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ABSTRACT 

The Hertz contact theory can predict the onset of yielding for those contacts in which adhesive 

effect is negligible. However in microscale contacts, yielding will occur for lower loads than 

predicted by the Hertz theory. The present study provides yield conditions for the JKR, DMT, 

and Greenwood-Johnson theories of adhesion. Attention is first focused on the initiation of yield 

along the symmetrical axis of the contact. The results show the critical loads for the three 

adhesion theories are close together but different significantly from that predicted by Hertz. 

Results are also obtained for the onset of yielding away from the symmetrical axis using the 

Greenwood-Johnson theory of adhesion. 

    The carbon nanotube is a popular component in nanotechnology. This study focuses on one 

kind of structure in NEMS, i.e. a nanoswitch which consists of a doubly clamped carbon 

nanotube and an electrode plane. When a voltage difference is applied between them, an 

electrostatic distributed force is produced to bend the nanotube down toward the electrode plane. 

This study also discusses the effect of two slip zones around both the ends which releases a 

portion of the tensile force inside the nanotube. The numerical results compare three models of 

doubly clamped nanotubes – a nanotube without stretching, a nanotube with stretching but no 

slip zones, and a nanotube with stretching and slip zones, to a doubly pinned nanotube and a 

nanowire. 
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Part I. Plastic Yield Conditions for Adhesive Contacts 

 

 

Chapter 1. Introduction 

 

The Hertz theory [1], which analyzes the contact between two nonconforming elastic bodies, has 

been an essential theory in contact mechanics since it was formulated by Hertz in 1882.  The 

assumptions of Hertz theory are: (1) the surfaces are continuous and non-conforming; (2) the 

dimensions of the contact area are much smaller than the radii of curvature and than the 

dimensions of these linear elastic isotropic bodies, so that each body can be modeled as an elastic 

half-space; (3) the contacting surfaces are frictionless; and (4) no tensile stress exists in the 

contact area, i.e. the adhesive forces are neglected. 

 In the Hertz analysis, the axis which is perpendicular to the contacting surfaces and 

passes through the center of the contact (i.e. the z-axis) is a principal stress axis.  The maximum 

value of the shear stress is related to the maximum Hertz pressure and occurs on the z-axis.  For 

a value of Poisson’s ratio of ν = 0.3, Johnson [1] showed that the maximum shear stress is 

approximately 031.0 p  and occurs at a depth of a48.0 , where 0p  is the maximum contact 

pressure )2/3( 2
0 aPp π= , P is the applied force, and “a” is the contact radius.  For arbitrary 

values of Poisson’s ratio the maximum contact pressure for the onset of plastic deformation is 

given by KHp =0  where the hardness ( H ) is related to the yield strength by YH 8.2= [2], 

and the hardness coefficient K  is related to the Poisson’s ratio by ν41.0454.0 +=K  [3].   



 2

 Hertz contact theory has been used extensively in a wide variety of applications such as 

contacts between railroad wheels and the rail, gears, bearings, and various machine components.  

However Hertz theory neglects the effect of adhesion, which plays an important role in 

microscale contacts which occur in microswitches and other MEMS devices.  In such 

applications yielding will initiate at a lower applied force than is predicted when adhesion is 

neglected.  

 The JKR theory (Johnson, Kendall, and Roberts, [4]) of adhesion is widely used in 

contact modeling and in the interpretation of experimental results.  In this surface energy based 

model the effect of adhesion is neglected outside the contact area.  The solution was derived 

from a superposition of the stress fields from the Hertz model and those due to a circular flat 

punch.  The contact radius is found by minimizing the sum of the potential energy of the load, 

the elastic strain energy, and the surface energy.  The DMT theory (Derjaguin, Muller, and 

Toporov, [5]) sets the profile of the contact model to be the same as in the Hertz theory.  Thus 

the force of adhesion acts only to define an equivalent Hertz load, which is the sum of the 

applied load and the adhesion force.  The latter is independent of the level of loading.      

 It was shown by Tabor [6] that the DMT theory is relevant for 1<<μ  and the JKR 

theory applies for 1>>μ .  The Tabor parameter (μ ), which is precisely defined later, is 

basically the ratio of the elastic deformation to the range of surface forces.  Muller, Yushchenko, 

and Derjaguin [7] evaluated the adhesive force by numerically integrating the stress due to the 

Lennard-Jones potential.  The pull-off force was determined and found to depend upon a single 

dimensionless parameter similar to the Tabor parameter and varied continuously between the 

DMT and JKR limits.  A more comprehensive treatment of this JKR-DMT transition was given 

by Greenwood [8].   
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 Maugis [9] obtained an analytical solution for the JKR-DMT transition by assuming a 

simplified law to relate the adhesive stress to the local separation.  In this theory, the adhesive 

stress is taken equal to the theoretical stress in any region in which the local separation is less 

than a critical value (h0); it is set to zero wherever the separation is greater than h0.  The value 

of h0 is found by equating the work of adhesion of this simplified law to that of the 

Lennard-Jones potential.   

 Greenwood and Johnson [10] provided a simpler alternative to the Maugis theory by 

defining the adhesive zone differently than did Maugis.  This contact model superimposes one 

tensile Hertz contact and one compressive Hertz contact, leading to a displacement field which is 

spherical in the contact region.  Although the form of the adhesion stress versus separation is 

not predetermined, the work of adhesion and the maximum value of the adhesive stress can be 

specified.  It is these two parameters which were shown by Barthel [11] to be most important in 

modeling the adhesive interaction.  Most importantly, the simple form of the sub-surface stress 

field makes this theory an attractive candidate to use in order to determine the onset of yielding. 

 In an adhesive contact, the critical load and the location of initial yielding are different from 

what they would be without adhesion.  Furthermore these values may depend on which theory 

is applied.  In [12] Kadin, Kligerman and Etsion investigated the onset of plasticity during a 

jump into contact.  Results were obtained in the form of an integral equation which was solved 

numerically.  The present study provides yield conditions for the JKR, DMT, and Greenwood 

and Johnson models of adhesion using the analytical form of the stress fields.  As such the 

results of this investigation should be useful in predicting the onset of yield in microcontacts in 

which the effect of adhesion is important. 
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Chapter 2. Subsurface Stress Fields 

 

The Hertz theory is broadly used to analyze contact between nonconforming elastic solids.  It is 

valid for the contact between two spheres which have radii of curvatures 1R  and 2R , elastic 

moduli 1E  and 2E , and Poisson’s ratios 1ν  and 2ν , respectively.  This configuration can be 

used to define an equivalent system for the contact between a rigid sphere with an effective 

radius R  given by 

21

111
RRR

+=                                     (1) 

and a flat elastic body with an effective modulus *E .defined as 

2

2
2

1

2
1

*

111
EEE
νν −

+
−

=                                (2) 

 

 

Figure 1.  A rigid sphere contacting an elastic half-space. 
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It is noted that the Hertz theory replaces the spheres by elastic half-spaces.  Thus the theory is 

valid for contacting bodies which are locally spherical provided that the contact dimensions are 

much smaller than the radii of curvatures. 

 The surface energy is the energy per unit area needed to form a new surface reversibly and 

isothermally due to the breaking of bonds and reorganization of atoms near the surface. Unlike 

molecules in the bulk, molecules near the surface are acted upon by a different set of forces by 

their neighbors.  The work per unit area which is needed to separate two surfaces is 

1221 γγγ −+=w                               (3) 

where 1γ  and 2γ  are the surface energies of the two solids, 12γ  is the interfacial energy, and 

w  is the Dupré energy of adhesion or the work of adhesion.  For the contact of identical bodies 

the work of adhesion is twice the surface energy.  The Tabor parameter μ, described earlier as 

the ratio of the elastic deformation to the range of surface forces, is an important parameter in 

describing elastic adhesive contacts and is given by  

( ) 3/13
0

2*2 ZERw=μ                            (4) 

where Z0 is the equilibrium separation distance of the two surfaces. 

 

2.1 Stress field for the JKR model 

The stress field of JKR theory [4] is the superposition of the stress field for Hertz and that for a 

circular flat punch, each with the same contact radius a .  In the Hertz model, the normalized 

stress field is given by [13]: 
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( ) ( )[ ] ( ){ } 2/1
2222 41 azazars +−+= , 

( ) ( )[ ]sazart +−+= 1
2
1 22 , 

the mean Hertz pressure is ( ) 2aPp HHm π= , and HP  is the applied compressive load.  It is 

noted that the stress field given in Eqn. (5) corresponds to surface tractions and surface normal 

displacements given in [1] by 

2
*
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 For the flat-ended circular punch, the normalized stress field is given in [13] as 
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where the mean flat punch pressure is ( ) 2aPp FFm π= , and the tensile rigid punch load is FP . 

  The applied compressive load in the JKR model is given by [4] 

FHJKR PPP −=                                (8) 

For a given applied load ( JKRP ), the corresponding equivalent Hertz load is given by [4] 

( )2363 wRPwRwRPP JKRJKRH πππ +++=                (9) 

and the contact radius by 

*
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Finally the corresponding stress field is expressed by 
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 Dimensionless loads are defined by dividing JKRP  by wRπ3 , i.e. wRPP JKRJKR π3= ,  

and similarly for the Hertz load and flat punch load.  Thus Eqn. (9) becomes  
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121 +++= JKRJKRH PPP                           (12) 

Eqn. (8) can be modified to 

JKRHF PPP −=                               (13) 

and Eqn. (11) becomes  
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Equation (14) expresses the stress field for the JKR theory in terms of dimensionless quantities.  

If it is divided by the yield stress (σY) and multiplied by ( )JKRmp , it can be written as 
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 Now substitute a  from Eqn. (8) into Eqn. (15), and use 3223 −= HY PawR ϕσ  where ϕ  

is an adhesion parameter defined by 

3
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This adhesion parameter (ϕ ) is the ratio of the maximum contact stress due to a Hertz load equal 

to wRπ)9/8(  divided by the yield stress.   

 Thus the stress field for the JKR theory can be written as 
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To summarize, for a given value of the applied load ( JKRP ), the equivalent Hertz load ( HP ) is 

determined from Eqn. (12), the flat punch load ( FP ) is determined by Eqn. (13), and the stress 

fields are specified by Eqns. (5), (7), and (17), where ϕ  is given by Eqn. (16). 
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2.2  Stress field for the DMT model 

The DMT model is also a well-known theory of adhesive contact which assumes a Hertz profile 

but with a different load.  The relationship between the equivalent Hertz load and the applied 

load (i.e. the DMT load) is [5] 

wRPP DMTH π2+=                             (18) 

or in dimensionless form 

3
2

+= DMTH PP                               (19) 

The stress field in the DMT theory remains the same as the stress field in Hertz theory, i.e. 
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and the radius of the contact area ( a ) is determined by 
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At this point, Eqn. (20) can be written as 
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where ϕ  is given by Eqn. (16), and the Hertz stress field is specified by Eqn. (5). 

 

2.3 Stress field for the Greenwood and Johnson model 

Greenwood and Johnson [10] presented a theory of adhesive contact which, like the Maugis 

model, is valid for a broad range of the Tabor parameter.  It was developed because the simple 

form of the surface displacements made it desirable to use in viscoelastic adhesive contacts.  
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We choose this model for a different reason – the simple form of the subsurface stresses make it 

an attractive choice for determining the onset of yield.   

 The Greenwood-Johnson (GJ) model relies on the observation that the superposition of two 

Hertz contact stress distributions given by 
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leads to a uniform rigid body displacement on the surface for r < a.  Thus the stress field 
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where k  is an arbitrary constant, leads to the required curvature ( R/1 ) of the deformed surface 

for ar < , and corresponds to adhesive stresses acting in the annular region cra << .  We can 

now write the subsurface stress field as 
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where the notation ca ⇒  denotes “a” being replaced by “c”.  It is noted that for given contact 

radius (a), the values of the outer radius of the adhesion annulus (c) and of the parameter k have 

yet to be determined. 

These relations will now be written in dimensionless form.  Following Greenwood and 

Johnson [10], we set *aa β= , *cc β= , and *zz β= , where *23 / EwR=β .  The load is 

also made dimensionless by wRPP GJGJ π3/= .  In [10] an alternative form of the Tabor 

parameter is provided by ( ) 312*
0 wERσμ = , where 00 / Zw=σ  is approximately the 

maximum adhesive stress [9].  It is now easy to relate β  to μ  using 
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The parameter m is defined by acm /=  so that with *a  given, m  is determined by [10] 
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Equation (25) can also be cast in dimensionless form as 
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where  

( )Yπσσς 02=                             (31) 

In summary, for a given *a , μ , and ς , the parameters m, k and GJP  are determined from Eqns. 

(27),(29), and (28) respectively, and the stress field is specified by Eqn. (30).  
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Chapter 3. Results and Discussion 

 

Plastic yielding of ductile materials can be predicted using the von Mises yield criterion, which 

corresponds to the second invariant of the deviatoric stress tensor (or equivalently to the 

maximum distortional strain energy) reaching a critical value.  The von Mises stress is defined 

as  

( ) ( ) ( ) ( )222222 6
2

1
rzzrzzrrzzrrVM σσσσσσσσσσ θθθθθθ +++−+−+−=        (32) 

so that yielding occurs when YVM σσ = .  It is noted that in axisymmetric problems, the z-axis 

is a principal stress axis so that rrσ , θθσ , and zzσ  along the z-axis are principal stresses.  

Furthermore θθσσ =rr  so that on the z-axis Eqn. (32) becomes  

zzrrVM σσσ −=                              (33) 

and in this case the von Mises yield condition is equivalent to the Tresca (maximum shear stress) 

criterion.  In the three models considered a sphere indents an elastic half-space as shown in 

Figure 1.  The applied load P can represent JKRP , DMTP , or GJP  depending on the model 

chosen. 

 

3.1 Subsurface von Mises stress fields 

The subsurface von Mises stress field contours for the JKR model on the verge of yielding are 

plotted using Eqns. (17) and (32) for 600.0=ϕ  and 90.4=JKRP  in Figure 2.       
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Figure 2.  Subsurface von Mises stress contours for the JKR theory with 3.0=ν , 0.600=ϕ  

and 4.90=JKRP  which corresponds to the onset of yield at z/a = 0. 409. 

 

It is noted that the stress field is singular at the boundary of the contact region as is also true at 

the tip of a crack.  Thus we only considered yield on the z-axis when using JKR theory.  

Similarly the subsurface von Mises stress field for the DMT theory is plotted using Eqns. (22) 

and (32) for 600.0=ϕ  and 09.5=DMTP  in Figure 3.   
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Figure 3.  Subsurface von Mises stress contours for the DMT theory with 3.0=ν , 0.600=ϕ  

and 5.09=DMTP  which corresponds to the onset of yield at z/a = 0.481. 

 

Note that from the discussion in the previous section, the stress field is identical to the Hertz 

stress field.  Finally the subsurface von Mises stress field contours at the verge of yielding using 

Eqns. (30) and (32) for 600.0=ϕ  are shown in Figures 4 and 5 for 1=μ  and 91.4=GJP , and 

for 2=μ  and 90.4=GJP  respectively.   
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Figure 4.  Subsurface von Mises stress contour for the GJ theory with 3.0=ν , 1=μ ,    

0.600=ϕ  and 4.91=GJP , which corresponds to the onset of yield at  

z/a = 0.434. 
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Figure 5.  Subsurface von Mises stress contour for the GJ theory with 3.0=ν , 2=μ ,   

0.600=ϕ  and 4.90=GJP , which corresponds to the onset of yield at z/a = 0.423. 

 

 In order to determine the onset of yield, we must determine the maximum von Mises stress 

for each of the adhesion theories from Eqn. (32).  In the JKR theory for a given applied load 

( JKRP ), we calculate JKRΦ  according to 

MAXJKRY

VM
JKRJKR P

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ −

σ
σ

ϕ 1)(                       (34) 

which depends only on Poisson’s ratio and the applied load and is independent of ϕ .  Then the 

corresponding value of ϕ  to cause yield is  
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1−Φ= JKRϕ                                   (35) 

The outset of yielding in the DMT model depends on the stress term of Eqn. (22), i.e. the 

Hertz stress.  Hence yield always occurs along the z-axis.  The maximum value of the von 

Mises stress field is 

MAX

DMTY

VM
DMTDMT P ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ −

σ
σ

ϕ 1)(                       (36) 

which depends only on Poisson’s ratio and the applied force, and is independent of φ .  Then 

for given DMTP , the value of ϕ  which causes yield is  

( ) 1−Φ= DMTϕ                                (37) 

 In the GJ model, the stress term of Eqn. (30) depends not only on the applied force (or 

equivalently the contact radius) but also on the Tabor parameter (μ).  The maximum value of 

the von Mises stress field is 

MAX

GJY

VM
GJ a ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ −

σ
σ

ςμ 1* ),(                         (38) 

which depends only on Poisson’s ratio, the Tabor parameter, and the contact radius, but is 

independent of ς .  Then for given *a  and μ,  the value of ς  which causes yield is 

( ) 1−Φ= GJς                                 (39)  

From Eqns. (4), (16), and (31), the coefficients ϕ ,μ , and ς  are related by 

μ
ςπϕ

3
1

3
2

⎟
⎠
⎞

⎜
⎝
⎛=                               (40) 

If we now make write for the GJ model 
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323

2
3

9
16

Y

GJ
GJ R

PE
P

σπ
ϕ =                             (41) 

the quantity GJP3ϕ  is the dimensionless force at which yield is initiated.  Similarly equations 

such as Eqn. (41) may be written for JKRP3ϕ  and DMTP3ϕ , for the JKR and DMT models 

respectively.   

Results are given for JKRP3ϕ , DMTP3ϕ , and GJP3ϕ  (for μ = 1 and μ = 2) vs. the adhesion 

parameter (ϕ ) in Figure 6, which corresponds to yield on the z-axis, for three different values of 

Poisson’s ratio.  The results for the three theories are very close together.  It is only for a 

Poisson’s ratio of one-half and large values of the adhesion parameter that the difference is 

significant.  For small values of the adhesion parameter, all three theories show that the onset of 

yield approaches that predicted by Hertz contact theory.  However as the adhesion parameter 

increases the force required to initiate yielding decreases and, in fact, becomes zero for 

sufficiently large values of ϕ . 

The results for the GJ theory are very close to the JKR model.  Curve-fit expressions 

were obtained for the GJ model (for μ = 1 and μ = 2) and are given by 

 0.80340.00500.04720.75630.0956 2343 ++−−= ϕϕϕϕϕ P ,  for 1.0=ν  

1.24290.00870.06360.82360.1110 2343 ++−−= ϕϕϕϕϕ P ,  for 3.0=ν    (42) 

 1.96000.00920.05790.94410.1378 2343 ++−−= ϕϕϕϕϕ P ,  for 5.0=ν  

where these curves had an average error of less than 1% with the GJ model for μ = 1 and μ = 2. 
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Figure 6.  Dimensionless load for the initiation of yield vs. the adhesion parameter for different 

values of Poisson’s ratio.  Results are for JKR theory ( JKRP3ϕ  in solid lines), DMT 

theory ( DMTP3ϕ  in dot-dashed lines), and GJ theory ( GJP3ϕ  with 1=μ  in dotted 

lines and with 2=μ  in dashed lines). 

 

It is noted that yield away from the z-axis will always occur with the JKR model because of the 

artificial stress singularity at the edge of the contact.  On the other hand in the DMT the stress 

distribution is the same as in the Hertz theory (but with a higher load) and so yielding always 

initiates on the z-axis.  For those reasons neither the JKR or DMT theories are applicable to 

predict the onset of yield away from the z-axis.  The possibility of the onset of yield away from 

the z-axis was investigated using the GJ theory for various values of μ as shown in Figure 7 for  
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ν = 0.3.  As can be observed in Figure 7, yielding initiates on the z-axis for sufficiently small 

values of the adhesion parameter.  The transition value of the adhesion parameter (ϕ ) decreases 

as the Tabor parameter increases. 

 

 

Figure 7.  Dimensionless load for the initiation of yield vs. the adhesion parameter for GJ 

theory ( 1=μ , 1.4, 2.0, 3.0, and 4.0) and for a Poisson’s ratio of 0.3.  Results include 

yield away from the axis of symmetry which are shown in the nearly vertical lines.  
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Chapter 4. Conclusions 

 

In microscale contacts, the effect of adhesion is to cause the load required to initiate plastic 

deformation to be far less than predicted by Hertz contact.  This paper has reported results for 

the onset of yield using three different theories (JKR, DMT, and GJ) of adhesion.  The results 

for all three adhesion models are similar and show that the onset of yield depends primarily on 

an adhesion parameterϕ  defined here.  Curve-fit formulae are given for the yield load as a 

function of the adhesion parameter.  For a sufficiently large value of the adhesion parameter, 

yield can occur without the presence of an external load. 
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Part II. Actuation of a Carbon-Nanotube-Based Switch 

 

 

Chapter 5. Introduction 

 

Carbon nanotubes (CNTs) are widely applied in Nanoelectromechanical systems (NEMS) due to 

their ideal electronic and mechanical properties. CNTs’ perfect molecular structure, small size, 

and low density enable the devices to achieve the nanoscale, and their extremely high elastic 

stiffness and strength [14] make them an excellent mechanical component in NEMS. Some 

applications of NEMS based on CNTs have been reported, such as nanotweezers [15], random 

access memory devices [16], nanorelays [17], and rotational actuators [18]. This study discusses 

a special application of CNTs — a nanoswitch, which is one essential structure in NEMS devices, 

e.g. random access memories, high-frequency-operated device, and fast switching in 

communication network. Nanoswitches are usually built by CNTs as combinations of a 

cantilever beam or a doubly clamped beam and a plane electrode [19]. The doubly clamped case 

is shown in Fig. 8. When the nanotube charges, the difference of voltage between the 

 
Figure 8. Structure of the carbon-nanotube-based nanoswitch. 
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nanotube and the electrode produces an electrostatic force to bend the nanotube downward. Then 

the nanotube becomes close to the electrode gradually with the voltage increasing. However, 

there is a maximum voltage to keep the nanotube under equilibrium. If the voltage exceeds the 

maximum voltage, the nanotube will snap down directly to the electrode. The phenomenon is 

called snapthrough [20]. 

    In the nanoscale, the molecular dynamics (MD) is a common approach for simulation. 

However, there are usually more than one million atoms involved in a system. Therefore, MD 

simulation takes much time to compute all atoms of a system and can not be easily used for 

design optimization. The continuum mechanics was verified to be an appropriate approach of 

CNTs. Dequesnes et al [19] compared the analysis of beam theory to the experimental data [21] 

for a cantilever nanotube and obtained a good match for both the results. Thus, the mechanical 

behavior of CNTs can be analyzed easily by using beam theories. 

Due to the small scale, the effect of van der Waals force becomes significant, which is an 

interaction between atoms and derived by using the Lennard-Jones Potential [13] which has an 

attractive part and a repulsive part. Dequesnes et al [19, 22] compared the results including to 

excluding the effect of van der Waals force. In the viewpoint of scale, the effect of van der Waals 

is obvious for a long nanotube with a small gap between the tube and electrode. In the viewpoint 

of structure, van der Waals force affects the deflection of a cantilever nanotube more obviously 

than a doubly clamped nanotube.  

The stretching is a significant role for a doubly clamped nanotube. Due to both ends fixed, 

the length after deformation is longer than the original length or the distance between two fixed 

ends. Thus, an axial elongation will be produced. Dequesnes et al [22] and Ke et al [23] provided 

the results with stretching for different scales. A nanotube with stretching becomes stiffer than 
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one without the stretching. In other words, a nanotube with stretching is needed larger voltage for 

bending. However, for nanotubes with same length, the difference between the case with 

stretching and without stretching decreases with the gap between the nanotube and the electrode 

decreasing.  

The distribution of charges on the nanotube is an interesting issue for this nanoswitch.  

Ke et al [24] investigated a finite-length conductive nanoscale cylinder and obtained that charges 

concentrate on both ends and distribute uniformly along its central part. However, the 

concentration of charges on both ends is negligible. The reason is that both ends are fixed and 

which deflections are not affected by the concentration of charges.  

This study keeps discussing the importance of stretching of a conductive nanotube. 

Furthermore, two slip zones will be added inside both the ends (Section 2 in Fig. 8) in order to 

release the internal axial tensile force. The small deformation theory is chosen to analyze all the 

cases. Then the assumptions are the radius R of the cross-section area of the nanotube and the 

depth of the trench d much smaller than the width of the electrode and the length of the nanotube 

L. The slope of the flexural deformation dy/dx can be considered very small, and then the 

curvature approximates to the second derivative of the deflection d2y/dx2. In this study, the 

Bernoulli – Euler theory is applied to analyze the beam-like behavior of the nanotube, which 

assumption is to neglect the shear deformations compared to bending deflection. Therefore, the 

cross-section area of the nanotube remains perpendicular to the neutral axis of the nanotube after 

deformation. 
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Chapter 6. External Distributed Forces 

 

6.1 Electrostatic distributed force 

As introduced in the chapter 5, a nanotube consisting of a conductive nanotube and a plane 

electrode is discussed in this study. Due to the effect of charge concentration on the both ends 

neglected, this system can be considered as a combination of an infinitely long conductive wire 

with a radius R of the cross-section area and a conductive plane with infinite length and width. 

The capacitance per unit length for this combination is given by [19]: 

( ) ⎥⎦
⎤

⎢⎣
⎡ −+++

=
111ln 2

0

R
r

R
r

C πε                          (43) 

where r represents the distance from the bottom of the wire to the top of the electrode, that is   

r = d – y and ε0 is the permittivity of vacuum or air and ε0 = 8.84×10-12 (F/m). The electrostatic 

energy restored in this type of capacitance is given by [25]: 

2

2
1 CVWe =                              (44) 

where V is the electric potential between the wire and the plane. Substitute Eqn. (44) into    

Eqn. (43), the electrostatic energy per length is written as: 

( ) ⎥⎦
⎤

⎢⎣
⎡ −+++

=
111ln2 2

2
0

R
r

R
r

e
VW πε                       (45) 

The electrostatic distributed load for this case is produced by the gradient of the electrostatic 

energy per unit length, that is 

ee Ww −∇=v                                (46) 

Substitute Eqn. (45) into Eqn. (46), the electrostatic distributed load is obtained: 
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where r = d - y. 

 

6.2 van der Waals distributed force 

Dequesnes et al [19] derived the attractive van der Waals forces per unit length between a carbon 

nanotube and a graphite ground plane, which is given by: 

55

43223422
6

)2(2
)358072328()2(

Rrr
RrRRrRrrRrrRC

wvdW +
+++++

=
πσ

       (48) 

where 
o

6
6 2.15 Α= eVC  [26] represents a constant which characterizes the interactions between 

the two carbon atoms, 238 −≅ nmσ  means the graphite surface density, and r = d - y. The 

repulsed part of van der Waals force is negligible due to its value much smaller than the 

attractive van der Waals force’s. 

    In the real model of a nanoswitch, the plane electrode is made of gold, not a graphene sheet. 

Therefore, Eqn. (48) is not appropriately used for application of this nanoswitch. Thus, the exact 

equation for a carbon nanotube and an gold electrode plane shall be derived in future 

investigation. 
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Chapter 7. Doubly Clamped Nanotube 

 

7.1 Governing equation for a doubly clamped nanotube 

 

 

Figure 9. Free-body diagram of segment dx at Section 1 of nanoswitch. 

 

To obtain the governing equation for a doubly clamped nanotube, an infinitesimal element with 

length of dx on the nanotube is used to analyze the equilibrium of forces. Its free-body diagram is 

shown in Fig. 9. The equilibrium equation of forces along the y-direction is given by: 

∑ =↓+ 0yF : [ ] 0)()( =++⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞
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⎝
⎛++−⎟
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⎜
⎝
⎛ ++− dxxwxwdx

dx
dyT

dx
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dx
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dyTdx

dx
dFFF vdWe
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SS  

[ ])()(2

2

xwxw
dx

ydT
dx

dF
vdWe

S +−=+                      (49) 

where T represents the internal tensile force of the beam, and it will be derived in the next 

discussion, and )(xwe  and )(xwvdW  are the electrostatic force given by Eqn. (47), and van der 

Waals force given by Eqn. (48), respectively. The equation of equilibrium of the moments at 
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Point O is given by: 

∑ = 0oM :          [ ] ( ) ( ) 0)()( =++++−− dMMkdxdxxwxwMdxF vdWeS  

where k is a proportional constant of distance and 0 < k < 1 [27]. Due to dx → 0, then the term of 

external distributed loads is negligible. Then the equilibrium equation of moments becomes: 

dx
dMFS =  

where the bending moment corresponding to the 2nd derivative of the deflection is given by: 

2

2

dx
ydEIM −=  

where E is the Young’s modulus, and I is the second-area moments, that is I = π(rext
4 – rint

4)/4. 

Substitute the moment M into the shear force FS , and then 
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Substitute FS into Eqn. (49), the governing equation for this beam can be established: 

)()(2
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xwxw
dx

ydT
dx

ydEI vdWe +=−                      (50) 

where T  means the internal tensile force of the beam, and )(xwe  and )(xwvdW  are the 

electrostatic force given by Eqn. (47), and van der Waals force given by Eqn. (48), respectively. 

The boundary conditions are given by: 

0)0( =y , 0)0( =′y , 0)( =Ly , 0)( =′ Ly  

 

7.2 Effect of axial force due to stretching 

7.2.1 Stretching in the slip zone 

Now the nanotube is considered to be stuck on the ground in Section 2 of Fig. 8. 
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Figure 10. Free-body diagram of segment dx at slip zone. 

 

When the nanotube begins bending, a tensile force due to stretching exerts on Point C of Fig. 10. 

This tensile force elongates the nanotube between Point C and D. However, the shear stress τ 

exists between the sticking surfaces in order to reduce the internal tensile force, and the tensile 

force vanishes at Point D. That also means no displacement at Point D for the nanotube. Thus, 

Section 2 is called “slip zone”.  

For the dimensions of the slip zone, the length and width are L* and b respectively. From 

free-body diagram of segment dx shown in Fig. 10, the equilibrium equation of internal tensile 

forces along the x-direction in the contact region is given by: 

∑ =→+ :0xF               0*** =+++− bdxdTTT τ  

b
dx

dT τ−=
*

                               (51) 

The axial displacement u  of the beam dependent on the internal tensile force is written as: 

EA
dxTdu

*

=  
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Then                             
dx
duEAT =*                                (52) 

Substitute Eqn. (52) into Eqn.(51), and then 

b
dx

udEA τ−=2

2

                             (53) 

In the slip zone, the nanotube has no elongation and no internal tensile force at Point D. In the 

opposite, the internal tensile force at Point C reaches the value T in the deflecting portion of the 

nanotube. Thus the boundary conditions are given by: 

TuEA =′ )0( , 0)( * =′ LuEA , 0)( * =Lu  

Then the general solution of Eqn. (53) is written as: 

21
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bu ++−=
τ                        (54) 

where c1 and c2 are constants. Substitute the boundary conditions into Eqn. (54), L*, c1, and c2 

are obtained: 
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Thus, the displacement in the slip zone of the beam is established: 

bEA
T

x
EA
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τ

22

2
2 −+−=                      (56) 

 

7.2.2 Stretching in the beam 

To obtain the internal tensile force of the beam can be solved by the following two steps.  
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Figure 11. Schematic of the nanotube stretched by tensile forces T. 

 

 

Figure 12. Schematic of the nanotube stretched by external distributed loads w(x). 

 

First, the beam is elongated by the tensile force T along the axial direction shown in Fig. 11. 

Then, the displacement *δ  due to the internal tensile force can be written as: 

T
EA
L

=*δ                               (57) 

Second, the external forces (including the electrostatic forces and van der Waals forces) apply 
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upon the nanotube shown in Fig. 12. The displacements δ  due to the external forces will 

move back and is written as: 
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The difference between *δ  and δ  equals the displacements on both the boundaries of the slip 

zones, u(0). Thus 

)0(2* u=−δδ                              (59) 

Recall bEATu τ2)0( 2−= . Thus, Eqn. (59) can be written as: 
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The internal tensile force of the nanotube can be obtained by solving the above quadratic 

equation.  

In the limit case: τ→ ∞ , which means that the ends of the nanotube are clamped, and the 

slip zones disappear. Equation (60) becomes: 

∫ ⎟
⎠
⎞

⎜
⎝
⎛=

L

dx
dx
dy

L
EAT

0

2

2
                           (61) 

This mechanism of the nanotube can be considered as an equivalent system shown in Fig. 

13 [28]. When the nanotube starts bending, the elongation of an effective spring equals the slip 

distance at the boundary of the nanotube, 

eff
S k

Tu −== )0(δ                           (62) 

Thus, the effective stiffness coefficient effk  is written as: 

T
bEAkeff
τ2

=                             (63) 
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Figure 13. Equivalent model of a nanotube with slip zones. 

 

When keff → ∞, that is, τ  is very large, or T  is very small, the nanotube is same as a 

fixed-fixed beam. This situation can also be proved in Eqn. (60). The first term obtained by the 

slip zone of Eqn. (60) will vanish if τ  is very large or T  is very small. Because dxdy /  in the 

third term of Eqn. (60) depends on the voltage, the tension T  also depends on the voltage V. 

Therefore, the effective stiffness coefficient effk  varies with the voltage contrary. 
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Chapter 8. Doubly Pinned Nanotube and Nanowire 

 

8.1 Doubly pinned nanotube 

 

 

Figure 14. Model of a doubly pinned nanotube. 

 

In this system, Point B and C are assumed two pinned points, and then there is no slip and 

vertical motion at B and C. This assumption is equivalent to neglect the bending resistance at the 

ends of the nanotube and give an upper bound on the deflection. Thus, the nanotube can be 

considered as a doubly pinned beam in Section 1. When the voltage difference is applied 

between the nanotube and the electrode, the deflection in Section 1 can be considered as doubly 

pinned beam shown in Figure 14. Due to the ends pinned horizontally, the nanotube can not 

contract along horizontal direction like a simply supported beam when deflecting. Thus, the 

stretching effect is also considered during deflecting, and then the governing equation is same as 

Eqn. (50): 
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where )(xwe  and )(xwvdW  are the electrostatic force given by Eqn. (47), and van der Waals 

force given by Eqn. (48), respectively, and T is the internal tensile force given by Eqn. (61):  
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The boundary conditions for both the pinned ends are given by: 

y(0) = 0, y(L) = 0, y”(0) = 0, y”(L) = 0 

During the bending process, the nanotube is also applied by the van der Waals force in Section 2. 

However, for a nanotube with 30nm of Section 2 and 300nm of Section 1, the value of van der 

Waals force is less than 1% of the electrostatic force. Thus this effect of van der Waals is 

negligible. 

 

8.2 Nanowire 

 

 

Figure 15. Model of a nanowire. 
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The structure of the model for a nanowire shown in Fig. 15 is similar as a doubly pinned 

nanotube, but the bending stiffness EI vanishes. Then the governing equation is given by: 
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where )(xwe  and )(xwvdW  are the electrostatic force given by Eqn. (47), and van der Waals 

force given by Eqn. (48), respectively, and T is the internal tensile force given by Eqn. (61):  
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To assure the model of nanowire does not snap through directly, an external tensile force      

T0 = 2EI/L2 is applied on the nanowire initially. Then the internal tensile force becomes: 
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The boundary conditions for a wire are given by: 

y(0) = 0, y(L) = 0 
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Chapter 9. Numerical Methods 

 

9.1 Finite difference method 

 

 

Figure 16. Scheme of a numericalized nanotube. 

 

In the numerical method, the carbon nanotube is divided of n+2 discrete points shown in Fig. 16. 

The analytic fourth derivative and the second derivative approximate the numerical form [29]: 
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where i is the number for each discrete point, which is from 0 to n+1, yi presents the value of y at 

each discrete point, η is the distance between each two points, that is η = L/(n - 1). Then the Eqn. 

(50) approximates: 
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where we(yi) and wvdW(yi) are the electrostatic force given by Eqn. (47) and van der Waals force 

given by Eqn. (48) respectively, and T is the internal tensile force. we(yi) and wvdW(yi) are 

presented in numerical form of we(x) and wvdW(x) 
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In order to substitute the boundary conditions into Eqn. (66), the boundary conditions are 

applied into the difference form: 
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Substitute these boundary conditions into Eqn. (66), it becomes 
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Combine Eqn. (67), Eqn. (68), and Eqn. (69) into matrix form, that is 
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9.2 Fixed point method 

Equation (70) can also be presented simply as  

)()( ybyyA =                               (71) 

where  
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Multiply A-1(y) in both sides of Eqn. (71), and then 

)()(1 ybyAy −=                              (72) 

The fixed-point method [30, 31] provide a simple way to solve Eqn. (72), that is 

)()(11 kkk ybyAy −+ =                            (73) 

where k means the iterative numbers. To solve Eqn. (73), an initial guess y0 shall be assumed and 

substituted into the right hand side of Eqn. (73), and then a new set of y1 will be produced in the 
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left hand side. Then follow the steps: (1) put the old set of yk in the right hand side of Eqn. (73), 

and a new set of yk+1 is produced in the left hand side of Eqn. (73), (2) set yk+1 = yk , (3) iterate the 

previous steps. When Eqn. (73) is iterated for infinite times (k → ∞), the approximate solution by 

iteration will approach the exact solution: 

exact
k

k
yy =

∞→
lim   

Note that the value of the internal tensile force T is also updated with A-1(y) updated in the right 

hand side of Eqn. (73). The value of T can be obtained easily by a given set of yi through 

calculation of MATLAB. 

 

9.3 Criterion for convergence of numerical solutions 

Equation (74) represents the mean difference between old and new solutions during iterating for 

each voltage: 
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where k is the iterative number. The tolerance of error is chosen as tol = d×10-4 in this study. 
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Chapter 10. Discussion 

 

In this study, we consider d = 20nm, b = 0.65nm, and a CNT with L = 300nm, R = Rext = 0.65nm, 

Rint = 0, and E = 1TPa. Recall in this study, the effect of van der Waals force is neglected. 

 

0 0.5 1 1.5 2
x 10-8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Maximum deflection (m)

A
pp

lie
d 

vo
lta

ge
 (V

)

0 1 2 3
x 10-10

0

0.02

0.04

Maximum 
deflection (m)

A
pp

lie
d 

vo
lta

ge
 (V

)

 

Figure 17. Applied voltages versus maximum deflections. The results are (- -) for a doubly 

clamped nanotube neglecting stretching effect, ( . ) for a doubly clamped nanotube 

with stretching effect but no slip zones, (×) for a doubly clamped nanotube with 

stretching effect and slip zones (τ = 1MPa), (- . -) for a doubly pinned nanotube with 

stretching effect, and ( - ) for a nanowire. 
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Figure 17 presents the numerical solutions for the maximum deflection ymax versus the applied 

voltage in the equilibrium state, and the right-top figure presents the detail in the left-bottom 

rectangle. The result represents that a doubly clamped nanotubes needs larger pull-in voltage for 

the process of snap-through due to its two fixed boundaries. Two interactive moments are 

produced by both its boundaries in order to resist the bending moments, which the nanotube 

exerts on both its boundaries. It makes a doubly clamped nanotube which needs larger external 

load for bending. On the other hand, a doubly pinned nanotube can not afford much external 

force or voltage because of its free rotational boundaries. It causes a quick snapthrough for a 

doubly pinned nanotube. The nanotube will afford the smallest voltage if the bending stiffness EI 

is neglected, or a nanotube is stimulated as a wire.  

The internal tensile force is a significant role in this analysis. The tensile stresses made by 

the tensile force also vanishes a portion of bending stresses. Therefore, the deflection for a 

doubly clamped nanotube with stretching is smaller than one neglecting stretching under the 

same applied voltage. In other words, a doubly clamped nanotube with stretching looks stiffer 

than one neglecting stretching. The result in Fig. 18 shows that the effect of the slip zone can 

reduce a portion of the internal tensile force under the same applied voltage so that the nanotube 

deflects more easily. However, the internal tensile will be very small and negligible if the 

deflection of a nanotube is very small compared with its thickness. This also shows in Fig. 17 

that the difference of the maximum deflections is not obvious between a doubly clamped 

nanotube with stretching and one neglecting stretching under a very low applied voltage. 

Note that the results are numerical, thus the discussion depends on the convergent numerical 

solution. In other words, the maximum voltage for each case means “the maximum voltage for 

solution to converge” rather than “the maximum voltage for snapthrough”. For example, the 
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solution for a doubly clamped nanotube with stretching effect and slip zones converges under a 

larger voltage than one with stretching effect but no slip zones. However, the exact maximum 

voltages for these cases are unknown. 
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Figure 18. Dimensionless internal tensile forces (TL2/EI) vs. applied voltages (V). The results are 

(- -) for a doubly clamped nanotube with stretching effect but no slip zones, (- . -) for 

a doubly clamped nanotube with stretching effect and slip zones (τ = 1MPa), ( . ) for 

a doubly pinned nanotube with stretching effect, and (—) for a nanowire. 
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Chapter 11. Conclusions 

 

The effect of stretching does not significantly affect the results under a very low voltage or very 

small deformation. However, the effect of stretching shall be considered when the applied 

voltage becomes large. For doubly clamped nanotubes with stretching, slip zones can release a 

portion of the internal tensile force so that a nanotube bends more easily than one without slip 

zones under the same applied voltage. However, the exactly maximum voltage for snpathrough 

of each model is still unknown due to the limit of numerical method. Numerically iterative 

solutions do not converge necessarily (diverge or oscillate) before reaching the maximum voltage 

for snapthrough. On the other hand, the analytic solution is hard to obtain by solving those 

governing equations due to the high order nonlinear differential equation. Thus, other methods 

solving these differential equations will be sought in future investigation. 
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