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ABSTRACT 

The adhesion forces between two bodies in contact were experimentally observed by Roberts 

(1968) and Kendall (1969). In these experiments it was noted that the contact areas at low loads 

were considerably larger than those predicted by Hertz theory. Several models were then 

introduced to add the adhesion effect to the Hertz model, such as the Johnson-Kendall-Roberts 

(JKR) model, the Derjaguin-Muller-Toporov (DMT) model and the Maugis model.  The Maugis 

model also offers a transition between the JKR and DMT theories. These models were developed 

for axisymmetric elastic bodies, with ideal spherical surface profiles, which can be approximated 

by a single second-order term. Later, Zheng et al.(2007) developed a model that investigated the 

adhesion of axisymmetric elastic bodies whose surface profiles are ideally approximated by a 

single n-th order term. Since an actual surface profile may not be exactly described by a single 

paraboloid or a single higher-order term, it may not be obvious which model is more suitable to 

use. In this investigation, surface geometries of contacting bodies are approximated by a 

combination of second- and fourth-order terms and a transition region is established. It is shown 

that the need for using the transition model not only depends on the geometry of contacting 

bodies, but also on their material properties. 
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Introduction 

The elastic contact with adhesion of spherical elastic bodies (whose surface profiles are 

approximated by a single second-order term) was investigated by Johnson et al. (JKR model) [1] 

and Derjaguin et al. (DMT model) [2]. Both models add to the Hertz contact model the effect of 

the Dupré energy of adhesion �, which is defined as the work per unit area needed for the 

reversible, isothermal separation of two solids. This quantity, also known as the work of 

adhesion, is given by � = �� + �� − ���, where ��and �� are the surface energies of the two 

bodies in contact and ��� is the interfacial energy. If the bodies are identical then, � = 2�. The 

JKR model adds the adhesion effect by minimizing the total potential energy which includes the 

Dupré energy of adhesion, giving a pull-off force of 
	� 
��. The DMT model adds the adhesive 

stresses outside the contact region while maintaining the Hertz stress distribution inside the 

contact area, thereby obtaining a pull-off force of 2
��. 

Using the Dugdale model from fracture mechanics, Maugis introduced a model (also 

known as the M-D model) [3] which demonstrates a continuous transition between the JKR and 

DMT theories based on a parameter � that is closely related to the Tabor parameter µ [4]. The 

Tabor parameter is a measure of the ratio of the elastic deformation to the range of surface 

forces. The Maugis parameter can be expressed in terms of Tabor parameter as � ≅ 1.16� 

Maugis showed that, as � → 0, the DMT model is applicable whereas when � → ∞ the JKR 

model is called for. For practical purposes λ less than about 0.1 is DMT and λ greater than about 

3 is JKR. 

Although the three models mentioned above assume that the bodies in contact are 

spherical, their surface geometries are in fact approximated by a single second-order term. 
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In their research on the friction force between an atomic force microscope (AFM) tip and a 

nominally flat surface, Carpick et al. introduced an extended JKR model applicable to 

axisymmetric elastic bodies in contact with a surface profile described by a single n-th order 

term, i.e. ��� [5, 6]. Later, Zheng et al. developed an analytical model to extend the M-D theory 

to asperities with such power-law geometries, called the M-D-n model [7]. Grierson et al. then 

performed a finite element analysis and experimental measurements which agreed well with the 

analytical model [8]. 

Some questions naturally arise in deciding whether to use a second- or higher-order 

approximation of a surface profile. For example, if the real surface profile is “exactly” either a 

2nd-order or 4th-order shape then it is clear which shape to use in calculating the pull-off force, 

the force vs. the contact area, and the force vs. the penetration. However, a realistic shape could 

no doubt be approximated to different degrees of accuracy by either a 2nd-order or a 4th-order 

shape. The choice of which approximation to use is expected to depend upon how close the 

actual profile is to each of these shapes, but does it also depend upon a parameter involving the 

material properties?  Furthermore, under what conditions does the shape need to be described by 

more than one term, i.e. a combination of a 2nd-order term and a 4th-order order term?  Another 

issue is the choice of using the JKR and its extended model as opposed to the more complicated 

Maugis and its extended model. For a pure 2nd-order surface profile these regimes are reasonably 

clear.  However do these regimes differ for a two-term approximation?  By extending JKR and 

M-D models to a surface profile with two terms, we hope to answer these questions. 
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JKR Model Extension for Two Terms 

A. Problem Formulation: 

If a pressure distribution is applied to a circular region of an elastic half space of radius �, a 

closed-form solution for the normal component of surface displacement can be found. Consider a 

cylindrical coordinate system (�, �, �) and apply on � = 0 the pressure distribution given by 

�(�) = ��  1 − !"
#"$�                � < �     (1) 

where the maximum contact pressure is ��, which occurs at � = 0. 

Following the procedure of Johnson [9] and referring to Figure 1, the displacement of the 

surface at point B can be found using a local polar coordinate system (', φ) with origin at point 

B. At a distance ' from B, the pressure �(', φ) that acts on a small element of area corresponds to 

a force with magnitude �(', φ) ' (' (φ. The displacement at B resulting from the pressure 

distributed on the whole area is then 

)* =  �+,"
-. ∬ �(', φ)  (' (φ 0       (2) 

 

where 1 is Poisson’s ratio and 2 is Young’s modulus.  

The resultant force 3 is obtained by integration of the pressure over the circular region 

3 = 4 2
� �(�)(�#5       (3) 

The value of the exponent 6 in the above pressure distribution depends on the surface profile of 

the elastic bodies in contact. For example 6 = ��  represents the pressure distribution between two 

spherical elastic solids in frictionless contact without adhesion as obtained by Hertz (1882) i.e. 
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�(�) = ��  1 − !"
#"$7"                � < �     (4) 

where ��is the maximum contact stress and can be written in terms of the resultant force 3� as 

�� = 	87�-#"      (5) 

The displacement expressed in terms of the resultant force 3� is 

)*(�, 0) = 	879.∗#  2 − !"
#"$                0 < � < �   (6) 

)*(�, 0) = 	87;-#.∗ <= 2 − !"
#"$ sin+� #!A + =B!"#" − 1AC                � > �  (7) 

where 2∗ is the composite Young’s modulus defined by 

�.∗ = �+,7".7 + �+,""."      (8) 

where 2� and 2� are the elastic Young’s moduli of elastic bodies 1 and 2 respectively, and 1� 

and 1� are the Poisson’s ratios of bodies 1 and 2 respectively.  

A pressure distribution in which 6 = − ��  results in a uniform normal displacement of the 

circular region (� < �) and corresponds to the pressure exerted by a flat-ended, frictionless, rigid 

punch pressed against an elastic half space with contact radius � (Johnson, 1985). The contact 

pressure at the center of the circular region,  ��, can be expressed in terms of the resultant force 

3� as 

�� = 
8"�-#"      (9) 
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In this case, the displacement at the surface is 

)*(�, 0) = 8"�.∗#                0 < � < �   (10) 

)*(�, 0) = 8"-#.∗ sin+� #!                � > �   (11) 

By using the fracture mechanics concept of the stress intensity factor EF at the edge of the 

circular region, the force needed to separate the punch from the half-space may be obtained as a 

function of the Dupré energy of adhesion � 

EF = lim!→# �(�)I2
(� − �)    (12) 

By setting EF equal to its critical value 

− 322B
�3 = √2�2∗      (13) 

is obtained. The displacement inside the circular region is therefore: 

)*(�, 0) = − B�-L#.∗                 0 < � < �   (14) 

If the exponent value 6 of the pressure distribution is equal to 
	�, the maximum contact 

pressure �	 and a resultant force 3	 are related by 

�	 = M8N�-#"      (15) 

 The corresponding displacements are 

)*(�, 0) =  �M8N�O#.∗ (1 − !"
#" + 	9 !P

#P)                0 < � < �   (16) 
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and 

)*(�, 0) = �M8N9-#.∗ < (1 − !"
#" + 	9 !P

#P) sin+� #!$ + =B!"#" − 1A  	; − 	9 !"
#"$C , � > �      (17) 

A superposition of these three pressure distributions results in the following surface 

displacements 

for  0 < � < � 

)*(�, 0) = <− B�-L#.∗ + 	87;.∗# + �M8N�O.∗#C − T 	879.∗#N + �M8N�O.∗#NU �� + T ;M8N��9.∗#VU �;     (18) 

and 

for  � > � 

)*(�, 0) = �-#.∗
WX
XX
Y< sin+� #!$ =3� + 	; 3�  2 − !"

#"$ + �M9 3	  1 − !"
#" + 	9 !P

#P$AC
+ <=B!"#" − 1A =	; 3� + �M9 3	  	; − 	9 !"

#"$AC Z[
[[
\
      (19) 

Now if the surface profile of the elastic body in contact is described by a combination of 

a 2nd- and a 4th-order terms, then the surface displacement is given by  

)*(�, 0) = ] − !"
�^  1 + _ !"

^"$                      0 < � < � (20)    

where ] is the interference and R is the composite radius of curvature expressed as 

�̂ = �̂
7 + �̂

"      (21) 

where �� and �� are the radii of curvatures of bodies 1 and 2 respectively. By matching the 

terms in Eqn. (18) to Eqn. (20) 
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3� =  ;.∗#N
	^ `1 + 9	 _  #̂$�a     (22) 

3� =  − √8
�2∗�	     (23) 

3	 = − O;c.∗#V
;M^N       (24) 

are obtained. The total resultant force 3 is obtained by summing these three forces and is given 

by 

3 = − √8
�2∗�	 + ;.∗#N
	^  1 + 9cM^" ��$   (25) 

whereas the total interference is 

] =  <− B�-L#.∗ +  #"
^  1 +  ;c#P

	^N $ C   (26) 

Both of the above equations can be simplified by introducing non-dimensional 

parameters given by 

�d =  ;.∗
	-L^"$7N �      (27) 

3d = 8-L^       (28) 

_e =  _ �M  O-L.∗^ $"N
      (29) 

]̅ = ` �O.∗"
g-"L"^a7N ]     (30) 
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The non-dimensional load and non-dimensional approach may now be written as 

3d = − √6�d	 + �d	(1 + _e�d�)    (31) 

]̅ = − B9	 �d + �d�  1 + MO _e�d�$    (32) 

In summary Eqns. (31) and (32) can be used to relate the dimensionless force to contact 

radius and approach for various values of ε′. 

B. Results and Discussion 

In Figure 2, the dimensionless contact radius vs. the dimensionless load is plotted for different 

values of _ ′. Note that _ ′ as defined by Eqn. (29) depends not only on the relative magnitude of 

the fourth-order term compared to the second-order term, but it also depends on w/E*R.  The 

solid lines in Fig. 2 represent the results for a surface profile described by a combination of 2nd- 

and 4th-order terms, whereas the dashed lines represent a pure 4th-order surface profile.  It is 

noted that for a given positive (compressive) load, the resulting contact radius decreases as the 

weight of the 4th-order term increases compared to the 2nd-order term (i.e. an increase of _ ′). For 

_ ′ as low as about 0.05 (not shown), the effect of the 4th-order term is important. Also it is not 

until _ ′ is as large as about 10 that the pure 4th-order description is accurate. Thus the range 

0.05 < _ ′ < 10 describes the transition in which a two-term approximation is needed.  

In Figure 3, the dimensionless force vs. the dimensionless approach (interference) is 

plotted for different values of _ ′. Again, the solid lines represent a surface profile described by a 

combination of 2nd- and 4th-order terms, whereas the dashed lines represent a pure 4th-order 

surface profile. The range 0.05 < _ ′ < 10 still describes the transition region in which a two-

term approximation is needed. For a geometry described by two terms, separation of the bodies 



9 

 

 

 

in contact (which occurs at the maximum tensile load) is accompanied by a dimensionless 

negative interference (stretching) ranging from approximately ]̅ = −0.9 at _ ′ = 0 to around ]̅ =
−0.75  at _ ′ = 10. 

In Figure 4, the dimensionless pull-off force 3dkll (i.e. the maximum tensile force) is 

plotted as a function of _ ′. Also shown is the curve-fit equation which is expressed in the form 

3dkll = 0.7905m+5.5MO�9cn + 0.7094m+�.	gcn
    (33) 

The root mean squared error between the curve-fit and the data is about 1.7%, with a maximum 

error of about 4.8%. It is noted that the results reduce to the original JKR model when  ε′ = 0. 

 

Maugis Model Extension to Two Terms 

A. Problem Formulation 

The model introduced by Maugis [3], which was developed for spherical bodies in contact, will 

now be extended to a combined 2nd- and 4th-order shape. The first step is to determine the 

solution due to a single term 4th-order shape without adhesion; it corresponds to a summation of 

pressure distributions with 6 = �� and 6 = 	�. This solution will then be superposed onto the 

Maugis solution in such a manner as to account for the fact that the added pressure distribution 

changes the displacement in the separation region and hence affects the adhesion condition. 

For a pressure distribution given by 

�(�) = ��  1 − !"
#"$7" + �	  1 − !"

#"$N"                � < �   (34) 
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by using Eqn. (2), the resulting displacement is 

for    0 < � < � 

)*(�, 0) =  ��O#.∗ T(123� + 153	) − (63� + 153	) !"
#" + (153	) 	9 !P

#PU      (35) 

and for    � > � 

)*(�, 0) = �9-#.∗
WX
XX
Y< sin+� #!$ =63� `2 −  !#$�a + 153	 `1 −  !#$� + 	9  !#$;aAC

+ <=B !#$� − 1A =63� + 153	 `	; − 	9  !#$�aAC Z[
[[
\
  (36) 

If the surface profile of the elastic body in contact is described by a single 4th-order term, i.e.  

)*(�, 0) = ] − _ !P
�^N                      0 < � < �    (37) 

then, by matching Eqns. (35) and (37) 

3	 = − O;c.∗#V
;M^N      (39) 

3� = 	�c.∗#V
g^N       (40) 

are obtained. The corresponding total load (3c) and interference (]c) are given by 

3c = 3� + 3	 = 	�c.∗#V
�M^N     (41) 

]c = ;c#P
	^N       (42) 
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for this pure 4th-order shape without adhesion. The gap resulting from the pressure distribution 

due to a 4th-order shape becomes 

q)*cr = ;c#P
	^N s �- cos+� #!$ `	9  !#$; − 1au + 9c#P

	-^N <=B !#$� − 1A `�; + 	9  !#$�aC     (43) 

Now considering the results of Maugis, the relative normal displacement in the separation 

region for a parabolic shaped profile with a constant adhesive stress (vk) is at � = w 

ℎk = �2

� y√z2 − 1 + (z2 − 2) tan−1 √z2 − 1} + 4v~�
2∗ y(√z2 − 1 tan−1 √z2 − 1) + 1 − z}   (44) 

where z = �#.  Note that in the Maugis model and its extension a constant adhesive stress is 

assumed at points in the separation region for which the local separation is less than ℎk, where  

ℎkvk = � defines the value of ℎk. Maugis shows that ℎk is approximately equal to the atomic 

equilibrium separation (�k) of two half-spaces. The stress due to adhesion is assumed to be a 

constant vk in this region and zero elsewhere.  

Thus for the combined 2nd-and 4th-order model, the total air gap q)*r at � = w can be 

expressed as:  

ℎk = �<#"�z2+��
^ + 8_�4 38z4−1$3
�3 C tan−1 √z2 − 1� + <T#"
� + 2_�4
3
�3 + _�4


�3 z2U √z2 − 1C +
             s;��#-.∗ y(√z� − 1 tan+� √z� − 1) + 1 − z}u               (45) 

in which the identity cos+� �� = tan+� √z� − 1 has been used,. 

Now the Maugis dimensionless parameter is introduced 
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� = ���
`���"� a7N = ���

��� PN�∗$"
� �

7N     (46) 

This dimensionless parameter can be related to Tabor parameter, � as follows: 

vk = L5.g� ��     (47) 

and Eqn. (46) can be rewritten as: 

 � = < 9^L"
(5.g�)N- PN$".∗"��NC7N

    (48) 

The Tabor parameter µ [4] is expressed as: 

� = T ^L"
.∗"��NU7N

     (49) 

Therefore: 

��#���0 ≅ 1.16  ��#�k!     (50) 

Using Eqn. (46),  Eqn. (45) becomes 

�#d"
� <=1 + Mcn#d"

9  z� + �	$A √z� − 1 + =(z� − 2) + Mcn#d"
	  	9 z; − 1$A tan+� √z� − 1C +

;	 ���dy(√z� − 1 tan+� √z� − 1) + 1 − z} = 1    (51) 
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which reduces to equation (6.17) in [3] if _e = 0.  Equations (41) and (42) can be rewritten using 

dimensionless parameters as 

3dc = _e�dM      (52) 

]c� = 56 _′�d4      (53) 

The total dimensionless load can be obtained by adding equation (52) to the dimensionless load 

obtained by Maugis [3] (equation 6.18) and is 

3d = _e�dM + �d	 − ��d�y√z� − 1 + z� tan−1 √z2 − 1}   (54) 

The dimensionless approach given by Eqn. (53) can be added to Eqn. 6.19 in [3] to give the total 

dimensionless approach: 

]̅ = 56 _′�d4 + �d2 − ;	 �d�√z2 − 1     (55) 

It is noted that when εe = 0 Eqns. (54) and (55) reduce to the original equations obtained by 

Maugis. 

To obtain the values of dimensionless load and the dimensionless approach relevant to a 

pure 4th-order shape, the surface profile of the elastic body in contact is assumed so as to 

suppress the second order term when superposed to the original M-D model, i.e. 

)*(�, 0) = ] + !"
�^ − _ !P

�^N                      0 < � < �  (56) 

Then by matching Eqns. (35) and (56) 

3	 = − O;c.∗#V
;M^N       (57) 
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3� = 	�c.∗#V
g^N − ;#N.∗

	^      (58) 

are obtained.  The corresponding total load (3e) and interference (]e) without adhesion are given 

by 

3′ = 3� + 3	 = 	�c.∗#V
�M^N − ;#N.∗

	^      (59) 

]e = 4_�43�3 − �2�       (60) 

for the shape in Eqn. (56) which can be written in dimensionless form as 

3e� = _e�dM − �d	      (61) 

]e� = MO _e�d; − �d�      (62) 

The gap resulting from the pressure distribution due to the shape in Eqn. (56) becomes 

q)*er = c#P
�^N s �- cos+� #!$ ` !#$; − 9	au + c#P

-^N <=B !#$� − 1A ` !#$� + �	aC (63) 

By adding Eqns. (44) and (63), the total air gap at � = w can be expressed as  

         ℎk = <Tc#P
-^N  z; − 9	$U tan+� √z� − 1C + Tc#P

-^N  z� + �	$ √z� − 1U    

                      + s;��#-.∗ y�√z� − 1 tan+� √z� − 1� + 1 − z}u        (64) 

Using Maugis dimensionless parameter from Eqn. (46), Eqn. (64) becomes 
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                     Mcn�#dP
�O T z� + �	$ √z� − 1 +  z; − 9	$ tan+� √z� − 1U +

                              ;	 ���dy(√z� − 1 tan+� √z� − 1) + 1 − z} = 1        (65) 

By adding the dimensionless load and dimensionless approach obtained by Maugis, the 

total dimensionless load for a pure 4th-order shape with adhesion becomes 

 3d = _e�dM − ��d�y√z� − 1 + z� tan−1 √z2 − 1}   (66) 

and the total dimensionless approach for a pure 4th-order shape with adhesion is given by 

]̅ = 56 _′�d4 − ;	 �d�√z2 − 1     (67) 

B. Results and Discussion 

In Figures 5 through 8, the dimensionless contact radius is plotted vs. the dimensionless load for 

� = 0.5 , 1, 1.5 �6( 3 respectively. Also, the dimensionless load is plotted vs. the dimensionless 

approach in Figures 9 through 12 at � = 0.5 , 1, 1.5 �6( 3 respectively.  Based on these results, a 

single 4th-order term can be used to describe the surface profile of an elastic body when εe > 10, 

while a single 2nd-order term may be used if εe < 0.05. In the transition range where 0.05 < εe <
10, the surface profile should be described by two terms.  

Figure 13 highlights the decrease in the pull-off force as  εe increases for a variety of �.  
At large values of εe (Fig. 13a) the trend is clear that greater values of � lead to greater values of 

the pull-off force.  However for smaller values of εe (Fig. 13b) the trend is much more 

complicated.  The variation of the dimensionless contact radius at pull-off vs. εe is shown in 

Figure 14 for various values of �.  Finally, Figure 15 shows the dimensionless approach at pull-

off (stretching, since it is negative) vs. as εe for different values of �.   
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Conclusions 

The extension of the JKR and Maugis models to two terms has been accomplished.  The results 

demonstrate the conditions under which using a single 2nd-order term, a single 4th-order term, or 

the two-term approximation is needed.  This determination is based upon a parameter εe which 

represents a combination of the relative weight of the 4th-order term compared to the 2nd-order 

term and also on the ratio of the work of adhesion to the product of the composite Young’s 

modulus and the radius of curvature of the body.  From these results, the surface profile of an 

elastic body can be approximated to a single 2nd-order form if _ ′ is less than about 0.05, whereas 

a single 4th-order term approximation is applicable for _ ′ greater than about 10. Therefore the 

range  0.05 < _ ′ < 10 is the transition regime in which a two-term approximation is called for. 
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Figure 1. Schematic of axisymmetric elastic body with center O showing point B, at distance r 

from the center, used to calculate vertical displacement )*. 
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Figure 2.The dimensionless contact radius vs dimensionless load for different values of  ε′. The 

solid lines represent a surface profile described by a combination of a 2nd- and 4th-order terms, 

whereas the dashed lines represent a surface profile described by a single 4th-order term. 
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Figure 3. The dimensionless load vs dimensionless approach for different values of  ε′.The solid 

lines represent a surface profile described by a combination of a 2nd- and 4th-order terms, 

whereas the dashed lines represent a surface profile described by a single 4th-order term. 
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Figure 4. Data scatter and curve-fit for the variation in dimensionless pull-off force with _ ′ for a 

surface profile described by a combination of 2nd- and 4th-order terms. The dashed curve 

represents the pull-off force for a surface profile described by a single 4th-order term. 
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Figure 5   Dimensionless contact radius vs. dimensionless load at � = 0.5 at different values 

of _ ′. The solid lines represent a surface profile described by a combination of a 

2nd- and 4th-order terms, whereas the dashed lines represent a surface profile 

described by a single 4th-order term. 
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Figure 6   Dimensionless contact radius vs. dimensionless load at � = 1 at different values 

of _ ′. The solid lines represent a surface profile described by a combination of a 

2nd- and 4th-order terms, whereas the dashed lines represent a surface profile 

described by a single 4th-order term. 
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Figure 7   Dimensionless contact radius vs. dimensionless load at � = 1.5 at different values 

of _ ′. The solid lines represent a surface profile described by a combination of a 

2nd- and 4th-order terms, whereas the dashed lines represent a surface profile 

described by a single 4th-order term. 
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Figure 8   Dimensionless contact radius vs. dimensionless load at � = 3 at different values 

of _ ′. The solid lines represent a surface profile described by a combination of a 

2nd- and 4th-order terms, whereas the dashed lines represent a surface profile 

described by a single 4th-order term. 
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Figure 9  Dimensionless load vs. dimensionless approach at � = 0.5 at different values of 

_ ′. The solid lines represent a surface profile described by a combination of a 2nd- 

and 4th-order terms, whereas the dashed lines represent a surface profile described 

by a single 4th-order term. 
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Figure 10 Dimensionless load vs. dimensionless approach at � = 1 at different values of _ ′. 

The solid lines represent a surface profile described by a combination of a 2nd- 

and 4th-order terms, whereas the dashed lines represent a surface profile described 

by a single 4th-order term. 
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Figure 11 Dimensionless load vs. dimensionless approach at � = 1.5 at different values of 

_ ′. The solid lines represent a surface profile described by a combination of a 2nd- 

and 4th-order terms, whereas the dashed lines represent a surface profile described 

by a single 4th-order term. 
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Figure 12 Dimensionless load vs. dimensionless approach at � = 3 at different values of _ ′. 

The solid lines represent a surface profile described by a combination of a 2nd- 

and 4th-order terms, whereas the dashed lines represent a surface profile described 

by a single 4th-order term. 
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Figure 13a   

 

Figure 13b 
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Figures 13a and 13b   Dimensionless pull-off force vs. _ ′ for a surface profile described by a 

combination of second- and fourth-order terms at different values of �. The 

dashed curve represents the dimensionless pull-off force vs. _ ′ obtained by the 

extended JKR model for a surface profile described by a combination of second- 

and fourth-order terms. 
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Figure 14   Dimensionless contact radius at pull-off vs. _ ′ for a surface profile described by a 

combination of second- and fourth-order terms at different values of �. The 

dashed curve represents the dimensionless contact radius at pull-off vs. _ ′ 

obtained by the extended JKR model for a surface profile described by a 

combination of second- and fourth-order terms. 
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Figure 15   Dimensionless approach at pull-off vs. _ ′ for a surface profile described by a 

combination of second- and fourth-order terms at different values of �. The 

dashed curve represents the dimensionless approach at pull-off force vs. _ ′ 

obtained by the extended JKR model for a surface profile described by a 

combination of second- and fourth-order terms. 
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