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ABSTRACT 

EFFECTS OF DIFFERENT METHODS OF AGGREGATION OF PROBABILITIES ON THE 

R&D INVESTMENT PORTFOLIO FOR OPTIMAL EMISSIONS ABATEMENT: AN 

EMPIRICAL EVALUATION 

FEBRUARY 2013 

OLAITAN OLALEYE, B.SC., UNIVERSITY OF LAGOS 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Erin Baker  

This thesis examines two possible orders of combining multiple experts in elicitations with multiple 

de-composed events: Should experts be combined early or later in the decision process? This thesis 

is in conjunction with the paper (Baker & Olaleye, 2012) where we show that it is best to combine 

experts early as later combination leads to a systematic error. We conduct a simulation to more 

fully flesh out the theoretical model. We also conduct a theoretical analysis aimed at determining 

how significantly these two methods differ. We find that all results are in accordance with the 

theory but combining experts later might lead to less error in some cases due to randomness. 

We then conduct an empirical evaluation of the two methods using data from a previous study. We 

show that the experts exhibit some form of correlation. The impact of using the two methods of 

combining experts is then evaluated using an optimal R&D investment portfolio model. We find 

that the elicitation inputs have a significant effect on the outcome of the optimal portfolio and that 

there is an advantage from combining experts early. 
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CHAPTER 1 

INTRODUCTION 

1.1 Thesis Statement 
In an earlier paper, (Baker & Olaleye, 2012) show theoretically that experts’ opinions are better 

suited to earlier rather than later aggregation due to dependency and self-correlation. This thesis 

examines the practical impact of the different methods of combining expert opinions, using work 

on the optimal energy R&D portfolio as an example.  

1.2 Background 
When assessing the probability of occurrence of a rather complex event, it is generally better to 

divide such an event up into bits and then to assess the chance of occurrence of the individual bits. 

A specific example of this is a pharmaceutical company’s choice of investment in the development 

of a new drug for a medical condition that is expected to be prevalent in a decade. It is best to first 

evaluate the odds of the medical condition being present in a decade, the possibility of the drug 

overcoming challenges at the various research and development levels, the possibility of 

developing the drug before a competitor and much more. These events should be independent or 

at least conditionally independent. In other words, it is preferable in most cases to decompose the 

event into independent events and combine them later to force the experts to think critically and 

improve decision making.  

The next step in the process of assessing probabilities of complex events is to solicit opinions on the 

likelihood of these decomposed events i.e. experts are ‘elicited’. Innate cognitive biases of human 

experts can sometimes lead to biases and errors in the estimation of these events.  
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To increase the information value of these elicitations, the general consensus is to use multiple 

experts [e.g. (Clemen & Winkler, 2004)]. Hence not only are there multiple decomposed events but 

also multiple experts with multiple innate biases. The interaction of the decomposition nature of 

most evaluations and the subjective nature of human experts usually results in different outcomes 

of the evaluations, depending on how the experts are combined. Of the two general classes of 

possible combination of multiple experts: mathematical and behavioral, we consider only 

mathematical combination as behavioral combination requires some level of subjectivity on the 

part of the decision analyst. Studies have also shown that of the various mathematical combination 

methods, simple mathematical un-weighted averaging is usually best when trading off accuracy 

and complexity [(Clements & Harvey, 2009), (Clemen & Winkler, 1999), (Cooke R. M., 1991)], as 

such we consider only simple mathematical un-weighted averaging.  

For simple mathematical averaging, the order in which the experts and the de-composed events 

are re-composed matters, as rarely do we obtain the same outcome when different orders of 

combination are used. We examine two of those orders, combining the experts for each of the de-

composed events before re-composition, Method I (early aggregation), or re-composing the de-

composed events for each expert before combining experts, Method II (later aggregation). We rely 

on theory from (Baker & Olaleye, 2012) to show that Method I should always be used as it results 

in less error, on average. 
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1.3 Objectives 
In this section, we discuss the objectives of this study and our method of approach. Our motivation 

comes from a recent paper (Baker & Olaleye, 2012), which shows that it is best to combine experts 

early rather than later, especially when individual experts seem to show some degree of optimism 

or pessimism across all events. 

We compare both orders of aggregating experts: using both a simulation and data from an 

empirical study. We initially develop a Monte Carlo simulation of experts with particular 

characteristics and examine the (outcome of elicitations) when either early or later combination of 

the experts is used. We also theoretically evaluate the likelihood that early combination is better 

than later.  

We then empirically examine expert elicitations from previous studies by Baker et al ((2009)(2009) 

(2008)(2011)). We first examine if experts show characteristics such as optimism and pessimism, 

and then make predictions about the combined probabilities based on our knowledge of the 

theory. We examine if our predictions are right and if the insights from the theory in (Baker & 

Olaleye, 2012) support the empirical data. 

Finally, we examine what effect the use of the two aggregation methods will have on a real 

decision problem. We use the resulting probabilities from the two methods of combination as 

inputs to an optimal portfolio model and assess the impact of the changes. The loss from 

aggregating later is also determined. A detailed discussion of our approach is given below. 

1.3.1 Monte Carlo Simulation 
To empirically examine the theoretical postulations, we develop a simple model of multiple experts 

eliciting the probability of success of some technological constraints needed for the development 
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of a technology. In this model, experts are combined using either earlier or later aggregation across 

the technological constraints. A Monte Carlo simulation of this model is then used to examine the 

characteristics of both methods of combination of experts. 

1.3.2 Theoretical Evaluation Of The Dominance Of Early Aggregation 
We next carry out a theoretical estimation of the dominance of one order of aggregation over the 

other. As the exact distribution of the errors from both aggregation orders is unknown, we assume 

a normal distribution for the errors and then estimate the probability that the error from early 

combination is less than that from later.  

1.3.3 Expert Classification 
We use data from an empirical study to examine the theoretical postulations. We classify the 

experts from the study in terms of their inherent characteristics i.e. optimism or pessimism. Experts 

are classified in two ways. One is to determine if the experts individually exhibit a tendency to be 

generally optimistic or pessimistic in their estimates. We term this as being “self-correlated”. Two, 

we examine if the experts are correlated to each other; we term this as “cross-correlation”.  

1.3.4 Projection Based On Expert Characteristics 
Based on our classification, we infer, based on the theory, what patterns the resulting probabilities 

show when experts are combined early or later. In cases where majority of the individual experts 

show a high degree of optimism or pessimism, we expect that combining experts later will lead to 

an increased end point relative to combining the experts early. 

1.3.5 Comparing Projections And Actual Data 
To examine if the effects are as theoretically predicted we recombined the experts using the two 

orders of combination i.e. earlier and later. Using the results from combining experts later as a base 

reference (used in a previous study (Peng, 2010)), we compare these with the probabilities from 
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early combination and identify if the pattern shown is as predicted by theory. In essence we 

examine if the end probabilities of success will be less when the experts are combined early when 

they show a high level of self-correlation. 

1.3.6 Optimal Portfolio Model 
One of the goals for this study was to examine the impact of using the different orders of 

aggregation of expert opinions on the R&D investment portfolio. Thus we extend previous work by 

(Baker & Solak, 2011) where experts’ opinions, which were combined later, were used as input to 

an optimal energy portfolio model. We do this by replacing these inputs with resulting probabilities 

from early combination of the experts. We then examine the change in the optimal portfolio of 

future energy technologies and the total societal cost when the different methods of combination 

of experts’ opinions are used.  

1.3.7 Policy Implications From Use Of The Various Methods Of Combination 
In conclusion of this thesis, we examine the implications resulting from the use of the various 

orders of combination. Hence, we discuss the policy implications resulting from the use of the two 

orders of combining experts’ opinion based on the changes in the resulting optimal portfolio. We 

also examine the societal cost with respect to the theoretical correct method (early combination). 

We emphasize the significance of carrying out sensitivity analysis on the end probabilities. We 

therefore rely on the previous work by Baker et al. [ (2008), (2009), (2009), (Baker & Peng, 2012), 

(Baker & Solak, 2011)] as the basis for this work. 

The remainder of the paper is structured as follows. Chapter 2 presents a literature review, 

including the need for expert elicitations, the impact of bias between and within experts, and the 

resulting effect of correlation between experts. Chapter 3 gives an overview of the preceding 
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research that this work builds on, including a brief discussion of the various possible combination 

methods, the theoretical foundations from (Baker & Olaleye, 2012), how correlation results in the 

superiority of one order of aggregation and a brief discussion on the use of the elicited probabilities 

to parameterize the marginal abatement curve. Chapter 4 presents a detailed description of three 

variants of the Monte Carlo simulation of the theoretical model and also discusses the results from 

the simulation model. Chapter 5 details the theoretical estimation of the dominance of either order 

under basic assumptions. Chapter 6 outlines the results and implications from the use of the 

different aggregation orders. Chapter 7 presents the output from the optimal portfolio model and 

discusses the policy implications. Chapter 8 gives the summary and conclusion. The appendix and 

reference sections conclude this paper. 
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CHAPTER 2 

LITERATURE REVIEW 

In this section, we discuss some related literature to the different topics central to our work. 

Section 2.1 gives an overview of the use of experts to estimate the probability of events. The 

discussion entails why expert elicitations rather statistical analysis is needed or used, the resulting 

issue of de-composition and re-composition of expert probabilities, and the various biases that 

affect these elicitations. Section 2.2 discusses the different cognitive biases that exist in expert 

elicitations. Section 2.3 presents the role of correlation between and within experts, and the 

resulting impacts from such a relationship. 

2. e 

2.1 Expert Elicitations - Importance 

2.1.1 Importance And Appropriateness Of Expert Elicitations 
The development of future energy technologies represents one of the major sources of uncertainty 

in modeling the impact of climate change. We would like to obtain a best estimate of such 

uncertain events, development of novel impact technologies, before these estimates are used as 

base inputs to optimal portfolio models. Consequently the decision analyst faces an immediate 

choice of either using statistical analysis to derive the probabilities of such events or using 

assessments from human sources that possess some degree of expertise in the field. While 

statistical projection has the advantage of consistency and lack of subjectivity, it is particularly 

limited in fields with no historical trends and a high degree of uncertainty ((Makridakis, 1986)). 

Expert elicitations on the other hand seem more applicable to fields such as climate change and 

energy resource development where there exists a ‘rich diversity of opinions’ (Morgan & Keith, 
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1995). Thus, a practice is to use human experts as the complex nature of these events can be 

extremely hard to accurately model statistically. As such, some studies rely on human experts to 

provide best estimates for these events (Mosleh, Bier, & Apostolakis, 1987), (Clemen & Winkler, 

1999)). However expert elicitations are subject to subjectivity and bias on the part of the experts 

leading to ‘systematic and predictable errors’ (Tversky & Kahneman, 1974)). 

After the decision is made to estimate odds using expert elicitations, the immediate challenge 

faced is determining the number of experts to use for the elicitations. While it is generally 

beneficial to have more than one expert (multiple experts with varying opinions) for obvious 

advantages of a better forecast and more information value ((Clemen & Winkler, 2004), (Clemen & 

Winkler, 1999)), the value of additional experts increases at a diminishing rate ((Budescu & Rantilla, 

2000)) and the optimal number of experts is considered to be anywhere between 3-6 experts 

(Clemen, 1986) depending on how similar the experts are. 

2.1.2 Decomposition And Recombination 
On deciding which estimation procedure (expert elicitation or statistical analysis) is to be used, a 

choice exists between estimating the probability of the single event i.e. direct assessment or 

decomposing such an event into the multiple independent sub-events. Arguments exist for the use 

of either of the methods, direct assessment or decomposition, depending on the degree of 

vagueness of the event whose likelihood is to be estimated. Some authors have advocated for 

direct assessment citing limitations such as the increased requirements for decomposition and 

possible error in the modeling of the full space of the event to be decomposed (Armstong, 

Denniston, & Gordon, 1975). Proponents for decomposition, (Raiffa, 1968), (Kleinmuntz, Ravinder, 

& and Dyer, 1986), (Cooke M. R., 1986) and (Clemen & Winkler, 1999) all show that when faced 
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with the problem of assessing the odds of occurrence of a rather complex event, it is best to 

decompose the event into sub-events which are easier to understand and assess. Given the degree 

of vagueness of the event (probability of development of novel non incremental technologies) 

considered in this study, it was considered best to decompose to enable better decision making. 

While experts elicitations are generally considered to be very good estimates, a resulting problem 

ensues when the elicitation from the multiple experts are to be combined, as it has been shown 

that seldom do any two orders of aggregating these sub events result in the same main event 

probability (Mosleh(1988)). An example of such discrepancy is shown in the next section. 

Alongside this problem is the issue of subjectivity faced by the experts being human themselves. 

Various articles have shown that humans’ decision making heuristics (Representativeness, 

Availability, Anchoring and Inadequate Adjustment et al.) will also have serious consequence on the 

end results ((Kleinmuntz, Ravinder, & and Dyer, 1986), Mosleh (1988), (Baker & Olaleye, 2012)) 

depending on the order of combination of these experts. The minimization of these errors from de-

composing and re-composing of multiple events by multiple experts has been the aim of much 

research. A review of the literature shows that it is usually agreed that a simple mathematical 

average of mutually exclusive independent sub-events is best given the tradeoff between 

computational complexity and accuracy (e.g. (Clemen & Winkler, 1999), (Cooke R. M., 1991), 

(Clements & Harvey, 2009)) unless the particular event elicited lends itself to a particular method. 

Hence we limit the scope of this study to simple mathematical equally weighted averaging. 

2.2 Bias 
In this section we discuss the literature on some of the biases that show up in expert elicitations. 

These include over-confidence, pessimism or optimism, representativeness, availability, anchoring 
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and adjustment, recency, confirmation, and default among others ((Tversky & Kahneman, 1974)). 

As these biases are likely to be found in individual expert’s estimates, these may lead to correlation 

within experts (2.3.1). 

2.2.1 Over-Confidence 
Over-Confidence is a much studied area of human decision making because of the dramatic impact 

it has on the decision process, “No problem in judgment and decision making is more prevalent and 

more potentially catastrophic than overconfidence” (Plous & S., 1993). Top experts, by the nature 

of their expertise, can be very confident and tend to be very extremely opinionated (Heath & 

Tversky, 1991). A review of the literature seems to show a direct relation between self-rated 

expertise and overconfidence in judgments of widely speculative events (e.g. (Gunther, 2004), 

(Cesarini, Sandewall, & Johannesson, 2006)). To address this issue, approaches include using 

experts with varying range of expertise (e.g. (Budescu & Rantilla, 2000), (Gunther, 2004)), use of 

experts with varying areas of expertise (e.g. (Kuhnert, Hayes, Martin, & McBride, 2009)), use of low 

probability/high consequence events to de-bias (e.g. (Li, Li, Chen, Bai, & Ren, 2010)), using a 

feedback method for experts to revise their estimates (e.g. (Winkler, 1991)), framing of the 

elicitations in ways to de-bias the experts and many more de-biasing techniques. While over-

confidence will always be present, the use of these de-biasing techniques will aid in reducing the 

error in estimations. 

2.2.2 Availability 
Human experts are also subject to the availability heuristic. This stems from the experts 

erroneously estimating the likelihood of an event to be assessed based on how retrievable some 

events are in memory (Tversky & Kahneman, 1974). Factors such as salience, imaginability, illusory 
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correlation and familiarity can therefore lead to this heuristic being a bad means of assessing the 

frequency and probability of events (e.g. (Tversky & Kahneman, 1974), (Frey & Rubin, 1991)). As 

such, an expert who conducts active research in a field of study, if elicited on the probability of 

breakthrough of a technology, it is possible that such expert estimates these probabilities by 

recalling mostly instances where such research was successful. To limit this effect, the decision 

analyst is urged to limit experts as much as possible to their area of main expertise (e.g. (Kynn, 

2008)), use feedback methods and also use differing range of expert with different expertise levels 

(Kuhnert, Hayes, Martin, & McBride, 2009). 

2.2.3 Representativeness 
The representative heuristic is used by people in estimating the probability of random events based 

on a sample. As the focus is on the similarity of the sample to the estimated random event; if it 

shares more characteristics with the estimated random event, this leads to errors as it is not 

influenced by several factors that should affect the judgement of probability ((Kahneman & 

Tversky, 1972)(1974), (1982)). One of such factors is the neglect of the prior probability of 

outcomes; the expert might ignore the base rate frequency of the sampled event. Other factors are 

neglect of the sample size, misconceptions of the inherent randomness, illusion of validity and 

predictability neglect ((Kahneman & Tversky, 1972), (1982)).  

2.2.4 Optimism And Pessimism 
People, experts in particular, are very susceptible to the optimism bias, as we often underestimate 

the probability of negative events happening to us and overestimate the likelihood of experiencing 

positive events (Shepperd, Carroll, Grace, & Terry, 2002), (Weinstein, 1980). Similarly, the 

overestimation of negativity is due to the pessimism bias. Several cognitive factors can lead to 
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these biases some of which include representativeness, sole focus on oneself and erroneously 

comparing the difference of the compared sample to the evaluated event to the difference in risk. 

This tendency of individual experts to exhibit optimism and pessimism leads to positive correlation 

within experts, the resulting correlation within experts has a significant effect on the overall 

endpoint of the elicitation process (Baker & Olaleye, 2012). 

 

2.2.5 Anchoring And Insufficient Adjustment 
Anchoring and In-sufficient adjustment is also a byproduct of the over confidence heuristic where 

by experts start by anchoring their assessment to an internally determined estimate but do not 

adjust this properly as the other sub-events of the elicitation turn out (e.g. (Frey & Rubin, 1991), 

(Eroglu & Keely L Croxton, 2010)). (Eroglu & Keely L Croxton, 2010) also show that the anchoring 

effect might be due to personality traits such as conscientiousness and extraversion. An essential 

feedback process to address this bias is advocated where the expert is not overly overwhelmed by 

initial estimates (Kuhnert, Hayes, Martin, & McBride, 2009). 

 

 

2.3 Correlation 
• Correlations and Dependence in assessments 

Any pair of randomly occurring variables which exhibit some form of a linear relationship are said 

to be correlated. Correlation can also be considered as a sort of covariance between two 

standardized variables (David, 1979). Since correlation is just a test for linear dependence, it is 

possible for the correlation between two variables to be zero and for the variables to still exhibit 
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some form of non-linear dependence (Embrechts, McNeil, & Straumann, 1999). While this is a 

much studied area of research, the general implication of correlation or dependence between 

variables is that they allow for projections or predictions to be made due to the underlying 

relationship between the variables; an example would be electricity consumption and time of day 

or cotton yield and rainfall (Ezekiel & Fox, 1959). It is also important to note that correlation does 

not imply causation or vice versa. 

 

2.3.1 Self-Correlation 
Auto-Correlation is defined as the correlation of a variable sequence to itself; as such it is a 

measure of the correlation between two values of the same variable at different times of a cycle 

(Box & Jenkins, 1976), (Weisstein, 2005)). In the context of this thesis, Self-Correlation of an 

individual expert is defined as when elicitations from a single expert on two independent events 

are correlated to one another (Baker & Olaleye, 2012). This can be viewed as some sort of inherent 

bias of an expert which leads to non-randomness of the experts’ assessments. 

All the biases discussed in the previous chapter 2.2 are possible causes of self-correlation. 

Over-Confidence in experts, due to their high level of expertise, can result in expert bias (Heath & 

Tversky, 1991). This can lead to self-correlation within individual experts. 

Since the degree of recall of similar events used to estimate the to-be assessed probability are 

inherent to individual experts(Tversky & Kahneman, 1974), the availability heuristic also 

systemically affects the decision making process of the experts, possibly leading to self-correlation  

within individual experts. 
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The use of the Representativeness heuristic can also lead to self-correlation within experts as the 

experts consistently ignore the base prior rate and are insensitive to the sample size (Tversky & 

Kahneman, 1974). 

Optimism or pessimism is the most obvious causes of self-correlation in experts (Baker & Olaleye, 

2012)(Cooke M. R., 1986). An expert who is optimistic will likely be much more correlated than one 

who is unbiased.  

2.3.2 Cross-Correlation 
Cross-Correlation is the measure of the correlation or similarity between two randomly occurring 

variables (Park L et al. (2008)). We hence consider Cross-correlation to be the correlation between 

the assessments about a single event from different experts. Different statistical tools can be used 

to measure this effect including the Pearson Product-Moment correlation coefficient, Spearman’s 

rank correlation coefficient and various other tools in robust statistics. Some of the several possible 

cognitive causes of cross-correlation in elicitations are discussed below.  

2.3.2.A      Knowledge Based Bias 
Knowledge based bias results in cross-correlation when several of the experts used in the 

elicitation study rely on a small size or single source of knowledge as their information source 

(Miller, Forthcoming), (Booker & Meyer, 1988). An instance is when the main source of information 

on a subject is a single report from a national laboratory; all other reports are usually versions of 

the main report. 

2.3.2.B      Similar Research Area 
A similar cause of inter expert correlation in elicitations occurs when the experts selected are from 

very similar research fields, this leads to very high homogeneity of the opinions (Gilbert, 1994). 
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2.3.2.C   Recency 
Recency can also lead to several experts providing very similar opinions (Booker & Meyer, 1988). In 

eliciting chances of technological breakthroughs, the effect of recent technological breakthroughs 

may have an effect on how the experts perceive the elicitation. 

2.3.2.D  Framing 
The framing and order of elicitations can also lead to correlations between experts as minute 

changes in the framing and order of elicitations can result in general shifts of preferences of the 

experts (Tversky & Kahneman, 1981). Aside generally change in preferences, the framing and order 

of elicitations can also cause the experts to violate rationality axioms (Tversky & Kahneman, 1981). 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

CHAPTER 3 

BACKGROUND RESEARCH 

To aid in better understanding of this paper, we carry out a brief review of the background 

research that this work builds on. We discuss the two aggregation orders relevant to this work in 

section 3.1. A review of the underlying background theory from (Baker & Olaleye, 2012) and its 

implications is carried out in section 3.2. A brief overview of the preceding research related to the 

use of the expert elicitations in the optimal portfolio model, the technologies considered in the 

optimal portfolio and their tree structures is carried out in Section 3.3. Section 3.4 introduces the 

R&D portfolio model to be used in the study and Section 3.4.2 gives a brief discussion on the role of 

the elicited probabilities in the R&D model. 

3. R 

3.1 Description And Definition Of The Three Possible Aggregation Orders 
In this section, we discuss the two orders of aggregation considered in this paper. We focus only on 

simple mathematical equally weighted averaging. Method I refers to averaging the experts’ 

elicitations at the sub-events level (earlier). Method II refers to averaging the expert elicitations at 

the de-composed sub events have been re-composed for each expert (later).  

Let’s take as an example an event ABC, decomposed into exclusive multiplicative events A, B and C. 

To assess the probability of occurrence of the event ABC i.e. P(ABC), we can decide to elicit 

opinions on the odds of the three decomposed sub-events A, B and C from two experts i and j. 
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Method I aggregates the experts at the sub-event level resulting in 

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
[ ]*[ ]*[ ]

2 2 2
i j i j i jP A P A P B P B P C P C+ + +

 while Method II is 

[ ( )* ( )* ( )] [ ( )* ( )* ( )]
2

i i i j j jP A P B P C P A P B P C+
. A graphical representation of Method I and II with 

two experts and 5 sub-events is shown in Figure 1. 

     

 

Baker & Peng (2010) use Method II as the aggregation order for the elicitation. Here we propose to 

use the two aggregation orders and then compare the defective aggregation order, Method I, to 

Method II. 

Specifically with respect to the nature of the elicitation done for this study, Method I refers to 

averaging of the technological success probabilities for each hurdle level across all experts before 

aggregating all the hurdles (technological constraints) for the final probability of success of the 

technologies. This implies taking the average of all the experts for each hurdle before the hurdles 

Method I 

Method II 

1 / (n)
2
 ∑ ∑   * 

1 / 
 

 * 
∑ 

Figure 1: Methods of Simple Average Aggregation 
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are then re-composed together to get the event probability. Method II refers to when the hurdles 

are combined first for each expert before the probabilities from the experts are now averaged. 

To show the discrepancy between the two methods, we give the underlying example using the 

basic model given in the beginning of this of this section. We assume that the probability of the 

events are given as in table 2 below, we note that the difference between Method I and II is over 

54%. 

 

 

( )iP A  ( )iP B  ( )iP C  ( )jP A  ( )jP B  ( )jP C  

0.8 0.4 0.9 0.3 0.2 0.3 

Met 1 
( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

[ ]*[ ]*[ ]
2 2 2

i j i j i jP A P A P B P B P C P C+ + +
 

.8 .3 .4 .2 .9 .3* *
2 2 2
+ + +

 0.099 

Met 2 
[ ( )* ( )* ( )] [ ( )* ( )* ( )]

2
i i i j j jP A P B P C P A P B P C+

 
[.8*.4*.9] [.3*.2*.3]

2
+

 0.153 

Table 1: Example to show discrepancy between methods 

 

3.2 Review Of Theory Baker & Olaleye 
A review of the “Combining Probabilities” paper by (Baker & Olaleye, 2012) is discussed in this 

section. The paper theoretically examines the effect of using the two orders of aggregating expert 

opinions (earlier and later) based on the experts’ characteristics. We show in the paper that it is 

generally best to combine experts opinions earlier rather later as later combination leads to a 

higher self-correlation error. We also show that even without self-correlation within individual 
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experts, the variance of the error from later aggregation is larger. A brief summary of the paper is 

given below. 

We define independent events to be indexed by i . These events are elicited by experts, indexed by 

j. Each elicited probability (hurdle or breakthrough technology level) is defined to be an additive 

combination of the true probability pi “degree of belief of the entire community if all biases and 

errors could be avoided”, Ɛij “errors correlated across experts”, µij “errors correlated across hurdles 

or sub-events” and ɗij “independent idiosyncratic errors” (Baker & Olaleye, 2012). 

    𝒒𝒊𝒋 =  𝒑𝒊 +  𝜺𝒊𝒋 +  𝝁𝒊𝒋 +  𝜹𝒊𝒋      1 

 

Let 𝝆 represent the correlation between the 𝝁𝒊𝒋and 𝝁𝒊′𝒋 and 𝝈𝟐represent the variance of 𝝁𝒊𝒋. 

The resulting error and variance from both methods are shown in Table 2 where 𝝆 represents the 

correlation between the 𝝁𝒊𝒋 and 𝝁𝒊′𝒋 and 𝝈𝟐represents the variance of 𝝁𝒊𝒋. 

Method Mean of 

Expected Value 

Mean of 

Expected Error 

Variance [error 

within events] 

Variance[error across 

experts] 

Method 

I 

𝑬�𝒒𝒊𝒊′(𝒏)� 

=  𝒑𝒊𝒑𝒊′ +  
𝝆𝝈𝟐

𝒏
 

 

𝝆𝝈𝟐

𝒏
 

𝒗𝒂𝒓[𝝁𝒊𝒊′] 

=
𝝈𝟒

𝒏𝟐
(𝟏 +  𝝆𝟐) 

𝒗𝒂𝒓�𝜺𝒊(𝒏)𝜺𝒊′(𝒏)� 

=
𝟏
𝒏𝟐

(𝟏 + (𝒏 − 𝟏)𝝆𝜺)𝟐𝝈𝜺𝟒 

Method 

II 

𝑬�𝒒�𝒊𝒊′
(𝒏)� 

=  𝒑𝒊𝒑𝒊′ +  𝝆𝝈𝟐 

 

𝝆𝝈𝟐 

𝒗𝒂𝒓[𝝁�𝒊𝒊′] 

=
𝝈𝟒

𝒏
(𝟏 +  𝝆𝟐) 

𝒗𝒂𝒓[𝜺�𝒊𝒊′] 

=  
𝟏
𝒏

(𝟏 + (𝒏 − 𝟏)𝝆𝜺𝟐)𝝈𝜺𝟒 

Table 2: Theoretical Comparisons of Method I and II (Baker & Olaleye (2012)) 
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We can observe that the mean of the expected error from Method II is n times greater than 

Method I, where n is the number of experts. This is a result of the self-correlation 𝝆 within experts 

which is not zero. If the self-correlation 𝝆 is zero then the mean of the expected error is the same 

for both methods. Also the variance of the error correlated within events and across experts from 

Method I is also shown to be lower than those of Method II. 

This shows that the variance of Method II is always greater than that of Method I even in the 

absence of correlation i.e. even when 𝝆 is zero. 

 

3.3 Review Of Background Research On The Technologies Elicited 
In this section, a discussion of the methodology of the selection of the energy technologies used in 

the energy portfolio model is carried out. In making policy recommendations on funding of R&D in 

energy source technologies that can readily combat climate change, (Baker & Solak, 2011) focused 

on some key criteria for climate damages abatement reduction. These criteria include electricity 

generation potential, uncertainty in success of the specific technology and having a considerably 

large resource base. Thus three technologies were considered in the portfolio: Solar, Carbon 

Capture and Storage (CCS) and Nuclear. These technologies are discussed briefly below. Figures 3 

and 4 gives a brief summary of the classification of the sub-technologies, the technology success 

levels and the funding levels considered in the study. 
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Figure 2: Portfolio Technologies and Sub Technologies considered 

    

Figure 3: Success Level and Funding Level in Purely Organic Solar Sub-Technology 

 

Solar Photovoltaic:  The three sub-technologies elicited were Organic Photovoltaic, In-Organic 

Photovoltaic and Third generation solar cell technologies; see (Baker, Chon, & Keisler, 2009) for a 

detailed discussion of the technological hurdles and tree structure. These sub technologies were 

elicited by three experts. It is important to note that the most cost efficient sub-technology will 

take the whole solar energy share. 

Nuclear Energy: The three sub-technologies considered here were Advanced Light Water Reactors, 

High Temperature Reactors and Fast Reactors. (Baker, Chon, & and Keisler, 2008) provides a very 

detailed description of the technological hurdles and the tree structure. 
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Carbon Capture and Storage: Please refer to (Baker, Chon, & and Keisler, 2009) for a detailed 

description of the technological hurdles and the tree structure for the three sub-technologies; Pre-

Combustion, Post-Combustion and Chemical Looping technologies. 

(Peng, 2010) gives a detailed review of the optimal portfolio model used. (Baker & Shittu, 2005) 

and (Baker & Solak, 2011) give a detailed rationale for the choice of these technologies.  

 

3.4 Optimal Energy Portfolio Model 
This section discusses the nature of the optimal portfolio model problem and the role of the 

elicited probabilities in the model. 

3.4.1 Optimal Portfolio Model 
In this section we discuss briefly the specific model used in (Baker & Peng, 2012) and (Baker & 

Solak, 2011), which we build on, and use later, in this thesis. The objective of the model is to 

minimize the expected net social cost which is the sum of the expected damages and the cost of 

abatement. The exact form of the formulation is given below. 

( ),min min[ ( : ( )) ( )]ZX
E C X ZDα µ

µ α µ+
    2

 

Subject to      ijk ijk
i j k

f x B≤∑∑∑
     3

 

1ijk
k

x ≤∑ ,i j∀
    4

 

Where 𝐶(𝜇; �⃗�) represents the cost of abatement after investment in a portfolio of technologies [5]. 

The cost is dependent on the state of the portfolio invested in �⃗�, and the amount of abatement 
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𝜇ϵ[0,1], the abatement cost at 50% abatement( (50%)c ), and the abatement cost before technical 

change C(µ) [6]. The damage function is represented by D(𝜇) [7] and is multiplied by a random 

multiplier to represent the uncertain nature of the possible damages from climate change. Indices 

i, j and k index the technology, sub-technology and funding level respectively. Xijk denotes a binary 

variable indicating if sub-technology j is funded at level k, fijk denotes the amount of funding at this 

level and where M is a parameter of the model. This formulation [(2)-(4)] is to obtain the optimal 

portfolio that minimizes the expected social cost. Where  

( : ) (1 )[ ( ) (50%) ]i
i

C c hcµ α α µ µ= − −∏
   5

1
0( ) bC bµ µ=        6

2
0 1( ) ( )D M S Mµ µ= −      7 

For better sensitivity analysis, (Peng, 2010) developed a slight modification to the above 

formulation including the R&D budget cost in the objective function of the formulation. An 

opportunity cost β (1, 2, 4 or 8) is used for the research and development cost. The formulation is 

given below 

( ), min[ ( : ( )) ( )]ijk ijk ZX i j k
Min F X E C X ZDα µ

β µ α µ+ +∑∑∑
   8

 

Subject to 1ijk
k

X ≤∑ ,i j∀     9 
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3.4.2 Role Of The Elicited Probabilities In The Optimal Portfolio Model 
In this section we discuss the role of the elicited probabilities in the optimal portfolio model. This is 

to emphasize its importance on the optimal portfolio output. The expert elicitations for all the nine 

sub technologies in the three technologies considered, (Solar Photovoltaic, Nuclear and Carbon 

Capture &Storage), serve as input to condition the expectation of each of the possible realizations 

α of the objective function [
10

]. Due to the uncertain and random two stage decision nature of the 

climate problem; all possible realizations of the investment portfolio for the nine sub technologies 

must be considered. Then by independence of the sub-technology elicited probabilities, the 

probability of each scenario is simply the multiplication of the nine (j) elicited probabilities 

depending on the funding level (k) and success level (l). 

 
,

, , ,
ijk l

i j k l

P p= ∏
  

j∀
     10

 

The resulting probability P of each scenario (example [0, 0, 1, 1, 1, 0, 1, 0, 1]) is then used to 

appropriately weight each of the resulting random expectations. As such we expect the elicited 

probabilities to have significant impact on the model output. 

A detailed summary of the interaction of the model components from the parameterization of the 

marginal abatement curve, the calibration to the Dice 2007 model and the derivation of the base 

portfolio is given in (Baker & Solak, Under Review). 
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CHAPTER 4 

MONTE CARLO SIMULATION 

In this chapter, we discuss our work on the development of a Monte Carlo simulation of the 

mathematical formulation of the problem. We proceed by basing our simulation on the underlying 

theoretical model in [1]. We start by modeling all the individual components of each sub event and 

then aggregate these sub events to obtain the joint event probability from using both orders of 

aggregation. A discussion on the simulation model used is described in this chapter.  

There are three variants of the simulation model. Model 1 (Base Un-truncated) is a simulation 

exactly like the theoretical model described in Section 3. A problem, however, exists that the 

resulting joint event probability might not be limited to [0, 1]. This is due to the nature of how we 

model the 𝜀𝑖𝑗, 𝜇𝑖𝑗 and 𝛿𝑖𝑗errors, discussed in detail below. To address this problem i.e. limit the end 

probability to [0, 1], we develop two additional variants of the base model; a log odds variant and 

another variant where the probabilities are truncated at 0 and 1. The other two variants (Model 2 

and Model 3) are minor adjustments to Model 1. As such in the sections below, Model 1 is 

described in detail and only the difference from Model 1 is discussed for Models 2 and 3. Section 

4.1 outlines the need for the simulation model, Section 4.2 describes the simulation of the Base Un-

truncated model, Section 4.3 discusses the Log Odds Model, the Truncated variant is briefly 

discussed in Section 4.4 and analysis of the results obtained discussed in Section 4.5. 

4. E 
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4.1 Need for Simulation 
In this section, we discuss several of the reasons why a Monte Carlo simulation of the mathematical 

formulation of the problem is required. Some of the advantages of having the simulation are given 

below. 

4.1.1 Evaluation Of Different Aspects Of The Formulation 
One of the main benefits of doing a simulation of the problem is that we can consider different 

variants of the same problem including those which do not have the deficiency (the resulting 

probability qij [1] not been limited between 0 and 1) as the theoretical formulation. As such we can 

both model the exact same problem and also different variants where we can limit the resulting 

probability qij between [0, 1]. The simulation, when the resulting probability is bounded [0, 1], 

therefore gives a better representation of the problem being modeled (4.3). 

4.1.2 Examination Of Different Properties Of The Distribution Of The Errors 
Another major advantage of having a simulation model is to enable better analysis of the 

distribution of the errors from both orders of combination. We can examine in detail and 

graphically the distribution of the errors from these methods. This enables us to evaluate several 

characteristics of the errors, some of which includes the mean, variance and the absolute mean of 

error. We can do this for different combinations of standard deviations and correlation coefficients. 

We can also measure the probability that the size of the absolute error will be larger when either 

order of combination is used. The graphical output from the simulation model also ensures we can 

better characterize either aggregation order’s performance. 
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4.2 Model 1 -Base Model (Un-Truncated [0, 1]) 
The simulation discussed here follows exactly as the theoretical model in [1]. A description of how 

𝑝𝑖𝑗, 𝜀𝑖𝑗, 𝜇𝑖𝑗and𝛿𝑖𝑗 from [1] are modeled for the base model is given below.  

For simplicity and since any space can be modeled by the intersection of any two events, we model 

the main event as decomposed into two mutually exclusive events, these two mutually exclusive 

events are elicited from 5 experts, see Figure 4. Therefore n=5 and 𝒒𝒊𝒋’s =2. 

 

Figure 4: Graphical description of the Model and Simulation 

 

4.2.1 Generating Random Errors And Random Probabilities 
We describe the modeling of each generic true probability or error probability in this section. The 

entire model [1] can be observed to be composed of either a ‘true probability’ 𝒑𝒊or an 

‘errorprobability’𝜺𝒊𝒋,𝝁𝒊𝒋 𝒐𝒓 𝜹𝒊𝒋. 

True Probability 𝒑𝒊: As we expect the true probability of an event to be a value between [0,1], we 

model the Random probabilities as a random number between [0, 1] using the ‘rand’ function in 

Matlab.  
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Error Probability: We model random errors as a random variable with mean zero. The ‘randn’ 

function in Matlab is used which gives a standard normal distribution with an expected value of 

zero. 

Based on this representation, we construct a simple model consisting of two sub-events 

(technological hurdles) and five experts as shown in Figure 4. For simplicity, the experts are 

modeled each time as a [5X1] column for the true probability or the errors. This results in four (𝒑𝒊, 

𝜺𝒊𝒋,𝝁𝒊𝒋 𝒐𝒓 𝜹𝒊𝒋) [5X1] columns for each of the two sub-events. A detailed description is given in the 

subsequent sections. 

 

4.2.1.A Generating The True Probability [𝐩] 
In modeling the true probability of an event to be elicited by all the experts, we expect the true 

probability of that event to be the same for all the experts. This means that without any bias or 

misjudgment all the experts eliciting a sub-event should have the same true probability. As 

discussed above in Section 4.2.1, the random true probabilities are modeled as a random number 

[0, 1]. Then to ensure that this true probability is constant across the experts, we simply multiply 

the single generated true probability by a [5X1] matrix of one’s. This is done for each sub event. 

The actual modeling is described here; a single random variable is generated for both hurdles i.e.

    𝒑𝒊 = 𝒓𝒂𝒏𝒅() and 𝒑𝒋 = 𝒓𝒂𝒏𝒅()  11 

Therefore the first sub-event True Probability is modeled as p1=𝒑𝒊*([1 1 1 1 1]t).  12 

The other sub-event True Probability is modeled as     p2=𝒑𝒋*([1 1 1 1 1]t).  13 
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4.2.2 Generating The Errors Terms 
We discuss the generation of the errors in this section. The errors include the self-correlation, 

cross-correlation and idiosyncratic errors. To appropriately model the errors, we need to condition 

the generated errors to the parameters representing the correlation and standard deviation. We 

model these parameters as inputs to the model and let 𝝆𝝁represent the correlation coefficient 

while 𝝈𝝁 represents the standard deviation for the errors correlated within experts [𝝁]. 𝝆𝜺𝒊 

represents the correlation coefficient and 𝝈𝜺 represent the standard deviation for the errors 

correlated across experts [𝜺]. We also let 𝝈𝜹 represent the standard deviation for the idiosyncratic 

errors [𝜹]. The modeling of each of the three errors is discussed in detail below. 

 

4.2.2.A Generating The Errors Correlated Within The Expert [𝛍] 
Here we describe the modeling of the self-correlation errors. While it is expected that the ‘true 

event probability’ is the same for all the experts in each sub-event, we do not expect the errors to 

be the same. We basically want to model an error for each individual expert which is correlated 

within the expert for all the sub events. As such we first generate two sets of [5X1] random 

standard normal variables. 

 rv1[µ] = randn(5, 1)    

rv2[µ]=randn(5, 1)   14 

As our aim is to correlate each individual expert (see Column 3 in Figure 2) to itself, hence, the first 

column rv1[µ] representing the first sub-event is conditioned to mean zero and input standard 

deviation 𝝈𝝁for self correlated errors. 
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µ1=µrv1[µ] = 0 + 𝝈𝝁 * rv1[µ]    15 

The elicited probability from each expert of the first column representing the first sub-event is then 

correlated to the elicited probability from the same expert in the second sub-event as in Figure 4. 

The resulting expert is conditioned to mean 0 and the input standard deviation for self correlated 

errors 𝝈𝝁 [16].  

µ2=µrv2[µ] = {0 + 𝝈𝝁 *(𝝆𝝁*rv1[µ](1,1)  +   sqrt(1 – (𝝆𝝁)2)rv2[µ](1,1)); 

0 + 𝝈𝝁 *(𝝆𝝁*rv1[µ](2,1)  +   sqrt(1 – (𝝆𝝁)2)rv2[µ](2,1)); 

0 + 𝝈𝝁 *(𝝆𝝁*rv1[µ](3,1)  +   sqrt(1 – (𝝆𝝁)2)rv2[µ](3,1)); 

0 + 𝝈𝝁 *(𝝆𝝁*rv1[µ](4,1)  +   sqrt(1 – (𝝆𝝁)2)rv2[µ](4,1)); 

0 + 𝝈𝝁 *(𝝆𝝁*rv1[µ](5,1)  +   sqrt(1 – (𝝆𝝁)2)rv2[µ](5,1))}  16 

This uses the relation that y = s*(p*u+sqrt(1-p^2)*v)+m where ‘u’ is the random variable been 

correlated to the random variable ‘v’ while ‘p’, ‘s’ and ‘m’ are the correlation, standard deviation 

and mean respectively. Each Individual expert is as such now self-correlated. 

 

4.2.2.B  Generating The Errors Correlated Across Experts [𝛆] 
Cross correlated errors are errors that are correlated across all the experts within a sub-event or 

hurdle. Again here we do not expect each individual expert to have the same cross correlated 

error, so we model the cross correlated errors as different for each expert. As generating a 
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sequence of random variables that are cross correlated while maintaining their independence is 

difficult, we model this by correlating each of the experts elicited probability to a different unused 

expert or support variable elicited probability (we call this ‘support variable’). The new correlation 

between the elicited experts elicited probability is then the square of the correlation of the 

individual experts elicited probability to the unused variable or expert (support variable) elicited 

probability. 

We generate a base random error for each sub-event to represent the support variables to which 

each of the individual experts are to be correlated to. These support variable errors are modeled as 

usual as mean zero Standard Normal variables with the randn function in Matlab ru1[Ɛ] and ru2[Ɛ]. 

As this does not represent an expert, we do not condition with a mean or a standard deviation. 

These results in  

ru1[Ɛ] = randn()    

ru2[Ɛ] = randn()     17 

All five experts elicited probability are then correlated to the support variable’s elicited probability 

for each of the two sub events and conditioned again with mean 0 and input standard deviation for 

cross correlated errors 𝝈Ɛ. We use the same relation y = s*(p*u+sqrt(1-p^2)*v)+m but using 

individual variables of the matrix here.  

These results in the sub-event 1 across correlated errors for five experts elicited probability [5X1] as 

eƐru1[Ɛ]={0 + 𝝈Ɛ *(𝝆Ɛ*ru1[Ɛ]   +   sqrt(1 – (𝝆Ɛ)2)*randn());  
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0 + 𝝈Ɛ *(𝝆Ɛ*ru1[Ɛ]   +   sqrt(1 – (𝝆Ɛ)2)*randn());        

0 + 𝝈Ɛ *(𝝆Ɛ*ru1[Ɛ]   +   sqrt(1 – (𝝆Ɛ)2)*randn());               

0 + 𝝈Ɛ *(𝝆Ɛ*ru1[Ɛ]   +   sqrt(1 – (𝝆Ɛ)2)*randn());                           

    0 + 𝝈Ɛ *(𝝆Ɛ*ru1[Ɛ]   +   sqrt(1 – (𝝆Ɛ)2)*randn())}  18 

 

And the sub-event/hurdle 2 cross correlated errors Ɛ2 is 

eƐru2[Ɛ]={0 + 𝝈Ɛ *(𝝆Ɛ*ru2[Ɛ]   +   sqrt(1 – (𝝆Ɛ)2)*randn());        

0 + 𝝈Ɛ *(𝝆Ɛ*ru2[Ɛ]   +   sqrt(1 – (𝝆Ɛ)2)*randn());         

0 + 𝝈Ɛ *(𝝆Ɛ*ru2[Ɛ]   +   sqrt(1 – (𝝆Ɛ)2)*randn());                

0 + 𝝈Ɛ *(𝝆Ɛ*ru2[Ɛ]   +   sqrt(1 – (𝝆Ɛ)2)*randn());                        

0 + 𝝈Ɛ *(𝝆Ɛ*ru2[Ɛ]   +   sqrt(1 – (𝝆Ɛ)2)*randn())}  19 

To now obtain the desired input correlation between the experts elicited probability, this is simply 

the square root of the correlation between the elicited probability from individual experts and the 

support variable.  

As such      ρƐi = (ρƐ)1/2  
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4.2.2.C   Generating The Idiosyncratic Errors[𝛅] 
The modeling of the idiosyncratic errors is discussed here. Idiosyncratic errors are errors that are 

totally random without any inherent correlation either within or across experts, therefore it is 

expected that the idiosyncratic error will be different for each expert as they are totally random 

and not correlated Figure 4. As such we model these as random Standard Normal and condition on 

the input standard deviation for the idiosyncratic error 𝝈ɗ 

ɗ1= ɗrv1[ɗ]=0 +   𝝈ɗ *randn(5, 1)   

ɗ2= ɗrv2[ɗ]=0 +   𝝈ɗ *randn(5, 1)  20 

4.2.3 Generating The Resulting Sub-Event Probability [𝒒] 
Here we discuss the addition of the true probability and the errors. All the terms that compose the 

resultant error are then added for each sub-event/hurdle  

𝒒𝟏 =  𝒑𝟏 +  𝜺𝟏 +  𝝁𝟏 +  𝜹𝟏  

𝒒𝟐 =  𝒑𝟐 +  𝜺𝟐 +  𝝁𝟐 +  𝜹𝟐   21 

It should be noted that the resultant probabilities q1 and q2 are [5X1] columns consisting of the 

resultant probabilities of each expert for each hurdle. 

 

4.2.4 Overall Errors From Both Methods 
On obtaining the 𝒒𝒊𝒋’s for each hurdles, we now need to combine the experts using the two 

possible aggregation orders. The true probability from eliciting both sub-events/hurdles is simply 
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1* 2P p p=      22 

Method I: Since Method I implies aggregating early, the probability of each of the two events 1 and 

2 are calculated by first averaging across the experts. The probability of the joint event is then the 

product of the two averaged sub event components (see Figure 1 and Figure 2). Hence the resulting 

probability from using Method I is 

1 (( ( 1)) / )*(( ( 2)) / )M sum q n sum q n=  where n is 5  23 

The error from Method I is then 

1 1eM M P= −       24 

Method II: In Method II, aggregation is later; the probability of the joint event is calculated for each 

expert before the experts are then averaged (see Figure 1 and Figure 2). The resulting probability 

from using Method II is 

2 ( ( 1.* 2)) / )M sum q q n=  where n is 5    25 

The error from Method II is then 

2 2eM M P= −      26 

 

4.2.5 Monte Carlo Sampling 
The Monte Carlo simulation is discussed here. To do a Monte Carlo simulation, we use two Matlab 

‘m’ files; the first m-file gives a function that outputs the true Probability (say P), the error from 

Method I(eM1)and the error from Method II (eM2) for a single run. The second m-file does a 
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Monte Carlo sampling using the outputs from the first m-file as inputs. We use a sample rate of 

1,000,000. 

We ran the model using the different combinations of the input correlation and standard deviation 

parameters Table 3. In all the cases simulated, the results obtained were consistent with the 

theoretical formulation; some new results were shown in Table 4 and discussed in Section 4.2.6. 

 

 

 

4.2.6 Results 
We discuss the results from the Base simulation model in this section. Figure 5 shows the no risk 

case, where the input parameters (Standard deviation and variance) for the idiosyncratic and cross 

correlated errors were zero. It gives the ratio of the expected error of Method II to Method I. We 

see that Method II truly does not correct for self-correlation between the experts and the 

difference between the two methods increases as the self-correlation increases. 

 

𝝆𝝁 -0.8 0 0.8 1 
𝝈µ 0.2 0.5   
𝝆𝜺 0 0.2 0.5 0.8 
𝝈𝜺 0 0.2 0.8  
𝝈𝜹 0 0.2 0.8  Table 3: Simulation Parameters for Base Model (77 Combinations Simulated) 
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Figure 5:Ratio of the expected error in Method II to Method I 

 

  

 

 

 

 

Table 4 gives the results for a subset (Ɛ and ɗ parameters are set to zero) of the parameter 

combination given in Table 3. Method I showed dominance to Method II in all the cases considered 

as the absolute error was lower in Method I than Method II. The mean of the error from Method II 

was also of order n=5 greater than that of Method I. The variance of the error can also be noticed 

to always be higher in Method II. The last column in Table 4 gives the probability than the absolute 

error in Method II is greater than that of Method I in the 1,000,000 runs, we note that this also 

favors Method I. As discussed above, it is obvious that probabilities not within the range [0, 1] are 

possible. To address this, two modifications to the above model are developed.  
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SD=0.2

SD=0.5

ρ corr σ sd Mean(Q-P) Var (Q-P) Mean |Q-P| Pr{|Qii-P|<|Qi-P|} 

 Mt I Mt II Mt II Mt II Mt I Mt II  
0 0.2 0 0 0.0054 0.0057 0.0549 0.0567 0.4554 
0 0.5 0.0002 0.0003 0.0358 0.0458 0.1396 0.163 0.4 

0.8 0.2 0.0065 0.0321 0.0086 0.0091 0.0684 0.0744 0.4216 
0.8 0.5 0.0398 0.2 0.0574 0.074 0.1721 0.2513 0.3142 
1 0.2 0.0079 0.0399 0.0094 0.0099 0.0712 0.0796 0.4035 
1 0.5 0.0501 0.2501 0.0634 0.0835 0.1798 0.2886 0.2718 

-0.8 0.2 -0.0064 -0.032 0.0022 0.0027 0.035 0.0465 0.329 
Table 4: Results from Simulation of Base model 
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4.3 Model 2: Log Odds Adjusted 
The Log Odds variant of the model is discussed in this section. The only change to the above model 

is that after the random true probabilities 𝒑𝒊 are generated, they are log-odds transformed. 

From the generation of the single random variable for each sub-event  

    𝒑𝒊 = 𝒓𝒂𝒏𝒅() and 𝒑𝒋 = 𝒓𝒂𝒏𝒅()     27 

Both are then log-odds transformed 𝒉𝒊 = 𝐥𝐨𝐠 � 𝒑𝒊
𝟏− 𝒑𝒊

�      28 

The true probability for all the experts for sub-event 1 is then h1= 𝒉𝒊*([1 1 1 1 1]t). 

Everything proceeds as in the base model until when the resulting probability for each sub-event 

has been obtained, the sum 𝒒𝟏 is then re-transformed. 

     𝒒𝟏 =  𝒉𝟏 +  𝜺𝟏 +  𝝁𝟏 +  𝜹𝟏     29 

    𝒒𝑳𝟏 = �𝐞𝐱𝐩 (𝒒𝟏)
𝟏+𝒒𝟏

�      30 

4.2.3.A  Results Log Odds Model 
Table 5 gives the combination of parameters used for the Log Odds simulation. We chose the 

standard deviations to be relatively large compared to the Base Model, this is due to the Log Odds 

transformation.  

 

 

 

µρ  -0.8 0 0.8 1 

µσ  5 10   
ερ  0 0.2 0.5  
εσ  0 5 10  
δσ  0 5 10  

Table 5: Simulation Parameters Log Odds Model (49 Combinations Simulated) 
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The results obtained Table 6 from this model were similar to the base model and are not discussed. 

 
 Mean(Q-P) Var (Q-P) Mean |Q-P| Pr{|Qii-P|<|Qi-P|} 

Corr sd Mt 1 Mt 2 Mt 1 Mt 2 Mt 1 Mt 2  
0 5 0.0001 0.0001 0.0372 0.0414 0.1476 0.1563 0.4475 
0 10 0 0 0.0537 0.0606 0.1799 0.192 0.4449 

0.8 5 0.0221 0.1101 0.0483 0.0499 0.1688 0.2003 0.3532 
0.8 10 0.0272 0.1354 0.0677 0.0703 0.2021 0.2425 0.354 
1 5 0.0295 0.1474 0.0521 0.0516 0.1755 0.2201 0.3198 
1 10 0.039 0.1947 0.0738 0.0719 0.2116 0.2738 0.3099 

-0.8 5 -0.0221 -0.1101 0.0263 0.0279 0.1246 0.1413 0.4349 
Table 6: Log Odds Simulation Results 

4.4 Model 3: Truncated Variant 
To limit the resulting probabilities to be between [0, 1] we develop this third variant Truncated 

Variant. We discuss only the difference between the base model and the truncated model. Here, 

the resultant probability 𝒒′𝒔 are truncated between [0, 1] for each individual run. 

𝒒𝟏 =  𝒎𝒊𝒏(𝒎𝒂𝒙�(𝒉𝟏 +  𝜺𝟏 +  𝝁𝟏 +  𝜹𝟏), ([𝟎,𝟎,𝟎,𝟎,𝟎])�, ([𝟏,𝟏,𝟏,𝟏,𝟏])) 

The results we obtain from this simulation were also similar to that of the base Model 1.  

 

4.5 Results Analysis 
In this section we discuss the results from the simulation runs. The mean, variance and absolute 

mean (Table 6) are generally in favour of Method I as theoretically predicted. For the probability 

which shows the dominance of Method I [Pr{|Qii-P|>|Qi-P|}], we note that sometimes the error from 

Method II is lesser as the probability range obtained is between (0.27-0.46). This can be readily 

attributed to randomness in the simulation. This is because the resulting error term from the use of 

both terms is quite small in comparism to the simulated true random probabilities and additive 

random errors. Thus variation due to randomness in these simulated probability and additive errors 
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leads to a very significant number of cases where the error from Method II is lesser. As the cases 

where the error from Method II is lesser are totally random, it will always be preferable to use 

Method I as the desired method of aggregation. 
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CHAPTER 5 

THEORETICAL PREDICTION OF THE DOMINANCE OF METHOD I 

To obtain a sense of the degree of theoretical dominance of Method I, we estimate the probability 

that the error from Method I will be lesser than the error from Method II. While the simulation 

results from the previous chapter (Table 4 and Table 6) gives this dominance from a modeling 

perspective, to further corroborate the simulation results we present a theoretical estimation of 

this dominance.  

The means and variances of the errors from (Baker & Olaleye, 2012) Table 2 provide a ready starting 

point for this evaluation. As the distribution of the errors is not readily known, we assume a normal 

distribution for the errors from both methods. The errors from both orders of aggregation are 

expected to be very highly correlated. 

5. E 

5.1 Probability That Method I Error Is Lesser Than Method II Error 
Let '( )

ii
e q  and '( )

ii
e q  represent the error term for Method I and II respectively. Also we let I , II , 

2
Iϖ and 2

IIϖ  represent the error mean and error variance from Methods I and II respectively. 

Hence, from (Baker & Olaleye, 2012) ( )'

2

( )
iiI E e q

n
ρσ

= =  and ( )'
2( )II ii

E e q ρσ= =
 . From Table 

2 and (Baker & Olaleye, 2012), we have that ( ) ( )
4

2
'

2
2var 1I ii n

ϖ σµ ρ≈ = +  and 

( ) ( )
4

2
'

2 var 1II ii n
σµ ρϖ ≈ = + . 

We assume that the errors are normally distributed with the given means and variances.   
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Therefore  '
2) ( )(  ,Ii Ii

e q N ϖ  and '
2(  ) ( ),I Iii I Ie q N ϖ

 .    31 

Hence  ( ) ( ) ( )' ' ' ' ' '( (        ) ) ) ) )( ( 0       1   ( 0)(
ii ii ii ii ii ii

P e q e q P e q e q P e q e q> = − > = − − ≤     32 

Given our normality assumption, we know that ' ')[ )]( (
ii ii

e q e q−  is normally distributed with:  

Mean        ( )' '
2 1:   [ ( (       ) )] II Iii ii

nE e q e q
n

ρσ − − = −   
=

     33 

Variance  ( )' '
' '),

2 2 2
   (   )( [ (       2) ( )]

ii ii
e q qi I II e Ii ii IIVar e q qeϖ ϖ ρϖ ϖ ϖ= =− + −
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Where 
' '), (( )

ii ii
e eq qρ



 is the correlation between both errors.   and ϖ are the mean and standard deviation 

for the difference in the errors of Method II and Method I ' ')[ )]( (
ii ii

e q e q− . 

Hence from Equations 31 and 33,  

( )' '[ ( (
           ~        0 1

) )
,

]
ii ii

e q e q
N

ϖ
− −



     
   35 

Therefore  ( ) ' '

' '

[ ( ( 0[ ( ( 0      
) )]

) )] ii ii
ii ii

e q e q
P e q e q P

ϖ ϖ ϖ
− − − − − ≤ = ≤ = Φ   
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Where Φ  is the standard normal cumulative distribution function of the N(0,1)distribution.  

Therefore ( )' '(  )()
ii ii

P e q e q
ϖ
− ≤ = Φ 
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In the next section, we evaluate
' '), (( )

ii ii
e eq qρ



  from 34. 
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5.1.1 Correlation Between The Errors
' '), (( )

ii ii
e eq qρ



 

The correlation is by definition the covariance divided by the product of the standard deviation.  

( ) ' '' '

' '
' '), (( )

( ( ) )( ( ) )cov( ( ), ( ))
( ), ( )

ii ii

I II
e

I

ii iiii ii
e q q ii ii

II I II

qE e e qq q
q q

e e
Corr e e

ϖ ϖ ϖ ϖ
ρ

 − − = = =
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From (Baker & Olaleye, 2012), '( )
ii

e q and '( )
ii

e q , the error from Method I and II is given as  

' ( ) ( )' ''
1 1

1( 1) n n

n n

ij i ji i i i
j j

i i n n
e q µ µ µ µ µ

= =

= = = ∑ ∑
     39

' ' '
1

1)(
n

ij i jii
j

ii
e q

n
µ µ µ

=

= = ∑
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From Table 2, we know
2

I n
ρσ

= , 2
II ρσ=

, 
4 2

2
(1 )

I n
σϖ ρ+

=  and 
4 2(1 )

II n
σϖ ρ+

= . 

Substituting these terms into 38, we obtain 

' '

2
2

' '
1 1 1

), ( ) 4 2 4 2

2

(

1 1 1( )( )

(1 ) (1 )*
ii ii

e

n

q

n n

ij i j ij i j
j j

e q
j

E
n n n n

n n

ρσµ µ µ µ ρσ
ρ

σ ρ σ ρ
= = =

 
− − 

 =
+ +

∑ ∑ ∑
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Taking out 1
n

from 
2

'
1 1

1 1( )
n n

ij i j
j jn n n

ρσµ µ
= =

−∑ ∑ and simplifying the denominator gives

'
'

'
'

3/2
2 2

), ( ) 8 2 2
1 1 1

(
1 1 1* * ( )( )

(1 )ii ii

n n n

e ij iji j i j
j

e
j j

q q
n E

n n n
ρ µ µ ρσ µ µ ρσ

σ ρ = = =

 
= − − 

+  
∑ ∑ ∑
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Multiplying out we get
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' ' ' '
' '

1/2 2 2
2 4

), ( ) 4 2 2
1 1 1 1 1

(
1

1* ( )
(1 )ii ii

n n n n n n

e ij ij ij iji j i j i j i j
j j j j j

e q
j

q
n E

n n n
ρσ ρσρ µ µ µ µ µ µ µ µ ρ σ

σ ρ = = = = = =

 
= − − + +  
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Since ' '[ ] 0ij ij j j
E µ µ

≠
= , expanding we obtain

' '
'

'
'

1/2 2
2 4

), ( ) 4 2 2
1 1 1

(
1

1 2* ( )
(1 )ii ii

n n n n

e ij ij iji j i j i j
j j j j

e q q
n E

n n
ρσρ µ µ µ µ µ µ ρ σ

σ ρ = = = =

 
= − + +  

∑ ∑ ∑ ∑

 

From (Baker & Olaleye, 2012) we know that the expected value of '
2

1

n

ij ij
j

nµ µ ρσ
=

=∑ , hence 

' '
' '

1/2
2 4

), ( ) 4 2 2
1 1 1

(
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e ij iji j i j
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e q q
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Evaluating ' '
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Simplifying the 
2
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Assuming each ijµ  is normally distributed, from the moments of a normal distribution 

{                     
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Which gives 4 4[ ] 3ijE µ σ= ,
3[ ] 0ijE µ = and 2 2[ ]ijE µ σ= . Substituting in 47 gives 
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This simplifies to 
' '), (( ) 1/2

1
ii ii

e q qe n
ρ =



        

51

 

We find that the correlation between the errors from the Methods are independent of the 

correlation and standard deviation between the µ’s (ρ and σ). 

5.1.2 Checks And Parameterization 
As a test, we evaluate the value of the correlation between the errors when the number of experts 

elicited is 1. We expect the errors to be 1.  

We substitute for n=1  1/2
1, ( 1) 1CorrX Y n

n
= = =

 

The test confirms this. 

Parameterization with number of experts = 5 
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Let 5n =   ' '
' '), 1/( ( ) 2

1( , )( 5) 0.45
(5 )ii ii

e q q ii ie i
Corr nq qρ = = = ≈





 

Therefore, the correlation between the errors of Methods I and II when the number of experts is 5, 

under the normality assumption is 0.45. This shows there is significant correlation between the 

errors from both methods. 

Figure 6 gives the parameterization of the correlation between errors for different numbers of 

experts used. 

 

 

Figure 6: Correlation between the errors of the two methods as a function of the number of 
experts 
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The variance 34 results in  
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This simplifies to  ( ) ( ) ( )
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Taking out the 𝜎2 and 𝑛 term and dividing gives 
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Substituting equation 55 in Equation 37 we find that  
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Therefore ' ' 2
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As we are really interested in the difference in the absolute values of both errors, we transform into

' ' ' ' ' ' ' ') | | ( ) | ) ( ), ) 0 ) ( ), )(| ( ) ( ( ( ) ( ( ( 0)
ii ii ii ii ii ii ii ii

P e q q P e q q e q P e q q ee e qe≤ ≤   = + > > ≤      

5.2.1 Numerical Evaluation Of The Probability That Method I Error Is Less 
For the numerical evaluation, Figure 7 gives the Probability that the absolute error from Method I is less 

than that of the absolute error from Method II. We note that the result shows the absolute error from 

Method I is very likely to be less than that from Method II. This is in accordance with our work so far.  
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Correlation between µ’s(N=5) 
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 

Pr(| | )| |errMerrMet etIII ≤ (N=5) 
0.72 0.68 0.64 0.58 0.52 0.50 0.52 0.58 0.64 0.68 0.72 

 

Figure 7: Probability [Absolute-Error-Method I ≤ Absolute-Error-Method II] ' ') | | ( ) |(| ( )
ii ii

eP e q q≤ 

with N experts 

 

5.3 Comparing With Simulation Results 
The result generally conforms to the simulation results. The exception is that for the simulation 

results, the correlation between errors is dependent on the correlation and standard deviation 

between theµ 's. Here, however the correlation between errors is only dependent on the number 

of experts. This is likely due to our assumption that the errors are from a normal distribution. We 

note also that when the number of experts is one or when the self-correlation (ρ) is zero, both 

methods perform equally. 
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CHAPTER 6 

EMPIRICAL EXAMPLE: EXPERT AGGREGATION 

In this chapter, we use actual expert elicitation data from the previous study by ( (Baker, Chon, & 

and Keisler, 2008), (2009), (2009)) to examine if correlation in experts leads to the predicted 

difference when the two orders of aggregation are used. We examine the intrinsic characteristics of 

the experts. Individual expert’s responses are initially analyzed to examine if they exhibit self-

correlation in their judgments. Next we examine the level of cross-correlation among the experts. 

We will then predict how these patterns will impact the actual aggregated probabilities under the 

different methods.  

We then combine the individual expert elicitations using both aggregation orders. The projections 

from the theory and the empirical outputs from both orders of aggregation are then compared to 

check if the results are as expected. We finally examine if the result from the two aggregation 

orders are significantly different to warrant a reexamination of the optimal portfolio using the 

theoretically superior aggregation method (i.e. combining early).  

6. E 

6.1 Expert’s Characterization And Classification 
While (Baker & Peng, 2012) noted the elicited experts’ optimism and pessimism, we extend this 

study by carrying out a more elaborate study detailed below. For each of the sub-technologies 

considered, we classify the elicitation results in terms of Self-correlation and Cross-correlation. The 

tables in Appendix A give all the expert elicitation across all the hurdles for all the technologies 

considered in this study. Figure 2 gives an overview of the nine sub technologies that make the 
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three technologies while Figure 3 gives an example of how the success and funding levels compose 

the sub technologies using the Purely Organic Solar sub technology as an example. 

To provide a clear representation of the technological hurdles, funding levels, success levels and 

sub technologies, we use the Nuclear technology shown in Table 7 as an example. The technological 

hurdles to success levels (e.g. Efficiency, Deep Burn Rate and Capital<1000) make up each of the 

funding success level (e.g. Low funding High Temperature High Success level). The funding levels 

(e.g. Low, Medium and High) compose the Sub-technologies Success levels (e.g. High Temperature 

High Success level). Each of the three technologies (Nuclear, CCS and Solar) are composed of three 

sub-technologies each Figure 2.  

 

Table 7: Nuclear Elicitation Hurdle 

To examine each of the technologies for self-correlation, we classify the technologies according to 

the number of highly self correlated experts. We also discuss the sub technologies under these 

technologies where the experts do not follow the trend observed at the technology level. We do 

the same in examining for cross-correlation. We will discuss each technology (Solar, CCS then 

Nuclear) in turn, since there is a different group of experts for each technology.  

  

NUCLEAR 
  

  
NUCLEAR: High Success Probability Distribution 

  
      

  
LWR 
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  FAST REACTORS 
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  MED 

  HIGH 
  LOW 
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              Exp 
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6.1.1 Solar Photovoltaic 
For Solar Photovoltaic, three experts were considered across three or four technological hurdles for 

each of the funding success levels which make up the sub-technologies. The base elicitation 

probabilities used are from (Baker, Chon, & Keisler, 2009). We first present the self-correlation 

characteristics then discuss the Cross-correlations in the same pattern. 

6.1.1.A  Correlation Within Experts 
Here we examine the solar experts for self-correlation using the dispersion from the sub-

technology hurdle mean. By measuring the dispersion of the individual expert probability from the 

hurdle mean probability (mean of the experts at each sub-technological hurdle), we can readily 

examine if the expert is generally more biased compared to the other experts at the same sub-

technology hurdle. If an expert’s probabilities are always consistently less than the hurdle mean, 

this implies that the expert is generally pessimistic compared to the other experts. Also always 

being above the mean implies optimism. An expert that shows any of these two characteristics is 

classified as highly self correlated. 

 

Figure 8: Difference of Individual expert opinion from Hurdle mean-SOLAR 
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TECHNOLOGY LEVEL (SOLAR PHOTO-VOLTAIC) 

To classify the experts at the Solar technology level, we rely on the individual dispersion from the 

hurdle mean (assumed true probability) Figure 8. We observe that expert 1 is generally very 

optimistic, been below the hurdle mean in only 2 of the 21 hurdles that constitute this technology 

level. Expert 3 is also very pessimistic across the Solar technology level, seen by been above the 

hurdle mean in only 3 of the 21 hurdles. Unlike the other two experts, expert 2 does not show such 

strong bias been below the mean in 8 of the 21 hurdles and also pessimistic in 2 of the 6 funding 

success levels, resulting in slight optimism. In summary, we classify the solar technology level as 

consisting of two very highly self correlated experts and one not highly self correlated expert.  

These patterns are consistent for all the sub technologies that compose the Solar technology 

except the 3rd Gen sub technology were the experts did not show any consistent pattern. 

 

6.1.1.B  Correlation Across Experts 
In this section, we examine the Solar experts for cross-correlation. To measure this effect we rely 

on two measures; graphical charts showing correlation of an expert to another [Figure 9] and the 

Pearson product moment correlation coefficient [57] which is given by [Table 8].

2 2

( )( )
( , )

( ) ( )

x x y y
Correl X Y

x x y y

− −
=

− −
∑
∑ ∑         57
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Figure 9: Cross-correlation Expert (1 & 2) Solar   Figure 10: Cross-correlation Expert (1 & 3) Solar 

 

 

Figure 11: Cross-correlation between Expert (2 and 3) Solar 

 

 

 SOLAR TECHNOLOGY 

 Expert 1 – 2 0.23 
Expert 1 – 3 0.26 
Expert 2 – 3 -0.16 

Table 8: Correlation Coefficient Solar 
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TECHNOLOGY LEVEL – SOLAR 

A look at the correlation charts (Figure 9 -Figure 11) and Table 8shows that the experts are very 

independent across the technology and do not show any significant level of cross-correlation.  

 

6.1.2 Carbon Capture And Storage 
Three sub-technologies were considered under CCS; Pre-Combustion, Chemical Looping and Post 

Combustion. Three experts (experts’ 1, 2 and 3) were elicited across 3 technological hurdles in Pre-

Combustion, 2 experts (experts’ 1 and 3) across 5 hurdles in Chemical Looping and 4 experts across 

4 hurdles in Post Combustion.  

 

6.1.2.A  Correlation Within Experts (Self-Correlation) 
Using the dispersion from the hurdle mean as in the solar evaluation, we examine the experts for 

self-correlation Figure 12: Dispersion from the mean - CCS. Due to the experts varying area of 

expertise, only two experts completed all the technological hurdles for CCS.  
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Figure 12: Dispersion from the mean - CCS 

In CCS, only Experts’ 1 and 3 answered all the elicitation hurdles. Expert 4 only responded for the 

Post Combustion sub-technology. While Expert 2 provided estimates for the Pre Combustion and 

Post Combustion sub-technologies, and for only one technological hurdle in the Chemical Looping 

sub technology. 

Expert 1 was generally optimistic across the technology (consistently above the hurdle mean) while 

Expert 3 was pessimistic for all the hurdles considered in CCS. Expert 2 is generally an optimist 

while Expert 4 is pessimist. 

Aberrations: The experts showed the characteristics described above for the all the sub 

technologies (Chemical Looping, Post Combustion and Pre Combustion). Therefore no aberrations 

were noted at the sub technology level. 
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6.1.2.B  Correlation Across Experts 
To examine for cross-correlation across the experts, we utilize graphical charts showing correlation 

of an expert to another [Figure 13(a-f): Cross-correlation within experts CCS] and the Pearson product 

moment correlation coefficient given by [Table 9]. As not all the experts provided responses for all 

the technology hurdles, we run into a problem of small statistical size for these experts. Only for 

Experts 1 and 3 do we not experience this limitation. 
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Figure 13(a-f): Cross-correlation within experts CCS 

 

 

 SUB-TECHNOLOGY LEVEL 
CCS  

 PRE-COMBUSTION  CHEMICAL LOOPING POST-COMBUSTION 
Expert 1 - 2 -0.59  0.70  
Expert 1 - 3 -0.05 0.68 0.03 -0.06 
Expert 1 - 4   0.26  
Expert 2 - 3 0.79  0.42  
Expert 2 - 4   0.64  
Expert 3 - 4   0.43  

Table 9: Cross-correlation CCS 

 

For the two experts who elicit all the technological hurdles in CCS (Experts 1 and 3), no significant 

cross-correlation can be noticed between them (-0.06). While the cross-correlation between all 

other experts seems to range low to moderate, we do not classify this due to low statistical size. 
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technological hurdle, we do not analyze these as no resulting change will occur due to self or cross-

correlations of experts. The sub-technology we are then concerned with, High Temperature 

Reactor, was accessed at two success levels (high and low). Three experts (1, 3 and 4) were used in 

the elicitation of the funding levels in this sub-technology, while both experts 1 and 4 answered all 

elicitations under High Temperature Reactor, expert 3 did not respond to the Deep Burn Rate 

hurdle leading to some limitations in consideration of the results.  

 

6.1.3.A CORRELATION WITHIN EXPERTS 

 

Figure 14: Dispersion from the hurdle mean; High Success: High Temperature Reactor Nuclear 
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Figure 15: Dispersion from the hurdle mean; Low Success: High Temperature Reactor Nuclear 

Examination of Figure 14 and Figure 15 shows no particular optimism or pessimism among any 

individual expert in Nuclear. Hence we don’t notice high self-correlation within any of the experts. 

 

6.1.3.B  Correlation Across Experts (Cross-Correlation) 
 

 

Figure 16: Cross-correlation between Expert 1 and 4 HTR 
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Temperature Reactor. Examination of Figure 16 shows a limited to moderate cross-correlation. A 

statistical test for cross-correlation gives 0.58. 

 

6.1.4 Summary 
The table (Table 10) below summarizes the assessed self-correlation noted within individual experts 

for all the sub-technologies and technologies elicited in the study. The shaded cells indicate sub-

technologies with a majority of highly self correlated experts. 

Tech Sub-Tech Experts High Self Correlated Experts Specific Expert 

SOLAR 
Organic 3 2 1 and 3 

In-Organic 3 3 1, 2 and 3 
3rd Gen 3 0  

CCS 

Pre-Comb 3 1 3 
Chem. 
Loop 2 2 1 and 3 

Post-Comb 4 3 2, 3 and 4 

NUCLEAR 
LWR N/A N/A  
HTR 3 0  
FR N/A N/A  

Table 10: Summary of assessed Self-correlation 

6.2 Rank Independence Classification Of Experts 
In addition to the previous classification of experts (6.1), we examine the different technologies 

(Solar, CCS and Nuclear) for high self-correlation using the concept of rank independence (Cooke 

M. R., 1986). We use a hypothesis test to examine the experts in this section. 

 

6.2.1 Rank Independence Definition 
When a group of experts provide an estimate of a quantity, we can rank them from highest to 

lowest. An expert would be considered “rank independent’ if the ordinal rank of the expert is 

random and the expert does not have a particular tendency to be in any particular position about 



61 
 

the median rank. On the other hand, an expert is not rank independent if they have a tendency to 

always be toward the top of the ranking, or toward the bottom of the ranking.  

 

6.2.2 Hypothesis Test For Rank Independence 
The aim of this hypothesis test is to examine if the individual experts exhibit rank independence. 

From the analyzed data, we expect most of the CCS and Solar experts not to show rank 

independence (because they tend to be optimistic or pessimistic) and the Nuclear experts to be 

rank independent. 

• Null Hypothesis: The null hypothesis is that the experts are independent in rank. 

• Alternate Hypothesis: Is that the experts are not independent in rank. 

We assume the elicited probabilities are from a normal distribution. We observe the same 

procedure as in (Cooke M. R., 1986). The elicited probabilities are ranked in ascending order; the 

median rank is then obtained for each of the sets of elicited probabilities (where a set represents a 

particular technological hurdle).We then compare the individual experts’ rank orderings with the 

base population ordering i.e. we determine whether the experts are consistently above or below 

the median rank. Hence, we find the probability that the Null hypothesis (expert elicitations are 

rank independent) can be refuted at a particular significance level. 

6.2.2.A  Hypothesis 
Hypothesis: The aim of the hypothesis is to determine if individual experts have a tendency to 

always be above the median rank (optimistic) or to always be below the median rank (pessimistic) 

of the elicited probabilities. Here we provide some definitions. 
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i
jkX is a binary indicator of the elicited probability of an expert i  for the j  technological hurdle 

elicited, at the k  funding level. We assume there are “ I ” experts, “ J ” technological hurdles and “

K ” funding levels. Note that the number of technological hurdles might actually differ from the 

number of hurdles elicited. This is because experts, due to expertise and other personal reasons, 

might choose not to provide success probabilities for all the technological hurdles.  

i
jkX = 1 if 1 2( , .... )i I

jk jk jk jkX Median X X X>  and 0 otherwise. (Note that the technological hurdle 

elicited j and the funding level k are the same for the experts i ). 

• kµ Population mean: 1 1

I J
i
jk

i j
k

k

X

N
µ = ==

∑∑
. Where kN  is the number of i

jkX ‘s examined: it is

( * )kN I J≤ depending on whether some experts do not respond to all the elicitations. 

Thus, kµ  is the mean of the i
jkX ‘s for each funding level across all the experts i  and all 

hurdles j . It is the percentage of the probabilities that are greater than the median at that 

investment level. Given three experts, we would expect this to be about 33%. However, it 

might not be 33% due to ties at the median level (Cooke M. R., 1986). 

• kσ : The population standard deviation: 
( )2

1 1

1

I J
i
jk k

i j
k

k

X

N

µ
σ = =

−
=

−

∑∑
. kσ is the standard 

deviation of the i
jkX for each k  funding level.  

• These two parameters, kµ and kσ , define the base population.  
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• ikx : Sample mean: 1

J
i
jk

j
ik

ik

X
x

n
==
∑

 . ikn is the number of the probabilities elicited by expert i  at 

the k funding level. Note that ikn J≤  as an expert might choose not to answer all 

elicitations. ikx  gives the percentage of times that an expert is above the median, over all of 

the technological hurdles elicited. It is the mean of the i
jkX ‘s for expert i  at funding level k . 

For example, if 1ikx =  this means expert i  is very optimistic and always gives higher success 

probabilities than the other experts.  

• ikn : Sample size. As defined above, this is the number of the probabilities elicited by expert 

i  at the k funding level i.e. the number of technological hurdles j elicited by an expert i  at 

funding level k . Again, we note that ikn J≤  as an expert might choose not to answer all 

elicitations. 

• iks : The sample standard deviation: 
( )2

1

1

ik

o
i
jk

j
ik

ik

X
s

n

x
=

−
=

−

∑ 

. iks is the standard deviation of 

the i
jkX for each expert i at each k funding level. 

6.2.2.B  Hypothesis Parameters 
• Parameter of interest: ikx . We are interested in determining how each individual expert’s 

propensity to be above the median ( )ikx  deviates from the population mean ( )kµ . Ideally 

this should be 
0.5 ( )
0.5 ( )

ik

ik

x if I even
x if I odd

= =
→ =





 (i.e. about 33% for 3 experts or 50% for 4 experts);but 
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non-independence of the experts results in ties at the median leading to different values of 

ikx (Cooke M. R., 1986). 

• Null Hypothesis: 0H : ikx = kµ . The null hypothesis is that mean of the i
jkX  for expert i  is the 

same as that for all the experts for a funding level k . 

• Alternative Hypothesis: : ia kkxH µ≠ . 

• Due to the small sample size 30ikn < , we use the One-Sample T-Test.  

( )
( / )

ik

ik

k
ik

k n
t x

s
µ−

=


        58
(Devore, 2004) 

1ikn −  gives the degree of freedom df . 

• Null Hypothesis Rejection Region: Using a 10% significance level, the definition of the 

alternative hypothesis aH  implies that we require a two tailed test with rejection region 

either 0.1t t≥ or 0.1t t≤ (Devore, 2004). 

6.2.3 Implications 
We fail to reject the Null hypothesis ikx = kµ  if the resulting one sample test value is within the 10% 

significance level 0.1t− . This occurs when the absolute value of the calculated T-test statistic is less 

than or equal to that of the 10% significance level, 0.1ikt t≤ and 0.1ikt t−≥ . In this case, we cannot 

reject Null Hypothesis and the expert is rank independent. This means that the individual expert’s 

propensity to be above the median elicitations is not significantly different from the group of 

expert’s propensity to do the same. Therefore the probabilities given by the expert are relatively 

independent for that funding level i.e. the expert does not have any tendency to be very optimistic 

or pessimistic. 
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We reject the null hypothesis if the calculated one sample T-test is outside the 10% significance 

level 0.1t− . This occurs when the absolute value of the calculated T-Test statistic is greater than that 

of the 10% significance level, 0.1 0.1( ) ( )ik ikt t or t t−> < . This implies that we reject the Null Hypothesis 

and the expert is not rank independent. This means that the individual expert’s propensity to be 

above the median elicitation is significantly different from the group of experts’. This implies that 

the probabilities given by the expert for the funding level are significantly dependent likely due to 

the expert’s optimism or pessimism. 

6.2.3.1 Considerations 
In this sub section, we note that we can only consider 3 funding success levels combinations per 

technology as a maximum. This is despite that there are 3 sub-technologies per the 3 funding levels 

in a technology, therefore there are numerically 9 funding success levels combination per 

technology. This is because the success probabilities for the three funding levels of a sub-

technology should be correlated. This implies that we can only consider 3 funding success levels per 

sub technology as a maximum. 

6.2.4 Methodology: Solar Low Funding Low Success Sub-Technology As An Example 
We go through our methodology using the low funding low endpoint Solar Organic sub-technology 

as an example Table 11. The Number of experts I =3 and K =1. 

1. We obtain the i
jkX ‘s for the 1k = funding level by ranking the elicited probabilities. 

As discussed in 6.2.2.A Hypothesis, i
jkX takes the value 1 when if the probability is above the median 

for the hurdle. Table 11 gives an example for the Solar low success low funding Level. We do this for 

all the sub-technologies at the different funding levels. 
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FUNDING LEVEL LOW FUNDING ($15M) LOW ENDPOINT (EFF. 15%)     

 EX 1 EX 2 EX 3    EX 1 EX 2 EX 3 

 (%) (%) (%)  Median  
1
11X  2

11X  3
11X  

Probability of Efficiency 0.85 0.9 0.8  0.85  0 1 0 

Probability of Stability 0.5 0.3 0.5  0.5  0 0 0 
Probability of deposition 

cost 0.9 0.5 0.25  0.5  1 0 0 

Probability of Indium 
Substitute 0.9 0.3 0.1  0.3  1 0 0 

Average Probability 0.34425 0.0405 0.01       

Table 11: Solar Low Success Low Funding sub-technology Rank Independence Example 

2. To obtain the population mean kµ , the 1 1

I J
i
jk

i j
k

k

X

N
µ = ==

∑∑
, of the all the elicited 

probabilities for a funding level k (not just one sub-technology shown in Table 11) is obtained. Table 

12 gives the i
jkX ’s and the t-test statistic for the Solar low funding level. kµ is the percentage of 

times the experts is above the median. In the case shown below, the population mean is 9/30=0.3. 

The ikx , iks , ikn  for each expert i  is also obtained. 
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 Expert 1 1
1jX ’s Expert 2 2

1jX ’s Expert 3 3
1jX ’s 

Solar Organic Low 

0 1 0 

0 0 0 

1 0 0 

1 0 0 

Solar Inorganic Low 

0 1 0 

1 0 0 

1 0 0 

3rd Gen 

1 0 0 

1 0 0 

0 1 0 

Sample mean ikx  1
6 0.6

10kx = =  2
3 0.3

10kx = =  3
0 0

10kx = =  

Sample Standard 

Deviation iks  0.52 0.48 0
 

Sample size ikn  1 10kn =  2 10kn =  3 10kn =  

Population Mean 
Total cells kN =30, 1 1

I J
i
jk

i j
k

k

X

N
µ = ==

∑∑
, Pop. Mean kµ =9/30=0.3 

Table 12: Solar Low Success Low Funding Methodology Parameterization Example 

3.  We then calculate the T-statistic for expert i ( )ikt , Equation 
58

. This is compared 

with the ( (0.1)ikt ) 10% significant T-test value from a statistic table using the degree of freedom 

1ikdf n= − . If the absolute value of ikt  is greater than (0.1)ikt  then the hypothesis is rejected and 
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the probabilities from the expert adjudged to be not independent. If the (0.1)ik ikt t≤ then we fail to 

reject the hypothesis and the probabilities from expert i are relatively independent. 

6.2.5 Results From The Rank Independence Classification 
The results from the hypothesis tests are listed below 

6.2.6 CCS 
Low funding level ( 1)k =  Expert 1 ( 1)j =  Expert 2 ( 2)j =  Expert 3 ( 3)j =  Expert 4 ( 4)j =  

Population Mean lµ  1 0.47µ =  
   

Sample size 1in  11 11n =  21 6n =  31 11n =  41 4n =  

Sample mean 1ix  11 0.82x =  21 0.83x =  31 0x =  41 0.25x =  

Sample Stand Deviation 1is  11 0.405s =  21 0.408s =  31 0s =  41 0.5s =  

One Sample T-Test 1( )it  11 2.865t =  21 2.187t =  31t = −∞  41 0.875t = −  

1(0.1)it  *
11(0.1) 1.812t =  *

21(0.1) 2.015t =  *
31(0.1) 1.812t =  

*
41(0.1) 2.353t =  

Result Non Ind. Non Ind. Non Ind. Ind. 

Table 13: Rank Independence; CCS Low Funding 

KEY:  Ind.Independent   Non Ind. Not Independent 

Note:    Some experts choose not to access some of the hurdles hence the different degrees of 

freedom  1ikdf n= −  for different experts. This may lead to different values of 1(0.1)it . 

Medium funding level ( 2)k =  Expert 1 ( 1)j =  Expert 2 ( 2)j =  Expert 3 ( 3)j =  Expert 4 ( 4)j =  

Population Mean kµ  2 0.45µ =  
   

Sample size 2in  12 11n =  22 7n =  32 11n =  42 4n =  

Sample mean 2ix  12 0.73x =  22 0.86x =  32 0x =  42 0.25x =  

Sample Stand. Deviation 2is  12 0.467s =  22 0.378s =  32 0s =  42 0.5s =  

One Sample T-Test 2( )it  12 1.936t =  22 2.818t =  32t = −∞  42 0.818t = −  

2 (0.1)it  *
12 (0.1) 1.812t =  *

22 (0.1) 1.943t =  *
32 (0.1) 1.812t =  

*
42 (0.1) 2.353t =

 

Result Non Ind. Non Ind. Non Ind. Ind. 

Table 14: Rank Independence; CCS Medium Funding 
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High funding level
( 3)k =  Expert 1 ( 1)j =  Expert 2 ( 2)j =  Expert 3 ( 3)j =  Expert 4 ( 4)j =  

Population Mean kµ  3 0.44µ =  
   

Sample size 3in  13 11n =  23 6n =  33 11n =  43 4n =  

Sample mean 3ix  13 0.82x =  23 0.83x =  33 0x =  43 0x =  

Sample Stand Deviation 3is  13 0.404s =  23 0.408s =  33 0s =  43 0s =  

One Sample T-Test 3( )it  13 3.1212t =  23 2.375t =  33t = −∞  43t = −∞  

3 (0.1)it  *
13 (0.1) 1.812t =  *

23 (0.1) 2.015t =  *
33 (0.1) 1.812t =  

*
43 (0.1) 2.353t =  

Result Non Ind. Non Ind. Non Ind. Non Ind. 

Table 15: Rank Independence; CCS High Funding 

Here, the Null hypothesis (Independence) can be refuted for Experts1, 2 and 3 in all 3 funding 

levels. While the Null Hypothesis is rejected in the High funding level for the 4th expert. Hence CCS 

experts show a high degree of non-independence which results from the inherent high self-

correlation due to optimism and pessimism of the experts (3 out of 4 experts show some degree of 

self-correlation). We note that for the 4th expert the degree of freedom ( 1 1 3kdf n= − = ) is also 

very small. Thus we expect significant changes when Method I and Method II are used for the CCS 

elicitations. 
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6.2.7 NUCLEAR 
Low funding level ( 1)k =  Expert 1 ( 1)j =  Expert 2 ( 2)j =  Expert 3 ( 3)j =  Expert 4 ( 4)j =  

Population Mean kµ  1 0.34µ =  
   

Sample size 1in  11 12n =  12 6n =  13 11n =  14 12n =  

Sample mean 1ix  11 0.25x =  12 0.83x =  13 0.09x =  14 0.42x =  

Sample Stand. Deviation 1is  11 0.452s =  21 0.408s =  31 0.301s =  41 0.515s =  

One Sample T-Test 1( )it  11 0.701t = −  21 2.951t =  31 2.756t = −  41 0.506t =  

1(0.1)it  *
11(0.1) 1.796t =  *

21(0.1) 2.015t =  *
31(0.1) 1.812t =  *

41(0.1) 1.796t =  

Result Ind. Non Ind. Non Ind. Ind. 

Table 16: Rank Independence; Nuclear Low Funding 

 

Medium funding level ( 2)k =  Expert 1 ( 1)j =  Expert 2 ( 2)j =  Expert 3 ( 3)j =  
Expert 4
( 4)j =  

Population Mean kµ  2 0.37µ =  
   

Sample size 2in  12 12n =  22 6n =  32 11n =  42 12n =  

Sample mean 2ix  12 0.25x =  22 0.83x =  32 0.18x =  42 0.42x =  

Sample Stand. Deviation 2is  12 0.452s =  22 0.408s =  32 0.404s =  42 0.515s =  

One Sample T-Test 2( )it  12 0.887t = −  22 2.805t =  32 1.509t = −  42 0.342t =  

2 (0.1)it  *
12 (0.1) 1.796t =  *

22 (0.1) 2.015t =  *
32 (0.1) 1.812t =  

*
42 (0.1) 1.796t =

 
Result Ind. Non Ind. Ind. Ind. 

Table 17: Rank Independence; Nuclear Medium Funding 

High funding level ( 3)k =  Expert 1 ( 1)j =  Expert 2 ( 2)j =  Expert 3 ( 3)j =  Expert 4 ( 4)j =  

Population Mean kµ  3 0.41µ =  
   

Sample size 3in  13 12n =  23 6n =  33 11n =  43 12n =  

Sample mean 3ix  13 0.33x =  23 0.50x =  33 0.18x =  43 0.67x =  

Sample Stand. Deviation 3is  13 0.492s =  23 0.548s =  33 0.404s =  43 0.492s =  

One Sample T-Test 3( )it  13 0.572t = −  23 0.382t =  33 1.909t = −  43 1.77t =  

3 (0.1)it  *
13 (0.1) 1.796t =  *

23 (0.1) 2.015t =  *
33(0.1) 1.812t =  *

43 (0.1) 1.796t =  

Result Ind. Ind. Non Ind. Ind. 

Table 18: Rank Independence; Nuclear High Funding 
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For the nuclear technology, we fail to reject the Null hypothesis (Independence) for all the funding 

levels for experts 1 and 4, this implies that the probabilities from the two experts are independent. 

For experts 2 and 3, we reject the Null hypothesis for 2 of the 3 funding levels, hence the 

probabilities from these experts are not independent due to the self-correlation within the experts. 

We note however that the statistical significance (degree of freedom 1 1 5kdf n= − = ) for expert 2 is 

small. 

6.2.8 SOLAR 
The results from the hypothesis test for the Solar sub-technologies are given below 

Low Funding A ( 1)k =  Expert 1 ( 1)j =  Expert 2 ( 2)j =  Expert 3 ( 3)j =  

Population Mean kµ  1 0.303µ =  
  

Sample size 1in  11 10n =  12 10n =  13 10n =  

Sample mean 1ix  11 0.44x =  12 0.23x =  13 0x =  

Sample Standard Deviation 1is  11 0.516s =  21 0.483s =  31 0s =  

One Sample T-Test 1( )it  11 0.823t =  21 0.473t = −  31t = −∞  

1(0.1)it  *
11(0.1) 1.833t =  *

21(0.1) 1.833t =  *
31(0.1) 1.833t =  

Result Ind. Ind. Non Ind. 

Table 19: Rank Independence; Solar Low Funding 

Medium Funding B ( 2)k =  Expert 1 ( 1)j =  Expert 2 ( 2)j =  Expert 3 ( 3)j =  

Population Mean kµ  2 0.3µ =  
  

Sample size 2in  12 11n =  22 11n =  32 11n =  

Sample mean 2ix  12 0.55x =  22 0.36x =  32 0x = 0% 

Sample Standard Deviation 2is  12 0.522s =  22 0.505s =  32 0s =  

One Sample T-Test 2( )it  12 1.559t =  22 0.418t =  32t = −∞  

2 (0.1)it  *
12 (0.1) 1.812t =  *

22 (0.1) 1.812t =  *
32 (0.1) 1.812t =  

Result Ind. Ind. Non Ind. 

Table 20: Rank Independence; Solar Medium Funding 
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For the Solar technology, we reject the Null independence hypothesis for Expert 3 across all the 

funding levels and fail to reject the hypothesis for experts 1 and 2. Low funding Level A consists of 

low funding low success organic level and the two others low funding levels for In-Organic and 3rd 

Gen. Medium funding Level B consists of the high success medium funding organic level, the low 

success medium funding organic level and the Medium funding In-Organic level.  

 

6.2.9 Conclusion 
The results are generally in accordance with the previous classification Table 10. We show that 

three experts (1, 2 and 3) are not rank independent in CCS i.e. all the three individual experts 

exhibit a high degree of self-correlation. For Solar technology, we find that one of the experts, 

Expert 3, also exhibits high self correlation. The experts in Nuclear are shown to be relatively 

independent in their estimations. Thus, in accordance with the expert characterization, chapter 6.1, 

we expect very significant changes in CCS when Method I is used instead of Method II and 

moderate changes in the Solar and Nuclear sub-technologies. 

6.3 Expectations Based On Baker & Olaleye 2012 Theory 
• Expectations based on expert characteristics 

In this section we predict the change in the end probabilities based on the inherent self-correlation 

of the experts when either method of aggregation is used. We expect from the theory that since 

Method II (combining experts later) does not correct for the self-correlation of the experts, then in 

most cases where there exists high self-correlation within individual experts, the resulting 

probability from Method II should be larger than that from Method I (Table 2). This is because the 
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mean of the expected error and the variance of the correlation errors are larger by a factor n 

(number of experts) in Method II. 

From Table 21, the shaded cells indicate the probabilities aggregated using Method I. We expect 

that probabilities from Method II (combining experts later) will be higher than those from Method I 

(earlier combination) in the Organic, In-Organic, Chemical Looping and Post Combustion sub-

technologies. We also expect the same effect in the Medium and High Funding High Success HTR 

and the High Funding Low Success HTR hurdle levels. 

6.4 Data: Recombination Of Probabilities Using Method I 
The elicitations are recombined using Method I and the results shown below (Table 21). The shaded 

cells Method I probabilities while the characters in bold represent the numerically higher of the 

two methods. 

6.4.1 New Probabilities 

We note from Table 21 that out of the 21 levels where the probabilities were aggregated, Method I 

and II resulted in an increase in ten of the 21 levels each. The later chapters discuss if these outputs 

are in accordance with our theoretical projections. 

Table 21: Aggregated probabilities Method I and 2 

  Carbon Capture and Storage 
Nuclear 

High Success 
Nuclear Low 

Success Solar High Success 
Solar Low 
Success 

  Pre-Comb Chem Loop Post-Comb HTR HTR Organic In-Organic 3rd Gen Organic 

  
Mt  
I 

Mt 
II 

Mt  
I 

Mt 
II 

Mt  
I 

Mt 
II 

Mt   
I 

Mt  
II 

Mt   
I 

Mt  
II 

Mt   
I 

Mt  
II 

Mt   
I 

Mt  
II 

Mt   
I 

Mt  
II 

Mt   
I 

Mt  
II 

High 0.23 0.22 0.16 0.42 0.93 0.79 0.25 0.30 0.17 0.10                 
Med 0.11 0.11 0.14 0.30 0.86 0.70 0.14 0.17 0.11 0.09 0.03 0.04 0.29 0.43     0.13 0.25 
Low 0.05 0.03 0.02 0.08 0.68 0.59 0.01 0.00 0.02 0.01     0.15 0.27 0.09 0.02 0.09 0.13 
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6.4.2 Examination Of Empirical Results With Theoretical Projections 
 

 

 

Figure 17: Difference in high success end probabilities between both aggregation methods 

 

Figure 18: Difference in low success end probabilities between both aggregation methods 

In this section, we summarize the results of the use of both aggregation orders (Figure 17 and Figure 

18) and compare it to the projections made (Table 10). All the sub-technologies, except Post 

Combustion, which had a significant number of experts showing a high degree of self-correlation 

(CCS-Chemical Looping, Solar-Inorganic and Solar-Organic), resulted in a lower end point when 
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Method I was used relative to Method II. These patterns are expected and are in accordance with 

the underlying theory. 

For the remaining technology sub-categories where experts did not exhibit high self-correlation; 

CCS-Pre Combustion and Solar-3rd Gen. Both of these sub-technologies resulted in a higher end 

probability when Method I was used relative to Method II. Also for the Nuclear-High Temperature 

Reactor sub-category, in which a few of the funding levels had experts with some degree of self-

correlation and no correlation in some other funding levels, this resulted in a varied result 

depending on the funding level. 

In summary our results indicate that high self-correlation within experts leads to a very substantial 

increase in the end success probability when experts are combined later rather than earlier. We 

noticed this for all the sub-technologies with significant number of experts with high self-

correlation except Post Combustion. 

 

6.4.3 Infer Based On Theory To Try To Identify What Is Going On 
We observe from the recalculated probabilities (Table 21: Aggregated probabilities Method I and 2) 

that self-correlation has a significant impact. This is expected due to Method II not correcting for 

the self-correlation of experts (Baker & Olaleye, 2012). A similar factor that might cause the same 

effect is the redundancy of having similar experts (Kleinmuntz, Ravinder, & and Dyer, 1986), this 

was not noticed in this study as most of the technology sub-category were evenly divided between 

optimists, pessimists and fairly independent experts. Also Cross-correlation between experts was 

insignificant indicating no redundancy among experts.  
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6.4.4 Significance Of Difference When Either Method Of Aggregation Is Used 
While it is obvious that combining experts earlier is superior to later aggregation, the primary 

concern in this study is if the difference is indeed significant enough to warrant a re-estimation of 

the optimal portfolio of energy technologies. From Figure 19 and Figure 20, it seems clear that the 

method of aggregation indeed has a significant effect on the end point probabilities in majority of 

the technologies. Thus the changes are significant enough to warrant a re-estimation of the optimal 

portfolio using the Method I probabilities as inputs to the portfolio optimization model. 

 

 

Figure 19: Significance of difference – High Success between both methods 
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Figure 20: Significance of difference between both methods - Low Success 

 

6.4.5 Issues And Concerns 
A couple of immediate questions and assumptions will be discussed herewith as regards to the 

elicitation process. 

6.3.5.A  Tree Structure 
Here the tree structures of the sub-technologies are examined to further understand the nature of 

the aggregation error to be expected. As the theory in (Baker & Olaleye, 2012) is based on tree 

structures with intersecting multiplicative joint hurdles, we only discuss in this section, the 

technologies with tree structures which depart from this i.e. non-standard tree structures. An 

examination of all the elicitations carried out shows that only the Carbon Capture Chemical Looping 

and Post Combustion sub-technologies exhibits a non standard structure. The tree structure and 

resulting implications are discussed here. 

Chemical Looping CCS: This consists of the union of two events which are composed of the 

intersection of several events as seen by the tree structure in Figure 21. Then it is expected that this 

is the same as the case with the intersecting events, hence the results should be as expected for 

standard tree structure. 
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Post Combustion: This consist of dependent events where the end point success across the level is 

dependent on the consecutive success or failure of each hurdle i.e. one hurdle say Cryogenic 

Methods work is dependent on the failure of another hurdle say Molten Solvent(Figure 22). Thus 

the elicitation proceeds with the assessment of an event been conditional on the probability that 

another event does not happen, therefore “the analysis will be the same except that the sign of the 

error will be opposite” (Baker & Olaleye, 2012). This explains why the Method II (combining later) 

probabilities seemed to be less than Method I despite most of the constituting experts having high 

self-correlation (Table 10 and Figure 12). 

        

 

 

 

 

 

 

No  

Yes Success 

p2% 

1 – p4% 
Failure 

Chemical Looping 

No 

Yes 

No 

Yes 

 

Dynamic Replacement 
@ $0.05 

 

1 – p2% 

  

No  

Yes 

Can design for Suff. Particle 
Lifetime for $0.05 

p3% 

1 – p3% 

Yes 
Meet Env. 
Regulations 

p5% 

1 – p5% 

Success 

Failure 

Meet Env. 
Regulations 

p4% 

No  

Success 

Post Combustion 

No

Yes

Molten Solvent 
Operates at 1200 

 

p1%

1 – p1%1 
  

No  

Yes 

Cryogenic 
Methods Work 

p2% 

1 – 
Failure 

No  

Yes 

Stimulus Method 
Work 

p3% 

1 – p3% 
 

No  

Yes 

Amine or 
Ammonia 

p4% 

1 – p4% 
Failure 

Success 

Success 

Success 
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6.3.5.B  Statistical Significance 
This is a major concern due to the few number of hurdles assessed for the sub-technologies. This 

explains why the expert classification is done at the technology level rather than at the funding or 

sub technology level.  
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CHAPTER 7 

PORTFOLIO OUTPUT 

7. E 

7.1 Energy Portfolio Model Using Method I 
Using the same portfolio optimization model used in (Baker & Solak, 2011), the new endpoint 

success probabilities from Method I aggregation are used as inputs to the two stage optimal 

portfolio model and the results are discussed below. 

7.1.1 New Optimal R&D Portfolio 
The new optimal R&D investment portfolio is shown below in Table 22. 

 

 

New (Method I)  OPTIMAL PORTFOLIO 

 

CCS NUCLEAR SOLAR SOCIETAL 

Budget 

(mill $) 

Pre-

Comb CCS 

Post-

Comb SUM LWR HTR FR SUM ORGANIC 

IN-

ORGANIC 

3RD 

GEN SUM 

COST 

(tril $) 

200 39 56 52 147 0 0 0 0 0 39 0 39 13.4239 

400 0 0 52 52 346 0 0 346 0 0 0 0 13.1564 

600 0 19 224 243 346 0 0 346 0 0 0 0 13.098 

800 39 56 224 319 346 0 0 346 0 77 0 77 13.0674 

1000 0 56 519 575 346 0 0 346 0 77 0 77 13.0513 

1200 154 56 519 729 346 0 0 346 0 77 0 77 13.0455 

1500 386 56 519 961 346 0 0 346 116 77 0 193 13.0376 

2000 386 56 519 961 346 0 0 346 116 77 386 579 13.0328 

3000 386 56 519 961 346 1544 0 1890 0 77 0 77 13.0039 

4000 386 56 519 961 346 1544 0 1890 116 77 386 579 12.9973 

5000 386 56 519 961 346 3089 0 3435 116 77 386 579 12.9706 

10000 386 56 519 961 346 3089 4633 8068 116 77 386 579 12.9578 

20000 386 56 519 961 346 3089 15443 18878 0 77 0 77 12.935 

Table 22: New Optimal Portfolio 
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7.1.2 Change In Optimal Portfolio 
In this section, we discuss the change in the optimal portfolio. Table 23 gives the differences in the 

Optimal Portfolio between Methods I and II. We only display the budget levels where a difference 

exists between both methods portfolio. The optimal investment portfolio is different in 4 of the 13 

budget scenarios considered while the total societal cost increases in all but one of the budget 

levels, with respect to Method I. As Table 23 shows the figures relative to Method II, we observe 

that at the 200 and 600 million dollars budget level, Method I favors investment in CCS at the 

expense of Solar technology. We also note that there was no change in the Nuclear portfolio. 

We reiterate again that it is best to always aggregate experts early (Method I), most especially in 

cases such as ours where the experts seem to show high self-correlation. We thus discuss the loss 

and policy implications from the use of Method II (later aggregation) in the next section. 

 

  

 

 

 

 

CHANGE IN OPTIMAL PORTFOLIO [METHOD II – METHOD I] 

 

CCS SOLAR 

Budget (mill $) Pre-Comb Chem.-loop Post-Comb Sum Organic In-Organic 3rd Gen Sum 

200 -39 

  

-39 

 

38 

 

38 

600 39 37 -172 -96 

 

77 

 

77 

4000 

    

714 

 

-386 328 

10000 

    

714 

 

-386 328 

Max Investment 386 56 519 961 830 77 386 907 

Table 23: Change in Optimal Portfolio 
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7.2 Policy Implications 
 

 

Here we examine the societal cost and impact of using the defective method of aggregation 

(Method II). To do this, we evaluate the optimal portfolio from Method II using Method I 

probabilities. Table 24 gives the societal cost of evaluating both methods’ optimal portfolio using 

Method I’s probabilities. We note that the costs are most substantial in the $600 million budget 

level. But more importantly we note that relative to the total societal costs which are tens of 

trillions of dollars, the changes are very insignificant ranging from 0.1% to 0.01%. 

7.3 Welfare Maximizing Portfolio 
We discuss the work on the alternative R&D portfolio model, Equation [8], for the overall welfare 

maximizing portfolio where the opportunity cost of the R&D cost is used in place of the budget 

constraint in this chapter. As discussed earlier in the previous chapter (3.4.1), the objective is to 

determine the optimal R&D investment portfolio and the accompanying total social cost 

considering the different assumptions of the opportunity cost of allocating the R&D funding. 

Noubara, 2012 (DjimAdoumbaye, 2012) developed a similar greedy algorithm to (Peng, 2010) in 

solving for the optimal total social cost. This greedy algorithm is readily applicable here as the 

complexity of the problem makes the genetic algorithm incapable of solving the problem (Peng, 

2010). As the greedy algorithm is an approximation algorithm it is not guaranteed to always give 

the optimal solution, however (Peng, 2010) show that for this particular data set, the resulting 

solutions will be the same as those from both the genetic algorithm and the stochastic 

Budget ($ mill) Method I($ mill) Method II($ mill) Diff ($ mill) 
200 13,423,900 13,425,300 1,400 
600 13,098,000 13,111,300 13,300 

4000 12,997,300 12,999,200 1,900 
10000 12,957,800 12,959,700 1,900 

Table 24: Total Cost: Policy Implications - Method II Optimal Portfolio using Method I probabilities 
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programming versions. We discuss only the difference in the optimal portfolio and expected social 

cost when Method I is used Table 25. 

 

Risk Opportunity 
Cost 

Nuclear Solar Total 
R&D Cost 

(mil $) 

Total 
ESC 

(tril $) HTR FR Organic Inorganic 3rd 
Gen 

Base 

1 High High Medium Medium Low 21132 12.9468 
2 High High Medium Medium Low 21132 12.968 
4 High None Low Medium Low 4975 12.9905 
8 High None Low Medium Low 4975 13.0104 

Low
 risk 

1 High High Medium Medium Low 21132 13.8801 
2 High High Medium Medium Low 21132 13.9013 
4 High None Medium Medium Low 5689 13.9334 
8 High None Low Medium Low 4975 13.9538 

M
edium

 

1 High High Medium Medium Low 21132 11.8583 
2 High High Medium Medium Low 21132 11.8794 
4 High High Medium Medium Low 21132 11.9217 
8 High None Low Medium Low 4975 11.9466 

High 

1 High Medium Medium Medium Low 10322 10.339 
2 High None Low Medium Low 4975 10.3447 
4 High None Low Medium Low 4975 10.3547 
8 Medium None None Medium None 2928 10.3702 
All Excluded Sub-technologies are funded at the HIGH investment level 

Table 25: Welfare Maximizing Portfolio (Method I). 

Table 25 gives the funding levels recommended for the different sub-technologies at the different 

climate damages risk levels (Base, Low risk, Medium and High risk) and opportunity cost of the R&D 

budgets (1, 2, 4 and 8) when Method I is used. The first column shows the different climate 

damages risk levels considered (Base, Low risk, Medium and High risk). The second column 

indicates the various assumed values of the opportunity cost of the R&D budgets (1, 2, 4 and 8). 

Columns three to seven gives the recommended funding levels. The Total R&D cost and the 

expected social cost of the portfolios are also given in the last two columns. Table 26 gives the 
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difference between both Method I and II of the recommended funding level and total R&D cost. As 

an example, the second to the last column in Table 26 gives the difference (Method II-I) in the R&D 

funding and the total R&D cost for the High damages case when an R&D budget opportunity cost of 

8 is assumed. While Table 25 gives the recommended funding in terms of levels (High, Medium, 

Low), Table 26 gives the difference in actual $ cost. 

From Table 26, Method I will typically result in more investment in R&D, inferring that Method II 

generally leads to under investment in R&D. The exceptions are the base risk opportunity cost 4 

scenario and the Medium risk opportunity cost 8 scenario. This is due to over investment in R&D 

for Organic Solar in both cases, which is as a result of the self-correlation between the experts 

which lead to a lower endpoint success probability for Method I. The very significant difference in 

the success probabilities for 3rd Gen (0.2 for Method II and 0.9 for Method I) ensures that Method I 

almost always recommends 3rd Gen inclusion in the optimal portfolio while Method II doesn’t due 

to its low success probability when later aggregation is used.  

For the degree of significance of the results, we note that when Method I is used, only in 12 of the 

possible 144 sub-technologies do we observe any change. Also we observe that using Method II 

would likely lead to underinvestment in R&D for 3rd Gen by 386 million dollars, see second to last 

column. 
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Risk Opportunity 
Cost 

Nuclear Solar Total 
R&D 
Cost 

($mill) 

FR 
($mill) 

Organic 
($mill) 

3rd Gen 
($mill) 

Base 

1 0 0 0 0 
2 0 0 0 0 
4 0 714 -386 328 
8 0 0 -386 -386 

Low
 risk 

1 0 0 0 0 
2 0 0 0 0 
4 0 0 -386 -386 
8 0 0 -386 -386 

M
edium

 

1 0 0 0 0 
2 0 0 0 0 
4 -10810 0 -386 -11196 
8 0 714 -386 328 

High 

1 0 0 -386 -386 
2 0 0 -386 -386 
4 0 0 -386 -386 
8 0 0 0 0 

There are no changes in the excluded sub-technologies 
Table 26: Changes in the Welfare Maximizing Portfolio (Method II - I) 

 

7.4 Discussion And Policy Implications 
We discuss the different inferences from the results from the portfolio outputs in this section.  

7.4.1 Optimal R&D Budget 
From Table 26 we can determine the relative value of the improvements from the increase in each 

R&D budget level; the results are given in Table 27. The incremental benefits from the increase in 

the R&D budgets seems to tail off from the 1,000 ($ million) budget level. The return from the 

additional 200 ($ million) from the 1,000 budget level is -29, compared to -1337, -292, -153, -80 for 

the 0, 200, 400, 600 and 800 R&D budget levels respectively. 
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Table 27: R&D cost to reduction in total social cost benefit 

 

7.4.2 Relationship Between The Input Technology Success Probabilities And The Portfolio 
Outputs 

To observe how the changes in the input expert probabilities from the use of the new aggregation 

order (Method I) impact the optimal portfolio, we observe the percentage change in Figure 23 and 

Figure 24 compared with the change in the optimal portfolio Table 23. We note that all the sub-

technologies outputs follow the trend inferred by the input probabilities. When the aggregated 

probability using Method II is higher, the optimal portfolio investment from using Method II is 

always at least as much as from Method I for each sub-technology. 
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Figure 23: Percentage Change in High Success Probability wrt Met II [((Met II - Met I)/Met II)*100] 

 

 

Figure 24: Percentage Change in Low Success Probability wrt Met II [((Met II - Met I)/Met II)*100] 

 

7.4.3 Post Proposal Insights 
In this section, we discuss some of the post proposal questions and insights related to the model 
outputs. 
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7.4.2.A  Significant Increase In The Total Societal Cost For The 600 Million Budget Level 
From Table 23, it can observed that the 600 million budget level shows a very significant increase in 

the total societal cost, this is due to the significantly different resulting optimal portfolios, from 

using the two orders of aggregation at the $600 million budget level Table 21. 

 

7.4.2.B  Why Method I Always Seems To Favor Inclusion Of CCS To Solar 
As discussed in the previous section, the changes in the optimal portfolio outputs Table 23 are a 

function of the inherent self-correlation within experts in the input elicitation probabilities. An 

evaluation of Figure 23 and Figure 24 shows this. When the input sub-technology probabilities for 

Chemical Looping, In-organic Solar and Organic Solar are higher when Method II is used, with 

respect to Method I (due to less self-correlation for Method II), this leads to an increase in the 

investment allocation to these sub-technologies in Method II, compared to Method I. We also note 

the opposite for the Pre-Combustion, Post Combustion and 3rd Gen sub-technologies, where the 

input sub-technology probabilities are lesser for Method II with respect to Method I. As expected, 

we observe a decrease in the investment in these sub-technologies in Method II compared to 

Method I.  

As such, the input probabilities are higher for Organic and Inorganic Solar and lower for Pre-

combustion and Post combustion when Method II is used relative to Method I. Therefore, Method 

II will favor the inclusion of Solar to CCS while Method I will favor the inclusion of CCS with respect 

to Solar. 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

This thesis evaluates the impact of the use of different aggregation methods with respect to the 

optimal R&D investment portfolio. We conduct simulations of actual human experts eliciting de-

composed sub-events. We find that it is always best to aggregate experts early. We show that it is 

possible in some cases that aggregating later lead to less error, but this is due to randomness. We 

carry out a theoretical estimation of the likelihood that aggregating earlier is better under the 

condition of normality of the error distribution. Our results show that early aggregation leads to 

less errors as the number of expert increase and as the self correlation between experts increase. 

Using an empirical study, we show that a high degree of self-correlation within experts is present in 

some sub-technologies in the elicitation.  We combine these probabilities from the experts using 

the two aggregation orders. We show that later aggregation leads erroneously to a larger success 

probability when the experts are highly self correlated, because later aggregation does not correct 

for the self-correlation error of experts.  

The resulting probabilities from the elicitation are applied to an optimal portfolio decision problem. 

We determine the optimal portfolios from using both aggregation orders. We evaluate the loss and 

policy implications to the society of aggregating the experts later rather than earlier. We find that 

while the quantifiable impact to the society is very large in proportion to the total societal cost of 

climate change abatement, the impact is low. 
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APPENDIX A 

ELICITATION TABLES 
 

 

Table 28: Solar Elicitation Table 

 

 

Table 29: Carbon Capture and Storage Elicitation Table 

 

 

 

 

 

 

 

 

 

 

 

Hurdle 1 Hurdle 2 Hurdle 3 Hurdle 4 Hurdle 1 Hurdle 2 Hurdle 3 Hurdle 4 Hurdle 1 Hurdle 2 Hurdle 3 Hurdle 4 Hurdle 1 Hurdle 2 Hurdle 3 Hurdle 1
EXPERT 1 0.85 0.5 0.9 0.9 0.15 0.6 0.3 0.98 0.98 0.6 0.95 0.98 0.8 1 0.8 0.93
EXPERT 2 0.9 0.3 0.5 0.3 0.5 0.8 0.3 0.7 0.95 0.8 0.5 0.8 0.9 0.9 0.2 0.95
EXPERT 3 0.8 0.5 0.25 0.1 0.3 0.25 0.3 0.25 0.4 0.25 0.3 0.25 0.1 0.1 0.1 0.25
Average 0.85 0.433333 0.55 0.433333 0.316667 0.55 0.3 0.643333 0.776667 0.55 0.583333 0.676667 0.6 0.666667 0.366667 0.71

SOLAR Purely Organic
Low Funding Low Success Med. Funding High Success Med. Funding Low Success Low

SOLAR Inorganic

Hurdle 1 Hurdle 2 Hurdle 1 Hurdle 2 Hurdle 1 Hurdle 2 Hurdle 1 Hurdle 2 Hurdle 3 Hurdle 4 Hurdle 5 Hurdle 1 Hurdle 2 Hurdle 3 Hurdle 4 Hurdle 5
EXPERT 1 5 66 15 70 20 90 50 50 40 50 35 85 85 75 75 50
EXPERT 2 50 10 70 30 90 50 N/A N/A N/A N/A N/A 95 N/A N/A N/A N/A
EXPERT 3 2 2 10 7 25 15 1 1 1 1 1 2 2 2 2 2
EXPERT 4 N/A N/A N/A N/A N/A 95 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Mean 19 26 31.66667 35.66667 45 62.5 25.5 25.5 20.5 25.5 18 60.66667 43.5 38.5 38.5 26

PRE-COMBUSTION HURDLES
LOW MEDIUM HIGH

CHEMICAL LOOPING
LOW MEDIUM
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APPENDIX B 

BAKER & OLALEYE 2012 SIMULATION CODE 

 
function [P, ABSERR1, ABSERR2] = errsimnmamn 
% Program to obtain the normal random variable obtained by adding differently correlated rv 
  
Mc=-0.8; 
% Correlation of the Self Correlated Errors 
  
Ms=0.1; 
% Standard Deviation of the Self Correlated Errors 
  
Ecc=0.5; 
% Correlation of the Cross Correlated Errors 
  
Ec=sqrt(Ecc); 
% Correlation Coefficient of all experts to a random variable  
  
Es=0.5; 
% Standard Deviation of the Cross Correlated Errors 
  
Ds=0.2; 
% Standard Deviation of the Independent Errors 
  
P1=rand(); 
% First Standard Random Number between 0 and 1 
  
P2=rand(); 
% Second Standard Random Number between 0 and 1 
  
eP1=P1*[1;1;1;1;1]; 
% Original Probability of the Five Experts for the First Hurdle 
  
eP2=P2*[1;1;1;1;1]; 
% Original Probability of the Five Experts for the Second Hurdle 
  
ruE1=randn(); 
% Random Variable with Mean Zero 'Support Variable' 
  
% rvE1=0 + Es*ruE1; 
% Random Variable ruE1 with mean 0 and STDEV Es 
  
eE1=[ 0 + Es*(Ec*ruE1 + sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE1 + sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE1 + sqrt(1 - 
Ec^2)*randn()); 0 + Es*(Ec*ruE1 + sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE1 + sqrt(1 - Ec^2)*randn())]; 
% eE1=[rvE1; 0 + Es*(Ec*ruE1 + sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE1 + sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE1 + 
sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE1 + sqrt(1 - Ec^2)*randn())]; 
% 5 Random Variables Correlated Across Experts Representing Hurdle 1 
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ruE2=randn(); 
% Random Variable with Mean Zero 'Support Variable' 
  
% rvE2=0 + Es*ruE2; 
% Random Variable ruE2 with mean 0 and STDEV Es 
  
eE2=[ 0 + Es*(Ec*ruE2 + sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE2 + sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE2 + sqrt(1 - 
Ec^2)*randn()); 0 + Es*(Ec*ruE2 + sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE2 + sqrt(1 - Ec^2)*randn())]; 
% eE2=[rvE2; 0 + Es*(Ec*ruE2 + sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE2 + sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE2 + 
sqrt(1 - Ec^2)*randn()); 0 + Es*(Ec*ruE2 + sqrt(1 - Ec^2)*randn())]; 
% 5 Random Variables Correlated Across Experts Representing Hurdle 2 
  
rvM1=randn(5,1); 
% 5 by 1 matrix of Random Variables 
  
rvM2=randn(5,1); 
% 5 by 1 matrix of Random Variables 
  
eM1=0 + Ms*rvM1; 
% First Matrix Representing the Self Correlated Errors, Not Correlated 
  
eM2=[ 0 + Ms*(Mc*rvM1(1,1) + sqrt(1 - Mc^2)*rvM2(1,1)); 0 + Ms*(Mc*rvM1(2,1) + sqrt(1 - Mc^2)*rvM2(2,1)); 0 + 
Ms*(Mc*rvM1(3,1) + sqrt(1 - Mc^2)*rvM2(3,1)); 0 + Ms*(Mc*rvM1(4,1) + sqrt(1 - Mc^2)*rvM2(4,1)); 0 + 
Ms*(Mc*rvM1(5,1) + sqrt(1 - Mc^2)*rvM2(5,1))]; 
% Easy Second Matrix Representing the Self Correlated Errors, Correlated 
  
% eM2=0 + Ms*(Mc*rvM1 + sqrt(1 - Mc^2)*rvM2); 
% Second Matrix Representing the Self Correlated Errors, Correlated 
  
eD1=0 + Ds*randn(5,1); 
% First Matrix (Hurdle 1) of Independent Errors With Mean Zero and STDEV Ds 
  
eD2=0 + Ds*randn(5,1); 
% Second Matrix (Hurdle 1) of Independent Errors With Mean Zero and STDEV Ds 
  
Q1= eP1 + eE1 + eM1 + eD1; 
% Sum Across for the First Hurdle 
  
Q2= eP2 + eE2 + eM2 + eD2; 
% Sum Across for the Second Hurdle 
  
Q=((sum(Q1))/5)*((sum(Q2))/5); 
% Sumproduct of both Hurdles (Method 1)(Avg Across Hurdles before 
% Aggregating)[Average Experts First] 
  
R=(sum(Q1.*Q2))/5; 
% Products Across Rows of both Experts(Method 2) (Avg Across Experts before 
% Aggregating)[Average Experts Later] 
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P=P1*P2; 
% Product of Both Experts Probabilities 
  
ABSERR1=Q - P; 
% Error From (Method 1)(Avg Across Hurdles before Aggregating) 
  
ABSERR2=R - P; 
% Error From (Method 2)(Avg Across Experts before Aggregating) 
end 
 
 
NumTrials = 1000000; 
P = zeros(NumTrials,1); 
ABSERR1 = zeros(NumTrials,1); 
ABSERR2 = zeros(NumTrials,1); 
for Trial = 1 : NumTrials 
  [P(Trial), ABSERR1(Trial), ABSERR2(Trial)] = errsimnmamn; 
end 
avgP = mean(P(1:end));  
avg1 = mean(ABSERR1(1:end));  
avg2 = mean(ABSERR2(1:end)); 
G = [avg1 avg2]; 
avgAbsP = mean(abs(P(1:end))); 
avgAbs1 = mean(abs(ABSERR1(1:end)));  
avgAbs2 = mean(abs(ABSERR2(1:end))); 
Gabs = [avgAbs1 avgAbs2]; 
varP = var(P(1:end));  
var1 = var(ABSERR1(1:end));  
var2 = var(ABSERR2(1:end)); 
GV = [var1 var2]; 
% FindEva=find(abs(ABSERR2(1:end))<abs(ABSERR1(1:end))); 
% ProbQP=(numel(FindEva))/NumTrials; 
ProbQP=(numel(find(abs(ABSERR2(1:end))<abs(ABSERR1(1:end)))))/NumTrials; 
% ProbQP=(numel(find(abs(ABSERR1(1:end))<abs(ABSERR2(1:end)))))/NumTrials; 
% ProbQP=(numel(find((abs(ABSERR2(1:end))<abs(ABSERR1(1:end)))>1e-15)))/NumTrials; 
Prob1=(numel(find(abs(ABSERR1(1:end))>.05)))/NumTrials; 
Prob2=(numel(find(abs(ABSERR2(1:end))>.05)))/NumTrials; 
RESULT=[G, GV, 0, 0, Gabs, Prob1, Prob2, ProbQP]; 
% x = 1:NumTrials; 
% ABS1=[abs(ABSERR1(1:1000000,1)),abs(ABSERR2(1:1000000,1))]; 
% hist(ABS1); figure(gcf) 
% title('Histogram Of Absolute Errors |Q-P|'); 
% xlabel('Error') 
% ylabel('Frequency') 
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