic reflective light intensity, magnetic pick-up, or even inductive and capacitive 

sensing, laser encoding, etc. Regardless of the sensing used, the output is a pulse train 

type signal in which the passage times vary as a function of the shaft rotation and the 

torsional oscillation. The encoder selection is usually based on factors such as resolution, 

cost, environmental suitability and sensor mounting convenience (Li et al., 2005). But the 

installation convenience is considered to be the most important factor influencing the 

selection of encoders in on-line monitoring. The installation of sensors may be by contact 

or non-contact, depending on the sensing technique. The contact sensor as used in this 

work requires a skilful installation to minimize eccentricity and misalignment while a 

non-contact measurement results in very high reliability, long mechanical life, high 

tolerance for axial movement and a good solution for electrically isolated applications (Li 

et al., 2005). 

3.2.3 Sensor requirement for tool 

 

Sensors used for tool wear monitoring and TCM in general should be robust, easy 

to install, and must meet certain requirements such as (Scheffer, 2003): 

 Measurement as close to the machining point as possible. 

 No reduction in the static and dynamic stiffness of the machine tool. 

 No restriction of working space and cutting parameters. 

 Wear and maintenance free, easy to replace and cost-effective. 

 Resistant to dirt, chips and mechanical, electromagnetic and thermal influences. 

 Function independent of tool and work-piece. 

 Adequate metrological characteristics. 

 Reliable signal transmission, e.g. from rotating to fixed machine components. 
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3.3 Measuring methods 

 

The measurands in drilling processes could be classified as follows: 

3.3.1 Cutting forces 

 

Torque, drift force (lateral force affecting the work piece), feed force (thrust 

force), and strain measurements are all measures of cutting forces. The increase in the 

cutting forces as tool wear increases, also affects the dynamic and static force 

components that increase with tool wear due to friction effects. Figure 3.2 depicts the 

difference between the static and dynamic components of the cutting force. Measuring 

cutting forces during drilling processes requires special instrumentation such as a 

dynamometer that in most cases needs special mounting fixtures, a strain gauge using the 

real time telemetry, plates and rings, measurement of displacement, etc. 

 

Figure 3.2: Static and dynamic forces (Scheffer, 2002) 

 

3.3.2 Vibration and sound 

 

 In general, the vibration measurement technique uses accelerometers which are 

very suitable for wear monitoring because they offer the following advantages: no effect 

on stiffness and damping properties of the drilling system; can be mounted close to the 

cutting action, independent of tool or work-piece; when properly shielded have good 

resistance to coolants, chips, electromagnetic or thermal influences; are easily replaceable 
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and are very cost-effective. However, during cutting processes, accelerometers are very 

sensitive to noise in workshop environments. 

 

The most basic vibration monitoring technique is to measure the overall vibration 

level over a broad band of frequencies. And one of the problems encountered when 

monitoring the tool life with accelerometers, is the identification of the frequency range 

that is influenced by tool wear, since machining processes comprise many factors that 

produce vibrations that are not related to tool wear. It would seem that the frequency 

range sensitive to tool wear depends on the specific machining operation, and must be 

determined experimentally because a global range that would satisfy all machining 

operations does not exist (Scheffer, 2003). However, in the specific case of a drilling 

machine, some authors advise picking a range around the spindle rotation speed. 

 

Sound measurements are based on airborne transmission of the mechanical 

vibration of the machine tool, tool holder and the tool itself. Sound measurements, 

although very easy to perform, have not been widely used, probably because they are 

affected by background noise to an even greater extent than vibration measurements 

(Jantunen, 2006). However, in some cases, operators rely on what they hear to define 

whether the tool is worn or not. 

3.3.3 Acoustic emission and ultrasonic vibration 

 

The applicability of acoustic emission (AE) and ultrasonic vibration (UE) 

measurements for tool failure and tool wear detection, in drilling operations has been 

studied. It has been found that the AE suffers from severe attenuation and distortion 

caused by the environment while the low frequency signal used for UE analysis does not. 

Although these methods offer the advantage of remote transducer placement, they are 

unfortunately much more sensitive to machine and tooling variations. It has been reported 

that ultrasonic vibrations are especially suitable for drill breakage for instance. 

Unfortunately, their sensor methods are usually more expensive than most industrial 

accelerometers or dynamometers. 
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3.3.4 Spindle motor and feed drive current 

 

Spindle motor current is in principle a measure of the motor torque. But since the 

direct torque measurement is more complicated than measuring the spindle motor current, 

the measurement of current has been widely investigated and used. Similarly, the feed 

drive current corresponds to the measuring of the thrust force (Jantunen, 2002). Both 

methods are closely related to the cutting forces except that they use a long measuring 

chain where other factors might also influence the signals. They simply indicate how 

much power is used in the cutting processes and also provide information about the 

dynamics of cutting through analysis of the current signal frequency content. But it is fair 

to claim that direct torque is a more sensitive way to measure than is the spindle motor 

current, since the torque sensor is located close to the cutting tool and the dynamic of the 

electrical motor does not influence it to the same extent as it influences the current 

measurement. 

3.3.5 IAS-based encoder 

 

Feasible acquisition methods for IAS measurement are based on the measurement 

of the time duration of every single pulse. Based on the above mechanism of data 

acquisition (DA), the measurement of angular speed can be categorized into two broad 

groups: timer/counter-based methods and analog-to-digital converter (ADC)-based 

methods. The first method treats the signal from an angular transducer as a pulse train. 

The pulse train is used to start and stop the timer/counter. The second method treats an 

angular speed as an ordinary analogue signal (Li et al., 2005). 

3.3.5.1 Timer/counter-based methods 

 

This method dominated the development of angular speed measurement 

techniques. It is conceptually measuring either an elapsed time (ET) between successive 

pulses or counting pulses (CP) during a prescribed period of time. The following are 

some representative methods used (Li et al., 2005): 

 Measurement of ET between successive pulses 

 Counting of pulses (CP) during the prescribed period 
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 The combined method using both ET and CP 

 The constant elapsed time (CET) method based on both pulse counting and period 

measurement 

 Double buffered method based on both pulse and interval measurement of speed 

pulses. Unlike the CET method, having varying time durations for measurement 

cycles, the buffered method uses a fixed length of measurement cycle. 

 Pure software based method: makes maximum use of computer capacity, no 

additional hardware is required. 

In condition monitoring and fault diagnostic applications, it is often useful to 

determine the angular speed at a specific angular displacement, from the angular speed 

signal, and this for only a small fraction of a revolution. Hence, under such conditions the 

CP technique is appropriate to provide an average speed over multiple pulses but 

inappropriate for the measurement of IAS. As IAS is necessary for condition monitoring 

applications, the ET of a single pulse has to be measured in order to ensure the 

instantaneous speed measurement. 

3.3.5.2 ADC-based methods 

 

This category of angular speed measurement method has attracted little interest 

from researchers in the area of condition monitoring and control. Here are two 

representative methods (Li et al., 2005): 

 Direct ADC method: this method treats an angular speed signal as an ordinary 

analogue signal and extracts angular speed from the logged data using an efficient 

signal processing technique. 

 Frequency-to-voltage (F/V) converter-based method: This method converts the 

frequency of an angular signal into a voltage signal using an F/V conversion 

circuit. The voltage amplitude is proportional to the input frequency. The voltage 

signal is then acquired using an ADC system. As the frequency of the angular 

signal is proportional to the angular speed, the acquired data from the ADC will 

give the angular speed. 
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Li et al. (2005) consider the measurement of angular speed as a generic issue in a 

variety of applications in the area of monitoring and control of rotary machinery, and find 

applications in the timing of automotive engines, measurement of torsional vibrations, 

fault detection on diesel engines, etc. Note that the word instantaneous refers to the 

angular displacement and the time duration. Hence, the measurement of IAS is realized in 

the following difference form: 

 

   
t





  3.1 

 

where  is angular displacement and t is the corresponding time duration. 

 

As mentioned above, the speed variations during a revolution need to be known in 

condition monitoring and fault diagnosis applications. Considering the measurement 

principle of IAS shown on figure 3.3, the IAS (rev/min) can be calculated by: 
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where M is the number of pulses or evenly spaced divisions of a pulse train with 

][
2

rad
M


 corresponding to one unit of angular displacement. The IAS is calculated by 

measuring the ET for the corresponding unit of angular displacement with cf being the 

clock frequency and cN the number of clock pulses. By means of an accurate shaft 

encoder resolution, the monitoring of the IAS using the variation or the changes of ET 

between two pulses is feasible. 
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Figure 3.3: Measurement principle of IAS (Li et al., 2005) 

 

3.4 Signal analysis 

3.4.1 Introduction 

 

The primary function of signal analysis could be described as the pickup of 

meaningful information out of the mass of information. Therefore, for the best 

performance of the monitoring system, only those features which show a high sensitivity 

to tool wear and low sensitivity to process parameters should be utilized. Various signal 

analysis techniques have been used in the context of drill wear. And it is not a concern of 

this work to discuss the best techniques to be used. The focus will be on the usually 

common analysis techniques by means of measured signals. But it has been shown that 

drilling signals present important stochastic features. It may therefore be expected that 

the drill wear evolution should well be monitored by following statistical trend features 

due to the disparities of data.  Note that the drill’s wear progresses rapidly towards the 

end of the drill life as it was shown in figure 2.4. Hence, the choice of signal analysis 

technique should be in accordance with the cost effective technique that could quickly 

detect the failure and the end of drill life.  In the following discussion, we define the most 

important signal analysis methods used for drill wear and drill failure monitoring. These 

methods have been widely and successfully used in conventional technologies and their 

suitability for use with the IAS signal will be determined in this work. Preliminary TF 
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analysis has been added in order to test the effectiveness of the IAS signal response to the 

identification of drill failure.   

3.4.2 Time domain analysis 

 

In principle, the time domain raw data of machining signals are not very 

informative as such, as they contain the combined energy of signals and noise. Hence, the 

evaluation of changes by measuring only the amplitude of these signals could be biased. 

That is why a number of statistical parameters are used for the computation, assuming 

that the signals are random and have a probabilistic distribution. In addition to the use of 

RAMVi, Rehorn et al. (2005) reported the successful use of time domain signal analysis 

for drilling by means of statistical methods. From those parameters, one can name the 

following: the mean, the rms, the crest factor, standard deviation, variance, and kurtosis. 

These parameters are typical features used in time domain analysis and are defined as 

follows (Rao, 1995) for discrete samples: 

 

Signal average: The signal average or mean value of a discrete function )(nx over an 

interval T is the average value of the signal measurements in the drilling process. 
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Peak: The peak value of the signal is defined as half the difference between the 

maximum and minimum:  
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Root mean square (RMS): The RMS value of the signal is the normalized second 

statistical moment of the signal. It is defined as: 
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Variance: The variance is the mean square deviation about the mean defined as  
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Crest factor: The crest factor is defined as the ratio of the peak value to the RMS of the 

signal. 
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Kurtosis: The kurtosis is the normalized fourth statistical moment of the signal.  

 

   
4

1

0

4

)(

))((
1

RMS

xnx
NKurtosis

N

n





  
3.8 

3.4.3 Frequency domain analysis 

 

Spectral (or frequency) analysis is a term used to describe the analysis of the 

frequency domain representation of a signal. It consists of the conversion of a time 

domain representation of a signal into a frequency domain representation. This can be 

achieved by the widely used discrete Fourier transform (DFT) of digitized data, which is 

used to generate the power spectral density (PSD) function. It provides a means to 

determine the frequency content of a measured signal. Assuming that wear influences the 

frequency content of the signal, the DFT then gives an inside view of the process through 

the power spectrum. It is a more powerful tool to get rid of noise and disturbances than 

statistical parameters. This analysis approach is being widely used in drilling operations 

on vibration, torque, drift force, and feed force signals (Jantunen, 2002) to detect drill 

failure. It has been observed that the magnitudes of PSD at all frequencies increase 

proportionally with an increase in drill wear. Therefore, the area under the PSD plots also 

change consequently. It is also reported that other techniques of analysis such as 

autocorrelation and cepstrum analysis work well in drilling and milling operations. 
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3.4.4 Time frequency domain analysis 

 

The spectral analysis defined above can give information about the frequency 

components, but it does not give any indication about their temporal localization. Hence, 

in order to compensate for the lack of time localization, the time frequency distribution 

(TFD) has been introduced. A TFD is defined as a transform that maps a 1-D signal onto 

a 2-D time-frequency map. It describes how the spectral content of the data evolves with 

time. As such, TFDs are natural tools for the analysis, synthesis, interpretation and 

processing of non-stationary signals (Swami et al., 2001). 

 

Conventional spectrum analysis in drilling operations assumes that the signals, 

which are analyzed, are random and stationary.  But some researchers have found that 

highly non-stationary and transient events are important in drilling operations (Atlas et 

al., 1996). Therefore, the use of the frequency spectrum in drilling operation signals 

could be unsuitable. Add to that, the frequency response obtained from the IAS signal has 

confirmed the non-linear characteristics of drilling signals. To overcome this misuse of 

the spectrum, time frequency analysis has been designed specifically to work on non-

stationary signals and is useful for extracting valuable information from manufacturing 

and machine monitoring sensor signals (Atlas et al., 1996). Unfortunately, there has been 

a severe lack of research interest in TF methods in all machining operations to identify 

wear and breakage failure (Rehorn et al., 2005).  

 

There are several types of TF analysis, but the most common TF processing 

methods found in TCM are the time frequency representation (TFR) and wavelet 

analysis.  Apparently, the Short Time Fourier Transform (STFT) and the S-transform has 

not been used in the analysis of machining data. Rehorn et al. (2005) propose a prudent 

focus on the use of the S-transform in order to perform feature extraction for TCM 

applications, as it has been used successfully to analyze a variety of transient signals in 

many fields. 
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3.4.4.1 Time frequency representation 

 

Both long- and short-term changes in manufacturing and monitoring signals 

commonly represent the most important aspects of the signals. Atlas et al. (1996) refer to 

the changing portions of the signals as the time-varying signals. It is the frequency 

content of these time-varying signals that conveys the most meaningful features. Thus 

representations, which can show the changes in frequency content with time, can also 

furnish a rich representation of vibration, torque and IAS signals. In general, a TFR 

comprises the spectrogram and the minimum cross entropy (MCE). 

 

A spectrogram is a TFR found from the STFT. A simple code from the Signal 

Processing Toolbox in Matlab exists for the representation of spectrogram analysis.  

An MCE is a class of TFRs, which satisfy the following three fundamental 

properties: the positivity, a time marginal’s properties, and a frequency marginal’s 

properties. Details about spectrogram and MCE formula can be found in the paper 

published by Atlas et al (1996).  

3.4.4.2 Wavelet analysis 

 

Wavelet analysis is widely used in TCM application and has become well known 

as a useful tool for various signal-processing applications. The wavelet analysis is a time 

frequency function which decomposes the information of a signal f(t) into various 

components or constituent parts called levels that can be reconstructed to the original 

signals. There has been limited works done on wavelet analysis in drilling operations. It 

has been proposed from these works that wavelets could be combined with ANNs to 

provide self-learning and adjusting (Rehorn et al., 2005).  It has even been argued that 

wavelets are favored over FFTs because of their variable resolution and they allow the 

simplification of the representation and modeling of the thrust force.  

3.5 Decision making 

 

Decisions on tool condition can be made in different ways: analysis of the time 

domain signature, comparison of a signal feature to a predefined threshold, trending 
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features, the use of ANNs, fuzzy logic, pattern recognition algorithms, Hidden Markov 

Models and so forth.  In general, the focus of the above diagnostic tools may be classified 

in the following three general techniques of decision approach (Stander, 2003):  

 Decision based on an absolute threshold being exceeded. 

 Decision based on a trend. 

 Artificial neural networks. 

3.5.1 Absolute thresholds 

 

This method of diagnosis in a monitoring system uses a predefined threshold as 

an indication of tool failure or a worn tool. It is the basis of Rule Based Expert Systems 

(RBES), and comprises the detection of a sensor level beyond a fixed acceptability level. 

Caution should be taken when working with predefined thresholds, because they can vary 

according to the machine to be monitored, with the ambient conditions, the support 

structure, etc. Fixed limits should be used as a guide and never used on its own to predict 

fault detection. 

3.5.2 Trend analysis 

 

Trend analysis is the detection of a change in sensor level with time, and this, 

relies on the detection of significant differences from previous levels. As a rise or a drop 

in the value of the monitor does not necessarily indicate a fault, it could be interesting to 

analyze a trend in the rate at which values are changing, rather than the change in the 

absolute value when the change in the slope is consistent. 

3.5.3 Artificial neural networks 

 

This method has been applied widely in detection and pattern classification in 

various areas of manufacturing such as drill wear. Conceptually it is a multidimensional 

curve fitting process, which relates a certain output to a certain input. Some reasons for 

using ANN in drilling operations include: the method has been successful at rates varying 

between 85% and 100% (Rehorn et al., 2005), and the method has shown great potential 

of learning features to be used for drill TCM. The most widely tested NN approach is the 

so-called multilayer perception (MLP).  
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CHAPTER 4: EXPERIMENTAL SET-UP 
 

 

 

4.1 Set-up 

 

Figure 4.1 schematically illustrates the experimental set-up used in this drill wear 

investigation. Drilling experiments were performed on a three-axis MITCO milling 

machine, equipped with an automatic feeding rate system for all samples of drilled holes. 

A detailed description of the hardware and details of the equipment used are given in 

table 4.1. In order to hold and keep the work-piece tightened, a vice was mounted on the 

milling machine bed with the ability to move in three orthogonal directions.  

 

AMPLIFIER FILTER
A/D 

CONVERTER

RECEIVER

TRANSMITTER

ENCODER

COMPUTER

VICE

 

Figure 4.1: Schematic diagram of experimental set-up. 
 

For all experiments, a 10 mm drill bit was used to cut 16 mm deep holes in a mild 

steel work-piece material, at the recommended operating parameters except for the case 

where 3, 6, 8, and 12 mm drill bits were used in order to test to what extent the results 

obtained from a 10 mm drill could be generalized. The thrust cutting force and the torque 

are the major sources of excitation and are the most commonly monitored variables in 

drilling operations. They could be measured respectively by means of vibration 
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measurements and strain gauges. Hence, accelerometers were used to measure vibration 

signals in the axial direction (thrust force) and in the transverse direction (for the drift 

force), while strain gauges were used for the measure of torque via telemetry. To test the 

sensitivity of acceleration as a measurand to detect wear, accelerometers were attached 

both on the spindle house and on the work-piece vice. But as the accelerometers mounted 

on the work-piece vice have shown the best results, they were therefore retained for the 

remaining results presented through this work. 

 

Table 4.1: Specifications of equipment 

 

Types Specifications 

Drilling machine Three axis milling machine, MITCO model 

Sensors Accelerometers: SN 11552 model 627A01 (Az1) (on spindle);  

                           SN 12250 model E327A01 (Ay) (on spindle);  

                           SN 33989 model 352C68 (Az2) (on the vice) 

Strain gauges: KFG-2-120-D2-11 

Shaft encoder: HENGSTLER 0523  

                        RI-58-0/1024K – 42 RH (5VDC) 

Amplifiers                      PCB Piezotronics model 482A22, ICP sensor signal conditioner 

Filters Accelerometer signals: 4
th

 order Chebyshev type with –3 dB 

                                      roll-off at 4350 Hz 

Encoder signal: set to allow 250 Hz frequency response  

Telemetry system Torque Track 9000 AII – Digital technology (Binsfeld Eng Inc.) 

Data Acquisition National Instruments A/D card PCI – 6110E: 5 MS/s, 12-Bit, 

simultaneous – Sampling Multifunction 

Pentium 4 PC, MATLAB 12a 

Work-piece material Mild steel (~200 HBN) 80180 mm with 16 mm of thickness 

 

A shaft encoder HENGSTLER 0523 model, mounted at the top of the milling 

machine shaft was used to measure the changes in the IAS. The output from the encoder 

is a chain of 1024 pulses per revolution. 
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The signals from the accelerometers were amplified by means of an ICP sensor 

signal conditioner and then passed through an analogue filter designed with the Filter Lab 

Low Pass Program to avoid aliasing. The torque signal from the strain gauge is passing 

through a telemetry system with incorporated internal amplification and filtering: A 

Display device Output/RF Level evaluates the radio signal strength while the RD9000 

filter can be set either to activate a 10 Hz low-pass filter or 250 Hz full frequency 

response. The later set-up filter was used for the purpose of these experiments. 

  

All the signals were sampled using a DA board. The DA channels could not 

accept different sampling rates per channel, hence the highest sampling rate, which is the 

signal from the shaft encoder, determined the choice of sampling rate. The sampling rate 

from the shaft encoder signal is calculated as follows: 

 

   kHz
rev

cycles

rev

cyclesrev
f 1514848

1024

sec60

min1

min

870
max   4.1 

 

Hence, in order to get an accurate signal of chain pulses in the time domain, the 

experimental data should be sampled at least ten times the calculated frequency. That is 

equal to 150 kHz. But as smaller drills have to be tested at high speed above 870 rev per 

min, the sampling frequency was therefore set up at 200 kHz per channel. All the data 

were saved on the hard disk of the computer for further processing and analysis. 

 

Photographs of the experimental set-up are shown on the following pages. Figures 

4.2 and 4.3 respectively depict the electronic equipment used during experiments and the 

DA ADC plug. The telemetry system receiver is shown in figure 4.4 while figure 4.5 

illustrates the drill bit which has been instrumented with strain gauges, the battery, the 

telemetry transmitter, as well as the work-piece on the vice. A photograph of the milling 

machine and accessories used for drilling operations can be seen in figure 4.6 while 

figures 4.7 and 4.8 present photographs of different sensors: accelerometers mounted on 

the vice and the encoder-based sensor joined at the top of milling shaft by means of a 

flexible coupling.  
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Figure 4.2: Instrumentation set-up 

 

 

 

   

 

Figures 4.3 and 4.4: ADC plug and Telemetry receiver 
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Figure 4.5 and 4.6: Instrumented drill with telemetry transmitter and milling machine equipment  

 

 

 

 

          

 
Figures 4.7 and 4.8: Mounted sensors used 
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4.2 Test procedure 

 

The experiments consisted of drilling holes in a mild steel work-piece material 

under dry cutting conditions. The experiments have been done on the same basis, e.g. one 

size drill bit for all samples except for the sizes mentioned under point 4.1, and the other 

parameters were fixed as recommended in the Machining Data Handbook (MD Center, 

1972).  

 

In tool life tests, it is generally found that an increase in either the speed or the 

feed rate above the recommended level may cause a decrease in tool life. Noori-Khajari 

(1994) made a rough estimation to calculate the drill life using Taylor’s tool life equation, 

at the recommended cutting speed. He found an average tool life of 4240 holes while the 

drill tool life was reduced to only 30 holes when the cutting speed was doubled. Also 

from the laboratory experiments, it is clearly shown that, when drilling at the 

recommended feed rate and cutting speed, one set of experiments using a specific drill 

will last longer before a completely worn drill is achieved. Consequently, large capacity 

memory must be available in order to store the huge amount of unnecessary data. 

Needless to say that, during normal cutting conditions, signal magnitudes from the 

drilling operations are almost constant until the drill starts to wear. Hence, the strategy 

used to decrease the experimental time and the amount of data to be stored, was to 

increase the cutting speed by 1.35 according to the available speed on the milling 

machine.  

4.2.1 Machining parameters 

 

Based on the above considerations, the machining parameters were fixed as 

shown in table 4.2. A relatively high cutting speed of 870 rpm instead of the 

recommended speed of 600 rpm and a feed rate of 0.13 mm/rev were used to drill holes 

in the mild steel. The choice of the cutting speed further depended not only on the drill 

size, but also on the available speed settings on the milling machine. Indeed, sometimes 

in industrial practice one cannot achieve the recommended value of a cutting speed on a 

specific type of drilling machine and would select the closest one. Hence, the cutting 
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speed was maintained at the same level, except for the experiments where 3, 4, 6, and 12 

mm drill bits were used. 

 

Table 4.2: Cutting parameters 

 

Cutting parameters Specifications 

Drill tool High Steel Speed (HSS) 

Spindle speed 870 (rpm) 

Feed rate 0.13 (mm/rev) 

Depth of holes 10 mm 

Cooling None 

 

4.2.2 Sensor issues 

 

One of the issues to be solved in order to be successful in on-line TCM is the 

convenience with which one could install the sensors described in table 4.1 for the 

acquisition of signals. In the following, a description of sensors used is provided with the 

correlated issues due to their installation. 

 

Two accelerometers were stud-mounted on the milling machine bed vice in the Y- 

and Z-directions, while the third accelerometer was stud mounted on the structure 

supporting the spindle in the Y- direction. Theoretically this mode of mounting is the best 

and does not present any problem if well mounted perpendicularly to the surface. 

 

For the measurement of the torque, KFG-2-120-D2-11 strain gauges were used. 

The active length of these gauges is 2mm but the packaging extends them to around 

7mm. With these dimensions, it is not easy to stick two sets of strain gauges on a 10mm 

drill bit. The procedure required skilful installation of strain gauges. This entailed: 

treatment of attachment surfaces, mark attachment position, cement the gauge with 

appropriate cement, press and cure, check the resistance and insulation, connect lead 

wires with a solder and then connect to the telemetry transmitter in full bridge 

configuration. After the strain gauges have been installed, a tape was applied to shield the 
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delicate strain gauges from cutting shavings. Care was taken at each stage to prevent 

useless measurements due to the release of strain gauges from the drill bit surface. 

Overall, the telemetry transmitter and its battery had to be fixed on the drill tool and 

being replaced with the drill tool changes or when the battery was flat.  

 

The measurements of the IAS were done via the encoder-based methods. The RI-

58-0/1024K – 42 RH encoder used also needed careful installation to minimise 

eccentricity and misalignment with the shaft. Hence, a flexible coupling was carefully 

used to connect the encoder to the shaft at the top of the milling machine. Appropriate 

software was written in MATLAB changing the chain of pulses signal in rotational per 

minute speed based on the pulses’ time periods.  

 

The above issues clearly demonstrate how inconvenient and tedious the use of 

strain gauge sensor was in the telemetry system and its consequence in the data 

acquisition. The encoder system used requires a high sampling rate with the consequence 

of a huge amount of data to be stored.  

4.2.3 Calibration and channel set-up 

 

The calibrations for the channels used are shown on table 4.3. Acceleration and 

encoder calibrations are fixed and readable on the sensor devices, while the strain 

calibration was performed according to guidelines provided by the manufacturer.  The 

torque calibration was done considering the drill as round shaft with glued strain gauges 

in full bridge configuration, and according to the following procedures: 

 

The given equations define the relationship between the input signal to the 

BT9000 transmitter (typically from the strain gauges) and the full-scale output voltage of 

the Torque Track RD9000 system. The calculations are based on geometry parameters of 

the drill (drill diameter), sensor parameters (gauge factor) and transmitter gain setting.  

Hence, the torque signal is calibrated as follows: 
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Step 1: Calculate full scale torque, TFS that corresponds to the maximum system 

output of 10 V.  
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where E = 206.8  10
3
 N/mm

2
 and the following characteristics are used for the HSS drill 

bit: 

 Do (drill diameter measured) = 10 mm 

 GF (gauge factor from gauge package) = 2.03 

 GXMT (BT9000 gain based on jumpers) = 2000 

 VFS = 10 V; VEXC = 5 V; N (Number of active gauges) = 4 and Di = 0 for solid 

shafts 

NmTFS 386.15
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Hence, the 10 V read at the RD9000 output corresponds to 15.386 Nm or 153.86 Nm/V. 

 

Step 2: Trim the full scale output 

The above full scale output voltage of the RD9000 should be trimmed so that the 

voltage output corresponds to an even round number torque level. For that, calculate the 

trimmed voltage value (VTRIM) that corresponds to the round number (trimmed) torque 

level (TTRIM). Note that TTRIM must be greater than TFS calculated above. 
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Hence, VVTRIM 693.7
20

)10()386.15(



  

- Step 3: Adjust the full scale output to equal VTRIM on the RD9000 to 7.693 V. 

 

The system is now calibrated so that 20 Nm equals 10 V and the gain of the 

system is therefore 2 Nm/V. 
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The complete channel set-up is well summarized in the table 4.3 and a set of 

measured variables per drill is shown in table 4.4. 

  

Table 4.3: Channels set-up 

 

Channel Sensor Calibration Gain Sampling rate Test description 

1 Az 104 mV/g 94.33 200 kHz Thrust acc. 

2 Ay (on vice) 102 mV/g 96.18 200 kHz Drift acc. 

3 Encoder 1024 pls/rev 1 200 kHz IAS 

4 Ay  (spindle) 102 mV/g 96.18 200 kHz Drift acc. 

5 Strain 20 Nm/10V 2 200 kHz Torque 

 

The drill bits identification and typical measured variables during experiments are 

shown in table 4.4. When using 10mm drill, all variables were measured except for drills 

with diameter less or more than 10mm where only acceleration and IAS were measured.  

 

Table 4.4: Variables measured 

 

Definitions Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10 Exp11 

 
Drill Name D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

Diameter(mm) 10 10 10 12 8 8 6 6 4 3 3 

Speed (RPM) 870 870 870 650 870 870 1247 1247 2347 2347 2347 

Acceleration × × × × × × × × × × × 

Torque × × ×         

IAS × × × × × × × × × × × 

 

4.3 Measurement 

 

When starting a drilling operation, the drill cuts metal and removes chips from the 

hole. The initial chips are in the form of short spirals and as the temperature increases, the 

chips increasingly come out sticking to the drill, assuming a helical form. It is therefore 

evident that the temperature and the formation of chips are major disturbances during 

data acquisition of measured signals. Hence, to avoid corrupted measurements and 
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disturbances because of excessive chips emerging from the hole, a manual trigger was 

used to start the data recording for an overall period of five seconds. Data was acquired 

as soon as the drill reached essentially steady conditions. In practice the influence of the 

emerging chips on the vibration measurements, was minimized by triggering as soon as 

the point of the drill bit completely penetrated the work piece. 

 

Figure 4.9 shows the scheme of data acquisition followed during the entire set of 

experiments. 

Process Start recordingTrigger manually Record for 10 sec.
Save recorded

signals

 

Figure 4.9: Scheme of data acquisition 

4.3.1 Frequency response for work-piece and drill 

 

The drill itself always has many modes of vibration, in both torsional and 

transverse directions that range from audible frequencies to more than 50 kHz (Atlas et 

al., 1996).  Experimental modal analysis was performed on the tool and the work-piece 

system, and the modal parameters were estimated from the measured frequency response 

functions. Table 4.5 identifies the main natural frequencies of the work-piece and drill 

tool system obtained by impact testing. The beam drill and work-piece were excited by 

means of a hammer and the response was obtained using an accelerometer. The signals 

were processed through a Diagnostic Instruments PL202 analyzer that gave the natural 

frequencies shown in table 4.5. These results were compared to the FFT spectra of the 

drill and work-piece system measured during drilling operations. The results shown in 

chapter 5 illustrate significant modes in the spectra in the frequency band of 0-5000 Hz 

with the following distinct frequency bands 0-1000 Hz, around 2000 Hz, and 3000-4800 

Hz.  These frequencies are similar to the ones in table 4.5. The non periodic nature of the 

cutting process in drilling is quite evident from the broad band nature of the FFT spectra.  

It is expected to track the variations of the spectral modes with the increase of drill wear. 

In general, the tracking of these frequencies is a tedious job in an environment with many 

disturbances. 
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Table 4.5: Frequency responses for work-piece and drill system 

 

 Range of Natural frequencies (Hz) 

Work-piece and vice  800-1700, 2500-3500 and 4000-4800 

Drill tool  400-1250 and 2230-3500 
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CHAPTER 5: RESULTS and DISCUSSION 
 

 

 

5.1 Drill wear progression 

 

Drill life varies widely due to the complexity and the stochastic behavior of 

drilling operations. For instance, an uninterrupted drilling operation associated with high 

cutting forces produces excessive drill wear, while an intermittent operation at the 

recommended drilling parameters induces slow and gradual wear. In general, it is the 

attrition process on both the rake and clearance face that stimulates an increase of the 

cutting temperature. This could lead to a process of diffusion or exothermic oxidation that 

could also damage the drill catastrophically as shown in figure 5.1 (c) and (d). The most 

important is to identify drilling process parameters that do not generate chip light 

emission and can produce several holes with moderate drill tool wear as shown in figure 

5.1 (a) and (b).  

 

Based on the above considerations, it is clear that the dominant drill wear pattern 

depends on the drilling operation conditions and cutting parameters. When drilling at the 

recommended cutting parameters, fracture or lip edge chipping is the predominant wear 

mechanism as shown in figure 5.1 (a) and (b). In contrast, the SEM photographs in 

figures 5.1 (c) and (d), illustrate plastic deformation and diffusion as the dominant wear 

mechanism for cases where the recommended cutting speed was exceeded by more than 

1.35%. The damage in figure 5.1 (c) and (d) is an illustration of uninterrupted drilling 

without sufficient cooling time between operations and where the chip light emission was 

extensive. This was an important indication of very high chip temperature due to 

excessive rubbing between the drill bit and the work-piece. In this case, the corner wear 

was rapidly accelerated, the cutting edges disappeared and the drill tips rounded.   
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(a)      (c) 

    

(b)      (d) 

Figure 5.1: SEM micrographs image of worn point drills: (a) fracture or chipping on the drill lips; 
(b) Typical outer corner wear; (c) Point drill diffusion; and (d) Corner wear and diffusion of drill lips 

 

In general, the wear mechanisms of the drill shown in figure 5.1 (a) can be 

explained as follows: drill wear begins by the fracture or chipping of one side of the lip 

edge. This is followed by a certain unbalance in the forces due to the change in the drill 

geometry that accelerates the wear from the fracture point to the chisel and through the 

flank. Normally, when lip fracture initiates, the measured signal magnitude suddenly 

jumps to a higher level. Similarly the same phenomenon of magnitude jump has been 

observed after the fracture of the second lip edge. It was therefore concluded that, when 

operating at the recommended cutting speed, outer corner wear was moderate; crater 

wear was definitely visible probably due to the temperature effects while flank and chisel 

wear could also be clearly identified. SEM photos of the drill point in figure 5.1 (a) have 

been taken to explicitly illustrate different modes of wear as shown in figure 5.2. Of 

concern are chipping or fracture at the lip edge, flank wear, chisel edge wear and crater 

wear. Some of these wear patterns have been microscopically measured. If 0.3 mm is 
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considered as a standard value for a worn tool, figure 5.2 (a) for instance, shows that the 

area of the fracture lip is larger than 0.04 mm
2
 and could therefore be considered a worn 

tool. Flank wear in figure 5.2 (b), was also measured and was approximately 0.5 mm, 

larger than the standard value for a worn tool. The chisel wear shown in figure 5.2 (c) is 

completely worn with a fracture line initiating in the center. The crater wear observed in 

figure 5.2 (d) is also of sufficient magnitude to be concerned about the attrition of new 

phases due to the temperature increase. 

 

         

(a)      (c) 

       

   (b)      (d) 

Figure 5.2: SEM photographs of different wear mechanisms: (a) Chipping or fracture at lip;  
(b) Flank wear; (c) Chisel edge wear; (d) Crater wear. 
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400µm 230µm 
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5.2 Signal Processing techniques 

5.2.1 Sensor signal characteristics 

 

Typical time response histories of signals measured while drilling a hole are 

illustrated in figure 5.3. The thrust and drift vibrations are time domain signals monitored 

respectively in the X- and Y- directions. The raw IAS signal from the 1024 pulse encoder 

has a distinctive and almost constant period. The strain measurement illustrates the 

measured dynamic cutting torque.  

 

 
Figure 5.3: A typical sample of raw signals for all the measured channels 

 

Figures 5.4 and 5.5 compare typical patterns and levels of signals in all the 

channels measured during drilling experiments comprising a sharp and a worn drill bit. 

The comparison clearly shows the effects of drill deterioration on the measured signals 

based on the following assumptions: 

 The fluctuation of the speed due to mechanical effects in rotors and gears 

is negligible 
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 The electric supply fluctuations are negligible 

 The changes observed in the measured responses signals are caused by the 

deterioration of the drill tool.  

The pattern and magnitude of measured signals differ between a sharp and a worn 

drill bit. Compared with conventional technologies which show an increase of signal 

magnitude as a sharp drill bit wears, the IAS signal magnitude clearly illustrates a 

decreasing trend. Indeed, the thrust force and the torque, being major excitation sources 

in drilling, respectively influence the thrust vibration and the drift vibration. It can be 

seen from vibration signals measured from a worn drill bit that both cutting forces cause 

high levels of transient vibrations (spikes). These levels are fairly high in the axial 

direction compared to the transverse direction. This could be explained by the fact that 

the cutting force acting from the drill chisel on the work-piece is predominant compared 

to the transverse cutting force. With the progression of drill wear as shown on figures 5.4 

and 5.5, the vibration signal amplitude increases from 5 m/s
2
 for a sharp drill to more 

than 45 m/s
2
 for a worn drill. At the stage when the drill bit is completely worn or broken, 

the signals are characterized by repeated spikes. These spikes were also observable 

during experiments by the sound caused by the milling machine feeding on the work-

piece and its vibration.  Therefore results must be interpreted with caution as it is known 

that these vibration signals are usually related not only to the dynamics of the cutting 

system, but also to the machine components. Consequently, the magnitude of torque 

signals determined via strain measurement also increases with the deterioration of the 

drill bit. In this instance, the torque increases from an average value of 2 Nm for a sharp 

drill to more than 5 Nm for a worn drill. Contrary to the above signals, the IAS signal 

also displayed changes due to the deterioration of the drill, but with the difference that the 

IAS magnitude trend is now in the opposite direction, i.e. decreasing from a sharp drill to 

a worn drill. This could be explained by the fact that the increase in friction between the 

drill and the work-piece is obviously affecting the magnitude of the IAS signal with the 

progression in drill wear. In fact, figures 5.4 and 5.5 clearly illustrate that the IAS 

average shifts from roughly 940 rpm for a sharp drill to 930 rpm for a worn drill. The 

speed changes are small compared to the overall spindle rotation speed.   
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In conclusion, the results of the investigation have shown how sensitive the 

measured signals on all the channels are to the deterioration of the drill bit. 
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Figure 5.4: Typical characteristic signals for a sharp drill  

0 0.5 1 1.5 2

-50

0

50

Thrust vibration

Time[sec]

a
c
c
e
le

ra
ti
o
n
[m

/s
2
]

0 0.5 1 1.5 2

-50

0

50

Drift vibration

Time[sec]

a
c
c
e
le

ra
ti
o
n
[m

/s
2
]

0 0.5 1 1.5 2
900

920

940

960

Encoder signal

Time[sec]

IA
S

[r
p
m

]

0 0.5 1 1.5 2
0

2

4

6

8
Strain measurement

Time[sec]

T
o
rq

u
e
[N

m
]

 

Figure 5.5: Typical characteristic signals for a worn drill 
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5.2.2 Sensor signal time domain analysis 

5.2.2.1 Drill wear rates 

 

The sensor signal characteristics have shown that the pattern and levels of 

measured signals are changing and increases from a sharp drill to a worn drill. Therefore, 

the simple calculation of the rms value will follow the same trend. Past research in 

conventional technologies, as well as the direct torque measurement on an instrumented 

drill shank presented in this work, has arrived at the same conclusion (Jantunen, 2002). 

Bearing in mind the simple relationship between torque and angular speed (power = 

torque  angular speed), it is no surprise to see the IAS results showing the inverse trend. 

This is interesting in the sense that the IAS could also provide diagnostic information 

comparable to conventional technologies with the possible advantage of using simple, 

accurate and reliable sensors. 

 

Before presenting the drill wear results from the measured signals using the rms 

value calculation, some remarks have to be made about the acquisition of data.  During 

the course of experiments as said in paragraph 4.2.2, apart from taking vibration 

measurements, the strain measurement and the encoder signal presented some issues. The 

telemetry set-up using strain gauges on a small 10 mm drill bit and a non constant power 

battery have led to many corrupted measured signals that lead to the restriction of 

samples to be presented. In addition the high sampling rate due to the high encoder 

resolution led to the problem of saving huge amounts of measured data. All these issues 

have made the utilization of all four channels at the same time difficult. However, in the 

following discussion, results of three samples with acceptable results are provided. Other 

results by means of 8 drill bits as shown in table 4.4 could be found in section 5.4 where 

the measured responses from the 4 channels are not grouped together because of data 

storage space issues. In this instance, only the IAS was measured to check the reliability 

of the findings.  

 

D1, D2 and D3 drill samples shown in figures 5.6 and 5.7 respectively illustrate 

the relationship between the rms value of thrust and drift vibrations, as well as the torque 

and the angular speed against the number of drilled holes. This relationship is then used 
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to determine the likely rates of useful drill life. Each sample of drill has been used to drill 

holes in work-pieces until it was worn. The results of the investigation confirmed what 

other researchers have stated, that the rates of drill wear are unpredictable and the drill 

life varies as does the measured parameter values. The tested drills have shown different 

drill life from one case to another. Different reasons can be found to explain these 

variations in drill life as mentioned in paragraph 2.3.6. Consequently, one can neither 

determine the drill tool life using a mathematical model based on Taylor equations, nor 

develop a dynamic based model to predict tool life with repeatable results.  The failure to 

develop a prediction model for drilling with repeatable results is probably an indication 

of the need for an effective on-line TCM. Likely, the results have shown good correlation 

between time response signals for the drills tested (drill wear) and drill tool life. The 

RMS value of measured signals illustrates small changes during normal cutting until drill 

failure at the end of drill life. Compared with both conventional vibrations or with the 

torque measurement, the IAS seems to be more directly related to machine dynamics with 

less measurement complexity. 
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Figure 5.6: Different rates of drill wear using vibrations measurements 
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Figure 5.7: Different rates of drill wear using IAS signal and Torque signal 

   

If the IAS can provide diagnostic information on drill condition comparable to 

conventional methods, it is therefore possible to relate the drill wear to the IAS. This is 

the reason for comparing the torque measurement with the IAS in the following 

paragraph. 

Note that the torque curves above closely follow the general trend of curves 

depicting the different drill wear stages previously shown in figure 2.4: initial stage of 

wear, slight wear or regular stage of wear, moderate wear or micro breakage stage of 

wear, severe wear or fast wear stage and worn-out or tool breakage. At the same time, the 

IAS curves seem to mirror the trend of drill wear stages. It is clearly demonstrated that 

the IAS curve trend decreases as a function of drill life. At the beginning of drilling 
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operations, there is a reduction of the IAS, showing that the drill bit begins to wear as 

soon as the drilling operation starts. Therefore a steady period follows where the drill is 

moderately worn. At the end of its life, the drill wears at an accelerated rate with an 

increase in friction between the tool and work-piece and the IAS also decreases 

consequently. These results merely demonstrate that the friction increases torque and 

diminishes the angular speed. What could then be their impact on the mechanical power 

as a product of the two? This is considered in section 5.2.2.4. 

 

Hence from the RMS torque and IAS values presented in figure 5.7, one can 

clearly see that the IAS curves obtained are essentially mirror images of the torque 

curves. And superimposing these curves on the same graph, the general trend in drill 

wear development could be as shown in figure 5.8.  

However, it can be noticed that the trend of these curves are accelerated at the end 

of drill life and seems to be useful for the detection of the breakage drill failure. The on-

line monitoring in this case could not avoid the possibility of scrapping parts or damaging 

the work-piece. 
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Figure 5.8: Drill wear stages function of drill life using torque and IAS trends 

  

5.2.2.2 Statistical parameter features 

 

When comparing the characterization of signals of a sharp drill and a worn drill, 

the rms feature appears to be an obvious choice feature. But other signal metrics based on 
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the time domain waveform can also be used to evaluate the patterns and levels of 

different measured signals. They are the peak value, the crest factor and the kurtosis. The 

mean value was not meaningful on some channels and was therefore not used. Although 

the kurtosis of a signal is often used for similar reasons as the crest factor, it was also 

taken into consideration for confirmation of crest factor results. As far as drilling 

operations are concerned, the peakiness of a signal would not be a realistic feature 

indication due not only to the stochastic drill behavior, but also because the peak level is 

not an averaging statistical value. Any spurious data caused by stochastic phenomena or 

noise could have a significant effect on the peak level. Therefore, one could not expect 

better results with derivative factors such as crest factor and kurtosis. The rms value that 

find favor in the computation is largely used but the choice of sample length or a broad 

band of frequencies sensibly influenced the results. 

 

Figures 5.9 to 5.12 and figures in appendices 1 and 2 show typical examples of 

the statistical parameters for drills D1, D2 and D3.  They all display curves with similar 

trends for different signal metrics considered.  Features were extracted from thrust and 

drift vibrations, IAS and torque signals. The peak value, the rms value, the crest factor 

and the kurtosis were calculated and plotted as a function of the number of drilled holes. 

Contrary to the crest factor and kurtosis, the peak and rms values seem to be well 

correlated with the wear and seem to serve as good indicators of damage. The evolution 

of the computed peak and rms signals as functions of the number of drilled holes remains 

almost constant during the normal cutting until the drill failed at the 25
th

 hole and then 

starts to increase significantly for all the signals except for the rms of the IAS that 

decreases. Indeed, both the rms and peak graphs present a smooth change during normal 

cutting that could be explained by a progressive deterioration of drill condition. At the 

end of drill life, the peak graphs present sharply increased changes while it is attenuated 

for the rms graphs.  When comparing the two features in the presence of transient signals 

(spikes) specifically when the drill is worn, the spikes exhibit high peak value while the 

rms averages the peaks out. 

Unfortunately, crest factor and kurtosis results are not consistent and this was 

experienced for different samples tested.  
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Figure 5.9: Peak value of sensor signals for each hole  

 

Figure 5.10: RMS value of sensor signals for each hole   
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Figure 5.11: Crest factor of sensor signals for each hole 

 

Figure 5.12: Kurtosis value of sensor signals for each hole  
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To summarize the discussion on the time domain signal metrics: good correlation 

between the drill tool condition and the peak value as well as the rms value has been 

observed for the signals on all four channels. The trend of curve is that the computed 

values remain quasi constant during the normal cutting period and starts to increase or 

decrease rapidly at the end of the drill life. The rms feature could therefore be very useful 

for sending a warning signal at the end of drill life or drill failure detection. However, the 

peak value is prone to give a false alert during drilling operations because of the high 

level of transient vibrations (spikes) when the drill is worn while the spikes are largely 

attenuated by the averaging procedure in the calculation of the rms.  

 

5.2.2.3 Torque against IAS drill wear rates 

 

The results from drill wear rate have clearly shown that both conventional and 

IAS measurements could provide comparable diagnostic information. The analysis of 

normalized torque and IAS shown in figure 5.13 based on drills D2 and D3 clearly shows 

that the percentage torque changes due to the deterioration of the drill are more 

significant than the IAS changes. These changes are of the order of 65% for measured 

torque while they are less than 2.5% for the measured IAS. This high percentage change 

of torque is largely demonstrated by the existing published paper reviews which 

successfully demonstrate the merit of conventional technologies in TCM based on force 

measured signals and its corresponding sensors used. While this success is undoubtedly 

evident in researches performed in laboratories, it however seems that this TCM 

approach has the effect of obscuring its failure in the application on unmanned machining 

in drilling operations.  Thus, one of the essential problems to overcome should be the 

development of effective and reliable sensor systems to monitor the drilling process that 

could facilitate automatic corrective action in unmanned machining area. Decades of past 

research using conventional technologies in drilling have also failed to respond to the 

need of such sensor systems for a flexible manufacturing industry that could 

comprehensively be controlled by an automated system. Hence, as a response to newly 

designed sensors in drilling, the present encoder- and strain-based methods are compared 

as an addition to conventional sensor-based methods. 
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As discussed earlier, the IAS measured via an encoder-based sensor has proven 

that it could be correlated to the drill wear as it is the case for the measured torque via a 

strain- based sensor. Despite it being less sensitive compared to the torque due to small 

variation of periods between sharp and dull drill pulses, it however should not be an issue 

to assess pulse period small changes when considering progress in new technologies 

where digital analysis can differentiate decimal between small fractional changes. Indeed, 

different researches have illustrated not only the benefits of IAS measurement in rotating 

machines as an important TCM parameter but have also demonstrated that it could be 

measured accurately using a high resolution. For instance, Li et al. (2005) and Gu et al. 

(2006) advised that high resolution encoders are effective and accurate in the 

discrimination of small changes specifically in the frequency domain. Their results 

demonstrate that the measurement of the IAS outperforms conventional vibration analysis 

in the diagnosis of incipient faults such as motor bar defects and shaft misalignment. 

These results were also confirmed by the work of Fyfe and Munck (1997) where higher 

sampling rates on keyphasor and data signals resulted in improved accuracy in spectral 

results by improving the measurement of the keyphasor pulse period. If the problem 

could be to which extent the small changes must be correlated to drill wear, the results 

shown in figure 5.13 seem to be well correlated for both sensors used. This is a very 

important feature in the development of an instrumented tool as it is used in other 

machining operations using straight edged cutters. In fact, in rotary machines, non-

contact measurements can be implemented by using a keyphasor or so-called zebra strips 

(Resor et al., 2004 and Fyfe and Munck, 1997) that could be attached as a band around 

the spindle shaft. Such a sensor is cost effective and unlike existing conventional sensor 

technologies, it seems not only flexible to implement but could also be used as custom-

made sensors.  

 

In conclusion of this section, the investigation demonstrates that it is also normal 

to monitor the IAS in the same manner as the conventional monitoring technologies 

monitor the forces or vibrations. In addition, it reveals that the encoder-based sensor 

presents a great potential as a flexible sensor in a production environment. Based on the 

comparison of the above results, it could be argued that the monitoring of the IAS as a 
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means of monitoring the drill bit condition is feasible in the same way as it is for the 

force to change with drill wear. The detection of the small change in IAS level with time 

is monitored by means of a high resolution encoder or high sampling rates on keyphasor 

that measure accurately the rotational speed. The results presented in section 5.4.1 seem 

to be in favor of the above conclusion as the 1024 high resolution encoder measures more 

accurately the IAS than one pulse per revolution. 
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Figure 5.13: Comparison of torque and IAS normalized values for two drill samples 

 

5.2.2.4 The mechanical power 

 

The mechanical power expressed in Watt as the product of torque (Nm) and 

angular speed (rad/s) has been calculated from the respective rms values obtained 

previously. The results are shown in figure 5.14 where the average mechanical power is 

plotted against the number of holes for drills D1, D2 and D3 respectively. As expected, 

the power follows the same trend as the torque graph. The power remains more or less 

constant around 200 Watt until the drill fails when it starts to increase significantly to 
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reach approximately 280, 500 to 800 Watt. Note that the changes in power are of the 

same order as for the torque around 65%. Note that the milling machine has a power 

specification of 2 CV or Horsepower (1472 Watt).  

 

These results confirm the magnitude changes obtained with the normalized rms 

torque and IAS data presented above and also provide similar diagnostic information 

comparable to the estimated power based on spindle power (Kim et al., 2002). They have 

proposed an analytical estimation of drill wear based on spindle motor power integrating 

a drill wear torque model. Unfortunately, this method was more suitable to the laboratory 

than to real time because of the use of dynamometer to measure the cutting force but 

could well support the spindle motor power estimation in real time.   

 

 

Figure 5.14: Computed power from torque and IAS RMS values against the number of holes for 
drills D1, D2 and D3 respectively 
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5.2.3 Sensor signal frequency domain analysis 

5.2.3.1 Signal frequency responses 

 

After the time domain analysis, the measured signals were further analyzed in the 

frequency domain to determine their frequency contents and their localization. The 

frequency domain analysis used in conventional technology schemes generally consist of 

the spectral evaluation related to the dynamics of the cutting system. In general, spectra 

are derived from FFT applied to measured signals in the frequency ranges of interest. 

Note that FFTs are extensively used in the treatment of random vibration problems for 

the purposes of physical interpretation of measured data (Heyns, 2003). When applied on 

measured signals, the results of frequency responses illustrate the frequency content of 

the signals. The dominant frequencies observed on the spectra are often related to a 

particular machine component or process in the system and can thus aid in determining 

the severity of the signal.  

 

Based on the above explanation, FFT was applied to the measured signals and the 

resulted frequency responses are shown in figures 5.15 to 5.24 where distinct features 

that support the drill wear monitoring can be extracted through different frequency bands. 

To discriminate the sharp and the worn drills in conventional technologies, it is expected 

that the measured signal magnitude of the worn drill will increase sharply just before its 

failure. Consequently, it is expected that the measured IAS signal of the worn drill will 

decrease due to additional friction. Hence two measurements were taken for each of the 

three drills at the beginning and the end of their lives for comparison of the magnitude. 

The corresponding frequency responses are plotted in figures 5.15 to 5.24 beside the 

measured time domain signals to illustrate the magnitude changes in both time and 

frequency domains. The broad band nature of dominant frequencies observed on the 

vibration spectra in the frequency domain analysis clearly illustrates the aperiodic nature 

of the drilling process. It can be seen from a comparison of the sharp and worn frequency 

response results that as the drill tool wears and the instability in the worn signal appears, 

the magnitudes of monitored parameters increase at the excited frequencies. This is in 

accordance with conventional vibration monitoring strategies that rely on the response 
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amplitude difference between a sharp drill and a worn drill. As expected, the amplitude of 

worn drill parameters is generally greater than the amplitude of sharp drills except for the 

IAS which reduces as the drill condition deteriorates. The results also show that the 

frequency bands of interest are as defined in section 4.3.1 for all the measured signals; 

dominant frequencies of the measured vibration signals are observed in the ranges of 10- 

1500, 2000-3000 and 3800-5000 Hz. Almost 14 Hz and 5 Hz frequencies of the measured 

IAS and torque signals correspond respectively to the rotational frequency of the spindle 

and to the frequency of the telemetry signal transmission.  

 

For all the measured signals, the changes observed in the frequency responses 

related to the drill bit condition are well illustrated in the RA developed in section 5.3 

where the evolution of the drill condition (drill wear) is shown by plotting the polynomial 

regression of the frequency content (FC) of each  measured signal as a function of drill 

life. 

 

Figure 5.15: Drill D1 Thrust acceleration using 2
nd

 and 39
th
 holes: (a) Time domain response 

(sharp drill); (b) Time domain response (worn drill); (c) Freq. domain response (sharp drill); (d) 
Freq. domain response (worn drill). 

(a) 

(b) 
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Figure 5.16: Drill D1 Drift acceleration using 2
nd

 and 39
th
 holes: (a) Time domain response (sharp 

drill); (b) Time domain response (worn drill); (c) Freq. domain response (sharp drill); (d) Freq. 
domain response (worn drill). 

 

Figure 5.17: Drill D2 Thrust acceleration using 2
nd

 and 26
th
 holes: (a) Time domain response 

(sharp drill); (b) Time domain response (worn drill); (c) Freq. domain response (sharp drill); (d) 
Freq. domain response (worn drill). 

 

(a) 

(b) 
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Figure 5.18: Drill D2 Drift acceleration using 2
nd

 and 26
th
  holes: (a) Time domain response (sharp 

drill); (b) Time domain response (worn drill); (c) Freq. domain response (sharp drill); (d) Freq. 
domain response (worn drill). 

 

Figure 5.19: Drill D3 Thrust acceleration using 2
nd

 and 41
st
 holes: (a) Time domain response 

(sharp drill); (b) Time domain response (worn drill); (c) Freq. domain response (sharp drill); (d) 
Freq. domain response (worn drill). 
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Figure 5.20: Drill D3 Drift acceleration using 2
nd

 and 41
st
 holes: (a) Time domain response (sharp 

drill); (b) Time domain response (worn drill); (c) Freq. domain response (sharp drill); (d) Freq. 
domain response (worn drill). 

 

 

Figure 5.21: Drill D1 IAS using 2
nd

 and 39
th
 holes: (a) Time domain response (sharp drill); (b) 

Time domain response (worn drill); (c) Freq. domain response (sharp drill); (d) Freq. domain 
response (worn drill). 
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Figure 5.22: Drill D2 IAS using 2
nd

 and 26
th
 holes: (a) Time domain response (sharp drill); (b) 

Time domain response (worn drill); (c) Freq. domain response (sharp drill); (d) Freq. domain 
response (worn drill). 

 

Figure 5.23: Drill D3 IAS using 2
nd

 and 41
st
 holes: (a) Time domain response (sharp drill); (b) 

Time domain response (worn drill); (c) Freq. domain response (sharp drill); (d) Freq. domain 
response (worn drill). 
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Figure 5.24: Drill D1 Torque using 2
nd

 and 39
th
 holes: (a) Time domain response (sharp drill); (b) 

Time domain response (worn drill); (c) Freq. domain response (sharp drill); (d) Freq. domain 
response (worn drill). 

 

 The above analysis of frequency responses was done on measured signals for 

drills D1, D2 and D3, except for the torque measurements where the results of one drill 

are shown. The reason is that the torque signals, although dynamic, were measured at 

lower frequencies and are therefore without great significance in the frequency domain. 

Indeed, the torque signals from the strain measurements were not sufficiently stationary 

and periodic for frequency domain analysis but useful and meaningful in time domain 

analysis.  

5.2.3.2 Spectral analysis 

 

The results obtained in section 5.2.3.1 from the frequency responses compared 

two measurements from a sharp drill signal to a worn drill signal. In the following 

spectral analysis, the spectral evaluation related to the dynamics of the drilling of holes is 

illustrated by plotting on a single graph the ensemble of spectra of each drill used. Hence, 

data from drilling operations were used to create three dimensional waterfall plots that 

show the frequencies and magnitude of PSD extracted from the measured signals. A PSD 

was then performed on every measured signal recorded from the drilled hole by means of 
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drills D1, D2 and D3 until their failure. The PSD observations are quite similar not only 

in the time domain but also to what the literature on drilling operations has provided. No 

noticeable change in spectral magnitude could be observed during normal drilling until 

the drill ceases to produce the required hole quality, passing from a usable to a worn 

state. If at that stage it has been observed that the signal magnitude in the time domain 

suddenly increased, the results in the frequency domain also exhibited the same behavior. 

Thus the frequency content changes in accordance with the deterioration of the drill by 

increasing in magnitude when excessive damage occurs at the final stage. In the case of 

drill vibrations for instance, these FC localizations are comparable to the frequency 

responses shown in Table 4.5 and in section 5.2.3.1.  

 

To monitor excited frequencies observed in the above range of frequency 

responses, reliable features contained in vibration, IAS and torque signal measurements 

were used by means of waterfall plots where PSD magnitude are shown versus frequency 

and the number of drilled holes.  

 

A. Vibration Spectral Analysis in thrust and drift directions 

 

Figures 5.25 and 5.26 show three dimensional waterfall spectral maps extracted 

from drills D1, D2, and D3 for vibration measurements in the thrust and drift directions 

respectively. These waterfall plots show the PSD magnitude changes as a function of 

frequency and the number of drilled holes. Indeed, the plots illustrate that the PSD 

amplitude remains quite small during normal drilling operations and suddenly increases 

at the end of drill life. The plots also show that the drill has many vibration modes in both 

the thrust and drift direction as it seems that excited frequencies are not the same for each 

drill. In general, the excited frequencies are comprised of the range of modal parameters 

estimated in the frequency responses analysis. The spectral analysis results from vibration 

signals were therefore plotted in the range of 0.0–6.5 kHz, the region comprising the 

excited frequencies. It can be seen that the excited frequencies are not the same for the 

three drills tested. This could find explanation in the work of El-Wardany (1995) where 

he has established a correlation between the PSD of vibration signals and different types 
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of wear (chisel, outer corner, flank and margin). Nevertheless, it is beyond the scope of 

this work to correlate the type of wear to specific spectral energy or to estimate the 

sensitivity of vibration signals to different wear types.   But the findings have sufficiently 

shown that there is a correlation between the increases in amplitude of excited 

frequencies with the progress of wear. This is illustrated by the FC changes depending of 

the severity of the wear.  

 

A.1 Spectral analysis in the thrust direction 

Figure 5.25 shows a three dimensional waterfall plots that illustrate the spectral 

density of vibration signals measured in the thrust direction for drills D1, D2, and D3 

respectively. The spectra show that the FC increase significantly at the end of drill life 

where the spectral energy is high in the frequency bands of 3800-5000 Hz for drill D1, 

10-1500 Hz for drill D2, and both 10-1500 and 2000-3000 Hz for drill D3. Indeed, these 

frequency bands show distinctive features that can support discrimination between a 

sharp and a worn drill. These frequency bands will be used in the further study in 

decision making by means of RA. Note that the failure of the drills does not excite the 

same frequencies. As said before, there should be a correlation between different types of 

wear and the spectral behavior of the vibration signal that lead to different excitation. 

Not only have the findings sufficiently shown that the amplitudes of excited 

frequencies are most likely to increase with the progress of wear but also show the rapid 

progression of the spectral amplitude at the end of the drill life with a rate change of more 

than 800% in some frequency regions. It can be concluded that the FC changes depend on 

the severity of the wear.   
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Figure 5.25: Waterfall plots – PSDs of vibration measurements in the thrust direction for D1, D2 
and D3 respectively  

 

A.2 Spectral analysis in the drift direction 

Figure 5.26 shows three dimensional waterfall plots that illustrate the spectral 

density of vibration signals measured in the drift direction for drills D1, D2, and D3 

respectively. Once more the spectra show that the FC increase significantly at the end of 

drill life where the spectral energy is high in the frequency bands of 3800-5000 Hz for 

drill D1, 10-2000 for drill D2, and 1000-3000 Hz for drill D3. These frequency bands are 

practically similar to the ones found in the thrust direction and can also support the 

discrimination between a sharp and a worn drill.  

As discussed above, the excited frequencies in the drift direction increase with 

drill wear. In some cases, disturbances (data failure, chip effects, machine components, 

chatter, etc.) could probably affect the gradual increase of the PSD. In general the 

observed chatter was an indication of drill tool wear and was a source of high spikes 

vibrations at the end of drill life. Nevertheless, the general trend on different spectra is 

the FC magnitude changes are very low during normal drilling until drill failure at the 

end of its life. 
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Figure 5.26: Waterfall plots – PSDs of vibration measurements in the drift direction for D1, D2 and 
D3 respectively  

 

B. IAS spectral analysis 

Figure 5.27 shows three dimensional waterfall plots that illustrate the spectral 

density of the angular speed signals measured at two different speeds, 1350 RPM (for 

drills D10 and D7) and 870 RPM (for D5 and D2). These plots illustrate the presence of 

the rotational speed frequency at the running speeds around 22.5 Hz and 14.5 Hz. It is 

difficult to visualize the change of the spectral amplitudes through these plots. The main 

reason could probably be found in the small changes of the speed from a sharp drill to a 

worn drill. Compared to the results from the frequency responses using FFT in two 

dimensions, the IAS three dimensional waterfall plots seem not to present distinctive and 

evident features that could clearly support the classification of the drill condition. Note 

the first two plots present a fixed or residual frequency around 12 Hz beside the main 

rotational frequency of 22.5 Hz. If that fixed frequency is related to any vibration caused 

by the machine, it is explained through the paper of Groover et al. (2005) that it will 

remain at that fixed order regardless of the changes in the running speed.   

 
 
 



 

 

97 

 

 

Figure 5.27: Waterfall plots of IAS measurements during drilling at (a) 1250 RPM for D10 (3mm) 
and (b) D7 (6mm), (c) 870 RPM for D5 (8mm) and (d) D2 (10mm)   

 

C. Strain spectral analysis 

Figure 5.28 shows three dimensional waterfall spectral maps extracted from drills 

D1, D2, and D3 for the torque strain measurements. These waterfall plots show the PSD 

magnitude changes as a function of frequency and number of drilled holes. Indeed, the 

plots confirm the frequency response results observed in section 5.2.3.1 that the measured 

strain signal is transmitted via telemetry at low frequency that is around 5 Hz. Frequency 

at which the signal was observed and nothing could be seen then after. The waterfall plots 

also reveal minor changes in spectral amplitudes during the normal cutting and then 

sensibly increase at the end of the drill life except for the first drill where measurements 

were probably affected by the multiple disturbances encountered during that 

measurement. Note that within 250 Hz frequency band of the telemetry, the FC in the 

strain signal was given by the frequency at which the telemetry radio was transmitted that 

is 5 Hz. The corresponding torque is calculated using the appropriate calibration as 

(a) (b) 

(c) (d) 
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shown in chapter 4. Once more, the findings have illustrated a correlation between the 

amplitudes of telemetry transmission frequency increasing with the progress of drill wear.  

     

 

 

 

Figure 5.28: Waterfall plots – PSDs of strain measurements (torque) for (a) D1, (b) D2 and (c) D3  

 

5.2.4 Sensor signal time frequency domain analysis 

 

The signal processing will be concluded with a brief analysis in the time 

frequency domain. The above spectral analyses have revealed information about the 

frequency contents in measured signals. In the time frequency domain, these signals are 

analyzed using 3-D waterfall plots to determine not only the FC, but also to indicate the 

frequency temporal localization. The time spectral map waterfalls shown in figures 5.29 

to 5.31 illustrate the spectral evolution of each measured signal with respect to time. Note 

(a) (b) 

(c) 
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that these representations in the conventional spectrum are based on assumption that 

signals which are analyzed are random and stationary. Indeed, the time spectral map 

results reveal that the drilling signals have lost to some degree their highly non stationary 

and transient behavior to present a certain periodicity. Consequently one could observe 

that there is a certain convergence in the distribution of the PSD of measured signals, to 

specific frequencies that have been excited during the drilling operations.  In the case of 

drill D1 for instance, the convergence of the PSD distribution around 4500 Hz in the 

frequency band of 3800-5000 Hz is very well illustrated where the FC magnitude is 

increasing with time for both thrust and drift signals. At the same time the PSD 

magnitudes of no excited frequencies were very low and almost constant. The same trend 

is noted in the other measured vibration signals except for the cases where many 

frequencies were excited in the same regions. In fact, drills D2 and D3 have exhibited 

different convergence of the PSD distribution in different band regions comprising 10-

1500, 1500-2500, and 3800-5000 Hz in both thrust and drift direction. 

 

The analysis in the time frequency domain using the PSD changes with respect to 

time was also applied on the signals from measured IAS and torque signals. All these 

spectral map waterfall plots illustrated a convergence of the PSD distribution respectively 

at the rotational spindle speed and at the frequency corresponding to the telemetry radio 

transmission of the signal. These frequencies are respectively around 14.5 Hz and 5 Hz. 

Despite their convergence at these specific frequencies, the IAS and torque time spectral 

map did not illustrate a decreasing or an increasing trend of the FC with respect to time, 

probably for multiple reasons: short period of data acquisition, disturbances encountered 

in strain measurements, non-conformity in the stationary and periodicity of strain signals, 

minor changes between the angular speed of a sharp drill and a worn drill, etc.  

 

The waterfall plots shown in figures 5.29 to 5.31 illustrate the time spectral maps 

of signals measured respectively on drills D1, D2 and D3 in the four channels: thrust and 

drift vibrations, IAS and torque measurements. The ranges of excited frequencies are 

similar to the frequency responses studied in section 5.2.3 and will be used to identify the 

FC range of interest and then band pass filtered the measured signals during the RA.  
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Figure 5.29: Time Spectral Map Waterfall for drill D1 – (a) Thrust Acceleration; (b) Drift 
Acceleration; (c) IAS; (d) Torque 

 

 

 

 

 

 

 

(a) 
(b) 

(c) (d) 
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Figure 5.30: Time Spectral Map Waterfall for drill D2 – (a) Thrust Acceleration; (b) Drift 
Acceleration; (c) IAS; (d) Torque 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 5.31: Time Spectral Map Waterfall for drill D3 – (a) Thrust Acceleration; (b) Drift 
Acceleration; (c) IAS; (d) Torque 

 

 

 

 

 

(a) (b) 

(c) (d) 
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5.3 Decision making – Regression analysis 

 

The relationships between analyzed signals and drill wear form the basis of the 

present diagnosis system. The state-of-art technology in drilling operations has not yet 

revealed a published model or numerical approach to model the drill wear for a multiple 

of reasons discussed previously: drill geometry, dynamics and material properties of the 

tool, non-uniform hardness of the work-piece material or the cutting parts, etc. Drill life 

is still not predictable and it varies from one operation to another. However, based on a 

number of studies, Jantunen (2006a) arrived at some interesting conclusions that could 

make it sensible to monitor a number of parameters such as the rms-value or an 

amplitude value at a specific frequency if an FTT has been used. This useful technique 

was applied at the slow development of the drill wear process but which is rapidly 

increasing at the end of the drill life.  

  Indeed, it is about developing a tool using a higher order regression function that 

can quite well mimic the development of analyzed signals (vibrations, IAS and torque) 

resulting from the drill wear. The approach of making a decision on drill condition using 

a high order regression function is similar to the trend analysis studied in section 3.5.2 

where the drill is considered worn when the rate of change from the previous sensor level 

with time is significantly consistent. This RA technique is used on the assumption that 

the wear progression is moderate and/or slow during normal drilling operations and 

severe at the end of drill life. When applied on such wear progression, the regression 

function results illustrated a quick and fast response when using polynomial functions of 

the sixth and ninth order while the second- and third- order functions reacted very slowly. 

Since there is a lot of variation from test to test in the monitored parameters, the FL was 

then used to automatically classify these monitored parameters. 

Some of the advantages of using higher order polynomial regression function over 

the use of the average method are its ability for quick fault detection at the end of drill 

life and mostly it also reduces the variation of noisy data from statistical parameters 

calculated in time domain by smoothing sudden individual peaks and keeps the trend of 

the analyzed parameter.  To some extent it mimics the shape of the wear development 

enabling prognosis of the development of the monitored signal with a minimal risk of 

damaging parts. When compared with conventional monitoring methods that use time 
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consuming processes analyzing large amounts data, RA makes the analyzed signal stable 

and there is no need to store large amounts of data but only a summary of terms need to 

be saved for each analyzed parameter. 

Based on the above assumptions from the literature that support the current 

experimental data which also reveal that wear progression is moderate during normal 

drilling and severe at the end of drill life, a trial and error RA method using MATLAB 

code has been tested on the experimental test data to assess the wear rate. Results are 

presented in the time and frequency domains. The RA was preferred to the use of moving 

average or the exponential function not only for its ability of smoothing time series data 

but also because it seems to react quickly to change the monitored parameter, specifically 

at the end of the drill life.  

5.3.1 Regression analysis in time domain 

 

The prognosis based on the regression analysis does not provide the drill life 

duration but could allow a quick response after the rate of signal change has reached a 

certain percentage of the normal cutting rate. This could be a sufficient indication of the 

drill condition. At this stage, one cannot avoid a defect of at least one part as the change 

often occurs quickly at the end of drill life.  

The results in figures 5.32 to 5.34 for drills D1, D2 and D3 are based on the rms 

value of each drilled hole signal calculated in time domain analysis and plotted against 

the number of holes that lead to drill failure. These results show that the RA function in 

the time domain has a high capability of mimicking with success the development of drill 

wear via the monitored parameter such as rms value from thrust and drift vibrations, as 

well as from IAS and torque measurements. The RA also has the capability of reacting 

quickly enough at the end of drill life as the rate of the signal changes is big enough. This 

quick response of the high order regression function at the end of drill life happens as 

soon as the rate of change from the previous sensor level reaches about 800%, 3%, and 

35-65% for the vibration, encoder and torque signals respectively. This is a significant 

change for each case even if the vibrations seem to be more sensitive than the others. In 

modern life where the time subdivision is more accurate, the change in rotation speed of 

3% could be large enough to be detected and therefore the decision on the monitored 
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parameter being effective. However the drawback of such a quick response in the 

presence of noisy data is that it could lead to another quick response and then provide 

unreliable indications. 

 
Figure 5.32: Time Domain Polynomial regression for Drill 1: (a) Thrust Acceleration; (b) Drift 
Acceleration; (c) IAS; (d) Torque 

(a) (b) 

(c) (d) 
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Figure 5.33: Time Domain Polynomial regression for Drill 2: (a) Thrust Acceleration; (b) Drift 
Acceleration; (c) IAS; (d) Torque 

 
Figure 5.34: Time Domain Polynomial regression for Drill 3: (a) Thrust Acceleration; (b) Drift 
Acceleration; (c) IAS; (d) Torque 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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5.3.2 Regression analysis in frequency domain 

 

Based on the frequency responses and the spectral analysis performed in 

frequency domain analysis, the maximum spectral amplitude value was calculated in 

different band regions of the excited frequencies that show distinctive features that could 

support the drill wear monitoring. In the case of vibration signals, the band regions that 

were more sensitive to drill wear are 3800-5000 Hz for drill D1, 2000-3000 Hz for drill 

D2 and 10-1500 Hz for drill D3. While the IAS and torque frequencies of interest were 

unchanged and the calculation of FFT maximum was performed respectively in the 8-20 

Hz and 0-10 Hz band regions. As discussed in section 5.2.3.2, it is evident that drills are 

not failing in the same way and therefore the vibration excited band frequencies are not 

repeatable in each case while the rotational and the telemetry transmission band 

frequencies would remain the same. The correlation between the frequency and the type 

of wear is not part of this dissertation. These calculated maximum values were then used 

for the prognosis of wear development by means of a higher order function regression.  

The results are presented in figures 5.35 to 5.37 for drills D1, D2, and D3 

showing the RA function applied to the maximum values of the calculated FFT. The 

results revealed that the RA function applied in the frequency domain can mimic the 

development of the monitored parameters such as the maximum spectral amplitude 

calculated from measured thrust and drift vibration signals, as well as from measured IAS 

and torque signals. As it was been demonstrated in the time domain, the high order 

regression function in the frequency domain also has the capability of reacting quickly 

enough at the end of drill life. This quick response of the high order regression function 

at the end of drill life happens as soon as the rate of change from the previous sensor 

level reaches about 800%, 3%, and 35-65% for the vibration, encoder and torque signals 

respectively. This is a significant change for each case with the regression on the 

vibrations being more sensitive than the others. Once more this trend of the regression 

function presents the risk of damaging at least one part as it is increasing quickly at the 

end of the drill life.  

 

A mathematical model being ignored with drilling operations presenting different 

drill lives, the RA analysis function held great promise in decision making. It can provide 
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not only the smooth trend of drill wear development but also the rate at which values are 

changing minimizing the effect of disparities that arise when considered for instance the 

absolute values that are prone to send spur alarms. However, one could not avoid 

cautioning the reader about the effectiveness of the findings, specifically the application 

of the RA on the IAS where a study in greater depth is recommended. Indeed, the 

calculated IAS presents some disparities in the data so that the application of a high order 

polynomial function on such noisy data would tend to become unstable. The fact that the 

drill rotates in continuous contact with the work-piece wearing and reshaping the cutting 

edges, this cutting process lead to both the reduction and the increase of the angular speed 

and therefore affects the duration of the period between pulses. Thus, it appears that the 

use of the RA is not really the problem but it is the nature of the IAS data that could 

cause problem. Nevertheless, the present results demonstrate a good correlation between 

the RA analysis and the drill life and can enrich the literature in the search of an effective 

and reliably sensor systems in unmanned drill tool wear monitoring.    

 
Figure 5.35: Frequency Domain Polynomial regression for Drill 1: (a) Thrust Acceleration; (b) Drift 
Acceleration; (c) IAS; (d) Torque 

(a) (b) 

(c) (d) 
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Figure 5.36: Frequency Domain Polynomial regression for Drill 2: (a) Thrust Acceleration; (b) Drift 
Acceleration; (c) IAS; (d) Torque 

 
Figure 5.37: Frequency Domain Polynomial regression for Drill 3: (a) Thrust Acceleration; (b) Drift 
Acceleration; (c) IAS; (d) Torque 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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5.4 Reliability of the Encoder Results 

 

The signal analysis and the decision making by means of the regression analysis 

have demonstrated the usefulness of an encoder for IAS monitoring as it can provide 

similar diagnostic information comparable to conventional signal analysis that 

characterized vibration and torque features related to drill wear. The popular trends 

developed in TCM to date in both sensors and signal processing methodologies widely 

follow conventional technologies. However, their potential weaknesses are well known in 

flexible manufacturing. Therefore the development of effective and reliable sensor 

systems is essential to achieve full potential of unmanned machining operations. Similar 

to the sensing of the tool shank without contact proposed in the paper of Vilcek and 

Poskocilova (2008), the encoder-based sensor is probably another step in the 

development of some form of instrumented tool to overcome the lack of custom-made 

sensors in drilling. Between the sensing methodologies developed in this work, the 

encoder presents the advantage of ease of installation, not encumbering and seems very 

practical to be used in real time for monitoring purposes. For this reason, additional drill 

bits with different diameter sizes were tested to investigate the reliability of the encoder 

based sensor and examine to what extent the results obtained based on 10 mm diameter 

drill were valid. Before that, the encoder resolution is herein investigated to find the 

simplest and practical way of using the encoder. If for instance one pulse resolution 

suffices to give successful results, then the opportunity of using a cheaper encoder sensor 

will be greater. Probably the IAS measurement could be reduced cost effectively to a 

simple angular speed by also increasing the sampling frequency for the accuracy of the 

measurement. 

5.4.1 Encoder resolution 

 

The resolution of the encoder was tested both by re-sampling the 1024 pulses per 

revolution signal to one pulse per revolution. Drills were tested using only two channels 

with output signals respectively of one and 1024 pulses per revolution at the sampling 

rate of 200 000 Hz. The goal is to show if there is any significant difference in the results 

when analyzing signals with two different resolutions. The success of results could mean 
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that a keyphasor represents an alternative sensing method to the shaft encoder based 

signals. A keyphasor will probably be preferable to the encoder because in the on-line 

monitoring for instance, one cannot afford to instrument hundreds or thousands of drills 

in series with shaft encoders. Needless to say, this is expensive and not economical for 

the process.  The re-sampling results are shown on figures 5.38 to 5.40 where the rms 

value of IAS from both channels were computed and plotted against the number of drilled 

holes for drills D2, D3, D4, D5, D9, and D10. The results reveal that the calculated 

angular speeds are quasi similar in both channels for 8mm, 10mm and 12 mm size drills 

while the results for small drills (3mm and 4mm) seem to present some minor disparities. 

Nevertheless, the drill size is not the sole factor that could justify the high speed obtained 

with the high resolution (1024 pulses) encoder. As discussed in section 3.3.5.1 the 

measurement of the IAS is based on the measurement of either an elapsed time between 

successive pulses or counting pulses during a prescribed period of time. In this case the 

ET method was used and taking in account 1024 pulses per revolution rather than one 

seems to give a precise and accurate estimation of the angular speed. This assumption 

seems to be demonstrated for 1024 pulses where a small fraction of a revolution could 

provide an indication of the instantaneous speed while a complete revolution is required 

for a pulse per revolution to estimate the necessary ET to estimate the speed. The results 

show that the estimation of the IAS in both channels is quite the same for drills turning at 

low RPM and illustrate minor difference for drills operating at high speed where the 

accuracy is given by the high resolution of the number of pulses.       
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Figure 5.38: RMS value of IAS in RPM for D9 (4mm) and D10 (3mm) drills respectively for 1024 
and 1 pulses per rev. 

 

Figure 5.39: RMS value of IAS in RPM for D2 (10mm) and D3 (10mm) drills respectively for 1024 
and 1 pulses per rev. 
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Figure 5.40: RMS value of IAS in RPM for D4 (12mm) and D5 (8mm) drills respectively for 1024 
and 1 pulses per rev. 

 

 

Therefore if the decision making should be based only on the detection of a 

change in sensor magnitude feature level with time where the detection of a significant 

change rate in sensor level is a major criterion, the above results have shown that the 

encoder resolution does not significantly impact the results. It can be concluded that one 

keyphasor could represent a positive alternative sensing method to the multi pulses shaft 

encoder based signals in the same manner Vilcek and Poskocilova (2008) used a distance 

sensor without contact to measure the deflection of the drill in a plane normal to the drill 

axis. The drawback of this sensing method is the reduction of the IAS measurement to a 

single pulse per revolution. However, the results show that the rate of change in sensor 

level with time is consistent in both cases even if the accuracy was achieved with the IAS 

measurement by means of the multi pulses encoder based sensor.  
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5.4.2 Drill wear rate using IAS drills’ different size 

 

Results presented when considering a 10 mm diameter drill have shown that IAS 

signals can provide similar diagnostic information comparable to conventional 

technologies. In this section, an investigation was made to establish the effectiveness of 

generalizing the above results to a range of drill sizes. Specifically for smaller size drills 

where fracture and breakage are typical failure modes encountered. For that, polynomial 

RA analysis was applied on the rms value of IAS signals measured for different size 

drills. Comparisons are based on the normalized rms values as the rotational spindle 

speed changes with the drill size. The results are shown on figure 5.41 using respectively 

the following drill sizes: 12mm, 10mm, 8mm, 6mm, 4mm and 3mm. From these curves, 

it seems that drills with greater sizes fit well into the pattern of conventional drill wear 

stages while small size drills do not. Indeed, small drills have a short drill life and in 

general fail due to breakage and not wear. Similar to drill wear stages of angular speed 

obtained on 10 mm drills, the curves in figure 5.41 illustrate a decreasing trend of the IAS 

with time and also show that the life of drills differ from drill to drill. Specifically, when 

drilling continuously small drills are subject to fracture failure and fail in a short life time. 

Consequently, drill wear stages resume in descendant slope curves missing the quasi 

constant normal drilling stage. At the end, these results reinforce the assumption of using 

the IAS as a recommended feature to monitor the drill condition.   

 

 

 

Drill D4: 12 mm Drill D3: 10 mm 
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Drill D6: 8 mm Drill D5: 8 mm 

Drill D7: 6 mm Drill D8: 6 mm 

Drill D9: 4 mm Drill D10: 3 mm 
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Figure 5.41: Normalized IAS trends for different drill sizes: 12mm, 10mm, 8mm, 6mm, 4mm and 
3mm 

 

 

Drill D11: 3 mm 
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CHAPTER 6: CONCLUSIONS 
 

 

 

6.1 Conclusion 

 

The suitability of the drilling process from an industrial perspective is 

predominantly linked to the economic gain in terms of cost reduction, prevention of 

downtime, prevention of tool damage, and the improvement of both quality and 

production. In order to achieve these goals, an effective and high performance TCM that 

integrates intelligent and innovative sensor technologies, comprehensive signal 

processing and powerful tools for decision making is recommended. Under such 

conditions, there is always great potential to improve the cutting drill tool utilization to its 

optimal rate. 

In this work, a comprehensive cutting test procedure was carried out with drills of 

different sizes using an encoder based sensor that could challenge the lack of interest in 

conventional technology sensors in industry; and that has been largely successful in the 

laboratory. Conventional sensors are considered more expensive and complicated 

monitoring systems to implement in industry and therefore have less value. In contrast 

this work considers the encoder as the simplest type of sensor with great diversity 

potential in industry. Hence, vibration based accelerometer sensors and torque based 

strain sensors were compared against the use of IAS based encoder sensors to assess the 

drill condition.  

Based on the test results, it has been observed that all the sensors used could 

provide similar diagnostic information related to drill wear. This good correlation 

between sensors and drill wear, specifically in the case of the encoder based sensor, is 

considered to have significant potential response to the lack of custom made drilling 

sensors. Considering that the angular speed measurement is based on the ET period of 

successive pulses, one could take advantage of recent advanced techniques in rotating 

machines that accurately measure the time subdivision to improve the measurement of 

the angular speed. In this context, the more accurate the angular speed measurement is; 
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the better will its impact be on the improvement in drill utilization rate and therefore its 

use at the optimal rate.  

If the encoder presents advantages of being practical, easy to install and not 

encumbering, additional test results have also proven that a keyphasor could represent a 

better alternative as an effective and flexible sensor in the automated industrial 

environment. 

 

Different analysis techniques were considered with minor discussions on the 

benefits and disadvantages of the techniques used. The rms statistical parameter was not 

only consistent but was also used based on the sensor signal characteristics which show 

patterns and levels of measured signals changing with the drill condition. Indeed, all the 

quantities measured could follow the drill wear stages and could provide information that 

discriminate the drill condition in the time domain. The FFT is an averaging method and 

when applied to already average measurements, it was without surprise to see good 

results in the frequency domain as well. 

 

Based on the above successful analysis techniques, one could conclude that the 

decision making trend on drill condition, based on either the averaging or the exponential 

smoothing methods, seems to be appropriate to the present tested data. However the RA 

was in contrast used on the one hand because the method was found well suited with the 

experimental data and on the other hand, it was found more appropriate to be used in the 

unmanned cutting environment for an automatic diagnostic approach. Hence, a trial and 

error based on the polynomial regression was used and the results have shown good 

correlation with drill wear. In fact and unlike averaging and exponential methods, it was 

found that the RA well mimics the shape of wear development and could be used to give 

prognosis of drill failure with a minimum risk of work-piece damage. The method has the 

advantages of smoothing time series data, filters unwanted variation of the measured 

parameters and thus provides a prognosis of the forthcoming trend of the monitored 

parameters. The major drawback of the RA remains its instability in the presence of noisy 

data.  
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6.2 Recommendations for future work 

 

At present, no significant research has been found in the literature dealing with 

the measurement of the angular speed in the field of drilling operations except few 

examples like the real time drill wear estimation based on the spindle motor power (Kim 

et al., 2002). However one can find huge number of recent publications of assessing the 

IAS using digital time interval techniques. In fact, they are based on the time duration of 

every simple pulse of the signal chain pulses. In this work a high order encoder resolution 

was chosen with the aim of improving the angular speed measurement. However it is also 

known that a high sampling rate could as well improve the measurement with less 

encoder resolution. Indeed, the comparison between the two test results was promising 

with a better accuracy when using a high encoder resolution. A wider investigation that 

could focus on both one pulse per revolution and a high sampling rate is therefore 

recommended to ensure the same accuracy and repeatability in both cases.   

 

This work has added another approach of sensing drill wear that works using 

laboratory data. In normal production where external disturbances influence measured 

signals, conventional technology based sensors were found unsuccessful and one can 

even predict a failure diagnosis in such environment. The encoder seems to be flexible 

and less sensitive to external disturbances; a wider testing approach in industry is also 

suggested including an automatic diagnosis approach such as the FL. In this context, the 

higher order polynomial regression was not only useful in decision making but could also 

be used as features in FL to diagnostic and predict automatically the drill condition. The 

incorporation of those features in a state-of- art as the ANNs would find favor in on-line 

and automated monitoring system for the classification of the drill condition. 
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APPENDIX A1: Statistical parameters for D1 
 

 

Figure A.1.1: Peak value of sensor signals for each hole  

 

Figure A.1.2: RMS value of sensor signals for each hole   
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Figure A.1.3: Crest factor of sensor signals for each hole 

 

Figure A.1.4: Kurtosis value of sensor signals for each hole  
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APPENDIX A2: Statistical parameters for D3 
 

 

Figure A.2.1: Peak value of sensor signals for each hole  

 

Figure A.2.2: RMS value of sensor signals for each hole   
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Figure A.2.3: Crest factor of sensor signals for each hole 

 

 

Figure A.2.4: Kurtosis value of sensor signals for each hole  
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