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ABSTRACT 

Conventional single-lap adhesive joints between identical adherends achieve 

ultimate strength only after significant inelastic deformation of the adhesive and perhaps 

also the adherends. However purely elastic analysis provides insights and is relevant to 

fatigue initiation or brittle failure. We extend classical beam on elastic foundation results, 

both ‘within the bond’ (deriving more-accurate peak peel stress from the joint-edge 

moment) and ‘beyond the bond’ (determining the edge moment from adherend dimensions, 

remote boundary conditions, and load). 

Within the bond, we show that peak adhesive equivalent stress and principal stress 

are minimized when the bond length exceeds four characteristic lengths of the elastic-

foundation shear stress equation. This makes simplified ‘long’ joint formulas useful for 

initial design. We then examine how well the long-joint predicted peak peel stress matches 

plane strain finite element analysis, and empirically capture a peel-stress end effect due to 

nonzero adhesive Poisson ratio.  With this end-effect correction, the limit of useful 

accuracy can be expressed as a ratio of (adherend axial stiffness) to (adhesive axial 

stiffness) being > a number of order 10H-10I depending on Poisson ratio. This limit 

supplements the Goland and Reissner proposed applicability limit for elastic foundation 

analysis, expressed as a limiting ratio of through-thickness or vertical stiffnesses. 

Outside the bond, Timoshenko-style beam-column expressions are used to derive a 

simplified joint-edge moment factor. While similar in spirit to the edge-moment 

determination of Goland and Reissner for infinite-length pinned adherends, treating the 

bond region as a rigid block leads to simpler nonlinear expressions, and captures the 

moment-reducing benefits of shorter (finite-length) adherends and fixed-slope end 



conditions. Joint rotation effects become dominant when tensile load times adherend free 

length square is larger than the adherend bending stiffness. Then joint rotation magnitude 

depends on the ratio of the tensile load times lap length square to adherend bending 

stiffness.  
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Chapter 1 

INTRODUCTION 
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1. Introduction 

The single lap joint (SLJ) is common because fabrication is so convenient. The need for 

adherend dimensional precision is low, and virtually no forming or machining is required. The 

already-flat surfaces of the bars or sheets to be joined are simply overlapped with adhesive, 

squeezed together, and fixtured at a desired separation until the adhesive hardens. While early 

analyses of lap joint adhesive stress were strictly elastic in character, it is now recognized that the 

ultimate strength of aerospace sheet metal bonds is developed only after plastic straining of the 

adhesive and possibly adherends. Even so, simple elastic analyses are not irrelevant as they provide 

a foundation for understanding joint mechanics. In addition, there may be joints for which brittle 

fracture or fatigue initiation are a greater concern than ultimate strength involving plasticity. It is 

from that perspective that this purely elastic investigation was conducted.  

Goland and Reissner introduced the partition of lap joint analysis into ‘inner’ and ‘outer’ 

problems. For the inner problem they assumed the application of joint-edge force and bending 

moment. Then for the case of significant through-thickness adhesive compliance, they developed 

the well-known approximate beam-on-elastic-foundation model, and computed peak peel stress 

due to those edge loads. For the outer problem, they used the governing equation for a beam with 

tension (the adherend), connected to a finite-length double-thickness beam (the joint region). Their 

main resulting formula gave the edge moment applied to the joint region, as a function of load, for 

the case of infinite length adherends with moment-free end supports. Of course, the foregoing is 

far from a complete list of the accomplishments in their seminal paper. 

Although credible numerical elastic-plastic nonlinear analyses are now routine, specific 

quantitative results are not an ideal design tool. One also needs insight into trends and limits, and 

if possible, simple algebraic estimates to guide a design approach. The purpose of this investigation 

is to extend certain aspects of elastic lap-joint analysis, with the desired outcome of useful simple 

formulas. 
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In chapter 2, we justify a focus on ‘long’ joints which exhibit length-independent peak 

stresses. We start with well-known elastic-foundation formulas for averaged peel and shear stress 

in the adhesive of finite-length joints (such through-thickness smeared values are quite 

representative of adhesive midline stresses, as long as the joint is well modeled as beams connected 

by an elastic foundation – according to Goland and Reissner, that is when the elastic layer vertical 

compliance is not too small). Assuming approximately zero midline axial strain, plane-strain elastic 

relations are used to approximate all adhesive stress components from the peel and shear stress, 

permitting the equivalent stress and greatest principal stress to be computed. Since their peak values 

are always found at the joint ends (apart from a numerically determined end-effect stress reduction 

covered in chapter 3), we examine those joint-end values as a function of overlap length. It is 

observed that the peak ‘equivalent stress’ (for pressure-independent and pressure-sensitive yield) 

and peak principal stress reduce towards asymptotically minimum values as the joint is lengthened 

beyond about four characteristic lengths of the shear stress equation. For design purposes, it 

therefore seems reasonable to specify that joints should routinely exceed this minimum length. This 

permits use of the substantially simpler long-joint peak-stress formulas presented by Bigwood and 

Crocombe. 

For such ‘long’ joints, chapter 3 compares the peel stress σ determined by elastic foundation 

analysis to σKK on the adhesive midline computed by plane strain finite element analysis. For zero 

Poisson ratio of the adhesive, these match quite well all along the midline, over a large range of 

joint parameters. But for nonzero adhesive Poisson ratio an end effect is observed (over an axial 

distance proportional to the geometric mean of adhesive thickness and adherend thickness) that 

truncates the peel stress peak due to loss of horizontal constraint. By curve fitting we provide an 

empirical expression for the end-effect distance, and combine this with the beam on elastic 

foundation (BEF) stress solution to approximate the finite element analysis (FEA) peel stress peak 

(which is always lower than the unmodified BEF peak). 
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When the corrected elastic foundation peak peel stress is compared to the peak peel stress 

computed by FEA, agreement is good within a ‘region of applicability’ in joint-parameter space, 

whose boundary is based on R5, the ratio of adherend to adhesive axial stiffness’s. This 

supplements the well-known Goland and Reissner applicability boundary for elastic foundation 

analysis, which may be expressed in terms of the ratio RM of through-thickness (vertical) stiffnesses. 

Both criteria agree in excluding too-stiff adhesive from elastic-foundation analysis. 

In chapter 4 we turn to the ‘outer’ problem, in order to extend the Goland and Reissner analysis 

of edge moment factor, k.  We adapt the well-known beam-column formalism presented in 

Timoshenko and Gere, and approximate the thick overlap region as a rigid block. This allows us to 

give results for adherends of finite length, and include not only moment-free but fixed-slope end 

conditions. The resulting edge-moment expressions are both more general and simpler. 

There exists an extensive literature on the simplified elastic analysis of single lap joints, as 

outlined in da Silva et al and extended to dynamic loading by Vaziri et al and others. Many 

investigators including Goland and Reissner, Volkersen and Hart-Smith used the elastic-foundation 

approach to investigate approximate through-thickness shear and peel stress distributions of a 

relatively flexible adhesive layer. In addition, geometrical nonlinearity, which arises from tension 

rotating the joint region to bring remote adherends closer to coaxial alignment, was long ago 

recognized by Goland and Reissner. They used axially-loaded beam analysis to determine the edge 

moment (i.e., the adherend centroidal bending moment at the joint edge) for infinitely long, pinned 

adherends. Luo and Tong reviewed this and other treatments of rotation. 

In addition to many analytical investigations, finite element analyses in 2D and 3D have been 

performed by Adams and Peppiatt, Her, Li and Lee-Sullivan, Tsai and Morton, Goncalves et al, 

Ashrafi et al, Haghpanah et al among others. Some of these were elastic-only, while others included 

adhesive and/or adherend plasticity. To navigate this large literature, we have relied on authoritative 

and comprehensive reviews by Minford, Da Silva et al, and Adams et al In the publications we 

have explored, we have not encountered the results developed here. 
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Chapter 2 

ADHESIVE FAILURE STRESS 
FROM ELASTIC FOUNDATION 

ANALYSIS   
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2. Adhesive Failure Stress from Elastic Foundation Analysis   

The purpose of this chapter is to show that ‘long’ joints (defined relative to the 

characteristic length λ$ of the elastic-foundation equation for adhesive shear stress) exhibit the 

lowest peak ‘equivalent stress’ responsible for yield, and also the lowest peak principal stress 

(responsible for brittle fracture). Assuming that designers will generally exploit this strength 

advantage, it seems reasonable to initiate designs with the simple ‘long joint’ formulas for peak 

stress, as provided by Bigwood and Crocombe. 

Consider a joint with 180A symmetry loaded by a force in the joint plane (thus giving rise 

to maximum adherend bending moment with no shear force, see Fig. 1). The well-known elastic-

foundation governing equation for peel stress σ is:  

dPσ
dxP

+ 	
4σ
λ&P

= 0 
(1) 

where the peel characteristic length λ& is defined by λ& = 	
RSTSU
VRU

W
.  

 

Fig.1 Canonical loading of a SLJ: symmetric with no force obliquity, hence resulting in maximum edge 

moment. 

Here we have used equivalent Young’s moduli with an overbar, defined as follows: For 

the adherend it is the plane-strain Young’s modulus E = E/(1 − νH), although this won’t properly 

represent axial stretching unless w >> max(L, D), where L is the free adherend length, D is the 
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joint overlap and w is the specimen width perpendicular to the axis of loading. For adhesive away 

from the edges and corners of the joint, we use the horizontally constrained modulus: 

E5 =
E5(1 − ν5)

1 + ν5 (1 − 2ν5)
 

(2) 

(While this expression suggests unbounded stiffness as ν5 	→ 	0.5, in fact E5 should not be taken 

as independent of ν5. Polymer bulk modulus K5 arising from interatomic repulsive forces is 

relatively unvarying in the range of 1 − 5 GPa, whereas the moduli capturing distortional behavior 

such as  E5 = 3K5(1 − 2ν5) and G5 = (3K5/2)(1 − 2ν5)/ 1 + ν5  both reduce toward zero as 

Poisson ratio approaches 0.5. It can be useful to recast some of the below expressions with the 

adhesive moduli expressed in terms of K5.) 

The solution of the peel stress equation for an arbitrary length bond subjected to an applied 

joint-edge moment per unit width Ft/2 (where F is force per unit width of specimen) is a well-

known symmetric expression: 

σ =
Ft
λ&H
	[A sinh

x
λ&

sin
x
λ&

+ B cosh
x
λ&

cos
x
λ&

] 
(3) 

where 

A =
sinh D (2λ&) cos(D (2λ&)) + cosh D (2λ&) sin	(D (2λ&))

sinh D/λ& + sin D/λ&
 

(4) 

B =
sinh D (2λ&) cos(D (2λ&)) − cosh D (2λ&) sin	(D (2λ&))

sinh D/λ& + sin D/λ&
 

(5) 

The peak value of the peel stress occurs at the adhesive ends where x = ±D/2, with magnitude 

found through algebraic manipulations and use of identities: 

σ> = 	
Ft
2λ>H

		
sinh D/λ& − sin D/λ&
sinh D/λ& + sin D/λ&

 
(6) 

 Peak peel stress normalized by its long-joint value, σ> = σ>(2λ>H) (Ft), is plotted versus D/λ& in 

Fig. 2A, to show the effect of bond length.  
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Fig.2 (A) Peak peel stress versus bond length (B) Peak shear stress versus bond length. Each stress is 

normalized by its long-joint value, and each length is normalized by the characteristic length for that stress.  

For joints susceptible of elastic foundation analysis, 𝜆k ≳ 𝜆l so the shear stress falls no faster than the peel 

stress climbs, as a function of 𝐷. 

A similar brief development is followed for adhesive shear stress. The elastic-foundation 

governing equation for shear stress is:  

dIτ
dxI

−
8G5
Ett5

dτ
dx

= 0 
(7) 

The shear stress characteristic length is λ$ =
RSSU
opU

= RSSU(qrsU)
PRU(qrHsU)

	. The symmetric solution for an 

arbitrary bond length is:  

τ x = −
F
2λ$

cosh x/λ$
sinh	(D 2λ$)

 
(8) 

The peaks of this expression occur at the joint ends x = ±D/2. Peak shear stress normalized by its 

long-joint value τ> = τ> (2λ$ F) is plotted versus D/λ$ in Fig. 2B. 

The peak values of peel and shear stress as functions of bond length show that the peak 

shear stress starts at infinity (for a short bond, it is of order F/D) and reduces toward a constant 

value. For D λ$ > 4 the difference between τ& and its infinite-length value becomes less than 5%. 

In contrast, the peak peel stress starts at zero and climbs toward a constant value (with a modest 
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6% overshoot). For D λ& > 5 the difference between σ& and its infinite-length value becomes less 

than 5%. The designer must therefore consider the tradeoff between shear stress reduction and peel 

stress increase due to bond length. The rational way to resolve these competing concerns is with a 

multi-axial failure criterion: determining the peak ‘equivalent’ stress  σu if yielding or fatigue 

initiation is the design issue, or determining the peak greatest principal stress σv	if brittle fracture 

is the key concern. Such stress measures require all six stress components at each point. 

But before estimating these we show that λ$ is usually greater (and never much less) than 

λ&. (In other words, the peak shear stress drops to its asymptotic long-joint value only after the peak 

peel stress has increased, so we expect no intermediate-length minimum for typical combined-

stress measures.) To see this, consider 

λ$
λ&

P

= 	
3
8
	
E/t
E5/t5

	
1 − ν5 H

(1 − 2ν5)H
= 	Rw

3
8

1 − ν5
1 − 2ν5

H
 

(9) 

where we have introduced Rw, the ratio of vertical through-thickness stiffness of adherend and 

adhesive, defined by Rw =
R/S
RU/SU

	. According to Goland and Reissner, Rw should exceed 10 for an 

adhesive bond to be describable by a beam-on-elastic-foundation model, which leads to λ$ > λ& 

for any value of ν5. But even if we discount the Goland and Reissner criterion (an alternative 

condition for elastic-foundation accuracy is discussed in the next chapter), we may take account of 

realistic joint parameters. In a typical metal-epoxy joint, t5 would have to shrink below a few 

microns for λ$ to fall below λ&. Therefore, for most practical purposes λ$ is the bond characteristic 

length, and stress can only be minimized by taking the joint ‘long’ (i.e. D > 4λ$).  

 Although elastic-foundation analysis provides only the peel and shear stresses, we may 

estimate all stress components on the adhesive centerline as follows: in plane-strain adhesive 

loading εzz = εKz = ε{z = 0, and we have the expressions for peel stress σ = σKK and shear stress 

τ = 	 τ{K. For a final condition, we assume adhesive strains εKK and ε{K to be considerably greater 
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than ε{{ (which is approximately bounded by the axial strain of stiff adherends), and adopt the 

approximation ε{{ = 0. Then the other two direct stresses are 𝜎{{ = σzz = σν5/(1 − ν5).  

In metal plasticity, the most common equivalent stress (for predicting either yield or fatigue 

initiation) is the von Mises stress, equal to σw} = 3JH		, where JH is the second invariant of the 

deviatoric stress. For pressure-sensitive adhesive yielding (see Appendix 1) we may modify this to  

σu = 3JH + k� − kS Iq, where Iq is the first invariant of the stress, and k� , kS are axial yield 

stresses in compression and tension respectively, both considered positive. An equivalent stress 

with pressure sensitivity may then be calculated from peel and shear: 

σu = 	
1 − 2ν5
1 − ν5

H
σH + 3τH + (k� − kS)	σ

1 + ν5
1 − ν5

 
(10) 

with yield when σu = 	 k�kS. When k� = kS then σu = σw}, the von Mises stress with failure 

when σw} = kS.  

The largest principal stress (for calculating brittle fracture) is calculated as: 

σv = 	
σ

2 − 2ν5
+

1 − 2ν5
2 − 2ν5

H
σH + τH 

(11) 

In Fig. 3 the peak (i.e., joint-end) equivalent stress for k� 	− 	 	kS = 0, 2, 4, 6 MPa is plotted 

versus bond length for a specific joint. Since the joint-end mean stress is highly tensile, the pressure-

sensitive equivalent stress is significantly raised, so a given value of σu is reached at a lower load 

or longer joint. (Considering the mean of tensile and compressive strengths (k� + kS)/2 as a fixed 

quantity considerably greater than (k� − kS)/2, the numerical value of σu = k�kS that defines 

failure will hardly be affected by k� 	− 	kS.) The first principal stress is also plotted. With just a 

slight short-joint deviation for the principal stress, all plotted peak stresses reduce monotonically 

to their minimum values (which reduce with greater characteristic length) after shear stress has 

fallen, i.e. D λ$ > 4. Therefore, maximizing the shear characteristic length and setting D = 4λ$	is 

one possible strategy for efficiently minimizing adhesive equivalent stress. 
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Fig. 3 Peak (joint-end) failure stresses from BEF solution, versus bond length normalized by shear 

characteristic length, for one possible SLJ (𝐸 = 70𝐺𝑃𝑎, 𝑡 = 10	𝑚𝑚, 𝜈 = 0.33, 𝐸� = 1	𝐺𝑃𝑎, 𝑡� =

0.2	𝑚𝑚, 𝜈� = 0.4, 𝐹	 = 	158.5	𝑁/𝑚). The right ordinate reflects normalization by adherend mean tensile 

stress 𝐹/𝑡. 

Since the plotted equivalent and Principal stress results are strictly proportional to load, 

they can usefully be normalized (e.g., by the adherend mean tensile stress – see the right hand 

ordinate) to give load-independent results. But the pressure-dependent equivalent stress does not 

have this property. 

        The assumption of a long joint is common in the literature, and the foregoing development 

shows that realizing it should result in a stronger joint (by elastic analysis). The long-overlap peak 

(end-of-joint) values derived from Eqs. (6) and (8) are of course especially simple, and conform to 

the simplified expressions of Bigwood and Crocombe: 

σ& =
Ft
2λ>H

= F
3E5
2Ett5

 
(12) 
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τ& =
F
2λ$

	= F
2G5
Ett5

 
(13) 

We will see in chapter 3 that these long-joint peak values are not quite attained due to end-effect 

truncation, but we take them as a guide to the magnitudes involved.  

       It appears to be unsettled why the theoretical inverse dependence of stress on adhesive 

thickness does not lead to stronger joints when thicker adhesive is tried. (When the analyses are 

revised to incorporate finite adhesive thickness throughout, the optimum adhesive thickness 

appears to be of order 70% of adherend thickness.) One reason may be the yielding of adhesive and 

adherends at peak load, which invalidates the elastic assumptions. But it also appears that 

experimental investigators did not increase D when greater t5 led to a greater λ$, thus 

unintentionally violating the long-joint requirement D > 4λ$ and increasing the peak stress. A 

preferred evaluation of adhesive ‘thickness effect’ might be to increase all axial and thickness 

dimensions (including t5) in proportion, and evaluate whether or not the load at initial yield follows 

that increase. 

       It is interesting to compare the peak long-joint values of peel and shear stress.  We have: 

σ>
τ>

=
tλ$
λ&H

=
3(1 − ν5)
2(1 − 2ν5)

 
(14) 

which means that the long-joint peak peel stress always exceeds the peak shear stress – a little if 

ν5 = 0 and a lot if ν5 approaches 0.5. Of course this analysis is premised on a joint-edge moment 

arm of t/2, and the finite rotation to be discussed below (involving strong bonds between long 

adherends) can potentially reduce the peak peel stress below the peak shear stress. 

Using this peel- to shear-stress ratio we may rewrite the failure-stress formulas as either 

the peak shear or peak peel stress, times a function of Poisson ratio. It seems appropriate to highlight 

the role of adhesive shear stress, as it dominates each failure criterion when the joint is short, and 

still plays a major role in the long-joint case. 
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Chapter 3 

THE ACCURACY OF PEAK 
PEEL STRESS FROM BEAM-ON-
ELASTIC-FOUNDATION (BEF) 

SOLUTIONS 
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3. The Accuracy of Peak Peel Stress from Beam-on-Elastic-Foundation (BEF) 

Solutions 

In this chapter our purpose is to evaluate the beam-on-elastic-foundation (BEF) long-joint 

formula for adhesive peel stress, when the joint is loaded by a force in the adhesive midplane, i.e., 

without the moment-reducing benefits of finite rotation, offset pinned boundary conditions, or 

fixed-slope boundary conditions. Our approach is to compare the above simple analytical results to 

the plane-strain finite element analysis (FEA). Qualitative comparison reveals an “end effect” 

adhesive-stress reduction for nonzero ν5. We propose an empirical correction for this reduction, 

then compare the corrected BEF formula to the peak centerline peel stress found by FEA. (Since 

midline shear stress σ{K must vanish at the free end, τ must also exhibit an end-effect, ignored in 

this study.) 

Consider a joint edge loaded by axial force per unit width F and centroidal bending moment 

per unit width Ft/2. (A more accurate moment expression is F(t + t5)/2, the leading-order 

correction of a thick-adhesive formulation that distinguishes between beam half-height, and the 

distance between beam centroid and adhesive centerline. We will use this expression occasionally 

without adopting the entire thick-adhesive theory.) The long-joint peak peel stress valid for D >

4λ$ was given above by:  

σ> =
1
2
Ft/λ&H  (15) 

where λ& =
RSTSU
VRU

W
.  This stress is proportional to edge moment per unit width but does not 

explicitly depend on joint length. Maximizing λ& is clearly beneficial, but only as long as D keeps 

pace.  

For bonds satisfying the long-joint criterion, how well does the BEF solution for adhesive peel 

stress match the FEA solution? If the adhesive Poisson ratio is small (decoupling the adhesive’s 

vertical stress from its horizontal stress throughout the joint, and thereby eliminating the impact of 
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axial non-constraint at the adhesive free-end) the BEF and FEA peel stress curves tend to be very 

similar. However, if adhesive Poisson ratio is not close to zero there will be significant horizontal 

stresses in much of the joint, while of course the ‘constrained modulus’ governing vertical strain 

diverges increasingly from E5. But at the adhesive free end, the lack of horizontal constraint 

strongly reduces horizontal and vertical stress, and somewhat reduces vertical stiffness. 

 One way to understand lap joint adhesive stress analysis is via symmetric / antisymmetric 

decomposition of the joint-edge loads. (These are represented as beam resultants, but of course the 

actual stresses will not vary linearly.) As shown in Fig. 4, midplane loading of a joint with 180A 

rotational symmetry can be decomposed into joint-edge load cases sym and asym. Sym has 

reflection symmetry across the adhesive centerline and causes only centerline peel stress. Asym 

has reflection antisymmetry and causes only centerline shear stress, so it is irrelevant to peel. Sym 

can further be decomposed into sym-M, symmetric adherend moments, and sym-F, axial forces. 

Sym-M can be modeled by replacing the lower half of the joint (including half the adhesive layer) 

with symmetry boundary conditions (vertically fixed, horizontally free). This looks like an end- 

loaded beam on an elastic foundation. Sym-F is similar to a sandwich panel in tension – the 

adherend ends experience axial stress, while the adhesive end does not. Away from the ends of a 

‘long’ joint, both materials experience identical axial strain but no peel stress.  

 Case sym-M is well suited to BEF modeling, except that there is no provision for the altered 

vertical stiffness and stress at the adhesive end (when Poisson ratio is nonzero). Case sym-F is not 

simulated by a conventional BEF, but it too will exhibit a Poisson-driven end effect, altering 

adherend separation and reducing peel stress. Even with zero Poisson ratio, both load cases develop 

some tension in the adhesive, so the top and bottom adhesive edges experience opposite-sign shear 

stresses from transferring tension to the adhesive, to an extent and over a region related to adhesive 

thickness. This will bend the adherends together, adding compressive peel stress. Thus a reduced 

peel stress is expected at the joint end for multiple reasons, most associated with nonzero Poisson’s 

ratio.  
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Fig.4 Original centerline loading, replacement by forces and centroidal moments 𝑀	 = 	𝐹𝑡/2, 

decomposition into symmetric (sym responsible for peel stress only) and antisymmetric (asym responsible 

for shear stress only), and further decomposition of sym into opposed-moments loading and axial loading. 

ABAQUS linear finite element analysis was used to evaluate 2D linear elasticity deviations 

from the BEF-calculated peak. The plane strain element CPE4R was selected, with a size of t 20 

throughout each adherend, and t5 20 throughout the adhesive. (Of course as mentioned above, 

plane strain assumptions are not entirely right, as the real system is rarely laterally constrained.) 

Stresses σKK	, σ{K	were evaluated on the adhesive midline, as best representing the force/area 

transmitted by the adhesive. 

The finite element modeling of a metal-adherend joint shows that it qualitatively matches the 

BEF peel stress except for a peak-truncating end effect. Over most of the joint, BEF and FEA peel 

results show a similar pattern with slight differences in local extrema and zero crossings. But within 

a region related to adhesive thickness, and depending on the adhesive Poisson ratio, the FEA peel 

stress suddenly reverses slope and drops well below the BEF peel stress. Thus where BEF analysis 

is applicable, the BEF peak is always greater than the actual FEA peak, which occurs away from 
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the end. We investigated the position of the actual (FEA) stress peak, and approximated the peak 

magnitude by truncating the BEF solution at that position.  

As expected, this joint-end stress drop is primarily associated with adhesive Poisson ratio. 

Virtually no end effect is observed for ν5 = 0, but the deviation grows for increasing ν5, and 

becomes especially great above ν5 	= 	0.3. Therefore, we sought an end-effect correction, in order 

that a reasonable BEF stress prediction over most of the bond could be complemented by an 

accurate peak value near the end. This was achieved empirically in two steps: finding a correlation 

for distance of the actual peel-stress peak from the joint end; then multiplying this distance times 

the BEF peel-stress slope at the joint end, to estimate the peak stress reduction. To carry out these 

steps we used the linear approximation to the BEF solution near the joint end. For a long joint, 

placing a new x′ origin at the end of the adhesive (so x′ < 0 represents the adhesive, see Fig. 4), 

we may approximate the peel-stress by the semi-infinite solution involving rightward-growing 

exponentials: �(S�SU)
H���

e
��
�� cos({?

��
) + sin	({?

��
) . When x? = 0	this reproduces the peak value σ> 

given earlier. (Our occasional incorporation of t5 in the edge-bending moment was acknowledged 

above.) Differentiating this once and evaluating at x? = 0	gives the joint-edge slope 2σ>/λ>. 

In Fig. 5, we compare BEF and FEA peel stress distributions for a long metal-epoxy joint. 

Approaching the end, the sharp peak and stress drop of the blue (FEA) curve are evident. The FEA 

peel stress peak distance from the joint end is named x′& . The BEF joint-end peak stress is named 

σ>, and the BEF joint end peel stress slope (i.e. 2σ>/λ&) is shown. To estimate the FEA peak 

magnitude, we moved leftward down the linear approximation for BEF by the distance x′& . This 

gives the corrected peak peel stress (σ>)��. Although this computed peak seems always to lie 

above the actual, even such a simple correction substantially increases the range of validity of the 

BEF peak stress estimation.      
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Fig.5 A) Comparison between FEA and BEF peel stress distribution for a long metal-epoxy joint. B) 

Poisson-driven joint end FEA peel stress drop, FEA peel stress peak distance from the joint end, 𝑥�? ,  BEF 

joint-end peel stress slope, original and corrected BEF peak stresses are shown. 

We used FEA to empirically determine peel stress peak location x′& (a negative number) for 

various Poisson ratio in the realistic range 0.3 to 0.5 and sixteen different combinations of thickness 

and modulus ratios: t t5 = 2.5, 5, 10,20 and E E5 = 10, 100, 250, 1000. Fig. 6A below shows 

|x′&|/t5, the normalized distance of peel stress peak distance from the joint end, as a function of 

adhesive Poisson ratio. (For clarity only four of the sixteen available curves are shown.) As shown 

in Fig. 6B, by normalizing |x′&| with tHt5HE/E5 q/P , or equivalently with λ&
VSU
S

q/P
, all the curves 

substantially collapse onto a single master curve. We therefore write |x′>| = f ν5 λ&
VSU
S

q/P
. A 

polynomial function representing f ν5  for 0.3 < ν5 < 0.5 is: 

f ν5 = 68.031ν5� − 72.968ν5P + 29.45ν5I − 5.344ν5H + 0.508ν5 (16) 

(Though we did not investigate it, we expect linear behavior through the origin for ν5 below 

0.3.) Then the corrected peel stress peak σ> �A is: 
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σ> �A = σ> 1 − H|{�|
��

= �(S�SU)
H���

1 − 2	f(ν5)
VSU
S

W
	 , 

(17) 

 (Here we again used the (t + t5	)/2 moment arm, a major aspect of thick-adhesive analysis.) 

For this rough approach to make sense, the quantity subtracted from 1 must be ≤ 	0.3 or so. To 

assure this as ν5 approaches 0.5, t5 must be less than t/8; this requirement is relaxed for lower 

values of Poisson ratio. 

 

Fig. 6 A) Position 𝑥′�  of the peel stress peak (relative to the joint end) as determined by FEA. B) The 

results are reasonably fitted by a polynomial in 𝜈�. 

With this simple correction added to the BEF peak peel-stress result, we turn to its range of 

validity. While there are many possible ways to evaluate accuracy, we focused on ‘peak peel stress’ 

since that is the aspect most related to failure. We looked for the ‘110%’ boundary in parameter 

space, namely the modulus and thickness boundary outside of which even the corrected BEF peak 

peel stress is 110% or more of the FEA peak stress (in our explorations it was never less). When 

this boundary was plotted on axes with logq¡(t/t5) as the abscissa, and logq¡	(E/E5) as the 

ordinate (Fig. 7) it turned out to be a line of slope 1 for each value of ν5, above which the accuracy 

is acceptable. Each line could be defined as Et/E5t5 = function of (ν5), which is a ratio of the axial 

stiffnesses (of any chosen length) that we term R5.  
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R5 = Et/E5t5 (18) 

This means that the adhesive layer must have sufficiently low axial stiffness, for example 

below 0.001 times the axial stiffness of the adherend, which particularly means that it cannot be 

too thick. For typical adhesive Poisson ratios, our applicability relation is thus written R5 > 885  

(ν5 = 0.35), and R5 > 2500 (ν5 = 0.4). For example, with steel adherends 3	mm thick, to 

achieve accurate predictions a soft urethane adhesive of modulus 0.3	GPa might be tolerable in a 

thickness up to 1mm, whereas a hard epoxy adhesive of modulus 5.5	GPa might have to be thinner 

than 0.05	mm. 

 

Fig. 7. Region of applicability of modified Elastic Foundation formula for long-joint peak peel stress: For 

each upward sloping line (dependent on adhesive Poisson Ratio), accurate predictions are expected in the 

direction of the arrow. For comparison, the Goland & Reissner proposed region of validity for elastic 

foundation analysis is shown by an arrow on the downward sloping blue line. The right half of the plot 

involves increasingly thick adhesive. 

In 1944, Goland and Reissner proposed a criterion for applicability of BEF calculations that 

can be written in terms of the already-defined ratio of vertical stiffness’s: 	RM 	= 	 (E/t	)/(E5/t5	). 

They expected good BEF results for RM > 10 – in other words, the adhesive layer relatively softer 
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than the adherend layer in the vertical direction, which implies a lower limit on t5. This criterion is 

still widely quoted. In Fig. 7 the Goland and Reissner applicability criterion RM > 10 is a line with 

slope −1, above which BEF is supposed to be accurate. Obviously the Goland and Reissner 

criterion is perpendicular to the 110% accuracy boundaries we found.  At least in the region of 

typical joints (shown shaded in Fig. 7), we feel the Goland and Reissner criterion tends to be too 

conservative. And this conclusion is not entirely based on the empirical correction: even when no 

correction is applied (i.e., when Poisson ratio is zero), we find the applicability region is describable 

as R5 > 175, perpendicular to the Goland and Reissner proposed boundary and far below it. 

In summary, two things were shown in this chapter. The first is that for adhesive Poisson ratios 

higher than 0.3  and insufficiently thin adhesive layers, the ordinary BEF peak-stress prediction for 

typical joints becomes more than 10% too great due to adhesive end effects, making the BEF 

analysis less useful. We therefore developed an empirical peak-stress correction appropriate for a 

wide range of joint properties and adhesive Poisson ratios. The second is that BEF peak-stress 

accuracy (even in the zero-Poisson case where little end-effect is observed) seems not to be 

meaningfully described by the Goland and Reissner applicability criterion which is defined in terms 

of vertical (through-thickness) stiffnesses of adherend and adhesive. A more useful criterion may 

be written in terms of axial stiffnesses. The way in which both criteria agree, at least in the shaded 

part of Fig. 7, is that increasing E5 alone should eventually render results inapplicable.  

To the authors’ knowledge, the Goland and Reissner proposed bound on BEF applicability 

have never been quantitatively confirmed. (In fact, earlier photo-elasticity experiments suggested 

that they are conservative.) In the range of ordinary metal-epoxy joints their recommendation seems 

at least one order of magnitude too strict. We have not yet uncovered cases for which the vertical 

stiffness ratio affects the peak stress accuracy, but that is partly because we have focused only on 

standard materials. (And it does seem that too low of an RM value distorts the stress distribution in 

a way we didn’t care about.) 
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Chapter 4 

SIMPLIFIED EXPRESSIONS 
FOR JOINT-EDGE MOMENT 

WITH ROTATION 
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4. Simplified Expressions for Joint-edge Moment with Rotation 

 This final part of the thesis concerns the ‘outer’ problem: using adherend bending 

compliance and type of remote boundary support to estimate the force and moment applied to the 

joint edge. This is a geometrically nonlinear problem, in which rotation of the joint brings the joint-

edge centroid closer to the load line of action, hence reducing the joint-edge bending moment. 

Goland and Reissner treated the outer problem for semi-infinite adherends with remote pin 

supports, resulting in a rather messy formula that does not reveal the moment reduction caused by 

finite adherends or fixed-slope supports. Zhao et al provided a simplified formula assuming a rigid 

overlap region with infinite pin jointed adherends. We also follow that rigid-overlap approach, in 

order to determine the effects of finite adherend length and pinned vs. fixed-slope supports. 

It is not uncommon for an elementary lap joint illustration to display two oppositely directed 

adherend tensile forces with offset (i.e., out of equilibrium) lines of action. To achieve moment 

balance, the true joint-edge loading must include transverse forces and/or centroidal moments 

consistent with the boundary conditions. These extra joint-edge load components make a significant 

difference to the peak peel stress, which is caused primarily by the joint-edge centroidal bending 

moment. 

For the sake of simplicity, we restrict consideration to a single lap joint loaded with 180A 

rotational symmetry about the joint center O, see Fig. 8A. The load resultants applied to each 

adherend at the edge of the bonded region can be considered the sum of an axial force F at the 

adherend centroid, a shear force Q, and a moment M about the centroid. However, these can’t be 

chosen arbitrarily: the assumption of 180A rotational symmetry implies that the net force 

transmitted across the adhesive centerline passes through the adhesive midpoint (Fig. 8B). 

Therefore, the edge resultants must be consistent with such a force line of action. 

Obviously if the transmitted force passes close to the adherend centroid at the joint edge, the 

joint edge bending moment magnitude will be small. The actual direction of that force (angle ѱ 
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relative to the joint plane) depends on: the remote boundary conditions (pinned, fixed, or with 

springs relating displacements & rotation to adherend-end force & moment); adherend elastic 

properties (as might be caused by steps or taper); and the relative-motion direction of the loading 

grips. For low loads and fixed-slope supports, force direction at O can be determined by solving a 

beam problem with no transverse displacement of O. For large loads, the force direction relative to 

the joint plane also depends on the load-induced rotation of the overlap region, as explored below. 

 

Fig. 8 A) general loading case consistent with 180¤ rotational symmetry must reduce to B) a force 

transmitted through O. 

Since the adherend bending moment at the edge of a long joint has an outsize effect on peak 

adhesive stress, we take the canonical loading as that which gives the largest joint-edge bending 

moment anticipated from standard dimensions and loading. That occurs when the adhesive-force 

direction is parallel to the adhesive midplane (ѱ = 0), therefore with a moment arm relative to the 

adherend centroid of a	 = 	t/2 (or (t + t5)/2 as a partial incorporation of thick-bond mechanics). 

We represent this load case schematically by short adherends supported at moment-free loading 

pins in the joint midplane (see Fig.1). Greater joint-edge moment arms seem unlikely. 

The following two sub-sections explore the joint-edge moment as a function of adherend free 

length L, joint length D, adherend bending stiffness EI, load T, and boundary conditions. Adhesive 

properties and thickness are disregarded. The first subsection is for a joint simply-supported at the 

adherend-end centroids, while the second is for fixed slope at the adherend ends. In each case, the 

low-load behavior, without significant rotation, is exhibited when TLH ≪ EI. (The symbol E refers 
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to adherend plane strain modulus, but plane stress could also be accommodated if appropriate.) 

Since a beam loaded with tension exhibits a characteristic length λ¦S = EI T (see Appendix 2), 

this expression could also be written L ≪ λ¦S. This is the situation for short, stiff adherends weakly 

joined. In such cases the adhesive-force direction is found by ordinary beam analysis including the 

adherend end conditions.  

In contrast, high-load behavior is exhibited when TLH ≫ EI or equivalently L ≫ λ¦S  , that is, 

for long, slender, highly loaded adherends. Here, the force deviation is significantly affected by the 

load magnitude, with minimal dependence on the remote boundary conditions (pinned, fixed, etc.).  

4.1) Beam-Column Result for Simply Supported Adherends 

We analyze load-induced joint rotation by treating the overlap region as a rigid block of length D 

and width, between adherend centroids, of 	t + 	 t5 	= 	2a . (This rigid-bond model differs from 

Goland and Reissner’s assumption of nonzero bending flexibility in the overlap region.) 

Deformation of the non-overlapped adherend length L is analyzed with a beam-column technique 

adapted from Timoshenko. For our analysis, we use a rectangle to represent the rigid geometry of 

approximately 1/8 of the entire overlap region. (This rectangle extends from the adhesive 

centerline to one adherend centerline – approximately one quarter of the overall height if the 

adhesive is considered thin -- over the right half of the overlap.) As seen in Fig. 9B, one corner is 

at adhesive centerpoint O, taken to be pinned in place for the symmetric loading where the grips 

each translate away from the bond. The diagonally opposite corner is point A, the point where the 

adherend centroid connects to the overlap region. The illustrated block is a rigid rectangle with 

vertical side a = (t + t5)/2 reflecting the distance between the adherend centroid and the adhesive 

midline; and width D/2, since only the right half is considered. 
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Fig. 9 A) Timoshenko beam-column under tension B) schematics of half-specimen with pinned ends, 

where adhesive midpoint 𝑂 is fixed in space by symmetry arguments, and adherend end 𝐵 translates 

horizontally with zero moment. 𝑎 is half the centroid separation of the two adherends, and 𝐷/2 is half the 

overlap length C) schematics of half-specimen with fixed-slope ends, where adhesive midpoint 𝑂 is fixed 

in space by symmetry arguments, and adherend end 𝐵 translates horizontally with zero slope. 

For these analyses we rederived the Beam-Column Equations for tensile axial load – see 

Appendix 2. Consider a beam of length L on simple supports at A (fixed) and B (axially 

translatable), subjected to tensile force T stretching the ends apart, and loaded with end moments 

(Mª,M«), resulting in end slopes (θª, θ«), both defined counterclockwise positive – see Fig. 9A. 

The end-support transverse reaction forces are not explicitly shown, but can be calculated from 

rotational equilibrium as (Mª + M«)/L. In terms of dimensionless beam length q	 = 	L/λ¦S 	=

	 TLH/EI, we obtain simple, symmetric relations between end-slopes θª and θ«, and moments Mª, 

M«: 

TLθª = MªH(q)–M«K(q) (19) 

TLθ« = M«H(q)	–	MªK(q) (20) 

 In these expressions: 
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• H(q) = q/tanh(q)– 1 is positive, approximating qH/3 for small q and q– 1 for q >

2. (A reasonable global approximation for q > 0 is H(q)~q + 1.013	erq.q±	² − 1.)  

• K(q) = 1– q/sinh(q) is also positive, approximating qH/6 for small q and 1 for q >

4. 

• The beam-end transverse forces do not explicitly appear. 

In applying these equations to one adherend joined to one eighth of the rigid bonded region, 

O is the fixed center of the joint, A is the beam-end centroid abutting the joint edge and B is the 

remote pinned beam-end centroid. In the unloaded condition, these three points are not in line. As 

tension increases, OA rotates by angle ϕ toward alignment with AB. At any level of tension T, we 

formulate the following relations: 

1. The beam-column formulas. Here we use only the first formula, Eq. (19), relating Mª 

directly to θª. (The simple support condition defining M« = 0 means the second equation, 

Eq. (20), is not needed for determining M«.) T appears both explicitly and through its 

contribution to q.  

2. A kinematic relation, connecting θª to ϕ. 

3. A statical relation connecting Mª to ϕ through T and its line of action. 

In principle these three relations governing  Mª, θª, and ϕ will define Mª as a function of T. 

Following are the specific equations for the pinned case (M« = 0). The first beam-column 

formula: 

TLθª = 	MªH(q) (21) 

where dimensionless load variable q = L/λ¦S = TLH/EI, and H(q) can be approximated as 

noted above. The kinematic relation: 

θª = 	ϕ +	 tanrq 5 qr�A$´ �	µ�¶·¸¹

ºr5 $»¼´�	µ�(½¾¿À¶¹)
 

(22) 
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For moderate values of ϕ and a ≪ L + D/2, this expression is quite accurately approximated 

as θª = ϕ(1 + D/2L). Lastly we need a third equation involving Mª, or rather the deformed-

configuration moment arm at A of the force T. This is provided by the coordinate-geometry 

equation for the distance between point A and the OB line (since both these joints are pinned, the 

OB system is a two-force member):  

Mª

T
= 	
aLcosϕ − aH + D2 L + D2 sinϕ

aH + (L + D2)
H

 

(23) 

For the moderate values of ϕ and a mentioned above, this is approximated well by: 

Mª

T
= 	
aL − ϕÁH º�ÁH

L + Á
H

	 
(24) 

 Eqs. (22) and (23) can be used to eliminate θª and Mª from Eq. (21), leaving a nonlinear 

equation for ϕ alone, at any value of T. Once ϕ is found by numerical iteration, Mª is known.  

For plotting, we define y as Ta/Mª,  or in other words (canonical moment arm a) divided by 

(actual loaded moment arm): 

y =
Ta
Mª

 (25) 

 (Note that y = 1/k, where k is the edge moment factor of Goland and Reissner – this 

definition simplifies the mathematics.) We plot y as a function of a load variable x where 

x = D/λ¦S = Dq/L = TDH/EI 
(26) 

 Note that the low-load value of y (when ϕ = 0) is not 1 because the line between support 

pins passes closer than distance a to the joint-edge adherend centroid. 

Fig. 10A illustrates the results, where y is plotted as a function of x with parameter L/D. To 

determine the edge moment in this pinned geometry, take the given tension T, multiply it by the 
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canonical moment arm a, and divide this moment by the plotted y value at the appropriate x (the 

plotted value is always ≥ 1).   

 

Fig. 10 A) Plot for determining edge moment of pinned-end assemblies, as a function of tensile load 𝑇. 

Curves are a function of 𝐿/𝐷, approaching the straight asymptote as 𝐿/𝐷 approaches infinity. Near zero 

load, the moment arm is determined by the undeformed force line of action between the loading pins. B) 

Similar plot for determining edge moment of fixed end-slope assemblies, as a function of tensile load 𝑇. 

Curves are a function of 𝐿/𝐷, where the uppermost curve has 𝐿/𝐷 = 2, the lowermost has 𝐿/𝐷 = 10, and 

the orange curve is for 𝐿/𝐷 → ∞. At low load, the effect of a fixed-slope end on reducing moment can be 

deduced by a linear beam calculation. 

In fact, what is actually plotted is the following expression, derived by combining the given 

approximations to the foregoing relations, and matching the unapproximated results with an error 

below about 1%. 

y = 	1 + x/2 +
D
L
0.506 erq.q±{

Æ
µ (27) 

Note that as L/D approaches infinity, the relation becomes a straight line y = 1 + x/2. Each 

curve could therefore be approximated roughly as a horizontal line at low loads, switching to the 

asymptote at sufficient load: First, y = 1 + 	0.506	D/L (in other words, moment	arm = a/(1 +

0.506D/L)), at higher loads switching to y = 1 + x/2 -- in other words, to moment	arm = a/(1 +
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0.5 TDH/EI). The switch occurs when x ≥ 1.012D/L, a load condition which can be expressed 

alternatively as TLH/EI ≥ 1.026. (The limit of L/D approaching zero is somewhat problematic, 

because approximate joint rigidity is then no longer a good assumption.) 

We may compare this result to the treatment by Goland and Reissner. They also investigated 

the pinned case, in the end taking L/D	 → ∞. The main modeling difference is that they assigned 

bending compliance (1/8 that of the adherend) to the double-thickness bond region. They 

apparently assumed a Poisson ratio of 0.33. Expressing their parameters in terms of ours, their 

abscissa is x/ 48(1 − νH) or x/6.54. Their moment plot could be recast as y = 1 +

8tanh(x/2 8) where ours, for infinite L/D, is y = 1 + x/2. The two expressions are identical 

for small x, and within 5% of each other as long as x < 3 (i.e., as long as their abscissa is below 

0.45). This condition should almost always be met for elastically loaded adherends: the mean axial 

stress should be well under 40% of the yield strength (because of the unavoidable addition of large 

bending stresses). As an example for a strong steel of yield strength 1400 MPa, the maximum 

allowed axial stress would be 560 MPa, and their abscissa would exceed 0.45 only when D > 36t.  

4.2) Beam-Column Result for Fixed-Slope Ends 

We turn next to the case of joint rotation when adherend end-slopes are fixed. From Fig.	9C it 

is clear that both θª and θ«, the end angles relative to AB required by beam-column analysis, are 

determined explicitly by ϕ. So we will use both beam-column formulas, and also expressions for 

θª and θ« in terms of ϕ. This leads to a relation between ϕ and Mª. But ϕ is not known, it must 

be determined from T. Therefore, we also make use of a statics relation, stating that the forces 

applied to the block at point A (beam tension T along the AB line, beam transverse force N deduced 

from θª + θ«, and beam moment Mª) must be in moment equilibrium about point O. This allows 

us to determine ϕ from T.  

The curves developed by numerical solution of this equation are plotted in Fig. 10B. The 

definition of y is guided by the approximated mathematics – it is the canonical loading moment 
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arm, a, divided by the actual moment arm developed by tension T. The definition of x is as before, 

x = D/λ¦S = TDH/EI.  An excellent numerical fit for the L/D range shown here is given by: 

Ta
Mª

= 1/k = 1 +
x
2
+
D
L

1 + DL
4
3 +

D
L

e ¡.V�rºÁ { 
(28) 

It can be seen that for large x (large load), the exponential term vanishes and the relation is 

just a universal straight line. Whereas, for small load, short and/or stiff adherends confer protection 

(k is reduced). 

 As for the pinned case, we may further approximate the curves as two straight lines. For 

low loads, moment	arm = a/ 1 + (D/L)(1 + D/L)/(4/3 + D/L) , independent of load. But 

when x > 2(D/L)(1	 + 	D/L)/(4/3	 + 	D/L), or rather when TLH/EI > 2(1	 + 	D/L)/(4/3 +

D/L), then moment	arm = a/(1 + 0.5 TDH/EI	). 

Summarizing: for lightly loaded joints connecting short stiff adherends, the edge moment may 

be approximated by classical infinitesimal-slope beam analysis involving the adherend length and 

boundary conditions. But for stronger joints connecting long, flexible adherends, the edge moment 

is reduced by joint rotation (thus requiring beam-column analysis), and at high load the moment 

arm becomes a function of TDH/EI, where D is joint length, EI refers to the adherends, and T is 

the tensile load. In this situation, adherend length L becomes unimportant. The parameter defining 

loading regime is TLH/EI.  

We compared the above results to those of Zhao et al who provide exact beam-with-tension 

formulas for a rigid overlap and pinned-end adherends of distinct thicknesses and lengths. To 

simplify they take the long-adherend limit and then consider identical adherends. Their result may 

be written 1/k	 = 1	 + 	x/2, where ours adds moment-reducing terms based on D/L (i.e., bond 

length over adherend free length): see Eq. (27) for the pinned case and Eq. (28) for the fixed-end 



 32 

case. These additions form the departures from a straight line (in extreme cases reaching 40%) in 

Fig. 10.  

Another relevant paper is the work by Guo S et al They specifically addressed two factors that 

we ignored: the possibility of compressive loading, and misaligned (i.e., spacer-less) rigid grips 

that create locked-in stresses. (They also, like Goland & Reissner, included the bending of a lumped 

overlap region, but their results in tension validate our assumption that rigidity would serve as 

well.) The main differences seem to lie in the choice of variables and normalization. Guo et al 

present results with two different normalizations. With reference to our variables, they first give k 

or 1/y as a function of (x/2)H, and then κ or xH/(8y) as a function of (x/2)H. We feel that our 

approach with straight-line asymptotes and a reduction to just two graphs might be simpler to use. 

In addition, our results are encapsulated in simple empirical formulas. 
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5. Conclusions 

Beam on elastic foundation models for adhesive stress provide insight into the 

mechanics of single lap joints. The simple equations for peak stress are especially valuable. 

Of course the computed stresses are approximately the ‘midline’ through-thickness values, 

not the more complex distributions at the adhesive corners.  

The first goal of this thesis was to establish that ‘long’ joints (in comparison to the 

characteristic distance of the elastic foundation shear stress equation) have the lowest 

adhesive failure stress, whether ‘equivalent’ or Principal. This means that designers could 

simply use an overlap greater than a minimum value based on joint parameters, so they can 

benefit from the simplest formulas and lowest values for peak stress. Our stress 

investigations were limited to such ‘long’ joints. 

The peel stress formula was compared to the ‘actual’ peel stress found by plane strain 

FEA. The results were in reasonable agreement except for an end-effect that truncates the 

peak BEF value when Poisson’s ratio is nonzero. That truncation was estimated empirically 

and crudely corrected. Then the applicability of the corrected peak-stress formula was 

compared to FEA. The match was acceptable except when the adhesive-layer axial stiffness 

is too high in comparison to adherend axial stiffness. This limit of applicability is quite 

different from Goland and Reissner’s limit based on adhesive through-thickness stiffness 

being large in comparison to adherend through-thickness stiffness. For our definition of 

accuracy, within the realm of metal-epoxy joints, the Goland and Reissner criterion was at 

a minimum too conservative by a factor of 10. 

Lastly the thesis addressed the bending moment experienced by the joint edge, since 

this is the main cause of peel stress. The Goland and Reissner formula is complex and not 
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very general. Using beam-column formulas with a rigid overlap region has resulted in 

relatively simple formulas for arbitrary adherend length and tension magnitude, and both 

pinned and fixed ends. 

The results and analytical insights provided here will make it easier for engineers to 

estimate joint strength and optimize designs. 
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6. Appendix 

This chapter has two sub-sections supplementing the thesis material.   

6.1) Appendix 𝟏: an equivalent stress for pressure-sensitive yield  

Polymeric adhesives are recognized as exhibiting pressure-sensitive yielding. The 

simplest consequence is a difference between axial tensile yield strength and axial 

compressive yield strength. (See Hassanipour and Öchsner’s work, their example adhesive 

material is stronger in compression than tension.)   

In that reference, pressure-sensitivity is effected by a minimal isotropic alteration 

of the von Mises yield criterion, or rather the equivalent stress, by incorporating a 

dimensionally consistent signed contribution of the first stress invariant. (There is no 

discussion of an associated plastic flow rule, but this has no bearing on the problem of 

identifying purely elastic behavior.)  

Denoting a material’s compressive yield stress as −k� and tensile yield stress as kS, 

where each k is a positive number, the yield criterion is given as 

k� − kS Iq + 3JH = 	g σ»Ê = k�kS (1) 

where 

Iq = 	σ{{ + σKK + σzz (2) 

3JH = 	
1
2 σ{{ − σKK

H + σKK − σzz
H + (σzz − σ{{)H + 3(σ{K

H + σKzH

+ σz{H) 

(3) 

 If we substitute either σzz = kS or 	σzË = −k�, then g σ»Ê = k�kS, so the yield criterion 

is satisfied. We may thus define an equivalent failure stress σu = g σ»Ê  and say that yield 
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will occur when σu = k�kS . When k� = kS = Y, then σÍ = Y, recovering ordinary von 

Mises yield. 

Since the pressure-sensitive equivalent stress is not a homogeneous function of 

stress components, then unlike von Mises stress it will not be linearly proportional to load. 

In Hassanipour and Ochsner’s work, properties for an epoxy are used, and according to 

Table 2 and the final line of Sec. 5, k� = 37.92 MPa and kS = 31.60 MPa. Then, the 

equivalent stress condition for pressure-sensitive yield of this adhesive is: 

1
2 σ{{ − σKK

H + σKK − σzz
H + σzz − σ{{ H

+3(σ{K
H + σKzH + σz{H) + 6.32(σ{{ + σKK + σzz)

= 34.62	MPa 

 

(4) 

By deleting the term linear in σ, we recover the formula for von Mises stress. 

6.2) Appendix 𝟐: Derivation of beam-column results   

The algebra of an end-loaded beam with axial tension is simplified via the 

symmetric beam-column formulation presented by Timoshenko, in which end-slopes 

relative to the mean slope are attributed to end moments, with stiffness modified by axial 

force. The relevant relations are derived here. 

The linearized governing equation for deformation of a beam under tension T with 

no external transverse loads is well known: EI Ï
WÐ
Ï{W

= T Ï�Ð
Ï{�

, where E is the plane strain 

elastic modulus. Here, w is displacement perpendicular to the x axis, which is taken along 

a line from the initial position of A to the initial position of B.  

We rewrite this as λ¦SH
ÏWÐ
Ï{W

− Ï�Ð
Ï{�

= 	0, using a ‘beam tension’ characteristic length 

λ¦S = EI/T� . 
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To develop expressions that are symmetric with respect to A and B, we use the 

‘mean slope’ coordinate axis X, which extends between the final positions of A and B, and 

whose origin is at the midpoint of AB. The transverse displacements W relative to this axis 

satisfy W(L/2) 	= 	W(−L/2) 	= 	0. The equation is solved by 

W(X) = a + bX + ceÔ/�ÕÖ + derÔ/�ÕÖ (5) 

Our aim is to develop expressions that connect the end-slopes dW/dX to the end-

moments. To minimize the algebra, we consider first the end moments Mª, M«, which will 

allow us to determine coefficients c and d. Our convention for external applied moments 

is counterclockwise positive, regardless of whether the end is positive or negative. We non-

dimensionalize the coordinate by λ¦S and employ the non-dimensional length q = L/λ¦S. 

At ends A and B, where non-dimensional coordinates are −q/2 and q/2 

respectively, we have  

Mª

EI
= −

dHW
dxH |ª 	= 	

−1
λ¦S

H 	 ce
r² H + de² H  

(6) 

M«

EI
=
dHW
dxH |« 	= 	

1
λ¦S

H 	 ce
² H + der² H  

(7) 

Therefore c and d may be found as 

c =
λ¦S

H

EI
	
Mªer² H + M«e² H

e² − er²  
(8) 

d =
−λ¦S

H

EI
	
Mªe² H + M«er² H

e² − er²  
(9) 

(Note that the quantity λ¦SH /(EI) may also be written as 1/T.) To compute end-slopes we 

need b	but not a. If we subtract the zero-displacement expression at A from that at B, then 
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a is eliminated and we can find  b = −λ¦S
H (Mª + M«) (LEI). With the above values of 

b, c, d, we can evaluate 

θª = b +	
c
λ¦S

	er² H −	
d
λ¦S

	e² H (10) 

θ« = b +	
c
λ¦S

	e² H −	
d
λ¦S

	er² H		 (11) 

Multiplying through with LEI λ¦S
H = LT, we finally have 

TLθª = MªH(q)–M«K(q) (12) 

TLθ« = M«H(q)	–	MªK(q) (13) 

where H(q) = q/tanh(q)– 1 and K q = 1 − q/sinh(q). 

If we examine the low tension (small q) limit, we recover the slope changes due to 

end moments of a beam with negligible tension, e.g. θª = MªL/(3EI)–M«L/(6EI). On 

the other hand, in the high tension or long (large q) case, where string-like behavior 

becomes apparent, it is instructive to examine the moments under fixed angles, as q 

becomes large (i.e., as λ¦S becomes small). For example, after solving for Mª and taking 

the large-q limit, the behavior at A is Mª~[θª	 TLH EI + (θ« − θª)	]	/	[L/(EI)	– 	2/

TEI]. The major part of Mª arises from the slope at A only, and grows as T. 

Qualitatively, sufficiently far (compared to λ¦S) from a boundary or any geometric 

inhomogeneity, we expect the beam, like a string, to lie along the line of the transmitted 

load with essentially zero bending moment. However, this straight line solution is disrupted 

by nonconforming boundary conditions, and most importantly by the geometry of the joint, 

which prevents the adherend centerlines from being collinear near the joint, within in a 

region of size λ¦S. (This is why the high-tension effect of an end slope at one end is virtually 

decoupled from the end slope at the other end.) 
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