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With potential missions for quadrotor micro-air vehicles (MAVs) calling for

smaller, more agile vehicles, it is important to implement attitude controllers that

allow the vehicle to reach any desired attitude without encountering computational

singularities, as is the case when using an Euler angle representation. A compu-

tationally efficient quaternion-based state estimator is presented that enables the

Army Research Laboratory’s (ARL) 100-gram micro-quadrotor to determine its at-

titude during agile maneuvers using only an on-board gyroscope and accelerometer

and a low-power processor. Inner and outer loop attitude and position controllers

are also discussed that use the quaternion attitude representation to control the

vehicle along aggressive trajectories with the assistance of an outside motion cap-

ture system. A trajectory generation algorithm is then described that leverages the

quadrotor’s inherent dynamics to allow it to reach extreme attitudes for applications

such as perching on walls or ceilings and flying through small openings.
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Chapter 1: Introduction

1.1 Motivation and Technical Approach

The popularity of quadrotors is at an all-time high for research applications.

They now serve as the standard platform for the development of new sensing, map-

ping, and navigation technology for small unmanned aerial vehicles (UAVs). In

addition to their role in current research programs, quadrotors are also widely avail-

able commercially. Children and hobbyists alike can now purchase quadrotors that

are easy to fly with little or no previous piloting experience. With the public be-

coming increasingly more comfortable with quadrotor UAVs, the list of potential

applications, both in the military and in everyday life, continues to grow.

Typical non-aggressive quadrotor UAVs use simple controllers and state esti-

mation algorithms that are meant only for the hover condition. However, as desired

capabilities become more demanding, these controllers are insufficient for a variety of

applications. Collision or obstacle avoidance during high-speed flight, for example,

requires quick and aggressive maneuvering that current simplified controllers would

not be able to achieve. In order to create a wider realm of potential quadrotor

applications, more advanced attitude and position controllers are required.

The robotics community has made significant progress in improving the capa-
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bilities of quadrotor UAVs and enabling aggressive quadrotor flight with a variety of

algorithms and control methods. Numerous university research groups have focused

on the advancement of many aspects of quadrotor operation over the past several

years, such as dynamics and control [1], [2], [3], state estimation [4], and aggres-

sive maneuvering [5], [6], [7]. The University of Pennsylvania’s General Robotics,

Automation, Sensing, and Perception (GRASP) Laboratory and the Flying Ma-

chine Arena at ETH Zurich in particular have done significant work with aggressive

quadrotor flight and trajectory generation in recent years [8], [9], [10], [11] [12]. These

labs have developed complex algorithms and nonlinear model-based controllers that

enable agile quadrotor flight, however, these algorithms are often too computation-

ally intensive for implementation on smaller, low-power vehicles.

The contribution of this thesis is to present a state estimation algorithm and

attitude and navigation controllers designed to enable aggressive flight in small

quadrotor UAVs. Using a four-dimensional quaternion attitude representation, as

opposed to the much more common Euler angle method, the quadrotor can achieve

extreme attitudes without a complex, trigonometric state estimator that is difficult

to implement on small, low-power processors. A trajectory generation algorithm is

also presented that leverages the inherent dynamics of quadrotor UAVs to create

achievable trajectories that require the minimum control effort to complete. The

generated trajectories are entirely compatible with the quaternion framework of the

state estimator and controllers. This is demonstrated with the example application

of performing an aggressive perching maneuver on a vertical wall using a specially

designed dry-adhesive developed at Stanford University.
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In this work, a micro-quadrotor developed jointly by the Autonomous Vehicle

Laboratory (AVL) and the Army Research Laboratory (ARL) is used to demonstrate

aggressive control with a quaternion attitude representation. The state estimator

and attitude controller are both implemented on-board the vehicle using a GINA

Mote, an avionics and communication board developed at the University of Cali-

fornia, Berkeley. The outer-loop navigation controller is implemented off-board in

Labview and uses a Vicon motion capture system to provide inertial state feedback.

The on- and off-board sensors used for each part of the control scheme are out-

lined in Fig. 1.1. The trajectory generation algorithm uses Matlab with the convex

optimization CVX Toolbox [13] to create quadrotor trajectories.

Figure 1.1: Outline of the on- and off-board sensors used in the presented controllers.

1.2 Chapter Outline

The outline for this thesis is as follows. Chapter 2 describes the ARL MkIV

micro-quadrotor, the test vehicle for the proposed aggressive flight algorithms. Chap-

ter 3 explains the motivation for using quaternions as an attitude representation and

derives the quaternion-based state estimator. Chapter 4 describes the quaternion-
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based attitude controller. Chapter 5 derives the differential flatness property of a

quadrotor and describes the minimum-control trajectory generation algorithm. A

simulated example is also presented to demonstrate the various types of constraints

that can be incorporated into the trajectory. Chapter 6 describes two trajectory-

tracking controllers that leverage the quaternion attitude representation, one of

which allowing for any attitude during flight. Chapter 7 presents the example

application of perching on a vertical wall using Stanford’s dry-adhesive perching

mechanism. Chapter 8 concludes the thesis and discusses future work.
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Chapter 2: Overview of ARL Microquad MkIV

The current version of the Autonomous Vehicle Laboratory’s (AVL) micro-

quadrotor, referred to as the ARL MkIV (Fig. 2.1), was designed jointly by AVL

and the Army Research Lab (ARL) as part of a collaborative grant under the Micro

Autonomous Systems and Technologies Collaborative Technology Alliance (MAST-

CTA). This vehicle is the culmination of several years of development of a small-scale

quadrotor with potential for autonomous flight. The ARL MkIV was designed for

easy manufacturing by using the vehicle’s printed circuit board (PCB) as its main

structural member. The motors and battery are the only components that need

to be mounted on the pre-populated PCB before it can be flown. The vehicle also

includes several on-board processors for flight control and sensor integration, as well

as a wireless communication board and custom electronic speed controllers (ESC).

2.1 Microquad Structure

The main structural component of the ARL MkIV micro-quadrotor is the PCB

itself. This design was chosen to simplify the manufacturing process. The PCB can

be ordered pre-populated with the necessary electronics and, after programming the

microprocessors and mounting the motors and battery, it is ready to fly. Additional
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Figure 2.1: ARL MkIV.

parts are used for testing purposes, such as landing gear, sensor mounts, and Vicon

motion capture markers.

In previous versions of the AVL’s PCB micro-quadrotor, it was found that

extensive use resulted in unpredictable motor behavior due to loose electrical con-

nections near the motor-arm joints of the PCB. The constant flexing and vibration

of the motor-arms during flight caused connections in the surface-mount compo-

nents to weaken. In order to make the vehicle more structurally robust, the ESC

electronics were separated onto their own motor-arm boards and the control and

communication electronics were condensed to a central hub PCB. The ESC-motor

PCBs are secured to the central hub PCB with plastic, rapid prototyped couplings.

During crashes, these couplings snap and protect the PCBs from excessive flexing

that could damage the electrical connections. The modular design of the ARL MkIV

6



is shown in Fig. 2.2.

Figure 2.2: ARL MkIV with modular ESC arms.

2.2 Motors and ESCs

Custom ESCs were designed for the ARL MkIV to drive the vehicles four

brushless motors (Fig. 2.3). Brushless motors were chosen over brushed motors

due to their efficiency, availability, and back-EMF control capabilities. The ESCs

drive the brushless motors and ensure that they are rotating at the desired speed by

making control adjustments based on the back-EMF signal. These ESCs are able to

update the motor speeds faster and hold steadier constant speeds than off-the-shelf

ESCs of comparable size and power.

The motors used on the ARL MkIV are 4000kV micro-motors weighing 3.1

grams each. These were used with 3-inch long, injection molded rotors with a 2-inch

pitch. These rotors must be balanced to reduce vehicle vibration. The balancing is
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done manually with a balancing stand and thin tape is added to the rotor until it

is sufficiently balanced. This motor-rotor combination produces a maximum thrust

of about 40 grams.

Figure 2.3: ESC arm without rotor.

2.3 Communication and Control

The ARL MkIV uses the Guidance and Inertial Navigation Assistant (GINA)

mote version 2.2c developed at the University of California - Berkeley for its avionics

(Fig. 2.4(a)). The mote uses an MSP430 16-bit microcontroller from Texas Instru-

ments for processing and a 2.4 GHz Atmel AT86RF231 low-power radio for bi-

directional, wireless communication to a base-station. It also has a Kionix KXSD9-

1026 3-axis accelerometer, an Invensense ITG3200 3-axis gyroscope, and a Honeywell

HMC5843 3-axis magnetometer on-board for inertial sensing. The mote weighs 1.8

grams and was chosen for use on the ARL MkIV due to its pre-packaged low-power

wireless communication and high-quality sensor integration. Custom avionics algo-

rithms, however, were designed and implemented in place of the standard package.
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The base-station used for receiving data from and transmitting data to the ARL

MkIV is a USB Atmel RZ600 base station mote (Fig. 2.4(b)).

(a) (b)

Figure 2.4: (a) UC Berkeley’s GINA mote 2.2c. (b) USB Atmel basestation.

2.4 Power Supply

The ARL MkIV uses a 2-cell lithium polymer battery rated for 7.4 volts

(Fig. 2.5). This voltage is regulated to 3.3 volts to power the mote and 5 volts

to power the ESCs and motors. The battery weighs 24.6 grams and is mounted un-

der the PCB body of the vehicle with a rapid prototyped bracket. With this power

source, the ARL MkIV can hover with no additional payload for up to 9 minutes.
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Figure 2.5: 2-cell Li-Po battery.

2.5 Coordinate System Definition

The Earth-fixed inertial coordinate system I and the body-fixed quadrotor

coordinate system B are defined in Fig. 2.6. Both coordinate systems use the

North-East-Down (NED) convention common to aerospace dynamics work. The

vector E r̄O′/O is the position vector for the quadrotor, locating its center of gravity

(CG) in inertial space relative to some inertial origin. For testing purposes at the

Autonomous Vehicle Laboratory (AVL), the inertial origin is typically set to the

center of the flight area on the floor plane.

2.6 Flight Area and Experimental Setup

A Vicon motion capture system (Fig. 2.7) is used to provide high-resolution

inertial data on the current position and orientation of the ARL MkIV during flight.

This data is collected at 100 Hz by a custom LabVIEW Virtual Instrument and
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Figure 2.6: Inertial and body coordinate systems.

is then used to compute navigation-based control commands that are sent to the

vehicle. LabVIEW is used for all piloted and autonomous interfacing with the ARL

MkIV during flight. This allows for higher level, outer-loop navigational controllers

to be designed and quickly implemented for testing. Sensor and control data is also

sent back to LabVIEW from the vehicle at 100 Hz for state estimator performance

analysis.

The AVL has an 18-foot square flight area for testing of the ARL MkIV

(Fig. 2.8). The area is surrounded by protective netting and the floor is covered

with foam padding to protect the vehicle during a crash. The Vicon cameras are set

up along the perimeter of the flight area to provide inertial feedback for the entire

flight space.
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Figure 2.7: Vicon motion capture system screenshot.

Figure 2.8: AVL’s flight area.
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Chapter 3: Quaternion State Estimation

In order to control the attitude of the ARL MkIV, the vehicle must have an

accurate estimate of its current orientation at all times. To accomplish this, a state

estimator is implemented on-board. This estimator fuses the measurements from the

on-board gyroscope and accelerometer to form an estimate of the vehicle’s current

state. Since the ARL MkIV is typically flown in an interior room of a large building,

the magnetometer is not used in the estimation scheme. Instead, Vicon is used to

generate an example heading vector to correct for yaw drift.

3.1 Motivation for Quaternion Attitude Representation

Typically, aircraft define their attitude in terms of pitch, roll, and yaw Euler

angles. Every set of Euler angles has inherent singularities, commonly known as

gimbal lock. These singularities are a result of the trigonometric-based derivation of

Euler angles and they occur at attitudes that are not defined by a unique sequence of

pitch, roll, and yaw angles. For the classic 3-2-1 aviation Euler angles, singularities

exist at 90 degrees pitch. For many flight regimes, this method of attitude repre-

sentation is sufficient and will not result in computational singularities. However,

if the vehicle is designed to have the ability to pass through these singularities, ad-

13



ditional computational steps must be taken or an alternative, higher-order attitude

representation must be used.

The ARL MkIV is designed to operate in aggressive flight regimes that may

include periods of inverted flight during certain maneuvers. Therefore, Euler angles

alone are not sufficient for representing the vehicle’s attitude. Instead, a quater-

nion attitude representation is used to provide a full description of the vehicle’s

orientation without the need for handling Euler angle singularities computationally.

There are several other advantages to using a quaternion attitude represen-

tation over Euler angles. For vehicles that reach attitudes greater than about 5

degrees in pitch or roll, solving numerous trigonometric functions are necessary for

the use of Euler angles. Trigonometric functions are computationally expensive to

solve and would potentially slow down the control loop speed on-board the vehicle.

The small angle approximation can be used with Euler angles for attitudes less than

5 degrees, but this severely limits the capabilities of the quadrotor. Quaternions,

however, require a single trigonometric function only when a non-zero yaw angle is

included in the orientation. Otherwise, quaternion operations are solely algebraic

and computationally inexpensive. It is also simpler to smoothly interpolate between

two orientations using quaternions than it is with Euler angles.

The main advantage Euler angles have over quaternions is their ease of visu-

alization. Given a pitch, roll, and yaw angle, it is much simpler to visualize the

orientation of the aircraft than it is if given a quaternion. This is strictly a user dis-

advantage, however, and does not affect the utility of quaternions once implemented

in code. Quaternions also cannot be separated by degree of freedom as Euler angles
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can. Converting a quaternion orientation into a usable pitch, roll, and yaw input

for a quadrotor requires an extra algebraic transformation.

3.2 Overview of Quaternion Operations

Before the quaternion-based state estimator can be presented, it is essen-

tial to understand quaternions and their associated algebra. A quaternion is a

4-dimensional, hyper-complex number. The 3 complex parts, denoted as i, j, and

k, are interrelated by Eq. (3.1). The set of quaternions form a non-commutative

division ring under the operations of addition and multiplication. [ [14]]

i2 = j2 = k2 = ijk = −1

ij = k = −ji (3.1)

jk = i = −kj

ki = j = −ik

Quaternions can be written as a vector with 4 scalar components q0, q1, q2, and

q3 (Eq. (3.2)), with components q1, q2, and q3 corresponding to the distance along

the quaternion basis vectors of i, j, and k. The first component, q0, is considered

the scalar part of the quaternion and q1, q2, and q3 together form the vector part. A

quaternion is the sum of a scalar and a vector, which is not a standard mathematical

operation. Therefore, the basic quaternion operations must be defined.

15



q̄ =



q0

q1

q2

q3


= q0 + iq1 + jq2 + kq3 (3.2)

Before reviewing quaternion addition and multiplication, it is worth noting

that two quaternions are equal if each of their components are equal. Quaternion

addition is defined as the quaternion formed by summing the corresponding com-

ponents, as shown in Eq. (3.3). It can be seen that quaternion addition is both

associative and commutative, and it satisfies the field properties for addition.

p̄+ q̄ =



p0 + q0

p1 + q1

p2 + q2

p3 + q3


= (p0 + q0) + i(p1 + q1) + j(p2 + q2) + k(p3 + q3) (3.3)

The product of a quaternion and a scalar is a straightforward operation as

shown in Eq. (3.4), where e is a scalar. The scalar distributes to each of the quater-

nion components to form the product. The product of two quaternions, however, is

slightly more involved. The products of the basis vectors were shown in Eq. (3.1).

Note that these products are not commutative. Using these properties, the prod-

uct of two quaternions can be calculated with Eq. (3.5). The ⊗ symbol represents

quaternion multiplication.
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eq̄ =



eq0

eq1

eq2

eq3


= eq0 + îeq1 + ĵeq2 + k̂eq3 (3.4)

q̄ ⊗ p̄ =



q0p0 − q1p1 − q2p2 − q3p3

q0p1 + q1p0 + q2p3 − q3p2

q0p2 − q1p3 + q2p0 + q3p1

q0p3 + q1p2 − q2p1 + q3p0


(3.5)

An important concept when using quaternions to define rotations is the com-

plex conjugate. The complex conjugate of a quaternion is a quaternion with the

same scalar component and the negative vector component. The complex conjugate

of quaternion q̄ is shown in Eq. (3.6). The conjugate is typically denoted by an

asterisk.

q̄? =



q0

−q1

−q2

−q3


(3.6)

Another important concept for quaternion rotations is that of a quaternion

norm. The norm of a quaternion is defined by Eq. (3.7), which is the root of the

sum of squares of the quaternion components. A unit quaternion will have a norm

of 1. A non-unit quaternion can be normalized by dividing each component by the
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quaternion’s norm, resulting in a unit quaternion.

‖ q̄ ‖=
√
q20 + q21 + q22 + q23 (3.7)

The final quaternion concept to cover before defining quaternion rotations is

the inverse of a quaternion (Eq. (3.8)). The inverse of a quaternion is the quaternion

conjugate divided by the squared norm of the quaternion (Eq. (3.9)). Notice that if

the quaternion is of unit length, the inverse is equivalent to the quaternion conjugate.

[14]

q̄−1q̄ = 1 (3.8)

q̄−1 =
q̄?

‖ q̄ ‖2
(3.9)

3.3 Quaternions as an Attitude Representation

A quadrotor’s attitude, or the orientation of any rigid body for that matter, can

be defined in many ways, most commonly using Euler angles that define rotations

about a sequence of coordinate axes. Euler’s rotation theorem states, however,

that any series of rotations can be defined by a single rotation about a fixed axis,

called an Euler axis, which runs through a fixed point. This is the basis of the

axis-angle representation of an object’s orientation in space. Quaternions can be

thought of as a method of representing an axis-angle attitude with four numbers.

A quaternion can be formed with the axis of rotation, ū, and the angle of rotation,
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θ. The conversion between axis-angle attitudes and the corresponding quaternion is

derived using Euler’s formula. The quaternion basis axes i, j, and k represent the

three Cartesian axes. The conversion equation is shown in Eq. (3.10). [14]

q̄ = e
θ
2
(ux î+uy ĵ+uz k̂) = cos

(
θ

2

)
+ (uxî+ uy ĵ + uzk̂)sin

(
θ

2

)
(3.10)

The set of all unit quaternions provides a double covering of the 3-dimensional

special orthogonal group of all rotations SO(3). This means that there are two

unique quaternions representing every possible rotation in 3-dimensions. Conceptu-

ally, if both the axis and the rotation about that axis are negated, the same rotation

will result. Therefore, a quaternion rotation is equivalent to the rotation represented

by the same quaternion with a negated scalar component. This double covering will

need special consideration in the quaternion attitude controller development later.

Now that a quaternion has been defined as a representation of attitude, the

next step is to define the method of rotating a point in space by the rotation a

quaternion is representing. This can be done with Eq. (3.11), where p̄ is a point in

space, q̄ is a unit quaternion representing a rotation, and r̄ is the result of rotating

point p̄ by quaternion q̄. Recall that the inverse of a unit quaternion is equivalent

to its conjugate. This operation is known as the Hamilton product, points p̄ and

r̄ are put into the form of a pure quaternion. A pure quaternion is a quaternion

whose scalar component is zero. This allows the operation to be performed with

quaternion multiplication, as described in the previous section. It is worth noting

that the angle of rotation about the axis represented by the quaternion abides by the
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right-hand rule, where the rotation is clockwise when looking in the same direction

as ū.

r̄ = q̄ ⊗ p̄⊗ q̄−1 (3.11)

It is often useful to represent a quaternion rotation with an orthogonal matrix

that, when post-multiplied by a column vector representing a point in space, results

in the point rotated by the quaternion. This orthogonal rotation matrix is shown

in Eq. (3.12). [14]

R =


q20 + q21 + q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23

 (3.12)

Euler angles can be converted directly to a quaternion attitude with Eq. (3.13)

below. This is useful when manually piloting the vehicle, allowing the joystick input

to be mapped to a desired pitch, roll, or yaw angle that is then converted to a

quaternion.



q0

q1

q2

q3


=



cos ψ
2

cos θ
2

cos φ
2

+ sin ψ
2

sin θ
2

sin φ
2

cos ψ
2

cos θ
2

sin φ
2
− sin ψ

2
sin θ

2
cos φ

2

cos ψ
2

sin θ
2

cos φ
2

+ sin ψ
2

cos θ
2

sin φ
2

sin ψ
2

cos θ
2

cos φ
2
− cos ψ

2
sin θ

2
sin φ

2


(3.13)
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3.4 Quaternion-Based State Estimator

The on-board quaternion state estimator uses only gyroscope and accelerome-

ter measurements to compute an estimate of the current quaternion orientation dur-

ing flights. The estimator is based on an optimized gradient descent algorithm that

fuses the sensor measurements. This algorithm has been shown to yield comparable

performance to the much more complex Kalman filter-based state estimator. [15]

The key to state estimation is to understand the advantages and limitations

of each sensor measurement available. A gyroscope measures angular rate with a

high signal-to-noise ratio and it can be integrated to estimate the angle of rotation

about each axis. Integrating the accompanying noise, however, results in a gradual

drift in the angle estimate that cannot be corrected without additional information.

An accelerometer provides an absolute reference that can be used to correct for this

integration drift, but acceleration measurements typically have much lower signal-to-

noise ratios. Additional information about the heading of the vehicle is still required

to complete the orientation estimation. Typically a magnetometer would be used to

correct the heading drift, but due to the ARL MkIV’s indoor operation, the Vicon

system is used to create an artificial heading correction. In the future, this can be

replaced by, for example, an optic flow or other vision-based sensor to maintain the

vehicles initial heading. Therefore, the gyroscope, accelerometer, and Vicon heading

vector are fused in the state estimation algorithm to produce an accurate attitude

estimate as the vehicle moves.

The state estimation scheme involves estimating orientation from the gyro-
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scope and accelerometer separately and then optimally fusing the results together

to form a final state estimate [15]. Beginning with the gyroscope-based estimate,

the angular velocity measurements are put into the form of a pure quaternion at

discrete time k (Eq. (3.14)). This pure quaternion can then be used to calculate the

quaternion derivative (Eq. (3.15)). Integrating the quaternion derivative results in

a quaternion orientation estimate at discrete time k based on the gyroscope reading

(Eq. (3.16)).

ω̄gyro[k] =



0

ωx,k

ωy,k

ωz,k


(3.14)

E ˙̄qBgyro[k] = 1
2
E q̂B[k − 1]⊗ ω̄gyro[k] (3.15)

E q̄Bgyro[k] = E q̂B[k − 1] + E ˙̄qBgyro[k]∆t (3.16)

The next step is to use the acceleration measurement to calculate an estimate

of orientation. The accelerometer measures the gravity vector, plus any translational

accelerations, in the vehicles body frame. For the time being, it will be assumed

that the quadrotor is not accelerating along its translational axes. Therefore, the

accelerometer is solely measuring the gravity vector.

Since the accelerometer does not give any information on the rotation about

the gravity vector, there is not a unique orientation associated with a given mea-
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surement. This can be dealt with by forming an optimization problem that finds the

shortest rotation between the gravity vector measured by the accelerometer and the

gravity vector of the current orientation estimate. This method avoids the use of

trigonometric functions that are expensive to solve with a low-power processor. The

objective of this optimization problem, shown in Eq. (3.17), involves rotating the

normalized gravity vector in the inertial frame to the body frame using the current

orientation estimate, and then subtracting the accelerometer measurement in the

body frame. To minimize this objective, the gradient descent algorithm is used due

to its simplicity for on-board implementation. The algorithm for a single step is

shown below in Eq. (3.18), where µ is the step size. The direction of the step is de-

termined by the gradient of the objective function. The gradient is a function of the

objective and its Jacobian, shown in Eq. (3.19). Eq. (3.20) and Eq. (3.21) show the

simplified objective and Jacobian functions that are used in the actual implementa-

tion. Note that they are only algebraic functions of the acceleration measurement

and orientation estimate. Normalizing the gradient does involve a square root op-

eration, but this is the only transcendental operation in the algorithm. Note that

ax, ay, and az are the acceleration components from the accelerometer.

fgrav
(
E q̂B[k], âaccel[k]

)
= E q̂B[k]? ⊗ E ḡ ⊗ E q̂B[k]− âaccel[k] (3.17)

E q̂Baccel[k + 1] = E q̂B[k]− µ
∇fgrav

(
E q̂B[k], âaccel[k]

)
‖ ∇fgrav (E q̂B[k], âaccel[k]) ‖

(3.18)
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∇fgrav
(
E q̂B[k], âaccel[k]

)
= J (fgrav (. . . ))T fgrav (. . . ) (3.19)

fgrav
(
E q̂B[k], âaccel[k]

)
=


2(q̂1q̂3 − q̂0q̂2)− ax

2(q̂0q̂1 + q̂2q̂3)− ay

2(1
2
− q̂21 − q̂22)− az

 (3.20)

Jgrav =


−2q̂2 2q̂3 −2q̂0 2q̂1

2q̂1 2q̂0 2q̂3 2q̂2

0 −4q̂1 −4q̂2 0

 (3.21)

The Vicon-generated heading vector can be used in the same manner as the

acceleration vector to correct for the vehicle heading. The heading vector is fixed

along the inertial x-axis and is given in the body frame. As before, the heading

vector is rotated to the body frame using the current orientation estimate and then

the Vicon-heading vector is subtracted (Eq. (3.22)). The simplified equations for the

objective and Jacobian are shown in Eq. (3.23) and Eq. (3.24). Note that xhead,x,

xhead,y, and xhead,z are the components of the heading vector in the body frame.

fhead
(
E q̂B[k], x̂head[k]

)
= E q̂B?[k]⊗ Eĥ⊗ E q̂B[k]− x̂head[k] (3.22)

fhead
(
E q̂B[k], x̂head[k]

)
=


2(1

2
− q̂22 − q̂23)− xhead,x

2(q̂1q̂2 − q̂0q̂3)− xhead,y

2(q̂0q̂2 + q̂1q̂3)− xhead,z

 (3.23)
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Jhead =


0 0 −4q̂2 −4q̂3

−2q̂3 2q̂2 2q̂1 −2q̂0

2q̂2 2q̂3 2q̂0 2q̂1

 (3.24)

These two objective functions, one for the acceleration vector and one for the

heading vector, can be combined into a single optimization program that results in

a unique orientation. The functions are combined by joining the vectors, as shown

in Eq. (3.25) and Eq. (3.26), for the objective and Jacobian, respectively. This

results in a single gradient descent optimization problem that uses the accelerometer

measurement and heading vector to compute a quaternion orientation estimate.

faccel,head
(
E q̂B[k], âaccel[k], x̂head[k]

)
=

 faccel(. . . )

fhead(. . . )

 (3.25)

Jaccel,head =

 JTaccel

JThead

 (3.26)

Now that the vehicle orientation has been estimated by the gyroscope mea-

surement and the acceleration and heading measurements, the two estimates can be

fused into a single, more accurate estimate that combines the advantages of each

of the sensors. The fusion is completed using a complementary filer with weight α

(Eq. (3.27)).

E q̂B[k] = αE q̂Baccel,head[k] + (1− α)E q̂Bgyro[k] , 0 ≤ α ≤ 1 (3.27)

The gradient descent optimization step size as well as the complementary
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weight are chosen with the method developed by S.O.H. Madgwick [15]. The goal

of the parameter tuning is to match the weighted divergence of the gyroscope-based

estimate with the weighted convergence of the accelerometer and heading-based

estimate, as shown in Eq. (3.28). The gyroscope weight ρ can be made very large

to ensure it is greater than the convergence rate of the gyroscope-based estimate, in

result making the previous orientation estimate negligible in Eq. (3.18).

(1− γ)β = γ
µ

∆t
, µ = ρ ‖ E ˙̂qBgyro[k] ‖ ∆t , ρ > 1 (3.28)

The state estimation equations can then be simplified to the 3 equations shown

in Eq. (3.29).

E q̂B[k] = E q̂B[k − 1] + ˙̂q[k]∆t

E ˙̂qB[k] = E q̇Bω [k]− βE q̇Bε [k]

E q̇Bε [k] = ∇f
‖∇f‖

(3.29)

3.5 On-Board Implementation

The quaternion-based state estimator was implemented on-board the GINA

mote’s MSP430 16-bit microprocessor. Angular rate and gravity vector measure-

ments were obtained through the on-board Invensense ITG3200 3-axis gyroscope

and the Kionix KXSD9-1026 3-axis accelerometer. In order to maintain computa-

tional efficiency and maximize the state estimator loop closure rate, all of the state

estimation computations were done with scaled integers instead of floating point
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values. Floating point arithmetic on the MSP430 was found to require over 10

times the number of instructions as the equivalent integer operation. Writing the

entire estimator using scaled integers greatly increases the code’s complexity, but it

was necessary to maintain the desired loop speed while allowing time for additional

processing.

Accelerometers are susceptible to high-frequency noise in general, but due

to the vibrations induced on-board by the four rotors, it is necessary to run the

accelerometer measurements through a low-pass filter. Therefore, a discrete-time,

RC low-pass filter is used to dampen the high-frequency content of the accelerometer

output before the measurements are used in the state estimator. This filter is

an exponentially-weighted moving average and is shown in Eq. (3.30), where α is

the smoothing factor that weighs the new raw accelerometer measurement against

the previous filtered acceleration vector. The filtered acceleration vector is also

normalized before being used in the state estimation. This step is computationally

expensive with the required square root operation, but it is necessary to maintain

the quaternion estimate’s unit length.

āfilt[i] = αāraw[i] + (1− α)āfilt[i− 1] , 0 ≤ α ≤ 1 (3.30)

The accelerometer only gives an accurate measurement of the gravity vector

when the vehicle is not moving translationally. When the quadrotor is performing a

maneuver, the acceleration vector will be a combination of gravity and the vehicle’s

inertial acceleration. Therefore, the acceleration vector is not valid for use in the
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state estimator if the vehicle is in motion. Small translational motions result in

slight, but acceptable, errors in the quaternion state estimate, but more aggressive

motions will lead to larger errors that could then lead to instability. To protect

against this, the accelerometer measurement is only used in the state estimation if

its norm is close to 1 within a specified tolerance. If the norm of the acceleration

measurement is much greater or less than 1, then it can be assumed that the vehicle is

moving too aggressively for the acceleration vector to be useful in the state estimate.

When this occurs, only the gyroscope measurement is used in the state estimation.

As explained previously, the Vicon motion tracking system is used to generate

a reference yaw vector instead of using the on-board magnetometer. In the future,

this yaw reference can be replaced by the magnetometer or any other inertial yaw

reference available. The yaw vector reference can only be sent to the mote at 100

Hz, while the state estimation loop runs at 333 Hz. Therefore, the yaw vector is only

included in the state estimation when a new measurement is available. In-between

these measurements, only the accelerometer and gyroscope measurements are used.

Since the drift in yaw due to angular rate integration is relatively slow, the error in

yaw between yaw vector updates is negligible.

During the state estimation loops in which the norm of the acceleration vector

is out of the acceptable range and there is no updated yaw vector, only the gyroscope

measurement is used. In this case, the angular rate vector from the gyroscope is used

to calculate the quaternion rate. The quaternion rate is then directly integrated and

added to the previous quaternion estimate. The quaternion is renormalized after

this operation to maintain its unit length. The full state estimation loop is shown
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in the flowchart in Fig. 3.1.

Figure 3.1: Flowchart for single iteration of quaternion state estimator.

3.6 Performance of Quaternion-Based State Estimator

Fig. 3.2 shows the typical performance of the quaternion-based state estimator,

comparing the estimate to the Vicon-based attitude. The Vicon measurement is
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considered the ground-truth due to its sub-millimeter precision in triangulating the

position of each of the retro-reflective markers on the vehicle. For this test, the

quadrotor was flown around randomly to demonstrate the estimator’s ability to

track orientation changes up to almost 40 degree tilt angles. A simulated heading

vector calculated from Vicon data was used for the heading correction part of the

state estimator. The estimate is calculated as a quaternion, as explained previously,

but for easier interpretation, the corresponding Euler angles are shown.

Figure 3.2: Typical results for quaternion-based state estimator in Euler angles.

The error in the attitude estimate is shown in Fig. 3.3 using Euler angles.

There is a high-frequency noise component due to the effect of motor vibration

on the gyroscope measurements as well as the natural high-frequency noise of the

accelerometer measurements. The attitude error does not exceed 5 degrees for any of

the Euler angles. The Root-Mean-Square (RMS) errors in the Euler angle estimates
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are 2.2 degrees for pitch, 1.5 degrees for roll, and 0.8 degrees for yaw.

Figure 3.3: Error in Euler state from Fig. 3.2.

The test results shown in Fig. 3.4 are from the same state estimator, but

without the heading correction step. It is clear that without the heading correction,

the yaw angle drifts significantly over time. The error between the Vicon ground-

truth attitude and the on-board state estimate is plotted in Fig. 3.5. Since the

heading correction also assists the estimate along the pitch axis, the pitch angle

estimate also deteriorates. This test was conducted with the motors on at a throttle

similar to that of hover. The vehicle was rotated randomly by hand to achieve a

larger range of attitudes than could be achieved in standard flight.
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Figure 3.4: Example of state estimate without heading vector correction.

Figure 3.5: Error in Euler state from Fig. 3.4.
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Chapter 4: Quaternion-Based Attitude Controller

4.1 Controller Overview

With an accurate estimate of the micro-quadrotor’s attitude available, an

inner-loop attitude controller can then be implemented. This attitude controller

drives the vehicle’s current estimated attitude to some desired attitude. This de-

sired attitude is generated by a pilot or an outer-loop navigational controller. The

use of quaternions to define attitude makes the attitude controller more complex

than the typical Euler angle-based attitude controller. When using Euler angles,

the attitude is already decoupled into the same axes as the motor commands neces-

sary to rotate the vehicle in pitch, roll, and yaw. When using quaternions, however,

the control needs to be decoupled into the pitch, roll, and yaw axes before the

commands can be mapped to the motors.

The first step in the attitude control algorithm is to calculate the error between

the current and desired quaternion attitudes. This is the quaternion corresponding

to the shortest rotation required to get the vehicle to the desired attitude. The error

quaternion can be calculated with Eq. (4.1). The vector part of the error quaternion

is the axis of rotation expressed in the inertial frame and scaled by the sine of half

the angle of rotation. Therefore, the vector can be mapped to a pitch, roll, and yaw
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rotation by expressing it in the body frame of the vehicle. This operation can be

done using the current quaternion attitude estimate (Eq. (4.2)). [16]



q0,e

q1,e

q2,e

q3,e


=



q0,d q1,d q2,d q3,d

−q1,d q0,d q3,d −q2,d

−q2,d −q3,d q0,d q1,d

−q3,d q2,d −q1,d q0,d





q0

q1

q2

q3


(4.1)


q1,e

q2,e

q3,e


B

=


2q20 + 2q21 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 2q20 + 2q22 − 1 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q20 + 2q23 − 1




q1,e

q2,e

q3,e


E

(4.2)

The pitch, roll, and yaw control commands can then be calculated using a

proportional-derivative (PD) type feedback controller (Eq. (4.3)). Here, K is a

diagonal gain matrix for proportional control and C is a diagonal gain matrix for

derivative control, where p, q, and r are the angular rates as measured by the

gyroscope. The sign of K determines whether the vehicle is commanded to rotate in

the shortest direction or the longest direction to the desired quaternion. This is due

to the fact that all unit quaternions double cover the SO(3) group of all rotations in

3-dimensions. Therefore, the sign of K is set to be the same as the sign of the q0,e

each iteration to ensure the vehicle is always commanded to rotate in the shortest

direction. [16]
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
upitch

uroll

uyaw


I

= −K


q1,e

q2,e

q3,e


B

− C


p

q

r

 (4.3)

The control commands are then mapped to each motor as shown in Eq. (4.4),

with the motor numbering shown in Fig. 4.1. This is the typical arrangement for

an X-configuration quadrotor.

Ω1 =
T

4
+ upitch + uroll + uyaw

Ω2 =
T

4
− upitch + uroll − uyaw

Ω3 =
T

4
+ upitch − uroll − uyaw

Ω4 =
T

4
− upitch − uroll + uyaw

(4.4)

Figure 4.1: Numbering and rotation scheme for motors of ARL MkIV.
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4.2 Performance of Attitude Controller

This linear state feedback quaternion attitude controller is globally asymp-

totically stable about the origin, which in this case corresponds to a hover atti-

tude [17], [18]. Simulation results for this controller are shown in Fig. 4.2. In the

top plot, the desired and actual quaternions are shown. The desired attitude changes

in steps to illustrate the smooth quaternion transitions between various attitudes.

In the bottom plot, the corresponding Euler angles of the actual attitude are shown.

Note that for attitudes crossing the Euler singularities, there is a discontinuity in

the Euler attitude. These discontinuities are not present in the top plot since a

quaternion representation exists for all possible attitudes. This simulation demon-

strates the main advantage of the quaternion attitude representation over that of

Euler angles.

36



Figure 4.2: Simulation of quaternion controller compared to Euler angle represen-

tation.
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Chapter 5: Optimal Trajectory Generation Algorithms

5.1 Differential Flatness of a Quadrotor

The concept of differential flatness in a non-linear dynamic system was first

introduced by Fleiss et al [19]. It is a commonly leveraged property of quadrotor

UAVs due to the simplified manner in which all of the vehicle states can be repre-

sented. In a differentially flat system, all of the system states can be represented

by a set of outputs, called flat outputs, equal in number to the number of inputs,

and their derivatives. If the system has states x ∈ Rn and inputs u ∈ Rm, then

the system is flat with outputs y ∈ Rm if the states and inputs can be written as a

function of the flat outputs and the flat output derivatives (Eq. (5.1)). [20]

y = y(x, u, u̇, ..., y(q))

where x = x(y, ẏ, ..., y(q)) (5.1)

u = u(y, ẏ, ..., y(q))

Quadrotors have been shown to be a differentially flat system with 4 flat

outputs [21]. These flat outputs are the inertial position of the vehicle, x, y, and
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z, and the yaw angle, ψ. The rest of the vehicle states as well as the inputs can

be written as functions of these flat outputs and their derivatives. Typically, the

quadrotor attitude states are expressed as Euler angles, but in this case quaternions

will be used to define the vehicle’s orientation. Before the vehicle states can be

written in terms of the flat outputs, the translational and rotational dynamics of

the quadrotor system must be defined.

5.1.1 Quadrotor Equations of Motion Using Quaternions

The translational dynamics for a typical quadrotor can be written using New-

ton’s Second Law of Motion (Eq. (5.2)). The acceleration term consists of the

vehicle’s acceleration vector in the inertial frame including gravity. The force term

consists of the force produced by the rotors in the inertial frame. The ARL MkIV

quadrotor is unable to alter its thrust vector, as is the case with most quadrotors, so

the force vector in the body frame has a constant direction along the vehicle’s body

z-axis. This body frame force is then rotated to the inertial frame using the vehicle’s

current quaternion orientation. This equation of motion is shown in Eq. (5.3). Note

that the acceleration and force vectors must be written in pure quaternion form.

F = ma (5.2)

q? ⊗

 0

BF

⊗ q = m

 0

I r̈ + Ig

 (5.3)

The rotational dynamics of a quadrotor can be derived from Euler’s rotational
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equations of motion, shown in Eq. (5.4). The inertia matrix in denoted I, while

BM and IωB are the moment and angular velocity vectors, respectively, expressed

in the body frame.

BM = IIωB × IIωB (5.4)

The inputs to the quadrotor system can be modeled as forces at each of the

four motors along the body z-axis. Therefore, the total force on the vehicle is the

sum of the motor forces. The moments about the body x- and y-axes are functions

of the motor forces and the normal distance between the axis and the motors, d.

The moment about the body z-axis is a function of the motor forces and some drag

coefficient, c. These equations are shown as a single matrix equation in Eq. (5.5).

The vehicle inputs can be further improved by defining the relation between the

rotor RPM and the resulting force, since the commanded throttle level of each

motor maps linearly to a PWM signal, which then maps linearly to a rotor speed.

The simplified rotor speed to force relationship is typically modeled as a quadratic,

as shown in Eq. (5.6), where k is some gain and ωi is the ith rotor RPM [22].



ftot

BMx

BMy

BMz


=



1 1 1 1

d d −d −d

d −d d −d

c −c −c c





f1

f2

f3

f4


(5.5)

fi = kω2
i (5.6)
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5.1.2 State and Input Equations from Flat Outputs

As stated previously, the flat outputs for a standard quadrotor are the in-

ertial position and the yaw angle. These outputs will be denoted by the vector χ

(Eq. (5.7)). All of the quadrotor states can be written as a function of these four flat

outputs and the flat output derivatives. These states include the position, velocity,

and acceleration of the vehicle’s center of mass, as well as the orientation, rotational

velocity, and rotational acceleration of the vehicle.

χ =



x

y

z

φ


(5.7)

Position and Orientation from Flat Outputs

The mapping from the flat outputs to the position, velocity, and acceleration

of the quadrotors center of mass expressed in the inertial coordinate frame is trivial,

as shown in Eq. (5.8).

[x, y, z]T = [χ1, χ2, χ3]
T

[ẋ, ẏ, ż] T = [χ̇1, χ̇2, χ̇3]
T (5.8)

[ẍ, ÿ, z̈] T = [χ̈1, χ̈2, χ̈3]
T
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The mapping from the flat outputs to the quadrotors quaternion orientation

can be derived using fundamental quaternion principles and the inherent properties

of a standard quadrotor. A quaternion orientation can be formulated as a rotation

θ about some axis n̂, as shown in Eq. (5.9). This representation will be useful in

defining the vehicle orientation in terms of the flat outputs.

q =

 cos(
θ

2
)

n̂ sin(
θ

2
)

 (5.9)

Since a typical quadrotor can only produce a thrust force along its body z-

axis, this axis will always be aligned with the inertial acceleration vector with an

arbitrary yaw angle. The final orientation is then described by a yaw rotation about

the inertial acceleration vector, which is collinear with the body z-axis. For the

derivation of the orientation equations from the flat outputs, the normalized thrust

vector in the body frame and the inertial frame will be defined as BF and IF ,

respectively. The normalized body frame thrust vector is always [0 , 0 ,−1]T and the

normalized inertial frame thrust vector is defined in Eq. (5.10).

IF̂ =
1√

ẍ2 + ÿ2 + (z̈ − g)2


ẍ

ÿ

z̈ − g

 (5.10)

The quadrotor’s orientation can be found by calculating the quaternion ro-

tation required to match the direction of the body frame thrust vector to that of

the inertial frame thrust vector and correcting for the yaw angle. To define this

rotation as a quaternion, a rotation vector normal to the plane of the body and
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inertial thrust vectors is needed as well as the sine and cosine of half the rotation

angle about that vector. The cosine and sine of the rotation angle can be calculated

with an inner product and cross product, respectively, as shown in Eq. (5.11). The

rotation vector n̂ is solved for in Eq. (5.12). [23]

BF̂ · IF̂ = ‖ IF̂ ‖‖ BF̂ ‖ cos θ = cos θ

BF̂ × IF̂ = ‖ IF̂ ‖‖ BF̂ ‖ sin θn̂ = sin θn̂ (5.11)

n̂ =
IF̂ × BF̂

sin θ
=

IF̂ × BF̂√
1− cos2 θ

=
IF̂ × BF̂√

1−
(
BF̂

T
IF̂
)2 (5.12)

Equations for the cosine and sine of the half-angle of rotation can be derived

from the cosine and sine values found with the inner and cross products. This

derivation uses the half-angle trigonometric identities. The equations for the half-

angle cosine and sine are shown in Eq. (5.13) and Eq. (5.14), respectively.

cos

(
θ

2

)
=

√
1

2
(1 + cos θ) =

√
1

2

(
1 + BF̂

T
IF̂
)

(5.13)

sin

(
θ

2

)
=

√
1

2
(1− cos θ) =

√
1

2

(
1− BF̂

T
IF̂
)

(5.14)

The rotation vector and half-angle sine and cosine can now be substituted

into Eq. (5.9), resulting in the quaternion rotation without a yaw correction. This

quaternion will be denoted q̃ and is shown simplified in Eq. (5.15). The quaternion
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orientation q̃ can be corrected for yaw with Eq. (5.16), resulting in the final vehicle

orientation q as a function of the flat outputs and their first 2 derivatives.

q̃ =
1√

2
(

1 + BF̂
T
IF̂
)
 1 + BF̂

T IF̂

BF̂ × IF̂

 (5.15)

q = q̃ ⊗



cos

(
ψ

2

)
0

0

sin

(
ψ

2

)


(5.16)

Angular Velocity from Flat Outputs

The quadrotor’s angular velocity in the body coordinate frame can be ex-

pressed as a function of the flat output derivatives. First, the derivative of the

normalized applied force in the inertial frame (Eq. (5.17)) is calculated using the

Transport Theorem (Eq. (5.18)) [24]. The body frame derivative of the normalized

force vector is always zero because the quadrotor can only produce a force along its

body z-axis and its normalized magnitude is unity by definition. Simplifying and

solving this equation for the angular velocity ω results in Eq. (5.19). The derivative

of the normalized force in the inertial frame can also be calculated by differentiating

Eq. (5.17). Using the quotient rule for differentiation, the second equation for the

normalized inertial force derivative is shown in Eq. (5.20).
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IF̂ =
IF

‖ IF ‖
(5.17)

Id

dt

 0

BF̂

 =
Bd

dt

 0

BF̂

+

 0

IωB × IF̂



BF̂ = q ⊗

 0

IF̂

⊗ q? =



0

0

0

1



(5.18)

IωB = IF̂ × I ˙̂
F (5.19)

I ˙̂
F =

IḞ

‖ IF ‖
−

IF (IF T IḞ )

‖ IF ‖3
(5.20)

The inertial frame force vector is a function of mass and inertial acceleration,

which is the second derivative of the flat outputs x, y, and z (Eq. (5.21)). The equa-

tion for the angular velocity can be written in terms of just the inertial acceleration

vector and its derivative (Eq. (5.22)). Since this equation includes an arbitrary yaw

rotation about the body z-axis, it is only used to calculate the angular velocities

about the body x- and y-axes. The z-axis angular velocity is equal to the first

derivative of the flat outputs ψ (Eq. (5.23)). The equations for the body angular

velocities of the quadrotor are functions purely of the first, second, and third flat

output derivatives.
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IF = m


ẍ

ÿ

z̈ − g

 = m(a− g) (5.21)

IωBp,q =

(
F̂ − g
‖ F̂ − g ‖

)
×

(
˙̂
F

‖ F̂ − g ‖
− (F̂ − g)((F̂ − g)T

˙̂
F )

‖ F̂ − g ‖3

)
(5.22)

IωBr = ψ̇ (5.23)

Angular Acceleration from Flat Outputs

The quadrotor’s angular acceleration in the body coordinate frame can be

expressed as a function of the flat output derivatives in the same manner as the

body angular velocity. The Transport Theorem is used again to calculate the second

derivative of the normalized applied force in the inertial frame (Eq. (5.24). This

equation is further simplified in Eq. (5.25). The equation is then rearranged to solve

for the angular acceleration about the body x- and y-axes IαBṗ,q̇ in Eq. (5.26). The

second derivative of the normalized applied force I ¨̂
F can be found by differentiating

the first derivative of the normalized applied force in Eq. (5.20) (Eq. (5.27)).

Bd

dt
I ˙̂
F =

Bd

dt
I ˙̂
F + IωB × I ˙̂

F

where I ˙̂
F = Iω × IF̂

(5.24)

Id

dt
I ˙̂
F = IαB × IF̂ + IωB × (IωB × IF ) (5.25)
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IαBṗ,q̇ = IF̂ × (I
¨̂
F − IωB × (IωB × IF )) (5.26)

I ¨̂
F =

Id

dt

(
IḞ

‖ IF ‖
−

IF (IF T IḞ )

‖ IF ‖3

)
(5.27)

As was the case with the angular velocity about the body z-axis, the angular

acceleration about the body z-axis is calculated separately with Eq. (5.28). Again,

this is due to the arbitrary yaw rotation involved with the definition of the inertial

acceleration vector.

IαBṙ = ψ̈ (5.28)

It can be seen from these equations that the angular acceleration is solely a

function of the 1st through 4th derivatives of the flat outputs. Overall, a quadrotor’s

12 states can be expressed as functions of the 4 flat outputs and the first 4 flat

output derivatives.

Inputs from Flat Outputs

The final step in demonstrating the differentially flat dynamics of a quadrotor

is to express the control inputs as functions of the flat outputs and flat output

derivatives. The control inputs for a quadrotor consist of the rotation speed of each

of the four rotors. These rotor speeds can be mapped to a rotor force, as previously

shown in Eq. (5.6), and then to a total thrust and moments in the body frame, as

previously shown in Eq. (5.5).
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The total thrust commanded to the vehicle can be calculated with Eq. (5.29).

This equation includes the magnitude of the inertial acceleration with gravity, mak-

ing it a function of the second derivatives of the flat outputs.

ftot = m
√
ẍ2 + ÿ2 + (z̈ − g)2 (5.29)

The applied moments to the vehicle can be calculated using Euler’s equations

for rotation of a rigid body. These equations were stated previously in Eq. (5.4)

and are shown in Eq. (5.30) with the angular velocity substitutions of p, q, and r.

The angular velocity and acceleration were both shown to be functions of the flat

outputs and flat output derivatives in the previous section.


Mx

My

Mz

 = I


ṗ

q̇

ṙ

+


p

q

r

× I


p

q

r

 (5.30)

It has been shown that the 12 states and 4 inputs of a quadrotor can be ex-

pressed as a sole function of the 4 flat outputs and the first 4 flat output derivatives.

This special differential flatness property of the typical quadrotor system can be

leveraged for control purposes, as will be explained in the following section.

5.2 Trajectory Generation Using Differential Flatness

With the rapidly increasing potential for quadrotor-based applications, it is

often desirable for a quadrotor to perform complex maneuvers that would be very

difficult, if not impossible, for a pilot to command directly. Common examples of
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such maneuvers include quick flight through narrow openings or aggressive attitude

changes to perch on a vertical wall. These types of maneuvers can be performed by

leveraging the property of differential flatness inherent to most quadrotors.

5.2.1 Discrete-Time Trajectory Generation

The previous section showed how the 12 states and 4 inputs of a quadrotor

could be written as functions of 4 flat outputs and the first 4 derivatives of the flat

outputs. These 4 flat outputs were the inertial position of the quadrotor, x, y, and

z, and the yaw angle, ψ. Therefore, the sequence of incremental changes in the

vehicle state can be represented by a sequence of flat output states.

Discrete Trajectory Definition

A quadrotor trajectory can be defined as a sequence of positions in the inertial

frame and a corresponding yaw angle at discrete time steps n = 0, ..., N , as shown

in Fig. 5.1. The position of the vehicle at each of the time steps is defined by

Eq. (5.31). Also defined at each of the discrete positions of the trajectory are the

first four derivatives of the flat outputs (Eq. (5.32)). A trajectory of this type fully

defines the quadrotor’s state for all steps of the maneuver.

p[n] = (x[n], y[n], z[n], ψ[n]) ∈ R4 (5.31)
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Figure 5.1: Discrete positions to describe a quadrotor trajectory.

v[n] =
(
ẋ[n], ẏ[n], ż[n], ψ̇[n]

)
∈ R4

a[n] =
(
ẍ[n], ÿ[n], z̈[n], ψ̈[n]

)
∈ R4

j[n] =
(
x(3)[n], y(3)[n], z(3)[n], ψ(3)[n]

)
∈ R4

s[n] =
(
x(4)[n], y(4)[n], z(4)[n], ψ(4)[n]

)
∈ R4

(5.32)

Since the vehicle inputs and states are functions of the fourth derivative of

the inertial position and the second derivative of the yaw angle, a trajectory that

requires the minimum amount of control effort in terms of total thrust and total

moments can be generated by minimizing these derivatives. To begin the setup of

the optimization problem, the second derivatives of the flat outputs are chosen as

the optimization variable, χ (Eq. (5.33) and Eq. (5.34)). The inertial flat outputs

are separated from the yaw angle flat output to simplify the setup. They will be

joined into a single optimization problem later.
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χx,y,z =



ax[1]

...

ax[n]

ay[1]

...

ay[n]

az[1]

...

az[n]



(5.33)

χψ =


aψ[1]

...

aψ[n]

 (5.34)

Each of the other flat output derivatives must be put in terms of the second

derivative and the initial values of the flat outputs. Since the trajectory is bounded

and continuous along each dimension, Lebesgue’s integrability condition is satisfied

and Riemann sum integration can be used. The equations for the first derivatives

and flat outputs are shown in Eq. (5.35) and Eq. (5.36) as functions of the second

flat output derivatives. The equations are written in a general form that can be

applied to each flat output dimension independently. Note that h is the fixed step

size of the discrete trajectory.
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v[n] = v[n− 1] + ha[n− 1]

= v[1] + h(a[1] + a[2] + ...+ a[n− 1])

(5.35)

p[n] = p[n− 1] + hv[n− 1] +
h2

2
a[n− 1]

= p[1] + h(n− 1)v[1]

+
h2

2
((2n− 3)a[1] + (2n− 5)a[2] + ...+ a[n− 1])

(5.36)

Finite difference differentiation is used to form an equation for the third

and fourth flat output derivatives in terms of the second derivatives, as shown in

Eq. (5.37) and Eq. (5.38).

j[n] =
1

h
(a[n]− a[n− 1]) (5.37)

s[n] =
1

h2
(a[n]− 2a[n− 1] + a[n− 2]) (5.38)

Objective Function Formulation

The goal of the trajectory optimization is to find a trajectory that minimizes

the fourth derivative of the inertial position and the second derivative of the yaw

angle. The resulting trajectory was shown previously to require the minimum con-

trol effort in terms of total thrust and applied moments on the quadrotor. The

objective of the optimization problem is chosen to be the sum of the square norm of

the fourth inertial derivative and second yaw derivative at each discrete time step.
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For simplicity, the optimization problem for the inertial dimensions, x, y, and z

will be shown first and the yaw dimension will be included later. The objective

function for the inertial optimization problem is shown in Eq. (5.39). This equation

can be rearranged into a quadratic function with the optimization variable χx,y,z

(Eq. (5.40)). This results in a quadratic program (QP), which, when constrained by

affine functions of the optimization variable, can be solved quickly and efficiently.

fx,y,z =
N∑
n=1

||sx,y,z[n]||22 (5.39)

fx,y,z = χTx,y,zPx,y,zχx,y,z + qTχx,y,z + r (5.40)

The matrix Px,y,z of the quadratic objective can be derived by first putting the

fourth derivative calculation from Eq. (5.38) into matrix form (Eq. (5.41)). Here, ai

is an array of either x, y, or z acceleration components.

si = As,blkai

=



1/h2 0 0 0 0 ... 0

−2/h2 1/h2 0 0 0 ... 0

1/h2 −2/h2 1/h2 0 0 ... 0

...
...

...
. . . . . . . . .

...

0 0 0 0 1/h2 −2/h2 1/h2





ai[0]

ai[1]

ai[2]

...

ai[N ]


for i ε {x, y, z}

(5.41)

The block matrix for the fourth derivative calculation As,blk can be used to
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define Px,y,z, as in Eq. (5.42). Note that the vector q and the scalar r in the typical

quadratic program form are both null.

fx,y,z =
N∑
n=1

||sx,y,z[n]||22

= χTx,y,z


ATs,blk 0 0

0 ATs,blk 0

0 0 ATs,blk




As,blk 0 0

0 As,blk 0

0 0 As,blk

χx,y,z

= χTx,y,zPx,y,zχx,y,z

where Px,y,z =


ATs,blk ∗ As,blk 0 0

0 ATs,blk ∗ As,blk 0

0 0 ATs,blk ∗ As,blk



(5.42)

Now that the inertial position optimization problem has been derived, the

minimization of the second derivative of the yaw angle can be set up. The opti-

mization variable χψ was defined earlier in Eq. (5.34) as an array of the yaw angular

acceleration at each discrete time step. The objective function for the second yaw

derivative minimization is shown in Eq. (5.43). As before, this objective function

can be put into the form of a QP for efficient solving (Eq. (5.44)).

fψ =
N∑
n=1

||aψ[n]||22 (5.43)
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fψ = χTψPψχψ + qTχψ + r (5.44)

The derivation of the matrix Pψ is straightforward since the optimization vari-

able is of the same derivative order as the term to be minimized. Therefore, the block

matrix for the yaw acceleration minimization is an identity matrix (Eq. (5.45)).

aψ = Aa,blkaψ

=



1 0 0 0 0 ... 0

0 1 0 0 0 ... 0

0 0 1 0 0 ... 0

...
...

...
. . . . . . . . .

...

0 0 0 0 0 0 1





aψ[0]

aψ[1]

aψ[2]

...

aψ[N ]



(5.45)

As done before, this block matrix for the second derivative of yaw angle Aa,blk

can be used to define Pψ (Eq. (5.46)). Note that the vector q and the scalar r in

the typical QP form are both null.

fψ =
N∑
n=1

||aψ[n]||22

= χTψA
T
a,blkAa,blkχψ

= χTψPψχψ

where Pψ = ATa,blkAa,blk

(5.46)

The objective functions for the minimization of the fourth derivative of the

inertial position and the second derivative of the yaw angle can be joined into a single
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objective function so that only one optimization program must be solved to generate

a trajectory. The joined objective function, denoted fo, is shown in Eq. (5.47).

fo =

 χx,y,z

χψ


T  Px,y,z 0

0 Pψ


 χx,y,z

χψ

 (5.47)

Equality Constraints

For the inertial flat output portion of the discrete trajectory, the trajectory is

constrained to an initial and final position, velocity, and acceleration. The initial

position and velocity are included in the equations that calculate the final position,

velocity, and acceleration, so it is not necessary to include them as separate con-

straints. Therefore, only the initial acceleration and final position, velocity, and

acceleration are required to be constrained. These constraints can be calculated

from the optimization variable χx,y,z using the equations defined in Eq. (5.35) and

Eq. (5.36).

These constraint equations can be put into the form of a dot product for use

in the optimization program. The initial and final acceleration constraints for time

steps 1 and N are shown in Eq. (5.48). The row-vectors ma1,i and maN,i will be used

when forming the final optimization constraint matrices.
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ai[1] = ma1,iai

ma1,i = [1, 0, 0, ..., 0]

ai[N ] = maN,iai

maN,i = [0, 0, 0, ..., 0, 1]

for iε{x, y, z}

(5.48)

The final position and velocity constraints are shown as dot products in Eq. (5.49).

Note that these equations are functions of the initial position and velocity for the cor-

responding dimension. As with the acceleration constraints, the row-vectors mpN,i

and mvN,i will be used when forming the final optimization constraint matrices.

pi[N ] = mpN,iai + pi[1] + hvi[1]

mpN,i = [
(2N − 3)

2
h2,

(2N − 5)

2
h2, ...,

1

2
h2]

vi[N ] = mvN,iai + vi[1]

mvN,i = [h, h, h, ..., h]

for iε{x, y, z}

(5.49)

Position, velocity, and acceleration equality constraints can also be defined

for points within the trajectory. This is useful for many situations, such as when

the vehicle is required to be at a certain attitude at a certain point along the

trajectory or when the vehicle must pass through a position at a certain time.

Fig. 5.2 shows an arbitrary trajectory with a position constraint at steps 1, n2, and

N , velocity constraint at step N , and attitude constraints using acceleration vectors
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at steps n1 and N . The equations for mid-trajectory equality constraints are shown

in Eq. (5.50).

Figure 5.2: Examples of inertial equality constraints along trajectory.

pi[n] = mpn,iai + pi[1] + hvi[1]

mpn,i = [
(2n− 3)

2
h2,

(2n− 5)

2
h2, ...,

1

2
h2, 0, ..., 0]

vi[n] = mvn,iai + vi[1]

mvn,i = [h, h, h, ..., h, 0, ..., 0]

ai[n] = man,iai

man,i = [0, , ..., 0, 1, 0, ..., 0]

for iε{x, y, z}

(5.50)

These equality constraints can be combined into QP matrix equality constraint

of the form Aeqχ = beq (Eq. (5.51) and Eq. (5.52)).

Aeq,x,y,zχx,y,z = beq,x,y,z (5.51)
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Aeq,x,y,z =



ma1,x 0 0

0 ma1,y 0

0 0 ma1,z

mpN,x 0 0

0 mpN,y 0

0 0 mpN,z

mvN,x 0 0

0 mvN,y 0

0 0 mvN,z

maN,x 0 0

0 maN,y 0

0 0 maN,z

man,x 0 0

0 man,y 0

0 0 man,z

mpn,x 0 0

0 mpn,y 0

0 0 mpn,z

mvn,x 0 0

0 mvn,y 0

0 0 mvn,z



, beq =



ax[1]

ay[1]

az[1]

px[N ]− px[1]− hvx[1]

py[N ]− py[1]− hvy[1]

pz[N ]− pz[1]− hvz[1]

vx[N ]− vx[1]

vy[N ]− vy[1]

vz[N ]− vz[1]

ax[N ]

ay[N ]

az[N ]

ax[n]

ay[n]

az[n]

px[n]− px[1]− hvx[1]

py[n]− py[1]− hvy[1]

pz[n]− pz[1]− hvz[1]

vx[n]− vx[1]

vy[n]− vy[1]

vz[n]− vz[1]



(5.52)
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The yaw angle, yaw angular velocity, and yaw angular acceleration can be

fixed to a desired value at any point during the trajectory, as illustrated in Fig. 5.3.

These terms can be calculated from the optimization variable χψ using Eq. (5.35)

and Eq. (5.36). The constraint equation for the yaw angular acceleration are shown

in dot product form in Eq. (5.53) for use in the optimization problem. The row-

vectors man,ψ will be used to form the final constraint matrices.

Figure 5.3: Examples of yaw equality constraints along trajectory.

aψ[1] = ma1,ψaψ

ma1,i = [1, 0, 0, ..., 0]

aψ[1] = ma1,ψaψ

ma1,i = [0, 0, ..., 1, ..., 0, 0]

aψ[n] = man,ψaψ

maN,ψ = [0, 0, 0, ..., 0, 1]

(5.53)

The equations for the yaw angle and yaw angular velocity are shown in Eq. (5.54).
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As with the angular acceleration constraints, the row-vectors mpn,ψ and mvn,ψ will

be used to form the final constraint matrices.

pψ[n] = mpn,iaψ + pψ[1] + hvψ[1]

mpn,ψ = [
(2n− 3)

2
h2,

(2n− 5)

2
h2, ...,

1

2
h2, 0, ..., 0]

vψ[n] = mvn,iaψ + vψ[1]

mvn,ψ = [h, h, h, ..., h, 0, ..., 0]

(5.54)

These yaw equality constraints can be combined into a QP matrix inequality

constraint of the form Aeqχ = beq (Eq. (5.55)).

Aeq,ψχψ = beq,ψ

where Aeq,ψ =



ma1,ψ

...

maN,ψ

mp2,ψ

...

mpN,ψ

mv2,ψ

...

mvN,ψ



, beq =



aψ[1]

...

aψ[N ]

pψ[2]− pψ[1]− hvψ[1]

...

pψ[N ]− pψ[1]− hvψ[1]

vψ[2]− vψ[1]

...

vψ[N ]− vψ[1]



(5.55)
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Inequality Constraints

It is necessary to place constraints on the minimum and maximum position,

velocity, acceleration, jerk, and snap to ensure continuity in the trajectory as well

as to restrict the trajectory to the dynamic limits of the quadrotor. These limits

at each discrete point can be set for the trajectory by setting up matrix inequality

constraints of the form Aineqχ ≤ bineq. These inequality constraints will be derived

separately in the following sections.

Position Constraints

The position at each step of the trajectory is bounded by the limits of the

available space for the maneuver (Eq. (5.56). This can include corridors, known

obstacles, or any other environmental constraint on position (Fig. 5.4). If there are

no immediate limitations to the position, then a position constraint is not necessary

for the corresponding time step.

pi,min[n] ≤ pi[n] ≤ pi,max[n], ∀n, i ∈ {x, y, z} (5.56)

Each position component is calculated using Eq. (5.36) in vector dot product

form, shown in the assembled matrix form in Eq. (5.57). Only the rows of Apos,blk

and bposblk,i,w corresponding to the time steps with position constraints are necessary

to use in the final inequality constraint.
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Figure 5.4: Examples of position inequality constraints along trajectory.

Aposχx,y,z ≤ bpos

where

Apos,blk =



1
2
h2 0 0 ... 0

3
2
h2 1

2
h2 0 ... 0

...
...

. . . . . .
...

(2k−3)
2

h2 (2k−5)
2

h2 ... ... 1
2
h2


, bposblk,i,w =



pi,w[2]− pi[1]− hvi[1]

pi,w[3]− pi[1]− hvi[1]

...

pi,w[N ]− pi[1]− hvi[1]



for iε{x, y, z}, wε{max,min}

(5.57)

These position inequality constraint block matrices can be combined to form

the overall position inequality matrix (Eq. (5.58)). Note that rows may be omitted

if there is no position constraint at that particular time step.
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Aposχx,y,z ≤ bpos

where

Apos =



−Apos,blk 0 0

0 −Apos,blk 0

0 0 −Apos,blk

Apos,blk 0 0

0 Apos,blk 0

0 0 Apos,blk



, bpos =



−bpos,blk,x,min

−bpos,blk,y,min

−bpos,blk,z,min

bpos,blk,x,max

bpos,blk,y,max

bpos,blk,z,max



(5.58)

Velocity Constraints

The velocity at each time step of the trajectory is bounded by both the limits

of the quadrotor and any desired velocity bound along one of the inertial axes

(Eq. (5.59)). The velocity components at each step are calculated using Eq. (5.35)

in vector dot product form, as shown in Eq. (5.60).

vi,min[n] ≤ vi[n] ≤ vi,max[n], ∀n, i ∈ {x, y, z} (5.59)
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Avelχx,y,z ≤ bvel

where

Avel,blk =



h 0 0 ... 0 0

h h 0 ... 0 0

...
...

. . . . . .
...

...

h h ... ... h 0


, bvelblk,i,w =



vi,w[2]− vi[1]

vi,w[3]− vi[1]

...

vi,w[N ]− vi[1]



for iε{x, y, z}, wε{max,min}

(5.60)

The velocity inequality constraint block matrices can be combined to form the

overall velocity inequality matrix (Eq. (5.61)). Note that all steps should include a

velocity constraint to prevent the resulting trajectory from requiring unrealistically

large speeds.

Avelχx,y,z ≤ bvel

where

Avel =



−Avel,blk 0 0

0 −Avel,blk 0

0 0 −Avel,blk

Avel,blk 0 0

0 Avel,blk 0

0 0 Avel,blk



, bvel =



−bvel,blk,x,min

−bvel,blk,y,min

−bvel,blk,z,min

bvel,blk,x,max

bvel,blk,y,max

bvel,blk,z,max



(5.61)
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Acceleration Constraints

Similar to the velocity bounds, the acceleration at each step is also limited by

the dynamic properties of the quadrotor as well as desired acceleration limitations

along each inertial axis (Eq. (5.62)). Acceleration constraints can also be used to

ensure the vehicle is near a desired attitude at a certain step along the trajectory,

as illustrated in Fig. 5.5. Since the optimization variable consists of the acceleration

components at each step, the inequality block matrix is simply an identity ma-

trix and the inequality vector is the minimum or maximum allowable acceleration

(Eq. (5.63)).

ai,min[n] ≤ ai[n] ≤ ai,max[n], ∀n, i ∈ {x, y, z} (5.62)

Figure 5.5: Example of acceleration inequality constraints along trajectory.
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Aaccelχx,y,z ≤ baccel

where baccelblk,i,w =



ai,w[1]

ai,w[2]

...

ai,w[N ]


for iε{x, y, z}, wε{max,min}

(5.63)

The acceleration inequality constraint block matrices can be combined to form

the overall acceleration inequality matrix, as in Eq. (5.64). Note that all steps should

include an acceleration constraint to prevent the resulting trajectory from requiring

unrealistically large accelerations.

Aaccelχx,y,z ≤ baccel

where

Aaccel =



−I 0 0

0 −I 0

0 0 −I

I 0 0

0 I 0

0 0 I



, baccel =



−baccel,blk,x,min

−baccel,blk,y,min

−baccel,blk,z,min

baccel,blk,x,max

baccel,blk,y,max

baccel,blk,z,max



(5.64)

Jerk Constraints

As was done with the velocity and acceleration bounds, the jerk at each step
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must be limited to the vehicle limits (Eq. (5.65)). It is uncommon to have known

strict jerk limitations, so typically the jerk limits can be set as constant and adjusted

as needed to converge to a feasible trajectory. The jerk calculation from Eq. (5.37)

can be put in matrix form, as shown in Eq. (5.66).

ji,min[n] ≤ ji[n] ≤ ji,max[n], ∀n, i ∈ {x, y, z} (5.65)

Ajerkχx,y,z ≤ bjerk

where

Ajerk,blk =



−1/h 1/h 0 ... 0 0

0 −1/h 1/h ... 0 0

...
...

. . . . . .
...

...

0 0 ... ... −1/h 1/h


, bjerkblk,i,w =



ji,w[2]

ji,w[3]

...

ji,w[N ]



for iε{x, y, z}, wε{max,min}

(5.66)

The jerk inequality constraint block matrices can be combined to form the

overall jerk inequality matrix, as in Eq. (5.67). Note that all steps should include

a jerk constraint to prevent the resulting trajectory from requiring unrealistically

large jerk values.
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Ajerkχx,y,z ≤ bjerk

where

Ajerk =



−Ajerk,blk 0 0

0 −Ajerk,blk 0

0 0 −Ajerk,blk

Ajerk,blk 0 0

0 Ajerk,blk 0

0 0 Ajerk,blk



, bjerk =



−bjerk,blk,x,min

−bjerk,blk,y,min

−bjerk,blk,z,min

bjerk,blk,x,max

bjerk,blk,y,max

bjerk,blk,z,max



(5.67)

Snap Constraints

As with the jerk, the snap at each step must be bounded (Eq. (5.68)). The

snap limitations of a quadrotor are not typically known, so these bounds can be

adjusted as needed to converge to a feasible trajectory. The snap calculation from

Eq. (5.38) can be put in matrix form, as shown in Eq. (5.69).

si,min[n] ≤ si[n] ≤ si,max[n], ∀n, i ∈ {x, y, z} (5.68)
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Asnapχx,y,z ≤ bsnap

where

Asnap,blk =



−1/h2 0 0 ... 0 0 0

−2/h2 −1/h2 0 ... 0 0 0

1/h2 −2/h2 1/h2 ... 0 0 0

...
...

. . . . . .
...

...
...

0 0 ... ...1/h2 −1/h 1/h


, bsnapblk,i,w =



si,w[1]

si,w[2]

...

si,w[N ]



for iε{x, y, z}, wε{max,min}

(5.69)

The snap inequality constraint block matrices can be combined to form the

overall snap inequality matrix, as in Eq. (5.70). Note that all steps should include

a snap constraint to prevent the resulting trajectory from requiring unrealistically

large snap values.

70



Asnapχx,y,z ≤ bsnap

where

Asnap =



−Asnap,blk 0 0

0 −Asnap,blk 0

0 0 −Asnap,blk

Asnap,blk 0 0

0 Asnap,blk 0

0 0 Asnap,blk



, bsnap =



−bsnap,blk,x,min

−bsnap,blk,y,min

−bsnap,blk,z,min

bsnap,blk,x,max

bsnap,blk,y,max

bsnap,blk,z,max


(5.70)

Yaw Angle Constraints

The yaw angle at each step of the trajectory can be constrained to a range as

shown in Eq. (5.71). This can be useful if the vehicle has an on-board camera or other

sensor that needs to remain pointed in a certain direction throughout a maneuver

(Fig. 5.6). If there is no restriction on desired yaw angle, these constraints can be

omitted from the optimization problem.

pψ,min[n] ≤ pψ[n] ≤ pψ,max[n], ∀n (5.71)

The yaw angle can be calculated with the vector dot product shown earlier

in Eq. (5.53). This equation can be put into matrix form for all of the yaw angle

inequality constraints (Eq. (5.72)).
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Figure 5.6: Example of yaw inequality constraints along trajectory.

Apos,ψχψ ≤ bpos,ψ

where

Apos,ψ,blk =



1
2
h2 0 0 ... 0

3
2
h2 1

2
h2 0 ... 0

...
...

. . . . . .
...

(2k−3)
2

h2 (2k−5)
2

h2 ... ... 1
2
h2


, bposblk,ψ,w =



pψ,w[2]− pψ[1]− hvψ[1]

pψ,w[3]− pψ[1]− hvψ[1]

...

pψ,w[N ]− pψ[1]− hvψ[1]



for wε{max,min}

(5.72)

These yaw angle inequality constraint block matrices can be combined to form

the overall yaw angle inequality matrix (Eq. (5.73)).
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Apos,ψχψ ≤ bpos,ψ

where

Apos,ψ =

 −Apos,ψ,blk
Apos,ψ,blk

 , bpos =

 −bpos,blk,ψ,min
bpos,blk,ψ,max


(5.73)

Yaw Angular Velocity Constraints

The yaw angular velocity at each step of the trajectory can be constrained

to a range as shown in Eq. (5.74). This can be used to include the vehicle’s yaw

rate limitations into the trajectory to ensure the generated trajectory is physically

realistic for the vehicle.

vψ,min[n] ≤ vψ[n] ≤ vψ,max[n], ∀n (5.74)

The yaw angular velocity can be calculated with the vector dot product shown

earlier in Eq. (5.53). This equation can be put into matrix form for all of the yaw

angular velocity inequality constraints (Eq. (5.75)).
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Avel,ψχψ ≤ bvel,ψ

where

Avel,ψ,blk =



h 0 0 ... 0 0

h h 0 ... 0 0

...
...

. . . . . .
...

...

h h ... ... h 0


, bvelblk,ψ,w =



vψ,w[2]− vψ[1]

vψ,w[3]− vψ[1]

...

vψ,w[N ]− vψ[1]



for wε{max,min}

(5.75)

These yaw angular velocity inequality constraint block matrices can be com-

bined to form the overall yaw angular velocity inequality matrix (Eq. (5.76)). Note

that all steps of the trajectory should include an angular velocity constraint to

prevent unrealistically large yaw rates in the resulting trajectory.

Avel,ψχψ ≤ bvel,ψ

where

Avel,ψ =

 −Avel,ψ,blk
Avel,ψ,blk

 , bvel =

 −bvel,blk,ψ,min
bvel,blk,ψ,max


(5.76)

Yaw Angular Acceleration Constraints

The yaw angular acceleration at each step of the trajectory can be constrained

to a range as shown in Eq. (5.77). As with the angular velocity constraints, this

can be used to include the vehicle’s yaw angular acceleration limitations into the
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trajectory to ensure the generated trajectory is physically realistic for the vehicle.

Since the optimization variable consists of the yaw angular acceleration compo-

nents at each step, the inequality block matrix is simply an identity matrix and

the inequality vector is the minimum and maximum allowable angular acceleration

(Eq. (5.78)).

aψ,min[n] ≤ aψ[n] ≤ aψ,max[n], ∀n (5.77)

Aaccel,ψχψ ≤ baccel,ψ

where baccelblk,ψ,w =



aψ,w[1]

aψ,w[2]

...

aψ,w[N ]


for wε{max,min}

(5.78)

These yaw angular acceleration inequality constraint block matrices can be

combined to form the overall yaw angular acceleration inequality matrix (Eq. (5.79)).

Note that all steps of the trajectory should include an angular acceleration constraint

to prevent unrealistically large angular accelerations in the resulting trajectory.
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Aaccel,ψχψ ≤ baccel,ψ

where

Aaccel,ψ =

 −I
I

 , baccel,ψ =

 −baccel,blk,ψ,min
baccel,blk,ψ,max


(5.79)

Final Optimization Program

With the objective function and constraint equations defined, the final opti-

mization problem can now be written. As stated previously, the optimization prob-

lem is of the form of a quadratic program (QP). The objective function is stated in

Eq. (5.80). This function includes the optimization variables χx,y,z and χψ joined

into a single optimization variable χ. The matrix functional Q for the entire QP

includes the corresponding position and yaw angle matrices.

fo =

 χx,y,z

χψ


T  Px,y,z 0

0 Pψ


 χx,y,z

χψ

 = χTQχ (5.80)

The constraint matrix equations can be combined into single equality and

inequality equations in terms of the optimization variable χ. The final equality con-

straint equation is shown in Eq. (5.81) and the final inequality constraint equation

is shown in Eq. (5.82).
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Aeqχ = beq

where

Aeq =

 Aeq,x,y,z 0

0 Aeq,ψ

 , beq =

 beq,x,y,z

beq,ψ


(5.81)

Aineqχ ≤ bineq

where

Aineq =



Apos 0

0 Apos,ψ

Avel 0

0 Avel,ψ

Aaccel 0

0 Aaccel,ψ

Ajerk 0

0 Asnap



, bineq =



bpos

bpos,ψ

bvel

bvel,ψ

baccel

baccel,ψ

bjerk

bsnap



(5.82)

The full optimization problem is written in Eq. (5.83). This optimization

problem satisfies the requirements of a quadratic program since the objective func-

tion is quadratic with Q being a symmetric positive semi-definite matrix and the

constraint functions are affine. A quadratic program is also a convex optimization

problem with a single optimal solution. Many methods exist for solving quadratic

programs and solutions can be obtained quickly using Matlab’s Optimization Tool-

box [25] or Stephen Boyd’s CVX toolbox [26].
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minimize χTQχ

subjectto Aeqχ = beq

Aineqχ ≤ bineq

(5.83)

5.2.2 Example Trajectory

To demonstrate the process of generating an optimal trajectory for a quadro-

tor, an example situation is presented for a 10-second trajectory with various con-

straints. The vehicle is to begin at an arbitrary origin. At the 2 second mark, the

vehicle will enter a tunnel with width and height constraints at position (2,−1,−2)

and reach the end of the tunnel 2 seconds later at point (4,−1,−2). Note that these

coordinates are in the inertial North-East-Down coordinate system (NED). At the 5

second mark, the vehicle should come to a stop for an instant at point (5,−1.5,−2)

with a yaw angle of −90 deg. The vehicle will then continue and stop for an instant

at point (7,−6,−3) with a yaw angle of +90 deg. The vehicle ends the trajectory

at point (10,−5, 0) with a yaw angle back to 0 deg. This example trajectory incor-

porates several position constraints as well as attitude and yaw constraints. The

generated trajectory is shown below in Fig. 5.7.

The 4 flat outputs and their derivatives are shown in Fig. 5.8 through 5.10.

The tunnel inequality constraints and the several equality constraints are included in

the plots to show that the trajectory generation algorithm was successful in abiding

by the user-imposed environmental restrictions.
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Figure 5.7: 3D view of example optimal trajectory.

The corresponding quaternion attitude at each time step can be calculated

and then converted to Euler angles for easier visualization. The Euler angle time

series is shown in Fig. 5.11.
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Figure 5.8: Flat outputs that define example optimal trajectory.

Figure 5.9: First derivatives of flat outputs that define example optimal trajectory.
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Figure 5.10: Second derivatives of flat outputs that define example optimal trajec-

tory.

Figure 5.11: Euler angle attitudes along example trajectory.
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Chapter 6: Trajectory Tracking Control

To enable the ARL MkIV to follow trajectories generated with the algorithm

described in the previous chapter, an outer-loop trajectory tracking controller must

be implemented. This controller acts on the slower modes of a quadrotor, which

are the 3-dimensional inertial position and the heading, and therefore runs in an

outer loop around the attitude controller. The tracking controller maps errors in

the position and heading to inputs to the inner-loop attitude controller, taking the

place of a human input device such as a joystick. This chapter defines two trajectory

tracking controllers. The first is a PID position controller common to quadrotors and

the second is an extension to the first, taking advantage of the quaternion attitude

representation of the attitude controller.

6.1 PID Trajectory Tracking Controller

Proportional-integral-derivative (PID) feedback controllers are very common

for the outer-loop control of quadrotors due to their simplicity of implementation

and the fact that they don’t require an accurate model of the system in order

to work properly. PID controllers can be manually tuned based on the resulting

performance of the controlled system, where as more complex controllers such as
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LQR or H-infinity require system models.

An outer-loop PID position controller calculates the control input to the inner-

loop by summing the weighted errors in position and velocity, as well as the inte-

grated error in position and then mapping the sum to a desired attitude and throttle

level. The current inertial position r̄ of the quadrotor’s center of mass is defined in

Eq. (6.1) and the desired inertial position r̄des is defined in Eq. (6.2). Note that the

time dependence has been omitted.

r̄ = [x, y, z]T (6.1)

r̄des = [xdes, ydes, zdes]
T (6.2)

The position and velocity errors are calculated by subtracting the desired value

from the current value (Eq. (6.3)). The integral of the position error is calculated

numerically as shown in Eq. (6.4). The errors in yaw angle, yaw angular velocity,

and integrated yaw angle are calcualted in the same manner as shown in Eq. (6.5)

and Eq. (6.6).

ēp = r̄ − r̄des

ēd = ˙̄r − ˙̄rdes

(6.3)

ēi =

∫ t

0

ēp(τ)dτ → ēi[k] = ēi[k − 1] + ēp[k]∆t (6.4)
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ēp,ψ = ψ − ψdes

ēd,ψ = ψ̇ − ψ̇des

(6.5)

ēi,ψ =

∫ t

0

ēp,ψ(τ)dτ → ēi,ψ[k] = ēi,ψ[k − 1] + ēp,ψ[k]∆t (6.6)

The control inputs ūPID and uPID,ψ are calculated with a weighted sum of

the errors (Eq. (6.7)), where Kp, Ki, and Kd are the proportional, integral, and

derivative diagonal gain matrices, respectively. The inputs must then be mapped

to a desired quaternion attitude for use by the inner-loop attitude controller. Since

the roll and pitch axes are decoupled along the body y and x axes, the x and y

components of ūPID can be realized as pitch and roll Euler angles. The heading

control input uPID,ψ can be realized as the yaw Euler angle. These Euler angles

can be converted to the corresponding desired quaternion attitude using Eq. (6.8).

This desired quaternion is then sent to the inner-loop attitude controller that sends

the necessary commands to the motors that enable the vehicle to follow the desired

trajectory.

ūPID = Kpēp +Kiēi +Kdēd

uPID,ψ = Kp,ψēp,ψ +Ki,ψēi,ψ +Kd,ψēd,ψ

(6.7)
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

q0,des

q1,des

q2,des

q3,des


=



cos ψ
2

cos θ
2

cos φ
2

+ sin ψ
2

sin θ
2

sin φ
2

cos ψ
2

cos θ
2

sin φ
2
− sin ψ

2
sin θ

2
cos φ

2

cos ψ
2

sin θ
2

cos φ
2

+ sin ψ
2

cos θ
2

sin φ
2

sin ψ
2

cos θ
2

cos φ
2
− cos ψ

2
sin θ

2
sin φ

2


(6.8)

The z-axis of the control input ūPID is equivalent to the deviation from the

hover throttle level. Defining this term as a deviation from hover is equivalent to

initializing the integrated z-axis position error to the hover throttle. This gets rid of

the wait time associated with the integrator wind-up when the outer-loop controller

is switched on while the vehicle is already in flight.

Due to the mapping from control input to Euler angles, this outer-loop con-

troller is subject to the limitations that go along with the use of Euler angles. It is

only useful for less aggressive maneuvers that require small pitch and roll angles. In

order to take advantage of the quaternion-based state estimator implemented on the

ARL MkIV, a direct quaternion mapping must be used in the outer-loop, removing

Euler angles completely from the formulation. The controller that accomplishes this

is discussed in the next section.

6.1.1 Circular Test Trajectory

The PID trajectory tracking controller was used to fly consecutive circular

trajectories as an operational example. The circles are 2 meters in diameter and the

vehicle completes each circle in 3 seconds. Typical results for such a trajectory are

shown in Fig. 6.1. The vehicle deviates from the trajectory by up to 20 centimeters
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at some points due to the high speed requirement, as well as hardware factors that

will be discussed later. Overall, however, the quadrotor is able to remain stable

while traversing the circle with speeds up to 2.1 meters per second.

Figure 6.1: PID tracking controller used to fly circular trajectory.

6.2 Acceleration Vector-Based Trajectory Tracking Controller

In order to leverage the advantages of using quaternions as the sole method of

attitude representation throughout the quadrotor control structure, the outer-loop

controller can be reformulated to output a quaternion orientation directly, without

the intermediate Euler conversion. The inner-loop attitude controller accepts a

quaternion attitude as an input from the outer-loop controller. It was shown in

a previous chapter that the attitude of a quadrotor can be entirely described by

its acceleration vector and a yaw angle. Therefore, if the outer-loop controller
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maps inertial state errors to a pseudo-acceleration vector, this vector can be directly

converted to a quaternion orientation and sent to the inner-loop.

The state error terms used in the PID trajectory tracking controller will also

be used here (Eq. (6.3)-(6.6)). The same PID structure will also be used, except here

it will be mapped to an acceleration vector and not an Euler angle. The pseudo-

acceleration vector I ā is calculated with Eq. (6.9). The desired acceleration vector

from the trajectory generation is included in the calculation, as well as the gravity

vector in the inertial frame. The total commanded force in the inertial frame can

then be found with Eq. (6.10), where m is the mass of the vehicle.

I ā = Kpēp +Kdēd + ẍdes +Kiēi + I ḡ (6.9)

F̄ I = mI ā (6.10)

The heading control portion of the outer-loop is the same as that of the original

PID controller. The equation for computing the yaw control input ψc is restated in

Eq. (6.11).

ψc = Kp,ψēp,ψ +Ki,ψēi,ψ +Kd,ψēd,ψ (6.11)

The pseudo-acceleration vector and yaw control input can be converted to

a desired quaternion orientation using the equations derived in the earlier section

on differential flatness. The normalized pseudo-acceleration vector I â is first used

to compute the corresponding quaternion attitude with arbitrary yaw rotation q̃des
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(Eq. (6.12)). The resulting quaternion represents the rotation necessary to make

the body-frame acceleration vector Bâ collinear with the pseudo-acceleration vector

without considering the yaw angle.

q̃des =
1√

2 (1 + BâT I â)

 1 + BâT I â

Bâ× I â

 (6.12)

The commanded yaw angle can be included in the quaternion orientation with

Eq. (6.13). The resulting desired quaternion q̄des is the quadrotor orientation that

will allow the vehicle to follow the desired trajectory. This quaternion is sent to the

inner-loop attitude controller.

q̄des = q̃des ⊗



cos

(
ψc
2

)
0

0

sin

(
ψc
2

)


(6.13)

The magnitude of the commanded force in the inertial frame (Eq. (6.10))

is used to set the throttle command. The relationship between throttle level and

applied force from the rotors was characterized, as described in the following section,

and a piece-wise linear curve-fit was found. With the throttle level and desired

quaternion calculations complete, the outer-loop controller enables the quadrotor

to follow a desired trajectory without the limitations of an Euler angle attitude

representation.
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6.2.1 Motor Thrust Characterization

The acceleration vector-based controller requires a model of the mapping be-

tween throttle level and overall thrust produced by the four rotors. A thrust test

was performed by mounting the ARL quadrotor to a load cell and collecting average

thrust data for every throttle level in 0.05% increments. The results are shown in

Fig. 6.2. [27]

Figure 6.2: Vehicle thrust versus throttle level with best-fit linear trend line.

The controller requires a mapping equation to determine an estimate of the

throttle level required to achieve a desired thrust. Therefore, the axes were flipped

and a line was fit to the data (Fig. 6.3). The maximum thrust was found to be

about 160 grams at a throttle level of 80%. The minimum thrust was found to be

about 30 grams at a throttle level of 10%. The equation for the best-fit trend line
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between 10% and 80% throttle is shown in Eq. (6.14)

Figure 6.3: Throttle level versus vehicle thrust with best-fit linear trend line.

Throttle% = 0.0054119 ∗ Thrust− 0.068689 (6.14)

6.2.2 Circular Test Trajectory

As was done for the PID tracking controller, the acceleration vector-based

trajectory tracking controller was used to fly consecutive circular trajectories as an

operational example. Again, the circles are 2 meters in diameter and the vehicle

completes each circle in 3 seconds. Typical results for such a trajectory are shown

in Fig. 6.4. The vehicle follows the circular trajectory slightly better than the PID

controller, but still deviates by up to 20 centimeters as before. This controller, how-

ever, allows for even more aggressive maneuvers due to the full quaternion attitude
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representation.

Figure 6.4: Accel vector-based tracking controller used to fly circular trajectory.
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Chapter 7: Trajectory Generation for Perching Application

One potential use for the trajectory generation algorithm is to enable a quadro-

tor to perform an aggressive perching maneuver that ends with the vehicle at the

appropriate position and orientation. This application is motivated by a collabora-

tive research effort with Stanford University’s Biomimetics and Dextrous Manipu-

lation Laboratory (BDML) funded by the Army’s Micro Autonomous Systems and

Technology (MAST) program. The ability to perch on elevated or vertical surfaces

greatly expands the potential uses of a quadrotor. Perching can extend the oper-

ational life of the vehicle and allow tasks to be performed without the mechanical

and electrical noise associated with sustained flight. This section will describe the

BDML perching mechanism, the process of generating a perching trajectory, and

the simulations and flight tests of the perching maneuver.

7.1 BDML’s Dry-Adhesive Perching Mechanism

The BDML of Stanford University has developed light-weight perching mech-

anisms for use on small-scale air vehicles, as well as crawling-based ground vehi-

cles [28], [29]. These mechanisms involve the use of bio-inspired dry adhesive tech-

nology. This type of adhesive mimics the foot pads of a gecko, relying solely on the
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inter-molecular van der Waals forces to adhere to many smooth surfaces. The dry

adhesive mechanism also has the ability to attach and release from a surface with

minimal force, due to the directional characteristics of the adhesive.

The perching mechanism used on the ARL MkIV quadrotor weighs 9.6 grams

and attaches to the top or bottom of the vehicle. The mechanism absorbs excess

energy from the initial contact with the surface to prevent the vehicle from bouncing

back before the adhesive is engaged. Once both dry adhesive pads are in contact with

the surface, the mechanism collapses and applies opposing shear forces to each pad,

securing it to the surface. Releasing the applied shear force instantly releases the

vehicle, allowing it to return to flight. The perching mechanism will adhere to most

smooth surfaces, such as glass, plastic, and metal. It is sensitive to dirt and other

foreign particles, however, since even a small particle between the adhesive pad and

the surface will result in drastically less surface contact. One version of the BDML

perching mechanism is shown in Fig. 7.1, mounted on a previous micro-quadrotor

iteration and perched on a Plexiglas surface.

7.2 Perching Trajectory Generation

Perching trajectories were generated with the algorithm described previously.

The starting constraints were chosen so that the quadrotor begins in hover 1 meter

in front of and 1 meter below the perching target. The ending constraints were

chosen so that the final attitude of the vehicle is such that the x-y plane of the

body frame is parallel to the perching surface and the vehicle has a normal velocity
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Figure 7.1: Old version of micro-quadrotor with the BDML perching mechanism,

perched on Plexiglas.

between 0.5 and 1.5 meters per second with zero tangential velocity. The total time

for the maneuver is set to 2.5 seconds with a time step of 0.01 seconds.

A 3D view of the resulting perching trajectory is shown in Fig. 7.2. The

vehicle starts at the origin and ends at the red dot, indicating the perching target

on the wall. The vectors plotted along the 3D trajectory indicated the acceleration

direction with gravity included. The quadrotor’s attitude is such that the x-y plane

of the quadrotor is perpendicular to these acceleration vectors. The positions along

each axis during the trajectory are plotted in Fig. 7.3. Note that the ending points

are consistent with the constraints previously described.

The velocities and accelerations are plotted in Fig. 7.4 and Fig. 7.5, respec-

tively. Note that the ending velocity along the x-axis is within the 0.5 to 1.5 meter

per second constraint for normal perching velocity. Also, the tangential velocity is
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Figure 7.2: 3D view of perching trajectory.

Figure 7.3: Positions along perching trajectory.

zero at the end of the trajectory. The ending acceleration is -1 meters per squared

second in the x-direction and -9.81 meters per squared second in the z-direction.
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When gravity is included, this results in a pitch-up perching attitude, as desired.

Figure 7.4: Velocities along perching trajectory.

Figure 7.5: Accelerations along perching trajectory.
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The quaternion attitudes at each point along the trajectory are also calculated

and plotted as Euler angles for easier visualization in Fig. 7.6. Note that the pitch

angle begins at zero and goes slightly negative during the forward acceleration por-

tion of the maneuver. It then goes to positive 90 degrees at the end of the trajectory,

indicating a wall-perch attitude. The yaw angle was kept at zero for the duration of

the trajectory. Also, since there is no lateral component of the trajectory, the roll

angle is zero.

Figure 7.6: Euler angle attitude along perching trajectory.

7.3 Perching Test Flights

The acceleration vector-based trajectory tracking controller was used along

with the vertical wall perching trajectory generated with the previously described

algorithm to perform perching tests with the ARL MkIV micro-quadrotor. The tests
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were completed using the Vicon motion capture system for inertial data feedback.

A Plexiglas wall was constructed and served as the vertical perching surface.

After initial testing with the ARL MkIV vehicle, it was determined that in-

consistencies in the motor speed controllers along with other vehicle limitations

prevented successful perching with the current algorithm and trajectory. The ve-

hicle was unable to track the changing acceleration vector closely enough to result

in a proper attitude at the perching surface. To assist the vehicle in reaching the

proper states, the trajectory was adjusted based on the state error of the previous

test. This process is essentially that of an iterative learning controller, in which the

controls for the next test are adjusted based on the previous test’s state errors. An

example of a successful perch using this method is shown in Fig. 7.7.

Figure 7.7: Image sequence from vertical wall perching test.
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Chapter 8: Conclusions and Future Work

The work in this thesis demonstrates the utility of expanding the typical Euler

angle paradigm to the higher-dimensional quaternion method of attitude representa-

tion. A trajectory generation algorithm was presented that creates minimum-control

effort trajectories that enable a quadrotor to reach desired velocities and attitudes

at certain positions. Outer loop controllers were also presented that allow a quadro-

tor to follow these trajectories and perform aggressive maneuvers without special

numerical handling of extreme attitudes. These algorithms were implemented on

a 100-gram micro-quadrotor and their capabilities were demonstrated with an ex-

ample situation involving perching on a vertical glass wall. A specially designed

gecko-inspired dry adhesive was used to attach to the glass wall once the vehicle

reached the proper attitude and speed. An example trajectory was also generated

that required quick flight through a tunnel, as well as fixed yaw angles and velocities

at certain positions, simulating a potential application for such algorithms.

Vehicle limitations and frequent electronics issues limited the MkIV quadro-

tor’s ability to fully demonstrate the potential of these algorithms. Nonetheless, the

framework has been presented that gives any quadrotor UAV the ability to perform

aggressive maneuvers during standard free-flight, as well as with pre-planned tra-

99



jectories. Expanding the current control structure to a nonlinear controller would

further improve the quadrotor’s ability to closely follow the fast-changing states of

an aggressive trajectory.

The next step for such research, as is the case for many quadrotor-related

endeavors, is to enable the vehicle to better sense its environment to the point that

a Vicon system is unnecessary. With an accurate measurement of its position relative

to a window, for example, a quadrotor could perform an agile perching maneuver

to attach itself to the glass. Once perched, the vehicle could perform a number of

static tasks, such as surveillance or charging, without the power requirements of

remaining in flight. A quadrotor could also leverage its own dynamic properties, as

was shown in the trajectory generation section, to navigate quickly around obstacles

or pass through small openings that require a certain attitude in order to fit. A GPS

alone is not enough to enable these types of applications. Work must continue in

the area of advanced environment perception, using methods such as optical flow

or simultaneous localization and mapping (SLAM), to expand the realm of possible

uses for quadrotors.
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