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ABSTRACT

THE EFFECT OF PRICE POSTPONEMENT ON THE
COORDINATION OF A TWO STAGE SUPPLY CHAIN

FACING CONSUMER RETURNS

FEBRUARY 2008

THOMAS LENK

M.S.I.E.O.R., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ana Muriel

In this thesis, we analyze the effect that price postponement has on the perfor-

mance and coordination of a two-stage supply chain facing consumer returns. In an

extended news-vendor setting with a single product, a single manufacturer and a sin-

gle retailer who faces stochastic and price-dependend demand, we allow the retailer

to postpone his decision on the retail price until after demand uncertainty is resolved.

A certain percentage of sold products is returned, which results in reverse logistics

costs and a full refund for both consumer and retailer.

In this setting we conduct an extensive computational study to investigate the

value of considering returns in the optimization approach if the decision on the retail

price is postponed. Moreover we analyze the value of the additional information

gained by price postponement both if returns are considered or ignored. We present

the impact on the equilibrium values of profits and decision variables for both the

centralized and decentralized system and consider different incentive schemes to find

out whether coordination is possible.
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CHAPTER 1

INTRODUCTION

“The price might not show if the item is a future release” is a statement to be found

on the website of Great-Models.com. It is also an example for a price-postponement

strategy. Great-Models.com is an online retail store providing buyers with scale mod-

els of helicopters, cars etc., accessories and decals (van Mieghem and Dada (1999)

[52]). The statement suggests that the retailer will determine the price of the corre-

sponding product after demand information from the pre-orders has been observed.

Also other e-tailers, such as Amazon.com, apply postponement strategies and allow

customers to place orders on products that have not been released yet (Granot and

Yin (2005) [22]). Tackling uncertainty has become increasingly important during the

last years due to global competition, increasing flexibility of markets and a broader

range and individuality of products. In that context, “postponement of one form or

another has become a marketing, manufacturing and logistics concept which is applied

throughout the entire supply chain”(Granot and Yin (2005) [22]). Not only e-tailers

make use of postponement strategies. Benetton (e.g., Signorelli and Heskett (1984)

[43], Lee and Tang (1998) [31]) and Hewlett Packard have successfully implemented

strategies of that kind and are often named as leading practitioners. Therefore they

motivate the analysis of postponement strategies in supply chains.

Besides uncertainty, many enterprises and especially the internet retail companies

mentioned above, face another challenge that has become more and more important

during the last ten years: commercial returns. The question whether the influence of

returned products should be analyzed can be answered easily by the statistics provided
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in Gentry (1999) [20]. In the U.S., return rates from consumers to manufacturers and

retailers are often in the range of 6% to 15%. For some companies, in particular

e-tailers or mail order companies, they can even go up to 35%. Alltogether, the

value of returned products in the U.S. has been estimated to exceed $100 billion

per year (Stock et al. (2002) [45]. The major cause for the increase during the last

decade can be seen in the return policies that have been relaxed with the intention to

attract a higher number of costumers. Due to the high impact on both the financial

and operational performance of companies the field of Reverse Logistics (Rogers and

Tibben-Lembke (1999) [37]) has emerged to analyze all the aspects that are associated

with the return of a product - from the appropriate design of the supply chain over

the technical and organizational aspects of handling returned products to the impact

of returns on the supply chain partners’ operational decisions and profits.

In this thesis we study the performance and coordination of a two-stage supply

chain facing consumer returns and applying the concept of price postponement. With

our work we intend to extend the research conducted by Ruiz-Benitez and Muriel

(2007)[39], who analyze the effect of considering returns on the profits, order quanti-

ties and prices in a two stage supply chain under different incentive schemes. In an

extended news vendor model with stochastic and price dependent demand we con-

duct extensive computational studies to investigate the impact of considering returns

versus ignoring returns on the equilibrium values of profits and decision variables

if the retailer postpones his decision on the retail price. Furthermore, we analyze

the the value of the additional information gained by postponement both if returns

are considered and ignored, i.e. we model a supply chain with and without a price

postponement strategy and compare the respective equilibrium parameters. Also, as

supply chains require the cooperation of independent players, we study both aspects

under different incentive schemes, in particular a wholesale price-only contract and a

2



buy-back contract, to find out whether coordination is possible. Finally, we present

analytical results that support the findings of our computational work.

The thesis is structured as follows: Chapter 2 delivers an extensive literature re-

view on the topics postponement of operational decisions, commercial returns and

supply chain coordination and contracts. In chapter 3 we present the model, as-

sumptions and important derivations of equilibrium parameters that our work will

be based on. Chapter 4 contains our computational results comparing the strategies

considering returns and ignoring returns under price postponement under a wholesale

price-only and a buyback contract. Under the same incentive schemes, in chapter 5

we investigate the value of the additional information gained by postponing the de-

cision on the retail price in the decentralized centralized system. Finally, chapter 6

sums up our main findings and proposes possible extensions of this work.

3



CHAPTER 2

LITERATURE REVIEW

In this chapter we review the literature to the three important areas and the

related concepts that our work is based on. We start out by presenting research that

has been done on postponement strategies. After that we review important work

focused on consumer returns and reverse logistics. A major role in this part play the

dissertation by Ruiz-Benitez (2007) [38] and the paper by Ruiz-Benitez and Muriel

(2007) [39]. Finally we give a review on supply chain coordination and contracts.

2.1 Postponement Strategies

In the operations literature price postponement is understood as delaying the de-

cision on the retail price to be placed until certain uncertain attributes of demand

have been observed. In our case of a two stage supply chain, which we model as an

extension of the classic newsvendor problem, this means that the retailer will first

observe the wholesale price offered by the manufacturer and then place his order only

based on an expectation of the retail price. The latter will be determined after de-

mand uncertainty is resolved and the demand function is known. In general, Granot

and Yin (2005) [23] consider the postponing of operational decisions such as pricing,

production or ordering until some or all of the uncertain attributes of demand are

resolved as a strategic mechanism to manage some of the risks associated with uncer-

tain demand. As stated in the introduction, they claim that “postponement of one

form or another has become a marketing, manufacturing and logistics concept which

is applied throughout the entire supply chain”. Companies such as Benetton (e.g.,

4



Signorelli and Heskett (1984) [43], Lee and Tang (1998) [31]) and Hewlett Packard

show the successful implementation of strategies of that kind and are often cited as

leading practitioners.

In the operations literature the effect of postponement strategies has been exten-

sively studied. Important work that our research is based on comes from Granot and

Yin (2005) [22]. They study price and order postponement in a decentralized supply

chain in the classical newsboy setting with multiplicative and price-dependent de-

mand. For different types of contracts, competition, demand distributions, expected

demand functions and timings of the retailer’s operational decisions they examine

profits and equilibrium values of the contract parameters. They find that, in most

cases, a postponement strategy is beneficial for the supply chain partners. For a

multiplicative demand model and an expected demand function D(r) of the form

D(r) = 1 − r they find that - under price postponement - if a buyback option is

offered, the equilibrium wholesale price, the profit allocation ratio and the retail price

coincide with those in the corresponding deterministic model, in which the demand

function coincides with the expected demand function in the price-postponement

model. Further work on postponement in a decentralized setting has been done by

Taylor (2002) [47]. In their model they investigate the postponement of upstream

decisions. In particular, the point of time when the manufacturer decides to sell to

the retailer is analyzed. Our focus, however, will be on the retailer’s pricing decision

just like in Granot and Yin (2005) [22], i.e. we investigate the downstream decisions.

For the centralized case the effect of various postponement strategies has been

studied by different authors, e.g. Lee (1996) [30] and Lee and Tang (1997) [31]. A

general analysis of the benefits of postponement can be found in Aviv and Feder-

gruen (2001) [2]. For a two-stage supply chain van Mieghem and Dada (1999) [52]

show, amongst other results, that postponement of either retail price or production

always benefits (weakly) a centralized firm that has to decide on capacity, production

5



(inventory) quantity and retail price. In other words, the expected value for perfect

information (EVPI) of demand is non-negative in this particular setting. We will, in

our work, come back to these results and investigate whether, in our case, the EVPI

is also positive if consumer returns occur and if they are considered in the decision

making process.

2.2 Consumer Returns

As stated in the introduction, the motivation to consider returns can be based on

the statistics provided by Gentry (1999) [20]. Increasingly relaxed consumer return

policies in the U.S. during the last decades with full refunds within 30 to 90 days

(no questions asked) have contributed to very high levels of consumer returns. In

percentages of total sales they range from 6% to 15% normally and even reach up

to 35% for mail order companies and e-tailers. Guide et. al. (2006) [24] state that

a similar development can be observed in the European Union (EU) caused by new

EU internet sales policies and powerful resellers from the U.S. that have entered the

market. The reasons for a product return can be different. According to Ferguson et

al. (2005) [16] a large percentage is considered to be false failure returns (i.e. returns

that have neither a functional nor a cosmetic defect), whereas only a minor part is

due to real product failure. Table 2.1 shows the percentages of different reasons for

the return of HP printers. True failure forms only 20% of their total returns. The

customer’s expectation or simply a change of mind play an equally important role.

With each return causing costs of around 25% of the products price, a decrease in

the product return rate is highly valueable.

Based on this motivation Ferguson et al. (2005) [16] present a target rebate

contract that helps to reduce the percentage of false failure returns by increasing the

retailer’s sales effort. Specifically, the retailer receives a certain dollar amount for

each unit of false failure returns below a target. In that way an incentive scheme
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Reason for Return Percentage Solution
True failure 20 Design
Install/Basic Use 27 Design,AfterSalesSupport
Performance Design, Retail Pre-Sales Qualification

Print Speed 25
Print Quality

Packaging 2.25 Design, Retail Pre-Sales Qualification
Sales Technique 12.75 Retail Pre-Sales Qualification
Consumer Behavior 12.5 Retail Policy

Table 2.1. Reasons for Returns of HP printers and suggested solutions (Ferguson et
al. (2005) [16])

is established that leads to the reduction of false failure returns. Further research

concerning an improved design of supply chains, in particular for end-of-life product

returns, has been conducted by Guide et al. (2001) [24] and Fleischmann (2001) [17].

They point out the necessity of considering the trade-off between efficiency (cost

efficiency) and responsiveness (time effectiveness) of the supply chain. They claim

that increasing cost efficiency has to be weight up with increasing processing times

during which obsolescence costs occur. Being more responsive a network will reduce

the latter, but, however, incur higher costs.

In the classical setting of the newsvendor problem Vlachos and Decker (2003) [54]

derive optimal order quantities under different return handling options (secondary

markets, partial recovery or full recovery). Mostard and Teunter (2006) [34] allow

for the returned products to be resold any number of times and find a closed form

solution for the optimal order quantity in this setting.

The effect of considering returns on the equilibrium parameters in a two stage

newsvendor setting is exhaustively studied by Ruiz-Benitez (2007) [38] and Ruiz-

Benitez and Muriel (2007) [39]. In particular they compare profits, wholesale price,

retail price and chosen order quantities with those associated with the classical news-

boy problem ignoring returns. They find that not taking into account returns results

in higher profits and better coordination than if they are considered. Furthermore

7



they show the benefit of increasing the retailer’s share of the return logistics costs for

the profits of both players and the whole supply chain. Also, they find that buy-back

contracts can have a negative effect on supply chain coordination if consumer returns

are ignored. Finally, short studies of return allowance credit contracts (see also the

working paper by Ruiz-Benitez and Muriel (2007) [40]) and price postponement in

this setting are presented. Return allowance credits are another way of dealing with

returns in a supply chain. Instead of taking back returned products the manufacturer

offers the retailer a certain amount of money and guidelines about how to correctly

dispose of the product (Corbett and Savaskan (1999) [10]). Large retail companies

such as Wal-Mart specifically design distribution centers for that purpose. Allowance

credits lie at 1.5% for Wal-Mart and between 3% to 5% for some other companies.

Finally, Sullivan (1997) [46], Lariviere and Padmanabhan (1997) [28], and Bloom et

al. (2000) [7] present research conducted on slotting allowances. The latter is con-

sidered a marketing practice for new products, in which the manufacturer creates an

incentive for the retailer to carry new products by transferring a fixed sum of money.

Ruiz-Benitez and Muriel (2007) [39] model a return allowance credit as a lump sum

transfer of a percentage of the cost of either the total sales or the ordered quantity.

The transfer is aimed to compensate the retailer for the costs associated with returns

and thus to maintain retailer’s good will.

As we will conduct an analysis concerning supply chain coordination under differ-

ent incentive schemes, the third part of this review covers the respective literature in

that field.

2.3 Supply Chain Contracts and Coordination

We start out by presenting literature for price-only contracts. Next we consider

buy-back contracts, first under stochastic demand, then under stochastic and price

dependend demand. At last, we review other types of contracts.
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Operations literature speaks of a price-only contract if the only parameter to be

determined is the wholesale price, set by the manufacturer. For a two-stage supply

chain with a single retailer and a single manufacturer in a fixed price newsvendor set-

ting with stochastic demand Lariviere and Porteus (2001) [29] discover the coefficient

of variation to be an important factor for the performance of the supply chain and

the split of profits. For increasing values the retailer becomes more price sensitive,

the wholesale price decreases and the decentralized system looses efficiency. Both the

supply chain’s and the manufacturer’s profits decrease, whereas the retailer’s profits

increase due to the lower wholesale price.

The phenomenon of “double marginalization” ((Spengler (1950) [44]) is a typical

example for the necessity of incentive schemes. In a decentralized supply chain, as the

retailer bases his decisions on the wholesale price instead of the lower production costs,

his order quantity is smaller than for the centralized system. To better coordinate

the system’s performance, supply chain contracts have emerged to provide incentives

that lead the decentralized system to a similar performance as in the centralized case.

Lariviere (1999) [27], Tsay et al. (1999) [50] and Cachon (2003) [8] present extensive

reviews on supply chain contracts and coordination literature.

A particular type of contract in this context is the buy-back contract. The effect

of double marginalization is reduced, i.e. the retailer’s order quantity is increased

by the manufacturer’s offer to buy back unsold quantities at the end of the selling

season. The resulting higher payout for lower demand periods encourages the retailer

to increase his inventory. It is shown by Pasternack (1985) [36] that a policy that

does not allow for returns is not optimal. However, a policy that allows for unlim-

ited returns under full credit is not optimal either. It is demonstrated that for an

appropriate choice of wholesale and buyback price allowing the retailer unlimited re-

turns at a partial credit achieves coordination of the supply chain. It has to be noted

that buy back contracts are independent of the demand distribution, which can be
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considered another advantage of this type of coordination. Further research on buy-

back-contracts has been conducted by Donohue (2000) [13] and Gong (2002) [21]. The

former author shows that in a two stage production environment with two distinct

production modes a contract that requires to determine the buy-back price and the

two different wholesale prices corresponding to the production mode can coordinate

the supply chain. The later author focuses on the study of buy back contracts under

asymmetric information, which is of minor relevance for our work.

For the price-dependendent newsvendor model several authors have explored the

effect of buy back contracts. Kandel (1996) [25]) claims that only if the manufac-

turer is able to establish resale price maintainance coordination is possible through

buy-back contracts in this setting. Emmons and Gilbert (1998) [14] find that offering

a buyback price for unsold products most of the time has a positive effect on the

total supply chain profits, if demand is random and price-dependent and the whole-

sale price is given. Granot and Yin (2005a) [23] deliver another piece of work on

buy-back contracts in a system with random and price-dependent demand. For a

linear expected demand, they find closed form expressions for the optimal wholesale

and buyback prices. If demand also is dependent on the retail price, Bernstein and

Federgruen (2005) [6] find that coordination of the supply chain is not possible by

offering a buyback option.

A comparison of the no returns policy (i.e. the manufacturer does not buy back

unsold item) and the full returns policy (i.e. the retailer receives a full refund for all

unsold products) under price-dependent demand can be found in Padmanabhan and

Png (1997) [35]. Under no competition between retailers and uncertain demand, the

retailer reacts with over-stocking to the offer of a returns policy. As a consequence the

manufacturer is worse off than when he offers no returns. However, the manufacturer

benefits from a returns policy if the retailers are competitive and demand is certain

as retail competition is intensified. Also, the authors show that, under sufficiently
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low marginal production cost and uncertainty accepting returns from the retailer is

beneficial for the manufacturer.

Research on alternative contracts has been conducted by various authors. For the

fixed price newsvendor model, quantity flexibility (QF) contracts (Tsay (1999) [48],

Tsay and Lovejoy (1999) [49], Anupindi and Bassok (1998) [1], sales-rebate contracts

(Taylor (2002) [47]) and revenue-sharing contracts (Cachon and Lariviere (2005) [9])

have been studied. Analysis concerning price-discount sharing contracts can be found

in Bernstein and Federgruen (2005) [6], the profit-sharing contract in Yao et al. (2002)

[55]. In a two-period model with correlated demand Barnes-Schuster et al. (2002) [4]

analyze the impact of supply chain contracts with options on channel coordination.

In this setting, prior to the first period, the retailer not only determines the order

quantities to be delivered at the beginning of each period, but additionally buys

options that entitle him to order further units of the product at the beginning of

the second period, after he has observed information about the demand in the first

period. In a finite horizon model Bassok and Anupindi (1997) [5] derive the optimal

order policy if the buyer faces a minimum quantity commitment and a discount price.

Corbett and DeCroix (2001) [12] and Corbett et al. (2003) [11] present an analysis of

shared-saving contracts applied to indirect materials. The latter are materials that

have no relationship to the quantity produced of the final product(e.g. office supplies).

They show that, although the supplier wants to increase his sales volume, the supply

chain becomes more efficient if both can exert effort to reduce consumption, i.e. under

a shared-savings contract both partners are better off if consumption decreases. At

last, Corbett and Savaskan (1999) [10] claim that, in practice, contracts are rarely

capable of achieving perfect coordination. They conclude that more complex contracts

must be developed such as two-part tariffs instead of linear prices or even “menus”

of contracts. Furthermore, to implement more sophisticated contracts of that kind,
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the presence of multiple flows of goods due to product returns may be a helpful

mechanism.

In chapter 5 we have a closer look at the impact of the additional information

gained by postponement. In particular economics literature provides several articles

that discuss the influence of learning and different amounts of informativeness on

decision variables and objective values. For cooperative games Epstein (1980) [15]

presents a method that allows to analyze the differences in first-period decisions

for varying levels of informativeness. The value of perfect information in a non-

cooperative game setting is determined by Sakai (1985) [41] and Ulph and Ulph (1996)

[51]. Gal-Or (1985) [18] and Vives (1989) [53] study the influence of information in

oligopolies. A more general and less complicated approach is presented by Baker

(2006) [3]. She presents a sequential decision problem that is very similar to our

setting. A decision maker decides in period one, then observes an informative signal

before he makes his second decision in period two. In our model the retailer first

decides on the order quantity, then observes further demand information and then

sets the retail price of the product. In this setting Baker (2006) [3] analyzes the

comparative statics of risk and of learning. She finds that both are the same in the

absence of risk aversion for first and second period decisions as well as for the value

of information. Furthermore she concludes that risk attitude can be ignored when

analyzing the qualitative effects of learning which allows studying the more simple

case of risk neutrality without loss of generality. In our model we assume that both

the retailer and the manufacturer have the same information on demand and both

act according to the strategy they have agreed on earlier. As a consequence the

literature that considers the value of information in a game setting is less relevant for

our work. However, results that are valid for a single decision maker as well, like the

ones presented in Baker (2006) [3], provide an interesting theoretical background for

our computational results. Also work conducted on the value of sharing information
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between the supply chain partners as e.g. by Lee et al. (2000) [32] and Gavimeni

et al. (1999) [19] is stated for matter of completeness only as we assume that both

partners have the same information.

With the model and the analysis that we present in the following we intend

to extend the work done on consumer returns and price postponement by Ruiz-

Benitez(2007) [38]. To the best of our knowledge, no other work considers per-

formance and coordination issues in the presence of commercial returns and price

postponement.
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CHAPTER 3

MODEL FORMULATION

In this chapter we present the model, corresponding assumptions and the deriva-

tions that our work is based on. In general, we study the same extended news vendor

setting that is described by Ruiz-Benitez (2007) [38], but under a different timing of

decisions. For simplicity and comparability reasons, we use the same notations and

parameters.

3.1 The Model

The model consists of a single manufacturer, a single retailer and a single product.

The retailer faces random and price dependent demand, i.e. the retail price r is not

exogenously given but set by the retailer (after observing demand if he decides to

postpone his decision). A selling season is composed of a single period during which

the selling price remains constant. We do not allow for back ordering and we do not

consider any costs associated with customer dissatisfaction. The product is produced

by the manufacturer at a cost c with unlimited production capacity and sold to the

retailer at a retail price of w. For unsold products we will include a buy-back price of

s when considering buy-back contracts. In the case of wholesale-contracts the salvage

value of v for unsold products will remain with the retailer. A percentage of α of total

sales are returned to the retailer, who gives the respective customers a full refund of

the retail price r. The manufacturer finally buys back the returns for the full wholesale

price w and retrieves a salvage value of vr for each item. As we further analyze the

influence of different shares of the costs incurred by this process (shipping, inspection,
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possibly remanufacturing and final disposition) we include average logistics cost of

l1 and l2 per unit for the manufacturer and the retailer, respectively. We define the

parameter β as the retailer’s share of the return logistic costs, i.e. β = l1
l1+l2

× 100 .

In reality, the value of β may be different for different industries depending on which

partner takes responsibility in handling the returned products.

As in existing research on contracts literature, a few assumptions are made to

have a meaningful problem. We require r > w > c and w > s > v ≥ vr. Also, we

assume (1 − α)r > (1 − α)w + αl2 and (1 − α)w > c + α(l1 − vr) to ensure that

both the retailer’s and manufacturer’s profits are positive when considering returns.

Further restrictions to the parameters are mentioned when needed.

Finally, the demand faced by the retailer, the order quantity and the product

returns are captioned by the variables y, Q and R, respectively. We define R = αS

the volume of product returns as a fixed percentage of the total sales (S = min(Q, y)).

Figure 3.1 depicts the financial flows in this simple two-stage supply chain.

Figure 3.1. Financial Flows in the Two-Stage Supply Chain (Ruiz-Benitez (2007)
[38])

Stochastic and Price-dependent Demand

As stated above we assume that the retailer faces a stochastic and price dependent

demand. Literature offers two groups of price-dependent models: the additive demand

model, D(r, x) = y(r) + x, (Mills (1959) [33]) and the multiplicative demand model,
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D(r, x) = y(r)x, (Karlin and Carr (1962) [26]), where y(r) is decreasing in the retail

price r and x is the random component. Concerning the form of y(r), broad studies

can be found in literature , in particular for the linear case y(r) = a − br(a >

0, b > 0) and the iso-elastic demand curve y(r) = ar−b(a > 0, b > 1). For reasons

of consistency and comparability our model and assumptions are similar to the ones

presented in Emmons & Gilbert (1998) [14], with the necessary extensions that allows

us to include consumer returns. The expected demanded quantity, D(r), defined on

a closed interval [c, r̄] (i.e. D(r) = 0 for all r ≥ r̄) is assumed to be decreasing in

the retail price r, continuous, nonnegative and twice differentiable. x is modeled as a

positive random variable with mean equal to 1. Therefore the actual demand, y, will

be presented as a product of the expected demand D(r) and the random component

x. The resulting density distribution function for the demand consequently can be

expressed as follows:

g(y; r) =
1

D(r)
f(

y

D(r)
) for y ≥ 0, (3.1)

where f(·) is the probability distribution function of x and F (·) is the corresponding

cumulative distribution function. The distribution F (·) is assumed to be invertible

and f(·) shall have a continuous derivative f ′(·).

Information and Decision Strategies

When making their decisions both players are assumed to have full information

about the expected demand function D(r) and the distribution of x. Also, we assume,

that both either include returns in their optimization problem or not, i.e. we do not

consider asymmetric behavior. We define the following four possible strategies for the

retailer:

• Policy CRP: The retailer both considers returns and postpones his decision on

the retail price until demand uncertainty is resolved when optimizing his profits.
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• Policy IRP: The retailer follows the postponement strategy but ignores com-

mercial returns in his optimization model.

• Policy CR: The retailer decides on both the retail price and his order quantity

before demand uncertainty is resolved.

• Policy IR: The retailer ignores commercial returns and does not follow the

postponement strategy.

In the following section we summarize the most important derivations for the players’

profits and the results of the analytical optimizations given they exist.

3.2 Profit Functions and Derivations when Considering Re-

turns under Price Postponement

3.2.1 The Retailer’s Problem

If the retailer postpones his pricing decision the sequence of events can be distin-

guished into three stages:

1. At first, before products are ordered or delivered, the manufacturer determines

the wholesale price w, and the repurchase price s if he offers a buy back contract.

2. After that, the retailer determines his optimal order quantity and places the

order to the retailer.

3. Finally, after observing demand uncertainty x, the retailer determines the selling

price r.

Taking into account this sequence of events, we can present the following results

obtained by Ruiz-Benitez (2007) [38] for y(r) representing a linear demand curve, i.e.

y(r) = b(r − k)(k > 0, b < 0) (different forms of y(r) lead to different results). The

retailer’s profit at the end of the selling season can be calculated as:
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ΠCRP
R (Q, r, x̄) = ((1− α)r − α(l2 − w)− s) min(Q, D̄(r))− (w − s)Q

D̄(r) represents the demand function after the stochastic variable x̄ is fixed, i.e.

demand becomes deterministic when uncertainty is resolved. To find the optimal

retail price r, we distinguish between two cases:

1. If Q ≤ x̄y(r), i.e., r ≤ y−1(Q/x̄), then, we can write the retailer’s profit as

ΠCR
R (Q, r, x̄) = ((1− α)r − α(l2 − w)− w)Q

This function increases in r and therefore the optimal retail price is r∗ =

D−1(Q/x̄) =
Q

x̄b
+ k, i.e. the retailer will always increase the selling price r

until demand is no larger than available supply.

2. If Q ≥ x̄y(r), i.e., r ≥ y−1(Q/x̄), we can simplify the retailer’s profit function

to

ΠCR
R (Q, r, x̄) = ((1− α)r − α(l2 − w)− s)D̄(r)− (w − s)Q

Taking the first derivative and setting it equal to zero, we get

∂ΠCR
R (Q, r, x̄)

∂r
= (1− α)x̄b(r − k) + ((1− α)r − α(l2 − w)− s)x̄b

and thus, the optimal retail price is:

r∗ =
(1− α)k + α(l2 − w) + s

2(1− α)

Note that the realized demand does not have any influence on the optimal retail

price. Only the parameter k of the expected demanded quantity y(r) can be

found in the formula.
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The second derivative with respect to r is non-positive:

∂2ΠCRP
R (Q, r, x̄)

∂r2
= 2(1− α)x̄b < 0

Thus, the retailer’s profit function is strictly concave and we get

r∗ = max
((1− α)k + α(l2 − w) + s

2(1− α)
,
Q

x̄b
+ k
)

The threshold for the optimal decision on the retail price in terms of the realized

uncertainty, x̄, therefore is:

x̄ ≤ 2(1− α)Q

b(−(1− α)k + α(l2 − w) + s)

Summarizing, given (w, s,Q), the retailer will choose the selling price r according

to the following rule:

r∗(x̄) =


Q

x̄b
+ k ifx̄ >

2(1− α)Q

b(−(1− α)k + α(l2 − w) + s)

(1− α)k + α(l2 − w) + s

2(1− α)
if x̄ ≤ 2(1− α)Q

b(−(1− α)k + α(l2 − w) + s)

(3.2)

The expected value of the retail price consequently is:

E[r∗] = k +
−(1− α)k + α(l2 − w) + s

2(1− α)
F (A) +

Q

b

∫ ∞
A

1

x
f(x)dx

where A =
2(1− α)Q

b(−(1− α)k + α(l2 − w) + s)
. At the point of his decision on the order

quantity Q, however, the retailer lacks the knowledge of x. Therefore, his decision at

this point of time is based on the knowledge about his own future behavior.

Using the knowledge about the dependency of the retail price on the chosen order

quantity and the realized uncertainty his aim is to maximize his expected profits:
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ΠCRP
R (Q, r∗) = Ex[((1− α)r∗ − α(l2 − w)− s)D(r∗)x]− (w − s)Q

If we replace the optimal selling price r∗ by (3.2) we get the following term for

the retailer’s expected profits as a function of Q and r∗:

ΠCRP
R (Q, r∗) = ((1− α)B − α(l2 − w)− s)b(B − k)

∫ A

0

xf(x)dx

+((1− α)k − α(l2 − w)− s)Q(1− F (A))

+
(1− α)Q2

b

∫ ∞
A

1

x
f(x)dx− (w − s)Q

where A =
2(1− α)Q

b(−(1− α)k + α(l2 − w) + s)
and B =

(1− α)k + α(l2 − w) + s

2(1− α)
.

Taking first and second derivatives with respect to Q it can be shown that the

retailer’s expected profit function is strictly concave:

∂ΠCR∗
R (Q, r)

∂Q
= ((1− α)k − α(l2 − w)− s)(1− F (A))

+
(1− α)2Q

b

∫ ∞
A

1

x
f(x)dx− (w − s) (3.3)

∂2ΠCRP
R (Q, r)

∂Q2
=

(1− α)2

b

∫ ∞
A

1

x
f(x)dx < 0 (3.4)

since b < 0. Consequently, setting the first derivate with respect to Q equal to zero

delivers a necessary and sufficient condition for the optimal order quantity, Q∗:

((1−α)k−α(l2−w)− s)(1−F (A)) +
(1− α)2Q

b

∫ ∞
A

1

x
f(x)dx− (w− s) = 0 (3.5)

Unfortunately as A depends on Q it is not possible to obtain a closed form expres-

sion for Q∗, which reasonably complicates any further analytical approaches. How-
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ever, using equation 3.5 we obtain the following solution for the expected retail price

in equilibrium:

Proposition 1 In the two-stage news vendor-model considering consumer returns

under price postponement the expected retail price under linear, stochastic and price-

dependent demand is

E[r∗] =
(1− α)k + α(l2 − w) + w

2(1− α)

Proof.

E[r∗] = k +
−(1− α)k + α(l2 − w) + s

2(1− α)
F (A) +

Q

b

∫ ∞
A

1

x
f(x)dx

= k +
w − (1− α)k + α(l2 − w)

2(1− α)

=
(1− α)k + α(l2 − w) + w

2(1− α)
(3.6)

3.2.2 The Manufacturer’s Problem

The manufacturer decides on the wholesale price w (and the repurchase price s if

he offers a buy-back contract) before the retailer makes any decision. As he is fully

aware of the retailer’s behavior he anticipates both the optimal order quantity and

the expected retail price for each of his choices of w. He therefore maximizes the

following function:

ΠCRP
M (Q∗, r∗, w, s) = (w − c+ v − s)Q∗ − Ex[(α(l1 + w − vr) + v − s)y(r∗)x]

= (w − c+ v − s)Q∗ − (α(l1 + w − vr) + v − s)Ex[y(r∗)x]

= (w − c+ v − s)Q∗ − (α(l1 + w − vr) + v − s)b(Ex[r∗x]

−kEx[x])
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Using the assumption on the expected value of the demand uncertainty Ex[x] = 1

and the law of conditional expectation with expression 3.2 for the optimal retail price

we can simplify Ex[r∗x]:

Ex[r∗x] = Ex

[
(1− α)k + α(l2 − w) + s

2(1− α)
x

]
F (A) + Ex

[(
Q

xb
+ k

)
x

]
(1− F (A))

= BEx[x]F (A) +

(
Ex

[
Q

b

]
+ Ex[kx]

)
(1− F (A))

=

(
B − Q

b
− k
)
F (A) +

Q

b
+ k

Substituting Ex[r∗x] by this expression in the manufacturer’s profit function and

employing the relationship b(B − k) = Q
A

, we get:

ΠCRP
M (Q∗, r∗, w, s) = (w − c+ v − s)Q∗ − (α(l1 + w − vr) + v − s)[(

Q∗

A
−Q∗

)
F (A) +Q∗

]
= (w − c+ v − s)Q∗ − (α(l1 + w − vr) + v − s)[

1 +
1− A
A

F (A)

]
Q∗

= [w − c− α(l1 + w − vr)

−(α(l1 + w − vr) + v − s)1− A
A

F (A)]Q∗

where A =
2(1− α)Q

b(−(1− α)k + α(l2 − w) + s)
and B =

(1− α)k + α(l2 − w) + s

2(1− α)
. Un-

fortunately as we do not have a closed form expression for Q∗, the optimal wholesale

price w∗ cannot be obtained analytically. In our computational study we will apply

the golden section method to find w∗. As this approach requires the function to be

concave we plotted the manufacturer’s profit function for the various input parameters

and were able to ensure that it is concave.

Note that for the case of ignoring returns we can set the parameter α equal to

zero in both the retailer’s and manufacturer’s problem. Doing so, we face similar
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difficulties in not being able to resolve the respective equations. Granot and Yin

(2005) [22], however, show that there exists a one-to-one relationship between the

equilibrium values of Q∗ and w∗ given by the first order condition for the optimal

order quantity. We will specify the exact derivations and relationships in the next

section.

3.2.3 The Centralized System

As for the centralized supply chain retailer and manufacturer are no longer sep-

arate players, the interaction between them and in particular the determination of

the optimal wholesale price, i.e. stage 1, does not exist. The decisions to be made

therefor only consist of placing the order or - in this case - production quantity and

then, after uncertainty is resolved, determining the retail price. For the derivation

we again start out by calculating the optimal selling price, r∗, and then, the optimal

order quantity, Q∗ based on the expectation for the former. The results are similar to

the retailer’s problem and can be obtained by simply replacing (l2−w) with (l− vr),

w with c and s = 0. For the optimal retail price we therefore can write

r∗(x̄) =


Q

x̄b
+ k ifx >

2(1− α)Q

b(−(1− α)k + α(l − vr))

(1− α)k + α(l − vr)

2(1− α)
if x̄ ≤ 2(1− α)Q

b(−(1− α)k + α(l − vr))

(3.7)

The expected value of the retail price is calculated as follows:

E[r∗] =
(1− α)k + α(l − vr) + c

2(1− α)

Similarly to the retailer’s profit function concavity can also be shown for the

centralized profits and therefore the sufficient and necessary condition for the optimal

order quantity, Q∗, is given by:
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((1− α)k − α(l − vr))(1− F (A′)) +
(1− α)2Q

b

∫ ∞
A′

1

x
f(x)dx− c = 0 (3.8)

where A′ =
2(1− α)Q

b(−(1− α)k + α(l − vr))
. Again, we cannot resolve for Q since A′ de-

pends on Q.

3.3 Derivations for Policy IRP

Our aim in chapter 4 is to compare the equilibrium values for profits and decision

variables under the policies CRP and IRP. Since the policy CRP was studied in the

previous section, we start out by stating the most important results of the derivations

for the policy IRP in order to perform the intended analysis. The derivations for both

policy CR and IR, to which we compare our results in chapter 5, can be found in

Ruiz-Benitez (2007) [38].

3.3.1 Profit Functions

The policy IRP resembles the price-dependent news vendor model under post-

ponement except that we subtract the costs (l2 + r−w) and (l1 +w− vR) associated

with the returns R after the decisions have been made from the profit function of

the retailer and the manufacturer, respectively. Granot and Yin (2005) [22] present

the derivations for the associated model without returns for the case of the expected

demand function equal to D(r) = 1− r and without a salvage value for unsold prod-

ucts. For our more general case of D(r) = b(r − k) and the salvage values v and vR

for unsold and returned products we obtain similar results by setting the parameter

α representing the percentage of total sales returned equal to zero in the derivations
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of the previous section and following the same backward induction procedure. The

retail price for given values of Q, w and x̄ consequently can be written as

r∗(x̄) =


Q

x̄b
+ k ifx̄ >

2Q

b(s− k)

k + s

2
if x̄ ≤ 2Q

b(s− k)

(3.9)

This results in the following expected value that the retailer faces when making

his decision on the order quantity Q:

E[r∗] = k − k − s
2

F

(
2Q

b(s− k)

)
+
Q

b

∫ ∞
2Q

b(s−k)

1

x
f(x)dx (3.10)

Accordingly, the first order condition for the optimal order quantity Q∗ is:

(k − s)(1− F
(

2Q

b(s− k)

)
) +

2Q

b

∫ ∞
2Q

b(s−k)

1

x
f(x)dx− (w − s) = 0 (3.11)

The value ofQ given by equation 3.11 is a global maximum as the second derivative

of the retailer’s profit with respect to Q is strictly negative, as shown before. Again

it is not possible to obtain a closed form solution for the optimal order quantity.

However, equation 3.11 can be resolved for w and thus, there exists a one-to-one

relationship between w and Q:

w = k − (k − s)F
(

2Q

b(s− k)

)
+

2Q

b

∫ ∞
2Q

b(s−k)

1

x
f(x)dx (3.12)

In their paper, Granot and Yin (2005) [22] make use of this possibility to express

the manufacturer’s profit function in terms of the optimal order quantity by replacing

w by the term obtained from the retailer’s first order condition. For the case of the

expected demand function D(r) equal to D(r) = 1 − r, they present an interval

containing the optimal order quantity Q∗ and closed form solutions for the wholesale
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price w and the repurchase price s if a buyback contract is offered. For the wholesale

case further restrictions are necessary. If the density function of the uncertainty x,

f(x), is continuous and differentiable, and xf(x) is increasing in x they again find

an interval containing the optimal order quantity Q∗ and implicit expressions for the

wholesale and expected retail price. In the following we re-derive these results for our

more general expected demand function D(r) = b(r−k) and including salvage values

for unsold and returned products. We note that Granot and Yin (2005) [22] show how

the more general results without salvage values can be obtained from their specific

results for D(r) = b(r − k). We start out with the manufacturer’s profit function if

he ignores returns and the retailer postpones his decision on the retail price. It can

be stated as follows:

ΠIRP
M (Q∗, r∗, w, s) = (w − c+ v − s)Q∗ − Ex[(v − s)D(r∗)x] (3.13)

The expected value in the second part of the function can be simplified by con-

sidering expression 3.9 for the optimal retail price under policy IRP:

Ex[(v − s)y(r∗)x] = (v − s)Ex[b(r∗ − k)x]

= (v − s)b(Ex[r∗x]− kEx[x])

= (v − s)b(Ex[r∗x]− k)

= (v − s)b[
∫ 2Q

b(s−k)

0

k + s

2
xf(x)dx

+

∫ ∞
2Q

b(s−k)

(
Q

xb
+ k)xf(x)dx− k]

= (v − s)b

(
k + s

2

∫ 2Q
b(s−k)

0

xf(x)dx+
Q

b

∫ ∞
2Q

b(s−k)

f(x)dx

)

+(v − s)b

(
k

∫ ∞
2Q

b(s−k)

xf(x)dx− k)

)

= (v − s)b

(
s− k

2

∫ 2Q
b(s−k)

0

xf(x)dx+
Q

b

∫ ∞
2Q

b(s−k)

f(x)dx

)
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Using this simplification and equation 3.12 we can restate the manufacturer’s

profit:

ΠIRP
M (Q∗, s) = (w − c+ v − s)Q∗ − Ex[(v − s)b(r∗ − k)x]

=

(
k − (k − s)F

(
2Q∗

b(s− k)

)
+

2Q∗

b

∫ ∞
2Q∗

b(s−k)

1

x
f(x)dx

)
Q∗

−(c+ s− v)Q∗

−(v − s)b

(
s− k

2

∫ 2Q∗
b(s−k)

0

xf(x)dx+
Q∗

b

∫ ∞
2Q∗

b(s−k)

f(x)dx

)

3.3.2 Optimality Criteria under a Buyback Contract

We have now replaced the variable for the wholesale price w and thus continue

working with a function in the variables Q∗ and s. Taking first and second derivatives

with respect to the optimal order quantity Q∗ and the buyback offer s allows us to

formulate two propositions concerning the optimal decision variables under a buyback

and a wholesale contract. As the results for the latter can be easily derived from the

buyback solutions, we begin with the former.

Proposition 2 When ignoring returns under price postponement in a news-vendor

setting with linear and price-dependent expected demand the manufacturer globally

maximizes his expected profit by offering a wholesale price w∗ = k+c
2

and a buyback

price s∗ = k+v
2

if he commits to a buyback contract. In equilibrium the retailer’s

optimal order quantity Q∗ satisfies

k − (k − v)F

(
4Q∗

b(v − k)

)
+

4Q∗

b

∫ ∞
4Q∗

b(v−k)

1

x
f(x)dx− c = 0, (3.14)

and lies in the interval
[
0, b(v−k)

4
B
]

if the probability distribution for the uncertainty

term x has positive values not beyond an upper bound B. In addition we have the

following expressions:
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E[r∗] =
3k + c

4

ΠIRP∗
M =

Q∗

2

[
k − c+ (v − k)F

(
4Q∗

b(v − k)

)]
− b

8

(
(v − k)2

∫ 4Q∗
b(v−k)

0

xf(x)dx− α(c− k)(2l1 + k + c− 2vR)

)

PiIRP∗
R =

Q∗

4

[
k − c+ (v − k)F

(
4Q∗

b(v − k)

)]
− b

16

(
(v − k)2

∫ 4Q∗
b(v−k)

0

xf(x)dx− α(c− k)(4l2 + k − c)

)

Note that in the case of no returns occurring, i.e. α = 0, we get:

ΠIRP
M ∗ = 2E[ΠIRP

R ]∗

=
Q∗

2

[
k − c+ (v − k)F

(
4Q∗

b(v − k)

)]
− b

8
(v − k)2

∫ 4Q∗
b(v−k)

0

xf(x)dx

Proof. In order to show the results described before, we take first and second deriva-

tives with respect to the variables Q∗ and s:

∂ΠIRP
M (Q∗, s)

∂s
= [F

(
2Q∗

b(s− k)

)
+ (k − s)f(

2Q∗

b(s− k)
)

2Q∗

b(s− k)2

+
2Q∗

b

b(s− k)

2Q∗
f(

2Q∗

b(s− k)
)

2Q∗

b(s− k)2
]Q∗ −Q∗

+b[
s− k

2

∫ 2Q∗
b(s−k)

0

xf(x)dx+
Q∗

b

∫ ∞
2Q∗

b(s−k)

f(x)dx]

−(v − s)b[1
2

∫ 2Q∗
b(s−k)

0

xf(x)dx− s− k
2

2Q∗

b(s− k)

f

(
2Q∗

b(s− k)

)
2Q∗

b(s− k)2
+
Q∗

b
f

(
2Q∗

b(s− k)

)
2Q∗

b(s− k)2
]

= F

(
2Q∗

b(s− k)

)
Q∗ −Q∗ +

b(s− k)

2

∫ 2Q∗
b(s−k)

0

xf(x)dx

+Q∗
∫ ∞

2Q∗
b(s−k)

f(x)dx− (v − s)b
2

∫ 2Q∗
b(s−k)

0

xf(x)dx

=
b(2s− k − v)

2

∫ 2Q∗
b(s−k)

0

xf(x)dx
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In case of existence of stationary point(s), we find a unique value of s which is

s = k+v
2

. Taking the first derivative with respect to the optimal order quantity Q∗

results in:

∂ΠIRP
M (Q∗, s)

∂Q∗
= k − (k − s)F

(
2Q∗

b(s− k)

)
+

2Q∗

b

∫ ∞
2Q∗

b(s−k)

1

x
f(x)dx

+[−(k − s)f
(

2Q∗

b(s− k)

)
2

b(s− k)
+

2

b

∫ ∞
2Q∗

b(s−k)

1

x
f(x)dx

−2Q∗

b

b(s− k)

2Q∗
f

(
2Q∗

b(s− k)

)
2

b(s− k)
]Q∗ − (c+ s− v)

−(v − s)b[s− k
2

2Q∗

b(s− k)
f

(
2Q∗

b(s− k)

)
2

b(s− k)

+
1

b

∫ ∞
2Q∗

b(s−k)

f(x)dx− Q∗

b
f(

2Q∗

b(s− k)
)

2

b(s− k)
]

= k − (k − s)F
(

2Q∗

b(s− k)

)
+

2Q∗

b

∫ ∞
2Q∗

b(s−k)

1

x
f(x)dx

+
2Q∗

b

∫ ∞
2Q∗

b(s−k)

1

x
f(x)dx− (c+ s− v)

−(v − s)
[
1− F

(
2Q∗

b(s− k)

)]
= k − (k − v)F

(
2Q∗

b(s− k)

)
+

4Q∗

b

∫ ∞
2Q∗

b(s−k)

1

x
f(x)dx− c (3.15)

Evaluating the later at s = k+v
2

and setting it equal to zero leads to equation 3.14:

∂ΠIRP
M (Q∗, s∗ = k+v

2
)

∂Q∗
= k − (k − v)F

(
2Q∗

b(k+v
2
− k)

)
+

4Q∗

b

∫ ∞
2Q∗

b( k+v
2 −k)

1

x
f(x)dx− c

= k − (k − v)F

(
4Q∗

b(v − k)

)
+

4Q∗

b

∫ ∞
4Q∗

b(v−k)

1

x
f(x)dx− c = 0

Analyzing the first derivative with respect to Q∗ at Q∗ = 0 and for Q→∞ allows

us to draw conclusions about the existence of stationary points:
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∂ΠIRP
M (Q∗ = 0, s∗ = k+v

2
)

∂Q∗
= k − c > 0 (3.16)

and

limQ→∞
∂ΠIRP

M (Q∗, s∗ = k+v
2

)

∂Q∗
= v − c < 0, (3.17)

because k > c > v to insure a meaningful problem. Thus we conclude that there

exists one unique stationary point (s∗ = k+v
2
, Q∗). Forming the second derivatives

with respect to each of the two variables and evaluating them at (s∗ = k+v
2
, Q∗)

results in the following Hessian Matrix:

H

(
Q∗, s∗ =

k + v

2

)
=

4
b

∫∞
4Q∗

b(v−k

1
x
f(x)dx 0

0 b
∫ 4Q∗

b(v−k

0 xf(x)dx

 ,

which is negative definite as b < 0 and both integral terms are positive. Consequently,

the point (s∗ = k+v
2
, Q∗) globally maximizes the manufacturer’s profit.

The closed form expression for w∗ is obtained by inserting s∗ = k+v
2

into equation

3.12 and using expression 3.14 to simplify the term:

w∗ = k − (k − s)F
(

2Q

b(s− k)

)
+

2Q

b

∫ ∞
2Q

b(s−k)

1

x
f(x)dx

= k − k − v
2

F

(
4Q

b(v − k)

)
+

2Q

b

∫ ∞
4Q

b(v−k)

1

x
f(x)dx

= k +
1

2

[
−(k − v)F

(
4Q

b(v − k)

)
+

4Q

b

∫ ∞
4Q

b(v−k)

1

x
f(x)dx

]
= k +

1

2
(c− k)

=
k + c

2

Similarily, we obtain the following term for the expected retail price E[r∗] in

equilibrium:
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E[r∗] = k −
k − k+v

2

2
F

(
2Q

b
(

k+v
2
− k
))+

Q

b

∫ ∞
2Q

b( k+v
2 −k)

1

x
f(x)dx

= k +
1

4

[
−(k − v)F

(
4Q

b(v − k)

)
+

4Q

b

∫ ∞
4Q

b(v−k)

1

x
f(x)dx

]
= k +

1

4
(c− k)

=
3k + c

4

The optimal expected profits are obtained in a similar manner. Note that we need

to subtract the costs associated with the returns, which were not considered during

the optimization process. For the case of f(x) only being defined on an interval [0,B]

all upper integral bounds equal to infinity are replaced by j. As a consequence we

analyze the first derivative of the manufacturer’s profit function at the order quantity

Q∗ for which the last integral term turns to zero, i.e. for 4Q∗

b(v−k)
= B or Q∗ = b(v−k)

4
B.

3.3.3 Optimality Criteria under a Wholesale Contract

Based on the derivations above we can formulate the following results for the

wholesale price contract setting.

Proposition 3 When no re-purchase price is offered under price postponement in a

news-vendor setting with linear, price-dependent expected and ignoring returns under

price postponement, the retailer’s equilibrium order quantity Q∗ is the unique solution

that satisfies

k − (k − v)F

(
2Q∗

b(s− k)

)
+

4Q∗

b

∫ ∞
2Q∗

b(s−k)

1

x
f(x)dx− c = 0

and, in equilibrium:
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w∗ =
1

2

[
k + c− (k + v)F

(
2Q∗

b(−k)

)]
E[r∗] =

1

4

[
3k + c− (k + v)F

(
2Q∗

b(−k)

)]

if the density function of x, f(x), is continuous and differentiable, and xf(x) is

increasing in x.

Proof.

If no repurchase price is offered the manufacturer’s profit is only a function of

the retailer’s optimal order quantity Q∗. From 3.15 we get the first derivative with

respect to Q∗ by setting the variables for the wholesale price s and the salvage value

of unsold products v (v remains with the retailer in the wholesale case) equal to zero:

dΠIRP
M (Q∗)

dQ∗
= k − kF

(
2Q∗

b(−k)

)
+

4Q∗

b

∫ ∞
2Q∗

b(−k)

1

x
f(x)dx− c

After some simplifications the second derivative with respect to Q∗ can be ex-

pressed as:

d2ΠIRP
M (Q∗)

dQ∗2
=

2

b
f

(
2Q∗

b(−k)

)
+

4

b

∫ ∞
2Q∗

b(−k)

1

x
f(x)dx− 4

b
f

(
2Q∗

b(−k)

)
=

4

b

∫ ∞
2Q∗

b(−k)

1

x
f(x)dx− 2

b
f

(
2Q∗

b(−k)

)
(3.18)

As we are unable to evaluate the sign of expression 3.18 we continue and form the

third derivative:

d3ΠIRP
M (Q∗)

dQ∗3
= −4

b

1

Q∗
f

(
2Q∗

b(−k)

)
− 4

b2(−k)
f ′
(

2Q∗

b(−k)

)
= −4

b

[
1

Q∗
f

(
2Q∗

b(−k)

)
+

1

b(−k)
f ′
(

2Q∗

b(−k)

)]
(3.19)

If we demand xf(x) to be increasing in x, we get:

f

(
2Q∗

b(−k)

)
+

2Q∗

b(−k)
f ′
(

(
2Q∗

b(−k)

)
≥ 0
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And after rearranging the variables in this expression we find:

1

Q∗
f

(
2Q∗

b(−k)

)
+

1

b(−k)
f ′
(

2Q∗

b(−k)

)
>

1

Q∗
f

(
2Q∗

b(−k)

)
+

1

b(−k)
f ′
(

2Q∗

b(−k)

)
≥ 0

Therefore, as b < 0 by definition, the third derivative 3.19 of the manufacturer’s profit

is positive and the consequently the second derivative in 3.18 is strictly increasing.

Analyzing the first derivative with respect to Q∗ at Q∗ = 0 and for Q→∞ and the

second derivative for Q→∞ allows us to draw conclusions about the existence of a

unique solution:

dΠIRP
M (Q∗ = 0)

dQ∗
= k − c > 0, (3.20)

limQ→∞
dΠIRP

M (Q∗)

dQ∗
= −c < 0 (3.21)

and

limQ→∞
d2ΠIRP

M (Q∗)

dQ∗2
= 0 (3.22)

Based on that we conclude that the second derivative is negative for all values of

Q < ∞ and thus there exists a unique solution Q∗ that satisfies the first order

condition

dΠIRP
M (Q∗)

dQ∗
= k − kF

(
2Q∗

b(−k)

)
+

4Q∗

b

∫ ∞
2Q∗

b(−k)

1

x
f(x)dx− c = 0

The expression for w∗ is obtained by inserting the implicit expression for Q∗ and

s = 0 into equation 3.12. Similarly, using the obtained terms for w∗, Q∗ and s = 0 we

obtain the stated expressions for the expected retail price and each of the partners

profits.
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CHAPTER 4

CONSIDERING VERSUS IGNORING RETURNS UNDER
PRICE POSTPONEMENT

In this chapter we compare the policies CRP and IRP, i.e. we evaluate the behavior

of the supply chain if the retailer postpones his decision on the retail price and either

does take into account returns or not. We perform a computational study for the

system under both a wholesale and a buyback contract. In order to analyze the

value of considering returns, we compare our results under price postponement to the

outcomes in Ruiz-Benitez and Muriel (2007)[39], where the decision on the retail price

is not delayed. Chapter 5 then will focus on the value of the additional information

gained by postponing the pricing decision, i.e. we compare the systems performance

for considering returns with and without postponement.

To perform computational work we need to establish specific parameter values

and probability distribution functions. For the following analysis we use a uniform

distribution on the interval (0,2) to represent the probability distribution function

of the uncertainty term x, i.e. x ∼ U(0, 2). For the expected demand of the form

D(r) = b(r − k) we assume the parameter values (b, k) = (−3, 5). Both Emmons &

Gilbert (1998) [14] and Ruiz-Benitez (2007) [38] use the same parameter specifications

in their work. In our base case we will consider a return volume of α = 20%, a

retailer’s share of the retrun logistics costs of β = 5%, salvage values v = vR = 0

and also production costs c = 1 if not stated otherwise. We conduct a sensitivity

analysis in the latter parameters in order to give our observations more weight (see

table 4.1). Also we include further computational results for different values of b and

k in the appendix and mention important differences. Note that using the assumption
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b k c β α l v vR

-3 5 [1, 3] [5%, 95%] [6%, 35%] [1, 3] [0, 1] [0.5v, v]
-3 2.5 [0.2, 1.6] [5%, 95%] [6%, 20%] [1, 3] [0, c] [0.5v, v]

-1.5 10 [1, 3] [5%, 95%] [6%, 35%] [1, 3] [0, 1] [0.5v, v]

Table 4.1. Scope of the sensitivity analysis

of a uniform distribution for the distribution of x allows to simplify the derivations

we presented so far. However, the problem of being unable to resolve the first order

condition for Q remains. Also, note that we will use the same parameter values

as stated here as our base case throughout our further computational work. To

investigate the effect of considering versus ignoring returns under price postponement

we analyze the equilibrium values for the decision variables as well as the supply

chain partners’ and the overall profits for the decentralized case. To evaluate the

coordination of the system we establish the profits in the centralized setting as a

benchmark.

4.1 CRP vs. IRP under a Wholesale Price-Only Contract

We start out by presenting our observations for the defined base case without a

buyback offer by the manufacturer, i.e. unsold products remain with the retailer at

a salvage value of v.

Figure 4.1 shows the optimal order quantity Q, the expected retail price E[r] and

the wholesale price w for different production cost values c. We find that the optimal

order quantity is higher when both players ignore returns. The retail and wholesale

price, however, are lower if returns are not taken into account. These relationships

seem intuitive. When considering returns, prices are higher to cope with the costs

caused by the expected number of returned products and lower sales come with a

lower absolute number of returns.
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Figure 4.1. Optimal decision variables for different production cost values and for
policies IRP and CRP when no repurchase price is offered

The left graph in figure 4.2 contains the expected supply chain profits for the

centralized and decentralized system as a function of the production costs c. We

find that under price postponement and no buyback offer considering returns leads

to higher profits for the whole supply chain than ignoring returns, as indicated by

the blue lines. This observation stands in contrast to the results delivered by Ruiz-

Benitez and Muriel (2007)[39], who conduct similar analysis for the case without price

postponement. They find that both the supply chain profits and the profits of the

partners are higher if returns are ignored as indicated by the right graph in figure 4.2.

Under price postponement the preference for considering returns even increases for

higher production costs c, i.e. while profits decline the difference between IRP and

CRP becomes larger. As the absolute gap between order quantities remains fairly

constant for higher values of c (see Figure 4.1) the impact of the returned goods

becomes more accentuated by the increasing value of the product.

From Figure 4.2 we also discover that the absolute profit gap to the centralized

system considering returns decreases for higher production costs c. The percentage

values in table 4.2 show the relative differences between the two systems, calculated
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Figure 4.2. Total supply chain profits for the centralized and decentralized systems
under policies CRP and IRP and CR and IR for α = 20%, β = 5% and varying
production costs c under a wholesale contract

as Πcent−Πdecent

Πcent
. As the wholesale price increases at a lower rate than c (see Fig-

ure 4.1), the relative difference between the two parameters becomes smaller. As a

consequence the effect of double marginalization is reduced and the optimal order

quantity for the decentralized system lies closer to the optimal Q in the centralized

case. Thus, coordination is better for higher product values. Also in the context of

double marginalization, we additionally observe the following: for the case of ignor-

ing returns the centralized system is outperformed by the decentralized system for high

values of c (see again Figure 4.2). In the decentralized system the retailer’s order

quantity is lower than in the centralized case as he purchases the products for the

wholesale price w and not the production costs c. Thus he sees a lower profit margin.

However, ignoring returns leads the decentralized system to a higher order quantity

than optimal under returns. Consequently, the effect is compensated for higher values

of c when the difference between w and c becomes smaller. The decentralized system’s

order quantity ends up being closer to the optimal centralized one when considering

returns.
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IRP CRP
decentr. centr. %∆ decentr. centr. %∆

production cost c = 1
E[r∗] 3.776 3.000 −20.6% 3.992 3.375 −15.5%
Q∗ 2.707 6.578 142.9% 1.886 4.787 153.8%

ΠSC 2.664 3.550 33.2% 3.246 4.695 44.6%
production cost c = 2

E[r∗] 4.113 3.500 −14.9% 4.407 4.000 −9.2%
Q∗ 1.663 3.787 127.7% 0.892 2.096 135.0%

ΠSC 0.031 -0.464 −1587.3% 0.976 1.384 41.8%
production cost c = 3

E[r∗] 4.427 4.000 −9.6% 4.788 4.625 −3.4%
Q∗ 0.903 1.985 119.9% 0.238 0.531 123.5%

ΠSC -0.991 -1.943 −96.1% 0.101 0.141 39.8%

Table 4.2. Comparison of the centralized and decentralized system for α = 20% and
β = 5% under the wholesale contract

Looking at the profits of the single partners in figure 4.3 , we observe that - for

the chosen value of β = 0.05, i.e. the manufacturer faces 95% of the reverse logistics

costs l - the latter clearly is better off when considering returns. The retailer, however,

carrying the smaller part of l, prefers to ignore returns. We will further investigate

these assymetric preferences in the upcoming sensitivity analysis. We further note

that the growing preference for CRP in the production costs c is mainly contributed

by the manufacturer whereas the retailer’s profit gap to policy IRP remains fairly

constant.

Our major observations for the wholesale contract under price postponement and

the parameter assumptions of our base case can be summed up as follows:

• Order quantities are lower, retail and wholesale price higher when returns are

considered.

• Considering returns leads to higher expected total profits for the supply chain.
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Figure 4.3. Profit functions in c of the decentralized system for the policies IRP
and CRP for α = 20% and β = 5% under a wholesale contract

• Higher production costs result in better coordination of the decentralized supply

chain both when considering and ignoring returns, and in greater profit loss

associated with ignoring returns.

• Although the supply chain is better off if returns are included, this strategy

may be profitable for only one of the partners.

To investigate whether these conclusions stay valid for different choices of the

parameters we conduct a sensitivity analysis in the production cost c, the return rate

α, the retailer’s share of the return logistics cost β, the salvage values for unsold and

returned products, v and vR, as well as for the parameters b and k, which determine

the price elasticity and market size of the associated expected linear demand function

D(r) = b(r − k). In short, we find that our first three observations remain valid -

more or less accentuated - during the whole scope of our computations. Concerning

the single players’ profits we determine the share of return logistics costs to be the

decisive factor for their preference of the return strategy. Moreover we find that
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under postponement the latter also leads to better coordination of the supply chain

if the retailer faces the higher share. Finally we point out the following difference

in influence of parameters: Under higher production costs c coordination improves

and considering over ignoring returns becomes more profitable for both partners. An

increase in the driving factors for the impact of returns, α, l and vR, makes considering

returns more preferable, but coordination gets worse and the preferences of the single

players concerning their strategy remain dependent on the share β of the return

logistics costs. In what follows we describe the sensitivity analysis in detail.

Different share of return logistics costs

Our analysis so far was based on a value for β of β = 0.05, which means that

the manufacturer carries 95% of the return logistics cost. Figure 4.4 displays the

behavior of both the decision variables (left graph) and the profits if the parameter

β is varied from 5% to 95%. We observe that the wholesale price w under policy

CRP decreases in β whereas the expected retail price stays (fairly) constant and the

optimal order quantity increases only slightly. The decrease in w obviously is based on

the decreasing return costs for the manufacturer and, at the same time, compensates

the retailer’s decreasing profit margin. As a consequence of the lower wholesale price

the retail price stays constant and the expected profits of both partners and of the

total supply chain increase (slightly) as can be seen from Figure 4.4. In other words,

increasing the retailer’s share of the return logistics costs improves the coordination of

the supply chain. We point out that Ruiz-Benitez and Muriel (2007)[39] observe the

same in their comparison of the policies CR and IR, i.e. without price postponement.

Considering the profits of each of the supply chain partners in the decentralized

system for considering versus ignoring returns, we find that we have to distinguish

between different values for the retailer’s share of the return logistics costs β: When

the retailer faces a low share of the return logistics costs, the manufacturer prefers to
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Figure 4.4. Optimal decision variables and profits for different values of β under
policies IRP and CRP and α = 20%, no repurchase price offered

consider returns whereas the retailer is better off if the latter are ignored. The opposite

is the case for high values of β. Figure 4.3 represents the partner’s and the supply

chain profits as a function of the production costs c for our base case with α = 20%

and β = 5%. For this choice of the parameters the retailer’s profits are higher if both

partners ignore returns whereas the manufacturer is better off by far if returns are

considered as he carries 95% of the return logistics costs. The supply chain partners’

preferences concerning the return policy, however, change for increasing values of β.

The right graph in Figure 4.4 shows that below a certain value β∗∗ the manufacturer

is better off if returns are considered in the system. If the retailer’s share falls below

β∗ he prefers to ignore returns and thus again, considering returns is suboptimal for

one of the partners. Figure 4.4, however, also shows that, for the chosen parameters,

there exists a range (β∗, β∗∗) in which both partners prefer to consider returns.

We note, however, that for higher production costs as shown in figure 4.5 (c = 3),

both players will prefer considering returns no matter who bears the higher logistics

cost. We point out that the production costs are the only driving factor for this

change. Neither an increased return percentage nor higher logistics cost result in the
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Figure 4.5. Profits in the decentralized system under policies CRP and IRP for
α = 20%, c = 3 and varying share of return logistics costs β under a wholesale
contract

CRP becoming the best choice for both players. Therefore, in a setting in which both

players are allowed to choose their respective policy, these observations have to be

considered as they might lead to asymmetric behavior. Possible consequences of the

latter in a similar setting without price postponement are studied in Schmitt (2007)

[42].

Different percentage of sales returned and different logistics costs

For an increased volume of returns α and for higher return logistics cost l we

observe similar behavior in the decision variables as for increased values of c; this is

basically the effect of increased costs associated with returns. Figure 4.6 shows that

higher costs associated with returns lead to an increase in the expected optimal retail

price E[r∗] and the optimal wholesale offer w∗ while the optimal order quantity Q∗

decreases. Note again that the increase of the wholesale price becomes lower if the

the manufacturer’s share of the return logistics cost 1− β decreases.
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Figure 4.6. Optimal decision variables for different volumes of returns α and return
logistics cost l under policies IRP and CRP and β = 5%, l = 2 (left graph), α = 20%
(right graph); no repurchase price offered

From Figure 4.7 we find that both for higher percentages of sales returned and

higher return costs, considering returns becomes more and more profitable for the

supply chain, the reason simply being the higher mistake in the optimization process

associated with ignoring returns (not a decreased double marginalization effect). For

the displayed case of β = 5% the manufacturer prefers to consider returns whereas

the retailer would be better off to ignore them. Again these preferences change for

higher values of β.

As stated earlier, however, higher return costs do not have the same effect as

the production costs c on each of the partners’ preferences regarding considering

or ignoring returns, i.e. they do not lead to the former being more profitable for

both players no matter who shares the higher part of the return costs l. Table

4.3 shows that, for constant production costs c = 1, a significant increase in both

return rate and logistics costs from (α, l) = (6%, 1) to (35%, 3) does not change the

single partner’s preferences concerning the optimal strategy. In fact, higher costs

caused by returns significantly increase both the absolute and relative difference to

the unprefered strategy (see bold values and their counterparts). Also in contrast
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Figure 4.7. Expected profits for different volumes of returns α (l = 2) and return
logistics cost l (α = 20%) under policies IRP and CRP and β = 5%; no repurchase
price offered

to the positive influence of higher production costs c on the coordination of the

supply chain, we point out that both higher returns and higher values of l lead to

an increase in the relative difference to the profits of the centralized system, i.e.

coordination becomes worse as shown by the percentage values at the bottom of

table 4.3: As an example, the profits of the centralized system are 38.8% higher than

in the decentralized system for 6% returns and return logistics costs of l = 1. For

α = 35% and l = 3 the gap has increased to 43.3% of the profits in the decentralized

supply chain. As a sidenote, table 4.3 again shows the positive influence on supply

chain profits of an increase in the retailer’s share β of the return logistics costs.

For high costs associated with returns the coordination gap decreases from 60.2% to

43.3%. Also note the negative percentage numbers under policy IRP indicating that

the decentralized system outperforms the centralized system for high costs associated

with returns.
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α = 6%, l = 1 α = 35%, l = 3
IRP CRP IRP CRP

β = 5%
ΠM 3.432 3.614 -2.739 0.405
ΠR 2.422 2.348 0.937 0.252
ΠSC 5.854 5.962 -1.802 0.656
%∆ 38.5% 39.1% −69.3% 60.2%

β = 95%
ΠM 3.630 3.626 0.731 0.446
ΠR 2.223 2.348 -2.532 0.288
ΠSC 5.854 5.974 -1.802 0.734
%∆ 38.5% 38.8% −69.3% 43.3%

Table 4.3. Influence of increased return volumes α and return logistics costs l on
the partner’s policy preferences (bold values) and on supply chain coordination (per-
centage difference to the centralized system) for c = 1 and different values for the
retailer’s share β of l

IRP CRP
v vR E[r∗] w∗ Q∗ E[r∗] w∗ Q∗

β = 5%
0.2 0.1 3.766 2.532 2.811 3.976 2.928 1.971
0.6 0.3 3.743 2.487 3.064 3.940 2.855 2.181
1.0 0.5 3.715 2.429 3.419 3.885 2.746 2.512

β = 95%
0.2 0.1 3.761 2.523 2.759 3.976 2.476 2.029
0.6 0.3 3.736 2.471 2.852 3.936 2.396 2.153
1.0 0.5 3.700 2.400 2.983 3.889 2.303 2.304

β = 5%
0.2 0.2 3.766 2.532 2.811 3.968 2.911 1.995
0.6 0.6 3.743 2.487 3.064 3.915 2.806 2.262
1.0 1.0 3.715 2.429 3.419 3.849 2.672 2.654

β = 95%
0.2 0.2 3.766 2.532 2.811 3.968 2.460 2.106
0.6 0.6 3.743 2.487 3.064 3.926 2.377 2.382
1.0 1.0 3.715 2.429 3.419 3.852 2.229 2.896

Table 4.4. Optimal values of decision variables for increasing salvage values under
the wholesale contract; base case parameter specifications
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Figure 4.8. Optimal values of the decision variables and respective expected profits
as a function of the salvage values v for unsold products and vR for returned products,
which are assumed to be equal; no repurchase price offered

Positive salvage values

So far we have only considered both the salvage value for unsold products v and

for returned products vR to be equal to zero. Note that under a wholesale price

contract surplus inventory at the end of the selling season stays with the retailer and

thus he realizes the salvage value v. Products returned by the consumer are bought

back for the full wholesale price w by the manufacturer, who retrieves an average

value of vR per item. The following computational results show that positive salvage

values have the opposite effect on the behavior of the optimal values of the decision

variables and the expected profits than the two parameters α and l. This is intuitive,

since it reduces the costs associated with returns. Figure 4.8 assumes a return rate

of α = 20%, production costs of c = 1, return logistics cost of l = 2, of which 5%

is carried by the retailer, and that the salvage value for returned products is half

the salvage value for unsold products, i.e. vR = 0.5v. We observe the expected:

the optimal wholesale and retail prices are higher when considering returns, but the

absolute difference decreases (slightly). For a low manufacturer’s share of the return
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IRP CRP
v vR ΠM ΠR ΠSC %∆ ΠM ΠR ΠSC %∆

β = 5%
0.2 0.1 1.100 1.823 2.923 33.4% 2.047 1.355 3.402 45.8%
0.6 0.3 1.475 2.045 3.520 34.8% 2.246 1.532 3.778 49.5%
1.0 0.5 1.934 2.352 4.286 40.0% 2.501 1.819 4.320 58.2%

β = 95%
0.2 0.1 2.378 0.451 2.829 37.8.4% 2.084 1.388 3.472 42.9%
0.6 0.3 2.636 0.527 3.163 50.0% 2.218 1.524 3.742 51.0%
1.0 0.5 2.912 0.640 3.552 68.9% 2.365 1.693 4.058 68.4%

β = 5%
0.2 0.2 1.174 1.823 2.997 34.2% 2.085 1.382 3.467 45.4%
0.6 0.6 1.701 2.045 3.746 37.3% 2.369 1.622 3.991 48.4%
1.0 1.0 2.320 2.352 4.672 44.6% 2.734 1.975 4.709 56.1%

β = 95%
0.2 0.2 2.506 0.490 2.997 34.2% 2.153 1.444 3.597 40.2%
0.6 0.6 3.058 0.688 3.746 37.1% 2.467 1.669 4.136 43.2%
1.0 1.0 3.708 0.964 4.672 44.5% 2.886 2.101 4.986 47.4%

Table 4.5. Optimal expected profits for increasing salvage values under the wholesale
contract; base case parameter specifications

logistics costs, w∗CRP drops below the optimal wholesale price when ignoring returns

as can be seen in table 4.4. The retailer still orders less when considering returns

with the gap to IRP slightly increasing for higher salvage values.

With respect to the profits we find that the supply chain remains better off if

returns are considered. However the absolute gap between the two policies is getting

smaller as can be seen from table 4.5 for a return volume of α = 20%. We note that

for α = 6% and the extreme case β = 5%, v = vR = c ignoring returns is the slightly

better choice for the decentralized supply chain. Concerning the overall difference to

the performance of the centralized system we find from table 4.5 that coordination

becomes worse under both policies. For β = 95% and v = 2vR = c the profits of

the centralized system are 68.9% and 68.4% higher than for the decentralized supply

chain under policy IRP and CRP, respectively. Looking at the profits of the single

partners we observe that in particular the manufacturer’s profit under IRP catches up
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α = 6%, l = 1 α = 20%, l = 3
IRP CRP ∆ IRP CRP ∆

β = 5%
E[r∗] 2.053 2.090 0.037 2.053 2.405 0.352
w∗ 1.607 1.677 0.071 1.607 2.230 0.623
Q∗ 0.840 0.729 -0.111 0.840 0.100 -0.740

(b, k) = (−3, 2.5) β = 95%
E[r∗] 2.053 2.095 0.042 2.053 2.279 0.226
w∗ 1.607 1.630 0.023 1.607 1.583 -0.024
Q∗ 0.840 0.724 -0.117 0.840 0.322 -0.518

β = 5%
E[r∗] 3.776 3.776 0.000 3.776 3.992 0.216
w∗ 2.552 2.552 0.000 2.552 2.959 0.406
Q∗ 2.707 2.707 0.000 2.707 1.886 -0.822

(b, k) = (−3, 5) β = 95%
E[r∗] 3.776 3.811 0.034 3.776 3.990 0.214
w∗ 2.552 2.561 0.008 2.552 2.505 -0.048
Q∗ 2.707 2.559 -0.149 2.707 1.986 -0.722

β = 5%
E[r∗] 7.180 7.210 0.030 7.180 7.373 0.193
w∗ 4.361 4.417 0.056 4.361 4.722 0.361
Q∗ 3.408 3.288 -0.120 3.408 2.842 -0.566

(b, k) = (−1.5, 10) β = 95%
E[r∗] 7.180 7.232 0.052 7.180 7.383 0.203
w∗ 4.361 4.343 -0.018 4.361 4.291 -0.070
Q∗ 3.408 3.271 -0.137 3.408 2.910 -0.498

Table 4.6. Optimal values of the decision variables for different market sizes and
price elasticities under a buyback contract

with respect to policy CRP, whereas the absolute gap between the retailer’s profits

under the different strategies stays fairly constant. At last we note that also the

positive effect of high retailer’s shares of l on the supply chain profits remains valid

for positive salvage values.

Different market size and price elasticity

To complete our investigations on wholesale contracts we conducted the same

sensitivity analysis for different values of b and k, where b represents the price elasticity
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and bk the market size. The two additional scenarios consist of a market with half the

size than under the base case and a market with half of the base case price elasticity.

Table 4.6 shows the equilibrium values of the decision variables for the three

scenarios and for different return volumes, return logistics costs and shares of costs.

We observe that for the values under both IRP and CRP reducing market size results

in lower values and reducing price elasticity in higher ones. The influence of the

retailer’s share and higher costs associated with returns remain valid under policy

CRP.

Looking at the profits in table 4.7 we also make similar observations as before. For

both a lower market size and lower price elasticity, the supply chain is clearly better

off if returns are considered. The preferences of the single partners again depend on

the value of β. Finally, we point out that the profit gap to the centralized system

lies in a range from 37% to 45% for all parameter specifications whereas lower price

elasticity has a negative effect on coordination if returns are considered. The effect

of the remaining parameter on coordination, remains the same for all three scenarios,

more or less accentuated.

4.2 CRP vs. IRP under a Buyback Contract

Before we present the results of our computations, we shortly recall the man-

ufacturer’s expected profit function under CRP and our derivations under IRP. In

proposition 2 we have shown that, under ignoring returns, there exists a unique opti-

mum for the manufacturer’s profit function. When considering returns, however, we

were unable to prove analytically neither the existence of a maximum nor the concav-

ity of the function. Therefore, for our computational work we ensured the latter two

properties by plotting the manufacturer’s profit for the different parameter values.

Figure 4.9 presents two different views for our base case parameter specifications.
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α = 6%, l = 1 α = 20%, l = 3
IRP CRP IRP CRP

β = 5%
ΠM 0.304 0.384 -0.430 0.078
ΠR 0.277 0.239 0.170 0.048
ΠSC 0.581 0.624 -0.260 0.126
%∆ 29.1% 36.9% −117.9% 44.2%

(b, k) = (−3, 2.5) β = 95%
ΠM 0.377 0.386 0.052 0.082
ΠR 0.204 0.234 -0.312 0.050
ΠSC 0.581 0.621 -0.260 0.132
%∆ 29.1% 37.6% −117.9% 37.8%

β = 5%
ΠM 3.432 3.614 0.934 1.962
ΠR 2.422 2.348 1.730 1.284
ΠSC 5.854 5.962 2.664 3.246
%∆ 38.5% 39.1% 33.2% 44.6%

(b, k) = (−3, 5) β = 95%
ΠM 3.630 3.626 2.256 2.020
ΠR 2.223 2.348 0.409 1.342
ΠSC 5.854 5.974 2.664 3.362
%∆ 38.5% 38.8% 33.2% 39.7%

β = 5%
ΠM 10.107 10.291 6.159 7.132
ΠR 6.945 6.929 5.204 4.895
ΠSC 17.052 17.220 11.363 12.027
%∆ 41.2% 40.6% 46.0% 44.5%

(b, k) = (−1.5, 10)
ΠM 10.323 10.157 7.681 7.255
ΠR 6.476 6.834 3.681 4.964
ΠSC 16.799 16.991 11.363 12.219
%∆ 41.2% 40.4% 46.0% 42.2%

Table 4.7. Equilibrium profits for different market sizes and price elasticities under
a wholesale contract
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Figure 4.9. Expected profit function of the manufacturer for the base case specifi-
cations

In their comparison of considering versus ignoring returns without price post-

ponement, Ruiz-Benitez and Muriel (2007)[39] show that buyback contracts do not

coordinate the decentralized system. However, if returns are considered, there exist

values for the wholesale price w and the buyback offer s under which both the re-

tailer and the manufacturer are better off than under the wholesale contract. Yet, for

the particular case of ignoring returns, buybacks may have a negative effect on the

supply chain profits compared to a setting in which unsold inventory remains with

the retailer. Even though ignoring returns under no postponement may lead to worse

coordination under buybacks than under a wholesale contract, it remains the better

policy for a supply chain facing returns - if the retail price is set before the order

quantity is chosen. In the following we present our computational results when the

latter decision is postponed. We start out by analyzing the base case defined earlier

and vary the parameter c for the production costs. Then, we conduct a sensitivity

analysis in order to formulate more general results on the comparison of CRP and

IRP under buybacks and the difference to the wholesale contract we discussed in the
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previous section. We observe the following under the parameter specifictations of our

base case:

1. Under both policy IRP and CRP supply chain coordination improves when a

buyback contract is offered (Figure 4.10). When ignoring returns the decentral-

ized system outperforms the centralized system (Table 4.8).

2. Under both policies IRP and CRP the manufacturer is better off under a buy-

back contract than under a whole sale contract (Figure 4.10).

3. The retailer (slightly) prefers the wholesale contract for small production costs

c. For high values of c he is (slightly) better off under a buyback contract (Table

4.8).

4. The values of the decision variables are higher under buybacks.

Figure 4.10. Expected profits in equilibrium under a buyback and a wholesale
contract for strategies CRP(left) and IRP(right); α = 20%, β = 5%

Figure 4.10 nicely compares the equilibrium profits under a buyback and a whole-

sale contract for both strategies, CRP and IRP, and our base case parameter specifi-

cations. Both graphs show the better coordination of the decentralized system under
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CRP IRP
Buyback-Cont. Wholesale Cont. Buyback-Cont. Wholesale Cont.

production cost c = 1
ΠM 2.346 1.962 1.835 0.934
ΠR 1.241 1.284 1.727 1.730
ΠSC 3.587 3.246 3.562 2.664
%∆ 30.9% 44.6% −0.4% 33.2%

production cost c = 3
ΠM 0.070 0.064 -0.942 -1.209
ΠR 0.038 0.037 0.234 0.218
ΠSC 0.109 0.101 -0.707 -0.991
%∆ 29.4% 39.8% −174.7% −96.1%

Table 4.8. Percent difference to full coordination under a buyback and a wholesale
contract for strategies IRP and CRP; base case parameter specifications

buyback contracts, which is valid for all values of c = 1 to c = 3 although the gap de-

creases. A numerical example for the base case is given in table 4.8. The coordination

under considering returns improves from a 44.6% difference to 30.9%. For ignoring

returns we even find that the relative profit gap of 33.2% turns into a negative dif-

ference of −0.4%, i.e. profits in the centralized system are 0.4% lower than in the

decentralized system. As already found for the wholesale contract, higher production

costs c lead to better coordination. For policy CRP this effect is stronger under a

wholesale contract, whereas under strategy IRP higher product values result in a by

far more signficant increase under the buyback contract (from −0.4% to −174.7%

compared to 33.2% to −96.1%).

The major reason for the higher total profits under buybacks is a gain for the

manufacturer, whereas the retailer seems indifferent between the two forms of con-

tracts. Looking at figure 4.11 we see that, under both strategies, the buyback offer

encourages the retailer to order higher quantities as the risk of having items left over

at the end of the season is shared with the manufacturer. The higher order quan-

tity and a higher wholesale price (w increases stronger by far than E[r]) seems to

overcompensate the additional expected costs for taking back unsold inventory and
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thus the manufacturer is clearly better off under buybacks. Although the retailer

should profit from the lower risk he faces, the higher wholesale price takes away the

advantage.

Figure 4.11. Optimal values of the decision variables under a buyback and a whole-
sale contract for strategies CRP(left) and IRP(right); α = 20%, β = 5%

Before we verify and extend these four base case observations in a sensitivity

analysis, we focus on the comparison between the policies IRP and CRP under a

buyback contract as we originally did for the wholesale contract. We observe the

same relationships as under the wholesale contract:

For a return volume of α = 20% and a retailer share of the logistics cost of

β = 5%, table 4.9 shows the equilibrium values of the decision variables and the

expected profits for different production cost c. As under the wholesale contract, we

find that the retail price under CRP is higher while the order quantity is lower than

under policy IRP. The fact that the manufacturer shares the major part of the return

logistics costs, results in the wholesale price being higher if returns are considered.

Also, the manufacturer offers a buyback price that lies above the value when ignoring

returns and increases in c, which seems intuitive. We will see later that the buyback

offer is similarly influenced by the manufacturer’s share of the return logistics cost as
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c = 1 c = 2 c = 3
CRP IRP CRP IRP CRP IRP

E[r∗] 4.163 4.000 4.483 4.250 4.803 4.500
w∗ 3.302 3.000 3.941 3.500 4.581 4.000
s∗ 2.777 2.500 2.853 2.500 2.944 2.500
Q∗ 2.453 3.289 1.067 1.894 0.276 0.993
ΠM 2.346 1.835 0.691 -0.187 0.070 -0.942
ΠR 1.241 1.727 0.366 0.739 0.038 0.234
ΠSC 3.587 3.562 1.057 0.552 0.109 -0.707

Table 4.9. Equilibrium values under a buyback contract for decision variables and
profits for the strategies CRP and IRP; return volume of α = 20%, retailer’s share of
l of β = 5% contract

the wholesale price w. Looking at the profits, we again notice that the profitability of

considering returns versus ignoring returns grows for a higher product value c. Also

note that only the manufacturer is better off when considering returns as he faces a

high share of the return logistics cost l. We will see that also under buybacks these

preferences change for a different share of l.

Figure 4.12. Optimal values of decision variables and expected profits under a
buyback contract for different shares of return logistics costs β; base case parameter
specifications
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β = 5% β = 95%
CRP IRP CRP IRP

E[r∗] 4.803 4.500 4.802 4.500
w∗ 4.581 4.000 4.129 4.000
s∗ 2.944 2.500 2.472 2.500
Q∗ 0.276 0.993 0.278 0.993
ΠM 0.070 -0.942 0.070 -0.402
ΠR 0.038 0.234 0.039 -0.306
ΠSC 0.109 -0.707 0.109 -0.707

Table 4.10. Equilibrium values for decision variables and profits under a buyback
contract for high production costs and different share of return logistics costs; return
volume of α = 20%

Different Share of Return Logistics costs

As indicated in the previous section, we observe the typical behavior of both equi-

librium values of the decision variables and profits for varying values of β also under

buybacks. Figure 4.12 shows that, under buybacks, only the wholesale price and the

buyback offer when considering returns are affected by changing values of β. With

the retailer facing higher return costs the values for both variables decrease, thus

compensating the retailer. The retail price and order quantity, as a consequence, re-

main (fairly) independent of the retailer’s share of logistics costs. Concerning profits,

we again observe that the preference for considering returns changes to the partner

who carries a high part of the return costs (the values of β for which preferences

change are not the same, as might be concluded from figure 4.12). In contrast to the

wholesale contract, we were unable to observe a significant increase of total profits

if the retailer carries a high share of the return logistics costs. On the contrary, we

found examples in which total profits decrease (slightly).

Similar to the wholesale setting, we observe that the influence of β on the prefer-

ences of each of the players disappears for high production costs c. The reduced effect

of double marginalization leads to a growing β-range, in which considering returns

is the optimal strategy for both partners, as is indicated by the bold profit values in
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CRP IRP
Buyback-Cont. Wholesale Cont. Buyback-Cont. Wholesale Cont.

production cost c = 1
ΠM 2.346 2.020 2.915 2.256
ΠR 1.236 1.342 0.648 0.409
ΠSC 3.582 3.362 3.562 2.664
%∆ 31.1% 39.7% −0.4% 33.2%

production cost c = 3
ΠM 0.070 0.065 -0.402 -0.590
ΠR 0.039 0.038 -0.306 -0.401
ΠSC 0.109 0.103 -0.707 -0.991
%∆ 29.0% 37.0% −174.7% −96.1%

Table 4.11. Comparison of equilibrium values for profits when the retailer shares
95% of the return logistics cost between buyback and wholesale contract for different
production costs

the numerical example in table 4.10: the manufacturer’s preference is already inde-

pendent of β and the retailer’s preference for IRP has decreased significantly if we

compare his profits to table 4.9 for c = 1.

Finally, coming back to the four base case observations for the comparison of

buyback and wholesale contracts we made at the beginning, we find the following

from table 4.11: Observation 1 remains valid for all values of β, i.e. for both CRP

and IRP buyback contracts lead to higher profits for the decentralized supply chain

with all other parameters fixed to the base case specifications, also if β and c are

increased. In contrast to policy CRP under a wholesale contract, we found that there

is no significant increase of profits for the retailer facing a higher share of the return

logistics costs under buybacks. As a consequence the difference between the profits

under the two contracts decreases in β when considering returns, whereas it stays

constant when ignoring them. Also observation 2, the manufacturer’s preference for

buybacks, does not change for higher values of β. In observation 3 we stated that, for

both IRP and CRP the retailer is (slightly) better off under the wholesale contract

for a low share of return costs and low production costs while he prefers buybacks
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for high product values. Comparing table 4.11 for β = 95% with table 4.8 shows

that the statement remains valid also for high production costs except that, under

IRP, the retailer’s preference for buybacks becomes independent from c and is more

significant than when considering returns. At last, concerning the difference between

the decision variables, values under buybacks remain higher, as stated in observation

4, and the gap stays fairly constant for higher values of β.

Figure 4.13. Comparison of optimal values of decision variables and expected profits
when considering returns under a buyback and a wholesale contract for different
return volumes α; base case parameter specifications

Different return volumes and return logistics costs

Varying the parameters α (return volume) and l (return logistics costs) in the

intervals [6%, 35%] [1, 3] respectively allows us to further generalize observations 1-4.

When considering returns we find that the buyback contract better coordinates the

decentralized supply chain within these parameter ranges, even though the absolute

gap to the total profits decreases. The same holds for the manufacturer, who remains

better off under buybacks for all levels of costs associated with the returns. The

retailer’s preference concerening the contract form tends towards the wholesale con-
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tract for low return costs and towards the buyback contract for high costs associated

with returns. The relationships of the decision variables between the two contract

forms (observation 4) remain valid, too. Similarly to the profits, the gaps are getting

smaller. Figure 4.13 shows these observations for policy CRP as a function of α and

for l = 2. Increasing the return logistics cost l for a fixed α leads to similar graphs,

whereas both parameters accentuate each other as they are multiplied in the profit

functions.

Figure 4.14. Comparison of optimal values of decision variables and expected profits
when ignoring returns under a buyback and a wholesale contract for different return
volumes α; base case parameter specifications

When returns are ignored we also can confirm our observations 1-4. We note that

the buyback contract leads to increasingly better results than the wholesale contract,

thus the total profit gap and the difference between the manufacturer’s profits under

the different contracts increase. The retailer also profits from a buyback offer for

higher costs associated with returns. The decision variables are not influenced by the

return costs as the latter are not considered in the optimization problem.

Apart from the difference between the wholesale and buyback contract, we shortly

summarize the comparison of CRP and IRP under buybacks. Table 4.12 shows that
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α = 6%, l = 1 α = 35%, l = 3
IRP CRP ∆ IRP CRP ∆

β = 5%
E[r∗] 4.000 4.010 0.010 4.000 4.521 0.521
w∗ 3.000 3.017 0.017 3.000 3.962 0.962
s∗ 2.500 2.488 -0.012 2.500 3.432 0.932
Q∗ 3.289 3.154 -0.135 3.289 1.126 -2.163

β = 95%
E[r∗] 4.000 4.016 0.016 4.000 4.519 0.519
w∗ 3.000 2.972 -0.028 3.000 2.503 -0.497
s∗ 2.500 2.442 -0.058 2.500 1.946 -0.554
Q∗ 3.289 3.127 -0.161 3.289 1.117 -2.172

Table 4.12. Comparison of equilibrium values for decision variables under a buyback
contract for strategies CRP and IRP; the retailer carries 5% of the return logistics
costs

α = 6%, l = 1 α = 35%, l = 3
IRP CRP IRP CRP

β = 5%
ΠM 4.064 4.144 -1.368 0.525
ΠR 2.198 2.156 1.180 0.282
ΠSC 6.262 6.300 -0.188 0.807
%∆ 29.5% 31.6% −1525.2% 30.3%

β = 95%
ΠM 4.226 4.145 1.467 0.525
ΠR 2.036 2.125 -1.655 0.282
ΠSC 6.262 6.270 -0.188 0.807
%∆ 29.5% 32.2% −259.5% 30.3%

Table 4.13. Comparison of equilibrium values for profits under a buyback contract
for strategies CRP and IRP; the retailer carries 5% of the return logistics costs

60



also under buybacks higher costs associated with returns lead to a higher expected

retail price E[r∗], a higher wholesale price w∗ and a higher buyback offer s∗ (as the

values change with α and l the slope of the latter two is higher for a high share of the

return costs for the manufacturer), whereas the optimal order quantity Q∗ decreases.

Table 4.13 indicates the increasing profitability of policy CRP for higher α and l,

but also the negative effect on coordination, which stands in contrast to the positive

effect of the production cost c on the difference to the centralized system. Note the

manufacturer and retailer’s preferences for the displayed case of β = 5%. They switch

for β = 95% independently of how high the return costs are, which is again in contrast

to high production costs c.

Positive Salvage values

To continue our analysis we take a look at positive salvage values v and vR for

unsold and returned products. Just like under the wholesale contract we observe that

a positive salvage value vR has the opposite effect on profits and decision variables

than α and l because it decreases the costs associated with returns. From table 4.14 we

find that both retail and wholesale price decrease when considering returns and thus

reduce the gap to policy IRP under which the both parameters remain unaffected.

The buyback offer increases under both policies and ends up being (almost) equal to

the wholesale price for v = vR = c. The optimal order quantity Q∗ increases stronger

when ignoring returns.

The most important observations when looking at the respective profits in table

4.15 are the improvement of coordination of the decentralized system under consid-

ering returns, which is contrary to the wholesale contract and the conclusion that

already small salvage values lead to strategy IRP delivering higher total profits than

strategy CRP. For v = 0.2 and vR = 0.1 total profits under IRP are 3.855 whereas

considering returns leads to 3.805. The gaps to the respective centralized system are
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IRP CRP
v vR E[r∗] w∗ s∗ Q∗ E[r∗] w∗ s∗ Q∗

β = 5%
0.2 0.1 4.000 3.000 2.600 3.466 4.150 3.276 2.844 2.632
0.6 0.3 4.000 3.000 2.800 3.994 4.150 3.274 3.062 3.113
1.0 0.5 4.000 3.000 3.000 6.000 4.110 3.195 3.190 4.923

β = 95%
0.2 0.1 4.000 3.000 2.600 3.466 4.167 2.858 2.447 2.601
0.6 0.3 4.000 3.000 2.800 3.994 4.154 2.833 2.619 3.088
1.0 0.5 4.000 3.000 3.000 6.000 4.101 2.728 2.717 4.783

β = 5%
0.2 0.2 4.000 3.000 2.600 3.466 4.150 3.276 2.844 2.633
0.6 0.6 4.000 3.000 2.800 3.994 4.111 3.197 2.964 3.217
1.0 1.0 4.000 3.000 3.000 6.000 4.073 3.120 3.115 5.144

β = 95%
0.2 0.2 4.000 3.000 2.600 3.466 4.156 2.836 2.416 2.629
0.6 0.6 4.000 3.000 2.800 3.994 4.122 2.770 2.553 3.222
1.0 1.0 4.000 3.000 3.000 6.000 4.070 2.666 2.660 5.109

Table 4.14. Optimal values of decision variables for increasing salvage values under
the buyback contract; base case parameter specifications

3.8% and 28.4%, which shows that for the centralized system still considering returns

is the better approach. Comparing each of the partners’ profit gains, we find for

both strategies that it is the manufacturer who profits most from a positive salvage

value no matter who faces the higher share of the returns costs. This seems intuitive

as the latter actually realizes the salvage value for the returned and unsold prod-

ucts. The retailer only profits from the lower wholesale and higher buyback price the

manufacturer offers.

Coming back to the difference between the wholesale and buyback contract we

find all of our four original observations confirmed. Supply chain profits even increase

stronger under buybacks for higher salvage values no matter if returns are ignored or

considered. Also the manufacturer’s preference for buyback contracts becomes more

accentuated. Under policy CRP even the retailer ends up being better off eventually

for high salvage values, whereas under policy IRP, the wholesale contract remains his
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IRP CRP
v vR ΠM ΠR ΠSC %∆ ΠM ΠR ΠSC %∆

β = 5%
0.2 0.1 2.050 1.805 3.855 1.1% 2.478 1.327 3.805 30.4%
0.6 0.3 2.569 2.005 4.574 3.7% 2.824 1.471 4.295 31.5%
1.0 0.5 3.360 2.340 5.700 5.3% 3.407 1.889 5.297 29.0%

β = 95%
0.2 0.1 3.130 0.725 3.855 1.1% 2.480 1.283 3.763 31.8%
0.6 0.3 3.649 0.925 4.574 3.7% 2.824 1.454 4.278 32.0%
1.0 0.5 4.440 1.260 5.700 5.3% 3.402 1.914 5.316 28.6%

β = 5%
0.2 0.2 2.110 1.805 3.915 2.7% 2.520 1.328 3.848 31.1%
0.6 0.6 2.749 2.005 4.754 8.1% 2.955 1.598 4.553 30.1%
1.0 1.0 3.660 2.340 6.000 12.5% 3.662 2.052 5.714 28.6%

β = 95%
0.2 0.2 3.190 0.725 3.915 2.7% 2.521 1.315 3.836 31.5%
0.6 0.6 3.829 0.925 4.754 8.1% 2.958 1.570 4.529 30.8%
1.0 1.0 4.740 1.260 6.000 12.5% 3.661 2.060 5.721 28.5%

Table 4.15. Optimal expected profits and percentage difference to the centralized
system for increasing salvage values under the wholesale contract; base case parameter
specifications
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favorite setting. This confirms our observations so far indicating, that the retailer’s

gain from agreeing to a buyback contract is either not significant or negative.

Figure 4.15. Comparison of optimal values of decision variables and expected profits
under a buyback and a wholesale contract for different salvage values and shares of
return logistics costs; base case parameter specifications

Observation 4 concerning the optimal values of the decision variables is confirmed

as well. All are higher under the buyback contract, whereas the difference between

optimal order quantities increases significantly for high salvage values as the only

incentive to not order an infinite amount for v = vR = c are the return logistics costs.

Different market size and price elasticity

Finally, to complete our analysis of buyback contracts we again conducted a similar

sensitivity analysis for different values of b and k, i.e. for different price elasticities

and market sizes. We chose the same specifications as under the wholesale contract:

a market with half the size than under the base case and a market with half of the

base case’s price elasticity.

Table 4.16 shows the equilibrium values of the decision variables for the three

scenarios and for different return volumes, return logistics costs and shares of costs.

64



α = 6%, l = 1 α = 20%, l = 2
IRP CRP ∆ IRP CRP ∆

β = 5%
E[r∗] 2.125 2.139 0.014 2.125 2.296 0.171
w∗ 1.750 1.775 0.025 1.750 2.068 0.318
s∗ 1.250 1.221 -0.029 1.250 1.487 0.237
Q∗ 0.947 0.858 -0.088 0.947 0.384 -0.562

(b, k) = (−3, 2.5) β = 95%
E[r∗] 2.125 2.141 0.016 2.125 2.297 0.172
w∗ 1.750 1.721 -0.029 1.750 1.620 -0.130
s∗ 1.250 1.177 -0.073 1.250 1.058 -0.192
Q∗ 0.947 0.858 -0.088 0.947 0.385 -0.562

β = 5%
E[r∗] 4.000 4.010 0.010 4.000 4.163 0.163
w∗ 3.000 3.017 0.017 3.000 3.302 0.302
s∗ 2.500 2.488 -0.012 2.500 2.777 0.277
Q∗ 3.289 3.154 -0.135 3.289 2.453 -0.836

(b, k) = (−3, 5) β = 95%
E[r∗] 4.000 4.016 0.016 4.000 4.162 0.162
w∗ 3.000 2.972 -0.028 3.000 2.850 -0.150
s∗ 2.500 2.442 -0.058 2.500 2.308 -0.192
Q∗ 3.289 3.127 -0.161 3.289 2.434 -0.854

β = 5%
E[r∗] 7.750 7.756 0.006 7.750 7.893 0.143
w∗ 5.500 5.510 0.010 5.500 5.760 0.260
s∗ 5.000 5.000 0.000 5.000 5.233 0.233
Q∗ 4.407 4.325 -0.082 4.407 3.856 -0.551

(b, k) = (−1.5, 10) β = 95%
E[r∗] 7.750 7.751 0.001 7.750 7.889 0.139
w∗ 5.500 5.441 -0.059 5.500 5.303 -0.197
s∗ 5.000 4.913 -0.087 5.000 4.758 -0.242
Q∗ 4.407 4.308 -0.099 4.407 3.838 -0.569

Table 4.16. Optimal values of the decision variables for different market sizes and
price elasticities under a buyback contract
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Figure 4.16. Comparison of optimal values of decision variables and expected profits
under a buyback and a wholesale contract for different salvage values and shares of
return logistics costs; base case parameter specifications

We observe, that all relationships found so far remain valid. The values of the decision

variables are significantly lower for k = 2.5 and significantly higher for b = −1.5. The

values under considering returns are similarly influenced as found earlier.

Looking at the profits in table 4.17 we find a slight difference to our observations

so far. We note that for a lower market size the supply chain is clearly better off if

returns are considered. The preferences of the single partners again depend on the

value of β. The latter is also true for lower price elasticity. However, we find that

for b = −1.5 if the supply chain prefers one strategy (for high values of α, l and

v) it is better off when ignoring returns. This seems intuitive as a unit increase in

price causes a lower change in demand and thus less returns than for higher price

elasticities. Finally, we point out that the profit gap to the centralized system lies in

a range from 27% to 34% for all parameter specifications.
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α = 6%, l = 1 α = 20%, l = 2
IRP CRP IRP CRP

β = 5%
ΠM 0.378 0.426 -0.261 0.090
ΠR 0.252 0.233 0.173 0.053
ΠSC 0.630 0.659 -0.087 0.143
%∆ 19.0% 29.5% −550.1% 27.0%

(b, k) = (−3, 2.5) β = 95%
ΠM 0.439 0.426 0.144 0.090
ΠR 0.191 0.232 -0.232 0.053
ΠSC 0.630 0.658 -0.087 0.143
%∆ 19.0% 29.7% −550.1% 27.2%

β = 5%
ΠM 4.064 4.144 1.835 2.346
ΠR 2.198 2.156 1.727 1.241
ΠSC 6.262 6.300 3.562 3.587
%∆ 29.5% 31.6% −0.4% 30.9%

(b, k) = (−3, 5) β = 95%
ΠM 4.226 4.145 2.915 2.346
ΠR 2.036 2.125 0.647 1.236
ΠSC 6.262 6.270 3.562 3.582
%∆ 29.5% 32.2% −0.4% 31.1%

β = 5%
ΠM 12.051 12.108 8.362 8.683
ΠR 6.213 6.191 5.092 4.518
ΠSC 18.263 18.299 13.454 13.202
%∆ 31.9% 32.4% 23.3% 31.6%

(b, k) = (−1.5, 10)
ΠM 12.233 12.108 9.577 8.682
ΠR 6.030 6.200 3.877 4.518
ΠSC 18.263 18.308 13.454 13.200
%∆ 30.3% 32.3% 23.3% 31.6%

Table 4.17. Equilibrium profits for different market sizes and price elasticities under
a buyback contract
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4.3 Similarities to the Deterministic Model

In their paper on price and order postponement in a similar model without re-

turns, Granot and Yin (2005) [22] observe that, under buybacks, both the optimal

wholesale price w∗ and the optimal expected retail price E[r∗] are the same as in

the deterministic model, in which the demand function corresponds to the expected

demand function in the stochastic models. As a consequence, this also holds for the

model with returns when the latter are ignored as the decision variables are unaffected

under this policy. For strategy CRP we find the following:

Proposition 4 If returns are considered in the optimization process, the optimal

expected retail price E[r∗](w) as a function of the wholesale price w is the same in

the stochastic and deterministic model, in which the demand function corresponds to

the expected demand D(r) = b(r − k).

Proof. In order to prove proposition 4 we set up the retailer’s profit ΠCR
RD under

deterministic demand:

ΠCR
RD(w, r) = [(1− α)r − w − α(l2 − w)]b(r − k)

Taking the first derivative with respect to the retail price r we get:

∂ΠCR
RD(w, r)

∂r
= (1− α)b(r − k) + [(1− α)r − w − α(l2− w)]b (4.1)

Setting term 4.1 equal to zero and simplifying results in the following stationary point

for a given wholesale price w:

r∗ =
(1− α)k + w + α(l2 − w)

2(1− α)
(4.2)
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Taking the second derivative with respect to r proves concavity as b < 0:

∂2ΠCR
RD(w, r)

∂r2
= (1− α)b+ (1− α)b = 2(1− α)b < 0

And thus, the stationary point in 4.2 is the optimal retail price for a given whole-

sale price w and corresponds to the result in proposition 2 for stochastic and price

dependent demand.

To show that also the equilibrium value for the retail price is the same in both

models, we would need to show that the optimal wholesale prices are equal. But, as

we are not able to derive an analytical result for w in the stochastic model, we can

only rely on the results of our computational work.

The optimal wholesale price for the deterministic model can be obtained, as before,

by forming first and second derivatives with respect to w of the manufacturer’s profit

ΠCR
MD, which can be stated as follows:

ΠCR
MD(w) = [(1− α)w − c− α(l1 − vR)]b(r(w)− k)

= [(1− α)w − c− α(l1 − vR)]
b

2(1− α)
[(1− α)w − (1− α)k + αl2]

The resulting first order condition for the optimal wholesale price

2(1− α)w − (1− α)k + α(l1 − l2 − vR)− c = 0

is satisfied by:

w∗CD =
(1− α)k + c+ α(l1 − l2 − vR)

2(1− α)
(4.3)

The second derivative delivers the sufficient condition for 4.3 to be the global maxi-

mum:

∂2ΠCR
RM(w)

∂r2
= (1− α)b < 0
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The resulting equilibrium retail price for the deterministic model finally is obtained

by inserting the optimal wholesale price into term 4.2:

r∗CD =
3(1− α)k + c+ α(l − w)

4(1− α)
(4.4)

We note the similarity to the equilibrium values for both the stochastic and deter-

ministic system ignoring returns:

w∗IRP = w∗ID =
k + c

2
(4.5)

and

E[r∗IRP ] = r∗ID =
3k + c

4
(4.6)

Comparing our computational results for the optimal wholesale price w with the

results under deterministic demand, we find only small differences in the second digit,

which can easily be caused by numerical inaccuracies. For the buyback case we use a

combined golden-section method for a two-dimensional function to find the optimal

wholesale and buyback offer, which stops if the change in the manufacturer’s profit

between two (w, s)-combinations is smaller than 0.0001. As our computations indi-

cate, the function is very flat in an (0.05,0.05)x(0.05,0.05) area around its optimum.

If we use the closed form solution for w obtained for the deterministic model to calcu-

late the optimal wholesale and buyback offer under stochastic demand, we find values

(w, s) with a manufacturer’s profit that is 0.001 units higher than our optimal results.

The gap between the values of the optimal decision variables seems to be a constant

low second digit value. Altogether, although we are unable to prove analytically that

the equality of the optimal wholesale price in both models, our computational results

suggest the correctness of this relationship.
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4.4 Conclusions

In this chapter we have investigated and compared the decentralized supply chain’s

performance and the behavior of the decision variables under the policies IRP and

CRP. We draw the following general conclusions for the different incentive schemes:

Results under a Wholesale Contract

• Like under no postponement, when considering returns order quantities are

lower than when ignoring returns. The retail price, however, is higher whereas

the optimal wholesale price may increase or decrease depending on the manu-

facturer’s share of the return logistics costs.

• Considering returns leads to higher supply chain profits than ignoring returns.

This result stands in constrast to the findings by Ruiz-Benitez and Muriel

(2007)[39] without postponement.

• Although the supply chain is better off if returns are included, this strategy may

be profitable for only one of the partners depending on who carries the lower

part of the costs associated with returns.

• Also under price postponement, supply chain profits are higher when the retailer

faces the higher share of the return logistics cost.

• CRP becomes more profitable for higher costs associated with returns. Coordi-

nation, however, gets worse.

• Coordination is better for higher product values.

• It is possible that the decentralized system achieves better results than the

centralized supply chain if returns are ignored.

• Different market sizes and price elasticities do not seem to influence the nature

of the found relationships
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Differences under a Buyback Contract

• Coordination is improved by buyback contracts no matter if returns are ignored

or considered.

• For very low salvage values considering returns leads to higher supply chain

profits. This preference, however, changes quickly for increasing values of v, vR

and also for lower price elasticity b.

• The manufacturer profits the most from agreeing to a buyback contract. The

retailer’s gain is either not significant or negative.

• The values of all decision variables are higher under buybacks.

• The retail price and the profits of each of the players are (fairly) independent

when considering returns.

• Coordination stays fairly constant under considering returns for different market

sizes and price elasticities whereas the nature of all other relationships remains

valid.
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CHAPTER 5

THE VALUE OF PRICE POSTPONEMENT

In chapter 4 we have focused on the comparison of considering and ignoring re-

turns under price postponement. Chapter 5 now is intended to clarify the value of

postponing the decision on the retail price until after demand uncertainty is resolved.

We therefore compare the policies CRP and CR as well as IRP and IR to see the effect

of postponement on the decision variables and profits when returns are considered or

not. In particular, we focus on the value of the additional information that is gained

by the postponed decision on the retail price.

In the following we start out with an analysis of the centralized system under the

respective policies. After that, we investigate the effect on the decentralized system

and each of the partners. Our results are based on the same computational work

as in chapter 4 and the derivations in chapter 3 for policies IRP and CRP. For the

underlying profit functions and optimality criteria under the cases without price post-

ponement, IR and CR, we refer to Ruiz-Benitez (2007) [38] for detailed derivations. As

a starting point we again choose the parameter specifications (α, β, l) = (20%, 5%, 2)

with salvage values v and vr equal to zero as the base case. A similar sensitivity

analysis as in chapter 4 is conducted to provide more generality.

5.1 Performance of the Centralized System

Intuition tells us for the case of one decision maker - like in the centralized supply

chain - who correctly optimizes, that each bit of additional information leads to better

results and thus, in our case, to higher profits. When not considering certain available
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aspects like the presence of returns, however, this may not necessarily be the case and

thus lead to suboptimal decisions.

Figure 5.1. Profits in the centralized system under policies CRP, IRP, CR and IR
as a function of the production costs c for different return volumes α

From figure 5.1 we find that the centralized system that considers returns achieves

higher profits if the decision on the retail price is postponed until after demand

uncertainty is resolved. With the profits decreasing in c but the gap between CRP and

CR staying fairly constant, the relative value of the additional information becomes

significantly higher for higher production costs. While for lower return volumes policy

IRP remains relatively close to the profits under CRP and the system seems to be

almost indifferent under no postponement, the difference between considering and

ignoring returns becomes distinct for higher values α.

The fact that for increasing production costs profits under policy IRP drop below

the ones under IR is reflected by the behavior of the decision variables. In figure 5.2

we observe that the order quantity and the expected retail price under policy IRP

represent the highest and lowest value, respectively, among the four strategies and,

consequently generate the largest quantity of returns. For high costs associated with

returns the additional value of the information on demand gained by postponement
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Figure 5.2. Equilibrium values of the decision variables in the centralized system
under policies CRP, IRP, CR and IR as a function of the production costs c for a
return volume of α = 20%

does no longer compensate the costs generated by the suboptimal behavior. Increasing

the return volume α with all other parameters fixed to the base case specifications

does exactly reflect these relationships. As can be seen from table 5.1 the relative gap

between CRP and CR increases significantly indicating the importance of valuable

demand information if return costs are high. For lower return costs, for example,

caused by a positive salvage value shown in table 5.2, the value of the additional

demand information decreases and ends up being zero for v = 2vR = c.

In order to analyze the general value of the additional information gained by

postponement in the presence of returns, we also compare the total supply chain

profits to a model in which no returns occur. From table 5.3 we draw two conclusions:

Postponement is more valuable in a system that faces returns and in which the salvage

values are low, i.e. the return costs high. As the value of the additional information

under no returns increases with higher salvage values, however, it eventually ends up

being higher than under returns.
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ΠCR
cent ΠCRP

cent ∆ %∆ ΠIR
cent ΠIRP

cent ∆ %∆
α c = 1

0.06 6.728 7.999 1.271 18.9% 6.689 7.750 1.061 15.9%
0.2 3.713 4.695 0.982 26.5% 3.213 3.550 0.337 10.5%
0.35 1.282 1.855 0.573 44.7% -0.512 -0.950 -0.439 −85.7%

α c = 2
0.06 2.226 3.416 1.190 53.5% 2.169 3.001 0.832 38.3%
0.2 0.750 1.384 0.634 84.5% 0.067 -0.464 -0.531 −793.7%
0.35 0.048 0.156 0.108 224.5% -2.185 -4.177 -1.992 −91.2%

Table 5.1. Value of price postponement in the centralized system when ignoring
and considering returns as a function of the return volume α for different production
costs c

ΠCR
cent ΠCRP

cent ∆ %∆ ΠIR
cent ΠIRP

cent ∆ %∆
v = 2vR α = 6%

0.2 7.232 8.303 1.071 14.8% 7.196 8.071 0.875 12.2%
0.6 8.511 9.083 0.573 6.7% 8.483 8.884 0.401 4.7%
1.0 10.398 10.398 0.000 0.0% 10.380 10.200 -0.180 −1.7%

v = 2vR α = 20%
0.2 4.109 4.962 0.853 20.8% 3.652 3.897 0.246 6.7%
0.6 5.157 5.649 0.492 9.5% 4.803 4.744 -0.059 −1.2%
1.0 6.834 6.834 0.000 0.0% 6.600 6.001 -0.599 −9.1%

Table 5.2. Value of price postponement in the centralized system when ignoring and
considering returns as a function of the salvage values v = 2 ∗ vR for different return
volumes α
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ΠCR
cent ΠCRP

cent ∆ %∆ Πcent ΠPP
cent ∆ %∆

c α = 6%
1.0 6.728 7.999 1.271 18.9% 8.179 9.550 1.371 16.8%
2.0 2.226 3.416 1.190 53.5% 3.070 4.486 1.416 46.1%
c α = 20%

1.0 3.713 4.695 0.982 26.5% 8.179 9.550 1.371 16.8%
2.0 0.750 1.384 0.634 84.5% 3.070 4.486 1.416 46.1%

v α = 6%
0.2 7.232 8.303 1.071 14.8% 8.625 9.860 1.234 14.3%
0.6 8.511 9.083 0.573 6.7% 9.120 10.658 1.538 16.9%
v α = 20%

0.2 4.109 4.962 0.853 20.8% 8.625 9.860 1.234 14.3%
0.6 5.157 5.649 0.492 9.5% 9.120 10.658 1.538 16.9%

Table 5.3. Comparison of the value of price postponement in the centralized system
with and without returns as a function of the production costs c and the salvage
values v = 2 ∗ vR for different return volumes α

5.2 The Decentralized System

With the centralized system ignoring returns under price postponement we have

found an example in which the value of additional demand information can become

negative, the reason being the incorrect optimization approach. In this section we

analyze the decentralized system’s profits and values of decision variables with and

without postponement. In particular, we focus on the factors return volume α and

salvage values v and vR that have shown to be the driving ones for the value of

information.

5.2.1 Considering Returns with and without Price Postponement

Ruiz-Benitez (2007) [38] conduct a computational study for the comparison of the

policies CRP and CR with a sensitivity analysis in the production costs c, the return

volume α and the retailer’s share β of the return logistics costs for both a wholesale

and a buyback contract. When considering returns, they find for the chosen set of

parameter specifications:
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Figure 5.3. Profits in the decentralized system under policies CRP and CR for
the two different contract forms as a function of the production costs c; base case
parameter specifications

1. Price postponement improves coordination of the supply chain and enhances

the profits of both the retailer and the manufacturer if returns are considered

(confirmed by table 5.5).

2. Under a wholesale contract:

• the manufacturer profits the most from the additional demand information

(see figure 5.3 and table 5.5).

• Order quantities and the retail price decrease while the wholesale price

increases under postponement (see figure 5.4).

3. Under a buyback contract:

• Benefits from the postponement strategy are distributed more equally

among the two supply chain partner (see figure 5.3 and table 5.5).

• Different retailer’s shares of return logistics do neither impact the partners’

nor total supply chain profits.
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E[r]CRP wCRP sCRP QCRP ΠCRP
M ΠCRP

R ΠCRP
SC

calculated 4.163 3.302 2.777 2.453 2.346 1.241 3.587
conjecture 4.188 3.350 2.850 2.393 2.348 1.174 3.521

error 0.024 0.048 0.073 -0.059 0.002 -0.067 -0.065

Table 5.4. Numerical error of our computations based on the conjecture in section
4.3

• The buyback offer and the wholesale price do not change when the decision

on the retail price is postponed.

In our study, in which we additionally consider positive salvage values v and vR,

we find the same results. Only concerning the last two points our computations do not

exactly confirm the stated conclusion. From figure 5.4 we see that the buyback offer s

and the wholesale price w are not exactly the same with and without postponement.

Table 5.5 indicates that the retailer’s profit decreases slightly for higher values of

β if the pricing decision is postponed under buybacks. We note, however, that the

absolute differences may lie within our numerical error. Table 5.4 shows an example

for the numerical error if we assume that the closed form solution for the wholesale

price in the deterministic model is the same in the stochastic model as stated in

section 4.3.

As expected, table 5.5 nicely shows the positive value of additional information

both under buybacks and the wholesale contract. Also we find the increasing value

for higher return volumes. Another interesting aspect is the larger relative gain from

postponement for the retailer under buybacks whereas under the wholesale contract

he profits less.

For the centralized system we observed that increasing salvage values have a de-

creasing effect on the value of additional demand information. The same is true for

the decentralized system. Yet, during our complete sensitivity analysis we find that

the value of price postponement under buybacks remains positive. Under wholesale

79



Figure 5.4. Decision variables in the decentralized system under policies CRP and
CR for the two different contract forms as a function of the production costs c; base
case parameter specifications

contracts, however, it is possible, that for high salvage values or low price elasticity

the value becomes negative as can be seen from table 5.6. This goes along with our

observation that for low return costs and low risk for unsold inventory the value of

information decreases when returns are considered. The supply chain therefore is

better coordinated when the decision on prices is not postponed in this case.

5.2.2 Ignoring Returns with and without Price Postponement

Our results for both the centralized system and the decentralized system so far

have shown that the additional information gained from postponing the decision on

the retail price is profitable in most cases if the supply chain optimizes correctly, i.e.

considers returns. When ignoring returns, we have found for the centralized system

that postponement can lead to worse results for high production costs and high costs

associated with returns. Now considering the decentralized system we make similar

observations:
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CR CRP %∆
(α, β) ΠM ΠR ΠSC ΠM ΠR ΠSC ΠM ΠR ΠSC

wholesale contract
(6%, 5%) 2.765 2.082 4.846 3.476 2.257 5.733 25.7 8.4 18.3
(6%, 95%) 2.797 2.088 4.885 3.500 2.267 5.767 25.1 8.5 18.0
(20%, 5%) 1.411 1.128 2.539 1.962 1.284 3.246 39.0 13.8 27.8
(20%, 95%) 1.490 1.154 2.644 2.020 1.342 3.362 35.6 16.3 27.2

buyback contract
(6%, 5%) 3.364 1.683 5.047 3.998 2.088 6.086 18.8 24.0 20.6
(6%, 95%) 3.364 1.683 5.047 3.998 2.067 6.065 18.9 22.8 20.2
(20%, 5%) 1.857 0.929 2.786 2.346 1.241 3.587 26.4 33.6 28.8
(20%, 95%) 1.857 0.929 2.786 2.346 1.236 3.582 26.3 33.0 28.6

Table 5.5. Comparison of the value of price postponement in the decentralized
system under a wholesale and a buyback contract for different return volumes α and
shares β of logistics cost

CR CRP %∆
v = 2vR ΠM ΠR ΠSC ΠM ΠR ΠSC ΠM ΠR ΠSC

wholesale contract
0.20 1.631 1.276 2.907 2.084 1.388 3.472 27.8 8.8 19.4
0.40 1.792 1.421 3.214 2.149 1.460 3.610 19.9 2.8 12.3
0.60 1.981 1.594 3.576 2.218 1.524 3.742 11.9 -4.4 4.6
0.80 2.205 1.805 4.010 2.289 1.614 3.903 3.8 -10.6 -2.7

buyback contract
0.20 2.054 1.028 3.083 2.480 1.283 3.763 20.7 24.7 22.1
0.40 2.290 1.147 3.437 2.636 1.371 4.007 15.1 19.6 16.6
0.60 2.579 1.291 3.870 2.824 1.454 4.278 9.5 12.6 10.6
0.80 2.941 1.472 4.413 3.054 1.700 4.755 3.9 15.5 7.7

Table 5.6. Comparison of the value of price postponement in the decentralized
system considering returns under a wholesale and a buyback contract for different
salvage values; base case parameter specifications
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IR IRP %∆
α c ΠM ΠR ΠSC ΠM ΠR ΠSC ΠM ΠR ΠSC

wholesale contract
1 2.880 2.282 5.162 3.223 2.411 5.633 11.9 5.6 9.1

6% 2 0.969 0.834 1.803 1.221 1.087 2.308 26.1 30.3 28.0
3 0.190 0.219 0.410 0.177 0.380 0.557 -7.3 73.3 35.9

1 1.576 1.698 3.274 0.934 1.730 2.664 -40.7 1.9 -18.6
20% 2 0.151 0.596 0.747 -0.688 0.719 0.031 -555.8 20.8 -95.8

3 -0.207 0.149 -0.058 -1.209 0.218 -0.991 -484.3 46.2 -1615.7
α c buyback contract

1 3.396 1.874 5.270 3.893 2.189 6.082 14.6 16.9 15.4
6% 2 1.116 0.691 1.807 1.514 1.007 2.520 35.6 45.6 39.4

3 0.215 0.183 0.399 0.297 0.360 0.658 38.0 96.7 65.0

1 1.778 1.466 3.244 1.835 1.728 3.562 3.2 17.8 9.8
20% 2 0.139 0.509 0.648 -0.187 0.739 0.552 -234.6 45.2 -14.9

3 -0.247 0.126 -0.121 -0.942 0.234 -0.707 -281.2 86.3 -483.1

Table 5.7. Comparison of the value of price postponement in the decentralized sys-
tem ignoring returns under a wholesale and a buyback contract; base case parameter
specifications

From table 5.7 we find that for both contract forms postponement leads to in-

creasing profits for higher production costs if the return volume is low. If the system

faces a large percentage of sales returned, however, an increase in c has a negative

effect on total profits. Note again, that under buybacks the value of the additional

information is higher than under the wholesale contract. Also we point out that an

increase in return volumes has a stronger negative effect on the manufacturer than

on the retailer. This can also nicely be seen from figure 5.5, which shows the sup-

ply chain partners’ and the total profits under the two contracts with and without

postponement as a function of the return volume α. We observe that postponement

remains more profitable until a higher values of α under buybacks than under the

wholesale contract. Yet, it is also the manufacturer who carries the major losses as

he faces the larger share of the return logistics costs.

The graphs of the decision variables in figure 5.6 allow us to explain the devel-

opment of the profits: As returns are not considered in the optimization process, all
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Figure 5.5. Profits in the decentralized system under policies IRP and IR for the
two different contract forms as a function of the return volume α; base case parameter
specifications

equilibrium parameters remain constant for different return volumes. As the retail

price without postponement is higher, demand and eventually absolute returns will

be lower than under policy IRP. Although the retailer places higher orders under IR

and therefore faces a higher number of unsold items, the savings in return costs due

to the lower absolute number of returns seem to be higher than the return costs under

policy CRP. These explanations are confirmed when looking at higher return logistics

costs l and a lower market size bk, both being driving factors for the absolute and

relative costs associated with returns.

5.3 Conclusions

Altogether we have determined the costs associated with returns to be the driv-

ing factor for the value of the additional demand information gained through price

postponement:
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Figure 5.6. Decision variables in the decentralized system under policies IRP and
IR for the two different contract forms as a function of the return volume α; base
case parameter specifications

• For the centralized system and in most of the cases for the decentralized system

that considers returns, we find that higher costs associated with returns make

the additional information on demand more valuable.

• Interestingly, for the decentralized system that ignores returns, we find that

higher return costs have a negative influence on the value of additional infor-

mation.

• Lower market size and lower price elasticity have a similar influence on the

profitability of price postponement as higher return volumes and higher sal-

vage values, respectively, and thus are important factors in the decision making

process.
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CHAPTER 6

CONCLUSIONS AND POSSIBLE EXTENSIONS

In this thesis we have studied the application of a price postponement strategy in

the decision making process of a two stage supply chain that faces consumer returns.

As a model we have presented an extended news-vendor setting with stochastic and

price dependent demand. We have found that, under price postponement, the qual-

itative relationships between the decision variables when considering and ignoring

returns are similar to a setting without postponement. Concerning profits we have

observed that considering returns is the better choice under a wholesale contract and

also in a buyback setting, if salvage values are low. Ignoring returns, which seems

the better choice under no postponement in most settings according to Ruiz-Benitez

and Muriel (2007)[39], becomes interesting under buybacks if salvage values increase.

The buyback contract form achieves better coordination no matter which policy is

preferred.

Additionally we have observed that, naturally, the centralized system that consid-

ers returns gains from the additional demand information. We have found an example

of a negative value of additional information in the integrated system that ignores re-

turns. Surprisingly, there exist parameter combinations for which knowing less about

demand leads to higher profits. Less surprisingly, we have observed both positive and

negative values in the decentralized case.

Altogether, taking into account policies with and without postponement, we can

extend the findings by Ruiz-Benitez and Muriel (2007)[39] and deliver a qualitative

chart of effective decision policies for the supply chain. We recall that under no
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postponement ignoring returns under a buyback contract leads to improved supply

chain performance. As we have shown, the influence of the return rate α, the return

logistics costs l and the salvage value of returned products vR can be grouped and

summarized as ’costs associated with returns’. This allows us to present in Figure

6.1 the (two) best strategies for scenarios with different return costs and salvage

values of unsold products. The policies under price postponement generally deliver

the best results. As shown in chapter 4 considering returns under postponement

(quickly) loses its profitability with increasing high salvage value of unsold products.

It becomes more preferable for high costs associated with returns. If both return

costs and salvage values are high, however, the positive effect of postponement is

reduced and eventually, for a salvage value close to 100% of the production costs,

ignoring returns without postponement leads to improved performance of the supply

chain. Naturally, as analytical results seem impossible and we rely on computational

work, further variations of the demand function can emphasize the generality of the

results. For the model without returns, Granot and Yin (2005) [22] additionally

conduct an analysis for exponential and negative power expected demand and show

further similarities to the corresponding deterministic model. Their results motivate a

further comparison to the value of postponement in the presence of returns. Another

interesting idea to extend the findings in this thesis could be a game theoretic analyis.

We have found that not always both partners do profit from the additional information

gained by price postponement depending on the share of return logistics costs. A game

theoretic analysis as the one being conducted in Schmid (2007) [42] could deliver

further interesting insights on the value of sharing information in a setting, in which

both players are free in the decision on their strategy.

Finally, contracts that coordinate the supply chain under postponed pricing and

consumer returns should be developed. Ruiz Benitez (2007) [38] extends profit and
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Figure 6.1. Optimal strategies for the whole supply chain for different salvage values
and costs associated with returns

revenue sharing contracts to the case with consumer returns. We expect them to

coordinate the supply chain in the price postponement case as well.
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