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Abstract 

 

Diagnostics and prognostics in rotating machinery is a subject of much on-going 

research. There are three approaches to diagnostics and prognostics. These include 

experience-based approaches, data-driven techniques and model-based techniques. 

Bayesian data-driven techniques are gaining widespread application in diagnostics 

and prognostics of mechanical and allied systems including slow rotating bearings, as 

a result of their ability to handle the stochastic nature of the measured data well. The 

aim of the study is to detect incipient damage of slow rotating bearings and develop 

diagnostics which will be robust under changing operating conditions. Further it is 

required to explore and develop an optimal prognostic model for the prediction of 

remaining useful life (RUL) of slow rotating bearings. 

 

This research develops a novel integrated nonlinear method for the effective feature 

extraction from acoustic emission (AE) signals and the construction of a degradation 

assessment index (DAI), which is subsequently used for the fault diagnostics of slow 

rotating bearings. A slow rotating bearing test rig was developed to measure AE data 

under variable operational conditions. The proposed novel DAI obtained by the 

integration of the PKPCA (polynomial kernel principal component analysis), a 

Gaussian mixture model (GMM) and an exponentially weighted moving average 

(EWMA) is shown to be effective and suitable for monitoring the degradation of slow 

rotating bearings and is robust under variable operating conditions. Furthermore, this 

study integrates the novel DAI into alternative Bayesian methods for the prediction of 

RUL. The DAI is used as input in several Bayesian regression models such as the 
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multi-layer perceptron (MLP), radial basis function (RBF), Bayesian linear regression 

(BLR), Gaussian mixture regression (GMR) and the Gaussian process regression 

(GPR) for RUL prediction. The combination of the DAI with the GPR model, 

otherwise, known as the DAI-GPR gives the best prediction. The findings show that 

the GPR model is suitable and effective in the prediction of RUL of slow rotating 

bearings and robust to varying operating conditions. Further, the models are also 

robust when the training and tests sets are obtained from dependent and independent 

samples. 

 

Finally, an optimal GPR for the prediction of RUL of slow rotating bearings based on 

a DAI is developed. The model performance is evaluated for cases where the training 

and test samples from cross validation approach are dependent as well as when they 

are independent. The optimal GPR is obtained from the integration or combination of 

existing simple mean and covariance functions in order to capture the observed trend 

of the bearing degradation as well as the irregularities in the data. The resulting 

integrated GPR model provides an excellent fit to the data and improvements over the 

simple GPR models that are based on simple mean and covariance functions. In 

addition, it achieves a near zero percentage error prediction of the RUL of slow 

rotating bearings when the training and test sets are from dependent samples but 

slightly different values when the estimation is based on independent samples. These 

findings are robust under varying operating conditions such as loading and speed. The 

proposed methodology can be applied to nonlinear and non-stationary machine 

response signals and is useful for preventive machine maintenance purposes. 

 

Keywords: acoustic emission, Bayesian linear regression, Bayesian techniques, 

covariance function, data-driven, degradation assessment index, diagnostics, 

experience-based, exponentially weighted moving average, Gaussian mixture model, 

Gaussian mixture regression, Gaussian process regression, integration, mean function, 

model-based, multi-layer perceptron, polynomial kernel principal component 

analysis, prognostics, radial basis function, remaining useful life 
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Chapter 1 Introduction and literature review 

 

 

1.1 Introduction 

 

Bearings, including slow rotating bearings operating at varying speeds, are one of the 

major machinery component types used in industries like mining, automotive, power 

generation, railway, shipping, manufacturing, and chemical plant (Dube et al., 2013). 

Bearing failure has been identified as the leading source of failure in rotating 

machinery (Li et al., 1999). Research shows that bearing defects amount to about 

40% of motor faults (Enzo and Ngan, 2010). Bearing failure may occur due to 

mechanisms such as fatigue, wear, corrosion, debris contamination and misalignment, 

faulty installation or improper mounting, blockade, passage of foreign particles, 

inadequate or improper lubrication, excessive speed and inappropriate temperature, 

vibration, inefficient seals, and overloading (Camci et al., 2012; Dube et al., 2013). 

There are three major components of bearings that typically experience damage. 

These are the ball or rolling element, inner race and outer race. 

 

There are many condition monitoring (CM) techniques for acquiring data for bearing 

diagnostics and prognostics. The data can be acoustic emission (AE), vibration, oil 

analysis, temperature, wear debris analysis, etc. collected using different sensors, 

such as AE sensors, accelerometers, micro-sensors, ultrasonic sensors, etc. (Tandon 

and Choudhury, 1999; Jardine et al., 2006; Randall, 2011). Vibration analysis is the 

most widely used. However, while vibration based methods have been shown to be 

effective when the defect in the bearings has already become severe, the vibration 

signal is not sensitive to an incipient fault. Furthermore, the vibration signal caused 

by bearing defects is often contaminated and distorted by other faults and mechanical 

noise (He et al., 2009). Although, it is possible to detect typical faults using vibration 

analysis, this is only effective primarily in high speed machinery (Kim et al., 2007).  

 

Slow rotating bearings present special challenges such as significant speed variation, 

huge load variations, exceedingly high down time costs, corrosion, contamination, 
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wide range of failure mechanisms, etc. Traditional bearing monitoring approaches are 

not necessarily appropriate for CM of slow rotating bearings. Problems include 

inappropriateness of harmonic analysis, low frequencies which lead to low bearing 

accelerations, the sheer size of real life bearings which may lead to significant 

attenuation of measured signals from one side of the bearing to another, etc. Based on 

experiences from the literature, especially work done on slow rotating bearings; there 

are however a number of approaches which hold promise. It is clear that AE promises 

distinct advantages. These include viability and high success in detection of damage 

in slow rotating bearings. AE offers earlier fault detection due to its higher sensitivity 

(Mba, 2003), and could be useful for an extensive range of rotational speeds with 

noteworthy benefits at slow rotational speeds. Other advantages of AE include: it 

offers real time process information; it is non-invasive; and it can be used for 

dynamic CM. Despite the distinct advantages of AE for monitoring the condition of 

slow rotating bearings, it has some limitations which comprise: vulnerability to 

attenuation; vulnerability to noise in operation; and failure to match faulty AE signal 

to the mechanism of failure. One problem is the high frequencies that lead to large 

data files and the requirement for large memory space during the data acquisition 

phase. Another shortcoming when processing the signal is the lack of periodicity that 

makes it inappropriate to process the signal in the frequency domain.  Hence, the time 

domain approach could be employed. 

 

Several techniques have been applied to data processing of signals into interpretable 

features that can be used for mechanical systems degradation assessment. These are 

broadly categorised into three domains: the time domain, the frequency domain and 

the time-frequency domain. Obtaining the most beneficial statistics from these 

features and inputting to the diagnostics and prognostics system is a challenge. In 

machine learning, the accuracy of fault detection and prediction models depends on 

the quality and sensitivity of the features utilised to evaluate the condition and spread 

of the faults (Camci et al., 2012). The dimension of the original feature set from the 

time domain analysis is normally large. Thus, it is problematic selecting a priori 

which feature(s) is more sensitive to fault growth as various factors (e.g., signal-to-

noise ratios of the data acquisition system, location of sensors, etc.) have an effect on 
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the efficacy of the features (Malhi and Goa, 2004). Given the fact that each feature 

has both advantages and disadvantages, it is crucial to develop a systematic algorithm 

that is capable of selecting the most characteristic features for monitoring the present 

machinery condition (Malhi and Gao, 2004). 

 

An additional challenge of bearing diagnostics and prognostics is carrying out the 

effective evaluation of degradation utilizing the extracted features. Despite the fact 

that a large number of features can be extracted to characterise the AE data, earlier 

investigations have indicated that every feature is only effective for particular faults 

in particular phases (Xi et al., 2000; Yu, 2011a). Moreover, it is hard to quantitatively 

diagnose the fault severity, especially at the early stage of fault. It is still very 

challenging to predict the future trend due to strong stochastic characteristics of the 

failure propagation process (Li et al., 2000). Hence, there is a need for data reduction 

and a methodology that captures the stochastic nature of the data. 

 

Two important aspects in CM of bearings are diagnostics and prognostics of 

machinery faults. The distinction between these two aspects is clearly identified by 

Jardine et al. (2006). The act of detecting, isolating and identification of a fault when 

it occurs (post event analysis) is referred to as diagnostics. Fault detection is a task of 

detecting a deviation of the monitored system from healthy or normal operation; the 

isolation of faults is a task of locating the faulty asset; and identification of fault is a 

task of determining the type of fault after detection. “The overall theory of fault 

diagnostics consists of the three important tasks: fault detection– detection of the time 

of occurrence of faults in the functional units of the process, which lead to undesired 

or unacceptable behaviour of the whole system; fault isolation– localization 

(classification) of different faults; and fault analysis or identification– determination 

of the type, magnitude and cause of the fault. A fault diagnostic system, depending on 

its performance, is called an FD (for fault detection) or FDI (for fault detection and 

isolation) or FDIA (for fault detection, isolation and analysis) system, whose outputs 

are correspondingly alarm signals to indicate the occurrence of the faults, or classified 

alarm signals to show which fault has occurred, or data of defined types providing 

information about the type or magnitude of the fault” (Frank et al., 2000). However, 
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the most important aspect of diagnostics is fault detection and quantification 

(Sikorska et al., 2011; Zaidan et al., 2011) which is subsequently used for 

prognostics.  

 

The question of where on the overall health curve does the component or system 

reside is addressed by prognostics. Prognostics also imply the prediction of the time 

progression of incipient damage to the time of final failure (Brotherton, 2000; 

Sikorska et al., 2011). The act of predicting or forecasting final failure before it 

occurs (prior event analysis) is called prognostics. Prediction of a fault refers to the 

task to determine the imminence of a defect and the estimation of how soon a defect 

will likely happen. Once the current health condition is defined, the next task is to 

predict the change in component health as a function of remaining useful life (RUL) 

based on anticipated future health states (Camci et al., 2012). Jardine et al. (2006) 

defined the RUL as a conditional random variable of the time left prior to failure, 

given the present asset life and condition as well as history of operations. The rate of 

damage growth due to a given set of operating conditions (for example speed or load) 

is dependent upon the properties of the particular material under consideration 

(Bolander et al., 2009). 

 

There is no doubt that prognostics is surrounded by uncertainties arising from a 

variety of sources such as the current age of the asset or mechanical system, the 

health information or observed condition, measurement noise, process noise, 

modelling uncertainty and the environment in which the system is operated (Si et al., 

2011) which makes the process inherently stochastic. Therefore, the behaviour 

observed from a particular run may not reflect the true nature of prediction 

trajectories. It is therefore expected that a prognostics algorithm should provide 

information about the confidence around the prediction (Saxena et al., 2009). 

Bayesian techniques which are mainly statistical are gaining widespread application 

in damage detection and RUL of bearings due to their ability to handle uncertainties 

as opposed to traditional statistical methods (Nabney, 2002). 
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Hence, in this research an improved novel degradation assessment index (DAI) 

combining the advantages of its various models is developed for diagnostics of slow 

rotating bearings. This novel DAI is subsequently used in several Bayesian regression 

models for prognostics. The best performing prognostics model is selected and 

further improved upon to obtain the best prediction of RUL of the slow rotating 

bearings. 

 

1.2 Literature review 

 

In this review we investigate data acquisition methods; data processing methods; data 

reduction methods; diagnostics; prognostics and new evolving Bayesian prognostic 

techniques. The schematic of the approach is illustrated in Figure 1.1. 

 

 

Figure 1.1: Schematics of approach 

 

1.3 Data acquisition methods 

 

The practice of gathering and storage of valuable data from mechanical systems is 

referred to as data acquisition. A vital step in diagnostics and prognostics of 

machinery faults is data acquisition. There are two types of data that can be acquired:  

the incident data and the condition data. The data on what took place (e.g., setting up, 

failure, repair, etc., and for what reasons) and/or what was effected (e.g., slight 

overhaul, precautionary repairs, oil change, etc.) to the mechanical system is referred 

to as incident data. On the other hand data on the health condition of the physical 

asset or mechanical system is referred to as condition data.  Different types of 

condition data include AE, vibration, temperature, oil analysis data, moisture, 

pressure, humidity, environment, motor current, ultrasonic signals, partial discharge, 

etc. The most commonly used condition data are AE and vibration signals. Equally a 
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variety of sensors, such as AE sensors, micro-sensors, ultrasonic sensors, etc., have 

been designed to gather diverse forms of data (Jardine et al., 2006). 

 

1.3.1 Oil analysis 

 

Oil analysis has been used for condition monitoring for several decades (Elforjani, 

2010). Oil degradation monitoring is an important source of information for early 

machine failure detection (Zhu et al., 2013). The essence of monitoring the oil 

degradation process is to provide early warning of machine failure thereby extending 

the operational duration of lubrication oil reducing the frequency of oil changes and 

consequently reduce cost of maintenance. The main test used in oil analysis include: 

viscosity analysis; particle counts analysis; machines wear analysis; oxidation 

analysis and water content analysis. Oil and wear debris analysis have proven in 

many instances to be a leading indicator compared to vibration analysis in machinery 

diagnostics (Peng et al., 2005). The technique of oil analysis is generally applied off-

line by taking samples. However, the use of online sensors is gaining widespread 

usage in order to safeguard the oil quality (Elforjani, 2010; Verbruggen, 2003). 

 

1.3.2 Vibration analysis 

 

Vibration analysis is the most widely used method for CM. However, while vibration 

based methods have been shown to be effective when the defect in the bearings has 

already become severe, the vibration signal is not sensitive to an incipient fault. 

Furthermore, the vibration signal caused by bearing defects is often contaminated and 

distorted by other faults and mechanical noise (He et al., 2009). Although, it is 

possible to detect typical faults using vibration analysis, this is only effective 

primarily in high speed machinery (Kim et al., 2007). 

 

Normal bearing monitoring techniques such as vibration and oil analysis are not 

necessarily appropriate for CM of slow rotating bearing rotating at slow speeds less 

than 100 rpm (Elforjani, 2010). AE is utilized in the CM of bearings and rotating 

machinery although it was initially developed for non-destructive testing of static 
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structures. It has the benefit of detecting damage earlier than oil and vibration 

analysis (Mba, 2003; Morhain and Mba, 2003). 

 

1.3.3 AE technology 

 

AE refers to the spontaneous release of elastic energy as transient elastic waves as a 

result of rapid release of strain energy initiated by a structural change in an asset 

under thermal or mechanical stresses (Mazal, 2009; Tandon and Choudhury, 1999; 

Elforjani and Mba, 2011). Balerston was one of the first to introduce AE techniques 

for the defect diagnostics of rolling element bearings and proposed the AE source 

mechanism (Nienhaus et al., 2012). Since then, and especially in recent years, more 

and more researchers (Yoshioka, 1992; Li and Li, 1995; Shiroishi et al., 1997; Mba et 

al., 1999; Jamaludin and Mba, 2002; Mba, 2005; Elforjani and Mba, 2008; Elforjani 

and Mba, 2011) have investigated the application of AE techniques in the CM of 

bearings and allied applications. Several studies (Kakishima et al., 2000; Hort et al., 

2010; Tavakoli, 1991; Lees et al., 2011; Cai et al., 2011; Miettinen, 2000; Tandon 

and Choudhury, 1999; Tandon and Nakra, 1992a,b; Al-Ghamd and Mba, 2006; Qi et 

al., 2008; Miettinen and Pataniitty, 1999; Kim et al., 2007; Widodo, et al., 2009) also 

used AE in bearing damage detection and allied applications. 

 

Materials that can be monitored using AE without destroying them include: metals, 

composite materials and polymers, rocks, concrete, and woods (Elforjani, 2010). 

Applications of AE technology can also be used for monitoring aircraft and 

aerospace, marine, wind turbine, pressure and civil engineering structures and 

equipment (Elforjani, 2010; Capgo Pty Ltd, 2009; Envirocoustics, 2007).    

 

AE measurements are generally divided into two types namely: active type where the 

excitation is implemented externally and passive type where the excitation is 

performed by the component (Elforjani, 2010). AE signals are normally within a 

frequency range of 20 kHz to 1 MHz (He et al., 2009; Randall and Antoni, 2011; 

Elforjani and Mba, 2011). Sensors that convert the surface displacement of the asset 
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into electrical signals are utilised for detection. The electrical signals are subsequently 

processed using suitable equipment and/or data processing methods, to describe the 

asset condition.  

 

AE has distinct advantages which include viability and high success in detection of 

damage in slow rotating bearings; earlier fault detection due to its higher sensitivity 

(Mba, 2003), and useful for an extensive range of rotational speeds with noteworthy 

benefits at slow rotational speeds; it offers real time process information; it is non-

invasive; and it can be used for dynamic CM. Despite the distinct advantages of AE 

for monitoring the condition of slow rotating bearings, it has some limitations which 

comprise: vulnerability to attenuation; vulnerability to noise in operation; and failure 

to match faulty AE signal to the mechanism of failure. Disadvantages include: high 

frequencies that lead to large data files and the requirement for large memory space 

during the data acquisition phase; lack of periodicity when processing the signal that 

makes it inappropriate to process the signal in the frequency domain.  Therefore, the 

time domain approach could be employed. 

 

1.4 Data processing methods 

 

Usually the data is cleaned since it could contain some errors (Jardine et al., 2006). 

The data is then subsequently used for analysis and modelling. Various signal 

processing methods have been established for the evaluation and interpretation of the 

acquired data to aid in diagnostics and prognostics. Feature extraction refers to the 

process of obtaining vital information from the data. There are several signal 

processing methods and procedures for diagnostics and prognostics of engineering 

systems. As earlier mentioned in paragraph 1.1, these are the time domain, frequency 

domain and time-frequency signal processing methods (Jardine et al., 2006) 

discussed in the next paragraphs.  
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1.4.1 Time-domain analysis 

 

Time-domain analysis refers to analysis done in the time domain. This involves the 

computation of descriptive statistical features such as crest factor, peak, mean, peak-

to-peak interval, root mean square, standard deviation, kurtosis, skewness, etc. from 

the data. Several studies (Heng and Nor, 1998; Dyer and Stewart, 1978; Ferreira et 

al., 2003; Vlok et al., 2004) utilized statistical features enumerated above in fault 

detection of bearings. As a result of substantial speed variation in slow rotating 

bearings the time domain is more appropriate for CM of slow rotating bearings (Mba, 

2003). 

 

Extracting the most useful information from these features as inputs into diagnostics 

poses a challenge. The accuracy of fault detection models in machine learning 

depends on the sensitivity and quality of the features used to assess the condition and 

growth of the defects (Camci et al., 2012). 

 

1.4.2 Frequency-domain analysis 

 

Analysis in the frequency-domain involves the transformation of the time domain 

signal to the frequency domain by the use of fast Fourier transform. This enables the 

CM of machinery by extracting features from the frequency spectrum. This is 

achieved by looking at the frequencies of interest from the obtained frequency 

spectrum (Jardine et al., 2006). 

 

1.4.3 Time-frequency analysis 

 

One of the shortcomings of the frequency domain is not being able to handle non-

stationary data. However, time-frequency analysis, which uses time-frequency 

distributions, is suitable for analysing non-stationary data when mechanical system 

failure takes place, in the time and frequency domains. Time-frequency investigation 

utilizes time–frequency distributions, which characterize the energy or power of data 

in two-dimensional functions of frequency and time to signify failure configurations 
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for better diagnostics and prognostics. The most frequently used time-frequency 

distributions are the Wigner-Ville distribution, Short-time Fourier transform (STFT) 

and Hilbert-Huang Transform (Jardine et al., 2006; Randall, 2011). 

 

 

1.5 Data reduction methods 

 

High dimensional data is difficult to deal with. This problem of high dimensionality 

can be solved by reducing the data into fewer principal components by the use of data 

reduction techniques which captures all the vital features. Different data reduction 

methods include the principal component analysis (PCA), linear graph embedding 

(LGE), linear discriminant analysis (LDA), locality preserving projections (LPP), 

neighbourhood preserving embedding (NPE) and kernel principal component analysis 

(KPCA).  

 

The traditional principal component analysis (PCA) is a widely used technique for 

dimensionality reduction and feature extraction in machine learning. However, it is 

linear in nature just like the other data reduction techniques: LGE, LDA, LPP and 

NPE. In general, the standard PCA can only be effectively performed on a set of 

observations that vary linearly. When the variations are nonlinear, PCA becomes 

invalid.  

 

Another technique is kernel principal component analysis. The key idea of kernel 

principal component analysis (KPCA) is both intuitive and generic (Schölkopf et al., 

1998; Schölkopf et al., 1999). Unlike other nonlinear methods, such as neural 

networks, KPCA does not involve a nonlinear optimization procedure. Instead, 

KPCA maps the problem from the input space to a new higher-dimensional space 

(called feature space) by doing a nonlinear transformation using suitably chosen basis 

(kernel) functions and then use a linear model in the feature space (Lee et al., 2004). 

As a result, KPCA performs a nonlinear PCA in the input space (Romdhani et al., 

1999). 

 



11 

 

 

1.6 Diagnostics 

 

In industry the CM and fault diagnostics of equipment and processes is of enormous 

importance. Prompt discovery of defects in mechanical systems can lead to 

prevention of huge expenses in emergency maintenance costs. Machine fault 

diagnostics involves the mapping of data acquired during measurement and/or 

features extracted to machine failures in the failure space. The mapping procedure is 

also referred to as pattern recognition. It is attained by classification of data based on 

extracted features (Jardine et al., 2006). Diagnostics is a more mature field than 

prognostics. Once degradation is detected, unscheduled maintenance is normally 

performed to prevent the failure consequences (Eker et al., 2012). Machinery 

diagnostics is a vital research area that requires inter-disciplinary expertise which 

requires intelligent use of techniques from diverse domains such as machinery 

dynamics, signal processing, statistical analysis and machine intelligence. Due to the 

very complex nature of the problem, the current solutions leave much to be desired. 

Hence there is a continual need for new paradigms for diagnostics (Nataraj and 

Kappaganthu, 2011). 

 

One of the challenges of bearing diagnostics is the effective evaluation of the 

degradation process, based on the features extracted. In spite of the fact that a large 

selection of extracted features can be used to depict the characteristics of AE signals, 

earlier studies have demonstrated that each feature is only effective for depicting 

specific defects at specific stages (Yu, 2011a). Moreover, it is difficult to 

quantitatively diagnose the fault severity, especially at an early stage of a fault.  A 

number of diagnostic algorithms have been proposed in the literature. The estimation 

methods fall into two main approaches, namely the data-driven and model-based 

approaches (Randall, 2011; Sikorska et al., 2011). The data-driven approach is 

divided into statistical approaches (Phelps et al., 2001; Wang, 2002; Vlok et al., 

2004; Banjevic and Jardine, 2006) and artificial intelligence (AI) approaches (Zhang 

and Ganesan, 1997; Yam et al., 2001; Wang et al., 2004). Several studies (Bolander 

et al., 2009; Camci et al., 2012) are applications of model-based approaches. 
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1.6.1 Data-driven diagnostic methods 

 

The data-driven diagnostic methods comprise the AI, statistical and other approaches. 

These are discussed in the following paragraphs. 

 

1.6.1.1 Artificial intelligence approaches 

 

The application of AI methods in diagnostics of machinery has increased due to its 

improved performance over traditional statistical approaches. Nonetheless, it is 

difficult implementing AI methods as a result of the lack of proficient algorithms for 

acquiring data for training and particular knowledge, which are necessary for training 

the models. Until now, the majority of the applications simply used measured data for 

training of the model in the literature. Expert systems and artificial neural networks 

(ANNs) are the most commonly used AI methods in literature. Other AI methods in 

use include Fuzzy–neural networks, fuzzy logic systems, evolutionary algorithms and 

neural–fuzzy systems (Jardine et al., 2006). AI methods have been integrated with 

ESs and Neural Networks in improving diagnostics of machinery (Garga et al., 2001). 

 

The ANN is a model which imitates the human intelligence in its computations. It 

comprises uncomplicated processing elements linked in a complex layered 

configuration enabling the model to estimate an intricate nonlinear function having 

multiple inputs and multiple outputs. A processing element is made up of a weight 

and a node. The ANN training process refers to adjustment of the unknown function 

using its weights in conjunction with input and output observations. The most 

commonly utilized neural network structure for defect diagnostics is the Feed forward 

neural network (Roemer et al., 1996; Larson et al., 1997; Li et al., 2000).  

 

1.6.1.2 Statistical methods 

 

This involves the use of statistical approaches in the CM of data. The statistical 

methods comprise the frequentist (traditional statistics) and Bayesian approaches.  
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The traditional statistics or features used include crest factor, peak, mean, peak-to-

peak interval, root mean square, standard deviation, kurtosis, skewness, etc. (Skormin 

et al., 1999; Artes et al., 2003; Schurmann, 1996). The dimension of the initial 

feature set from the time domain analysis is usually large. It is a huge challenge to 

obtain useful information from these features so that it can be used in the diagnostics 

system. The accuracy of fault detection depends on the quality and sensitivity of the 

extracted features used in the estimation of the bearing condition. However, since 

each feature has advantages and disadvantages, it is crucial to develop a systematic 

method that incorporates all the advantages of the various extracted features, 

capitalising on the strengths of each, thus making the method more sensitive and 

robust in defect detection, while at the same time reducing the number of dimensions 

for CM by using data reduction methods (Malhi and Gao, 2004). 

 

The Bayesian approach develops posterior probability as a result of two antecedents, 

a prior probability and a likelihood function resulting from a probability model of the 

observed data. The posterior event (prediction) is directly proportional to the product 

of the maximum likelihood and the prior event. 

 

1.6.1.3 Damage quantification indexes 

 

Providing a quantifying degradation indication for the assessment of machine 

performance is vital for diagnostics and prognostics. Some existing studies developed 

one or more condition monitoring indexes. For instance, Lee et al. (2004) used the 

Hotelling’s T
2
 and squared prediction error (SPE), also known as the Q-statistic, 

obtained from PCA and KPCA as a monitoring index in both the simple multivariate 

process and the simulation benchmark of the biological waste-water treatment 

process. In general, the SPE performed better than the T
2
 in both PCA and KPCA, but 

the KPCA was more effective in detecting the timing of the simulated fault and in 

distinguishing between faulty and healthy condition data.  Yoo and Lee (2006) also 

developed an index using the T
2
 and SPE from the KPCA-EWMA model, which 
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captures both the nonlinearity and dynamics (time-varying characteristics) of the 

system, and they compared the performance with an index from the PCA, KPCA and 

PCA-EWMA and found that the KPCA-EWMA model was more effective than the 

others. Similarly, Shu-kai et al. (2008) developed an index using the KPCA-EWMA 

model for monitoring three water tanks. Comparing their results with the traditional 

PCA and KPCA, they found that the KPCA-EWMA diagnosed better. Sun et al. 

(2013a) built a damage index for monitoring an aero-engine rotor and viscoelastic 

sandwich structure, using kernel locality preserving projection. Using simulated 

increasing levels of damage, their results show that the proposed method is effective 

in identifying the increasing trend in the damage index. Qiu et al. (2003) used a 

method based on a self-organising map and calculated a minimum quantification 

error, then assessed three rolling bearings based on this. When defining three stages 

in a run-to-failure test using the U matrix map trained by self-organising map, their 

results show that the proposed index is better than the RMS at reflecting the damage 

severity levels. Furthermore, Ma (2012) developed a health index for monitoring the 

condition of bearings and gearboxes using calculations based on three methods: the 

Gaussian order statistics, the sum of N condition indicators and normalised energy. 

Ma (2012) compared the index of these authors with RMS, kurtosis and the crest 

factor and the result showed clearly the superiority of the new health index over the 

traditional condition indicators. 

 

Yu (2011a) used linear preserving projections to develop a performance degradation 

quantification index for bearings. The index was developed by combining the T
2
 and 

SPE statistics obtained from locality preserving projection with EWMA. In addition, 

Yu (2011b) developed a performance degradation quantification index for bearings 

by integrating locality preserving projection with Bayesian GMM and EWMA. In 

both cases the indexes based on the locality preserving projection performed better 

than the RMS, kurtosis and the likes. Shen et al. (2012) also developed a damage 

severity index for bearings, using fuzzy support vector data description. Based on a 

run-to-failure test and the definition of thresholds for beginning and final failure, the 

results show that the proposed damage severity index better reflects the different 

damage growth than RMS and kurtosis. Dong and Luo (2013) used the first principal 
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component from a linear PCA as an index for bearing degradation quantification. 

Though some studies implemented the dimensionality reduction of the original 

features, and hence reduced the large amount of correlation in the original features, 

others did not. Some of these studies considered the multimodal nature of the data but 

not the nonlinearities. Others considered the nonlinear nature of the data but did not 

consider the multimodal nature of the data. Some studies captured the dynamics of 

the system, filtered out noise and captured non-stationarities by using EWMA, 

whereas a number of studies did not. The studies that used a Bayesian approach 

incorporated prior information and captured uncertainties in the data and parameters, 

others did not. Moreover, most of these studies were conducted under constant 

operating conditions. Overall, no single study simultaneously captured the 

nonlinearities and multimodal distribution of the extracted features, the dynamics of 

the system, noise filtering, non-stationarity and uncertainties in the data and the 

parameters of the model. However, it is important that the CM methodology captures 

the characteristics spelt above so as to give an accurate representation of true 

condition of the mechanical system being monitored. 

 

1.6.2 Model-based diagnostic methods 

 

Model-based diagnostics is the activity of locating malfunctioning components of a 

system solely on the basis of its structure and behaviour (Mozetič, 1992). The model 

based approaches could either be analytical approaches that make use of the 

quantitative models or the knowledge-based approaches that use qualitative models 

(Frank et al., 2000). The model-based approach uses physics definite, precise 

mathematical model of the mechanical system to be monitored. Residual data, 

depicting the presence of a defect is obtained utilizing residual generation techniques 

such as parameter estimation, Kalman filter, etc. which are based on the accurate 

model.  

 

Loparo et al. (2000) studied a model-based approach in the detection and diagnostics 

of mechanical faults in rotating machinery. For certain types of faults, for example, 

raceway faults in rolling element bearings, an increase in mass unbalance, and 
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changes in stiffness and damping, algorithms suitable for real-time implementation 

were developed and evaluated using computer simulation. Jalan and Mohanty (2009) 

used model based technique for fault diagnostics of rotor–bearing system in their 

study. This was done using the residual generation technique to generate residual 

vibrations from experimental results for the rotor bearing system subject to 

misalignment and unbalance, and then the residual forces due to presence of faults 

were calculated. The residual forces were compared with the equivalent theoretical 

forces due to faults. The fault condition and location of faults were successfully 

detected by this model based technique. 

 

The model-based methods are more effective than model-free methods if an accurate 

model is built. However, this is generally not practicable for complex systems since 

building their mathematical models are problematic or outrightly impossible (Jardine 

et al., 2006; Randall, 2011). 

 

1.7  Prognostics 

 

Compared to diagnostics, prognostics literature is sparse. This is because prognostics 

is a newly evolving field (Randall, 2011). Prognostics render two types of prediction 

in literature. The commonly utilized prognostics method is the prediction of the time 

left before the occurrence of failure taken into cognisance the present state of the 

machine and previous operational history. RUL refers to the period left before the 

observance of failure. In the literature, RUL is sometimes referred to as residual life, 

remaining service life, or remnant life.  

 

According to Marble and Morton (2006), bearing prognostics is the key to making the 

most of safety and asset availability whereas reducing to the minimum logistical 

costs, by ensuring maintenance to be proactive rather than reactive. However, Jardine 

et al. (2006) note that although prognostics is considerably more capable than 

diagnostics to attain minimum-downtime performance, diagnostics is necessary when 

prognostics fails and a fault occurs. Therefore, both diagnostics and prognostics are 

very important aspects that need to be pursued concurrently. Prognostics ensures that 
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maintenance is carried out at the most appropriate time once a defect is detected 

devoid of impairing the requirements of safety, as it is vital for effective operation 

and management (Camci et al., 2012). The traditional approach of detecting bearing 

damage and failure (for example manual inspection of defect size after every machine 

operation) is labour intensive and leads to the shutting down of machinery, thus 

causing enormous time, production and financial losses (Bolander et al., 2009; Camci 

et al., 2012). For instance, the RUL of a bearing with a recently identified fault may 

be significantly higher than its L10 life, that is, the lifespan of 90% bearing population 

survival (Li et al., 1999; 2000). It would therefore be highly beneficial to be able to 

predict expected remaining bearing life with a large degree of certainty.  

 

 

Prognostics is an emerging field in mechanical engineering that is gaining interest 

from both academia and industry resulting in the development of many algorithms for 

this particular application (Lee et al., 2014; Walker et al., 2013; Mosallam et al., 

2013, Camci et al., 2013). There is increasing attention on the prognostics or 

prediction of RUL of both mechanical and non-mechanical structures such as 

bearings, shafts, gears, and batteries among others. This is not surprising given the 

huge down times and associated economic losses that often arise due to catastrophic 

failures.  Effective prediction of the expected life of bearings after the onset of an 

incipient damage is therefore critical for preventive maintenance in all industries that 

use rotating machineries. Bayesian approaches to prognostics are therefore gaining 

widespread usage in the CM of bearings as a result of their ability to handle 

uncertainties well (see paragraph 1.1). 

 

A number of prognostics algorithms have been proposed in the literature. The 

estimation approaches fall into three major groups: experience-based approaches, 

data-driven approaches and model-based approaches (Jardine et al., 2006; Randall, 

2011; Sikorska et al., 2011). 
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1.7.1 Experience-based prognostic methods 

 

In experience-based prognostics, the signal of an experienced feedback is obtained 

over a very long duration and utilized in the prediction of failure time or RUL. The 

experienced feedback data collected includes failure times, maintenance and 

operating data, etc. (Tobon-Mejia et al., 2012). The experience-based approach also 

known as the knowledge-based approach gives results for the average component 

operating under average conditions (Randall, 2011; Sikorska et al., 2011). The main 

advantage of experience-based methods is the straightforwardness of their 

computations which are centred on modest functions of reliability such as the Weibull 

and Exponential, instead of more sophisticated models of mathematics. However, 

their reliance on historical configurations of degradation to predict future degradation 

could lead to incorrect estimations during periods of changing operating conditions. 

Hence, the prognostic results from these methods are not as accurate as obtained from 

data-driven and model-based methods. This is even more pronounced once the 

operational circumstances are varying or in the event of different structures as a 

consequence of the lack of experience data. 

 

Data-driven methods have an edge over both experience-based prognostic approaches 

and model-based prognostic approaches. Whereas in industry applications obtaining 

dependable data is easier than building physical models; on the other hand, the 

generated behavioural models from real condition data leads to more accurate 

predictive results than those gotten from experience data (Jammu and Kankar, 2011). 

Table 1.1 gives a summary of some of the experience-based approaches with their 

merits and limitations. 
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Table 1.1: Rotating machinery list of experience-based prediction techniques 

and their advantages and limits  

Models Merits Limits 

Expert systems (Sikorska 

et al., 2011) 

Easy to develop 

Simple to comprehend 

Depends completely on 

knowledge of subject 

matter experts 

Substantial number of 

rules necessary 

Substantial knowledge 

overhead to keep 

knowledge base up to date 

Exact inputs required 

No confidence intervals 

supplied 

Not practicable to provide 

precise RUL 

Fuzzy systems (Sikorska 

et al., 2011)   

Less rules necessary than 

for expert systems  

Inputs can be inaccurate, 

noisy or incomplete 

Confidence intervals can 

be provided on the output 

with some type of models 

Domain experts essential 

to develop rules 
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1.7.2 Data-driven prognostic methods  

 

Data-driven methods model system behaviour using regularly collected condition 

data instead of using comprehensive system physics or human expertise (Heng et al., 

2009). Data-driven approaches are classified into two categories in general. These are 

statistical and machine learning approaches. Statistical approaches construct models 

by fitting a probabilistic model to the available data. Machine learning approaches 

attempt to recognize complex patterns and make intelligent decisions based on 

empirical data. Both statistical and machine learning methods use the degradation 

patterns of sufficient samples representing equipment failure progression. This 

requirement is the major challenge in data-driven prognostics since it is often not 

possible to obtain samples of failure progressions. Industrial systems are not allowed 

to run until failure due to its consequences especially for critical systems and failure 

modes. However quality and quantity (sample size) of system monitoring data has a 

high influence on data-driven methods. Sample sizes of prognostic datasets in the 

literature range from 10 to 40 (Camci and Chinnam, 2010; Baruah and Chinnam, 

2005; Huang et al., 2007; Gebraeel et al., 2005; Eker et al., 2011). Finally, it is 

difficult to define a reasonable failure threshold, especially when limited historical 

failure data is available (Bolander et al., 2009). Table 1.2 gives a summary of some of 

the data-driven approaches with their merits and limitations. 
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Table 1.2: Rotating machinery list of data-driven prediction techniques and 

their advantages and limits 
Models Merits Limits 

Data-driven prognostic 

models (Heng et al., 2009; 

Randall, 2011) 

Assumption or empirical 

estimation of physics 

parameters not required 

Normally requires a huge 

amount of data to be precise 

Simple trend projection 

models (Batko, 1984; 

Kazmierczak, 1983; Cempel, 

1987)   

Simplicity of calculation  Dependent on past 

degradation pattern and can 

lead to inaccurate forecasts in 

times of change 

Time series estimation using 

ANNs (Tse and Atherton, 

1999; Yam et al., 2001; 

Wang and Vachtsevanos, 

2001; Wang et al., 2004; 

Wang, 2007; Shao and Nezu, 

2000) 

 

Fast in handling multivariate 

analysis 

Provide nonlinear projection   

Do not require a priori 

knowledge   

Assume that condition 

indexes deterministically 

represent actual asset health  

Assume that failure occurs 

once the condition index 

surpasses a presumed 

threshold   

Short prediction horizon 

Exponential projection using 

ANN (Gebraeel et al., 2004) 

Predicts actual failure time 

instead of condition index at 

future time steps 

Longer prediction horizon 

Assumes that all bearing 

degradation follow an 

exponential pattern 

Needs training one ANN for 

each historical dataset 

Data interpolation using 

ANN (Huang et al., 2007) 

Longer estimation horizon   Needs training one ANN for 

each historical dataset 

Particle filtering (Orchard et 

al., 2005) 

Provision of nonlinear 

projection 

Reduced performance with 

high dimensional data 

Regression analysis and 

fuzzy logic (Jantunen, 2004) 

Highlights the most recent 

condition information  

Fuzzy logic enables 

condition classification 

based on histories   

Does not provide indication 

of time to failure or 

probability of failure 

Recursive Bayesian 

technique (Zhang et al., 

2007) 

Estimates reliability using 

condition data of individual 

assets, rather than event data 

Accuracy relies strongly on 

the correct determination of 

thresholds for several 

trending features  

Hidden Markov Model and 

Hidden Semi- Markov Model 

(Zhang et al., 2005; Dong 

and He, 2007) 

Can be trained to recognise 

different bearing fault types 

and states   

Lack of relation of the 

defined health-state change 

point to the actual defect 

progression since it is often 

impractical to physically 

observe a defect in an 

operating unit. 

Prognostics projection relies 

on a failure threshold 

Bearing dynamics model 

using system identification 

(Li and Shin, 2004) 

Tracks defect severity based 

on features that are not 

affected by operating 

condition and nearby 

equipment 

Reasonably accurate only 

when the signal-to-noise ratio 

is high, e.g. damage is severe 

and running speed is 

relatively high 
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1.7.3 Model-based prognostic methods 

 

Model-based methods to prognostics entail precise expertise knowhow and theory 

relevant to the monitored machine. Model or physics-based approaches employ a 

physical understanding of the system in order to estimate the RUL of an asset. Even 

though samples of failure degradation are not essential in physics-based prognostics, 

the physical rules within the system should be known in detail. The first phase in 

physics-based prognostics is to employ residuals that represent the dispersion of 

sensed measurements from their expected values of healthy systems (Luo et al., 

2003). The second phase in physics-based prognostics requires mathematical 

modelling of failure degradation. 

 

Physics-based approaches are usually not the most useful solutions in industrial 

applications as the defect type is usually distinctive from one asset to another and is 

difficult to be identified without interfering with the operations. Hence, the 

applicability of this approach is limited in practice. Table 1.3 gives a summary of 

some of model-based approaches with their merits and limitations. 

 

As earlier stated in paragraph 1.7.1, data-driven methods have an advantage over both 

experience-based prognostic approaches and model-based prognostic approaches. 

This is because in industry applications obtaining dependable data (data-driven) is 

easier than building physical models (model-based); on the other hand, the generated 

behavioural models (data-driven) from real condition data leads to more accurate 

predictive results than those gotten from experience data (experience-based) (Jammu 

and Kankar, 2011). 
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Table 1.3: Rotating machinery list of model-based prediction techniques and 

their advantages and limits 
Models Merits Limits 

Model-based prognostics 

(Heng et al., 2009; Randall, 

2011) 

Is very accurate if physics 

of the models remains 

consistent across systems   

Require less data than data-

driven techniques 

Real-life system physics is 

frequently too stochastic and 

complex to model  

Defect-specific 

Paris law crack growth 

modelling (Li et al., 1999; 

Warrier et al., 2000;  Li et al., 

2000; Li and Lee, 2005; 

Wemhoff et al., 2007) 

FEA enables material stress 

calculation based on 

bearing geometry, defect 

size, load and speed. 

Performance relies on the 

correctness of crack size 

estimate based on vibration 

data;  

Computationally expensive. 

Paris law modeling with 

FEA (Li and Choi, 2002; Li 

and Lee, 2005) 

FEA enables material stress 

calculation based on 

bearing geometry, defect 

size, load and speed. 

Performance relies on the 

correctness of crack size 

estimate based on vibration 

data;  

Computationally expensive. 

Forman law crack growth 

modelling (Oppenheimer and 

Loparo, 2002) 

Relays condition data and 

crack growth physics to life 

models. 

Abridging assumptions 

need to be examined; 

Parameters of model yet to 

be determined for complex 

conditions e.g. in shaft 

loading zone and plastic 

zones. 

Initiation of fatigue spall and 

model progression (Orsagh 

et al., 2003; Orsagh et al., 

2004; Kacprzynski et al., 

2004) 

Computes the time to spall 

initiation and the time since 

spall initiation to failure;  

Cumulative damage since 

fitting is estimated with 

consideration of operating 

conditions. 

Several physics parameters 

need to be determined. 

Contact analysis for bearing 

prognostics (Marble and 

Morton, 2006) 

FEA enables material stress 

calculation based on defect 

size, bearing geometry, 

speed and load. 

Several physics parameters 

need to be determined; 

Computationally expensive. 

Stiffness-based damage rule 

model (Qiu et al., 2002, 2003) 

Relays bearing component 

natural frequency and 

acceleration amplitude to 

the running time and failure 

time. 

Least-square scheme 

similar to single-step 

adaptation in time series 

estimation; Several material 

constants need to be 

determined. 
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1.8  Prognostics using Bayesian techniques 

 

Bayesian techniques are gaining widespread application in the CM of mechanical 

systems as result of its several advantages. These include its ability to handle 

uncertainties which makes them useful for risk analysis and maintenance decision 

making (Si et al., 2011), its ability to train with limited data, avoid overfitting, the use 

of prior probability which is a potent tool for incorporating information from previous 

history etc. (Neal, 1996; Titterington, 2004).  

 

In the Bayesian method, the variables of interest (number of neurons, regularisation 

coefficients, weights, relevance of inputs, neural network outputs, etc.) are modelled 

as random variables and their prior distributions are always assumed (Hippert and 

Taylor, 2010). The Bayes theorem is subsequently used to derive the posterior 

distributions, once data is available.  Bayesian methods have the ability to not only 

obtain point estimates for the variables of interest but also their probability 

distributions, which permits the researcher to compute the uncertainty using 

confidence intervals (CIs). The relevance of the inputs can be evaluated after the 

training using the automatic relevance determination (ARD) and the optimum number 

of neurons can be established by simply comparing the Bayesian evidence of the 

models.  The use of Bayesian methods for neutral networks is well documented in the 

literature (see for e.g. Bishop, 1995; Thodberg, 1996; Penny and Roberts, 1999; 

Lampinen and Vehtari, 2001; Titterington, 2004; Hippert and Taylor, 2010). 

 

The use of Bayesian theory for neural networks was introduced by Buntine and 

Weigend (1991). A number of Bayesian techniques have been used in implementing 

neural networks. These include the evidence approximation method, whereby the 

posterior distribution of the network weights are approximated as a Gaussian 

distibution. This technique simplifies the mathematical treatment, hence allows the 

derivation of expressions for estimating the most probable values of the 

hyperparameters, as well as the most probable model. Latest advances in Markov 

chain Monte Carlo method enable the application of Bayesian approaches to 

condition data. The evidence technique was introduced by Mackay (1992a, b) and has 
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also been implemented by a number of authors including Nabney (2002) and Hippert 

and Taylor (2010) amongst others. Several  authors have however attempted to avoid 

the approximation by integrating the posterior with other techniques such as Markov 

chain Monte Carlo (Neal, 1996; Barber and Bishop, 1998; Lampinen and Vehtari, 

2001; Nabney, 2002), or with techniques that use neither Gaussian approximations or 

Markov chain Monte Carlo: the variational method (Titterington, 2004), or with 

hybrids between Markov chain Monte Carlo and genetic algorithms (Chua and Goh, 

2003; Liang, 2005), and the Bayesian conjugate prior method (Vila et al., 2000; Rossi 

and Vila, 2006) as pointed out by Hippert and Taylor (2010). 

 

A few studies used the Bayesian approach in the CM of bearings. Chebil et al. (2009) 

identified bearing fault location and size from results obtained with the root mean 

square extracted from the terminal nodes of a wavelet tree of Symlet basis functions 

fed to a Bayesian classifier. Gebraeel et al. (2005) developed a Bayesian updating 

method that uses real-time CM information to update the stochastic parameters of 

exponential degradation models. Chen et al., (2012) proposed a novel approach for 

machine health condition prognostics based on neuro-fuzzy systems and Bayesian 

algorithms. The neuro-fuzzy systems, after training with machine condition data, is 

employed as a prognostic model to forecast the evolution of the machine fault state 

with time. Di Maio et al., (2011) estimated the RUL of degraded thrust ball bearings 

using a data-driven stochastic approach that relies on an iterative Naïve Bayesian 

Classifier for regression task. Other studies (Zhang et al., 2001; Gebraeel and Lawley, 

2008; Zhang et al., 2007; Chen et al., 2008; Hazan et al., 2011) also used Bayesian 

based techniques for bearing fault detection. 

 

Some of the widely used Bayesian techniques includes the extension of the Bayesian 

method to the class of widely used ANN such as the Multi-layer perceptron (MLP) 

and Radial basis function (RBF) (Nabney, 2002). Also, Bayesian linear regression 

(BLR), Gaussian mixture regression (GMR) and Gaussian process regression (GPR) 

are other classes of Bayesian models that have gained wide acceptance. The use of 

Bayesian methods for neural networks requires more explanation given that this class 

of models have been implemented using the traditional approaches such as maximum 
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likelihood methods, cross validation (CV) for selection of variables of interest etc. 

Artificial neural networks are flexible models widely used for classification and 

regression problems in machine learning regression. However challenges remain 

especially when training data is limited. Bayesian methods avoid overfitting (too 

much variance relative to bias) commonly observed with traditional learning methods 

for complex neural network models (Neal, 1996; Titterington, 2004). 

 

Predicting the RUL of bearings is surrounded by uncertainties which include 

randomness of bearing failure time, differences or changes in operating conditions, 

process noise, measurement noise, inaccurate process modes amongst others (Goebel 

et al., 2008; Hong and Zhou, 2012). These make it difficult for some models to track 

bearing features. However, given the ability of Bayesian models to reduce 

uncertainties both in the data and parameter estimates, this study is based on the use 

of Bayesian approach in the diagnostics and prognostics of slow rotating bearings. 

Some of the commonly used Bayesian methods are discussed in the following 

paragraphs. 

 

1.8.1 Multi-layer perceptron regression 

 

The multilayer perceptron is one of the most preferred feed forward artificial neural 

networks which make use of a supervised learning algorithm. Essentially, it has three 

layers which include the input layer, hidden layer and output layer (Şengüler et al., 

2010). It can be used in a Bayesian framework for RUL prediction. 

 

1.8.2 Radial basis function regression 

 

The RBF is used for nonlinear modelling. The RBF has many advantages, one of 

which is that it has a two stage training procedure which is considerably faster than 

MLP. The basis function parameters are fixed to model the unconditional data density 

in the first step. The second step of training entails the determination of the weights in 

the output layer. Secondly, it is possible to assign an interpretation to the hidden units 
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and also to determine the intrinsic degrees of freedom of the network (Nabney, 2002). 

It can also be used in a Bayesian framework for RUL prediction. 

 

1.8.3 Bayesian linear regression 

 

The parametric approach focuses on the use of probability distributions having 

specific functional forms governed by a small number of adaptive parameters, such as 

the mean and variance whose values are to be determined from the data set. The 

probability distributions include beta (binomial) and Dirichlet (multinomial) 

distributions for discrete random variables and the Gaussian distribution and 

Gaussian mixture distribution for continuous variables (Bishop, 2006). The Gaussian, 

also known as the normal distribution, is a widely used model for the distribution of 

continuous variables (Bishop, 2006). 

 

1.8.4 Gaussian mixture regression  

 

The standard single Gaussian distribution possesses vital analytical characteristics. 

Nonetheless, it has some noteworthy limitations in the modelling of real data. If a 

dataset forms more than one dominant clump, the simple Gaussian distribution is 

incapable of capturing the structure. However a linear superposition of two or more 

Gaussians can lead to a better characterization of the dataset. Such linear 

characterisation formed by taking linear combination of more basic distributions such 

as Gaussians, can be formulated as a probabilistic model known as mixture 

distribution (Bishop, 2006). 

 

1.8.5 Gaussian process regression 

 

Gaussian processes (GPes) are a recent development in nonlinear nonparametric 

modelling. In GP, the parametric model is dispensed and instead a prior probability 

distribution is defined over functions directly (Bishop, 2006). GP is utilized for the 

modelling of nonlinear functional mappings to a target space from an input space. 

The GP is an infinite assemblage of random variables of which the finite subsets have 
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joint Gaussian distributions. The Gaussian process helps smooth functions elucidate 

the training data clearly. The features of the smooth functions enable them to make 

good generalisations (Heyns et al., 2012a). 

 

The standard or basic GPR widely used by most studies assumes a zero mean 

function and squared exponential (SE) covariance function (Rasmussen and Williams, 

2006; Lázaro-Gredilla et al., 2010). As acceptable as the results from the standard 

GPR as highlighted above might be, imposing a priori a specific mean function and or 

covariance function may be quite restrictive given the differing properties of datasets 

which includes long term trend, pronounced seasonal variations and smaller or 

medium irregularities (Rasmussen and Williams, 2006). When two or more of such 

properties exist as is the case with the data used in this study, a simple mean or 

covariance function may not capture the different trends well. This may then require a 

more complex function that takes care of these individual properties. Moreover, when 

the test data is “distant” from the training data, the extrapolation performance of the 

basic GPR deteriorates rapidly (Shi and Wang, 2007). 

 

However, it is possible to obtain more desirable properties by allowing for more 

flexibility in the Gaussian process modelling.  This can be achieved by constructing 

composite functions from the existing simple functions (Bishop, 2006). According to 

Rasmussen and Nickisch (2013), composite functions can be composed of either a 

combination of two or more simple functions or a combination of two or more 

composite functions, thus permitting for exceptionally exciting and flexible 

structures. The idea of combination of functions is relatively similar to that in the 

time series forecasting literature. For instance, Palm and Zellner (1992) noted that “in 

many situations a simple average of forecasts will achieve a substantial reduction in 

variance and bias through averaging out individual bias”. 

 

The ability of the Gaussian process to avoid simple parametric assumptions and still 

build in a lot of structure makes it a very attractive model in many application 

domains (Rasmussen and Williams, 2006). Rasmussen (1996) examined several cases 

in which GPR generalizes much better and sometimes does considerably better than 
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other methods of regression, particularly when the availability of sufficient training 

data is an issue. A practical investigation by Wang et al. (2008) likewise 

demonstrated that one of the most important advantages of the Gaussian process 

models is their ability to generalize small sets of data well. These results were further 

confirmed by Heyns et al. (2012a) who found that the GPR performed better than the 

polynomial and neural network models. 

 

Although, there is good justification for the use of SE covariance functions in many 

settings (Rasmussen and Williams, 2006), it is still important to investigate very well 

which covariance functions are best suited for specific data. Basically, the selection 

among alternative covariance functions is a means of reflecting various forms of prior 

knowledge against the process under investigation (Ebden, 2008). This also applies to 

selection from alternative mean functions. 

 

Some studies (Hong and Zhou, 2012a; Hong and Zhou, 2012b; Chen and Ren, 2009) 

have empirically investigated the advantage of composite covariance functions over 

the simple covariance functions for predicting RUL. However, these studies assumed 

zero mean function. The assumption of a zero mean implies that the mean of the 

function vanishes away and therefore does not make an impact in the prediction 

output. In this case, the prediction is only based on the covariance function. However, 

prediction maybe improved by considering and selecting the optimal mean and 

covariance functions simultaneously. 

 

1.8.6 Model evaluation and comparison 

 

A number of studies have employed at least one of these models (MLP, RBF, BLR, 

GMR and GPR) for prognostics. Examples include Nabney, (2002); Gebraeel et al., 

(2004); Rasmussen and Williams, (2006); Skabar, (2007); Chen and Ren, (2009); 

Saxena et al., (2009); Hippert, and Taylor, (2010); Wang and Wang, (2012); Hong 

and Zhou, (2012a), Hong and Zhou, (2012b); Liu et al., (2012); Calinon, (2009); 

Chatzis et al. (2012) amongst others. However, none of these studies compared MLP, 

RBF, BLR, GMR and GPR to obtain the best performing model for RUL predictions.  
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Other studies, for instance, Hong and Zhou (2012b) evaluated the performance of 

GPR and wavelet neural network for prediction of bearing RUL and found GPR to 

show more excellent features than wavelet neural network with GPR predicting faster 

and having more stable prediction as well as lower prediction error (PE) in general 

than wavelet neural network. Goebel et al. (2008) compared the performance of GPR, 

relevance vector machine and NN-based approach for prognostics of aerospace 

rotating equipment. GPR seemed to have performed better than NN and relevance 

vector machine especially for the algorithm with specific damage estimates given the 

small GPR error though with late predictions than relevance vector machine. Saha et 

al. (2009) evaluated the performance of particle filter-based, autoregressive integrated 

moving average and extended kalman filter models and found that the particle filter 

framework has significant advantages over autoregressive integrated moving average 

and extended kalman filter for predicting the RUL of batteries.  An et al. (2012) 

compared the performance of the particle filter, the overall Bayesian method, and the 

recursive Bayesian method and found that the performance of particle filter and 

overall Bayesian method differ depending on the stage of the damage state and hence 

should be used as complementary models. Chatzis et al. (2012) compared the 

performance of the standard GMR, Dirichlet process GMR and GPR and found the 

first two to be computationally less expensive for robot prognostics than GPR. An et 

al. (2013) compared NN and GPR under different levels of noise and found that GPR 

under a no noise case (perfect data) or small noise outperform NN while under large 

noise NN outperform GPR. 

 

1.8.7 Prognostics based on dependent and independent samples 

 

Prognostics could be based on dependent or independent samples or observations. 

Prognostics based on dependent observations refers to predictions where the training 

and the test sets are obtained using a leave-one-out CV technique that involves the 

division of the data set into equal samples of training and test sets. When the training 

and test samples are dependent, the two errors may be positively correlated, resulting 

in a breakdown of the CV selection approach and can equally lead to model 
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overfitting (Opsomer et al., 2001; Arlot, 2010). However, the prognostics based on 

independent observations refers to predictions whereby one or more different data 

set(s) are trained together and are hence used as the training set while  the remaining 

data set is used as the test set.  

 

1.9  Effects of operating conditions 

 

Machineries are subjected to varying operational conditions in everyday conditions. 

The changing conditions are the main influence of variation in the energy of 

measured condition data. The effect of varying operating conditions in prognostics is 

relatively new. An example is when the operational speed of a machine increases 

leading to a rise in the amplitude. A prognostics model might recognise this increase 

in magnitude as an increase in the degradation of the asset being monitored. On the 

contrary, if the operational speed is reduced while a monitored asset is failing, a 

prognostics model might depict this as a reduction in the danger of machinery 

catastrophe despite the fact there is impeding failure (Heng et al., 2009). 

  

1.10 Scope of the work 

 

The literature survey covered a broad range of topics relating to diagnostics and 

prognostics of rotating machinery with particular attention to slow rotating bearings. 

From the literature survey the scope of the work is outlined in the subsequent 

paragraphs.  

 

1.10.1 Diagnostics based on a developed novel DAI 

 

This study uses statistical data-driven Bayesian methods to develop a novel integrated 

methodology for slow rotating bearing fault diagnostics based on AE data obtained 

from run-to-failure experiments under varying operating conditions. The proposed 

model is capable of accounting for data dimensionality reduction and hence for the 

reduction of high feature correlation, nonlinearities, noise filtering, non-stationarities, 

uncertainties, time variation (dynamics) and multimodal distribution in the data, 
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under varying operating conditions. A DAI which accounts for these characteristics 

for the assessment of machine performance is vital for effective diagnostics.  

 

The early identification of the presence and severity of bearing damage provides an 

important input, leading to an adjustment of the maintenance schedule and in this way 

minimising machinery downtime. In this case, bearing degradation cannot be assessed 

through supervised-learning models, because of the non-availability of prior 

information about the severity of the defect at various stages of propagation. Instead, 

a novel DAI is proposed for the classification of slow rotating bearing defect and 

severity, based on the assumption that only healthy bearing data are available. In this 

investigation, healthy bearings were run constantly to failure. In several applications, 

the operational condition of bearings (e.g. speed and load) could change as a result of 

excessive running operations. As a consequence, the healthy bearing data sample 

could result in multimodal and/or nonlinear distributions. 

 

The broad objective of the study is to develop novel effective CM techniques for slow 

rotating bearings based on AE data. The following specific objectives also form part 

of the contributions of the study: 

 

Firstly, a novel approach is proposed. This approach entails features selection based 

on the polynomial KPCA (PKPCA) which is a nonlinear data reduction approach. 

The fusion of information from different AE extracted features, capitalising on the 

strengths of each, is expected to result in the more sensitive and robust detection of 

defects. K-means are used to classify the defect into different health states so as to 

assess the usefulness of the extracted features from PKPCA. The multimodal features 

in the low-dimensional data space can still be conserved by the extracted features that 

PKPCA obtains from the high-dimensional data.  

 

Gaussian mixture model (GMM) is an outstanding technique for handling the 

description of multimodal data, making it robust with high computational efficiency. 

Therefore, secondly, using the features extracted by PKPCA, the negative log 

likelihood (NLL) is obtained by using the Bayesian GMM. The GMM uses multiple 
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Gaussian components for describing the multimodal data distribution. This 

characteristic makes it very easy for GMM to render a smooth estimation of the AE 

signal variability of healthy bearings. This algorithm is based on unsupervised 

learning without specific failure-class labels, improving its usefulness in various 

applications in the real world. In other words, humans do not need to intervene and 

knowledge is not needed about the input data characteristics in the course of 

modelling. The only requirement is the setting of values for a few processing 

parameters.  

 

Thirdly, the exponentially weighted moving average (EWMA) model is used for 

improving the sensitivity and dependability of the NLL with regard to the degradation 

of the slow rotating bearing. Finally, a novel DAI is obtained from the integration of 

PKPCA, the GMM and the EWMA model for the diagnostics of the slow rotating 

bearings. Hence, the DAI is proposed for the detection of bearing faults and the 

classification of fault severity, based on the assumption that measurements are 

necessary during the healthy operating conditions of the bearing. Therefore, in this 

study DAI was used for the damage assessment of slow rotating bearings. 

 

A number of studies, as listed previously (see paragraph 1.6.1.3), have developed CM 

indexes under different names, but to the best of our knowledge, no previous study 

used the methodology proposed in this study for building a CM index. Also, no 

previous index has been able to capture all the features of the developed DAI. Hence, 

the proposed approach is considered a novel contribution to the literature. Finally, the 

DAI is used in the prognostics of slow rotating bearings using various approaches. 

 

1.10.2 Prognostics using various approaches 

 

A novel approach by integrating a newly developed DAI is used as an input in several 

regression models such as the MLP, RBF, BLR, GMR and GPR for RUL prediction. 

Secondly, the mean absolute percentage error (MAPE) and root mean square error 

(RMSE) were used in model evaluation to select the best performing model. There is 

no known study that has evaluated the performance of these set of models using the 
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same data set. Thirdly, the best performing model from the resulting methodology is 

used for the prediction of slow rotating bearing RUL.  

 

Further, this study also makes a contribution to the prognostics literature by 

evaluating the performance of these models under a leave-out-one CV approach that 

is based on two types of samples or data set namely dependent and independent 

samples (see paragraph 1.8.7). 

 

1.10.3 Prognostics based on an integrated GPR model 

 

An integrated GPR model for prediction of RUL of slow rotating bearings is 

proposed. The proposed novel model combines the advantages from the individual 

mean and covariance functions. Moreover, the proposed technique consists of a 

construction of composite mean and composite covariance functions. These are 

respectively formed from two simple mean functions and three covariance functions 

selected based on acceptable scientific criteria rather than ad hoc choice as the latter 

may lead to model misspecification. This procedure ensures that only the mean and 

covariance functions which are well-suited for the problem at hand are combined in 

order to obtain an optimal GPR model for prognostics of slow rotating bearings. This 

study deviates from previous studies in that most studies implement a GPR using only 

the covariance function while assuming the mean function is equal zero.  

 

Hence, another contribution of this research entails the implementation of a novel 

integrated GPR-based model and the scientific selection of a composite mean 

function and composite covariance function for a more flexible and accurate 

prediction of RUL estimates of slow rotating bearings. Even though there is good 

rationalization for the use of SE covariance function in many settings (Rasmussen and 

Williams, 2006), it is still vital to examine carefully which of the covariance 

functions is the most suitable for specific data.  
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1.11 Document outline 

 

Chapter 1 gives the problem statement and literature review and scope of the study.  

The next chapter uses Bayesian techniques in the development of a novel DAI for 

diagnostics of slow rotating bearings. Subsequently, in chapter 3, the DAI is 

integrated into some Bayesian prognostics models for the prediction of RUL of slow 

rotating bearings. In chapter 4, the best performing prognostics model is further 

improved upon to obtain more accurate RUL predictions. Finally, chapter 5 presents 

the conclusions and recommendations of the study. 
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Chapter 2 Diagnostics of slow rotating bearings using AE 

 

 

2.1 Introduction 

 

This chapter uses statistical data-driven Bayesian methods in the development of a 

novel degradation assessment index (DAI) for slow rotating bearing fault diagnostics, 

based on acoustic emission (AE) data obtained from run-to-failure experiments. The 

proposed model has the capability for data dimensionality reduction and therefore for 

the reduction of high feature correlation, nonlinearities, noise filtering, non-

stationarities, uncertainties, time variation (dynamics) and multimodal distribution in 

the data, under varying operating conditions. The DAI is proposed for the 

classification of slow rotating bearing defects and severity, based on the assumption 

that only healthy bearing data are available.  

 

Firstly, the proposed approach features selection based on the nonlinear polynomial 

kernel principal component analysis (PKPCA) data reduction approach. The defect is 

classified into different health states by the use of K-means so as to assess the 

effectiveness of the extracted features from PKPCA. Secondly, using the extracted 

PKPCA features, the negative log likelihood (NLL) is obtained by using the Bayesian 

Gaussian mixture model (GMM). Thirdly, the exponentially weighted mean average 

(EWMA) model is used for improvement of the sensitivity and dependability of the 

NLL with regard to the degradation of the slow rotating bearing. Finally, a novel DAI 

is obtained from an integration of PKPCA, the GMM and the EWMA model for the 

diagnostics of the slow rotating bearings.  

 

2.2 Methodology 

 

The scheme used for developing the proposed DAI for the diagnostics of slow 

rotating bearings is shown in Figure 2.1. Generally the scheme involves five main 

steps: (1) feature extraction from AE data; (2) reducing the data dimensionality by 
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using PKPCA; (3) obtaining the NLL by using GMMs; (4) smoothening the NLL by 

means of the EWMA to obtain the DAI; (5) evaluating the proposed DAI by using 

benchmark studies. 

 

Figure 2.1: Schematics for developing DAI for diagnostics of slow rotating 

bearings 

 

2.3 Feature extraction 

 

Several features such as kurtosis, root mean square (RMS), peak-to-peak, crest factor 

and skewness were extracted from the time domain analysis of AE data. These high 

dimensional features were subsequently reduced to low dimension with the principal 

components still capturing all the features of the previous features (see chapter 1, 

paragraphs 1.4.1 and 1.6.1.1). 

 

2.4 Kernel principal component analysis 

 

High dimensional data is difficult to deal with. This problem can be solved by 

reducing the data into fewer principal components by using data reduction techniques. 

The traditional principal component analysis (PCA) is a widely used procedure for 

dimensionality reduction and feature extraction in machine learning. However, this 

study proposes a model based on kernel principal component analysis (KPCA). The 

main idea of KPCA (Schölkopf et al., 1998; Schölkopf et al., 1999) is both intuitive 

and generic. Generally, the standard PCA can only be effectively performed on a set 

of observations that vary linearly. PCA becomes invalid for nonlinear variations, as 

can be seen in the extracted features. The reasons for this nonlinearity are the highly 

stochastic nature of the data, the variable operational conditions and the changing 

condition of the slow rotating bearings. Unlike other nonlinear methods, such as 

neural networks, KPCA does not involve a nonlinear optimisation procedure. Instead, 
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KPCA maps the problem from the input space to a new higher-dimensional space 

(called feature space) by doing a nonlinear transformation using suitably chosen basis 

(kernel) functions, and then using a linear model in the feature space (Lee, 2004). As 

a result, KPCA performs a nonlinear PCA in the input space (Romdhani et al., 1999). 

This is popularly known as the “kernel trick”. Kernel methods permit the dot product 

of two vectors and in the feature space to be calculated as a function of corresponding 

vectors. Given a set of nonlinear data with a mean of zero, the covariance matrix in 

the feature space can be expressed as (Schölkopf et al., 1998; Schölkopf et al., 1999): 
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where it is assumed that the mapped data in the feature space are centred, i.e.,  

∑ =
=

N

k k1
0)(xϕ , and )(⋅ϕ  is a nonlinear mapping function that projects the input 

vectors from the input space to F . The diagonalization of the covariance matrix 

requires solving the eigenvalue problem in the feature space 
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where 0≥λ  and v  represent the eigenvalue and eigenvector, respectively. The v  

along with the largest λ  obtained by Equation (2.2) becomes the first principal 

component (PC) in F , and the v  along with the smallest λ  becomes the last PC. 

Here, vC F can be expressed as follows: 
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Because all solutions v  with 0≠λ must lie in the span of )(),...,( 1 Nxx ϕϕ , Equation 

(2.2) is equivalent to 

vCxvx F

kk ),(),( ϕϕλ = Nk ,...,1=   (2.4) 
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and there exist coefficients ),...,1( Nii =α such that 
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Combining Equations (2.4) and (2.5), yields 
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for all Nk ,...,1= . From Equation (2.6), it is clear that only the computations of the 

dot products of the mapped vectors in the feature space are required, which can easily 

be done through the kernel function (Sun et al., 2013b). To obtain coefficients, iα , 

define an NN × kernel matrix K by its th
ij  element ijK ,  

)(),( jiijK xx ϕϕ=   (2.7) 

Then, Equation (2.6) can be rewritten as 
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for all Nk ,...,1= . This yields 

αKKα
21

N
=λ Mj ,...,1=   

(2.9) 

 

where T

N ],...,[ 1 αα=α . The solutions of Equation (2.9), can be found through solving 

the eigenvalue problem 

Kαα
N

1
=λ   

(2.10) 

for nonzero eigenvalues. Performing PCA in F  is equivalent to resolving the 

eigenvalue problem of Equation (2.10). This yields eigenvectors Nααα ,...,, 21  with 

eigenvalues Nλλλ ≥≥≥ ...21 . The dimensionality of the problem can be reduced by 
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retaining only the first p  eigenvectors. Normalizing pααα ,...,, 21  through scaling 

the corresponding eigenvector by factor kλ/1  i.e.  

 

1, =kk vv  for all pk ,...,1=   (2.11) 

 

where p
 is the number of principal components retained. The kernel PCs are then 

extracted by projecting )(xϕ  onto eigenvectors kv
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th
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It is assumed that the mapped or projected data are centred (i.e. have zero 

mean),∑ =
=

N

k k1
0)(xϕ , otherwise this can be realized by substituting the kernel 

matrix K with the Gram matrix  
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That is, N1  is the NN ×  matrix with all elements equal to N/1  (Bishop, 2006). 

 

The power of kernel methods is that there is no need to explicitly compute or carry 

out the nonlinear mapping )(⋅ϕ . The kernel matrix can be directly constructed from 

the training data set (Weinberger et al., 2004; Wang, 2012). To solve the eigenvalue 

problem of Equation (2.10) and to project from the input space into the PKPCA space 

using Equation (2.12), one can avoid performing the nonlinear mappings and 
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computing both the dot products in the feature space by introducing a kernel function 

of form (Schölkopf et al., 1998; Schölkopf et al., 1999; Romdhani et al., 1999): 

 

)(),(),( yx ϕϕ=yxk   (2.14) 

 

There are a number of representative kernel functions, such as the linear, polynomial, 

sigmoid, Gaussian or radial basis kernels (Lee et al., 2004; Weinberger et al., 2004; 

Wang 2012). According to Mercer’s theorem of functional analysis, there is mapping 

into a space where a kernel function acts as a dot product if the kernel function is a 

continuous kernel of a positive integral operator. The polynomial and the Gaussian 

kernels always satisfy Mercer’s theorem (hence they are the most commonly used), 

whereas the sigmoid kernel satisfies it only for certain parameter values (Haykin, 

1999; Lee, 2004; Wang, 2012). In this chapter, the Gaussian, simple and polynomial 

kernel are used and given as Equations (2.15), (2.16) and (2.17) 
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( )yxyxk ,),( =   (2.16) 

 

dyxyxk ),(),( =   (2.17) 

 

with parameters σ and d  

 

The standard steps of polynomial kernel PCA dimensionality reduction can be 

summarized as: 

 

(1) Extract the relevant features (kurtosis, RMS, peak-to-peak, crest factor and 

skewness) from the AE signal and normalize the features using the mean and standard 

deviation of each feature. 

(2) Compute the kernel matrix K  using Equation (2.7). 
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(3) Carry out centering in the feature space for∑ =
=

N

k k1
0)(xϕ , by computing the 

Gram matrix, K
~

 using Equation (2.13).   

(4) Use Equation (2.10) to solve for the eigenvectors (substitute K  with K
~

). 

(5) Compute the polynomial kernel principal components )(xiy using Equation 

(2.12). 

 

The extracted polynomial kernel PCs, henceforth, PKPC, is used as inputs in the 

GMM for further analysis.  

 

However, if one intends to use the PKPCs for monitoring the condition of bearings 

without taking the GMM route, one would need some monitoring statistics. The two 

widely used monitoring statistics from KPCA-based models are the T
2
 and Q-statistic 

or squared prediction error (SPE). The T
2
 statistic accounts for the variation within 

the PKPCA model, whereas the SPE accounts for the variation not captured by the 

PKPCA model or, simply put, the SPE is a measure of the goodness of fit of a sample 

to the PKPCA model (Lee et al., 2004; Yoo et al., 2006; Sun et al., 2013b). The T
2
 is 

the sum of the normalised squared scores and is given as (Lee et al., 2004): 
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where ky  is obtained from Equation (2.12) and is the diagonal matric matrix of the 

inverse of the eigenvalues associated with the retained principal components. The 

SPE statistic is given as (Lee et al., 2004): 

2
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is the reconstructed feature vector with p  principal 

components in the feature space.  
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The confidence limits for the T
2
 and SPE statistics for nonlinear methods are 

determined by using the kernel density estimation (KDE) (Martin and Morris, 1996) 

with a CI of 99.7%. This in turn was used for defining the thresholds. 

 

2.5 Gaussian mixture model 

 

GMM is an outstanding technique for the description of multimodal data as this 

technique is robust with high computational efficiency. Using several Gaussian 

components enables the GMM to describe multimodal data distribution. This 

characteristic makes it feasible for GMMs to have a smooth estimate of the AE signal 

variability of healthy bearings. This algorithm is based on unsupervised learning 

without various failure class labels, which improves its usefulness in various 

applications in the real world. 

 

The distribution of feature vectors extracted by PKPCA is modelled in a GMM-based 

approach by a weighted sum of M mixture components. A finite mixture model can 

be defined as (Bishop, 2006): 
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where 
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lxxx ],...,[ 1= is the l-dimensional data vector. Each 

component density )( jxp θ is a normal probability 

distribution, 0)( ≥jxN θ , with parameters jθ  composing of the 

mean vector, jµ , and covariance matrix, jΣ , i.e. ],[ jjj Σ= µθ . In 

order to provide valid probabilities, the mixing 
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If these constraints are satisfied, the resulting mixture model will also be a valid 

density function. 

 

Condensing these parameters into a parameter vector ],...;,...,[ 11 MM θθππϕ = and given 

training data set },...,{
)()1( n

xxX = with n  independent and identically distributed 

samples of the random variable x , learning aims at finding the number of components 

M and the optimum vector ],...;,...,[ 11

∗∗∗∗∗ = MM θθππϕ  that maximizes the likelihood 

function 
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The method for determining the parameters of a GMM is based on maximising the 

data likelihood. It is convenient to recast the problem in the equivalent form of 

minimising the NLL of the data set which is treated as an error function (Nabney, 

2002): 
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(2.24) 

The parameters in ϕ are learned by maximising the likelihood function using the 

expectation maximisation algorithm. Some advantages of using the expectation 

maximisation algorithm include:  it is simple to implement and understand, avoids the 

calculation and storage of derivatives, it is usually faster to converge than general 

purpose algorithms and can also be extended to deal with data sets where some points 

have missing values (Ghahramani and Jordan, 1994). The expectation maximisation 

algorithm includes two steps: the expectation step and maximisation step which are 

alternatively iterated until the NLL converges to a local optimum. The results 

obtained from GMM may be highly sensitive to the number of mixing components 

used. The greater the number of components in a mixture model, the greater its 

expressiveness and flexibility. A sufficiently expressive model may be optimised so 

as to accurately represent the reference signal. However, models which are too 

expressive may over-fit the training data. This may result in poor generalisation and 

subsequently impair the ability of the model to distinguish between healthy signal 

components and fault-related outliers (Bishop, 2006; Heyns et al., 2012b).  Different 
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numbers of mixing components are fitted and the best selected. There are several 

model selection criteria such as the RMSE, the leave-one-out cross validation (CV) 

technique, the Bayesian information criterion, Bayesian model selection and the 

Akaike information criterion. In this study, the leave-one-out CV technique was used 

to select the best number of mixing components. 

 

The slow rotating bearing health states are monitored online by using the constructed 

NLL. The quantification criterion is needed to evaluate whether or not a new input is 

healthy. For each new input, GMM provides the unconditional probability 

density )(xp , which indicates how the input follows the probability distribution of the 

GMM trained by a healthy dataset. The GMM outputs corresponding to the novel 

data should be sufficiently smaller than the outputs of the GMM for healthy data, and 

below a certain threshold. By contrast, an input from the same region in input space 

as the training data should result in a probability density value that will be equal or 

greater than the threshold (Yu, 2011b). Accordingly, new inputs with smaller NLL 

values correspond to the expected behaviour, whereas larger values indicate the 

possible presence of damage. 

 

2.6 Exponentially weighted moving average 

 

The EWMA model is used to improve the sensitivity and dependability of the NLL to 

a slight degradation in the slow rotating bearing. The EWMA statistic is therefore 

proposed as an improved quantification index for the diagnostics of slow rotating 

bearings. EWMA is a type of infinite impulse response filter that applies weighting 

factors which decrease exponentially. The weighting for each older data point 

decreases exponentially, never reaching zero. The EWMA can be obtained as follows  

 

ttt NLLWW αα +−= −1)1(   (2.25) 

 

where α  is a smoothening constant between 0 and 1 and tW is the average of the 

preliminary data. A large value of α  attaches more weight to the current observation 
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than to historical observations. In this study, a value of 0.2 was used forα . This is in 

line with the general recommendation by Lucas (1990) and is also capable of 

providing a good balance between information from historical and current 

observations. Finally, the DAI, was used as an indication of the degradation of the 

slow rotating bearing. Hence, the DAIs on the time series may be plotted for the 

whole life of each bearing, to form a monitoring chart for each of the slow rotating 

bearings. A threshold is needed for the DAI in order to trigger the alarm for the onset 

of slight bearing degradation. The KDE is used to define the healthy operating region 

of the DAI, based on the 99.7% level of confidence (Martin and Morris, 1996). 

 

The maximum a posteriori estimates *y will be used for slow rotating bearing damage 

detection and the prognostics for the RUL of the bearing. The entire condition 

monitoring (CM) process is implemented in a unified framework (Figure 2.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Framework for PKPCA–GMM–EWMA integrated approach to 

bearing diagnostics 

 

2.7 Evaluation of the proposed DAI using benchmark studies 

 

The effectiveness of the proposed DAI is evaluated by comparing its performance 

with that of other monitoring indexes.  To this end, the proposed model is reordered 

to form three other different submodels which essentially correspond to some of the 
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models that may have been used in other studies for developing condition monitoring 

indexes. In other words, each submodel misses at least one component that is utilised 

in the proposed model. The models consist of the PKPCA-GMM-EWMA model, the 

PKPCA-EWMA model, the PKPCA-GMM model and the GMM-EWMA model. 

 

2.8 Experimental setup 

 

An experimental setup was used in this research to collect AE signals from slow 

rotating bearings. The test setup was designed so that it would be able to test slow 

rotating bearings. The experimental test setup is shown in Figure 2.3 (a). A 

servomotor controller controlled the rotational speed of the bearing. The system was 

driven by an AC servo motor with the speed set at 70 rpm, 80 rpm and 100 rpm for 

Timken Bearings 1, 2 and 3 with bearing number HR 30307 J respectively. An AE 

sensor was mounted on the housing of the test Timken Bearing. 

 

The rotating bearings were loaded until failure, which occurred on the outer race for 

all the bearings considered here. At the start of the experiment half a teaspoon of 

ground metal debris was introduced gradually into Bearing 1 at the openings between 

the outer race, rollers and inner race to accelerate the initiation of damage. Figure 2.3 

(d) and (e) show sample of Bearing 1 before and after damage. Bearings 2 and 3 were 

run under grease starvation conditions through-out the test period in order to speed up 

the bearing degradation. The bearings were loaded at various dynamic loads by using 

a Zonic servo-hydraulic shaker shown in Figure 2.3 (b). Bearing 1 was sinusoidally 

loaded over a range from 1.6 kN to -1.0 kN. Bearing 2 was loaded between 1.8 kN 

and -1.4 kN, whereas Bearing 3 was loaded between 2.0 kN and -1.7 kN. The 

excitation frequency was approximately 2 Hz. 
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Figure 2.3: (a) Test setup (top) (b) Zonic servo hydraulic shaker (middle left)    

(c) Instrumentation (middle right) (d) Bearing 1 in good condition before testing 

(bottom left) (e) Bearing 1 with outer race damage after testing (bottom right)   
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Figure 2.3: (f) Data acquisition schematics   

 

The major components of the slow rotating bearing test setup are the Zonic Xcite 

1100-4-FT System hydraulic shaker (load actuator), the load cell, the Timken tapered 

roller test bearings with bearing number HR 30307 J, the AC servo motor with model 

number 80MT-M04025, the speed controller and a National Instruments data 

acquisition card with a shielded BNC Connector Block. 

 

The Soundwel AE sensor with model number SR 150 M was used for collecting the 

data in an analogue form. This broadband piezoelectric AE transducer was connected 

to a 40-dB gain pre-amplifier which amplified the AE signal and filtered out 

unnecessary noise. The AE transducer was mounted on the outside surface of the 

outer race and on the bearing housing. 

 

The frequency of interest was 100 kHz. Hence, the AE signal was recorded at a 

sampling frequency of 200 kHz over a sampling period of 1 s, using the NI PCI 6110 
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data acquisition card with the model occupying one of the ISA slots in a host 

computer. The schematics of the data acquisition system is shown in Figure 2 (f). 

Data records were taken every 20 minutes until all three bearings failed, using the 

National Instruments LabVIEW software. The function for capturing the time domain 

and the pre-selected sampling time and interval was used. The recorded data was 

subsequently processed by means of dedicated Matlab programs. 

 

2.9 Results and discussion 

 

2.9.1 Results from alternative KPCAs and development of a DAI 

 

Healthy slow rotating bearings were run until failure in this investigation. Figure 2.4 

presents the AE signals for the healthy, slightly degraded and severely degraded 

states of Bearing 1. It can be seen from the topmost plot that the magnitude of the AE 

signal has values of about 0.2 volts for the healthy bearing state. As most of the 

bearing life is in the healthy state, much of the condition data is obtained during this 

period. Similarly, the middle plot in Figure 2.4 is a sample of the bearing when it is in 

a slightly degraded state. It can be seen that there is a significant increase in the 

magnitude of the AE signal for the slightly degraded state of the slow rotating 

bearing. The AE signal has relatively higher values of about 0.5 volts. This is an 

intermediate state and significantly shorter than the healthy state. The condition data 

here shows that the bearing condition has changed and that failure may not be too far 

away. Finally, the bottom plot in Figure 2.4 is a sample of Bearing 1 when in a 

severely degraded state. It can be seen that there is a significant increase in the 

magnitude of the AE signal for the severely degraded state of the slow rotating 

bearing to maximum values of about 2.0 volts, which points to imminent failure. 

Condition data is very scanty for this period as the bearing soon fails. 
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Figure 2.4: AE signal for Bearing 1: topmost (healthy state); middle (slightly 

degraded state) and bottom (severely degraded state) 

 

The extracted features: RMS, kurtosis, crest factor, peak-to-peak and skewness, for 

Bearings 1, 2 and 3 are shown in Figure 2.5 over their entire lifespan. From the 

extracted bearing features such as kurtosis, RMS, peak-to-peak, crest factor and 

skewness, it can be shown that most of the slow rotating bearing fatigue time is 

consumed during the period of material damage accumulation, whereas the period of 

crack propagation and development is relatively shorter. Hence, for the effective 

maintenance of the slow rotating bearing, an early warning approach is necessary to 

detect the initial degradation. It can also be noted that the degradation pattern of the 

extracted features is inconsistent. The RMS, kurtosis, crest factor, peak value and 

skewness all exhibit strong inconsistencies, although all the test bearings are of the 

same type. This inconsistency makes it extremely difficult to assess the performance 

of the degradation states based on a one-feature deterministic model. 
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Figure 2.5: Kurtosis, RMS, peak-to-peak, CF and skewness for the complete 

lifespans of Bearings 1, 2 and 3. 

 

Based on the inconsistencies observed with the original extracted features, it is not the 

best practice to select a specific feature for the analysis of bearing degradation. 

Moreover, since each feature has its strengths and weaknesses, the next task is to seek 

a means of combining these features into a single index for more sensitive and robust 

defect detection. To ensure that only the correlated and most effective features are 

combined, the KPCA is used for dimensionality reduction. This implies reducing a 

large number of original features to a manageable and more meaningful lower 

dimension. Different forms of KPCA were fitted. These included Gaussian KPCA 

(GKPCA), simple KPCA (SKPCA), and PKPCA of orders 2, 3 and 4 (i.e. PKPCA-1, 

PKPCA-2, and PKPCA-3 respectively). The KPCA is a nonlinear data dimensionality 
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reduction technique. However, the traditional linear PCA was also fitted for 

comparison.  

 

One of the important criteria for determining how many principal components should 

be retained is to assess what proportion of variability in the data is accounted for by 

the selected principal components.  Usually 70% – 90% is the benchmark (Martinez 

and Martinez, 2004). As the first two principal components of each of the three 

bearings accounted for over 78% of the variability, only these two components were 

selected for subsequent analysis. To assess the usefulness of the extracted features 

from KPCA, the K-means classification was used for the classification of the entire 

bearing data for Bearings 1, 2 and 3. The classification errors of the PCA, GKPCA, 

SKPCA, PKPCA-1, PKPCA-2, PKPCA-3 are shown in Figures 2.6, 2.7 and 2.8. The 

results show that the PKPCA of order 2 (i.e. PKPCA-1) gave the best classification 

result with the least classification error.  The corresponding figures that generated 

these classification errors are plotted in Figures 2.9, 2.10 and 2.11 for Bearings 1, 2 

and 3 respectively for only the best KPCA (i.e. PKPCA-1) and the traditional linear 

PCA. Figures 2.6, 2.7 and 2.8 and Figures 2.9, 2.10 and 2.11 show the superiority of 

the nonlinear PKPCA-1 over the traditional linear PCA.  Hence, the PKPCs obtained 

by using PKPCA-1 were subsequently used in the GMM to obtain the NLLs for the 

bearings, over the entire lifespan of each bearing.  

  

 

Figure 2.6: Classification accuracy rate of Bearing 1 
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Figure 2.7: Classification accuracy rate of Bearing 2 

 

 

Figure 2.8: Classification accuracy rate of Bearing 3 
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Figure 2.9: Bearing condition classification based on the first two principal 

components extracted by PKPCA and PCA for Bearing 1 
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Figure 2.10: Bearing condition classification based on the first two principal 

components extracted by PKPCA and PCA for Bearing 2  
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Figure 2.11: Bearing condition classification based on the first two principal 

components extracted by PKPCA and PCA for Bearing 3 

 

The performance of the GMM model is sensitive to the number of mixing 

components (see Equation 2.20). The optimum number of components was obtained 

in this study by using the leave-one-out CV technique. CV is performed by 

partitioning the extracted features into two segments of equal length, then doing the 

analysis on one segment (called the training set) and validating the analysis on the 

other segment (called the testing or validation set). Each model is retrained three 

times using the expectation maximisation algorithm. The best-performing model is 

the one with the minimum NLL.  Three mixture components were found to be 
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optimal for all the bearings, as shown in Figure 2.12. When more than three 

components are used, the performance on the validation set decreases, indicating that 

the models are beginning to over-fit the training set. The NLL results for Bearings 1, 

2 and 3 are presented as shown in Figures 2.13a, 2.14a and 2.15a respectively. 

Subsequently, the DAI is obtained by smoothening the data, using the exponentially 

weighted mean average (EWMA) as shown in Figures 2.13b, 2.14b and 2.15b 

respectively. 
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Figure 2.12: Number of mixture components 
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Figure 2.13: NLL and DAI for the whole lifespan of Bearing 1. 
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Figure 2.14: NLL and DAI for the whole lifespan of Bearing 2. 
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Figure 2.15: NLL and DAI for the whole lifespan of Bearing 3. 

 

The DAI which was obtained by smoothening the NLL using EWMA (see Figure 

2.1) is then used for assessing the bearing damage and failure at future time intervals. 

There is no need for damage detection when a bearing is in its healthy state. When the 

computed features are elevated above their threshold values, then it is considered that 

slight degradation has set in. The DAI gives an indication of whether a bearing is in a 

healthy, slightly degraded or severely degraded state. A DAI was developed for the 

assessment of the degradation of the slow rotating bearing. No prior information was 

available and GMM based DAI was utilised for the healthy bearing data in the first 

instance to obtain the degradation threshold(s) (DT). The slight DT was obtained by 

using the KDE method on the healthy bearing data for Bearing 1. KDE was first 

implemented on the healthy Bearing 1 data (i.e. the first 50 hours). The severely 

degraded threshold was obtained by using the KDE method on the slightly degraded 

bearing data (i.e. the first 50 to 65 hours). 
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The degradation of Bearings 1, 2 and 3 was assessed by using the proposed DAI 

shown in Figures 2.13(b), 2.14(b) and 2.15(b). In comparison with the RMS, kurtosis, 

crest factor, peak-to-peak and skewness, DAI is more effective due to its stable and 

clear variance trends for the degradation period for the whole life of the bearing. It 

can be seen from Figures 2.13(b), 2.14(b) and 2.15(b) that the bearing degradation 

process is presented from healthy, slight degradation and severe degradation to 

failure.  The time from slight degradation to severe degradation is very important in 

the bearing life. Effective maintenance has to be planned and carried out within this 

period to extend the life of the bearing or avoid machinery breakdown. For this 

reason, some maintenance measurements should be taken more often once slight 

degradation has commenced to avoid catastrophic failure with its potentially 

disastrous consequences. Once the slight DT has been exceeded, this indicates the 

beginning of incipient damage in the proposed model, and in this way gives an 

indication that maintenance procedures should commence. Furthermore, once the 

severe DT has been exceeded, this indicates that the final failure is very close. DAI 

improves the comprehension of the damage assessment and degradation process of 

the slow rotating bearing in real-life applications. For Bearings 1, 2 and 3, the 

incipient damage commenced at time intervals of 50 hours, 60 hours and 30 hours 

respectively. 

 

2.9.2  Evaluation of the proposed DAI using benchmark studies 

 

This part of the study evaluated the effectiveness of the proposed DAI by comparing 

its performance with that of other monitoring indexes.  To this end, the proposed 

model was reordered to form three additional different submodels which basically 

represent some of the models that may have been used in other studies for developing 

condition monitoring indexes. In other words, each submodel misses at least one 

component that is captured in the proposed model. The models consist of the 

PKPCA-GMM-EWMA model, the PKPCA-EWMA model, the PKPCA-GMM 

model and the GMM-EWMA model. The different models and their capabilities are 

shown in Table 2.1. 
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Table 2.1: Model reordering 

 

 

The PKPCA-GMM-EWMA (also known as the DAI) was the model proposed for 

this study. Since it is a combination of the PKPCA, the GMM and the EWMA 

models, it combines all the features of the three individual models.  When bearings 

are run under varying operating conditions, there is a high likelihood that the 

extracted features will have nonlinear and or multimodal (multiple modes) 

distribution (Yu, 2011b). The PKPCA submodel is capable of reducing the dimension 

of the extracted AE features (kurtosis, RMS, crest factor, skewness and peak-to-peak) 

from a nonlinear high-dimensional data space to a linear low-dimensional data space, 

in this way enhancing the high correlation existing in the original features. The 

PKPCA model neither accounts for noise in the various AE features nor does it 

permit an incorporation of external knowledge (priors) about the model. Moreover, 

the PKPCA model is a static model as it does not capture the dynamics of the system 

(i.e. the historical time evolution of the monitoring statistics). Hence, the KPCA 

model does not account for time variation in the data. 

 

After extracting the features from the high-dimensional data via PKPCA, the 

multimodal features in the low-dimension can still be preserved. Therefore, for the 

effective diagnostics of bearing faults and assessment of performance degradation, 

the GMM submodel is used to describe the multimodal distribution of the data. The 

GMM is accordingly capable of handling the multimodal and nonlinear features of 

the data by using a mixture of Gaussian components. Moreover, as the GMM is a 

Bayesian technique, it allows one to combine external information with the 

information in the data through a prior density function. Hence, all variables and 

parameters are considered as random or stochastic and their behaviour is described by 
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a probability density function. This enables the GMM to handle uncertainties in the 

data and parameters. Like the PKPCA, the GMM model is a static model. However, 

the EWMA model developed by Wold (1994) is a dynamic nonlinear model that 

includes a memory function by using historical data for monitoring a bearing or any 

other systems (Yoo et al., 2006). This makes it capable of improving the sensitivity 

and reliability of monitoring techniques to detect a slight degradation or shifts in the 

performance of bearings (Yu, 2011b). It also smoothens and filters out noise in the 

data and is therefore capable of capturing non-stationarity. 

 

Following the above features of the three submodels, the PKPCA-GMM-EWMA 

model can handle the nonlinear and multimodal distribution of the data, incorporates 

prior knowledge, accounts for uncertainty in both the data and the parameters of the 

model and is dynamic. The PKPCA-EWMA is a combination of the PKPCA and 

EWMA models so it is capable of handling nonlinearities and the dynamic 

characteristics in the extracted features. However, it does not handle multimodal 

distribution nor account for uncertainties in the parameters of the model and it does 

not incorporate prior information. The PKPCA-GMM model has all the features or 

capabilities of the PKPCA-GMM-EWMA model except that it is not dynamic, but 

static. The GMM-EWMA model also has all the capabilities of the PKPCA-GMM-

EWMA model, except that the concept of dimensionality reduction is not involved, 

meaning that the model uses all the extracted features. 

 

There are several methods for selecting the optimal number of principal components 

from the PKPCA-EWMA model. These include the use of scree plots, the cumulative 

percentage variance explained, cross validation and the PCs with eigenvalues equal to 

or greater than the average eigenvalue. This study employs the cumulative percentage 

variance explained (Martinez and Martinez, 2004) where the number of principal 

components that explain a cumulative percentage variance of between 70% – 90% is 

selected.  Two principal components were selected in the present study as they 

accounted for over 78% of the cumulative variance. These two retained principal 

components were subsequently used either to construct the traditional monitoring 

statistics (T
2
 and SPE) or as inputs into the GMM model. 
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The effectiveness of the proposed model was tested by comparing its degree of 

accuracy in discriminating between healthy and faulty bearing conditions with that of 

the submodels. The evaluation of performance can be reported by using the false 

alarm rate and the detection rate criteria. The false alarm rate gives information about 

the robustness of each model to healthy system changes. The detection rate gives 

information about the sensitivity and efficiency of detecting faults. The rates are 

obtained by counting the percentage of samples that fall outside the 99.7% confidence 

level used in setting the thresholds.  Since two thresholds have been defined, the 

detection rate was also classified into a slightly degraded detection rate and a severely 

degraded detection rate. 

 

The plots showing the monitoring indexes obtained from the different models are 

discussed before discussing the qualitative assessment. Figure 2.16 shows the results 

for Bearing 1. A number of observations emerge from these figures. The monitoring 

indexes from the PKPCA-GMM-EWMA, PKPCA-EWMA-T
2
 and PKPCA-EWMA-

SPE models appear to perform better than the index from the GMM-EWMA model, 

in terms of less volatility (stability or stationarity) and also the ability to discriminate 

between faulty and healthy operating working conditions, with the exception of the 

PKPCA-GMM that appears to be as volatile as the GMM-EWMA. This is not 

surprising, given that the inclusion of all the original extracted features in the GMM-

EWMA model can obscure its ability to monitor the degradation trends effectively. 

The PKPCA-GMM’s non-stationarity can be attributed to the absence of the EWMA 

smoothening and noise filtering in this model. It can also be observed that the 

PKPCA-EWMA-SPE statistic shows a clearer distinction between the healthy 

operating condition and the faulty state than its counterpart T
2
 statistic. 
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Figure 2.16: Condition monitoring indexes for Bearing 1 (a) DAI (b) PKPCA-

GMM (c) GMM-EWMA (d) PKPCA-EWMA-T
2
 and (e) PKPCA-EWMA-SPE. 

 

Trends similar to those in Figure 2.16 are also observed in Figures 2.17 and 2.18 for 

Bearings 2 and 3, respectively. Overall, however, the proposed DAI from the 

PKPCA-GMM-EWMA model appears to be smoother, more stable and to exhibit 

clearer trends for the degradation period than the rest. The highly non-stationary 

trends in both the GMM-EWMA and PKPC-GMM and the inability of the PKPCA-

EWMA-T
2
 and PKPCA-EWMA-SPE to discriminate clearly between the health 

states, demonstrate that neither reducing the dimensionality of the original features 

alone nor capturing the uncertainties and dynamics of the system alone, can guarantee 

the effective diagnostics of the slow rotating bearings. The characteristics or 

capabilities of each of these models are complementary and therefore have to be 
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considered when developing an index which can effectively monitor slow rotating 

bearings.  These complementarities are depicted in the DAI and largely explain why it 

appears to be performing better than the condition monitoring indexes from the 

different submodels. 
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Figure 2.17: Condition monitoring indexes for Bearing 2 (a) DAI (b) PKPCA-

GMM (c) GMM-EWMA (d) PKPCA-EWMA-T
2
 and (e) PKPCA-EWMA-SPE. 
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Figure 2.18: Condition monitoring indexes for Bearing 3 (a) DAI (b) PKPCA-

GMM (c) GMM-EWMA (d) PKPCA-EWMA-T
2
 and (e) PKPCA-EWMA-SPE. 

 

The quantitative assessment of the effectiveness of each model in assessing the health 

states of each of the slow rotating bearings requires a comparison of its false alarm 

rates, the slight degradation detection rates and the severe degradation detection rates 

with those of the submodels. The results of the comparison are presented in Table 2.2 

for Bearings 1, 2 and 3. 
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Table 2.2: False alarm and degradation detection rates of the three bearings (%) 

Bearings False alarm and  

fault detection rate 

PKPCA-

GMM-

EWMA 

PKPCA-

GMM 

GMM-

EWMA 

    PKPCA- 

    EWMA 

   T
2
   SPE 

Bearing 1 False alarm  

rate 

1.97 25.45 55.45 42.31 4.23 

Slight degradation 

detection rate 

100.00 75.00 42.31 61.54 60.87 

Severe degradation 

detection rate 

50.00 50.00 50.00 60.00 42.86 

Bearing 2 False alarm  

rate 

0.00 25.00 20.00 65.48 20.53 

Slight degradation 

detection rate 

100.00 77.78 29.73 84.21 94.12 

Severe degradation 

detection rate 

54.55 53.85 50.00 62.00 65.00 

Bearing 3 False alarm  

rate 

7.50 32.43 12.36 72.22 7.62 

Slight degradation 

detection rate 

88.89 76.92 56.25 75.00 83.33 

Severe degradation 

detection rate 

100.00 100.00 80.00 92.31 60.00 

 

First, by focusing on Bearing 1, it can be seen that the proposed index from the 

PKPCA-GMMA-EWMA model has the lowest false alarm rate (1.97%), meaning 

that in the healthy bearing operating region, the index crosses the 99.7% confidence 

level 1.97 times out of 100, whereas the worst index (GMM-EWMA) crosses the 

threshold about 55 times out of 100 when the bearing is actually healthy. The 

proposed model could perfectly detect a slight fault and remained within the threshold 

of the slight degradation state 100% of the time, followed by PKPC-GMM with a 

slight degradation detection rate of 75%. The proposed model’s performance was 

poor in terms of its ability to detect severe degradation as it missed 50% of the time. 

In this case, the PKPCA-EWMA-T
2
 performed better. For Bearing 2, the proposed 

model had a 0% false alarm rate whereas no other model did as well. In terms of the 

ability to detect a slight degradation, the proposed model performed better and had a 

detection rate of 100% whereas the second-best model, PKPC-EWMA-SPE, had a 

detection rate of 94%.  For Bearing 3, the proposed model still had the lowest false 

alarm rate (7.50%) followed by the PKPC-EWMA-SPE model with a false alarm rate 

of 7.62%. In terms of detecting a slight degradation, the detection rate was 
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approximately 89% for the proposed model followed by the PKPCA-EWMA-SPE 

model; whereas it performed as well as the PKPCA-GMM model in terms of 

detecting severe degradation. The quantitative analysis confirms the analysis of the 

visual plots. Overall, the proposed model performed better than the other models in 

terms of the false alarm rate and the fault detection rates. 

 

The overall superiority of the monitoring performance of the PKPCA-GMM-EWMA 

DAI can be attributed to the fact that it uses fewer kernel principal components from 

the original features, thus reducing redundancies in the data. In addition, it 

incorporates the dynamics of the slow rotating bearings, making it more sensitive to 

and reliable in detecting slight faults via EWMA; accounts for nonlinearities and 

multimodal distribution in the data, thus eliminating the bias arising from wrong 

model specifications; handles adequate filtering of noise; allows for smooth 

characteristics of the features through both GMM and EWMA subcomponents; 

reduces uncertainties in the measurement of the data as well as in the estimations of 

the parameters of the model; and permits the incorporation of external knowledge via 

the prior density function characterisation in the GMM component. 

 

2.10  Summary 

 

This chapter proposes a novel approach to the detection of damage in slow rotating 

bearings. In this study, three healthy slow rotating bearings were run until failure. A 

DAI was developed. The DAI was obtained from the integration of PKPCA, the 

GMM and the EWMA and used for assessing the damage degradation of the slow 

rotating bearing from incipient damage to failure.  

 

The K-means classification was used in the state classification of the bearing data. 

The best-performing PKPCs were then used in the GMM to obtain the NLL. 

Subsequently, the DAI was gotten by the smoothening of the NLL with the EWMA 

and used for the assessment of bearing damage. The slight DT was obtained by using 

the KDE method on the healthy bearing data. Subsequently, the severe DT was 

obtained by using the KDE method on the slightly degraded bearing data.  



68 

 

 

The effectiveness of the DAI was investigated by comparing its performance with 

that of other monitoring indexes and it was found to outperform them. The DAI was 

the only model with all these properties: it uses fewer kernel principal components 

from the original features thereby reducing redundancies in the data, incorporates the 

dynamics of the slow rotating bearings thereby making it more sensitive to and 

reliable in detecting slight faults via EWMA, accounts for the nonlinearities and 

multimodal distribution in the data thus eliminating the bias arising from wrong 

model specifications, filters noise, allows for the smooth characteristics of the 

features through both the GMM and EWMA subcomponents, reduces the 

uncertainties in the measurement of the data as well as in estimations of the 

parameters of the model, and permits the incorporation of external knowledge via the 

prior density function characterisation in the GMM component.  

 

The proposed DAI has been proven to be effective in the CM of slow rotating 

bearings under varying operating conditions. With further modifications it could be 

used for the CM of other rotating machinery such as gears. 
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Chapter 3 AE-based prognostics of slow rotating bearing using Bayesian 

techniques 

 

3.1 Introduction 

 

This chapter integrates both diagnostics and prognostics (RUL prediction) aspects of 

CM of slow rotating bearing using whole life bearing data from a laboratory 

experiment.  

 

RUL refers to the time left before the observance of failure given the current machine 

condition and past operation profile. In the literature, RUL is sometimes referred to as 

residual life, remaining service life, or remnant life (Jardine et al., 2006). Prognosis 

requires knowledge (or data) on the failure mechanism. The failure mechanism is 

described in two ways. The first one assumes that failure depends only on the 

condition variables, which reflect the actual fault level, and the predetermined 

boundary. The most commonly used failure definition in this case is simple: failure 

occurs when the fault reaches a predetermined level. The second one builds a model 

for the failure mechanism using historical data available. In this case, different 

definitions of failure can be used (Jardine et al., 2006). In this study two thresholds 

were defined to enable the estimation of RUL. The first is the slightly degraded 

threshold line which indicates the onset of incipient damage. The second is the 

severely degraded threshold line which indicates onset of final failure. The time 

difference between the two thresholds gives the RUL. 

 

Prediction of RUL is often difficult as the results depend on the models used in 

obtaining them. Therefore, it is important to evaluate the predictions from alternative 

models and choose the best based on an objective criterion. A model is deemed 

superior if it effectively minimizes the one-step-ahead (or multi-step-ahead) PEs by 

producing a lower PE than its competitors. Against this background, this study 

evaluates the performance of alternative Bayesian methods for slow rotating bearing 

fault prognostics based on AE data obtained from a run-to-failure experiment. 

 



70 

 

In this chapter, the novel DAI developed in chapter 2 was used as an input in several 

Bayesian regression models such as the MLP, RBF, BLR, GMR and the GPR 

mentioned in chapter 1, paragraph 1.7 for RUL prediction. The DAI incorporated all 

the advantages of the various extracted features (kurtosis, peak-to-peak, RMS, 

skewness, crest factor) capitalizing on the strengths of each, and thereby becoming 

more sensitive and robust in prognostics, while at the same time reducing the number 

of dimensions for CM (Malhi and Gao, 2004). The MAPE and RMSE were used in 

evaluating the performance of the models and hence selecting the best performing 

model for the prediction of slow rotating bearing RUL. 

 

This study contributes to literature on prognostics by evaluating the performance of 

the MLP, RBF, BLR, GMR and GPR models using the same data set. Finally, the 

models are compared using both dependent and independent samples (see chapter 1, 

paragraph 1.8.7). 

 

3.2 Methodology 

 

This section describes the different models used in developing the proposed approach 

to prognostics of slow rotating bearings. 

 

The entire CM process is implemented in a unified framework (Figure 3.1). Generally 

the process involves four main steps: (1) obtaining the DAI; (2) using the obtained 

DAI as input into MLP, RBF, BLR, GMR and GPR respectively; (3) the various 

models are then used for the RUL prediction of slow rotating bearings; (4) the five 

obtained models are evaluated to find out which of them gave the best prediction. 
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Figure 3.1: Framework for DAI integrated approach to bearing prognostics 

 

3.2.1 The degradation assessment index 

 

The DAI obtained in chapter 2 by the combination of the PKPCA, the GMM, and 

EWMA is used in this chapter as an input to the various models in the prognostics of 

slow rotating bearings. The PKPCA technique is used for dimensionality reduction 

and feature extraction. Subsequent to feature extraction by PKPCA from the high-

dimensional statistics, the nonlinear (multimodal) features in low-dimensional data 

space can still be preserved. The PKPCs which were extracted are then used as inputs 

in the GMM which is an outstanding technique of complex data description, with 

benefits of high-performance computation and robustness. The GMM describes 

complex data distribution that often occurs in AE data by outputting the NLL 

utilizing numerous Gaussian components. The reliability and sensitivity of the NLL 

to the bearings slight degradation was improved by employing the EWMA statistic as 

an improved quantification index for prognostics of slow rotating bearing. The 

resulting quantification index is named DAI (see chapter 2, paragraph 2.6). 

 

3.2.2 Multi-layer perceptron regression 

 

The DAI is used as input into multi-layer perceptron network (MLP) for the 

prognostics of slow rotating bearing in order to determine its RUL. MLP is one of the 

generally utilized architecture for empirical usage of neural networks. It more often 

than not comprise of basically two layers of adaptive weights. There is a complete 
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RUL 

Prediction 

Model Evaluation 
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linkage connecting the inputs to the hidden units, as well as another connecting the 

hidden units to the output units (Nabney, 2002).  

 

The MLP is a mathematical function which has been parameterized by a set of 

numerical weights 1w , 2w ,..., nw , which we shall represent jointly by a vector of 

weight w . The Bayesian technique entails inference of the posterior distribution of 

weights, ( )Dwp , given data D . It considers a functional probability distribution over 

the weighting space. The outputting prediction resulting from the input vector x is 

then determined by implementing a weighted sum of the predictions over all possible 

weight vectors, where the weighting coefficient for a particular weight vector is 

dependent on the posterior weight distribution. The predicted value is given as 

(Skabar, 2007): 

 

( ) ( )dwDwpwxfy
nn ,ˆ ∫=   (3.1) 

 

where ( )wxf n ,  is the MLP output, and nŷ is the predicted value. 

 

The probability density function, ( )Dwp , can be approximated using the fact that 

( ) ( ) ( )wpwDpDwp α , where ( )wDp  and ( )wp  are known respectively as the 

likelihood and the prior. 

 

The prior weight distribution, ( )wp , is the weight distribution before the observation 

of any data reflecting the prior knowledge of the MLP complexity. To obtain a 

smooth function for the reduction of the risk of overfitting, ( )wp  is assumed to be 

Gaussian with zero mean and inverse square varianceα which gives: 

( ) ,
2

exp
2 1

2

2/









−








= ∑

=

m

i

i

m

wwp
α

π

α
  

(3.2) 

 

where m is the number of weights in the MLP. Because α  controls the value of other 

parameters (i.e. the weights) it is referred to as a hyperparameter. 
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Since the prior depends on α , the modification of Equation (3.1) with the inclusion 

of the posterior distribution over parameters of the hyperparameters gives the 

predicted value as: 

 

( ) ( ) αα dwdDwpwxfy
nn ,,ˆ ∫=   (3.3) 

where 

( ) ( ) ( ) ( )αααα pwpwDpDwp ,   (3.4) 

 

3.2.3 Radial basis function regression 

 

Similarly, the DAI is used as input into RBF regression for the prognostics of slow 

rotating bearing in order to determine its RUL. The RBF is used for nonlinear 

modelling. The RBF has many advantages. One of these is that it has a two phase 

training process which is significantly quicker than MLP. In the first phase, the 

parameters of the basis functions are set to model the unconditional data density. In 

the second stage of training, the weights in the output layer are determined. Secondly, 

it is possible to assign an interpretation to the hidden units and also to determine the 

intrinsic degrees of freedom of the network (Nabney, 2002). The RBF network 

mapping could be written in the following form as shown in Equation (3.5). 

( ) ( )∑
=

+=
M

j

kjkjk wxwxy
1

0φ   
(3.5) 

 

where jφ  are the basis functions, kjw  are the output layer weights. 

 

The bias weights can be absorbed into the summation by including an extra basis 

function 0φ  whose activation is constant value 1. This leads to Equation (3.6). 

( ) ( )∑
=

=
M

j

jkjk xwxy
0

φ   
(3.6) 
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Two Bayesian approaches have been found to be effective in practice to neural 

networks namely: Gaussian approximation to the posterior weight distribution in the 

weight space (known as Laplace approximation) often coupled with use of the 

evidence procedure for optimal hyperparameter estimation; secondly the Monte Carlo 

techniques, particularly the hybrid Monte Carlo (Nabney, 2002). 

 

3.2.4 Bayesian linear regression 

 

The parametric approach focuses on the use of probability distributions having 

specific functional forms governed by a small number of adaptive parameters, such as 

the mean and variance whose values are to be determined from the data set. The 

probability distributions include beta (binomial) and Dirichlet (multinomial) 

distributions for discrete random variables and the Gaussian distribution and 

Gaussian mixture distribution for continuous variables. In this study the data is 

continuous hence the Gaussian distribution and Gaussian mixture distributions are 

considered (Bishop, 2006). The Gaussian, also known as the normal distribution, is a 

widely used model for the distribution of continuous variables (Bishop, 2006). For 

the case of a single real-valued variable x , the Gaussian distribution is given as: 

 









−−= 2

22/12

2 )(
2

1
exp

)2(

1
),( µ

σπσ
σµ xxN  

(3.7) 

where µ  is the mean, and 2σ  is known as the variance. 

The reciprocal variance is referred to as precision and is defined by: 

 

2/1 στ =   (3.8) 

 

In this study the AE signal is extracted at different operational conditions (speeds, and 

dynamic loading conditions). A regression function, which measures the bearing 

vibration as a function of the different operating conditions is fitted. The regression 

function is approximated based on the parameter prior and the data-driven likelihood. 

The prior indicates the characteristic nature of the functions of interpolation. As such 
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the prior allows for more vigorous interpolation functions, particularly if only noisy 

and limited data are obtainable. 

 

An observation j

iy
 

is given as the summation of the specific loading condition 

function as computed for the equivalent operational condition vector )( j

ixf and the 

noise term ie  

 

i

j

i

j

i exfy += )(   (3.9) 

 

The function of interpolation could be taken to an approximate linear dependency on 

x  if the operating conditional vector is adequately expressive it may be necessary to 

make the assumption. The linearly dependent function is given by the parameter 

vector
jw : 

 

{ } jTjj wxxf =)(   (3.10) 

 

For the least square error solutions for the reference loading condition, a multivariate 

Gaussian distribution is approximated. This distribution is consequently utilized as 

the prior distribution )(wp . Let the prior mean be taken as vector oµ , and let the 

covariance matrix be taken as oΣ . Hence, the prior is given as: 

 

),()( oowNwp Σ= µ   (3.11) 

 

Based on Bayes’s theorem, the prior and the data determined likelihood are utilized in 

obtaining a posterior distribution for the values of parameters: 

 

likelihood marginal 

prior likelihood
Posterior

×
=  
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))()(,(
),(

jj

jjjj

jjj

Xyp

wpwXyp
Xywp =   

(3.12) 

 

where the posterior is normalized by the marginal likelihood )( Xyp . Prior 

probability is the probability available before the observation. However, posterior 

probability is the probability obtained after the observation. The likelihood function 

shows the possibility of the data set observed for the settings of the vector of 

parameters. The posterior distribution could equally be demonstrated to be a Gaussian 

distribution (Bishop, 2006): 

 

),(),( j

e

j

e

jjjj wNXywp Σ= µ  (3.13) 

  

where the posterior mean eµ and covariance eΣ  for loading condition j  is given by: 

{ } )( 1 jTj

eooe

j

e XXτµµ +ΣΣ= −
  

(3.14) 

 

{ } 11 )( −− +Σ=Σ jTj

eo

j

e XXτ  
(3.15) 

 

The likelihood of the observation of a DAI value *y  at an operational condition 

j
x* while traversing bearing time interval j  may be obtained from the recomputed 

likelihood function and is a type of a Gaussian (Bishop, 2006): 

 

{ } ),(),,,,(
2

****

jjT

eoo

jj
xwyNXyyp

e
σσµ =Σ  

(3.16) 

 

The variance { }2

*

jσ of the predictive distribution is indicative of the uncertainty in the 

prediction at an operational condition 
j

x*  defined as: 

 

{ } { } j

n

Tj

e

j xx **

22

* Σ+= −σσ   
(3.17) 
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3.2.5 Gaussian mixture regression  

 

In spite of the valuable analytical properties of the standard single Gaussian 

distribution it has some considerable limits in real data modelling. If a dataset forms 

more than one dominant clump, the basic Gaussian distribution is incapable of 

capturing the structure whilst the linear superposition of two or more Gaussians can 

give an improved description of the dataset. Such linear characterisation formed by 

taking a linear combination of more basic distributions such as Gaussians, can be 

formulated as probabilistic models known as mixture distribution (Bishop, 2006). 

 

In this study a GMR is used to predict slow rotating bearing RUL from the DAI. 

Assume X  represent the vector of the explanatory variables (e.g. operation conditions 

such as speed, time, load etc.). The explanatory variables are those variables which 

may have impact on the signal characteristics, but which is generally independent of 

the bearing condition. Y is the vector of the response or dependent variables (e.g. the 

DAI developed from extracted bearing features obtained from AE signal). x  is the 

input training data )( Xx ∈  and y  is the output data )( Yy ∈ . For the given x  and y , 

the joint probability density is given as (Wang et al., 2013). 

 

),;,(),(
1

, j

K

j

jjYX yxyxf Σ=∑
=

µϕπ   
(3.18) 

 

where ,1
1

=∑
=

K

j
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j µ
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jYYjYX

jXYjXX

j  

 

The probability density function of the multivariate GMM is denoted by 

),;,( Σjyx µϕ . Equation (3.18) shows that the relationship between the explanatory 

variables and the response variable can be can be described by several GMM models. 

The parameters of Equation (3.18) include the number of the mixture components, K , 

the priors jπ , the mean value jµ , and the variance of each Gaussian component jΣ , 



78 

 

which are represented as ),...,,( 21 Kθθθθ =  with ),,( jjjj Σ= µπθ  and the constraint 

.1
1

=∑
=

K

j

jπ  

As noted by each Gaussian component can be partitioned and the joint density can be 

rewritten as 

),;(),)(;(),(
1

2

, jX

K

j

jXjjjYX xxmxyyxf Σ=∑
=

µϕσϕπ  
(3.19) 

 

Then marginal probability density of X  is 

),;(),()(
1

, jX

K

j

jXjYXX xdyyxfxf Σ== ∑∫
=

µϕπ  
(3.20) 

 

The conditional probability density function of )( XY  can deduced by combining 

Equation (3.19) and (3.20)  

)),(;()(
)(

),(
)( 2

1

jj

K

j

j

X

XY
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xmyxw

xf

yxf
xyf σϕ∑

=

==  
(3.21) 

 

with the mixing weight 

∑
=

Σ

Σ
=
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j

jXjXj
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j

x

x
xw

1

),;(

),;(
)(
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(3.22) 

 

From Equation (3.22), the regression function for the prediction given a new input is  

)()(][)(
1

xmxwxXYExm j

K

j

j∑
=

===   
(3.23) 

and the conditional variance function is 

 

∑∑
==

−+===
K

j

jjj

K

j

jj xmxwxmxwxXYVarxv
1

222

1

))()((())()((][)( σ  
(3.24) 

where 
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)()(
1

jXjYXjYj
jX

xxm µµ ∑
−

−Σ+=     (3.25) 

and 

jXYjXjYXjYYj ΣΣΣ−Σ= −12σ     (3.26) 

 

)(xm  in Equation (3.23) is the GMR model of index K , simply abbreviated as 

GMR(K) or );( Kxm . Although the regression function )(xm  from the joint mixture 

Gaussian density is of the form of a kernel estimator commonly used in 

nonparametric models, the weight function )(xw j  is not determined by the local 

structure of the data, but by the components of a global GMM. Thus the GMR is a 

global parametric model with nonparametric flexibility (Wang et al., 2013). 

 

A major task in fitting the GMR is the estimation of the parameters θ  of GMM for 

the joint density .,YXf
 

This can be achieved by maximizing the log likelihood 

function )( kL θ  denoted as 

),;,(ln),(ln)(
1 1

1
jj

N

i

K

j

jii

N

i
k yxyxpL Σ=∏= ∑ ∑

= ==
µϕπθ  

(3.27) 

 

For the given training data, the parameters θ  (comprising the means, covariances and 

missing coefficients) of a GMM is learnt by maximizing Equation (3.27) using the 

expectation maximization algorithm in the iterative means (Nabney, 2002).  

 

The expectation maximization algorithm includes two steps: 

1. Expectation step: 

Calculate the posterior probability according to  

),(

),(
)(

θ

µϕπ

Xp

X
Xjp

jjj Σ
=  with kj ,...2,1=  

(3.28) 

 

2. Maximum step:  
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(3.31) 

 

It is convenient to recast the maximising problem in the equivalent form of 

minimising the NLL of the data set (see (Equation 2.24) (Nabney, 2002). 

 

The two steps are iterated until the model converges to a local minimum (Calinon, 

2009). The entire data set is divided into training and test sets. The training set is used 

in estimating the parameters of the GMM while the test set is kept for prediction of 

bearing damage and RUL. The results obtained may be highly sensitive to the number 

of mixing components used. The more components a mixture model has the more 

expressive and flexible it becomes. A sufficiently expressive model may be optimized 

so as to accurately represent the reference signal (see chapter 2, paragraph 2.5). Given 

the test set, the GMR models can be obtained using the parameters of the GMM 

which has an output of a smoothened general description of the GMM encoded data 

and linked constraints given by matrices of the covariance (Calinon, 2009). This 

general smoothened description of the data is the prediction of the failure of the 

bearing. 

 

3.2.6 Gaussian process regression  

 

The use of GPR for prognostics (prediction of the RUL of slow rotating bearings 

based on the DAI is possible. Gaussian processes (GP) are a recent development in 

nonlinear nonparametric modelling. In GP, the parametric model is dispensed and 

instead a prior probability distribution is defined over functions directly (Bishop, 
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2006). A nonlinear functional mapping from an inputting space to a target space is 

achieved by the use of GP modelling. The GP is defined as an infinite collection of 

arbitrary variables of which any of the fixed subsets has joint Gaussian distributions. 

The Gaussian method is favourable to smooth functions and those that properly 

explain the training data. The smooth attribute of the function leads to its plausible 

generalisations (Heyns et al., 2012a). 

 

To motivate the GP viewpoint, let the vector nx
 
represent the DAI in the input space. 

The training set of inputting vectors { }N

n

n

N 1=≡ xX
 
corresponds to the targeted vector 

{ }N

n

n

N y 1=≡y . For prognostics as in this study, x  is the time period while y is a novel 

DAI for monitoring the health state of slow rotating bearings. A Gaussian 

process )(xf  can be fully described by its mean and covariance (or kernel) function 

(Rasmussen and Williams, 2006). These functions are specified separately, and 

consist of a specification of a functional form as well as a set of parameters called 

hyperparameters. 

 

The mean function describes the value of the function expected at any point of the 

input space, before the consideration of any trained data.  The mean function can be 

defined as: 

))(()( xx fEm =   (3.32) 

In supervised learning, the idea of likeness linking the various data points is vital. It is 

an essential similarity assumption that the points of inputs x  which are close and 

likely to have similar target values y are expected to be similar. Hence, training points 

which are close to a test point prediction should be insightful about the prediction at 

that point. In the Gaussian process viewpoint, the covariance function defines the 

nearness or similarity (Rasmussen and William, 2006). The covariance function 

between two functional values evaluated at fixed points x and x′ is given as 

 

[ ]))()())(()((),( xxxxxx ′−′−=′ mfmfEk   (3.33) 
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The covariance function enables the inference value of a function given the 

knowledge of the other. Thus, the covariance function ),( xx ′k  can be interpreted as 

the measure of the distance between the input points x  and x′ . The Gaussian process 

can then be written as: 

)],(),([~)( xxxx ′kmGPf  (3.34) 

 

The basic GPR consists of a simple zero mean and SE covariance functions.  The zero 

mean function is given as: 

 

0)( =xm  (3.35) 

 

for every value of x . One of the generally used kernel functions is the SE. It assumes 

that the function values in close proximity in the feature space are probably going to 

be similar, with close to unity covariance for variables that have feature inputs that 

are close. The SE covariance function with ARD is given as (Rasmussen and 

Williams, 2006): 

))()(
2

1
exp(),(

2
xxxxxx ′−′−−=′ Τ

Mk
fSEard σ  

(3.36) 

where M  matrix is diagonal with positive ARD parameters, and )(ldiagM = , where 

l  is a vector of length D corresponding to the input space dimension. The 

characteristic length-scale parameters, also known as the ARD parameters, determine 

the rate of variation of the function in the direction of the corresponding inputting 

space. A function tends to vary faster for any variation of its component feature for its 

shorter length scale parameter for a specific feature component. A short length scale 

thus corresponds to high relevance. 
2

fσ
 
is the signal variance linked to the general 

function variance. 

 

The free parameters (i.e. hyperparameters) in the covariance function can be 

compressed into a matrix denoted by ϕ . The values of these hyperparameters are all 

unknown and inference is made from the trained data. It can be shown by utilization 

of the Bayes’ rule that the maximum a posteriori hyperparameter values ϕ  can be 
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obtained by maximising the marginal likelihood ),( ϕXyp
 
which is the same as 

minimising the negative log marginal likelihood (Rasmussen and Williams, 2006): 

 

πϕ 2log
2

)(log
2

1
)((

2

1
),(log

1 n
P −−−= −Τ

XX,KyXX,KyXy  
(3.37) 

 

where )( XX,K  is the NN × covariance matrix between all pairs of training inputs 

and is computed with Equation (3.5) or (3.6). It is important to note however, that the 

application in this study used an 1×N  matrix of time points. 

 

Given a set of training points, one can derive the posterior distribution over functions 

by imposing a restriction on prior joint distribution. Once a posterior distribution is 

derived, it can be used to estimate predictive values for the test data points (Saxena et 

al., 2009). Denoting X  as the training inputs and *X  as the test inputs, prediction of 

*y  at the new locations *X  may be inferred by conditioning the joint distribution on 

the observed target values. For the basic GPR with zero mean, the following 

equations describe the predictive distribution (Rasmussen and Williams, 2006): 

 

Prior: 
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(3.38) 

 

Posterior: 

))cov(,(~),,( **** yyXyXy NP   (3.39) 

where 

yXX,X)K,XK)Xy,X,yy *

1

** )(([ −== E   (3.40) 

  

)()()()()cov( 1

** *** XX,KXX,KX,XKX,XKy −−=  (3.41) 
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The maximum a posteriori estimates *y  can then be used as slow rotating bearing 

RUL metrics.  

 

3.3 Model evaluation 

 

The models would be evaluated using MAPE and RMSE. The MAPE and RMSE 

between the predicted and the original DAI were calculated using Equations (3.42) 

and (3.43) respectively. 
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∧
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=
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i i

ii
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n
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(3.42) 
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n
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(3.43) 

 

where iDAI
 
is the actual value of the DAI for the th

i  observation which is in this case 

the time point, iDAI
∧

 is the predicted value of DAI, and n  is the number of 

observations. 

 

The leave-one-out CV technique was used in selecting the test set for validating the 

predictions from each model. Two approaches were considered. The first is based on 

dependent samples. In this approach the bearing data set was divided into equal 

samples of training and test sets. The training set is the “seen” because it was used in 

training the parameters of the model while test set is the “unseen” as it was never fed 

into the model during training. However, it is been argued that when the training and 

test samples are dependent, the two errors may be positively correlated, resulting in a 

breakdown of the CV selection approach and can equally lead to model overfitting 

(Opsomer et al., 2001; Arlot, 2010). Therefore, the second approach is based on 

independent samples whereby, two different sets of bearings are trained together and 

hence used as the training set while a third bearing data is used as the test set. 
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3.4 Results and discussions 

 

3.4.1 Prediction based on dependent samples 

 

The predictions in this section are based on dependent observations whereby the 

training and the test sets are obtained using a leave-one-out CV technique that 

involves the division of the bearing data set into equal samples of training and test 

sets. 

 

The health state of a bearing is divided into three during its whole life namely, 

healthy or normal state, slightly degraded state and failure state. There is no need for 

RUL when a bearing is in its healthy state. When the computed features are above 

their incipient damage threshold values then it is considered that slight degradation 

has set in. The prediction model is then used in the prediction of the future value of 

the DAI. 

 

In this investigation healthy bearings are run until they are failed. A DAI is developed 

to assess the degradation of the slow rotating bearing. The DAI is then used in the 

several regression models, namely, the MLP, RBF, BLR, GMR and the GPR models 

for prediction of bearing damage, RUL and failure at a future instant of time. 

 

Secondly, the best performing model was evaluated and selected using the MAPE and 

RMSE. Thirdly, the best performing model from the resulting novel methodologies is 

recommended and used for the RUL prediction of slow rotating bearing. 

 

3.4.1.1 RUL using MLP regression 

 

Multi-layer perceptron is one of the most frequently used feedforward artificial neural 

networks which make use of a supervised learning algorithm. Essentially, it has three 

layers which include the input layer, hidden layer and output layer (Şengüler et al., 

2010). 
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Dimensionality of the feature vectors were reduced to 2 PKPCs from 5 bearing 

extracted features, using polynomial kernel principal components analysis (PKPCA) 

which subsequently fed into the GMM to obtain the DAI. The MLP neural network 

was trained with the DAI which had been obtained from the bearing data at dynamic 

loading conditions. The MAPE and RMSE between the predicted and the actual DAI 

are shown in Figures 3.2, 3.3 and 3.4 for Bearings 1, 2 and 3 respectively. The MLP 

neural network approach was used to monitor the trend of the incipient bearing 

damage and RUL of Bearings 1, 2 and 3 as shown at the top right hand corner of 

Figures 3.5, 3.6 and 3.7 respectively. 

 

 
Figure 3.2: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for 

Bearing 1 based on the dependent samples 

 
Figure 3.3: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for 

Bearing 2 based on the dependent samples 
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Figure 3.4: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for 

Bearing 3 based on the dependent samples 
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Figure 3.5: Prediction for the whole lifespan of Bearing 1 using different 

methodologies based on dependent samples 
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Figure 3.6: Prediction for the whole lifespan of Bearing 2 using different 

methodologies based on dependent samples 
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Figure 3.7: Prediction for the whole lifespan of Bearing 3 using different 

methodologies based on dependent samples 
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3.4.1.2 RUL using RBF regression 

 

The RBF uses local hyper-sphere surfaces (nonlinear mapping) to separate the classes 

in the input space as a response to cluster, rather than the global hyper-planes (lines) 

used in MLP networks (Al-Raheem and Abdul-Karem, 2010).  

 

The DAI was used as input into the RBF. The RBF was then trained with the DAI 

which had been obtained from the bearing data at dynamic loading conditions. The 

MAPE and RMSE were again computed between the output of the trained network 

and the original or actual DAI was calculated using Equations (3.43) and (3.44) 

respectively and shown in Figures 3.2, 3.3 and 3.4 for Bearings 1, 2 and 3 

respectively. The RBF predictions of the incipient bearing damage and RUL of 

Bearings 1, 2 and 3 were subsequently plotted as shown at the top right hand corner 

of Figures 3.5, 3.6 and 3.7 respectively. 

 

3.4.1.3 RUL using BLR 

 

Similarly, the DAI was used as input into the BLR. The BLR was then trained with 

the DAI which had been obtained from the bearing data at dynamic loading 

conditions. The MAPE and RMSE were again computed between the output of the 

trained network and the original DAI was calculated using Equations (3.43) and 

(3.44) respectively and shown in Figures 3.2, 3.3 and 3.4 for Bearings 1, 2 and 3 

respectively. The BLR predictions of the incipient bearing damage and RUL of 

Bearings 1, 2 and 3 were afterwards plotted as presented in the middle left hand of 

Figures 3.5, 3.6 and 3.7 in turn. 

 

3.4.1.4 RUL using GMR 

 

Furthermore, the DAI was used as input into the GMR. The GMR was then trained 

with the DAI which had been obtained from the bearing data at dynamic 

loadingconditions. The MAPE and RMSE were again computed between the output 

of the trained network and the original DAI was calculated using Equations (3.43) 
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and (3.44) respectively and shown in Figures 3.2, 3.3 and 3.4 for Bearings 1, 2 and 3 

respectively. The GMR predictions of the incipient bearing damage and RUL of 

Bearings 1, 2 and 3 were then plotted as shown in the middle right hand of Figures 

3.5, 3.6 and 3.7 correspondingly. 

 

3.4.1.5 RUL using GPR 

 

The DAI was used as input into the GPR. The GPR was then trained with the DAI 

which had been obtained from the bearing data at dynamic loading conditions. The 

MAPE and RMSE were again computed between the output of the trained network 

and the original DAI was calculated using Equations (3.43) and (3.44) respectively 

and shown in Figures 3.2, 3.3 and 3.4 for Bearings 1, 2 and 3 respectively. The GPR 

predictions of the incipient bearing damage and RUL of Bearings 1, 2 and 3 were 

subsequently plotted as presented in the bottom left hand of Figures 3.5, 3.6 and 3.7 

respectively. 

 

3.4.1.6 Model evaluation of the dependent samples 

 

After the training process, the prediction was done with data points equal to the 

training data points. The predicted and actual RUL plots of all the models were 

plotted in the bottom right hand of Figures 3.5, 3.6 and 3.7 respectively. 

 

The MAPE and RMSE between the output and real values are observed as plotted in 

Figures 3.2, 3.3 and 3.4 for Bearings 1, 2 and 3 for all the five models namely: MLP, 

RBF, BLR, GMR and GPR. All the models attempted to predict damage and RUL to 

a great degree.  

 

For Bearing 1, the MAPE from the models was 0.7049, 0.7206, 0.7637, 1.0769 and 

1.3637 for GPR, MLP, GMR, RBF, and BLR respectively for Bearing 1 from the 

least to the highest PEs. Similarly, the RMSE PE from the models was 3.4042, 

3.5873, 3.7066, 5.2222 and 6.6570 for GPR, MLP, GMR, RBF, and BLR 

respectively from the least to the highest PEs. The worst prediction was that of the 
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BLR which was a linear line across the nonlinear model. The GMR and MLP also 

modelled damage and RUL with little error. However, the best predictive model for 

Bearing 1 was the GPR. For Bearings 2 and 3 similar results were obtained with the 

best predictive model being the GPR. 

 

It could be seen that the GPR model consistently had the least error for all the three 

bearings. It was therefore concluded that the GPR model predicts damage and RUL 

better than the other models. 

 

To simplify the discussion of RUL predictions, Table 3.1 reports the values for the 

onset of incipient damage and those of the final failure along with the RUL computed 

by taking the difference between the two values. These are reported for both actual 

and predicted RUL. The prediction accuracy computed by comparing the actual RUL 

and predicted RUL is reported in the last column of Table 3.1 for each test bearing. 

For Bearing 1, the GPR model produced the highest RUL prediction accuracy 

(100%). For Bearing 2, MLP, GMR and GPR all predicted the RUL with 100% 

accuracy while RBF predicted with only 40% accuracy. For Bearing 3, GMR and 

GPR predicted the RUL with about 83% accuracy while RBF predicted with about 

33%. Overall, the GPR model appears to be the best predictor of RUL for the slow 

rotating bearings tested in this study under the dependent samples.  
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Table 3.1: RUL prediction using dependent samples 

Test set Actual Predicted Accuracy 

Bearing 1 Model Incipient Failure RUL Incipient Failure RUL   

MLP 50 69 19 51 - - - 

RBF 50 69 19 45 68 23 78.95 

BLR 50 69 19 38 - - - 

GMR 50 69 19 47 - - - 

GPR 50 69 19 50 69 19 100.00 

Bearing 2 MLP 58 68 10 56 66 10 100.00 

RBF 58 68 10 52 68 16 40.00 

BLR 58 68 10 43 - - - 

GMR 58 68 10 56 66 10 100.00 

GPR 58 68 10 56 66 10 100.00 

Bearing 3 MLP 33 39 6 32 40 8 - 

RBF 33 39 6 32 42 10 33.33 

BLR 33 39 6 22 - - - 

GMR 33 39 6 33 40 7 83.33 

  GPR 33 39 6 32 39 7 83.33 
Note: - indicates that the model could not predict final failure and hence RUL cannot be determined 

 

3.4.2 Predictions based on independent samples 

 

The predictions in this section are based on independent observations whereby two 

different sets of bearings are trained together and hence used as the training set while 

a third bearing data is used as the test set. 

 

3.4.2.1 RUL using MLP regression 

 

The MLP neural network was trained with the DAI which had been obtained from the 

bearing data at dynamic loading conditions. The MAPE and RMSE between the 

predicted and the actual DAI are shown in Figures 3.8, 3.9 and 3.10 for Bearings 1, 2 

and 3 respectively. The MLP neural network approach was used to monitor the trend 

of the incipient bearing damage and RUL of Bearings 1, 2 and 3 as shown at the top 

right hand corner of Figures 3.11, 3.12 and 3.13 respectively. 
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Figure 3.8: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for 

Bearing 1 based on the independent samples 

 
Figure 3.9: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for 

Bearing 2 based on the independent samples 

 
Figure 3.10: RMSE and MAPE for MLP, RBF, BLR, GMR and GPR models for 

Bearing 3 based on the independent samples 
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Figure 3.11: Prediction for the whole lifespan using Bearings 2 and 3 as training 

set and Bearing 1 as test set based on different methodologies and independent 

samples 
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Figure 3.12: Prediction for the whole lifespan using Bearings 1 and 3 as training 

set and Bearing 2 as test set based on different methodologies and independent 

samples 
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Figure 3.13: Prediction for the whole lifespan using Bearings 1 and 2 as training 

set and Bearing 3 as test set based on different methodologies and independent 

samples 
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3.4.2.2 RUL using RBF regression 

 

The DAI was used as input into the RBF. The RBF was then trained with the DAI 

which had been obtained from the bearing data at dynamic loading conditions. The 

MAPE and RMSE were again computed between the predicted and the original DAI 

and shown in Figures 3.8, 3.9 and 3.10 for Bearings 1, 2 and 3 respectively. The RBF 

predictions of the incipient bearing damage and RUL of Bearings 1, 2 and 3 were 

afterwards plotted as presented at the top right hand corner of Figures 3.11, 3.12 and 

3.13 in that order. 

 

3.4.2.3 RUL using BLR 

 

Similarly, the DAI was used as input into the BLR. The BLR was then trained with 

the DAI which had been obtained from the bearing data at dynamic loading 

conditions. The MAPE and RMSE were again computed between the predicted and 

the original DAI and shown in Figures 3.8, 3.9 and 3.10 for Bearings 1, 2 and 3 

respectively. The BLR predictions of the incipient bearing damage and RUL of 

Bearings 1, 2 and 3 were subsequently plotted as shown in the middle left hand of 

Figures 3.11, 3.12 and 3.13 respectively. 

 

3.4.2.4 RUL using GMR 

 

Furthermore, the DAI was used as input into the GMR. The GMR was then trained 

with the DAI which had been obtained from the bearing data at dynamic loading 

conditions. The MAPE and RMSE were again computed between the predicted and 

the actual DAI and shown in Figures 3.8, 3.9 and 3.10 for Bearings 1, 2 and 3 

respectively. The GMR predictions of the incipient bearing damage and RUL of 

Bearings 1, 2 and 3 were then plotted as presented in the middle right hand of Figures 

3.11, 3.12 and 3.13 in turn. 
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3.4.2.5 RUL using GPR 

 

The DAI was used as input into the GPR. The GPR was then trained with the DAI 

which had been obtained from the bearing data at dynamic loading conditions. The 

MAPE and RMSE were again computed between the predicted and the actual bearing 

DAI and shown in Figures 3.8, 3.9 and 3.10 for Bearings 1, 2 and 3 respectively. The 

GPR predictions of the incipient bearing damage and RUL of Bearings 1, 2 and 3 

were afterwards plotted as shown in the bottom left hand of Figures 3.11, 3.12 and 

3.13 in that order. 

 

3.4.2.6 Model evaluation based on independent samples 

 

After the training process using Bearings 2 and 3; Bearings 3 and 1; Bearings 1 and 2 

as training dataset; the prediction was done with data points equal to the training data 

points from Bearings 1, 2 and 3 respectively. The predicted and actual RUL plots of 

all the models were plotted in the bottom right hand of Figures 3.11, 3.12 and 3.13 

respectively. 

 

The MAPE and RMSE between the output and real values are observed as plotted in 

Figures 3.8, 3.9 and 3.10 for Bearings 1, 2 and 3 for all the five models namely: MLP, 

RBF, BLR, GMR and GPR. All the models attempted to predict damage and RUL to 

a great degree. 

 

For Bearing 1, using the independent approach the MAPE from the models were 

1.3291, 1.3382, 1.3402, 1.341 and 1.5343 for RBF, GPR, GMR, MLP and BLR 

respectively for Bearing 1 from the least to the highest PEs. However, the RMSE PEs 

from the models were 6.3486, 7.1132, 7.394, 7.4589 and 7.468 for RBF, MLP, BLR, 

GMR and GPR respectively from the least to the highest PEs. The worst prediction 

was that of the GPR model. The best predictive model for Bearing 1 was the RBF. 

However, for Bearings 2 and 3 the best predictive model was the GPR.  
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Overall, the GPR model had the least error for all the three bearings. It was therefore 

concluded that the GPR model predicts damage and RUL better than the other 

models. 

 

Table 3.2 reports the actual values of the incipient damage, final failure and RUL as 

well the prediction accuracy for each test bearing. For Bearing 1, the RBF model 

predicted the RUL better than all the other models with a prediction accuracy of about 

84%. This is followed by GPR and GMR with an RUL prediction accuracy of about 

53%. For Bearing 2, the GPR model performed far better than the rest models in 

predicting the RUL with a prediction accuracy of 80%. For Bearing 3, although the 

various prediction accuracy values are negative due to the wide difference between 

the actual incipient and predicted incipient damage, the GPR still produced a better 

prediction of the RUL than the rest of the models. 

 

Table 3.2: RUL prediction using independent samples 

Test set   Actual Predicted Accuracy 

Bearing 1 Model Incipient Failure RUL Incipient Failure RUL 

MLP 50 69 19 56 64 8 42.11 

RBF 50 69 19 52 68 16 84.21 

BLR 50 69 19 42 - - - 

GMR 50 69 19 56 66 10 52.63 

GPR 50 69 19 55 65 10 52.63 

Bearing 2 MLP 58 68 10 - - - - 

RBF 58 68 10 50 68 18 20.00 

BLR 58 68 10 43 - - - 

GMR 58 68 10 52 70 18 20.00 

GPR 58 68 10 54 66 12 80.00 

Bearing 3 MLP 33 39 6 25 41 16 - 

RBF 33 39 6 23 43 20 -133.33 

BLR 33 39 6 15 - - 

GMR 33 39 6 27 41 14 -33.33 

  GPR 33 39 6 28 41 13 -16.67 
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3.5 Comparison of model performance based on dependent and independent 

samples 

 

The ranks of each prediction model according to whether the training and tests 

samples are dependent or independent are presented in Tables 3.3, 3.4 and 3.5 for 

Bearings 1, 2 and 3 respectively. While some of the models are sensitive to the type 

of sample, others are not. For example the GPR and BLR models ranked mainly 1
st
 

and last respectively in both the dependent and independent samples (see paragraph 

1.8.7) whereas RBF and MLP ranked differently. However, the errors obtained from 

the CV based on independent samples (see Figures 3.8 to 3.10) were relatively larger 

than those from the dependent samples (see Figures 3.2 to 3.4) which could be an 

indication that the latter slightly overfitted the models.  

Table 3.3: Ranking of models based on dependent and independent samples for 

Bearing 1 

Models Dependent samples Independent samples 

MAPE RMSE MAPE RMSE 

GPR 1 1 2 5 

GMR 3 3 3 4 

RBF 4 4 1 1 

MLP 3 2 4 2 

BLR 5 5 5 3 

 

Table 3.4: Ranking of models based on dependent and independent samples for 

Bearing 2 

Models Dependent samples Independent samples 

MAPE RMSE MAPE RMSE 

GPR 1 2 1 1 

GMR 2 1 2 2 

RBF 4 4 3 3 

MLP 3 3 4 4 

BLR 5 5 5 5 

 

Table 3.5: Ranking of models based on dependent and independent samples for 

Bearing 3 

Models Dependent samples Independent samples 

MAPE RMSE MAPE RMSE 

GPR 1 1 1 1 

GMR 2 2 2 2 

RBF 4 4 3 3 

MLP 3 3 5 5 

BLR 5 5 4 4 
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3.6 Summary 

 

This chapter proposes a novel approach to damage detection and prediction of RUL 

of slow rotating bearings. During this investigation, three healthy slow rotating 

bearings were run to the point of failure. The DAI which was obtained by the 

integration of PKPCA, GMM and EWMA was used in slow rotating bearing 

prognostics. The slight and severe DTs are obtained through the use of the KDE 

technique on the healthy and slightly degraded bearing data respectively.  

 

The DAI is used in the prediction of bearing damage and RUL using the MLP, RBF, 

BLR, GMR and GPR models respectively. Predictions were obtained using test and 

training sets from both dependent and independent samples. The models were able to 

predict damage and RUL of the slow rotating bearing. Overall, the GPR had the least 

MAPEs and RMSEs in damage prediction in this investigation for the slow rotating 

bearings. The GPR has also performed better than all the other models with respect to 

RUL prediction and this is robust to dependent and independent samples under 

varying operating conditions. Hence, the GPR is chosen as the most efficient model 

for prediction of RUL of slow rotating bearings. This proposed approach is useful and 

its application can be extended to the CM of other mechanical and allied systems. 
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Chapter 4 An integrated GPR for the RUL prediction of slow rotating bearings 

based on AE 

 

 

4.1 Introduction 

 

This chapter implements GPRs. The choice of GPR is motivated by a number of 

findings from previous research. The motivation for investigating an optimal GPR is 

based on the findings of chapter 3 which showed the standard GPR to have 

outperformed four other Bayesian models namely: BLR, GMR, MLP neural network 

and RBF neural network for prognostics of slow rotating bearings.  

 

GPR RUL prediction could be improved by considering the mean and covariance 

functions simultaneously (see chapter 1, paragraph 1.8.5). This chapter proposes an 

integrated GPR model for prediction of RUL of slow rotating bearings combining the 

advantages from the individual mean and covariance functions. Moreover, the 

proposed technique consists of a construction of composite mean and composite 

covariance functions. These are respectively formed from two simple mean functions 

and three covariance functions selected based on acceptable scientific criteria rather 

than ad hoc choice as the later may lead to model misspecification. This procedure 

ensures that only the mean and covariance functions which are well-suited for the 

problem at hand are combined in order to obtain an optimal GPR model for 

prognostics of slow rotating bearings. This study deviates from previous studies that 

mostly implement a GPR using only the covariance function while assuming the 

mean function is equal zero (see chapter 1, paragraph 1.8.5). Therefore, in this 

chapter a novel integrated GPR-based model, where a scientifically selected 

composite mean function is simultaneously estimated with composite covariance 

function enhancing a more flexible and accurate prediction of RUL of slow rotating 

bearings is implemented. Further, this study is investigated using dependent and 

independent data samples (see chapter 1, paragraph 1.8.7). 
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4.2 Methodology 

 

GP is utilized in the modelling of nonlinear mappings of functions to a target space 

from an input space (see chapter 1, paragraph 1.8.5). The scheme used in showing the 

overview of the integrated GPR prognostic or RUL procedure for the slow rotating 

bearing is shown in Figure 4.1. The scheme involves five steps: (1) the estimation of 

simple GPR models based on simple mean and simple covariance functions; (2) 

selection of 2 best simple mean and 3 best simple covariance functions using MAPE 

and RMSE; (3) development of integrated GPR models based on the 2 best mean and 

3 best covariance functions; (4) GPR model selection and evaluation which basically 

involves a comparison of the best simple GPR models and the integrated GPR models 

and the selection of the most optimal model (5) RUL prediction based on the overall 

optimal model. The DAI earlier developed in chapter 2 is used as an input into the 

various GPR(s) in the prognostics of slow rotating bearings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Overview of integrated GPR development and RUL prediction 

Mean function and covariance function combinations 

Selection of 2 best mean functions and 3 best 

covariance functions using MAPE and RMSE 

Development of integrated GPR models 

GPR model evaluation and selection 

Remaining useful life prediction 
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4.2.1 Simple GPR models based on simple mean and simple covariance 

functions 

 

Let the vector nx  indicate a particular position in the input space. The set of training 

input vectors { }N

n

n

N 1=≡ xX
 

corresponds to the target vector { }N

n

n

N y
1=≡y . For 

prognostics as in this study, x  is the time period while y is a novel DAI for 

monitoring the health state of slow rotating bearings. A Gaussian process )(xf  can be 

fully described by its mean and covariance (or kernel) function (Rasmussen and 

Williams, 2006) (see chapter 3, paragraph 3.2.6).  

 

The assumption of a zero mean implies that the mean of the function vanishes away 

and therefore does not make an impact in the prediction output. In this case, the 

prediction is only based on the covariance function. However, prediction can be 

improved by considering the mean and covariance functions simultaneously. Further, 

the widely used SE covariance function is infinitely differentiable, meaning that the 

GP with this covariance function has mean square derivatives of all orders, and is 

therefore very smooth (Rasmussen and Williams, 2006). Hence, Stein (1999) argues 

that the strong smoothness assumptions in the SE covariance functions are unrealistic 

for modelling several physical processes, and recommends the Matérn class named 

after Matérn (Matérn, 1986). Currently, there are quite a number of other mean and 

covariance functions. Therefore, to arrive at the best mean and covariance function, 

three simple mean functions are implemented in this study, namely zero mean as 

defined in Equation (3.35), constant mean and linear. 

 

The constant mean and linear mean functions are respectively given as (Rasmussen 

and Nickisch, 2013): 

 

dm =)(x   (4.1) 

 

xx cm =)(   (4.2) 
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Similarly, for the covariance functions, seven different forms in addition to the basic 

two above were fitted namely the linear covariance function (covLIN), the linear 

covariance function with ARD covariance function (covLINard), Matérn covariance 

function with isotropic distance measure (covMaterniso), noise covariance function 

(covNoise), periodic covariance function (covPeriodic), rational quadratic covariance 

function with ARD (covRQard), and rational quadratic covariance function with 

isotropic distance measure (covRQiso). These additional seven covariance functions 

are respectively defined as (Rasmussen and Nickisch, 2013): 

 

xxxx ′=′ Τ),(LINk   (4.3) 

 

xMxxx ′=′ Τ),(LINardk

  

(4.4) 

 

where )( ldiag=M  with a positive ARD otherwise known as  the characteristics 

length-scale, l . 

 

)exp()(),( 2

dddMaterniso rrfk
f

−=′ σxx     where 

)()( ''

2
xxxx −−= Τ

l

d
rd   

(4.5) 

 

where 2

f
σ is the signal variance, l  is the characteristic length-scale, and d  relates to 

the smoothness of the Gaussian process. 

 

)(),( 2 xxxx ′−=′ δσ nNoisek

  

(4.6) 

 

where
2

nσ is the noise variance and δ  is the Kronecker delta function which is equal 1 

if  xx ′= and zero otherwise. 
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where w  is the period or angular frequency and the rest hyperparameters which are as 

previously defined. 
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where α  is the shape parameter for the rational quadratic covariance, and the rest 

hyperparameters as were previously defined. 

α
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(4.9) 

 

All the hyperparameters are unknown and hence needs to be inferred from the 

training data. 

 

4.2.2 Simple means and simple covariance functions evaluations and selection 

 

Three simple means and nine covariance functions were fitted. These eventually led 

to the need for the selection of the 2 best mean and 3 best covariance functions. These 

were selected based on the MAPE and RMSE given as Equations (3.42) and (3.43) 

respectively. 

 

4.2.3 Development of integrated GPR models 

 

It is possible to construct composite mean and composite covariance functions from 

the simple mean and covariance functions, respectively. This allows for more 

flexibility and accurate prediction. In broad terms, a random function of x  and x′  

pairs of input may not be a suitable function (Rasmussen and Williams, 2006).  
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Based on the above three simple mean functions, three composite mean function are 

proposed. These are derived from the best two out of the three simple mean functions 

as defined in Equations (3.35), (4.1) and (4.2). The constant and linear mean 

functions outperformed the zero mean function as is evidenced in the empirical 

section and therefore were used to construct three composite mean functions namely 

an affine, a polynomial quadratic and a polynomial cubic mean functions, 

respectively expressed as:   

 

dcm += xx)(   (4.10) 

 

dcbm ++= xxx
2

)(   (4.11)
 

 

dcbam +++= xxxx
23

)(   (4.12) 

 

Further, based on the best three covariance functions which for this study were the 

rational quadratic with ARD, rational quadratic with isotropic distance measure and 

the Matérn form with isotropic distance measure covariance functions as evidenced in 

the empirical section, a composite covariance function was formed. The proposed 

composite covariance function, ck  formed from the three simple covariance functions 

defined in Equations (4.5), (4.8) and (4.9) are implicitly expressed as: 

 

),(),(),( xxxxxx ′+′+′= MeternisoRQisoRQard

c
kkkk  (4.13) 

 

To derive the predictive distribution in this case, the hyperparameters in the mean and 

covariance functions were optimized using the maximization of the log likelihood and 

the resulting predictive distribution is now described by the following equations: 
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where the posterior is as given in Equation 3.39. 

The equation )(xm
c =µ Mi ,....2,1=  is used for the training composite means and  

c

*µ  for the test composite means.  

 

The MAP estimates *y were used as slow rotating bearing remaining useful metrics 

are expected to improve the flexibility and accuracy of the simple mean and simple 

covariance functions. 

 

4.2.4 GPR model evaluation and selection 

 

The prediction performance of the different GPR models were evaluated using two 

widely used forecast evaluation criteria namely the MAPE and the RMSE given as in 

Equations (3.42) and (3.43) respectively. 

 

4.2.5 RUL prediction  

 

The best performing model was selected and subsequently used in the RUL prediction 

of the slow rotating bearings.  

 

The detailed proposed integrated GPR methodology is shown diagrammatically in 

Figure 4.2. 
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Figure 4.2: Framework for integrated GPR modelling and prediction of RUL 

 

4.3 Results and discussion 

 

4.3.1 Prediction based on dependent samples 

 

Prior to any prediction, it is important to decide on which method to use for obtaining 

the training and the test sets. The leave-one-out CV was used in this study. The 

Simple Mean &  

Simple  

Covariance 

Mean and 

Covariance 

Evaluation and 

Selection 

Best simple & 

integrated 

GPR Models 

GPR Model Selection and Evaluation 

RUL  

Prediction  

Zero Mean & 

9 Covariance 

Functions 

Constant Mean 

& 9 Covariance 

Functions 

Linear Mean  

& 9 Covariance 

Functions 

Affine Mean 

GPR  

(AMGPR) 

Quadratic  

Mean 

GPR (QMGPR) 

Cubic Mean 

GPR 

(CuMGPR) 

Selection of 2 best 

Means and 3 best 

Covariances using 

MAPE & RMSE 

Best Zero Mean 

GPR 

(ZMGPR) 

Best Constant 

Mean GPR 

(CMGPR) 

 

Best Linear 

Mean GPR 

(LMGPR) 

 



112 

 

results and discussion that follow are those obtained using the dependent sample 

which involves an equal division of the entire sample into training and test sets. The 

goal of this chapter is to build an optimal GPR model for RUL prediction; hence the 

input set is the time point while the target set is the DAI discussed in chapter 2.  

 

Obtaining the optimal GPR may take several steps. To implement the GPR-based 

prognostics, the first and most important step is the selection of the mean and 

covariance functions. Starting with the simple GPR modes, three simple mean 

functions and nine simple covariance functions were considered. The three mean 

functions are the zero mean function, the constant mean function and the linear mean 

function.  

 

The nine simple covariance functions are the linear covariance function (covLIN), the 

linear covariance function with ARD covariance function (covLINard), Matérn 

covariance function with isotropic distance measure (covMaterniso), noise covariance 

function (covNoise), periodic covariance function (covPeriodic), rational quadratic 

covariance function with ARD (covRQard), rational quadratic covariance function 

with isotropic distance measure (covRQiso), the SE covariance function with ARD 

(covSEard) and SE covariance function with isotropic distance measure (covSEiso).  

 

To implement a specific simple GPR model, one simple mean and one simple 

covariance functions were simultaneously used. This means that for each of the 

different operating conditions depicted in Bearings 1, 2 and 3, nine (9) simple GPR 

models were implemented making a total of 27 simple GPR models per bearing since 

there are three simple mean and nine covariance functions. 

 

The average MAPE and the average RMSE with respect to the selection of the mean 

functions are presented in Figures 4.3, 4.4 and 4.5 for Bearings 1, 2 and 3, 

respectively. Models with smaller MAPE and RMSE are considered to be better than 

models with larger values.  
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The results show that the constant mean and linear mean functions have better 

predictive ability than the zero mean function, however, the constant mean function is 

the best on average. This finding is robust to the different operating conditions. 

According to Rasmussen and Nickisch (2013), composite functions can be composed 

of either a combination of two or more simple functions or a combination of other 

composite functions, thus allowing for very flexible and interesting structures.   

 

Therefore, rather than proceeding with just the best mean function, the best two are 

selected and were subsequently used for building three composite mean functions 

namely an affine mean function, a quadratic mean function and a cubic mean 

function. This ensures that the advantages from this two are integrated for more 

accurate predictions of RUL of slow rotating bearings. 

 

 

Figure 4.3: Average RMSE and MAPE for GPR with zero, constant and linear 

mean functions for Bearing 1 
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Figure 4.4: Average RMSE and MAPE for GPR with zero, constant and linear 

mean functions for Bearing 2 

 

 

Figure 4.5: Average RMSE and MAPE for GPR with zero, constant and linear 

mean functions for Bearing 3 

 

Having selected the constant and linear mean functions as the best, the next task is to 

also select the best covariance functions based on these two mean functions. Only the 

best three covariance functions are selected to keep the modelling tractable. The 

results of the nine covariance functions based on the MAPE and RMSE rankings for 

Bearings 1, 2 and 3 under the constant mean functions are presented in Figures 4.6, 

4.7, and 4.8, respectively. Since MAPE and RMSE actually depicts PE of a specific 

model, low ranks would then mean low values of MAPE and RMSE and hence lower 

PE. In other words, the lower the rank, the better is the predictive performance of the 

model. The results indicate that the covRQiso, covRQard and covMaterniso were the 
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best covariance for bearings one and two. For Bearing 3, the best three covariance 

functions were covRQiso, covRQard and covPeriodic. 

 

 

Figure 4.6: Ranking RMSE and MAPE from GPR with constant mean and 9 

covariance functions for Bearing 1 

 

 

Figure 4.7: Ranking RMSE and MAPE from GPR with constant mean and 9 

covariance functions for Bearing 2 
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Figure 4.8: Ranking RMSE and MAPE from GPR with constant mean and 9 

covariance functions for Bearing 3 

 

Under the linear mean function, the ranking with MAPE and RMSE are presented in 

Figures 4.9, 4.10 and 4.11 for Bearings 1, 2 and 3, respectively. For all three bearings, 

the best covariance functions are covRQiso, covRQard and covMaterniso. Although 

the covPeriodic seems to have performed better than covMaterniso under constant 

mean for Bearing 3, on aggregate the latter had smaller error than the former when 

viewed across the three bearings. On this basis therefore, the best three covariance 

functions that fit the data for this study are covRQiso, covRQard and covMaterniso. 

These three are then subsequently used in building one composite covariance 

function. This outcome is quite intuitive. Based on Rasmussen and Williams (2006), 

the covRQiso and covRQard can effectively model the small and medium 

irregularities in the data. Further, the smooth rising trend can be effectively modelled 

using the Matern class covariance function with two hyperparameters controlling the 

amplitude and characteristic length-scale. 
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Figure 4.9: Ranking RMSE and MAPE from GPR with linear mean and 9 

covariance functions for Bearing 1 

 

Figure 4.10: Ranking RMSE and MAPE from GPR with linear mean and 9 

covariance functions for Bearing 2 

 

Figure 4.11: Ranking RMSE and MAPE from GPR with linear mean and 9 

covariance functions for Bearing 3 
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The next step in building an optimal GPR-based model is to compare the performance 

of the different resulting GPR models and then select the very best for inference about 

the RUL of slow rotating bearings. Each of the three previously constructed 

composite mean functions and the one composite covariance function are now 

simultaneously used to obtain three combination GPR models. These models are 

denoted as affine mean Gaussian process regression (AMGPR), quadratic mean 

Gaussian process regression (QMGPR), and cubic mean Gaussian process regression 

(CuMGPR). The results from these three combinations or integrated GPR models are 

compared with results from the 3 best simple GPRs. This simple GPR models are 

denoted as zero mean Gaussian process regression (ZMGPR), constant mean 

Gaussian process regression (CMGPR) and linear mean Gaussian process regression 

(LMGPR). It is important to note that these 3 best simple GPR models are obtained 

by estimating the relevant mean function over nine different covariance functions and 

subsequently the overall best model is selected and compared with the integrated 

GPR models. Hence, six different GPR models are compared. 

 

The forecast evaluation is based on the MAPE and RMSE values. The results are 

presented in Table 4.1. For Bearing 1, the QMGPR has the best predictive ability 

based on the two evaluation criteria. For Bearing 2, the best zero mean GPR 

(ZMGPR) is the best. However, the margin between this model and the rest of the 

models barring the cubic mean GPR (CuMGPR) is quite small. For Bearing 3, the 

performance of the affine mean GPR (AMGPR) is best based on MAPE the quadratic 

mean GPR (QMGPR) is the best based on RMSE. Viewed across the three bearings, 

and based on the average, there is basically no difference between the predictive 

performance of the affine mean and quadratic GPR. The cubic GPR is the worst 

performing model across all bearings. The model breaks down once estimation 

exceeds the polynomial of order 2 which in this case is the quadratic mean. This calls 

for caution in the choice of any mean or covariance function as it had been clearly 

shown that any arbitrary selection would not always guarantee a valid result. 
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Table 4.1: Comparison of the proposed integrated GPR with the best of linear, 

constant and zero mean GPR models based on dependent samples 

 Bearing 1 Bearing 2 Bearing 3 

Models MAPE RMSE MAPE RMSE MAPE RMSE 

ZMGPR 0.2951 1.5041 1.93E-06 1.14E-05 0.0014 0.0083 

CMGPR 0.2950 1.5033 0.0074 0.0433 0.0017 0.0099 

LMGPR 0.0017 0.0089 0.0001 0.0006 0.0011 0.0061 

AMGPR 0.0013 0.0069 0.0004 0.0025 0.0007 0.0040 

QMGPR 0.001 0.0052 0.0006 0.0031 0.0008 0.0038 

CuMGPR 93.6593 612.8139 108.4839 661.7885 21.9123 154.0565 

 

Given that it is more complex to estimate the QMGPR compared to the affine GPR, it 

would then be preferable to stick to the later for RUL inferences. We now turn to the 

AMGPR predictions for Bearings 1, 2 and 3 as presented in Figures 4.12, 4.13 and 

4.14 respectively. It can be seen that the AMGPR traced the actual whole life of the 

bearing quite closely. This is confirmed by the very narrow uncertainty or confidence 

bands. Concentrating on the RUL which basically starts from the slightly degraded 

threshold line and ends with the severely degraded threshold line, it is also clear that 

AMGPR predicted the RUL of the three tested bearings with almost 100% accuracy. 

This can be clearly seen in the computations presented in Table 4.2 which reports the 

values for the onset of incipient damage and those of the final failure along with the 

RUL computed by taking the difference between the two values. These are reported 

for both actual and predicted RUL. The prediction accuracy computed by comparing 

the actual RUL and predicted RUL is reported in the last column of Table 4.2 for 

each test bearing. This results show that irrespective of the speed and loading 

operating conditions to which slow rotating bearings are subjected, the AMGPR 

model is capable of predicting almost the exact RUL. This is very important for 

preventive maintenance of bearings in particular but also other mechanical and allied 

systems in general. 
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Figure 4.12: Affine GPR prediction of RUL with 95% CI and the actual RUL for 

Bearing 1 based on dependent samples 
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Figure 4.13: Affine GPR prediction of RUL with 95% CI and the actual RUL for 

Bearing 2 based on dependent samples 
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Figure 4.14: Affine GPR prediction of RUL with 95% CI and the actual RUL for 

Bearing 3 based on dependent samples 

 

The findings here are consistent with Hong and Zhou (2012a) who predicted RUL  of 

bearings based on kurtosis and RMS using a zero mean function and three single 

covariance functions namely: the Matern class, the neural network and the isotropic 

SE covariance functions and found that in general, the Matern class performed better 

than the other two covariance functions. However while their PE for the zero mean, 

Matern class covariance function range from 0.17% to 0.48%.  The result from this 

study based on the preferred developed integrated GPR model has a near zero PE and 

thus shows it is more reliable than Hong and Zhou (2012a) results from single GPR 

model.  Also, Hong and Zhou (2012b) used a zero mean function and combination of 

SE isotropic (covSEiso) and isotropic rational quadratic covariance function 

(covRQiso) for bearing degradation assessment based on root mean square. 

Comparing results from each single covariance function and the composite 

covariance function, Hong and Zhou (2012b) found that at one step, the relative PE 

for composite covariance function, covSEiso and covRQiso were 0.11%, 0.41%, and 

0.33% respectively. A comparison of Hong and Zhou (2012b) findings with the one 
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from this study clearly shows that it is more rewarding to model both mean and 

covariance functions simultaneously and better still using the composite of each as 

this current study obtained almost a zero PE. 

 

The findings here are also consistent with Chen and Ren (2009) who obtained several 

re-sampled training data from an industrial chemical plant via a bootstrap method and 

subsequently use each sample to form a GPR model-based on the zero mean and 

composite covariance function. Combining each GPR prediction using different 

bagging or combination methods, Chen and Ren (2009) found that the combined GPR 

models are better suited for RUL prediction than any of the single models. However, 

while their RMSE from the combined model ranges from 0.09 to 0.2, the RMSE for 

the developed preferred combined GPR model in this study is approximately zero. 

Across all scenarios indicating that modelling the mean and covariance functions 

simultaneously improves the predictive ability of the GPR model. 

 

Table 4.2: AMGPR RUL prediction using dependent samples 

Test set Actual Predicted Accuracy 

  Incipient Failure RUL Incipient Failure RUL   

Bearing 1 50 69 19 50 69 19 100.00 

Bearing 2 58 68 10 58 68 10 100.00 

Bearing 3 33 39 6 33 39 6 100.00 

 

4.3.2 Predictions based on independent samples 

 

 

The results of the three integrated GPR models and the three best single mean single 

covariance function models are replicated here using the independent sample. To 

validate the models under this approach, the analysis proceeded as follows: the 

training sets for Bearing 1 is the DAI on Bearings 2 and 3 while the test set is DAI on 

Bearing 1. For Bearing 2, the training sets are the DAI on Bearings 1 and 3 while the 

test set is the DAI on Bearing 2. Similarly, for Bearing 3, the training sets are 

Bearings 1 and 2 while the test set is Bearing 3. The forecast evaluation is based on 

the MAPE and RMSE values. The results are presented in Table 4.3. For Bearing 1, 
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the QMGPR has the best predictive ability based on MAPE while AMGPR is the best 

based on RMSE. For Bearing 2, AMGPR outperform the rest based on both MAPE 

and RMSE. For Bearing 3, the CMGPR model produced the least MAPE while 

AMGPR produced the least RMSE. Viewed across the three bearings, the AMGPR is 

the best predictive model and hence inferences on RUL are based on this model.  

Table 4.3: Comparison of the proposed integrated GPR with the best of linear, 

constant and zero mean GPR models based on independent samples 

 Bearing 1 Bearing 2 Bearing 3 

Models MAPE RMSE MAPE RMSE MAPE RMSE 

ZMGPR 1.0728 5.6366 1.1052 5.4577 1.1479 5.5342 

CMGPR 1.0728 5.6368 1.1331 5.5736 1.0318 5.0105 

LMGPR 1.0585 5.7035 1.1692 5.7400 1.1432 5.5102 

AMGPR 0.9695 5.1175 1.0345 5.0743 1.0346 4.9982 

QMGPR 0.9358 5.2480 1.1650 5.7940 1.1540 5.4758 

CuMGPR 1314.6 12172.3 3824.0 31011.0 1940.8 16844.0 

 

The predictions from the AMGPR model are shown in Figures 4.15, 4.16 and 4.17 for 

Bearings 1, 2 and 3, respectively. The failure times as predicted by the optimal model 

are slightly different from the actual failure times for each bearing. The accuracy of 

prediction of failure times are 95.6%, 98.5% and 95.4% for Bearings 1, 2 and 3, 

respectively. A good feature of a prediction model is its ability to predict failure 

either at the exact time or close to the actual time. The AMGPR model is able to do 

this with exception of Bearing 3 where it predicted failure after the actual failure had 

occurred. Table 4.4 reports the RUL values for the onset of incipient damage and 

those of the final failure along with the RUL computed by taking the difference 

between the two values. These are reported for both actual and predicted RUL based 

on the independent samples. The prediction accuracy computed by comparing the 

actual RUL and predicted RUL is reported in the last column of Table 4.4 for each 

test bearing. The results show that AMGPR model predicted the RUL of Bearing 1, 

Bearing 2 and Bearing 3 with about 42%, 60% and -67% accuracy, respectively. 
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Figure 4.15: Affine GPR prediction of RUL with 95% CI and the actual RUL for 

Bearing 1 based on independent samples 
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Figure 4.16: Affine GPR prediction of RUL with 95% CI and the actual RUL for 

Bearing 2 based on independent samples 
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Figure 4.17: Affine GPR prediction of RUL with 95% CI and the actual RUL for 

Bearing 3 based on independent samples 

 

Table 4.4: AMGPR RUL prediction using independent samples 

Test set Actual Predicted Accuracy 

  Incipient Failure RUL Incipient Failure RUL   

Bearing 1 50 69 19 58 66 8 42.11 

Bearing 2 58 68 10 52 66 14 60.00 

Bearing 3 33 39 6 27 43 16 -66.67 

 

Comparing results from estimations based on training and test sets that are dependent 

and sets that are independent, the results in Tables 4.1 and 4.3 show that predictions 

based on independent samples yielded larger MAPE and RMSE values than the 

estimations based on dependent. This might be an indication of overfitting of the 

later. With respect to prediction of RUL as shown in Tables 4.2 and 4.4, while the 

optimal model yielded a near perfect RUL prediction in the case of dependent 

samples, its RUL prediction is slightly different from the actual RUL in the case of 
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independent samples.  This may not be surprising given the potentials of positive high 

correlation between dependent samples. Also the performances of the models vary 

depending on whether dependent or independent samples are considered. For 

instance, for the dependent samples, the AMGPR and QMGPR performed nearly the 

same way, whereas their performances differ for the independent samples with the 

former clearly outperforming the latter. 

 

4.4 Summary 

 

The chapter proposes an integrated GPR model for predicting the RUL of bearings. A 

scientific way of obtaining the optimal GPR model for prediction is demonstrated as 

well. Further, the study investigated the performance of the models when the training 

and test sets are obtained from dependent samples and when the samples are 

independent. The zero mean, constant mean and linear mean functions were 

simultaneously modelled with nine different covariance functions namely the linear 

covariance function, the linear covariance function with ARD covariance function, 

Matérn covariance function with isotropic distance measure, noise covariance 

function, periodic covariance function, rational quadratic covariance function with 

ARD, rational quadratic covariance function with isotropic distance measure, the SE 

covariance function with ARD and SE covariance function with isotropic distance 

measure.  

 

From these different mean and covariance functions, 9 simple GPR models were 

estimated for each of the three different operating conditions (as indicated in Bearings 

1, 2 and 3) making a total of 27 simple GPR models per bearing. Out of these 27 

models, the best two mean functions and the best three covariance functions were 

selected based on the RMSE and MAPE. These selected functions were subsequently 

used to form three combination GPR models namely an AMGPR, QMGPR and a 

CuMGPR. The performance of these three combinations or integrated GPR models 

were then compared with the best zero mean, best constant mean and best linear mean 

GPR models and the optimal model was selected based on RMSE and MAPE.  
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The findings show that in general the composite integrated GPR models perform 

better than the simple mean simple covariance GPR models, irrespective of whether 

the training or test sets are dependent or independent. Amongst, the three combination 

models, the AMGPR and the QMGPR perform pretty much the same way based on 

dependent samples but their performances varied with independent samples with the 

former outperforming the latter.  

 

Given that the QMGPR is more complex and the fact it was not better than AMGPR 

for independent sampling, this study selects the AMGPR as the optimal GPR model 

for predicting RUL for slow rotating bearings. Results based on dependent samples 

show that the AMGPR has the capability of predicting RUL with almost an almost 

100% accuracy and generalizes well even with limited data. However, with 

independent samples, the AMGPR model predicted a slightly different RUL than the 

actual. These findings are robust to varying operating conditions which is intuitive 

given that in real life bearings and other systems cannot operate under constant 

operating conditions.  
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Chapter 5  Conclusions 

 

 

5.1 Contributions of the research 

 

Bearings, including slow rotating bearings operating at varying speeds, are one of the 

major machinery component types used in industries like mining, automotive, power 

generation, railway, shipping, manufacturing, and chemical plants. Failure of bearings 

is a major source of rotating machinery failure. It has been shown that bearing defects 

account for about 40% of motor faults. Several causes of bearing failure include 

fatigue, wear, corrosion, debris contamination and misalignment, faulty installation or 

improper mounting, blockade, passage of foreign particles, inadequate or improper 

lubrication, excessive speed and inappropriate temperature, vibration, inefficient 

seals, and overloading etc. The incipient damage needs to be detected using 

diagnostics techniques. Also RUL needs to be predicted using prognostics methods. 

Hence, the contributions of this research are as follows in the paragraphs below. 

 

5.1.1 Development of a novel DAI for diagnostics 

 

This study uses statistical data-driven Bayesian methods to develop a novel DAI for 

slow rotating bearing fault diagnostics based on AE data obtained from run-to-failure 

experiments. The proposed model is capable of accounting for data dimensionality 

reduction and hence for the reduction of high feature correlation, nonlinearities, noise 

filtering, non-stationarities, uncertainties, time variation (dynamics) and multimodal 

distribution in the data, under varying operating conditions. A DAI which accounts 

for these characteristics for the assessment of machine performance is important for 

effective diagnostics. The proposed novel DAI is the first known attempt to capture 

the features spelt out above. The early detection of faults through diagnostics and 

subsequent prediction of RUL through prognostics provides for the planning of the 

maintenance schedule thereby minimising machinery downtime.  
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The novel DAI is obtained by the integration of PKPCA, the GMM and the EWMA 

and used for the diagnostics of slow rotating bearings. The nonlinear PKPCA is used 

to extract AE reduced features from the large statistical features obtained from the AE 

data capitalising on the strength of each thereby making it more sensitive and robust 

for the detection of defects. Next the GMM with high computational efficiency, 

descriptive ability and robustness is used in modelling the multimodal data. This 

characteristic makes it very easy for GMM to render a smooth estimation of the AE 

signal variability of healthy bearings.  Finally, the novel DAI is obtained by the use of 

the EWMA model in the improvement of the sensitivity and dependability of the 

NLL with regard to the detection of the degradation of the slow rotating bearing.  

 

5.1.2 Prognostics using various approaches 

 

Further, a novel approach by integrating a newly developed DAI is used as an input in 

several regression models such as the MLP, RBF, BLR, GMR and the GPR for RUL 

prediction. Secondly, the MAPE and RMSE were used in model evaluation and 

selection of the best performing model. There is no known study that has used these 

set of models for the evaluation on the same data set. Thirdly, the RUL prediction of 

slow rotating bearing is obtained by the utilization of the best performing model.  

 

5.1.3 Prognostics based on an integrated GPR model 

 

An integrated GPR model for prediction of RUL of slow rotating bearings which 

combines the advantages from the individual mean and covariance functions is 

proposed. The proposed technique consists of the scientific selection and construction 

of composite mean made up of two simple mean functions and composite covariance 

functions made up of three covariance functions so as to avoid model 

misspecification. The procedure ensures that only well suited mean and covariance 

functions are combined in order to obtain an optimal GPR model for prognostics of 

slow rotating bearings.  
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Previous studies mostly implement a GPR using only the covariance function while 

assuming the mean function is equal zero. Therefore, the contribution of this 

investigation consists of the implementation of a novel integrated GPR-based model, 

where a scientifically selected composite mean function is simultaneously estimated 

with composite covariance function for a more flexible and accurate prediction of 

RUL of slow rotating bearings.  

 

Although, there is good reasoning for the use of SE covariance function in many 

settings (Rasmussen and Williams, 2006), it is still imperative to explore thoroughly 

which covariance functions are more appropriate for specific data (see chapter 1, 

paragraph 1.8.5). Further, this study contributes to prognostics by using the dependent 

and independent modelling approaches in the evaluation of the performance of the 

proposed integrated GPR models under a leave-out-one CV approach (see paragraph 

chapter 1, 1.8.7).  

 

5.2 Conclusions 

 

A novel DAI was developed for the CM of slow rotating bearings. The DAI was 

determined by integrating the PKPC, GMM and EWMA and subsequently using it for 

the assessment of the damage degradation of the slow rotating bearing from incipient 

damage to failure. The K-means classification was used in the state classification of 

the entire bearing data. The NLL was subsequently obtained by using the best-

performing PKPCs in the GMM. Finally, the DAI was obtained by EWMA 

smoothening of the NLL and using the DAI for the assessing bearing damage. The 

slight DT and severe DT were obtained by the use of KDE method on the bearing 

data. The DAI’s effectiveness was investigated in comparison to other monitoring 

indexes and it was established that it outperformed them. The DAI was found to be 

the only model with all of these properties: reducing data redundancy by using fewer 

kernel principal components from the original features, being more sensitive and 

reliable in the detection of slight faults via EWMA which incorporates the dynamics 

of the slow rotating bearings, elimination of the bias as a result of wrong model 

specifications, accounting for the nonlinearities and multimodal data, noise filtration,  
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and smooth feature characteristics allowance through both the GMM and EWMA 

components parts, reduction of data measurement and model parameter estimation 

uncertainties and external knowledge incorporation via the GMM component. The 

proposed DAI is found to be effective in the CM of slow rotating bearings under 

varying operating conditions. 

 

Subsequently, the novel DAI was used in MLP, RBF, BLR, GMR and GPR models 

respectively in the prognostics and RUL  prediction of slow rotating bearings. Three 

healthy slow rotating bearings were run to failure in the course of the investigation. 

Predictions were obtained using test and training sets from both dependent and 

independent samples. All the models predicted incipient damage and RUL of the slow 

rotating bearings. However, the GPR had the least MAPEs and RMSEs and is robust 

to dependent and independent samples under varying operating conditions. Therefore, 

the GPR is chosen as the most efficient model for prediction of RUL of slow rotating 

bearings.   

 

Finally, an integrated GPR model for predicting the RUL of slow rotating bearings is 

developed. A novel scientific way of obtaining the optimal GPR model for prediction 

is demonstrated as well. The zero mean, constant mean and linear mean functions 

were simultaneously modelled with nine different covariance functions. From these 

different mean and covariance functions, 9 simple GPR models were estimated for 

each of the three different operating conditions. Out of these 27 models, the best two 

mean functions and the best three covariance functions were selected based on the 

RMSE and MAPE. These selected functions were subsequently used to form three 

combination GPR models namely an AMGPR, a QMGPR and a CuMGPR. The 

performance of these three integrated GPR models were then compared with the best 

zero mean, best constant mean and best linear mean GPR models and the optimal 

model was selected based on RMSE and MAPE. The findings show that in general 

the integrated models perform better than the simple mean simple covariance models 

irrespective of whether the training or test sets are dependent or independent. In this 

study, the AMGPR is the optimal GPR model for predicting RUL for slow rotating 

bearings. These findings are robust to varying operating conditions which is intuitive 
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given that in real life bearings and other systems cannot operate under constant 

operating conditions. The results obtained in this study are not only relevant for 

bearings preventive maintenance but also to other mechanical and non-mechanical 

systems. 

 

5.3 Future work 

 

In this study, improved diagnostic and prognostic models were developed for the CM 

of slow rotating bearings and by extension other mechanical systems. As prognostics 

is an evolving technique, it is recommended that more work still needs to be done. 

The study was done on a type of bearing i.e. the Timken tapered roller bearing HR 

30307 J. The novel model developed was applied to the specific bearing. Hence, it is 

expected that further studies would be carried out on other bearing types where the 

newly developed model would be applied to ascertain its general applicability to 

different types of bearings mounted in other structures. 

 

This study applied the novel DAI and optimised GPR RUL prognostics to slow 

rotating bearings. Several applications in engineering are needed so as to improve on 

the developed and existing models and to investigate the effectiveness of the 

proposed model in diagnostics of damage in those mechanical and allied systems.  

 

The standard GMR, BLR, RBF and MLP models were also used in the prognostics of 

slow rotating bearings. These models could also be modified and optimised for 

further testing of their effectiveness in predicting RUL of slow rotating bearings more 

accurately. If the results are found to be plausible, then the new improved models 

could also be applied to other mechanical and allied systems. 

 

This study can be considered as the first investigative step which considers a single 

application of the method to the specific type of bearing and to unique specimens and 

therefore its effectiveness has to be proved with further investigations. 
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Appendix 

 

Peak to peak 

This is the value from one peak to the other peak and computed as given in Equation 

A1 below:  

( )( ) ( )( )( )txtxpeaktopeak minmax
2

1
−=−−  

(A1) 

where )(tx  is the AE time signal and t  is the duration of the measurement. 

the mean value of the  time signal x (t) having N data points  

 

Root mean square 

The root mean square (RMS) is the square root of the average of the squares of the 

values. The RMS of the AE signals is calculated as given in Equation A2: 

( )( )∑
=

−=
N

i

xix
N

RMS
1

21
 

(A2) 

where N  is the number of data points and x  is the mean value of the )(tx  AE time 

signal. 

 

Crest Factor 

The crest factor (CF) is the ratio of the peak (maximum RMS) value to the RMS 

value and is computed as given in Equation A3: 

RMS

peak
CF =  

(A3) 

Kurtosis 

Kurtosis is computed as given in Equation A4: 
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