

Islamic University of Gaza
Deanery of Higher Studies
Faculty of Information Technology

An Efficient Approach for Supporting
Multi-Tenancy Schema

Inheritance in RDBMS for SaaS

By:

 Samir A. Hillis

120100708

Supervisor:

Dr. Tawfiq SM Barhoom

A Thesis Submitted as Partial Fulfillment of the Requirements for
the Degree of Master in Information Technology

2015, 1436H

i

ii

Abstract

Multi-tenant data management is a major application of Software as a Service

(SaaS) , whereby a third party service provider hosts databases as a service and provides

its customers with needed services. SaaS applications are deployed on a shared

environment that can be accessed by the users from client-end software by using the

Internet. Multi-tenancy refers to a principle in software architecture where a single

instance of the software runs on a server, serving multiple client organizations (tenants).

Multi-tenant applications provide a common user interface (UI) for all the organizations

and data of multiple tenants are saved in a single database to reduce total cost of

ownership. Common practice is to map multiple single-tenant logical schemas in the

application to one Multi-tenant physical schema in the database. Such mappings are

challenging to create .This is due to the flexibility of a base scheme to be extended by

enterprise application tenants which provides different dynamically modified versions of

the application. The fundamental limitation on scalability of this approach is the number

of tables of database can handle. Shared Tables Shared Instances (STSI) is a state-of-the-

art approach to design the schema. However, they suffer from performance time and high

space overhead.

In this research, we are going to introduce an efficient approach for supporting Multi-

tenancy schema inheritance based on STSI, that allows sharing core application schema

between tenants while enabling schema extensions per tenant, Schema inheritance allows

deriving a schema from another schema. Thereby, a derived schema inherits the objects

that are defined in the parent schema. The idea is based on the changes that occur at

runtime in the meta data and the data . Also exploitation some situations of data needs to

be shared between tenants.

Several experiments were conducted to trade-off STSI and our approach. Different sizes

of small, medium, large and very large databases, starting from 10 GB up to 300 GB.

Experimental results show that our method achieves good scalability and high

performance with low space requirement, and outperforms STSI methods at different

rates depending on data manipulation language (DML) operations. It is ranged 50% in

selection processes, and have been in the range of 20% and 40% in the update and insert.

Also, our approach achieved less storage space compared with STSI about 50% .

Keywords: cloud computing, Database as a Service (DBaaS),Multi-tenant database ,

schema-mapping technique, Benchmarking .

iii

 العربية باللغة البحث عنوان

نممة ددار وواعد لألدعم وراثة مخطط متعدد المستأجرين كفؤمنهج
 البيانات العلائقية في البرمجيات كخدمة

 العربية باللغة الملخص

، (SaaS)البرمجيات كخدمة هام ضمن تطبيقات تطبيق هي المستأجرينإدارة البيانات متعددة

قاعدة البيانات ويوفرها كخدمة للعملاء مع باقي " طرف ثالث" مزود خارجيحيث يستضيف
تيح لمستخدمين مما ييتم نشر تطبيقات البرمجيات كخدمة على بيئة مشتركة . الخدمات اللازمة

 .متعددين الوصول إليها عبر الإنترنت
لكنها تقدم تشير معمارية تعدد المستأجرين إلى وجود نسخة واحدة من البرنامج تعمل على الخادم ،

تعمل تطبيقات تعدد المستأجرين على توفير . مستأجر يسمى كل منهاالخدمة لمنظمات متعددة
ويتم حفظ بيانات أولئك المستأجرين على خادم قاعدة بيانات واحد . المستأجرينواجهة بيانية لجميع
سالي الشائعة هي أحد الأ. لها بهدف الحد من التكاليف الإجمالية مستأجربدلا من امتلاك كل

. مطابقة العديد من قواعد البيانات لمستأجرين متعددين مع مخطط منطقي واحد في قاعدة البيانات
ويتحقق هذا بمرونة مخطط قاعدة البيانات الذي يمكن تمديده . هذه المطابقة تشكل تحديا عند إنشائها

. النهج هو عدد جداول قاعدة البيانات أحد القيود على هذا . من قبل مستأجرين وتعديله وقت التشغيل
ومع ذلك . النسخة المشتركة من أهم منهجيات تصميم المخطط –يعتبر منهج الجدول المشترك

 . فإنها تعاني من انخفاض الأداء وارتفاع حاجتها للتخزين

الأساسي يعتمد الوراثة ، إنه يسمح بمشاركة المخطط منهج فعال لدعم تعدد الإيجار نقدمفي بحثنا
علاوة على أنه يسمح . مع السماح لكل مستأجر تمديد المخطط المستأجرينللتطبيق بين مختلف

باشتقاق مخطط من مخطط آخر، وبالتالي فهو يرث كافة الكائنات سابقة التعريف بدلا من إعادة
بيانات تعريفها وتستند فكرته على الاستفادة من التغييرات التي تحدث في وقت التشغيل على ال

الوصفية والبيانات نفسها ، كما أنه يستفيد من بعض الحالات التي تكون فيها البيانات مشتركة بين
 . المستأجرين

صغيرة) على أحجام بيانات مختلفة ونهجنا STSIقمنا بالعديد من التجار للمفاضلة بين

تائج أن منهجنا يحقق ، وقد أظهرت الن GB 300إلى GB 10بدءا جداومتوسطة وكبيرة وكبيرة

بمعدلات STSIتدرجية جيدة وأداء عالي ضمن مساحة تخزين منخفضة مما يجعله يتفوق على

في % 05حيث تراوحت في حدود . DMLمختلفة تختلف حس طبيعة عملية لغة معالجة البيانات

أيضا . في عمليات التحديث والإدراج % 05إلى % 05عمليات الاختيار ، بينما كانت في حدود

 % .05حقق نهجنا انخفاض في مساحة التخزين المطلوبة مقارنة مع الجدول المشترك بحدود

iv

 إهداء
 إلى من علمني العطاء دون انتظار ... إلى من كلله ربي بالهيبة والوقار

 ...إلى من أحمل اسمه بكل افتخار

 رحمه الله وجعل قبره روضة من رياض الجنة ... والدي العزيز

 من كان دعاءها سر نجاحي وحنانها بلسم جراحي إلى

 إلى أمي أطال الله في عمرها وألبسها ثوب العافية

 أولادي الذين تحملوا معي مشقة الدراسة إلى زوجتي ورفيقة دربي إلى

 ي نأساتذتي وأصدقائي وكل ما ساندأهلي وإلى

v

Acknowledgment

First and foremost, I thank Allah Almighty for helping me to complete this
research successfully, and I am asking Allah to guide me to what he loves and
pleases.

I would like to express my deep and sincere gratitude to my supervisor, Dr. Tawfiq
S.M. Barhoom, Dean of Faculty of Information Technology, in Islamic University-
Gaza, for his guidance and for giving me the opportunity to accomplish this research.
He advised me during my work to present the research as clearly as possible.
I would like to extend my thanks to many people, for their advices, especially my
academic staff in Islamic university, for teaching me, and helping me with my
courses in my master's degree.

Also, I would like to thank my family: mother, brothers, sisters and a special thank
for my wife, for her patience during my study.
I cannot forget my colleagues at work, my friends, and all who supported me.

Samir A. Hillis

vi

Table of contents

Abstract .. ii

Chapter 1

Introduction ... 1

1.1Statement of the Problem ... 3

1.2 Objectives .. 3

1.3Importance of the Thesis .. 4

1.4Scope And Limitations of the Thesis ... 4

1.5Thesis Structure .. 5

Chapter 2

Theory Background ... 6

2.1Cloud Computing Overview ... 6

2.1.1 Essential Characteristics ... 6

2.1.2 Deployment Models ... 7

2.1.3 Service models: .. 7

2.1.4 Cloud architecture key components ... 8

2.2Cloud computing benefits... 8

2.2.1Cost Savings .. 8

2.2.2Reliability. ... 9

2.2.3Scalability/Flexibility. ... 9

2.2.4Maintenance. ... 9

2.2.5Mobile Accessible. .. 9

2.3Cloud Storage Systems ... 9

2.3.1Multi-Tenancy ... 10

2.3.2Multi-Tenant Database .. 10

2.3.3Multi-Tenant data storage systems .. 11

2.3.4Schema requirements for Multi-tenant Databases ... 12

2.4Benchmarking database .. 13

Chapter 3

Related works .. 18

vii

Chapter 4

Methodology and Implementation .. 25

4.1Research Methodology ... 25

4.1.1Research and Review .. 25

4.1.2process for Running the SaTbencHCloud ... 26

4.2Setting up the SaTbencHCloud .. 26

4.2.1Overview of the SaTbencHCloud ... 27

4.2.2Configurable Base Schema.. 27

4.2.3SchemaGEN .. 28

4.2.4CloudDBGEN ... 29

4.2.5Generating Dataset .. 29

4.2.6Metadata-Driven Architectures ... 30

4.2.7Integrated TPC-H Schema and Multi-tenant Relational Database 33

4.2.8Multi-tenant Architecture with Metadata Sharing ... 34

4.2.9QGEN .. 36

4.2.10Third Party Driver ... 36

Chapter 5

Experiments and Evaluations .. 39

5.1 Experimental Settings and Results ... 39

5.1.1 Generating Dataset ... 39

2.1.5 Experimental Environment and Tools ... 41

5.1.3 Metadata Management ... 41

5.2 Effect of Tenants ... 41

5.2.1 Storage Capability .. 43

5.5.2 Throughput Test ... 43

5.6 Effect of Columns ... 46

5.6.1 Storage Capability .. 46

5.6.2 Throughput Test ... 47

Chapter 6

Conclusion and Future Work .. 47

References ... 51

viii

List of Figures

Figure 2.1: Deployment models ………………………………………………………………………….……….. 7

Figure 2-2 : Cloud Computing Architecture …………………………………………………………………...8

Figure 2-3. Types of Multi-Tenant data storage systems ……………………………...…….……… 12

Figure 3.1: Private Table Layout ……………………………………………….………………………………… 20

Figure 3.2: Extension Table Layout ..21

Figure 3.3: Universal Table Layout ………………………………………………………..………………...….21

Figure 3.4: Pivot Table Layout ……………………………………………………………………………………..21

Figure 3.5: Chunk Folding Layout …………………………………………………………………………………22

Figure 3.6: Extension XML Layout ………………………………………………………………………………..23

Figure 4.1: Complete process for running the proposed model …………………………………. 26

Figure 4-2: The TPC-H Schema …………………………………………………………………………………… 28

Figure 4-3: sample code for run CloudDBGEN on Windows ……………………………….………. 29

Figure 4-4: Figure 4-4: Metadata-driven Database Design ……………………….……………..…. 31

Figure 4-5: Integrated TPC-H Schema and Multi-tenant relational database ……….………34

Figure 4-6: Multi-tenant Application Framework …………………………………………………….... 30

Figure 4-7: Class diagram for Multi-tenant Architecture …………………………………..……... 30

Figure 4-8: Benchmark Factory for Databases is a database performance testing tool. 37

Figure 5-1: snapshot results of the implementation on IBM Bluemix platform ………….. 05

Figure 0.0 : Illustration of schema inheritance concept ……………………………………………….00

Figure 0.3 Disk space usage with different number of tenants…………………………………... 43

Figure 0.0: DML Performance when scale factor = 15……………………………………..….….…. 00

Figure 5.5: DML Performance when scale factor = 155 ………………………………………….….. 00

Figure 0.6: DML Performance when scale factor = 355 ………………………………………………..06

Figure 0.7: Disk space usage with different number of columns…………………………………. 07

Figure 5-8 : System throughput and response time for SaTbencHCloud approach and

 STSI…….. 07

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA&url=https%3A%2F%2Fconsole.ng.bluemix.net%2F&ei=dNVWVYyzOsGBUcCJgYgM&usg=AFQjCNFLRWzUT34QaQZKbmqYXaHwVhV2Ag&bvm=bv.93564037,d.d24&cad=rja

ix

List of Tables

Table 2.1: major differences between OLTP and OLAP………………………………………………….… 16

Table 4.1: Size of databases generated …………………………………………………………………………………..35

Table 4.2: Scale factors used for the test database……………………………………………………………….… 30

Table 4.3: Data scale of tables for each tenant ……………………………….…………………………………….. 30

Table 4.4 : Brief description of the schema for a metadata-driven architectures……………….….... 32

Table 4-5: Structure of Mapping Table ………………………………………………………….……………….…….… 35

Table 5-1 : Database Configuration Settings …………………………………………………………………….… 41

x

List of Abbreviations

CSP Cloud Service Provider.

IaaS Infrastructure as a Service.

PaaS Platform as a Service.

SaaS Software as a Service.

NIST National Institute of Standards and Technology.

Ms Milliseconds

IT Information Technology

DaaS Data as a service

DBaaS Database as a service

RDBMS Relational Database Management System

SNIA Storage Networking Industry Association

STSI Shared Tables and Shared Database Instances

CLOB Character Large Object

BLOB Binary Large Object

UI User Interface

OLTP Online Transaction Processing

OLAP Online Analytical Processing

SQL Structured Query Language

TPC Transaction Processing Performance Council

TPC-VMS TPC-Virtual Measurement System

SUT System under test

SF Scale factor

1

Chapter 1

Introduction

It is a clear trend that cloud data outsourcing is becoming a pervasive service.

Along with the widespread enthusiasm on cloud computing, In addition to cloud

infrastructure and platform providers, such as Amazon, Google, IBM, Microsoft and

SalseForce, more and more cloud application providers are emerging which are dedicated

to offering more accessible and user friendly data storage services to cloud customers.

Cloud computing becomes a natural and ideal choice for organizations and customers. It

provides IT-related services over the network on-demand anytime .

Usually the objectives and characteristics of a cloud are to be highly available, scalable,

flexible, secure, and efficient . The most important characteristic is scalability. This

means applications would scale to meet the demands of the workload automatically. It’s

important to note that the cloud should not just scale up, but also down in times where the

demands are lower. Availability is another critical characteristic of a cloud. An

application deployed in a cloud is up and running 24/7/365, basically every minute of

every day. Reliable of the cloud refer to an Applications cannot fail or lose data when the

system down, and users should not notice any degradation in service. a cloud must be

flexible to be compatible with the most efficient means to deploy and extension of an

application. An important aspect of a cloud, is that it must be serviceable. Serviceable

implies that in the event it is necessary to modify any of the underlying cloud

architecture, the application is not disrupted during this time period . Now the software

industry is adopting the Software-as-a-Service (SaaS) deployment model in many

application domains. A special kind of SaaS offering is a Multi-tenant software

application [17]. It serves multiple tenants (e.g., companies or non-profit groups) from a

single application instance. A special kind of SaaS offering is a Multi-tenant software

application [2,6]. it runs from the same code base, and can thus be maintained centrally

[6] .

With more usage of Cloud computing, demand for provisioning of database,

services has raised. Provisioning of Cloud databases is known as Database-as-a-Service

in Cloud terminology . In the implementation of hosted business services, multiple

tenants are often consolidated into the same database to reduce total cost of ownership.

Despite of that, the current Schema-Mapping Techniques are still immature to allow

tenants to extend the database schema. One problem is that Multi-tenancy makes it harder

to support application extensibility, since shared structures are harder to individually be

modified and these techniques offer only limited support for schema evolution DDL

0

commands over existing data, if they are supported at all, consume considerable

resources and negatively impact performance.

Database as a service (DaaS) attempts to move the operational burden of provisioning,

access control, configuration, scaling, performance tuning, backup, and privacy away

from database users to the service provider. DaaS is so appealing because it promises to

offer scalability as well as being an economical solution. It will allow for users to take

advantage of the lack of correlation between workloads of different applications, the

service can also be run using fewer machines than if each workload was individually

provisioned for its peak [23].

The final concept to understanding cloud computing is the different infrastructure

models, which consist of public, private, and hybrid clouds. Generally, third party

vendors develop public clouds. In the majority of public clouds, database applications

from multiple different customers are mingled together on the cloud’s servers, storage

system and networks. It's called Multi-tenant databases. The benefits of a public cloud is

that it can be much larger than a private cloud. It has the ability thus to offer scaling up or

down on demand.

In this research, we introduce a novel approach to support Multi-tenant schema

inheritance in RDBMS for SaaS. Due to the Multi-tenant database should be configurable

and extendable at runtime. Our approach is fulfill the expectations of various tenants by

design different parts of the application, and automatically adjust and configure its

behavior during the application’s runtime execution without redeploy the application .

Objects and their fields are mapped to metadata tables. The database schema integrates

Multi-tenant relational tables and virtual relational tables and makes them operate

virtually as a single database schema for each tenant and make it a suitable for Multi-

tenant database environment that can execute any business domain database.

3

1.1 Statement of the Problem

When hosting data in the Shared Table in the cloud systems , all tenants will share

both physical database and schema, the problem is the inability to customize and

enable extension dynamically by Schema-Mapping Techniques when the system is

on-line without affect the logical schemas of other tenants.

1.2 Objectives

Achieving our objectives of the research depends on a deep study of the Multi-tenant

databases . In this section, we present main objective and specific objectives of the

research work.

1.2.1 Main Objective

The main objective of this research is to generate a new virtual schema that inherit both

shared data and metadata from shared schema, Thereby, it allows extending tables and

creating objects according parent schema of a Multi-tenant database system based on the

standard RDBMS.

1.2.2 Specific objectives

There are real specific objectives extracted from the main objective such as:

1. Using database generator to generate and configure database schema to be more

suitable for Multi-tenant database.

2. Fulfill the expectations of various tenants by allow each tenant to create custom

extensions to standard data objects and entirely new custom data objects.

3. Selecting an engine that generates application components from metadata.

4. Integrating physical Multi-tenant relational tables and virtual relational tables and

makes them operate virtually as a single database schema and make it a suitable

for Multi-tenant database environment.

5. Design the proposed model that also includes supporting extension schema .

6. Implement the proposed model on virtual machine environment.

7. Testing and evaluating the performance of proposed model compared with the

results of previous models.

0

1.3 Importance of the Thesis

Incremental advances in a cloud technology create major paradigm shifts in the way

software applications are designed, and delivered to end users. The concept of Multi-

tenancy has appeared, despite of its importance, it brings about several issues on security,

implementation challenges, customization, configurability, scalability, and extensibility .

Therefore, the main importance of this research rises from:

1. Proposes a flexible way to creating database schemas for multiple tenants.

2. Offer a new technology to share data in a Multi-tenant database to avoiding

storing redundant data .

3. Improves the Multi-tenant database performance and achieve high scalability .

4. Enhance TPC-H benchmark to suit cloud computing.

5. Allowing integration with Multi-tenant relational database .

1.4 Scope And Limitations of the Thesis

1. Database consolidation: We have not set a strategy for database consolidation

and inject the old and the new data on the cloud server.

2. Single server: All our experiments were conducted on a single cloud server.

Measure the performance of different servers outside the scope of our study

3. STSI focus: We focus on shared table shared instance , while shared machine

outside the scope of our work.

4. Structured data : Our study was limited to structured data.

5. Database migration: The Migration from cloud provider to another cloud make

the ensuring of user's data very hard, when CSP want to move the user's data files

from one server to a new one, it may appears integrity breach.

6. Same site : Although we use a real cloud database , but tenant's access was from

the same site.

7. Schema mapping : The focus is mainly on schema mapping techniques.

8. BigData: We have not performed any experience on BigData, due to it is out of

the scope of this thesis.

0

1.5 Thesis Structure

This thesis consists of six chapters: introduction, theory background, related works,

methodology and implementation, experiments and evaluation and finally, conclusions

and future work.

The main points discussed in the chapters are listed below:

i. Chapter 1 : Introduction.

ii. Chapter 2: Theory Background, presents an overview about cloud

computing, and schema requirements for Multi-tenant Databases systems.

iii. Chapter 3: Related Works. it classified into three categories: companies,

Multi-tenancy, schema-mapping technique.

iv. Chapter 4: Methodology and Implementation, methodology, model

architecture and implementation.

v. Chapter 5: Experiments and Evaluation: the experimental works,

starting from generate database , evaluating and analyzing the experimental

results.

vi. Chapter 6: Conclusions and Future Work: presents conclusions and

possible future works.

6

Chapter 2

Theory Background

In this chapter an overview about cloud computing will be presented, its definition,

essential characteristics, deployments model and Cloud architecture key components. We

also presented cloud computing benefits, Multi-tenancy , Multi-tenant data storage

systems.

2.1 Cloud Computing Overview

“Cloud Computing is a large pool of easily usable and accessible virtualized

resources (such as hardware, development platforms and/or services). These

resources can be dynamically reconfigured to adjust to a variable load (scale),

allowing also for an optimum resource utilization. This pool of resources is typically

exploited by a pay-per-use model . Cloud computing is composed of five essential

characteristics, three service models, and four deployment models.” [1]

2.1.1 Essential Characteristics

The cloud model is composed of five essential characteristics identified by NIST [1]:

1. On-demand self-service. A customer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automatically

without requiring human interaction with each service provider.

2. Broad network access. Network access is available over the network and

controlled through standard mechanisms that promote access by heterogeneous

thin or thick client platforms (e.g., mobile phones, tablets, laptops, and

workstations).

3. Resource pooling. The provider's computing resources are pooled to serve

multiple customers using a multiple-tenant model, with different physical and

virtual resources dynamically assigned and reassigned according to customer

demand.

4. Rapid elasticity. Capabilities can be elastically provisioned and released, in

some cases automatically, to scale rapidly outward and inward commensurate

with demand. To the customer, the capabilities available for provisioning often

appear to be unlimited and can be requested in any quantity and at any time.

5. Measured service. Cloud systems automatically control and optimize resource

use by leveraging a metering capability at some level of abstraction appropriate

to the type of service (e.g., storage, processing, bandwidth, and active user

accounts).

7

2.1.2 Deployment Models

There are four different deployment models as shown in figure 2-1 for implementing a

cloud based solution.

1. Private cloud. The cloud infrastructure is maintained by the organization itself

and is used exclusively by a single organization.

2. Public cloud. The cloud infrastructure is open for use by the general public .

3. Community cloud. The cloud infrastructure is maintained by one organization

for a set of organizations (the community) and used by all of them.

4. Hybrid cloud. The cloud infrastructure is a composition of two or more distinct

cloud infrastructures.

Figure 2-1: Deployment models [26]

2.1.3 Service models:

Cloud computing has three fundamental models of services: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). Figure 2-2

displays these services.

1. Infrastructure as a Service (IaaS) allows consumers to use hardware through

commonly available interfaces such as Secure Shell (SSH) or a web browser. This

services are provided by data centers to allow their tenants to deploy and run their

operating systems and other applications on top of virtualized software.

The consumer does not manage or control the underlying cloud infrastructure but

has control over operating systems, storage, and deployed applications; and

possibly limited control of select networking components (e.g., host firewalls).)

2. Platform as a Service (PaaS) provides customers with a platform for executing

and deploying services through a specific interface via a web browser. PaaS enables

collaboration, so multiple users can work on the same application without any need

for install or download the platform that is provided by the vendor , thus increasing

productivity and reduces the cost on the tenants.

8

3. Software as a Service (SaaS) enables users to access the provider's applications

running on a cloud infrastructure through a simple client interface, such as a web

browser. SaaS applications are installed on remote machines, so that clients do not

have to install them on every machine. SaaS allows tenants to subscribe to a paid

software service instead of paying for software licenses.

Figure 2-2 : Cloud Computing Architecture [27]

Software as a Service (SaaS) is the major focus in our thesis.

2.1.4 Cloud architecture key components

In the cloud architecture, key components are Cloud Service Provider, User (Data

Owner) and Third Party Verifier.

1- Cloud Service Provider (CSP): CSP has significant resources.

2- User: User may be a person or an organization who has data to be stored in the cloud

and rely on the cloud for data computation.

3- Third Party Verifier (TPV): TPV has expertise and capabilities that users may not

have.

2.2 Cloud computing benefits

Many of the benefits when using Cloud Computing are the lower costs associated

[29]. The following are some of the possible benefits for those who offer cloud

computing-based services and applications [10]:

2.2.1 Cost Savings.

Companies can reduce their capital expenditures and use operational expenditures for

increasing their computing capabilities. The provider is responsible for software

deployment and maintenance with his own infrastructure. The user only pays for

technical support [29].

9

2.2.2 Reliability.

Services using multiple redundant sites can support business continuity and disaster

recovery.

2.2.3 Scalability/Flexibility.

Companies can start with a small deployment and grow to a large deployment fairly

rapidly, and then scale back if necessary. Also, the flexibility of cloud computing allows

companies to use extra resources at peak times, enabling them to satisfy consumer

demands. Resources within the cloud can be treated as an `unlimited' medium [29].

2.2.4 Maintenance.

Cloud service providers do the system maintenance, and access is through APIs that do

not require application installations onto PCs, thus reducing maintenance is required.

2.2.5 Mobile Accessible.

Mobile workers have increased productivity due to systems accessible in an infrastructure

available from anywhere.

2.3 Cloud Storage Systems

Cloud Storage, Database as a service (DBaaS) and Data as a service (DaaS) are refers to

using cloud service for data storing and management in the cloud. They differ on how

data is managed and stored. Cloud storage is a new business model for delivering

virtualized storage to customers on demand. The formal term proposed by the Storage

Networking Industry Association (SNIA) for cloud storage is Data Storage as a Service

(DaaS) – as

“Delivery over a network of appropriately configured virtual storage and

related data services, based on a request for a given service level." [1]
It is used mainly for backup purposes and data management. Google drive , Dropbox,

iCloud etc. are popular cloud storage services [39].

Database as a service (DBaaS) offers complete database functionality , users can access

and store their database on the cloud anytime from any place through Internet. Google's

BigTable , Amazon’s SimpleDB and Microsoft’s SQL Azure are common examples for

DBaaS. on the other hand, when installing a traditional database such as oracle DB ,

SQL Server and MySQL on cloud server, it can serve as a cloud database.

15

2.3.1 Multi-Tenancy

Cloud Service Providers (CSP) provide many services such as storage, platform and

applications. The main benefit of Multi-tenancy is to reduce the operating costs of

running software from the provider’s perspective. Multi-tenancy is the main property of

SaaS [7], it allows vendors to provide multiple requests and configurations through a

single instance of the application. In this context, a customer is known as a "tenant". In

the same way, a single database is shared amongst customers to store all tenants’ data:

this is known as "Multi-tenant database". This reduces operational and maintenance

costs; offers more reliability. Multi-tenancy is a reference to the mode of operation of

software where multiple independent instances of one or multiple applications operate in

a shared environment. The instances (tenants are logically isolated, but physically

integrated. The degree of logical isolation must be complete, but the degree of physical

integration will vary. The more physical integration, the harder it is to preserve the

logical isolation. The tenants (application instances) can be representations of

organizations that obtained access to the Multi-tenant . The tenants may also be multiple

applications competing for shared underlying resources . All this is achieved without

changes of the application code to support each customer’s individual needs. In order to

achieve this, individual meta data for each client has to be stored and has to have impact

on the way the system behaves.

Moreover, it can be applied in four software layers, including application, middleware,

virtual machine, and operating system [38].

2.3.2 Multi-Tenant Database

Multi-tenant data management is a form SaaS , whereby a third party service provider

hosts databases as a service and provides its customers with mechanisms to create, store

and access their databases at the host site . In other words Multi-tenant databases is a

feature that allows a single instance of an application to handle several end-users at the

same time , this idea has been explored previously without any explicit connection with

Multi-tenancy [12] .

D. Jacobs et al [12], Bezemer et al [43], are Summarizing the difference between

traditional RDBMS and Multi-tenant database in four aspects:

1. Isolating tenant data to ensure that each tenant can access only his own data .

2. Ensuring that each tenant’s data is secured .

3. Building robust Multi-tenant database structure.

4. Optimizing the performance of each tenant database.

11

2.3.3 Multi-Tenant data storage systems

The concept Multi-tenancy is not supported on the traditional DBMS, It is appeared after

the spread of cloud computing. however, despite the importance of Multi-tenancy as we

mentioned in the previous section, it brings about several issues on security,

implementation challenges, customization, configurability, scalability, and extensibility

which can be seen only upon the deployment on a data center [14] . A well-designed

SaaS application should be optimized to support Multi-tenancy, scalability and

configurability [16] . This leads to the implementation and adoption of an additional layer

for the real data management. Application developers experience additional problems

with Multi-tenant database architectures. not knowing the semantics and the relationships

between data. Thus, they can no longer be used for optimization and consistency

management. Scalability here refers to the ability of an application to support an

increasing number of users without noticing a significant performance overhead [5].

Customization is concerned with the support of specific features of users or meeting

service level agreement by the means of configurations. Due to the distributed and shared

nature of Multi-tenant applications appropriate security policies should be devised to

prevent unauthorized users from accessing other users’ private data. Multi-tenant data

architecture has two kinds : shared data and isolated data, there are three Approaches to

Managing Multi-tenant databases as shown in figure 2-3 : shared machine, shared process

and shared table processes [7] , these techniques also called Separate Databases , Shared

Database - Separate Schemas and Shared Database- Shared . The most interesting

technique is the last one which aims at creating only once the application schema and

mapping all tenants directly to this schema by making use of one of the available schema

mapping techniques. compared different approaches for the implementation of Multi-

tenant databases can be summarized as follows [4,7] :

(a) Separate Database: In this approach, a separate database is assigned to each

tenant for data storage. This is the simplest approach to data isolation Each

database contains some metadata used to redirect each tenant to the correct

database. This approach is considered expensive in both implementation and

maintenance. Multiple customers share the same machine, therefore it called

shared machine.

(b) Independent Tables and Shared Database Instances (IDII): In this approach

all tenants share the same physical database, however, the schema different for

each tenant. This approach is relatively simple to implement.

(c) Shared Tables and Shared Database Instances(STSI): In this approach all

tenants will share both the physical database and the schema. Tables are shared by

all tenants. Customers’ information is separated using primary keys which are

10

specified in the database design. This approach is relatively economic because it

supports a large number of tenants per database server .

Chosen the appropriate approach depends on different criteria such as the number of

tenants for the data storage and the efficiency and the cost considerations of SaaS

implementation . For example, the separate database approach is the appropriate solution

for large organizations tenants who need to store large amounts of data. The same

approach is also suitable if security and legal requirements are of high concern. On the

other hand, the shared database – shared schema is the appropriate solution for individual

tenants who have low amounts of data to store. Also, the same approach is the optimum

solution in case of frequent changed applications [15].

Figure 2-3. Types of Multi-tenant data storage systems [25]

2.3.4 Schema requirements for Multi-tenant Databases

Standard relational DBMSs have only very limited support for online schema evolution.

For complex application updates there has to be a significant service downtime and even

small schema changes, like the ones individual tenants initiate, have a severe

performance impact, as stated in [9]. In turn a Multi-tenant DBMS needs to provide

Schema Evolution capabilities. On the one hand, tenants need the ability to tailor the

SaaS application to their needs without affecting other tenants. This may require schema

modifications of already existing relations. On the other hand, SaaS applications are

evolving constantly, as service providers are forced to integrate new features. These new

features may require changes to the database schema. Consider, for example, a situation

where the service provider needs to deploy a new feature of the base application which

requires changes to the schema of existing relations. These changes could be performed

online, as long as they do not require changes in the application code, e.g., adding

attributes or enlarging the value range of an attribute.

13

Scalability, namely the ability to serve an increasing number of tenants without too much

query performance degradation. One way to achieve high scalability is to offer a single

instance of the software which serves multiple clients/organizations Multi-tenancy. By

consolidating multiple customers onto the same infrastructure, resources can be

economized and used more efficiently [7] .

Costs for third-party software licenses are, therefore, drastically reduced, allowing the

saved money to be invested in bigger capacities of the existing infrastructure (e.g. more

disk space, memory, etc.). Moreover, management processes can be enhanced while

providing a uniform framework for system administration. In a Multi-tenant situation we

cannot assume that the number of tenant will remain the same or that the tenant does not

require more than one application and database server . The scalability implies that

resources can be scaled-up or scaled-down dynamically without causing any interruption

in the service[20]. It puts challenges on developers to develop databases in such a way

that they can support and handle unlimited number of concurrent users and data growth.

A Multi-tenant system should be able to support scale-up (consolidating multiple

customers onto the same server) and scale-out (e.g. moving customers from an old data

center to a new one) . Multi-tenant software should be able to deal with high complexity

and rapid growth of customers, allowing them to have seamless migrations to servers

which can meet the customers’ SLAs.

2.4 Benchmarking database

Benchmarking a database is the process of performing well defined tests on that

particular database for the purpose of evaluating its performance [31]. It also

facilitate means for cross platform comparisons of various database. The

Response time and the throughput are the two main criteria on which the

performance of a database can be measured [30]. Specific parameters and settings

external as well as internal to the database management system need to be taken

into consideration. These parameters include the hardware used to test the system,

the internal configuration of the database engine, the operating system

configuration as well as the database design and implementation [31][32].

Nowadays, the design gap between OLTP-oriented and OLAP-oriented DBMS or

data warehouses is even more prominent, since big data applications demands and

performance requirements increase. OLTP-oriented DBMS deliver high

10

throughput for updates and index-based queries. OLAP-oriented DBMS are

deliver high performance for complex analytical queries, and do not support

transactional workloads for loading data.

Although there have been several works on how to build Multi-tenancy systems,

little work has been done on how to benchmark and evaluate these systems partly

due to the diversity of the systems and the complexity of possible benchmark

setups. There are many well-accepted database benchmarks, e.g., TPC

benchmarks like TPC-C or TPC-H [33] [34]. These benchmarks concentrate on a

certain scenario and measure a system's peak performance with respect to the

given scenario. The key challenge for Multi-tenancy systems is usually not to

provide the highest peak performance, but to scale well and deal with multiple

changing workloads under additional requirements like performance isolation and

fairness.

In order to provide standards , The Transaction Processing Performance Council

(TPC) defines transaction processing and database benchmarks that are widely

used in industry and academia to measure performance characteristics of database

systems. TPC is a non–profit corporation. The goal of TPC benchmarks is to

define a set of functional requirements that can be run on any transaction

processing system, regardless of hardware or operating system. TPC provides

different benchmark suites designed according to specific workload type and

applications requirements [33].

TPC benchmarks are used in evaluating the performance of computer systems; the

results are published on the TPC web site. Today the most important of these

benchmarks are TPC-C , TPC-H and TPC-VMS.

 TPC-C benchmark , which simulates Online Transaction Processing

(OLTP) Systems, was applied in 750 performance evaluations which have

been published over the past two decades across a wide range of hardware

and software platforms. About a dozen database platforms have used TPC-

C results in their publications.[36] . OLTP workloads are composed of

short-lived transactions that read or modify operational data, and are

typically standardized, submitted through application layers. The TPC-C

schema consists of nine relations and five transactions that are centered

around the management, sale and distribution of products or services. The

database is initially populated with random data and then updated as new

orders are processed by the system.

 The TPC Benchmark™H (TPC-H) is a decision support benchmark. It

consists of a suite of business oriented ad-hoc queries and concurrent data

10

modifications. The queries and the data populating the database have been

chosen to have broad industry-wide relevance. This benchmark illustrates

decision support systems that examine large volumes of data, execute

queries with a high degree of complexity, and give answers to critical

business questions. The benchmark specifies 22 queries on the 8 relations

that answer business questions.

 The TPC Virtual Measurement Single System Specification (TPC-VMS)

is using for adding the methodology and requirements for running and

reporting performance metrics for virtualized databases. This benchmark

is still under development.

It is of vital importance to use an appropriate benchmark to evaluate Multi-tenant

database systems. Unfortunately, to the best of our knowledge, there is no

standard benchmark for this task. The benchmark requires the development of a

new class of DBMS that can efficiently support mixed (OLTP and OLAP)

workloads processing common data of a common schema and administrative

tasks .

Traditional benchmarks such as TPC-C [35] and TPC-H [36] are not suitable for

benchmarking Multi-tenant database systems. TPC-C and TPC-H are basically

designed for single-tenant database systems, and they lack an important feature

that a Multi-tenant database must have the ability for allowing the database

schema to be configurable for different tenants. Therefore, some institutions and

universities have developed benchmark by following the general rules of TPC-C

and TPC-H In order to obtain a hybrid benchmark.

In order to enhance the benchmark to suits with our work, we introduced simple

modifications but important on some other related work. we have benefited

greatly from the efforts to improve the benchmark in Munich Technical

University, but the researchers are interested in the academic side, as well as the

contribution of Mei et al.[5] , but they do not consider the extensibility issue of

the shared table, which is the heart of our work. Our enhance benchmark Called

SaTbencHCloud. We will explain it in detail in chapter four. Table 2.1

summarizes the major differences between OLTP and OLAP.

16

Table 2.1 major differences between OLTP and OLAP.

OLTP System

Online Transaction Processing

(Operational System)

OLAP System

Online Analytical Processing

(Data Warehouse)

Source of data
Operational data; OLTPs are the

original source of the data.

Consolidation data; OLAP data

comes from the various OLTP

Databases

Purpose of

data

To control and run fundamental

business tasks

To help with planning, problem

solving, and decision support

What the data
Reveals a snapshot of ongoing

business processes

Multi-dimensional views of various

kinds of business activities

Inserts and

Updates

Short and fast inserts and updates

initiated by end users

Periodic long-running batch jobs

refresh the data

Queries

Relatively standardized and

simple queries Returning

relatively few records

Often complex queries involving

aggregations

Processing

Speed
Typically very fast

Depends on the amount of data

involved; batch data refreshes and

complex queries may take many

hours; query speed can be improved

by creating indexes

Space

Requirements

Can be relatively small if

historical data is archived

Larger due to the existence of

aggregation structures and history

data; requires more indexes than

OLTP

Database

Design

Highly normalized with many

tables

Typically de-normalized with fewer

tables; use of star and/or snowflake

schemas

Backup and

Recovery

Backup religiously; operational

data is critical to run the business,

data loss is likely to entail

significant monetary loss and

legal liability

Instead of regular backups, some

environments may consider simply

reloading the OLTP data as a

recovery method

17

Summary

This chapter aimed to review some background concepts about cloud computing. First, it

reviewed its definition , essential characteristics, deployments model , service models.

Second, it reviewed cloud storage and Multi-tenancy and its role to reduces operational

and maintenance costs and offers more reliability. we also discussed a Multi-tenant data

storage systems, include the two kinds of Multi-tenant data architecture and the common

approaches to managing cloud database. We have focused on shared tables and shared

database instances approach (STSI), which means a single database schema is used to

store data from different tenants.

We also presented schema requirements for Multi-tenant databases that are related to this

study.

Finally, we describe the most important benchmarks used in evaluating the performance

of databases.

18

Chapter 3

Related works

When we studies Multi-tenant database schema designs and schema mapping

techniques , many challenges are raised. One of the major issues is extension shared table

dynamically , A lot of works addressed this problem and introduced some solutions to

overcome it. In this chapter , we review different related works. Some of them can be a

basis for supporting us in our thesis problem.

During our review we found that some researchers studied the Multi-tenant database from

the perspective of IT companies , others focused on the concept of multiple tenants ,

While others discussed schema-mapping techniques.

So, we classified the related works according to these categories:

1- Companies.

2- Multi-tenancy.

3- Schema-mapping technique.

For each category, we introduced some related works, and provided the disadvantages of

each one. Finally we introduced a conclusion in order to overcome in our research.

i. Companies

Companies like force.com does its own mapping from logical tenant schemas to one

universal physical database schema to overcome the limitations of traditional DBMSs.

However, this approach complicates development of the application since many DBMS

features, such as query optimization . Instead, a next-generation Multi-tenant DBMS

should provide explicit support for extensibility [6].

BigTable [2] is developed and deployed by Google as a structured data storage

infrastructure for different Google’s products. To scale up the system to thousands of

machines and serve as many projects as possible, BigTable employs a simple data model

that presents data as a sorted map in which each value is an uninterrupted string . We see

that although Google's BigTable is a high performance, distributed and proprietary

storage system designed to easily manage structured data that scales across thousands of

commodity servers , BigTable is currently not used nor distributed outside Google,

although it can be accessed from Google App Engine. Since its release several open

source implementations have been reported in the literature namely HBase and

Hypertable.

Windows Azure is consider a Microsoft's cloud infrastructure platform, it has become a

major part of Microsoft's overall strategy. Windows Azure Storage is aim to let users and

19

applications access their data efficiently from anywhere at any time using simple API. It

supports structured, unstructured data and NoSQL.

We see that the drawback of windows azure supports up to 150 databases , and this limit

applies to all service tiers . In addition to limiting the number of databases per server,

each service tier (edition) limits the maximum size of each database. If the size of the

database reaches its MAXSIZE, you will receive an error code. [40]

ii- Multi-tenancy

Bezemer, et al.[19] gives a very clear introduction to Multi-tenancy, it defines the term

and shows its main characteristics. In order to do research on Multi-tenancy, the authors

aim to introduce the term Multi-tenancy and compare it against multi-user and multi-

instance. They use two definitions for Multi-tenancy. The first definition states: "a Multi-

tenancy application lets customers (tenants) share the same hardware resources, by

offering them one shared application and database instance, while allowing them to

configure the application to fit their needs as if it runs on a dedicated environment.”. The

second definition states that “a tenant is the organizational entity which rents a Multi-

tenancy SaaS solution. Typically, a tenant groups a number of users, which are the

stakeholders in the organization.”

we think that a deep understanding of the term and its main characteristics is required ,

because it is unclear at this point where the border is between Multi-tenant, multi-user

and multi-instance, the authors make two short comparisons between each versus Multi-

tenant to make the difference between them clear. Firstly, they compare Multi-tenant

versus multi-user and state that in a multi-user application, are using the same application

and are limited when it comes to configuring it. However, in a Multi-tenant application,

each tenant can configure the application and the options to do so are not restrictive as in

a multi-user environment. That means besides how it looks, the application can behave

differently for multiple tenants while it will always behave the same for multi-user.

Curino et al , Moon et al shows that schema evolution is still an important topic,

especially in scenarios where information systems must be upgraded with no or less

human intervention . In their view, Multi-tenancy is efficient when giving a set of

databases and workloads, it can be determined what the best way is to serve them from a

given set of machines. Relational Cloud stores the data belonging to different tenants

within the same database server, but does not mix data of two different tenants into a

common database or table. [11,3 ,6].

From our point of view that the current database systems do not understand Multi-

tenancy, therefore, the Multi-tenant application needs to be able to create tenants to the

database and associate every record with the tenant id. Moreover, the application needs to

adapt queries in order to only fetch data for a specific tenant, and to restrict the logged-in

user from accessing data from other tenants.

In [7] Jacobs et. al discusses the trend towards Multi-tenancy for hosted applications and

some main requirements, while comparing some implementations and showed the

different possibilities in implementing Multi-tenant databases on standard relational

05

databases. They identified three approaches are: shared machine, shared process, and

shared table. In the shared machine approach each tenants get their own database. The

resource sharing is done on machine level. In the shared process approach the tenants

share the same physical database process but own different databases. This allows better

resource pooling between the tenants but still creates a lot overhead because the schemas

need to be maintained separately for all tenants. The last approach is the shared table

approach. however in [21] author presents a more deep comparison towards Multi-

tenancy for hosted applications and some main requirements .

iii- Schema-Mapping Technique

In this section we outlines some common schema-mapping techniques for Multi-tenant

database, we will use an example from [4,44] to comparison of flexible schemas for

SaaS. The example show Account tables of three tenants with IDs 17, 35, and 42. Tenant

17 has an extension for the health care industry while tenant 42 has an extension for the

automotive industry.

The Private Tables technique is the basic way to support extensibility, this technique

provides a high level of isolation between tenants, it's allows each tenant to have his own

private tables, which can be extended and changed [4] . The query-transformation layer

needs to rename tables , since the meta-data is managed by the database , thus there is no

overhead for meta-data in the data itself. Show figure 3-1.

The main drawback in this technique that many tables are required to satisfy each tenant

needs. Therefore, this technique is unfavorable when hosting a large number of tenants.

Figure 3.1: Private Table Layout [4,44]

Extension table has its origins in the decomposed storage model [41] which splits up a

table of n columns into n tables of 2 columns as shown in figure3-2 .Multiple tenants can

use the base tables as well as the extension. The main drawback of this approach is that

reconstructing the logical source tables carries the overhead of additional joins , in

additional the increase in the number of tenants will lead to increase the number of tables

will have a wider variety of basic requirements.

01

Figure 3.2: Extension Table Layout [4,44]

The universal table layout allow the creation of an arbitrary number of tables that holds a

large number of generic data columns with a Tenant column and Table column. mostly,

the data columns have VARCHAR datatype, it is a flexible type, and it can be used as an

intermediary for the conversion from any datatype to another. The n-th column of a

logical source table for each tenant is mapped to ColN in the universal table. In addition,

two unique columns, Tenant_id and Table columns are used: Tenant_id identifies tenants

from each other, whereas the Table column identifies the specific table of the same

tenant.

Each tenant fills his columns with the needed data. The rest of the columns that are not

related to him are filled with Null values. Figure 3-3 illustrates the implementation of

universal table.

Figure 3.3: Universal Table Layout [4]

Pivot tables are shared between all tenants, each row field in a logical source table is

given its own row. The pivot table including five columns: tenant, table, row , column

and single data type column to stores the values of the logical source table rows

according to their data types in the designated pivot Table. Figure 3-4 illustrates the

implementation of Pivot table.

However the drawback of this approach that to reconstructing table requires more

columns of meta data than actual data since rebuild an n-column logical source table

requires (n − 1) aligning joins along the Row column.

Figure 3.4: Pivot Table Layout [4]

00

S. Aulbach et. al [4], presented a Chunk Folding approach that is a schema-mapping

technique . The approach works by vertically partitioning logical tables into chunks that

in turns are folded together into several physical Multi-tenant tables and joined as needed.

Show figure 3-5. The authors say that it is often when developers choose to map many

single-tenant logical schemas in the application to one Multi-tenant physical schema in

the database. Despite the fact that it is not easy to do this mapping, the benefits of

consolidating hundreds of databases into one will save millions of dollars per year, say

the authors. There is however a downside of Multi-tenancy, which is the sharing of

resources. The aim of Chunk Folding is to reduce the complexity of scaling a SQL

database. The authors say that the performance begins to degrade when over about

50,000 tables are used on one server. An option to mitigate the performance downgrade,

is to share the tables among tenant , since some of the clients use certain features that

others are not, and using all tenants data in a shared table. However, the authors do not

fully agree with this approach either because in their view "the mapping techniques used

by most hosted services today provide only limited support for extensibility and/or

achieve only limited amounts of consolidation".

We believe that the disadvantage of this approach that it requires partitioning the tables

into chunks; and the of joined as needed , this causes reduced performance when a large

number of tables. However, the main weakness of the Chunk Folding technique is that

the shared schema between multiple tenants must be known in advance, which is not a

practical solution for Multi-tenancy.

Figure 3.5: Chunk Folding Layout [4]

The extensible markup language (XML) database extension technique is a combination

of relational database systems and XML [10,41] . extension of XML achieved by storing

the XML document in the database as a Character Large Object (CLOB) or Binary Large

Object (BLOB) as shown in figure 3-4. Tenants specific data be handled without

changing original database relational schema. We believe that this approach adds many

advantages to the database such as simplicity in the implementation and flexibility ,

however it's performance is affected by data structure [18].

03

Figure 3.6: Extension XML Layout [44]

Franclin S. Foping et. al [10] have been contributed a new approach focuses on devising

a mechanism to handle data between the real physical tables and the tenant tables

including options for tenant schema extension but can be implemented in open source

relational database products .

in [9] Stefan Aulbach et al. introduce features like native schema flexibility which is

handled by prototype data model called FlexScheme which is optimized for a Multi-

tenant workload they describe a method for graceful on-line schema evolution without

service outages.

In[24] Schiller, et al. propose the concept of a tenant context to isolate a tenant from other

tenants. They present a schema inheritance concept that allows sharing a core application

schema among tenants while enabling schema extensions per tenant. They introduce a

tenant context concept to determines the tenant’s view of the database, and a tenant-

aware schema inheritance for sharing of the application’s core schema that is invariant

among tenants while allowing extensions schema for tenants according to their individual

needs. They have contributed to eases the development of Multi-tenant SaaS applications

, and facilitates the maintenance of the application core schema .

We see that this approach need some features such as further tenant-aware data

management , backup and recovery or migration of a tenant to another applications.

00

Summary

In this chapter we studied the research areas that are related to our work , each

study which provided some solutions, but it is not enough, in [4, 6,40] , It has been

overcome the limitations of traditional DBMSs, but not provide explicit support for used

nor distributed outside its products.

In[4,7,10, 41] a Multi-tenant databases have been studied extensively. it's gaining much

significance especially Schema Evolution, so many of authors focus on Schema-mapping

techniques and sharing metadata among tenants. SaaS applications faced important

challenge consolidate multiple tenants onto one database server . In addition, the

application itself manages and handles metadata, but it is loses knowledge about the data

and the relations, this causes the data redundancy and complexity of application

development.

In this research, we analyze critical operations in the area of Multi-tenant database. Based

on the results we propose a schema inheritance concept for a Multi-tenant storage capable

to overcome the problems in this area .

00

Chapter 4

Methodology and Implementation

In this chapter we shall describe our proposed approach SaTbencHCloud , to produce the

main objective of our research, then we shall describe the implementation in details in

next sections.

4.1 Research Methodology

In this section, the proposed model methodology were presented and built the model

to evaluate the efficiency and scalability in the cloud database. One of the key issues is to

extension shared table dynamically when the database system is on-line without the need

to shutdown database. To address this problem, the methodology consists of four main

phases as follows:

 Research and review.

 Process the model.

 Implementation of the model.

 Experiments and Evaluation and analyzing the experimental results. It will be

discuss in the details in chapter 5)

4.1.1 Research and Review

Reviewing the recent researches on how to build Multi-tenancy systems that

is related to our problem . Studying the existing approaches, and noting the

disadvantages of each method in order to overcome in our research. On top of

that, our approach takes advantage of the of universal table and pivot table,

which gave him a unique and efficient approach versus other approaches.

When we reviewed most previous studies we found that there are very

important contributions that we can introduce in this research. Unlike

previous studies which we discussed in Chapter 3, we are going to build the

model, and we shall consider these issues:

a. Benchmarking and evaluating the Multi-tenancy systems Although the

diversity of the systems and the complexity of possible benchmark setups.

b. Allowing the database schema to be configurable for different tenants
without shutdown database .

c. Preparing the workload with small, medium, large and very large

databases with any generic relational database schema and SQL queries.

d. Supporting high availability by make the database continuously available

24 hours a day, 7 days a week.

06

4.1.2 process for Running the SaTbencHCloud

To produce the main objective of our research, we setting up the

SaTbencHCloud , which contains: schema generation , database

generation , query generation , and driver . The model will appear as

shown in figure 4-1.

Figure 4.1: Complete process for running the proposed model (SaTbencHCloud)

4.2 Setting up the SaTbencHCloud

When benchmarking Cloud database, TPC-H is probably the first choice. But

the default TPC-H transactions are not very usable when you need to test a

Multi-tenancy workload. Therefore, We have introduced some updates to this

benchmark for compatibility with our work by following the general rules of

TPC-C and TPC-H . Our version of benchmark called SaTbencHCloud , it focus

on a cloud environments with Multi-tenancy support .

The primary goal is to measure the impact of an increasing number of sessions

on the reactivity (i.e. the response time) of the system while increasing the

number of tables and tenants. and executes a complex mixed workload: a

transactional workload based on the order entry processing of TPC-C and a

corresponding TPC-H-equivalent OLAP query suite run in parallel on the same

tables in a single database system .

07

4.2.1 Overview of the SaTbencHCloud

There are number of advantages when using SaTbencHCloud . First, the workload

prepared to include a number of representative examples of ad-hoc queries with

various levels of complexity. Second, SaTbencHCloud is suitable with small,

medium, large and very large databases. Third, it can work in different systems.

Our SaTbencHCloud benchmark comprises four modules as shown in figure 4-1.

It Includes configurable database base schema with a private schema generator, a

data generator, a query workload generator, and a driver. SaTbencHCloud can be

used with any generic relational database schema and SQL queries.

One of the major advantages of our approach that uses two related works, they are

pivot table and universal table.

4.2.2 Configurable Base Schema

The SaTbencHCloud benchmark executes a mixed workload (TPC-C for OLTP

and TPC-H for OLAP). But we follow the logical database design of TPC-H to

generate the configurable database base schema because it is more suitable for

Multi-tenant database.
There are numerous advantages of using TPC-H , the TPC-H schema size is not

fixed, it can be manipulated trough a scale factor, so schemas can be either small

or large depending on the system that you want to test. While performing TPC-H

you will create a performance profile, based on the execution time of all 22 TPC-

H queries. To calculate the Composite-Query-per-Hour Performance metric

(Qph@Size), we need to know the following things:

 Database size

 Processing time of queries in a single tenant case (Power test)

 Processing time of queries in a Multi-tenant case (Throughput test)

SaTbencHCloud benchmark produces results that are highly comparable to both

TPC-C and TPC-H . The database is continuously available 24 hours a day, 7

days a week, for ad-hoc queries from multiple end users and data modifications

against all tables.

Figure 4-2 illustrates the table relationships in TPC-H database, it designed to be

in the third normal form.

08

Figure 4-2: The TPC-H Schema [26]

4.2.3 SchemaGEN

TPC-H provide a Schema, it is found in the files tpch_dll.sql and

tpch_ri.sql. These files contain the ANSI-SQL compliant schema and

should work with most database using only minor modifications. We

working modified schemas for different DBMS to be suitable with Multi-

tenant database , a Tenant_id column is added to every table .

Consequently, the primary key has to be a combination of the Tenant_id

and the entity specific id field. We use Oracle Database 12c , it is

complete with innovative Multi-tenant architecture and designed for the

cloud. We use the schema generator called SchemaGEN to produce the

schema for each tenant.

09

4.2.4 CloudDBGEN

CloudDBGEN is a bundle contains a bunch of C files (CSV format) to be

compiled to form database generator. it use to populate the database with

data, add constraints (primary keys, foreign keys and check constraints). it

has a scaling factor that influences the amount of data generator - the

default value (1) means about 1GB of raw data. CloudDBGEN is

essentially an extension of DBGEN tool equipped with TPC-H. It actually

uses the same code of DBGEN to generate value for each attribute.

Important modification is that CloudDBGEN generates data for each

tenant According to the tenant account . CloudDBGEN has been tested on

a variety of platforms with change some parameters in the C file, it is run

correctly . The following example shows sample code for run benchmark

on Windows.

 [oracle@localhost tpch]$ cp makefile.suite makefile

[oracle@localhost tpch]

################

CHANGE NAME OF ANSI COMPILER HERE

################

CC = CL

Current values for DATABASE are: INFORMIX, DB2, TDAT (Teradata)

SQLSERVER, SYBASE, ORACLE, VECTORWISE

Current values for MACHINE are: ATT, DOS, HP, IBM, ICL, MVS,

SGI, SUN, U2200, VMS, LINUX, WIN32

Current values for WORKLOAD are: TPCH

DATABASE= ORACLE

MACHINE = WIN32

WORKLOAD = TPCH

…

Figure 4.3: sample code for run CloudDBGEN on Windows.

4.2.5 Generating Dataset

To accomplish our work , first we generate a dataset , our dataset must contain different

sizes . First, by running SchemaGEN we generate 3 groups of schemas for 100, 500,

1,000 tenants. These schemas are then used for evaluating the scalability of storage and

query processing under different schema variability.

Next, we run CloudDBGEN to generate data for three different databases named

“SaTbencHCloud_10GB”, SaTbencHCloud_100GB” and SaTbencHCloud_300GB”

were respectively generated with the TPC-H workloads of scale factor 10, 100, and 300.

As required by the TPC-H specification, the three different scale factors were selected in

order to observe significant differences in query response between these three different

scale factors . In table 4.1, we can see the different size of databases generated .

35

Table 4.1: size of databases generated

Database Name # of Tenant Scale Factor
SaTbencHCloud_10GB 100 10

SaTbencHCloud_100GB 500 100

SaTbencHCloud_300GB 1,000 300

Table 4.2 shows the different sizes of the database according to specific scale factor.

Scale factors used for the test database must be chosen from the set of fixed scale factors

defined as follows:

Table 4.2: Scale factors used for the test database

Scale factor (SF) 1 10 30 100 300 1000 3000 10000 30000 100000

Database sizes 1GB 10GB 30GB 100GB 300GB 1000GB 3000GB 10000GB 30000GB 100000GB

Tables have different sizes except nation and region, change proportionally to a constant

known as scale factor (SF), as seen in Table 5.2. The two largest tables are Lineitem and

Orders and hold about 83% of the total data.

The minimum required size for a test database is (1GB) , it holds business data from

10,000 suppliers. It contains almost ten million rows representing a raw storage capacity

of about 1 gigabyte[36]. since scale factor is setting to 1. Any database size not

mentioned is not permitted by the TPC. This requirement is meant to encourage

comparability of the results and to ensure a significant actual difference in test database

sizes [36]. According to normalization theory , the TPC-H benchmark database has been

followed the third normal form . The data scale of tables for each tenant is illustrated in

Table 4.3.

Table 4.3: Data scale of tables for each tenant

Table Name Cardinality Scale Factor 10 (10GB)

PART SF*200,000 2,000,000

PARTSUPP SF*80,000 800,000

LINEITEM SF*6,000,000 (approximate) 60,000,000

SUPPLIER SF*10,000 100,000

CUSTOMER SF*150,000 1,500,000

ORDERS SF*1,5000,00 15,000,000

NATION 25 25

REGION 5 5

4.2.6 Metadata-Driven Architectures

To fulfill the expectations of various tenants and their users, a Multi-tenant

application must allow each tenant to create custom extensions to standard

data objects and entirely new custom data objects. Inherently, Multi-tenant

31

applications are dynamic and polymorphic. For these reasons, a Multi-tenant

application designs using a runtime engine that generates application

components from metadata, that is a data about the application itself. Objects

and their fields are mapped to metadata tables. This section proposes

Metadata-Driven Architectures to build a Multi-tenant database schema . This

database schema integrates Multi-tenant relational tables and virtual relational

tables and makes them operate virtually as a single database schema for each

tenant and make it a suitable for Multi-tenant database environment that can

execute any business domain database. Figure 4-4 shows the details of

metadata-driven architectures that is very significant for Multi-tenant

applications. Table 4.4 brief description about metadata-driven fields.

The maximum number of tenants that can be supported by a Multi-tenant

application can be increased as long as the resources increased while keeping

the performance metrics of each tenant [37].

Figure 4-4: Metadata-driven Database Design

On our proposed architecture every logical database object is internally managed using

metadata. The architecture details and listed as follows :

 Metadata: Tenant table is associated with a specific tenant and keeps all information

that allows determining the tenant’s virtual database with custom objects "Tables"

and their fields are mapped to metadata tables.

 Data: Actual data is stored in a shared data table, On the other hand, the large objects

are storage in a separate large object storage area.

 Pivot Tables : Index pivot table , improve and speed up the query execution time

when retrieve data. To support multiple tenants, the object and field metadata

30

contains information about the fields, and also about the tenants. Relationship pivot

table , allows tenants to create virtual relationships.

Table 4.4 - Brief description of the schema for a metadata-driven architectures

Table Field Description

Tenant Tenant_id ID of the tenant

Tenant_name Name of the tenant

Contact_name Contact name

Custom_Objects Object_id The unique ID of the object that contains this field

Object _name Name of the object " tenant virtual table "

Tenant_id ID of the tenant

Custom_Fields Field_id A unique identifier, the primary key for metadata table

Tenant_id ID of the tenant

Object_id The unique ID of the object that contains this field

Field _name The name of the field

Data _type The datatype of the field

Is_indexed A Boolean value representing whether an index
needs to be created for this field

Is_null A Boolean value (flag) if the field is null

Data_table Data_GUId Global unique identifier

Tenant_id ID of the tenant

Object_id The ID of the object this datum is associated with.

Contact_name Natural name

Data_type Type of data

Col 1 .. Col n Values of the fields. Each value is mapped to a field
as specified by the FieldNum value in the Custom
Field Metadata table.

Large_objects Tenant_id ID of the tenant

Object_id The ID of the object

Name Name of the object

Indexes Tenant_id ID of the tenant

Object_id The ID of the object

Field_id Sequence number

Data_GUId Global unique identifier

CharData Character index since the datatype is string.

NumData Numaric index since the datatype is number.

DateData Date index since the datatype is date.

Relationship Tenant_id ID of the tenant

Object_id The ID of the object

Relation_id The ID of relationship

Data_GUId Global unique identifier

Source_Obj_id The ID of source object

Target_Obj_id The ID of target object

33

4.2.7 Integrated TPC-H Schema and Multi-tenant Relational Database

To give tenants the opportunity of satisfying their various requirements, a

Multi-tenant database application must allows each tenant to configure his

database schema and to extend an existing database schema during the

application’s runtime, this is call tenant-aware data management. A Multi-

tenant aware application allows each tenant to design different parts of the

application, and automatically adjust and configure its behavior during the

application’s runtime execution without redeploy the application[17]. This

enables some optimizations such as provide high degrees of sharing data and

suitable management features of recovery and backup. Moreover, it avoids

redundancy to improve scalability and to reduce the per-tenant costs. Tenants

must use resources in shared pool , but logically separate by means of

virtualization. From a conceptual view, each tenant requires a virtual database

that logically contains the objects that relate to the tenant and logically isolates

it from other tenants [24]. Configuring Multi-tenant aware applications is a

tenant self service that typically performs while applications are in operation

to minimize system downtime, and allows the tenant to feel as if he is the only

one using the application [42]. In the next sections, a detailed example is

presented to explain how the tenants can integrated TPC-H Schema and

Multi-tenant relational database.

For example, if a service provider offers a TPC-H database schema to be used

by multiple tenants that fulfill various tenants' business requirements. This

example assumes that the service provider has three tenants. The first tenant

evaluated the TPC-H database, and he found that this database suits his

business requirements. Therefore, this tenant was interested to use the original

database schema. For simplicity we will use the orders table only as shown in

figure 4-5 (a).

The second tenant found that he needs to use the columns that predefined in

the order table add new fields to fulfill his business requirements. It including

'Ship Country' and 'Required Date'. Figure 4-5 (b) represents this case.

The third tenant found that he needs to add extra table. Thus, this tenant

created virtual database relationship between the already existing physical

tables and his add extra table as shown in figure 4-5 (c).

30

Figure 4-5: Integrated TPC-H Schema and Multi-tenant relational database

4.2.8 Multi-tenant Architecture with Metadata Sharing

Based on the objectives of our research, we will use the following steps:

1. First, through a tenant context, the system generates a virtual schema

from a shared schema, this schema will inherits all the DB objects

contained in the parent shared schema .

2. By extraction a data dictionary Associated with a tenant from the

overall data dictionary we can managing a tenant metadata, it is

isolated from global data dictionary , thus the schema modifications of

a tenant will not affect the logical schema of other tenants.

3. To enable data sharing, a new table (Tenant_Heirarchy) is used to

store the relationships between tenants based on the original table that

stores information about the tenants.

Figure 4-5 (c) Figure 4-5 (b) Figure 4-5 (a)

30

Tenants Table : is used in Multi-tenant database to store the essential

information about tenants.

Tenant_Heirarchy Table: is a child of tenant table, it use to store the

relationships between tenants (primary and secondary tenants).

Secondary tenant: wants to share data owned by the primary tenant

whose currently logged in.

Require mappings: is a flag indicates if a secondary tenant need mapping

with a primary tenant.

4. Then, use Data Sharing Middleware to achieve mapping between

tenant schema and virtual schema. Figure 4-6 represents these Multi-

tenant application framework.

Figure 4-6: Multi-tenant Application Framework (taken from similar work with improving).

5. In the next step , the Mapping Manager module will creates and

manipulates a mappings between the tenant tables. Mapping table

Structure is shown in table 4-5.

Table 4.5: Structure of Mapping Table

Mapping

mapping_Id tenant_heirarchy_id primary_table secondary_table

1 1 Orders Item_Tenant_a

2 1 Orders Item_Tenant_b

36

6. Next, the entity relationship diagram of the architecture will be something like

figure 4-7.

Figure 4-7 : Class diagram for Multi-tenant Architecture with metadata Sharing

4.2.9 QGEN

QGEN is a utility provided by the TPC to generate executable query text.

It is written in ANSI’C’ and has been ported to a large number of

platforms [35]. The qgen data set contains 150 files with query

substitutions values for all 22 queries for each scale factor as generated

with qgen. Each file uses a different seed . The only difference is that the

query optimizer add the clause RESTRICT ON TENANT statement in the

query to indicate which tenant does the tuples belong to.

The 22 queries answer questions in areas such as pricing and promotions,

supply and demand management, profit and revenue management,

customer satisfaction, market share, shipping management. The refresh

functions are not meant to represent concurrent on-line transaction

processing (OLTP); they are meant to reflect the need to periodically

update the database.

4.2.10 Third Party Driver

The mechanism used to submit queries and refresh functions to the system

under test (SUT) and reports the execution time and throughput of the

system , and measure their execution time is called a driver. The driver is a

logical entity provided by the TPC , it can be implemented using one or

more physical programs, processes, or systems .

Despite the fact that TPC-H benchmark offers a rich environment

representative of many decision support systems, this benchmark does not

reflect the entire range of decision support requirements. Since the TPC

does not currently provide a readily available benchmark kit for Multi-

tenant databases , a third party benchmarking software tool “Benchmark

37

Factory” was used to generate the TPC–H database workload rather than a

driver .

Benchmark Factory for Databases is a database performance testing tool

that enables you to conduct database workload replay, industry-standard

benchmark testing, and scalability testing. Using the incorporated load

testing tools, you can make changes to your database environment, which

is typically hard to achieve in a standard testing environment, while

mitigating the risks of unavoidable database changes such as patches and

upgrades, operating system migrations, and adjustments to virtual machine

configurations. In addition, its supports Oracle ,SQL Server , DB2,

Sybase, MySQL, and other databases .

Benchmark Factory allows you determine system throughput and capacity

for database systems and simulate thousands of concurrent users with a

minimal amount of hardware, show figure 4-8. All test results are

collected and stored in the repository for data analysis and reporting.

Benchmark Factory collects a vast amount of statistics, including overall

server throughput (measured in transactions per second, bytes transferred,

etc.) and detailed transaction statistics by Benchmark Factory is a database

performance and code scalability testing tool that simulates users and

transactions on the database and replays production workload in non-

production environments. This enables developers, DBAs, and QA teams

to validate that their databases will scale as user load increases, application

changes are made, and platform changes are implemented.

Figure 4-8: Benchmark Factory for Databases is a database performance testing tool

38

Summary

This chapter has presented our research methodology for an efficient approach for

supporting Multi-tenant schema inheritance in RDBMS for SaaS. Our work was in the

context of schema mapping techniques. We believe that we have given a contribution in

managing metadata by allowing to extend shared tables and creating objects according

parent schema of a Multi-tenant database system based on the standard RDBMS .

We explained in detail how to enable each tenant to make a configuration on a shared

table on-the-fly. In order to achieve integration between the tenants, our approach

allowed to integrate physical Multi-tenant relational tables and virtual relational tables

and makes them operate virtually as a single database schema and make it a suitable for

Multi-tenant database environment. We described the benchmark which we use ,

workload and main modules , and how it works.

39

Chapter 5

Experiments and Evaluations

This chapter describes the information needed to empirically evaluate the

efficiency and scalability of the SaTbencHCloud approach. The main objective of this

research is to generate a new virtual schema that inherit both shared data and metadata

from shared schema, Thereby, it allows extending tables and creating objects according

parent schema of a Multi-tenant database system , this is called scalability database

system .Scalability is defined as the system ability to handle growing amounts of work in

a graceful manner [28]. In our experiments, we consider the scalability of

SaTbencHCloud approach by measuring system throughput as database scale increases.

Two sets of experiments are evaluated in terms of different dimensions of data scale:

tenant amounts and number of columns in the shared table. We using the original shared

table as the baseline in the experiments.

5.1 Experimental Settings and Results

In this section we will present the experimental settings and results to supporting Multi-

tenancy schema inheritance in RDBMS for SaaS and make a comparison with other

techniques. In general there are two types of tests: the load test and the performance test.

The load test involves loading the database with data and running the queries. The latter

involves measuring the system’s performance against a specific workload. We will

customize the tests and discuss the exact steps that need to be taken and the values to be

measured. We first present settings for benchmark databases generation . Two sets of

experiments are examined to evaluate the scalability of the Multi-tenant system, we

considering the throughput and response time in relation to the number of tenants and the

effect of column amounts.

5.1.1 Generating Dataset

Our experiments require database configuration and data generation , it consists of three

phases:

creating the tables in the database, populating the data, and finally loading the populated

data in the DBMS. To meet the experience requirements, our dataset must contain

different sizes with 10GB , 100GB , and 300GB for 100 , 500, and 1,000 tenants

respectively. Table 5-1 shows these settings.

05

Table 5-1 : Database Configuration Settings

Database Name Size in GB # of Tenants
SaTbencHCloud_10GB 10 100

SaTbencHCloud_100GB 100 500

SaTbencHCloud_300GB 300 1,000

After the process of generating the data into the three databases, each queries was run

against these databases set to their default settings. We recording the performance of

query results with the response time.

The performance measurements were done using “Benchmark Factory” tool which was

used to trace all the SQL events that were taking place on the server. The performance

measurements of interest were:

 The Average query response (in seconds) .

 The Average CPU time (in millisecond) .

 The Average Disk Read which provides the average number of reads per second

of data from the disk.

 The Average Disk write provides the average number of writes per second of data

to the disk.

Since SQL queries is configured to execute by default settings ,we recording the results

to compare the results obtained with our approach. Figure 5-1 shows snapshot of some

results of the implementation on IBM Bluemix platform on my account.

Figure 5-1: snapshot results of the implementation on IBM Bluemix platform

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA&url=https%3A%2F%2Fconsole.ng.bluemix.net%2F&ei=dNVWVYyzOsGBUcCJgYgM&usg=AFQjCNFLRWzUT34QaQZKbmqYXaHwVhV2Ag&bvm=bv.93564037,d.d24&cad=rja
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA&url=https%3A%2F%2Fconsole.ng.bluemix.net%2F&ei=dNVWVYyzOsGBUcCJgYgM&usg=AFQjCNFLRWzUT34QaQZKbmqYXaHwVhV2Ag&bvm=bv.93564037,d.d24&cad=rja

01

2.1.5 Experimental Environment and Tools

Our experiments are conducted with a desktop pc , running windows 7 operating system

with Single Intel® Xeon® Processor E5-2620 v2 (15M Cache, 2.1 GHz) . Number of

Cores: 6 cores with 16 GB memory RAM . We evaluate two kinds of Multi-tenant

database systems. One is shared table , and the other is SaTbencHCloud Approch. The

comparison must be under the same database server, for this reason we implement our

experiment by using Oracle Database 12c and oracle TopLink 12c . Shared-table Multi-

tenant can be enabled declaratively using the @Multitenant annotation by include it with

an @Entity or @MappedSuperclass, or in an Object Relational Mapping (ORM) XML

file using the <multitenant> element. We also use a free tool for benchmark database,

called benchmark factory .

@Entity -- @MappedSuperclass

@Table(name=“CUST”)

@Multitenant(SINGLE_TABLE)

public class CUSTEMER {

}

5.1.3 Metadata Management

The Shared Table approach allows consolidating a large number of tenants onto one

database instance. The number of tenants is not limited by the available main memory

because the size of the data dictionary remains constant if a new tenant is created.

In Multi-tenant Database we exploiting the fact that the data dictionary stores two

different kinds of meta data: logical and physical . The logical meta data expresses the

structure of the relational model, i. e. by tables, attributes and constraints. The physical

meta data describes how data is stored on disk and how to access to this. In shared table,

we argue that the contents of the data dictionary look closely alike between tenants,

especially with respect to the logical meta data.

5.2 Effect of Tenants

In this section, we present and evaluate the experimental results of SaTbencHCloud

approach and Shared table under different tenant amounts. SaTbencHCloud approach

implement schema inheritance that allows deriving a schema from another schema.

Thereby, a derived schema inherits the objects that are defined in the parent schema. it

allows extending and creating objects according to a defined set of rules. Therefore, it

defines three different schema types: shared schema, virtual schema and tenant schema.

00

• Shared Schema

The hierarchically schema describes a virtual schemas where a core application may be

customized based on Individual tenants needs . because a virtual schema is without table

instances. Consequently, it is impossible to store data using a virtual schema. Virtual

schema inherits all the database objects contained in the parent schema. The relation

between schemas are hierarchically. thereby, a virtual schema can inherit from another

virtual schema or more , this means that it inherits all the database objects contained in

the parent schema.

• Virtual Schema

The hierarchically schema describes a virtual schemas where a core application may be

customized based on Individual tenants needs . because a virtual schema is without table

instances. Consequently, it is impossible to store data using a virtual schema.

 • Tenant Schema

Tenant schema relates to a specific tenant. Each tenant possesses an associated tenant

schema that represents a part of its context. A tenant schema must inherit from a virtual

schema. A tenant schema includes table instances and a tenant schema is final with

respect to inheritance. That is, another schema cannot inherit from a tenant schema.

We evaluate the scalability for both systems, "SaTbencHCloud approach and Shared

table" by measuring the ability to serve an increasing number of tenants without too

much query performance degradation and the column number of tables of database can

handle . We examine the system scalability in terms of two aspects: the performance of

storage and system throughput.

Figure 5-2 illustrates a simple example for e-commerce was used in [24] . The upper part

of the figure models the virtual schema Shop that defines a table Item. The table Item has

two attributes Name and Price. The lower part of the figure illustrates two derived tenant

schemas. The tenant schema Kermit Shoes in the left and the schema Gonzo Books in the

right. The schema Kermit Shoes extends the table Item by an attribute color, whereas the

schema Gonzo Books extends it by an attribute pages and another attribute ISBN. In

addition, the tenant schemas contain the respective instances of the table Item.

Figure 5-2: Illustration of schema inheritance concept (24).

03

5.2.1 Storage Capability

We compare the disk space usage of shared table and SaTbencHCloud under

different tenant amounts as shown in figure 5-3. It can be clearly seen that

SaTbencHCloud outperforms STSI in terms of storage requirement in all the experiments

to store the same number of records. it uses an average of about 70% storage space

compared with the STSI. Our interpretation of this that shared table consumes large disk

space to store null values. On the other hand, SaTbencHCloud extract a data dictionary

associated with a tenant from the overall data dictionary and exploitation some situations

of data needs to be shared between tenants , rather than migrating data from tenant to

another that requires storage consuming and may cause data duplication .

Figure 5.3 : Disk space usage with different number of tenants

5.5.2 Throughput Test

A throughput test is using to measure the ability of the system to process the most

queries in the least amount of time. We now investigate the performance of

SaTbencHCloud approach and STSI on concurrent operations. The throughput test must

be executed under the same conditions for both approaches. The Driver runs all queries

and the Multi-tenant database system in a “client/server” configuration to simulate a real

Multi-tenant environment. all the processes are executed in parallel against indexed

attributes. To ensure the accuracy of the results, we execute TPC-H queries workload

with its default settings and compare it with SaTbencHCloud approach result. We discuss

the usability of our approach.

Data manipulation language (DML) Performance

Based on our proposal we divide DML operations into three categories, The first

is the DML from original database schema. The second is DML when the tenant add new

00

columns . The third is the DML when the tenant add new tables. For each workload we

repeat the experiments five times and obtain the average time. As show in figure 5.4 we

compare the operation costs among STSI and SaTbencHCloud approach according to the

example which was explained in paragraph 4.2.1.3 The experiment will perform on the

three databases with workloads of scale factor 10, 100, and 300 Gigabytes. We use driver

to run the queries for each tenant account. We call the selection operations: sel1, sel2 and

sel3 and call the insert operations: ins1, ins2 and ins3 respectively for short . Similarly

with the deletion and update.

When scale factor (SF) = 10 , we set the number of tenants = 100, compared with STSI

we see that sel1 and sel2 have much better performance than STSI . For sel3 performance

will decline but it remains the best of the STSI since the costly join operation that

required create virtual database relationship between physical tables and virtual table .

Results of the experiment are shown in figure 5-4.

When scale factor (SF) = 100 , we set the number of tenants = 500 and when scale factor

(SF) = 300 we set the number of tenants = 1000. , we can see that the performance of

SaTbencHCloud approach is remains slower than SF = 10, but it is outperforming STSI

in terms of system throughput. We can conclude that SaTbencHCloud approach is not

affected by increasing the number of tenants.

Our interpretation of the efficiency of SaTbencHCloud approach uses fewer disk I/Os to

fetch the records of DML operations to memory than STSI because it displays the data

for the one tenant only at a moment. On the other hand, Index pivot table associated with

a specific tenant improve and speed up the query execution time when retrieve data , The

index is built on the tenant's identity column . In contrast STSI use a big indexes records

from all tenants. The lookup becomes inefficient with large number of tenants .

Figure 5.4: DML Performance when scale factor = 10

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

s
e
l1

s
e
l2

s
e
l3

in
s
1

in
s
2

in
s
3

u
p
d
a
te

1

u
p
d
a
te

2

u
p
d
a
te

3

d
e
l1

d
e
l2

d
e
l3

A
ve

ra
ge

 R
es

p
o

n
se

 T
im

e
(m

s)

DML Operations
SF = 10

STSI

SaTbencHCloud

00

For the insert operations , STSI will need to insert many NULLs in all columns in the

shared table even if the tenant was not need of any one to maintaining the big index (BI) .

However, we can show that SaTbencHCloud throughput is about twice as high as STSI

when SF = 10 , but it goes down to 30% when SF = 100, show figure 5.5. Finally, when

SF=300 SaTbencHCloud performance remains is better than STSI more than 20%. With

an increasing number of tenants in the system requires more I/O , and joins operations, as

a result the throughput slightly reduces. Compared to STSI, SaTbencHCloud is more

efficient in performing table scan and index lookup.

Figure 5.5: DML Performance when scale factor = 100

Update operations followed the same behavior as selection and insertion. It was clear that

the performance of SaTbencHCloud better than the performance STST.

In violation of all experiments the performance of our approach fell in delete operations ,

since STSI is the best when scale factor (SF) = 100 and when scale factor (SF) = 300 by

Percentage between 10% and 15% . We believe that the reason for that is under

referential integrity that requires to check the records before deleted , this procedure will

cost some time. Figure 5.6 show the results of the experiment DML Performance when

scale factor = 300.

0

2000

4000

6000

8000

10000

12000

14000

s
e
l1

s
e
l2

s
e
l3

in
s
1

in
s
2

in
s
3

u
p
d
a
te

1

u
p
d
a
te

2

u
p
d
a
te

3

d
e
l1

d
e
l2

d
e
l3

A
ve

ra
ge

 R
es

p
o

n
se

 T
im

e
(m

s)

DML Operations
SF = 100

STSI

SaTbencHCloud

06

Figure 5.6: DML Performance when scale factor = 300

5.6 Effect of Columns

Database as a service is designed to support a large number of tenants and each of them

have different requirements , but a few of columns are common , for this reason we need

to handle the situation that the base schema is very sparse and contains a large amount of

configurable columns owned by different tenants. One of the big challenges in the shared

table model is decide the number of custom fields (columns in table) for tenants ,

Providing less number of columns might restrict the ability tenants who wish to use a

Multi-tenant database systems and flexibility of extend the table. We investigate the

scalability of SaTbencHCloud approach vs STSI with an increasing number of columns

and the impact on the efficiency of the system performance and the use of suitable

storage space.

5.6.1 Storage Capability

In this experiment, we will examine storage capability for each of

SaTbencHCloud approach and STSI with the increasing number of columns. We assume

that the number of added columns in the shared table varies from 10 ,100 ,300 in our

three different databases respectively . Figure 5.7 illustrates the disk space usage of

SaTbencHCloud approach and STSI. The figure shows that SaTbencHCloud approach

requires less storage space compared with STSI about a percentage 50% .

Our interpretation that SaTbencHCloud approach operates according to the idea of tenant

context , this means that there is a degree of integration between Multi-tenant relational

tables and virtual relational tables mean that storage data is associated with a particular

tenant according to the columns defined by this user without leading to store any values

0
2000
4000
6000
8000
10000
12000
14000
16000
18000

s
e
l1

s
e
l2

s
e
l3

in
s
1

in
s
2

in
s
3

u
p
d
a
te

1

u
p
d
a
te

2

u
p
d
a
te

3

d
e
l1

d
e
l2

d
e
l3

A
ve

ra
ge

 R
es

p
o

n
se

 T
im

e
(m

s)

DML Operations
SF = 300

STSI

SaTbencHCloud

07

of other tenants which shows a good scalability in respect to the system storage . This

concept already applied in the column-oriented databases. Also any schema

modifications of one tenant will not affect the logical schema of other tenants.

of columns

Figure 5.7: Disk space usage with different number of columns

5.6.2 Throughput Test

Our objective now is to evaluate the effect of Increase columns on the system

throughput. We will test the three databases under different workloads. We will use

QGEN to generate executable query, then we will execute the same queries against these

databases After the extension of the table by adding new columns and the response of the

two approaches with the process . Figure 5.8 displays the system throughput and response

time for SaTbencHCloud approach and STSI. As is clear, there is a decline in the

performance of two approaches when increasing the number of columns, but it does not

affect the scalability.

It is clear that SaTbencHCloud approach offers the best performance because it has the

ability to selectively I/O in columns to improve the performance.

Figure 5-8 : System throughput and response time for SaTbencHCloud approach and STSI

08

Summary

In this chapter, different types of experiments have been constructed to evaluate the

efficiency and scalability in the cloud database. We performed these experiments using

different sizes of small, medium, large and very large databases, our goal is to measure

the impact of an increasing number of sessions on the reactivity of the system while

increasing the number of tables and tenants. These experiments covered most of possible

situations, which we considered as an important contribution in this thesis.

Three groups of schemas for 100, 500, 1,000 tenants have generated . These schemas are

then used for evaluating the scalability of storage and query processing under different

schema variability to observe significant differences in query response between these

three different scale factors. We using the original shared table as the baseline in the

experiments. We noted the results for each experiment in order to evaluate and discuss

these results .

In evaluation section, we evaluated our approach in terms of performance, scalability,

flexibility and efficiency by measuring system throughput as data scale increases. we

considering the throughput and response time in relation to the amount of tenants and the

effect of column amounts. We have provided our interpretation of the results of each

experiment.

09

Chapter 6

Conclusion and Future Work

In this chapter, we concluded our work, results, and the future work directions.

We discussed three approaches for designing a Multi-tenant database architecture . It is

clearly that the shared table approach is a most popular today among hosting service

providers, so we studied this approach and focused on the problem of inability to

customize and enable extension dynamically by Schema-Mapping Techniques when the

system is on-line without affect the logical schemas of other tenants .

Many researchers discussed extension tables problem, and introduced some solutions.

Most prior works cared allowing the tenant to have his own private tables, which can be

extended and changed . None of them discussed to take advantage of the shared data ;

also, they did not provide any contribution in the metadata management. One of the

major advantages of our approach that uses two related works, they are pivot table and

universal table.

The idea of our solution was proposed SaTbencHCloud , that it is an efficient approach

for supporting Multi-tenant schema inheritance in RDBMS for SaaS tailored to Multi-

tenancy. We offers different schema types for different situations. we focused on meta

data management to overcome the null values, and bring the data by the tenant's identity,

as well as building tenant indexes. Our experiments results show that our approach

decreases main memory consumption and lookup times of the data dictionary compared

to STSI .

To measure the performance of the database we used TPC-H benchmark that are widely

used in industry and academia to measure performance characteristics of database

systems. In order to enhance the benchmark to suits with our work, we introduced simple

modifications but important on some other related work. One of advantages of our

SaTbencHCloud that is suitable with small, medium, large, and very large databases , and

it can be used with any generic relational database schema and SQL queries, It is also

give results that are highly comparable with other benchmarks.

Our approach has proved its efficiency under different tenant numbers and in storage

requirement in all the experiments to store the same number of tuples.

05

SaTbencHCloud approach feet higher throughput when uses fewer disk I/Os to fetch the

records of DML operations to memory than STSI because it displays the data for the one

tenant only at a moment. On the other hand, Index pivot table associated with a specific

tenant improve and speed up the query execution time when retrieve data , The index is

built on the tenant's identity column . In contrast STSI use a big indexes records from all

tenants.

Experience has shown that SaTbencHCloud outperforms STSI in terms of storage

requirement under different tenant amounts . it uses an average of about 70% storage

space since it get rid of the problem of storage of null values, and requires less storage

space compared with STSI about a percentage 50% in terms of effect of columns .

The throughput of system testing proved that SaTbencHCloud throughput is about twice

as high as STSI for select operation in the case of small database. It is also best at about

30% in the case of medium database, and about 20% for big database. Update and insert

operations followed the same behavior as selection . It was clear that the performance of

SaTbencHCloud better than the performance STST.

In violation of all experiments the performance of our approach fell in delete operations ,

since STSI is the best when SF = 100 and when SF = 300 by Percentage between 10%

and 15% . We believe that the reason for that is under referential integrity that requires to

check the records before deleted , this procedure will cost some time .

Evaluate the effect of Increase columns on the system throughput shows that there is a

decline in the performance of two approaches when increasing the number of columns,

but it does not affect the scalability.

In our future work, we intend to complete and efficient support for Multi-tenancy , and to

facilitate the migration of applications feature between cloud database services providers

according to security requirements.

Some of most important trends of the future work are listed below:

 Query optimizer.

 Cloud management.

 Techniques of Import historical data to the cloud server.

 Supporting BigData and unstructured data.

 Migration between cloud service providers and security issues associated.

01

References

[1] "The NIST Definition of Cloud Computing" . National Institute of Standards and

Technology. September 2011.

 [2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.

Chandra, A. Fikes, and R. E. Gruber. Bigtable: “A distributed storage system for

structured data”. In OSDI, 2006.

[3] Hyun Jin Moon, Carlo Curino, and Carlo Zaniolo. “Scalable Architecture and Query

Optimization for Transaction-Time DBs with Evolving Schemas”. In Elmagarmid and

Agrawal (2010), pages 207–218. ISBN 978-1-4503-0032-2.

[4] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger. “Multi-tenant databases

for software as a service: schema mapping techniques”. In SIGMOD ’08: Proceedings of

the 2008 ACM SIGMOD international conference on Management of data, pages 1195–

1206, New York, NY, USA, 2008. ACM.

[5] Mei Hui, Dawei Jiang, Guoliang Li, Yuan Zhou, “Supporting Database Applications

As A Service”. IEEE International Conference on Data Engineering, 2009.

[6] Craig D. Weissman and Steve Bobrowski. the Design of the force.com “Multitenant

Internet Application Development Platform” . In Cetintemel et al. (2009), pages 889–

896. ISBN 978-1-60558-551-2.

[7] D. Jacobs and S. Aulbach. “Ruminations on multi-tenant databases”. In A. Kemper,

H. Schoning, T. Rose, M. Jarke, T. Seidl, C. Quix, and C. Brochhaus, editors, BTW,

volume 103 of LNI, pages 514–521. GI, 2007.

[8] Curino, C., Jones, E., Popa, R., Malviya, N., Wu, E., Madden, S., Balakrishnan,

H.,Zeldovich, N. 2011. “Relational Cloud: A Database Service for the Cloud” . In CIDR,

pages 235–240.

[9] Stefan Aulbach, Michael Seibold, Dean Jacobs, and Alfons Kemper. “Extensibility

and Data Sharing in Evolving Multi-tenant Databases”. In Proceedings of the 27th IEEE

International Conference on Data Engineering (ICDE), pages 99–110, 2011.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

00

[10] Franclin S. Foping, Ioannis M. Dokas, John Feehan and Syed Imran “A New Hybrid

Schema-Sharing Technique for Multitenant Applications” , IEEE – Digital Information

Management 2019, Cork Constraint Computation Centre University College Cork Ireland

1-4 Nov. 2009

[11] Carlo Curino, Hyun Jin Moon, and Carlo Zaniolo. “Automating Database Schema

Evolution in Information System Upgrades”. In Tudor Dumitras, Iulian Neamtiu, and

EliTilevich, editors, HotSWUp. ACM, 2009. ISBN 978-1-60558-723-3.

[12] D. Jacobs. “Enterprise software as service”. ACM Queue, 6(3):36–42 .

[13] Z. H.Wang, C. J. Guo, B. Gao,W. Sun, Z. Zhang, and W. H. An. “A study and

performance evaluation of the multi-tenant data tier design patterns for service oriented

computing”.In e-Business Engineering, 2008. ICEBE ’08. IEEE International Conference

on, pages 94–101, Oct. 2008.

[14] R. Elmasri and S. B. Navathe. “Fundamentals of Database Systems”, 5th Edition.

Addison-Wesley, 2007.

[15] http://cloudcomputing.sys-con.com/node/1610582, (last visited 17-04-2014)

[16] Mateljan, V., Cisic, D., Ogrizovic, D.: “Cloud Database-as-a-Service (DaaS) “ ROI.

In MIPRO, Proceedings of the 33rd International Convention, 1185—1188 (2010).

[17] F. Chong and G. Carraro, “Architecture Strategies for Catching the Long Tail,”

Microsoft Corporation, http://msdn.microsoft.com/en-us/library/aa479069.aspx, Tech.

Rep., April 2006, (last visited 09-05-2014).

[18] Yaish, H., Goyal, M., Feuerlicht, G.: “An Elastic Multi-tenant Database Schema for

Software as a Service”. In the 9th IEEE International Conference on Dependable,

Autonomic and Secure Computing, 737—743 (2011).

[19] Bezemer, C., Zaidman, A., Platzbeecker, B., & Hart, A. (2010). “Enabling Multi-

Tenancy : An Industrial Experience Report”. Innovation, 1-8. IEEE. doi:10.1109/ICSM.

2010.5609735

[20] Indu Arora and Anu Gupta . “Cloud Databases: A Paradigm Shift in Databases “ ,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012

[21] Vladislav Lazarov. “Comparison of Different Implementations of Multi-Tenant

Databases” . Bachelor’s Thesis, Chair for Database Systems, Department of Computer

Science, Technique Universality Munchen, Germany, July 2007.

[22] http://cloudscaling.com/resources , (last visited 17-04-2014).

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5351158
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5351158
http://msdn.microsoft.com/en-us/library/aa479069.aspx

03

[23] Carlo Curino , Evan P. C. Jones, Raluca Ada Popa, Nirmesh Malviya "Relational

Cloud: A Database-as-a-Service for the Cloud." 5th Biennial Conference on Innovative

Data Systems Research, CIDR 2011, January 9-12, 2011 Asilomar,California.

[24] Oliver Schiller, Benjamin Schiller, Andreas Brodt: “Native Support of Multi-

tenancy in RDBMS for Software as a Service” Proceedings of the 14th International

Conference on Extending Database ACM New York, NY, USA ,2011

[25] Chang Jie Guo, Wei Sun, Ying Huang, Zhi Hu Wang, and Bo Gao.” A Framework

for Native Multi-Tenancy Application Development and Management”. In E-Commerce

Technology and the 4th IEEE International Conference on Enterprise Computing, E-

Commerce, and E-Services, 2007. CEC/EEE 2007. The 9th IEEE International

Conference on, pages 551 –558, July 2007.

[26] http://www.elementsolutions.com/2013/08/08/part-2-cloud-computing-demystified-

3s-4d-5e-is-all-you-need-to-know, (last visited 11-05-2014)

[27] Zhang, Q., Cheng, L., & Boutaba, R. 2010, “Cloud computing: State-Of-The-Art

and Research Challenges”. Journal of Internet Services and Applications, vol. 1, no. 1,

pp.7-8.

[28]. Burgess G, What is the TPC Good For? Or, the Top Reasons in Favour of TPC

Benchmarks, http://www.tpc.org/information/other/articles/TopTen.asp, (last visited 17-

03-2015)

[29]. Watts, D., Slavko, B., Watson, C., Understanding IBM eServer xSeries

Benchmarks, http://www.redbooks.ibm.com/redpapers/pdfs/redp3957.pdf, (last visited

20-03-2015)

[30] Andr´e B. Bondi. Characteristics of scalability and their impact on performance.

In WOSP ’00: Proceedings of the 2nd international workshop on Software

and performance, pages 195–203, New York, NY, USA, 2000. ACM.

[31]. Scalzo B., Ault M., Burleson D., Fernandez C., Klein K., Database Benchmarking,

Practical Methods for Oracle & SQL Server, Rampant TechPress, USA, April 2007

[32] Microsoft SQL Server 2014, http://www.microsoft.com/en-us/server-

cloud/products/sql-server/ (last visited 20-03-2015)

[33] TPC: Transaction Processing Performance Council , http://www.tpc.org/ (last

visited 23-03-2015)

[34] TPoX: Transaction Processing over XML (TPoX) (2012) ,

http://tpox.sourceforge.net/ (last visited 23-03-2015)

[35] Tpc-c. http://www.tpc.org/tpcc/. (last visited 23-03-2015)

http://www.acm.org/publications
http://tpox.sourceforge.net/

00

[36] Tpc-h. http://www.tpc.org/tpch/default.asp/. (last visited 23-03-2015)

[37] Foping, F.S., Dokas, I.M., Feehan, J. & Imran, S. 2009, 'A new hybrid schema

sharing technique for multitenant applications', Digital Information Management, 2009.

ICDIM 2009. Fourth International Conference on, IEEE, pp. 210-215.

[38] Kwok, T., Thao, N. & Linh, L. 2008, 'A Software as a Service with multi-tenancy

support for an electronic contract management application', Services Computing, 2008.

SCC '08. IEEE International Conference on, IEEE, vol. 2, pp. 179-186.

[39] Jiyi Wu et al, “Recent Advances in Cloud Storage”, in Third International

Symposium on Computer Science and Computational Technology(ISCSCT ’10), Jiaozuo,

P. R. China, 14-15,August 2010, pp. 151-154.

[40] https://msdn.microsoft.com/en-us/library/azure/ee336245.aspx (last visited 05-05-

2015)

[41] D. Jia, W. Hao-yu, and Y. Zhao-jun, “Research on data layer structure of multi-

tenant e-commerce system”, IE&EM, 2010, pp. 362 – 365.

[42] Mietzner, R., Metzger, A., Leymann, F. & Pohl, K. 2009b, 'Variability modeling to

support customization and deployment of multi-tenant-aware Software as a

Service applications', Principles of Engineering Service Oriented Systems,

2009. PESOS 2009. ICSE Workshop on, IEEE, Vancouver, Canada, pp. 18-25.

[43] Bezemer, C.P., Zaidman, A., Platzbeecker, B., Hurkmans, T. & t Hart, A. 2010,

'Enabling multi-tenancy: An industrial experience report', Software

Maintenance (ICSM), 2010 IEEE International Conference on, IEEE,

Timisoara, Romania, pp. 1-8.

[44] Stefan Aulbach ,Dean Jacobs$ Alfons Kemper , Michael Seibold , "A Comparison

of Flexible Schemas for Software as a Service".

