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ABSTRACT 

 

STRATEGIES FOR REDUCING SUPPLIER RISK: INPUTS INTO THE SUPPLY 

CHAIN 

 

FEBRUARY  2016 

 

CHRISTOPHER A. GREENE 

 

M.S.I.E.O.R., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Ana Muriel 
 

 

 There are many aspects to consider when managing an entire supply chain from 

procurement to fulfillment. Complex assemblies require hundreds of components, sourced 

from all corners of the globe, to come together in a synchronized fashion. Given the 

magnitude of the supply chain, high quality standards, and significantly increased 

outsourcing, there is a strong need to monitor supplier risk and quickly identify and 

mitigate potential problems. Moreover, the continuous pressure to reduce resources and 

pressure to cut costs, further increases the need for the development of procedures and tools 

that can quickly and efficiently address these potential supply chain risks. This thesis 

focuses on two unique problems brought to our attention by supply chain managers in the 

field. The first is the analysis of the robustness of advanced ordering strategies (AOS). 

AOS have been proposed in previous research to coordinate the delivery of components 

for complex assemblies with long and highly variable lead times. They have been shown 

to be highly successful to synchronize the supply chain under on-going conditions. It is not 

clear; however, their effect as the underlying performance of suppliers evolves over time. 

The second topic covers the methodological foundation and development of a tool to 

accurately classify suppliers based off risk, and  provides a method to calculate final 
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assembly risk, in addition to guiding the deployment of scarce supplier development teams 

and resources. 
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CHAPTER 1 

1 INTRODUCTION 

There are many facets to analyze when thinking about supply chain risk. Much of the 

research currently covers supply chain risks from a network disruptions perspective in a 

holistic fashion. (Tang, 2006) sparks many of the research directions today in Supply Chain 

Risk Management (SCRM) and suggests four principles: supply management, demand 

management, product management and information management (Colicchia & Strozzi, 

2012). Here we delve into a portion of the network, arguably the most important, supply 

management. As it is well known that variation in a process propagates downstream and 

that is why it is important that the inputs to a supply chain be as consistent and risk free as 

possible. Furthermore, performance of a process’ outputs can only be as good as the quality 

of its inputs (Forker, 1997).  In this paper we cover two critical aspects which produce great 

benefits for the supply chain as a whole when appropriately accounted for. Those two 

aspects are component on-time delivery and component quality. 

There are two events that will stop production before the product at hand starts to be 

produced, hence affect the bottom-line; that is supplier delivery lateness and significant 

quality “escapes”. Therefore safety inventory and time buffering strategies are a must in 

many production facilities. But then it becomes a challenge for manufactures to balance 

these conflicting objectives of inventory cost reduction and customer service levels. As it 

is commonly known, as inventory levels increase service level rises as well, but on the 

other hand costs/risk increase with the excess of inventory. Furthermore, dealing with JIT 
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strategies it can be a challenge to coordinate all components needed for the final assembly 

of the finished good.  

Research has been done by (Beladi, 2014) that allows for 100% certainty that all 

components will be available for on-time production.  In their research it was found that 

dealing with a system that depends on hundreds of components to show up at specified 

times (under JIT strategies), planning for the worst case (100th percentile in the components 

average weeks late distribution) for each component results in a dramatic decrease in 

inventory levels and increases the start production rate up to 100%. We extend this work 

to answer the question of how robust this system developed by (Beladi, 2014) is. Will it 

still produce great system performance under unexpected circumstances?  

The other parameter in question is quality. Quality can be hard to predict especially with 

complex components and exhaustive quality check procedures. In many manufacturing 

processes raw material received from suppliers is assumed to contain no quality non-

conformances (QNs) and incoming orders are subject to randomized quality checks with 

only about 10% of components being checked. In these situations checking all incoming 

suppliers’ shipments is infeasible because of the major resource and cost burden. This is 

why many OEM manufactures especially in the aerospace industry develop various 

preventive initiatives and create entire divisions dedicated to supplier quality. The main 

objectives of these divisions are to oversee supplier operations and uphold policy and 

regulations. This is of great importance in industries such as aerospace where processes are 

heavily regulated. Even with these measures in place it is still hard to keep track of all the 

operations of the hundreds of suppliers distributed around the globe. Also, many of these 
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suppliers produce several components, which can all have different performance and 

quality outputs. 

For large manufacturing companies, where the number of suppliers are in the mid hundreds 

and the number of components in the thousands, identifying high risk components is a hard 

task. Is there a way that a company can identify and mitigate these potential risks by one 

centralized tool? Many attempts in practice have been made where managers have come 

together to combine domain knowledge to develop metrics that indicate how a supplier is 

performing by categorizing the suppliers based off their current performance. One of the 

major pitfalls is these tools depend on a vast amount of subjective data and the 

categorization (i.e. suppliers are categorized in Good, Medium and Bad performing groups) 

tends to be non-informative, especially when trying to allocate resources to implement 

preventive/corrective action. This paper describes a method and analysis that was 

developed for a major manufacturer to optimally categorize supplier based on segmented 

ranking algorithm using readily available data. 
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CHAPTER 2 

2 ADVANCED ORDERING STRATEGY 

 The master’s thesis of Faried Beladi at the University of Massachusetts Amherst 

Department of Mechanical and Industrial Engineering (Beladi, 2014) covered the 

development of a discrete-event simulation (DES) tool to predict and optimize on time 

production for an industry component complex manufacturing assemblies. This DES was 

developed in MATLAB R2011b software and was chosen because of the object oriented 

programming capability and versatility for extended complex analysis for future work.  

 

2.1 Motivation 

 The motivation behind this predictive simulation tool is to provide the ability to explore 

inventory management strategies to increase on-time production assembly while 

minimizing inventory. In order to account for component delivery variability, time and 

physical buffering are commonly used. In the case of an aerospace manufacturer many of 

the components have high costs and significant variability in delivery lead-times 

Practitioners felt inventory buffering would put great financial strain on the company as a 

whole. It was then decided that discrete-event simulation of the inventory system 

comprising of the component delivery occurrences and inventory management system 

would be beneficial to emulate the system behavior in order to find an optimal solution for 

on-time production improvement and inventory reduction 

2.2 Understanding Advance Ordering Synchronization 
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 The major driving force of the delivery performance prediction tool is the record of 

weeks late of each component based on the delivery receipts and Material Requirements 

Planning (MRP) system’s due date taken from a historical six month period. The historical 

performance of the weeks late metric distributions were created for each component.  

Viewing Figure 1 displays the foundation of the delivery performance prediction tool and 

the strategy of on-time delivery described later in this section. What Figure 1 displays is 

first looking at (1) the Quoted Lead Time (QLT) which was negotiated between the 

supplier and the Original Equipment Manufacturer (OEM), (2) represents the distribution 

of weeks late that was observed from over the past six months of that component, (3) 

represents the realized lead time of when the component actually arrived to the OEM and 

(4) represents the additional waiting time that the component has to wait for the all the 

components in the assembly to arrive to start production. 

 

 

 

 

 

 

Analyzing the weeks late distributions  of the components several strategies were tested 

using time buffering techniques for the specific assemblies of the manufacturing partner 

with the goal of achieving at least 95% service level to MRP due date. It was found that 

the most optimal strategy of time buffering was time buffering all components in the 

assembly to their respective 100th percentile weeks late distribution, hence the Advance 

Quoted 

Lead Time 

Realized 

Lead Time 

Avg. weeks late 

distribution 

Figure 1 Component weeks late distribution 

1 
2 

3 

4 
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Ordering Synchronization (AOS). A more in depth analysis on the methodology and 

approach to this finding can be found in (Beladi, 2014) and (Prokle, et al., 2016), but we 

will provide broad overview in the remainder of this section. 

To clearly understand the relationship between the weeks late distribution and on-time 

production of an assembly we next describe a simple example. Viewing Figure 2 below 

represents the weeks late distribution of 5 different components in the base case system, 

SLT. Idealistically, one would want all the components to show up at the same time, which 

is represented by the black vertical dashed line. But as one can see that a good portion of 

the probability density of weeks late for each component lands past the required due date. 

This is where advance ordering is effective. It calculates each components latest possible 

arrival lateness, and for each component respectively moves up the schedule (or signals to 

the supplier earlier) of when the component is needed. So comparing Figure 2 and Figure 

3 one can see how each components required due date is changed according to their 

observed arrival lateness. What the comparison of these two figures show is the aligning 

of all  5 components’ 100th percentile of the their weeks late distribution to the production 

start required due date makes sure 100% of the time (theoretically) all 5 components will 

arrive by the acquired due date. 
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One may say that since each component receiving a time buffer equaled to the 100th 

percentile of their weeks late distribution there will be an occurrence where majority of the 

components show up early, causing an dramatic of increase inventory, but even though 

there is a slight probability that this event may occur it is very unlikely due to the high 

variability in the weeks late distribution of majority of the components, where a good 

portion of the components will always arrive on their right side of the probability 

distribution.  

Understanding each component’s weeks late distribution, time buffering can be applied to 

a specified percentile that results in a certain on-time arrival probability or service level. 

Then accounting for the multiplicable factor of hundreds of components’ on-time arrival 

probabilities, one can calculate the overall system on-time production rate.  

Required 

Due date 

Required Due 

date / Realized 

due date 

 AOS = All components time buffered to their 

respective 100th percentile weeks late  

Quoted 

Lead Time 

Realized 

due date 

Realized 

Lead Time 

SLT = No component time buffering 

Figure 2 Existing state with no time 

buffering synchronization – SLT and  

Figure 3 Advanced Ordering 

Synchronization: 100th percentile time 

buffering 
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Referencing (Prokle, et al., 2016), they provide a great an example of necessary inventory 

buffering to overcome the deterioration of service levels with only 8 components. In the 

example a production assembly contains 8 components shown in Table 1. and Table 2. 

Looking at Table 1 it shows the average and standard deviation of the lead time of the 

component with corresponding inventory buffer. Then Table 2 shows over time (5 day 

increments) the expected service level of the final assembly accounting for the 

corresponding inventory buffers from Table 1.  

 

components 1 2 3 4 5 6 7 8 

Mean 0 0 5 7 25 70 100 100 

Standard Deviation 1 10 2 6 4 40 10 40 

Inventory Buffer 3.29 32.9 6.58 19.74 13.16 131.59 32.9 131.59 

Table 1 Example of 8 components and their corresponding metrics of mean standard 

deviation and inventory buffer for a 95% service level (Prokle, et al., 2016) 

 

 Probability of availability after given number of days  

Comp. # 0 5 10 15 20 25 30 35 40 45 50 

1 0.95 1.0 1.0 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 0.95 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

4 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6 0.95 0.96 0.97 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00 

7 0.95 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

8 0.95 0.96 0.97 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00 

Final 

Assembly 
0.66 0.89 0.93 0.96 0.97 0.98 0.98 0.99 0.99 0.99 1.00 

Table 2 Example of 8 components of the component and assembly service level over time in 

increments of 5 days (Prokle, et al., 2016) 
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Table 2 shows that only considering the inventory buffers for each part the final assembly 

would result in a service rate of only 66% on the required due date (i.e. day 0), which is 

shown in the second column from the left. In order to reach an assembly on-time production 

service level of 95% production would have to wait almost 15 days past the expected start 

date. Wanting to be more ambitious by reaching a 99% service level, production would 

have to start 35 days past the expected start date. In practice with assemblies consisting of 

thousands of components, inventory buffers alone would not be efficient enough to hedge 

against the variability or would cause a firm tremendous amount of buffer inventory, given 

the multiplicable factor of combined individual component’s service levels as component 

quantity increases (e.g.  0.95100 = .006) (Prokle, et al., 2016). 
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CHAPTER 3 

3 ROBUSTNESS OF ADVANCED ORDERING STRATEGY  

 We have shown that the advanced ordering strategy (AOS) is very attractive in reducing 

inventory and ensuring customer delivery with adding time buffers for all components 

equaled to their 100th percentile weeks late distribution. Throughout this section we will be 

comparing the current system with no time buffers, SLT and advanced ordering system 

strategy, AOS. The experiments ran consider the historical component delay distributions, 

and assume that they are good predictors of the supplier’s performance in the future. In 

practice, however, the weeks late distributions of components from a supplier may shift 

over time, or experience sporadic severe disruptions. To test the performance of the AOS 

in such events, we simulate the system in a variety of disruption and distribution shift 

scenarios. How will the system behave when a component displays a delay far beyond what 

any historical data analysis could predict?  Will AOS still outperform SLT (i.e. the current 

state of the system) 1 ? Will the intuitive belief of time buffering resulting in an 

overwhelming surge in system inventory pan out? 

To answer these questions we simulate and analyze the behavior of a 1500-component 

system under the SLT versus AOS strategies in the following scenarios:  

 Scenario 1: single components that are at a particular point in time that are 4, 8, 

and 12 weeks later than their 100th percentile weeks late,  

                                                      
1 SLT is the system lead-time given from the buyer and supplier contract agreement which is the 

current state to which the advance ordering system is compared to 
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 Scenario 2: single components that are 4 weeks late beyond the 100th percentile of 

weeks late consecutively for 4, 8 and 12 weekly orders, and lastly,  

 Scenario 3: a percentage of components (1%, 3%, 5%, 10%, 15% and 20%) that 

would be each 4 weeks late beyond their 100th percentile to the respective order.  

3.1 Assumptions 

 There are a few assumptions for the three scenarios.  First we are considering a period 

of 52 weeks for the simulation length after the warm-up period, and run 250 replications 

of the 52-week period, in order to estimate annual performance. The same seed is used to 

produce identical random variables throughout the model to allow for better comparison 

of the strategies under each scenario. We used a warm up period equal to the maximum 

effective lead-time over all components in the assembly multiplied by two, which was 

strategically calibrated to track simulation performance. Effective lead-time, LTeff is just 

the lead-time that the simulation uses for a particular component, which has two 

calculations 1) LTeff just equals the Quoted Lead Time (QLT)2 under the SLT case and 2) 

LTeff equals the QLT plus 100th percentile of the weeks distribution, 𝐿100  of the specified 

component. See Figure 5 and Figure 4 below. 

 

 

 

 

                                                      
2 The Quoted Lead Time as described previously is the negotiated lead time for orders sent from 

the OEM to the supplier  
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Furthermore, in the simulation the LTeff is used to time phase all the components to arrive 

on time for one particular production start date. LTeff is multiplied by two to make sure 

the component with the maximum   LTeff   is able to have two orders fulfilled before the 

statistics on performance are taken. To keep simulation runs consistent we took the 

greater of the maximum effective lead-times (of SLT and AOS cases) and used this value 

to determine the warm up period for all simulations. 

3.2 Component Profile 

 A major factor on the output of all scenarios is component selection.  Each component 

has certain characteristics as follows: Unit cost per assembled product, number of units per 

assembly, quoted lead-time (QLT), weeks late distribution, including average and standard 

deviation of weeks late. To visualize component delays across the entirety of components, 

a heat map has been developed as a two-dimensional graph that displays one point for each 

component with coordinates equal to its corresponding average and standard deviation of 

weeks late. The Cartesian distance from the point in the graph to the origin is referred to 

as the heat map distance (HMD) of the component. The characteristics most significant to 

the component profile are the unit order cost per assembled product and the heat map 

LTeff = QLT   

SLT 
 

Required 

Due Date 

Figure 5 Calculation of Effective 

Lead time LTeff  under SLT 

 

AOS 
Required 

Due Date 

LTeff = QLT + 100th % 

Figure 4 Calculation of Effective Lead 

Time LTeff  under AOS 
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distance. These two characteristics can greatly influence the results of the simulation.  The 

cost per assembled product is simply the cost of one unit multiplied by the units per 

assembled product. These features should be aware of when analyzing and making sense 

of results from different scenarios. 

To better understand the component make up Figure 6 shows the distribution of the 

normalized average weeks late across the 1500 components as a histogram. Here we can 

see that about 80% of the components are probably in a reasonable range of weeks late, but 

there is a small portion of components that can potentially hold up an entire production 

line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Modification of Delivery Performance prediction Tool 

 The delivery performance prediction tool was modified in order to perform the analysis 

of the three scenarios stated above.  The basis of the three scenarios is implementing a 

specified lateness at a certain time t for a specified component.  For the delay 

implementation there are two related input parameters to consider: 1) the time the delay 

Figure 6 1000-Part System Average Weeks Late Distribution 

Normalized  
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should be implemented in the system, and 2) when the component will be needed by the 

system to fulfill an order.  For example in Figure 7 below, the second arrow from the right 

represents when the component will be needed (i.e., when we want the lateness to occur so 

that it is fully captured in our 52-week simulation). The first arrow represents when the 

lateness needs to be implemented, that is, the ordering time timp to which the longer supply 

lead time is assigned. This ordering time takes into account how far in advance orders for 

that component are placed under the strategy chosen (SLT or AOS). How far in advance 

the strategy orders a component can be interpreted as the lead time that the strategy assumes 

for that component, hence LTeff. 

The simple calculation would be:   𝑡 − 𝐿𝑇𝑒𝑓𝑓 = 𝑡𝑖𝑚𝑝 

 

 

 

 

 

 

 

 

We also want to emphasize the assumption briefly discussed in Chapter 2: if an order is 

late at time t then all succeeding orders (ti = ti-1 + 1 , where  i = 1. . .WL, t0 = t, WL = weeks 

late of order delay) will all be delivered at t + WL. This is to ensure that orders do not cross; 

a later order cannot arrive earlier. We are assuming that an order scheduled for arrival at 

Figure 7 Delay implementation diagram 

WLext 

LTeff 
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time t that is late by WL weeks will also delay orders up to time t + WL, making all orders 

being delayed arrive on the same day (t + WL). See Figure 8 for visual explanation. 

 

 

 

 

 

 

One major difference between the SLT and AOS is the that in the AOS case runs, the LTeff 

already accounts for the 100th  percentile  weeks late, where in the SLT as a modeler one 

has to be conscious that LTeff is not accounted for and needs to be added to the extreme 

lateness of the specified component. This allows for an equitable comparison of the two 

systems types. 

3.4 Scenario Runs 

3.4.1 Scenario 1 

 In Scenario 1 we consider three components that we call “Good Component”, “Medium 

Component” and “Bad Component.”  These components represent the minimum, median 

and maximum, respectively, of the 100th percentile weeks late distribution of components 

considered for the simulation run. See Figure 9.  We assume no components have negative 

weeks late; a component is either on time or late. Therefore, for our minimum 100th 

percentile weeks late value is equaled to 0. 3 

                                                      
3 Negative weeks late represent a part arriving early, before the MRP due date. 

t t+1 t+2 t+3 t+WL 

Figure 8 Order behavior under 4 week 

normal delay (Scenario 1) 
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Figure 9  100th Percentile weeks late distribution for the 1500 components simulated 

 

For each type component (i.e. Good, Medium, Bad) a series of simulations were run where 

an extreme lateness, WLEXT  of 4, 8, or 12 weeks was applied to the specified component. 

Under each case, we compared how the SLT system performed versus the AOS system. 

Our results show significant differences.  Referring to Figure 10 and Figure 11 one can see 

significant reductions in final assembly average weeks late and average inventory cost by 

97% and 54%, respectively. This validates that the AOS system significantly outperforms 

SLT even under statistically unforeseen conditions. 
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Not surprisingly, the performance of AOS worsens as some components are later than 

statistically planned for. However, the system performance is still significantly better than 

that of the current SLT strategy. Now delving into the results deeper, one can see that there 

are other phenomena occurring when closely looking at the SLT case and more specifically 
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Figure 10 Scenario 1: Final Assembly Average Weeks Late 
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the Bad Component. These occurrences follow the insight that when the production 

schedule is being held up because of a few components, inventory costs would decrease if 

components that usually show up on time (i.e. a “Good component”), actually arrive late. 

Considering Bad Components arriving even later, this increases the average inventory 

dramatically by having to hold on to inventory for that extended amount of time, especially 

if the majority of the components required to start production, have already arrived. 

Looking at Figure 12, the SLT case, as the component profile goes from good to bad, the 

average inventory cost rises increasingly. More specifically there is a tremendous 

difference in average inventory costs compared to the Good and Bad component cases. 

Then viewing Figure 13, the AOS case, as the component profile goes from Good to Bad 

there is very minimal difference, if at all. Not without mentioning the dramatic reduction 

in overall average inventory. Practitioners implementing AOS will minimize the effect of 

increasing the average inventory levels with not having any bias towards any good or bad 

performing components arriving extremely late, hence a robust method of increasing on 

time delivery, while effectively minimizing inventory costs. 
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3.4.2 Scenario 2 

 For Scenario 2 we looked at how the system would behave when components are late 

on 4, 8 and 12 consecutive orders (which equate to weeks). See Figure 14 below to better 

understand the order behavior under systematic delay and compare with Figure 7 to see the 

difference with normal component delay.  In this scenario we wanted to gain more insight 
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t t+1 t+2 t+3 t+4 t+5 t+7 t+6 

Figure 14 Order behavior with systemic 4 week delay 

on how severe compound lateness would affect the system as a whole, but even more so 

how would both system strategies compare during these extreme conditions.  

 

 

 

 

 

 

  

 

 

 

Viewing Figure 15 we can see that comparing the results of scenario 1 and 2 the system 

behaved very similarly with expected decrease in service level and increase in average 

inventory of about 10% and 12% respectively. 

 



 

21 

 

 

 

 

 

3.4.3 Scenario 3 

 Lastly, in Scenario 3 we wanted to explore how the system would behave when 

multiple components were extremely late and to see if there was a critical number of 

components that would cause the system to fail. For this scenario we made sure to account 

for components being late on random weeks throughout the simulation. This assumption 

was that all components considered for the extreme lateness would be given a random time 

t between week 1 and week 52 for the start week of extreme lateness (i.e. extreme lateness 

Figure 15 Scenario 1 and 2 comparison of service level and average inventory 
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is equaled to four weeks). In a practical sense this would represent a specified number of 

components randomly arriving extremely late within a 52 week period.  

Viewing dFigure 16(a) you can see both systems are performing as expected when the 

specified percentage of components are extremely late (100th percentile weeks late plus 

four weeks). AOS seems to get increasingly worse off as you increase the percentage of 

components extremely late and SLT remains at constant service level of 0%. Now looking 

at dFigure 16(b – d) similar and expected results occur where AOS dramatically out 

performs the SLT and their respective curves gradually increase to some asymptotic level. 

The reasoning behind this limiting behavior is because of the four week extreme lateness 

constraint that we have imposed on the components. But more specifically dFigure 16c 

(final assembly average weeks late) concretely shows this aspect and you see how the AOS 

curve approaches four weeks asymptotically. In all, dFigure 16 shows that the AOS 

performance considering a percentage of components still outperforms SLT by a great 

margin. 
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3.5 Summary 

 We set out to validate that under unforeseen conditions that the Advanced Ordering 

Strategy (AOS) would perform superior versus the System Lead Time (SLT). We have 

compared the two during three scenarios: 1) one specified component profile (i.e. Good, 

Medium and Bad) would experience a lateness equaled to their calculated 100th percentile 

weeks late plus an extreme lateness of 4, 8, and 12 weeks, 2) this scenario is the same as 

dFigure 16  Scenario 3: Percentage of Components Late Performance, SLT vs AOS 
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scenario 1 except that each specified component would experience a systematic lateness 

equal to their calculated 100th percentile weeks late plus an extreme lateness of 4, 8, and 

12 weeks, where this systematic lateness would effect not just the one order, but  following 

orders corresponding to the representative extreme lateness, and 3) a percentage of 

components total components in the assembly (1%, 3%, 5%, 10%, 15%, & 20%) that 

experience an extreme lateness of 4 weeks.  

Furthermore, looking at Table 3 it is easy to see the superiority of the AOS to SLT.  As is 

shown, the average service level improved from 0% to on average 88% and 73% for 

scenarios 1 and 2 respectively. Additionally, inventory reduction on average was improved 

by 57% and 52% for scenarios 1, and 2 respectively.  Even more so, the average wait time 

for final assembly completion is reduced nearly 98% and 93% for scenario 1 and 2, 

respectively.  

 

  

AOS vs SLT: % Improvement 

Scenario 1 Scenario 2 

  Good Medium Bad Good Medium Bad 

Service Level *88% *88% *88% *73% *73% *74% 

Avg Inventory 55.59% 55.59% 58.50% 49.32% 49.30% 57.03% 

Avg Wks Late 97.54% 97.54% 97.67% 92.29% 92.29% 93.82% 

Avg Coef Var 0.03 0.03 0.02 0.031 0.032 0.022 

*Service level only accounts for the  percent  magnitude in difference between AOS and SLT 

Table 3. Scenario 1 and 2 percent improvement in performance measures of AOS vs SLT.   

This table shows the service level magnitude improvement, Average inventory % reduction, 

average weeks late reduction and the average coefficient of variation of each scenario ran for 

250 iterations 

 

Furthermore, viewing Table 4 is the percent improvement comparing AOS versus SLT. Here we 

can see we are much better off with the AOS, with much emphasis on average weeks late reduction 

of  89% across all scenarios. Another aspect to highlight is even though for  scenario 3 cases 10%, 
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15%,  and 20% equaling 0% service viewing the average weeks late there is still a great reduction 

in, which signifies even though components are still arriving late, components are still arriving with 

a reason amount of time past the required due date 

 

  

AOS vs SLT: % Improvement 

Scenario 3 

  0% 1% 3% 5% 10% 15% 20% 

Service Level *100% *40% *17% *8% *0% *0% *0% 

Avg Inventory 59% 51% 46% 45% 43% 43% 43% 

Avg Wks Late 100% 93% 89% 87% 85% 85% 85% 

Avg Coef Var 0.030 0.028 0.024 0.026 0.026 0.026 0.052 

*Service level only accounts for the  percent  magnitude in difference between AOS and SLT 

Table 4 Scenario 3 percent improvement in performance measures of AOS vs SLT.   This 

table shows the service level magnitude improvement, average inventory % reduction, 

average weeks late reduction and the average coefficient of variation of each scenario ran for 

250 iterations 

 

From these scenarios we have concluded that the AOS system does indeed perform better by a great 

margin and is very robust for different component profiles under several extreme cases. It answers 

the question of how the system will perform under unforeseen disruptions in the supply base and 

whether Advanced Ordering System will upstand the uncertainty of the future. 
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CHAPTER 4 

4 IDENTIFYING AND CATEGORIZING SUPPLIER RISK 

 Industry wide there has been a push to reduce risk along the supply chain from the 

result of global expansion. Companies interact with hundreds of suppliers around the globe 

making it difficult to monitor a supplier’s performance and quality. Understanding a 

supplier’s performance and quality allows manufactures to quickly take action to isolate 

issues and provide the necessary resources to implement corrective action. With our 

industry partner there has been many attempts to develop a tool that can categorize 

suppliers in different risk groups to better identify and monitor suppliers to then efficiently 

allocate resources to improve those suppliers.  These tools to date haven’t been able to 

accurately predict a supplier’s behavior from year to year, seeing accuracy levels of less 

than 33%.  

Working with the manufacturer the goal was set to accurately identify and categorize 

supplier risk in order to identify and mitigate quality issues to optimally allocate resources 

for corrective action of the specified suppliers. These following steps were taken in order 

to achieve this goal: 

 Isolate most relevant data attributes based off domain knowledge and preliminary 

analysis; 

 Identify target variable variable(s); 

 Prioritize supplier risk by applying sequential sorting method from most correlated 

variable to least correlated; and 
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 Use Boosted Poisson Tree algorithm to find expect values of target value 

occurrence (Collaboration with UMass Amherst Computer Science Department) 

 Use method of sum of independent random variables of the expected values of 

target value to calculate overall final assembly risk  

4.1 Data Attributes  

 To isolate the most relevant data attributes we first needed to understand the data that 

was currently being fed to the company’s existing risk tools. After analyzing the risks tools 

we were able to conclude that a major source of error was from the objectivity of the data 

attributes. Working with the subject matter experts on the availability of data we were able 

to cut down our selection to 20 variables that were concluded to be reliable and had minimal 

human biases. Each variable represents the aggregation of supplier instances. These 

supplier instances are made up of individual component behavior metrics. Using the 

industry partner’s relational databases made it fairly easy to aggregate all individual 

component instances by supplier. Then for each supplier there are instances occurring 

throughout the month from their respective components, which are then aggregated into 

monthly totals for that supplier creating one instance. 

At any given year a supplier will have 12 instances, representing behavior for each month 

of the year, for each of the designated variables. Viewing Table 5 it shows the aggregated 

yearly values for supplier with their corresponding variable. 
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Supplier 
ID Variable A Variable B Variable C Variable D 

Target 
variable 

Value 

1 0.99 0.80 1.00 0.55 4 

2 0.93 0.86 0.31 0.85 1 

3 0.65 0.65 0.26 0.54 0 

4 0.45 0.60 0.48 0.71 3 

5 0.94 0.62 0.61 0.67 0 

6 0.98 0.85 0.51 0.37 0 

7 0.37 0.79 0.32 0.59 1 

8 0.05 0.91 0.84 0.05 1 

9 0.78 0.24 0.28 0.82 2 

10 0.41 0.18 0.95 0.21 4 

11 1.00 0.93 0.08 0.01 2 

12 0.96 0.10 0.44 0.91 2 

13 0.21 0.20 0.49 0.01 1 

14 0.97 0.01 0.44 0.21 1 

15 0.35 0.99 0.55 0.24 4 

Table 5. Supplier data aggregation sample with scaled values (not actual data) 

 

4.2 Quantifying Supplier Risk 

 Supplier risk is used here as a measure of the likelihood of acceptable supplier 

performance in the near future. Many of our industry partner’s strategies to categorize risk 

consisted of data attributes that were incorporated into weighted aggregations to output a 

single supplier score. These scores were then used to rank suppliers. Some of the attributes 

were the likes of: supplier financial health, manufacturing production scores, number of 

quality non-conformances over the past year, etc. Through the input of domain knowledge 

experts, we identified a target variable, which represented the one variable most important 

concerning supply quality non-conformances. This was an essential step because it allowed 

analysis of the variables to be mapped to an outcome overtime increasing predictive 

accuracy. This target variable represented the number of quality non-conformances that 
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were produced for any given supplier. From this we were able to quantify the suppliers risk 

based on the number of quality non-conformances a specific supplier produced over a 

certain time period. 

4.3 Supplier Prioritization  

 From our variables that we have identified (i.e. Variables A, B, C, and D) a sequential 

sort method was performed to prioritize suppliers creating a ranking system by their 

relative sorted position. As you can see in Table 6 using Microsoft Excel this sorting 

scheme was implemented. Looking at Table 6 Variables A, B, C, and D were chosen by 

performing a correlation analysis of the aforementioned list of 20 variables, with the 

aggregated values, to the target variable as described in Section 4.2. The highest correlated 

variables were chosen to be used in our sequential sort method and suppliers were sorted 

by highest to least correlation coefficient value. From this sort we segmented the prioritized 

list into four categories in regions of 0-25%, 26-50%, 51-75%, 76-100%, each representing 

the designated percentile grouping. Here 0% equates to best performing supplier and 100% 

equates to worst performing supplier. See below for 25 percentile grouping. 
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Rank Supplier ID Variable D Variable A Variable C Variable B 

80 11 1.00 0.93 0.08 0.01 

79 1 0.99 0.80 1.00 0.55 

78 6 0.98 0.85 0.51 0.37 

77 14 0.97 0.01 0.44 0.21 

76 12 0.96 0.10 0.44 0.91 

75 5 0.94 0.62 0.61 0.67 

74 2 0.93 0.86 0.31 0.85 

73 9 0.78 0.24 0.28 0.82 

72 3 0.65 0.65 0.26 0.54 

71 4 0.45 0.60 0.48 0.71 

70 10 0.41 0.18 0.95 0.21 

69 7 0.37 0.79 0.32 0.59 

68 15 0.35 0.99 0.55 0.24 

67 13 0.21 0.20 0.49 0.01 

66 8 0.05 0.91 0.84 0.05 

Table 6 Supplier rank by sequential sort method showing Red and Yellow 

category boundary with 25 percentile group segmentation (not actual data) 

    

The next question to answer is how predictive is the sequential sorting method? To answer 

this question a comparison of supplier categorization in the year 2013 to the year 2014 was 

performed.  For this comparison a supplier rank transition matrix was developed which 

calculated the amount of suppliers that either stayed in the same 25 percentile category or 

moved up or down to another 25 percentile category. The transition matrix is made up of 

four transition states, with 16 different transition type movements. See below.  
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    Supplier Transition Matrix 

    2014   

   Green Yellow  Orange Red 

  Green 67% 27% 4% 2% 

2013 Yellow  12% 65% 15% 8% 

  Orange 8% 1% 71% 20% 

  Red 0% 2% 6% 92% 

Figure 17 Supplier transition matrix from 2013 to 2014 (values are estimates) 

 

Looking at the transition matrix in Figure 17 we can see the percentage of suppliers that 

started in their respective categories in the year 2013 then the resulting categories in 2014.4 

Focusing on the “Red” suppliers, the diagram above shows that about 92% of the suppliers 

that were categorized as Red in 2013 stayed red in 2014. From the use of the transition 

matrix it was concluded that these variables can provide predictive insight on the behavior 

of one supplier from year to year. 

4.4 Validation  

 To further validate the sequential sorting method the target variable distribution over 

the four different categories needed to be calculated. This allows us to further prove the 

method has strong predictive power. Looking below at Table 7 the target variable 

distribution for each category is shown. As shown, the Red and Orange categories consist 

of 90% of the target variable instances comparing the 2013 supplier assigned category to 

the target variable value occurrence in 2014. From this it can be said that this method 

                                                      
4 Real data is note shown; percentages are estimates only.  
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looking only at the Red suppliers can predict the source of 73% of the potential quality 

issues that could be mitigated assuming corrective action can solve the issue.  

 

 

% of suppliers 
in each  

category 

% of suppliers 
containing 

target variable  

%  of target 
variable 

instances  

Green 25% 5% 3%  

Yellow  25% 10% 5%  

Orange 25% 17% 19% Orange + Red 

Red 25% 68% 73% 92% 

 Table 7  Category target variable density with equal 25% split segmentation 

 

Arbitrarily splitting the supplier sequential sorting list in to four equal categories leaves 

much room for improvement to increase the percentage of target variable instances, by 

reducing Green and Yellow occurrences and increasing the Orange and Red categories. 

Then arbitrary new quantities of 15%, 20%, 30%, 35% were compared to the previous 

grouping of 25% for each category. The result here is to move the distribution of suppliers 

more into categories that represent a higher density of target variable instances. From these 

new quantities the 2013 Red and Orange categories captured 95% of the 2014 target 

variable instances showed an improvement of 3% from 92%. See table below for results. 
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% of suppliers in 
each  category 

% of suppliers 
containing target 

variable  

% of target 
variable 

instances 
 

Green 15% 5% 2%  

Yellow  20% 10% 3%  

Orange 30% 17% 11% Orange + Red 

Red 35% 68% 84% 95% 

Table 8 Category target variable density with 15%, 20%, 30%, 35% split 

segmentation (values represent estimates only) 

 

 

4.5 Boosted Poisson Trees Algorithm 

 In collaboration with the UMass Amherst Computer Science Department5 statistical modeling 

was executed using the Boosted Poisson Trees algorithm. Boosted Poisson Trees come from the 

family of Boosted Regression Trees (BRT) under the class Machine Learning algorithms (ML). 

What machine learning algorithms do are instead of being constrained by a certain equation type, 

these algorithms conform to the patterns in the data and in many instances can have much improved 

accuracy compared to other prediction methods. In Boosted Regression Trees (BRT) there are two 

major components: Decision Trees (DT) and Boosting.  

First Decision Trees (DT) are great for their simplicity to understand interactions between predictor 

variables, but are not as accurate than other models (i.e. Support Vector Machines, Neural 

Networks) (Friedman, Hastie, & Tibshirani, 2001). Decision Trees (DT) are made up of a basic 

tree structure where each node represents a predictor variable and each leaf nodes represents the 

response variables. The deeper the tree goes, by adding each additional predictor variable, the more 

                                                      
5 For this application the Boosted Poisson Tree model was developed by Professor David Jensen 

and his PhD student in the Department of Computer Science at UMass Amherst 



 

34 

 

 

accurate the prediction becomes. See Figure 18. In use cases DTs are most popular for 

classification, where there are set categories that predictions fall in to. However, DTs algorithms 

can be easily modified for regression analysis. But for most instances DTs tend to be less accurate 

than other methods. What can be done to increase accuracy in DTs is to grow the tree as deep as 

possible to catch the many intricacies in the data. But then at the same time this obviously leads to 

loss in generality and modelers will be in the situation where an increase accuracy can only lead to 

loss in generality and vis versa.  

 

 

 

 

 

 This is where boosting becomes very valuable. In boosting, the DTs do not have to go grow 

deep at all. In many instances trees are only one or two nodes deep. As one can imagine, these 

“shallow” trees do not predict with much accuracy, but with boosting accuracy is enhanced greatly. 

Boosting is considered to be component of the family of algorithms that combine an “ensemble” 

of weak models to create one strong output. The method that boosting enables is an iterative process 

Figure 18 Decision tree diagram and its corresponding solution space (Elith, Leathwick, & & 

Hastie, 2008) 
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while learning over each data point given from the training data set. How boosting sets itself apart 

from other methods (i.e. bagging, modeling average) is that it uses an additive process where it 

builds off the previous iterations by focusing on the magnitude of errors (loss function). With this 

loss function the model (in regression) tries to create a new tree that minimizes the gradient of the 

loss function and uses what it learned from the previous trees and calculates the current iteration 

error (from loss function). In the end a linear combination results of several (most times hundreds) 

of trees with each tree representing as a term (Elith, Leathwick, & & Hastie, 2008). 

 

4.5.1 Calculating Supplier Risk Probability 

  The Boosted Regression Tree method that we have described was used to predict the rate that 

a supplier would produce a non-conforming component. A Poisson loss function was chosen where 

for this use case was most relevant for the counting aspect of quality non-conformances, therefore 

producing a rate for each supplier. The model was ran for each supplier to output the rate that a 

supplier would produce a component non-conformance.  

 

4.6 Final Assembly Risk 

 Once the Poisson rates are calculated for each supplier they are then prioritized from greatest 

to least. From this we created a ranked list for the suppliers that have the greatest probability of 

producing a non-conformance. From this ranked list of suppliers we now have a systematic way of 

ranking suppliers based off their probability of producing a non-conformity. In practice, this can 

be used to guide decision makers to efficiently allocate resources for risk mitigation.  
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4.6.1 Sum of Random Variables 

 What would be more interesting to see is the overall final assembly risk. When senior 

management in practice want to get a sense of what the level of risk from the supply base is, it can 

be difficult question to answer. With the above approach we now have the tools to answer this 

question.  Understanding the basic principles of summing independent variables we can therefore 

calculate the finished assembly risk using rates obtained from our supplier ranking described in 

Section 4.5.1 

Below is the method of the sum of independent random variables in our case: 

 

𝜆𝐹𝐴 = ∑ 𝑐𝑖
𝑖=𝑎
𝑖=1  , 

 

where  𝜆𝐹𝐴 = Final Assembly Risk,  a = number of components in final assembly, and ci =  

component’s Poisson rate of quality non-conformance. 

 

Since our supplier ranking model outputs Poisson rates we can easily add up the Poisson rates using 

the sum of independent random variables method. Summing all the corresponding rates we then 

have the final assembly total risk. See Figure 19.  We can the repeat this step for all different final 

assembly types and calculate the entire portfolio products risk. 
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λ = 0.98 
Component  2 

λ = 0.71 

Component 3 

λ = 0.10 

Component  4 

λ = 0.30 

Component  5 
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Final Assembly 

Risk 

λ = 3.01 

Figure 19 Bill of Material of final assembly in tree structure to calculate final assembly risk 

from the Poisson rates generating by the BRT algorithm for all components in the assembly 

(not real data) 
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What Figure 19 represents is the Bill of the Material (BOM) structure of a final assembly consisting 

of 5 components. BOMs inherently have a tree structure from the parent to child relationship of 

components to subassemblies to final assemblies. In this example components 1, 2, and 3 come 

together at the BOM Level 1 to form a subassembly and also components 4 and 5 follow the same 

process. Then at BOM Level 0 both subassembly join to form the final assembly. Now looking at 

the risk of the final assembly, because each component has a Poisson rate we can easily sum up the 

rates, which equaled to 3.01 for the expected final assembly risk, which is also equaled to the 

expected non-conformance quantity of the entire build of the final assembly. 

In all, we establish a simple method that creates a great baseline for any detailed analysis when 

attempting to predict supplier non-conformances. We then explain the Boosted Poisson Tree 

algorithm that is more advanced, but very effective in this application. Then we show that using 

the output from the BPT model, one can easily find the aggregate risk for a system, in this case 

for a manufactured component assembly.  
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CHAPTER 5 

5 CONCLUSION 

When looking at Supply Chain Management one should take a serious look at the 

supply base. Based on the principle that variation propagates down the supply chain and 

the final product is only as good as its inputs (Forker, 1997) it is an easy decision to focus 

on the supply chain inputs. In this paper we concentrated on two inputs: 1) on-time delivery 

and 2) quality.  

We have described the innovated discrete-event simulation tool used to predict supplier 

performance by the advanced ordering strategy (AOS) developed by (Beladi, 2014). Here 

each component’s average weeks late distribution drives the simulation where time 

buffering strategies were run in order to achieve a MRP service level of 95% or greater.  It 

was then shown that because of the multiplicative factor of the probabilities of the 

component lateness in the final assembly, that only a minimal number of components 

arriving late to production would be needed to quickly diminish the overall assembly MRP 

service level below the goal 95%, hence the optimal solution was to time buffer all 

components to their respective 100th percentile weeks late distribution. 

Then the extension of the delivery performance prediction tool was presented in order to 

stress test the recommended strategy of buffering all components. We showed three 

scenarios: 1) single components at a particular point in time that are 4, 8, and 12 weeks 

later than their 100th percentile weeks late, 2) single components that are at a particular 

point in time 4, 8, and 12 weeks later than their 100th percentile weeks late, 3) a percentage 

of components (1%, 3%, 5%, 10%, 15% and 20%) that would be each 4 weeks late beyond 
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their 100th percentile to the respective order. From these scenarios we prove that the AOS 

strategy is by far superior to the existing system under the previously mentioned extreme 

cases. Results show that the average service level improvement comparing the AOS to the 

existing system is 79%, 64%, and 14% for scenarios 1, 2 and 3 respectively. Additionally, 

the average inventory reduction was 54%, 48% and 43% for scenarios 1, 2, and 3 

respectively. 

Lastly, we present a method that categorizes suppliers based off a relative risk level that is 

driven by the quality of components that the supplier delivers.  Several data attributes were 

reviewed where four variables were ultimately chosen based off having the highest 

correlation coefficient, when paired with the target variable. Then the sequential sorting 

method was applied in order of the highest correlated variable to the least. We next tried 

two arbitrary segmentation methods: 1) four equal 25% splits of the sorted supplier list into 

categorizes of Green, Yellow, Orange and Red, where Green being the best performing 

supplier and Red being the worst;  2) splits of 15%, 20%, 30%, 35% categorized by Green, 

Yellow, Orange and Red respectively. To see if these methods had predictive power we 

developed a transition matrix that tracked the categorical movement of the suppliers from 

the year 2013 and 2014, which show great promise that the analysis was heading in the 

right direction showing that 92% of the suppliers that were categorized as Red in the year 

2013 stayed Red in the following year in 2014. 

Next to validate if indeed this method was predictive in quality non-conformances the 

target variable density was matched to their respective categorized suppliers. Results 

showed that using segmentation method (1) had 92% of the target variable density resulted 

from suppliers categorized as Orange and Red. Then even further improvement was made 
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when implementing segmentation method (2) resulting in 95% of the target variable 

captured in the Orange and Red categories.  

Then finally we incorporated techniques normally used in the data scientist’s tool kit in 

collaboration with UMass Amherst Department of Computer Science; that is the Boosted 

Regression Trees algorithm where the innovated feature of boosting provides great 

improved accuracy of the relatively simplistic Decision Tree algorithm. We found using 

this method a suppliers predicted non-conformance occurrence was enhanced, which can 

provide a prescriptive source for risk mitigation efficiently allocating resources. This 

allowed us to output Poisson rates of the predicted quantity of non-conformances in order 

calculate the final assembly risk. Once having all the Poisson rates for each component in 

the Bill of Material (i.e. BOM, which incorporates all the components required for 

completion of the final assembly and their parent-child dependencies) we were able to 

apply the method of random sum of independent variables and to simply sum up all the 

components in BOM to calculate the final assemblies overall risk (i.e. expected quantity of 

non-conformances). 
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