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ABSTRACT 

 

Because of the anticipated high demand for Indium, ongoing growth of CIGS 

technology may be limited. Kesterite materials, which replace In with a Zn/Sn couple, are 

thought to be a solution to this issue. However, efficiencies are still below the 10% level, 

and these materials are proving to be complex. Even determination of the bandgap is not 

settled because of the occurrence of secondary phases. We use a film growth process, 

2SSS, which we believe helps control the formation of secondary phases. Under the right 

growth conditions we find 1/1 Zn/Sn ratios and XRD signatures for Cu2ZnSnSe4 with no 

evidence of secondary phases. The optical absorption profile of our films is also a good 

match to the CIS profile even for films annealed at 500° C. We see no evidence of phase 

separation. The effect of intentional variation of the Zn/Sn ratio on material and device 

properties is also presented. 
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1. INTRODUCTION 

 

This document gives a detailed analysis for the synthesis of thin film growth of 

the compound Cu2ZnSnSe4 also known as CZTSe by novel reaction pathways. The 

method involves glass substrates on which the metals are deposited in different orders 

and is then heated at a certain substrate temperature in the presence of selenium flux. 

There is a lot of research going on right now around the word on various ways of thin 

film production. In chapter 2 we would go through the literature review of these various 

thin film techniques and more focus would be given to CZTSe films. From now on 

CZTSe would be called CZSS throughout this document. Also we would be discussing 

why Tin and Zinc are replacing Indium in CIS based absorber layers to be called the 

CZSS absorber layer. Chapter 3 talks about our approach to making CZSS and discusses 

in detail why we think it is advantageous over other techniques. We would discuss in 

detail the diffusion phenomenon at the various stages of selenization, the metal selenide 

precursors, which we encounter, is a complex composite of both kinetics and 

thermodynamics. Chapter 4 consists of the results of various optical and characterization 

measurements on the samples. Retaining the metal content and maintaining the 

composition of the sample was a complex task. The variation in the substrate temperature 

and method implemented in selenization were critical factors in attaining the 

stoichiometry of the absorber material. Device parameters like bandgap were studied 



2 

 

through optical measurements like transmission test. The structures of the samples were 

determined by X-ray Diffraction spectroscopy. The statistics obtained in XRD proved 

interesting facts regarding the actual Kesterite compound and the precursor material 

ZnSe. From the analysis and results obtained on CZSS growth techniques and device 

performance I recommend in applying this recipe to large-scale manufacturing. 

Before we go into details of things I would want to present some background 

information on the conventional and alternative energy sources and demand in the present 

day world, energy conversion from photovoltaic’s, some introduction on thin films and 

all the available technologies by which they are synthesized. And finally we would go 

through some literature review on Kesterite-based thin film solar cells.  
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2. BACKGROUND 

 

2.1 Review of Traditional Electricity Generation Technology 

For millennia man has always been on the hunt for ways by which he could 

produce energy. The evolution and advancement in energy production goes back to days 

when nomadic man invented fire from rubbing two stones to the present world where 

every function done involves various sources of energy like fossil fuels, natural gas, 

hydro, nuclear, geothermal, solar, etc. Cost wasn’t a criterion in the primitive world when 

resources were in abundance. As man evolved so did his needs for energy consumption. 

With a present world population of more than 6.5 billion and an estimated figure of 10 

billion by 2055[1], there is a serious task on hand to look for energy sources, which 

explored wont alter the ecological balance. These sources as we know are called the 

renewable sources of energy.  
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Fig. 2.1. Comparison of the various renewable energy production sources with each other 

and with the total energy production. [2] 

 

Over dependence on non-renewable sources by man till date has pushed them to 

the limit of scarcity and couple of decades down the lane, extinction. We have also 

witnessed the disadvantages in it like pollution, irreversible damage to the environment, 

escalation of price of the fuel day by day and most importantly they eventually run out. 

These situations can only be avoided if we are able to make the transition to renewable 

sources and that too, as soon as possible. But the two major limitations faced in 

synthesizing energy from renewable sources are the cost and efficiency. The cost to 

generate electricity from coal is around $0.04/KW/h and from gas and oil is a little bit 

more but around $0.08/KW/h. Given below is a plot which shows the current prices on 

electricity production by various renewable energy sources. The wind, geothermal and 

hydro electricity are priced around the range $0.05-0.07/KW/h but solar (PV) still 
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remains expensive at around $0.19/KW/h. With extensive research gong into each of 

these energy sources the prices are estimated to drop in the next couple of years. This is 

shown in Fig. 2.3.  

 

Fig. 2.2. Present price comparison of different renewable energy sources in cents/KW/h. 

[3] 

 

Each of the plots indicates an exponential decrease. The wind, solar thermal are 

expected to drop to very low price around $.02/KW/h, but the solar PV is still around 

$.10/KW/h which is quite high compared to the present coal pricing. 

 

Fig. 2.3. Estimated drop in the production costs per KW/h for different renewable sources 

of energy. [4] 
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2.2 Photovoltaics 

Imagine a device when under exposure to sun’s radiation gives out electric current 

with no emissions, transmission losses or toxic residues, that is a photovoltaic device. It’s 

a semiconductor device, which exhibits the photoelectric effect when exposed to sunlight. 

First observed by Alexandre-Edmond Becquerel in 1839 the photovoltaic effect can be 

defined as the creation of voltage or corresponding current in a device or material when 

exposed to light [5]. There is a very important point, which we need to point out her is the 

distinguishing factor between photoelectric effect and photovoltaic effect. Though both 

of them are directly related to each other, the phenomenon in each of them is completely 

different. According to photoelectric effect when a device is exposed to sufficient energy 

radiation electrons absorb this energy and leave the material to produce electric current. 

Whereas in a photovoltaic effect this energy absorbed by electrons makes them to 

transfer between bands that is from valance band to conduction band. The figure on the 

left indicates the electron–hole pair generated and also the transition of the electron into 

the conduction band on excitation thus exhibiting photovoltaic effect. The figure on the 

right shows the electrons leaving the material on exposure to radiation indicating 

photoelectric effect. 

               

Fig. 2.4. Photovoltaic effect. [5]                                Fig. 2.5. Photoelectric effect. [6]       
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Such devices cannot just be laid open to expose them to sunlight, they need to be 

protected from environmental effects like rain, dust, animals and other external factors. 

Thus they are packed in modules behind glass sheets. The stacking up of these modules 

in series or parallel is based on the desired voltage and current outputs. We all know that 

when two cells are arranged in series the current remains the same but the voltage drop 

across each adds up, while the vice versa when arranged in parallel. 

The operation of any photovoltaic device is based on a basic pn junction diode. It 

is very important that we have a clear understanding of what actually happens in the 

operation of a pn diode to understand the complexity we face in later chapters. A pn 

junction is a semiconductor with a p region and an n region attached closely to each other 

called the boundary junction. These regions are made out of a single semiconductor 

crystal rather than attaching two different crystals with different doping to be attached to 

each other because of the formation of grain boundaries. The doping can be done by 

various methods like Ion implantation, diffusion of dopants or bye epitaxy. An American 

physicist Russell Ohl at Bell laboratories first discovered this pn junction. Below is a 

block diagram showing both the p and n regions of the same crystal and the junction 

between the two, with no applied voltage across the terminals. 

 

Fig. 2.6. A p-n junction diode without external voltage supply. [7] 
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Without an external applied voltage, when a p type and an n type are brought 

together to form a junction, the electrons near the p-n junction tend to diffuse into the p 

region leaving behind a positively charged ion also known as the donor in the n region. 

Same is the case when the holes near the p-n junction tend to diffuse into the n region 

leaving behind fixed ions also known as the acceptors in the p region. These electron and 

holes, which diffuse towards each other, are concentrated near the p-n junction because 

of which it loses its neutrality forming a space charge region also known as the depletion 

region. Due to this space charge region an electric field is developed across the junction, 

which opposes the further diffusion of electrons and holes towards the junction. Thus at 

the same time there are two phenomena which counteract and function at the junction. 

One is the diffusion of electrons and holes towards the junction and secondly the electric 

field, which counteracts this diffusion. Looking at the figure below would give a better 

picture of what we talked till now. 

 

Fig. 2.7. A p-n junction diode in thermal equilibrium with zero bias voltage applied. [7] 

 

The carrier concentrations at equilibrium are clearly indicated in the figure 2.7. 

The two counteracting forces tend to attain equilibrium. The figure below shows the plots 
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for space charge density, electric field and the voltage at equilibrium under zero external 

applied voltage. 

  

Fig. 2.8. A p-n junction diode in thermal equilibrium with zero bias voltage applied. Also 

shows plots for charge density, electric field and voltage. [7] 

 

2.2.1 Forward Bias 

In the forward bias the p region is connected to the positive terminal and the n 

region to the negative terminal of an external voltage source. When the voltage is applied 

the holes in the p region repel because of the positive bias and same is the case in the n 

region where the electrons are repelled by the negative bias. These electrons and holes 

diffuse towards the junction and lower the potential barrier at the junction. With the 

increase in the applied voltage in the forward bias the depletion becomes so thin that the 

electric field can no more counteract the diffusion phenomenon because of which 
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electrons tend to cross the junction into the p neutral region. Thus the amount of minority 

charge diffusing through the p region determines the amount of current flowing through 

the diode at a certain applied external voltage. In reality the electron penetration in the p 

region is only to a certain extent but this wouldn’t affect the electric current, which 

remains constant all through out. This is because the holes drift in the p region towards 

the n region just as how electrons drift towards the p region. Any variation in the total 

current would create a charge build up with time according to Kirchhoff’s current law. 

 

2.2.2 Reverse Bias  

This is just the opposite of a forward bias. Here the p region is connected to the 

negative bias of the external voltage source while the n region is connected to the positive 

bias as shown in the figure below. 

 

Fig. 2.9. A p-n junction acting in reverse bias under an external voltage bias. [7] 

 

When a voltage is applied by the external voltage source across the terminals, the 

holes in the p region are pulled away from the junction into the negative terminal while 

the electrons in the n region are similarly pulled into the positive terminal. Thus the 

depletion region increases in width and keeps on going with the increase in the applied 
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voltage. This widening of the depletion region increases the resistance of the junction, 

which restricts the flow of electric current across the junction. The increase in resistance 

makes the diode work as an insulator in the reverse bias. 

d = dp+dn =√[(2ε/q)(NA+ND/NAND)(Vbi-V)] [7] 

The above equation gives d which is the total width of the depletion layer where 

NA is the acceptor concentration, ND is the donor concentration, Vbi is the built in voltage, 

V is the external applied voltage, and dp and dn are the widths of the electric fields in p 

and n regions respectively. From this equation we can derive the built in voltage based on 

the equation mentioned below where T is the temperature of the substrate and K is the 

Boltzmann constant. 

Vbi=(KT/q)ln(NAND/p0n0) [7] 

Any technology, for it to be moved into a large scale productions is always 

reviewed on various factors like cost, efficiency, lifetime, its effect on the environment, 

etc. based on which photovoltaic energy is clean and green energy. There are no harmful 

byproducts nor does it emit any unwanted radiation, which makes it completely eco-

friendly. These devices once installed in modules run for decades together with minimum 

maintenance costs or interventions. Thus the operating cost of PV technology is 

extremely low compared to other available technologies. The most important factor, 

which makes PV technology unique from others, is the availability of its input or source. 

Could be that we can’t harness wind, hydro or other forms of energy at any place on earth 

but sunlight is something which is available everywhere. The earth receives 89,000 TW 

of sunlight, which is like 6000 times the 15 TW equivalent of the average power 

consumption of humans. These panels could be installed anywhere on the earth surface 
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which receives sufficient radiation from the sun. The panels are now being installed 

where ever possible like roof tops, moving cars, space satellites, and also in stationary 

devices such as water pumps, parking meters, temporary traffic signals and even remote 

guard posts and signals. A recent study on the possibility of laying panels on roadways is 

done on a 45 mile stretch roadway in Idaho, as roads are unobstructed from sunlight all 

the time and are one major section of land use.  

Nothing is perfect and so is PV technology. It has its own disadvantages, which to 

some extent are possible to minimize. Firstly in a span of 24 hours any part of the earth 

on an average can receive sunlight only for 12 hours. Once it sets till the time it rises 

these panels don’t have light to operate on. This disadvantage could be minimized to a 

certain extent by using batteries to store energy during the day, which could be used at 

night. Same is the case in a cloudy forecast. Photovoltaic panels are expensive to install. 

Though once installed it doesn’t need much maintenance and runs for decades, the initial 

cost that goes into these panels is higher compared to other energy sources. There is a lot 

of research, which is presently going on around the world to reduce this cost.  

The performance of the solar panels is greatly affected due to two reasons. Firstly 

the temperature of these panels should be maintained at room temperature. Above room 

temperature, their performance is dropped which is a major concern. Secondly to attain 

the best possible efficiency out of any device, the panels should be oriented normal to the 

sun’s radiation. But because of the continuous disposition of the sun with respect to the 

panel, these panels are moved to follow the sun using solar trackers. It is observed that by 

using these solar trackers these panels see more sun by at least 30% in winter and 50% in 
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summer. Another disadvantage is that these panels produce DC, which needs to be 

converted to AC using inverters to meet the existing distribution grids.  

 

2.3 Thin Film Technology 

Before we get into detail on thin film technology we should first brief ourselves 

about what a solar cell is all about. A solar cell also known as a photovoltaic cell is a 

solid-state device that converts energy in the sunlight into DC current. The first solar cell 

was made at Bell laboratories in 1954 by Daryl Chapin, Calvin Souther Fuller and Gerald 

Pearson. These cells as we know are assembled in modules also known as solar panels. 

The best efficiency for Si till date is at 24.2% by Sunpower, a photovoltaic company 

based in San Jose. Though there is a lot of academic research going on around the world 

with lab efficiencies reaching 40.7% by Boeing spectrolab, efficiencies at industry scale 

are still limited to a market average of 12-18%. 

 
Fig. 2.10. A typical poly-crystalline thin film solar cell, which represents each layer 

deposited to form the final cell. [8] 
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The figure 2.10 shows the layer-by-layer deposition of a general thin film poly-

crystalline solar cell. Layers of different materials are deposited one by one on a 

substrate. So we start off with the substrate, which can be glass, silicon, etc. Next comes 

the front contact, which is generally molybdenum, after which comes the actual layers of 

semiconductors. First come the p layer and then the n layer. The junction between the p 

and n layer is also been shown in the figure. Over them comes the antireflection coating, 

which consists of a thin layer of dielectric with a specific thickness. The coating helps in 

avoiding the sunrays hitting the cell from reflecting back. The interference effects in the 

coating cause the wave reflected from the antireflection coating top surface to be out of 

phase with the wave reflected from the semiconductor surface. These out of phase 

reflected waves destructively interfere with one and other, resulting in zero net reflected 

energy [9]. The final layer over the antireflective coating is the top contact. Typical 

metals used here are aluminum, gold, silver, etc. The figure below gives a better 

understanding of how the antireflection coating works. 
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Fig. 2.11. Shows the constructive and destructive interference of light rays hitting an anti-

reflective coating layer on a solar cell. [9] 

 

Thin films solar cells (TFSC) also known as thin film photovoltaic cells (TFPC) 

are cells, which are made by depositing one or more thin layers of photovoltaic material 

on a substrate. The thickness of these cells varies from nanometers to micrometer range. 

There are numerous photovoltaic materials used in fabricating thin films. Even there are 

different substrates that are used like silicon, glass, and certain metals like aluminum. 

Most commonly used substrates used are wafer of single crystalline and polycrystalline 

silicon. Ingots are grown using Czochralski method or by controlled solidification of 

silicon in a crucible or mold. These ingots are then sliced into thin wafers by using fine 

saws of thickness above 150 μm. These wafer are then polished and processed till they 

are ready to be shipped to various companies to be made into solar cells. The high 
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material and processing cost makes it difficult for photovoltaic technology to reduce its 

KW/h price to drop below 10 cents.  

 

Fig. 2.12. A typical silicon ingot grown using Czochralski method of various wafer sizes. 

[10] 

 

The advantage thin films have over the silicon based industry re better 

throughputs, low material cost and less labor. Due extremely thin layers, adhesion to the 

substrate is a major concern. Few materials like Zinc don’t stick to glass when deposited 

by chemical vapor deposition. We would discuss more in detail about it in later chapters. 

Other problems with thin films are the uniformity of deposition causing it to have various 

thicknesses even across small surface areas of substrates. At a laboratory level, cells 

could be produced with good quality, uniform thickness and composition producing good 

efficiencies. These are generally done on small substrates around a couple of square 

inches. But implementing the same technology on a larger substrate is a complete 

different ball game. All the factors mentioned above lead to macroscopic defects which 

effect the yield and the reliability of the cell based on its lifetime. 
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Based on the materials used thin films can be categorized into amorphous silicon 

(a-Si), Cadmium telluride (CdTe), Copper Indium Gallium Selenide (CIS or CIGS) and 

Dye-Sensitized solar cell (DSC). The figure 2.13 shows the various solar cell 

manufacturing technologies and where they stand as far as efficiencies are concerned. We 

can see that thin film technology is still evolving itself compared to the well-established 

silicon industry, which is far ahead thanks to the huge semiconductor industry, which 

accelerated the groundwork. 

 

 

Fig. 2.13. Developments on the best research solar cell efficiencies in multi-junction, 

crystalline, thin film and other emerging PV technologies. [11] 

 

This thesis is based on Kesterite (Cu2ZnSnSe4) absorber layer in which not much 

research has been done but is gaining lot of importance because of various factors, which 

would be discussed more in detail in the next section. 
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2.4 Kesterite Thin Film Photovoltaics 

Copper indium selenide (CIS) and copper indium gallium selenide (CIGS) based 

thin film solar cells are well established and are at manufacturing level with highest 

efficiencies ranging around 20%. Due to scarcity of indium and gallium, these metals are 

getting expensive making the production costs to rise day by day. Indium and gallium are 

being consumed at unprecedented quantities for manufacturing LCD’s for flat screen 

TV’s. So how does one keep a track of how much of the metals are used up or how much 

is left before extinction? For a start the annual global consumption of the rare metals is 

not known in certainty [12]. Estimating the extractable reserves of many metals is also 

difficult. Such figure for indium and gallium are kept a closely guarded secret by mining 

companies. Governments and academia are only just starting to realize that there could be 

a problem looming, so studies of the issue are few and far between [12]. In a more 

detailed report, Reller has included the new projects and technologies and keeping all 

these in mind has projected that indium and gallium which are increasingly important in 

computer chips could be gone by 2017. The two pictures below gives a good 

understanding of all the rare metals and estimate of how long they might last. Also where 

are reserves of these valuable minerals present on the face of earth [12]? 
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Fig. 2.14. Shows all the rare earth metals and how long they are expected to last before 

extinction. [12] 

 

  

Fig. 2.15. A world map showing the reserves of all the rare earth elements. [12] 
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Researchers around the world are now on a look out to find metals that are a 

possible replacement to these elements. One such possibility is to replace indium with 

zinc (Zn) and tin (Sn). These metals are found in abundance and when properly replacing 

the indium lattice positions in the CIS crystal with zinc and tin we obtain the Cu2ZnSnSe4 

crystal. CZSS as we call it also known as CZTSe is not much explored and the highest 

efficiencies obtained by many research groups around the world, is still limited at 5%.  

 

Fig. 2.16. ZnSe structure. [22] 

 

 

Fig. 2.17. CZSS structure. [23] 

e 



21 

 

The ability of Kesterite selenide compound to be used as an absorber layer is 

verified but very little information is present to actually explain its optical properties and 

diffusion of metals during selenization step to synthesize the quaternary compound.  

However there is a difference between CIS and CZSS absorber layers. Though 

CIS is proved to be an attractive material for photovoltaics, there are few properties of it, 

which are less than ideal, and on the other improved cell performance can be achieved by 

varying material properties as a function of depth. The advantage CIS films have is to 

alloy itself with other materials to attain desired material properties. In general for any 

given solar cell absorber layer, photons under the bandgap of the material are of no use in 

current generation. On the other hand we observe higher open circuit voltage for higher 

bandgap. Thus we can see there is a voltage-current tradeoff happening here.  General 

studies convey information that the best efficiencies of any solar cells have bandgap 

around 1.4 and 1.5eV. As the bandgap of a good CIS film is around 1.0eV it could be 

alloyed with materials with high bandgap. When alloying two semiconductor materials 

the bandgap of the alloy tends to be a linear function of its composition [6]. The best-fit 

alloy for CIS is CuGaSe2. Thus it was observed that by varying the gallium concentration 

we could actually have a wide range of bandgap’s for CIS now a CIGS absorber layer. 

But with CZSS films there is no confirmed data as to what its ideal bandgap is. There are 

assumptions that because it is the same as CIS because we are trying to replace Indium 

with Zinc and Tin, even the bandgap also should be around the same.  
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2.5 Research Background 

The best efficient solar cell based on Kesterite absorber layer is made by G Zoppi 

at Northumbria Photovoltaics Applications Centre. The band gap of their material is 

reported to be 0.8 eV for the Kesterite selenide material. The deposition procedure of 

fabrication involved sequential deposition of high purity elemental targets of Copper, 

Zinc and Tin through sputtering. After which the stack of metals were selenized at a high 

temperature to synthesize Kesterite material.  

The CZSS material was produced by a two-stage process. The Cu, Zn and Sn 

were sequentially sputtered using high purity (5N) targets onto unheated molybdenum 

coated soda-lime glass substrate. The substrate is rotated in a substrate table to improve 

the step coverage. For better intermixing of the individual metals, a large number of 

alternate layers were used, each a few nm thick. Once the stack of metals is made, it is 

then selenized at 500 degrees centigrade for 30 min in the presence of argon and 

elemental selenium. The final thickness of the sample was adjusted to be 2 μm. The cell 

is completed y depositing CdS layer by chemical bath deposition method after which i-

ZnO is deposited with a thickness of 50nm. Followed by which indium tin oxide is 

deposited using RF sputtering. Finally the contacts of Ni/Al are laid using sputtering. 

Once the samples were made they were tested for their optical and compositional 

properties. X-ray diffraction was used to determine the precursor materials and also for 

the structural quality of the sample, the film composition and morphology was observed 

using data from the technique electron diffraction spectroscopy in a scanning electron 

microscope. Elemental depth profiling gave the intensity of each element as a function of 

the depth [13]. 
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Fig. 2.18. XRD pattern of just the metal precursors Cu, Zn and Sn with Cu/(Zn+Sn)=0.85 

and Zn/Sn=1.08 deposited on a moly coated soda lime glass. [13] 

 

The plot above shows the XRD on well-mixed copper, zinc and tin metals before 

selenization step. The metals were deposited such that the ratio (Cu/(Zn+Sn)=0.85), 

making it Cu poor material. Also the Zn/Sn ratio is kept at 1.08 making Zn rich as 

compared to Sn [13]. These results were confirmed using the electron diffraction 

spectroscopy results, which give the composition of the individual elements. The plot 

shows binaries of Cu, Zn and Cu, Sn but no evidence of any binaries of Zn and Sn [13]. 

 

Fig. 2.19. XRD pattern of a CZSS film selenized at 500°C for 30 mins. Peaks marked (*) 

read silicon peaks from the substrate. [13] 
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After selenizing the metal stack at 500 degrees centigrade for 30 min they 

observed that the metal ratios were still remained the same. The plot above is an XRD on 

the sample after selenization. All the peaks shown are associated with the Kesterite 

material except for the * marked which came from the substrate. They confirm referring 

to previous stated data that the selenized film forms the stannite structure [13].  

 

 

Fig. 2.20. Scanning electron micrograph of a CZSS film on a moly coated glass. (a) 

Surface image and (b) cross-sectional image. [13] 

 

The surface image and cross sectional images were taken using scanning electron 

microscope. The grain width was observed to be 2 μm, which is the same as the thickness 

of the absorber layer [13]. This helps in maximizing both the minority carrier diffusion 

length and the built in potential in a polycrystalline thin film absorber layers. The depth 

profile of the individual elements in the sample reveals uniformity for both Sn and Se but 

traces of excess Cu were observed at the moly interface, reason they say is because Cu is 

deposited first on molybdenum. Even they observe a dip in the zinc in the middle of the 

sample. The figure below shows the depth profile of the CZSS film deposited on glass. 
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Fig. 2.21. Depth profiling of a CZSS film on glass done at 500°C for 30 min. [13] 

 

There have been many discrepancies of the reported bandgap of the Kesterite thin 

films. Different research groups around the world have proposed different figures like 1.0 

eV, 1.5 eV, etc. SeJin Ahn a Korean researcher feels that films prepared by co-

evaporation of Cu, Zn, Sn and Se at a substrate temperature of 370 degrees centigrade 

would yield a bandgap of 1.0 eV irrespective of the method used to obtain the bandgap 

[14]. He also postulates with proven results that as we gradually increase the substrate 

temperature to 500 degrees centigrade the bandgap increases because of the formation of 

ZnSe at the CZSS/moly interface. Due to the uncertainty about the bandgap value it was 

felt that the method one uses to determine the bandgap would greatly affect the bandgap 

itself.  

The samples were prepared in a single stage co-evaporation technique on a soda 

lime glass using Knudsen-type effusion cells as evaporation sources at micro torr 

pressure conditions for optical measurements [14]. The same layer was also developed on 

a soda lime glass substrate with 1 μm thickness of molybdenum. For external quantum 

efficiency (EQE) measurement to determine bandgap of the material thin film cells were 



26 

 

fabricated by growing the n layer of CdS buffer layer of thickness of 60nm. Over that an 

i-ZnO of 50nm and Al doped n-ZnO of 500nm were deposited by RF magnetron 

sputtering. An Al grid of 500nm in thickness was deposited as a current collector using 

thermal evaporation [14]. 

The composition and morphology were observed using a scanning electron 

microscope and energy dispersive spectroscopy (EDS). The crystal structure 

determination was done y using X-ray diffraction (XRD) and Raman spectroscopy and 

the depth compositional profiling was done by using Auger electron spectroscopy (AES). 

In order to clear the discrepancies on the bandgap three techniques were used to obtain Eg 

value. Transmission measurements, PL measurements and external quantum efficiency 

(EQE) by using an incident photon conversion efficiency (IPCE) measurement unit [14].  

In the figure below, we can see the cross sectional and plane view SEM 

micrographs of the sample prepared at a substrate temperature of 370 degrees centigrade. 

The pictures indicate a well facetted grains of 2.6 μm are formed. Part (c) and (d) of the 

figure display the XRD and Raman spectra, which indicate that the synthesized film is 

apparently a phase pure CZSS material without any secondary phases. The composition 

of the film through EDS analysis is derived to be Cu/(Zn+Sn)= 0.82, Zn/Sn= 1.15 and 

Se/metal=1.04. 
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Fig. 2.22. SEM micrographs of film deposited at 370°C. (a) Cross-sectional and (b) plane 

view (c) XRD pattern (d) Raman spectra. [14] 

 

The various techniques to determine Eg were done and the obtained plots are 

shown in the diagram below. The transmission was performed on a wavelength range of 

200-1800nm by means of a UV-VIS-NIR spectrophotometer and the hν vs (αhν)
2
 plot is 

shown in part (a) [14]. For the EQE analysis to determine Eg, the relation [hνxln (1-

EQE)]
2
  vs hν was done and shown in part (b). Part (c) shows the PL measurements of the 

bandgap. Thus the author says irrespective of the method used to determine the bandgap, 

the value obtained is around 1 eV. 
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Fig. 2.23. Determination of Eg value by (a) Transmission (b) EQE (c) PL measurements. 

[14] 
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Samples were now done at varying substrate temperatures ranging from 320 to 

500 degrees centigrade. The figure below shows the comparison of these different 

samples based on the transmission, Eg values and the XRD pattern.  

  

 

Fig. 2.24. (a) transmission data (b) Eg values and (c) XRD patterns observed for various 

substrate temperatures. [14] 

 

If we look at the plot (b), which shows the Eg at different substrate temperatures, 

we see a gradual increase. Just in the difference from 320 to 400 degrees centigrade, we 

observe a significant change in Eg from .99 to 1.3 eV [14]. Using Auger electron 

spectroscopy the depth profile of the films reveal that the film done at 320 degrees 

centigrade showed uniform distribution of elements throughout the entire film depth, 

while from substrate temperatures higher than 370 degree centigrade, the segregation of 

Zn and Se at CZSS/moly interface was clearly observed [14]. This is believed to be ZnSe, 
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and its fraction is observed to increase with the increase in substrate temperature [14]. 

Thus based on the previous statement it is now clear that the discrepancies over the actual 

value of the bandgap arise not because of the method implemented in finding out Eg, but 

because of the formation of ZnSe based on the substrate temperature. The sample done at 

500 degrees centigrade shows a bandgap of 2.5, which could be related to the bandgap of 

ZnSe. This proves that ZnSe is excessively present in this sample.  Thus as the substrate 

temperature increases the amount of ZnSe in the sample increases because of which the 

bandgap increases. The second interesting fact observed is in the XRD spectra. All the 

XRD plots look the same and show no difference based on the material formed to 

distinguish between CZSS and ZnSe. Understanding of the 2θ values of these individual 

materials it was found that the peaks exactly coincide [14]. Thus they could conclude the 

fact that XRD isn’t the correct analysis to determine the crystal structure, which may 

mislead us, and any complementary tool is needed [14].  

The procedure followed in depositing the metals either by co-depositing or 

sequentially has proved to have distinguishing effect on the morphology and the 

precursors obtained after annealing the sample. The effects of different orders in which 

the metals were deposited on the properties of the film are well studied by O. Volobujeva 

at Tallinn University of Technology. He deposited metals in different orders and 

selenized them through a range of substrate temperatures to study the composition, 

morphology, and precursor formation at each range [15]. Precursor films with a different 

sequence of metals Cu, Zn and Sn were deposited on a soda lime glass substrate through 

vacuum evaporation [15]. The two parameters he used in his study to distinguish the 

films formed were based on the order of metal deposition and the selenization 
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temperature. The thickness of individual elements was controlled by using quartz 

crystals, which monitor the evaporation time, and also through scanning electron 

microscope. Given below shows the deposition process of the precursor films. Once the 

stack of metals is made elemental Se was used to selenized and form the absorber layer 

using isothermal sealed quartz ampoules [15]. The Selenization was done through a range 

of 210 to 550 degrees centigrade for duration varying from .25 to 2 hours. Once the 

sample were done the surface morphology and crystalline structure were studied using 

high resolution scanning electron microscope, the chemical composition and 

stoichiometry were analyzed with energy dispersive x-ray analysis and the bulk structure 

and phase compositions were studied using X-ray diffraction and Raman spectroscopy 

[15].   
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Table 2.1. Deposition process parameters of precursor CZSS film. [15] 

 

 

The author feels the sequence in which the metals are laid out greatly influences 

the morphology of the precursor films. Study on Sn-Zn-Cu precursor films were 

performed and SEM images indicate a “mesa-like structure “ uniformly extended 

throughout the film till the moly interface. He feels that the non-uniform Sn deposition 

forming discontinuous layer of semispherical crystals on the moly is the reason behind 

this crystal structure. This discontinuous Sn deposition is also observed when Cu-Zn-Sn 

was deposited in the order specified, which confirms the same crystal structure. The 

images of both these samples are shown below [15]. 

 

Fig. 2.25. SEM micrographs of the surface of films fabricated in the order (a) Sn-Zn-Cu 

(b) Cu-Zn-Sn. [15] 
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The XRD on theses samples gives evidence of alloy formation between Cu-Sn 

and Cu-Zn, which are shown in the figures below. Peaks of Cu6Sn5 and Cu3Sn forms in 

the samples give a Cu/Sn ratio of 2:1 as shown in the figure [15].  

  

Fig. 2.26. XRD patterns of (a) (1) precursor metals Cu-Zn-Sn film, (2) selenized at 

250°C, (3)at 470°C. Peak Identification: a- Cu2Sn5, b- Cu5Zn8, c- CuSe2, d-Cu2ZnSnSe4, 

m-Mo.(b) XRD pattern showing alloy of 2Cu+Sn layer. [15] 

 

Another order of deposition explored by them is the 2Cu/Sn-Zn and 2Cu/Sn-Zn-

2Cu/Sn-Zn, where co-deposition of Cu and Sn was done forming an alloy with a ratio of 

2:1 atomic percentage instead of sequentially depositing them. The obtained films were 

smoother and uniform all throughout as compared too the previously made sample of 

different order. Selenization of these samples at substrate temperature 250 degrees 

centigrade and analyzing their morphology indicates a closely packed agglomerated 

formation with crystals in a sub micron size (50-100nm) [15]. The comparison of these 

two different types of crystal formation based on the order of deposition is clearly shown 

in the figure below. 
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Fig. 2.27. SEM micrographs of (a) Sn-Zn-Cu films at Sub Temp. 250°C and (b) Cu/Sn-

Zn film surface selenized at Sub. Temp. 300°C. [15] 

 

When the same samples are synthesized at a substrate temperature of 300, the 

EDS analysis clearly indicates the formation of CuSe [15]. Also the inner particles in the 

sample show a ternary mixture of CZSS, Cu2SnSe3 and ZnSe phases. The author felt that 

the presence of CZSS in the film is based on the order implemented as the samples done 

in the order Sn-Zn-Cu has no phase indications of CZSS but @Cu/Sn-Zn did [15]. He 

also felt that as the substrate temperature increases the amount of ternary Cu2SnSe3 

decreases and eventually stops in samples done above 400 degrees centigrade [15]. This 

is shown in the figure below. 

The structure of these samples made at substrate temperature higher than 420 

degrees centigrade still retains its two-level structure; sparse packed large crystals in sizes 

of up to 1-2 μm at the surface layer and dense small-crystalline bottom layer with sizes 

around 50-200 nm [15]. Better efficiencies are observed for films having bigger grain 

structures but also the presence of CuSe on the surface and also inside the films are very 

much evident which reduces the efficiency in these films.  
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Fig. 2.28. SEM images of the surface of a stoichiometric film done at Sub. Temp. 470°C. 

(a) cross-section (b) Cu rich precursor film selenized at 470°C. [15] 

 

A review of literature done by Phillip J. Dale gives a comparison of the optical 

and characteristic properties of different types of absorber layers. The comparison gives 

us a good understanding of the differences in the best efficient chalcopyrite and Kesterite 

(S/Se) films along with CIGS plots. The author himself synthesized Kesterite sulphide 

film by first stacking metals on a molybdenum coated soda lime glass in the order Cu-Sn-

Cu-Zn using electro-deposition method. The precursor stack is then annealed in the 

presence of elemental sulfur in 0.5 bar forming gas. Devices were then completed by 

sequentially depositing CdS using chemical bath deposition, unintentionally doped zinc 

oxide (i-ZnO), aluminum doped zinc oxide (Al-ZnO) and Ni-Al metal contacts. Given 

below is a comparison based on current voltage curves for chalcopyrite (S/Se) and 

Kesterite (S/Se) absorber layers. 
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Fig. 2.29. I-V curves for the best efficient Cu2ZnSnS4 (Black), CuInS2 (Black dash), 

Cu2ZnSnSe4 (Red), CuInSe2 (Red dash) and EDA- Cu2ZnSnS4 (Green). Data adapted 

from references [17, 13, 18, 19]. [16] 

 

The Kesterite sulphide has an open circuit voltage Voc of 610mV, which is 

120mV less than its chalcopyrite counterpart. This could be because of the difference in 

the bandgap values of each of these materials. Studying figure 2.29 we can determine the 

bandgap of chalcopyrite sulphide to be 1.46 and 1.36 for the record Kesterite sulphide. 

Similarly the short circuit current Jsc of the best Kesterite sulphide is 17.9 mAcm
-2

, which 

is 4 mAcm
-2

 less than chalcopyrite sulphide. Coming to the chalcopyrite and Kesterite 

selenide samples, the examination of the EQE curves shows that the chalcopyrite cell 

generates extractable carriers almost perfectly over a wide wavelength range. Whereas 

the Kesterite device has a lower maximum collection efficiency of around 60%. Kesterite 

selenide has worse fill factor than the Kesterite sulphide device, and a lower Voc leading 

to a lower overall device efficiency. The corresponding parameter data of each of these 

devices is shown in table 2.2. 
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Table 2.2. Parameters of best Kesterite and Chalcopyrite devices [17, 13, 18, 19]. [16] 

 

 

  

Fig. 2.30. EQE curves of the best efficient Cu2ZnSnS4 (Black), CuInS2 (Black dash), 

Cu2ZnSnSe4 (Red), CuInSe2 (Red dash) and EDA- Cu2ZnSnS4 (Green). Data adapted 

from references [17, 13, 18, 19]. [16]  

 

The objective of any researcher working on solar cell absorber layers is to form a 

film with no secondary phases. But unfortunately due to the complexity of the quaternary 

Kesterite compound the margin of error is very large. The X-ray diffraction is used to 

determine the phase composition of the Kesterite sulphide material. The Katagari group 
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did not find any secondary phases using XRD but the EDA Kesterite sulphide as shown 

in the figure 2.30 did show secondary phases. Even they were surprised to find out that 

the peaks for CuSnS3 and ZnS coincide with the main reflexes of the quaternary 

compound. But the presence of Cu2ZnSnS4 is confirmed by other minor reflexes which 

do not overlap with the secondary phases. Thus they conclude that by just using XRD 

alone, we cannot determine the phase composition of this material, which is the same 

with the Kesterite selenide material mentioned before. 

  

Fig. 2.31. XRD grazing incidence diagram with reference Cu2ZnSnS4, Cu2SnS3 and ZnS 

peaks. Marked JCPDS 01-075-4122, 01-071-5975,00-027-0198 respectively. [16] 

 

Thus now that we have done a review of works of different research groups 

around the world who are working on Kesterite based absorber layers, we get an 

understanding of the parameters affecting, the challenges faced and the methods 

implemented to overcome these challenges. The bandgap of this material is still not 

known for sure. Each of the groups came up with different values varying from 0.9 to 1.5 

eV with their individual proven results but there is not one value, which they could all 

agree upon. Thus determining the actual bandgap value of this material would be an 
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important task in my research. Secondly, the methodology of each of these groups is 

different. Few groups used co-evaporation, few stacked up metals before selenization and 

few used precursor materials and also alloy formation. Determining the best possible 

method to produce films with good uniformity, morphology and the right grain structure 

would be of utmost importance, not to forget the stoichiometry. In this study we looked 

into the problem of films having multiple phases other than CZSS like ZnSe, CuSe, 

Cu2SnSe3, etc. Thus forming a quaternary absorber layer involving four elements to form 

one compound all being in a single phase would definitely be a complex and challenging 

task. Also to keep in mind the ZnSe layer formation at the CZSS/moly interface, which 

cannot be distinguished from CZSS in XRD measurements is very important. The loss of 

Sn when operating the substrate temperature above 420 degrees centigrade is a major 

concern.  

In the next chapter, the methodology is described in detail, as well as the 

modifications to correct certain defects encountered, the equipment to fabricate each 

layer of the solar cell and the characteristic and optical measurements done on the 

samples.  
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3. EXPERIMENTAL APPARATUS AND PROCEDURE 

 

In this chapter I would be explaining in detail the design and operation of each 

component of the apparatus used in fabrication of the Kesterite (CZSS) based p type 

absorber layer and all the other layers being deposited to form the final solar cell. I would 

then explain the step-by-step procedure followed till the final sample is prepared. After 

which I shall give an overview of the material and device characterization techniques and 

the equipment involved in this study. 

 

3.1 CZSS Deposition Apparatus 

The CZSS Kesterite compound is deposited using physical vapor deposition 

technique. The chamber is designed specifically in such a way that each individual 

element or multiple elements simultaneously could be controllably deposited on to a 

substrate at a desired rate. The apparatus is equipped with isolated elemental effusion 

sources also known as a gun whose temperature is controlled using a power controller. 

The real time temperatures of these guns could be observed by installing individual 

thermocouples which sense the temperature compared to the set value on the power 

controller. As we operate the procedure at micro torr (10
-6 

torr) we equip the chamber 

with a mechanical pump which pumps down to milli torr (10
-3 

 torr), after which the turbo 

pump takes charge and pumps the chamber down to micro torr range. We use pressure 
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gauges for both the mechanical and turbo (ultra high vacuum) pumps like ion gauges.  

After the desired pressure is read, the process of deposition starts. A schematic of the 

chamber is shown in figure 3.1 and 3.2. 

The equipment I used for physical vapor deposition consists of two isolated 

chambers each holding two guns, named chamber 1 and chamber 2. Chamber 1 holds 

Copper and Tin guns while chamber 2 hold Zinc and Selenium. Each of these chambers 

is well equipped and is designed to function in a similar fashion. The gun has an inner 

shield and outer shield to block the radiations emitted from the heated coil. The coil is 

made of tantalum wire, which is in a cylindrical fashion surrounding the elemental source 

material. The source is laid in a liner made of molybdenum or tantalum, which is put in a 

crucible generally made of quartz or ceramic, which insulates the liner from the chamber 

to avoid shorting. An arrow marked towards the gun indicates the leads from the power 

controller going to the gun through which the current passes. The leads are insulated 

using small ceramic pieces all along its path to avoid these shorts to the chamber. 

Contaminated ceramics are replaced time to time to avoid uncontrolled deposition. The 

thermocouple implanted for each gun reads the real time temperature of the gun and 

which is sent back to the power controller and is comparable to the already set 

temperature value in the controller. Similar to the leads mentioned above the 

thermocouple is also covered with insulating material to avoid shorts or formation of 

secondary thermocouple along its circuitry path to the gun and back.  The arrow pointing 

back towards the power controller indicates this action. 
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Fig. 3.1. Schematic of chamber 1 with copper and tin elemental sources. 
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Fig. 3.2. Schematic of chamber 2 with zinc and selenium elemental sources. 

 

Each gun has its own quartz crystal, which is used to measure the flux rate of that 

particular element. The Crystal holder holds a gold-coated crystal sensor. The Reading 

from the senor is indicated on a deposition monitor, which displays the rate of deposition, 

thickness of the material deposited and the time duration for which the deposition 

occurred. The way it operates is based on piezoelectric sensitivity of a quartz monitor 

crystal to added mass. The quartz crystal microbalance uses this mass sensitivity to 

control the deposition rate and final thickness of the material on the sample. When a 

voltage is applied across the crystal, it gets distorted and changes shape proportional to 

the applied voltage. At discrete frequencies of the applied voltage a condition of a very 

acute electro mechanical resonance is observed. When mass is added to the sensor facing 
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the gun, the frequency of these resonances is reduced. This change in frequency is 

repeatable and is presently precisely understood for specific oscillatory modes of the 

quartz. This phenomenon is the basis of measurement and process control tool that can 

detect the addition of less than an atomic layer of an adhered foreign material. Figure 3.3 

shows a typical gold-coated quartz crystal. 

 

Fig. 3.3. Gold coated quartz crystal. [20] 

 

For any deposition to happen in the desired way the pressure in the chamber 

should be of the desired value which is of utmost importance. As I have mentioned before 

we use two pumps (mechanical and turbo) and the use of an ion gauge to read the 

pressure. The gauge consists three electrodes which makes it function like a triode. The 

three electrodes for an ion gauge are the filament (cathode), collector or plate and a grid. 

When current is passed through the filament, electrons are emitted which have a forward 

and backward movement in front of the grid before finally entering it. In the process 

these electrons collide with gaseous molecules to form an ion-electron pair. This 

phenomenon is called electron ionization. The number of these ions is proportional to the 
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product of the gaseous ion molecular density and the current through the filament. These 

ions are collected in a plate or a collector to form an ion current. Since the gaseous 

molecule density is proportional to the density, by measuring the ion current we can 

estimate the pressure in the chamber.  

The sources have individual shutter or shield as shown in the figures 3.1 and 3.2 

which electro-mechanically operated to open and close whenever desired. The sample is 

held on graphite made sample holder, which is slid into rods to hold it in position in such 

a way that it has a direct path of visibility to the two elemental source guns. The substrate 

shutter operates same as the source shutter and is mainly operated during the start and 

end of the deposition. The heating filament over the substrate is used to heat the sample. 

The TEE, MP1 and MP2 valves shown in figures 3.1 and 3.2 are opened for the pumps to 

have access to pump the chamber. 

 

3.2 Elemental Source Calibration 

The quaternary Kesterite compound as we know has four elements associated to it 

namely copper, zinc, sin and selenium. Only when all these individual elements are 

deposited on to a film in the right quantities on to a substrate, we can actually form the 

compound irrespective of how ideal the process flow might be. The desired stoichiometry 

of a Kesterite compound should have Cu=25%, Zn= 12.5%, Sn=12.5% and Se=50%. So 

how do we know how much of each of these materials are depositing when we do the 

process. The deposition monitors operate on ideal conditions, which indicate how much 

of the material is depositing based on the amount of mass hitting the crystal sensor. To a 

certain extent we can relate this to the deposition of the same material on the substrate. 
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Though the flux hitting the crystal and the substrate could be the same, but we can never 

be sure that the amount of material sticking to the substrate is proportional to the flux 

reading of the deposition monitor. Sticking coefficient is one factor, which comes into 

play. Different materials have different sticking coefficient. It depends on various factors 

like roughness, type of material, etc. So how do we know exactly how much of the 

material hitting the substrate is actually depositing on it. The answer to it comes by 

calibrating each of the individual source elements.  

Glass samples are taped and loaded into the chamber, we deposit the element to 

be calibrated for a certain time. Once the run is done we remove the tape from the sample 

and perform thickness measurement on it. Based on the thickness and taking the time into 

consideration. We actually get the rate of deposition of that element at a certain 

temperature in Angstroms per second. Like-wise multiple runs are done in the same 

fashion by increasing temperature at equal amount and a graph is plotted to show the rate 

of deposition at a certain temperature. This calibration of the gun gives an accurate 

measurement of the rate at which we are depositing each element. A model plot for the 

zinc source is shown in figure 3.4. The x-axis denotes the input voltage on the power 

controller and we can observe that there is a gradual increase in the rate as the 

temperature is increased.  
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Fig. 3.4. Zn calibration plot. X-axis denotes the input voltage, y-axis shows the flux rate. 

 

Thus by calibrating the individual elements we know the time for which each 

element is to be deposited to get the desired amount on the film to achieve stoichiometry. 

The problem of depositing one or more elements in excess would generate precursor 

compounds to form, which in turn would give more than one phase in the film. This is 

something as we know is not desired.  

 

3.3 Device Fabrication 

In this sub section I would list out all the fabrication procedures followed in 

making the Kesterite based solar cell. I personally deposited the CZSS layer(p type) and 

the CdS(n type) layers but all the sputtering based depositions (moly, i-ZnO, Al-ZnO) are 

done along with other research students in my group. A block diagram of the Kesterite-

based solar cell is shown below in figure 3.5. 
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Fig. 3.5. CZSS based solar cell block diagram. 

 

3.3.1 Substrate Cleaning 

The glasses we used include soda lime and 7059 glass for material 

characterization and molybdenum coated soda lime glass for device fabrication. The soda 

lime glass substrate is first scrubbed with soap and rinsed properly in DI water. The 

samples are then dipped in methanol taken in a beaker and placed in the sonicator for 30 

minutes. After this the sample is taken out and dipped in DI water and again put back in 

the sonicator for another 30 minutes. Once done the samples are blown dry using 

compressed nitrogen and ready to be loaded into the chamber. 

The 7059 Corning glass is first rinsed in DI water to remove all the small 

particulates and gently scrubbed with a fine brush under DI water. Then the sample is 

dipped in a HF solution of 1:10 concentration with water for 10 seconds. The sample is 
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taken out and rinsed in DI water. This process is repeated once again and then blown dry 

with compressed nitrogen after which the sample is ready to go. 

 

3.3.2 Moly Deposition 

A bi-layer deposition of moly is done on cleaned soda lime glass using DC 

sputtering. The first layer done at a base pressure of 5 milli torr for a final thickness of 

2000 angstroms is done for better adhesion to glass. Another layer on top of this for a 

thickness of 8000 angstroms is done at 3 milli torr for a smooth surface finish and high 

conductivity. The rate of deposition for both the depositions is maintained at 10 

angstroms per second. Argon gas flow is used as a carrier. The moly acts as a back 

contact to the sample being tested for J-V measurements. 

 

3.3.3 CZSS Formation 

The moly coated soda lime glass is loaded into chamber 1 and Copper layer is 

deposited. The Sample is then loaded into chamber 2 and zinc is deposited over copper. 

We encountered problems in depositing zinc first because of its week sticking coefficient  

due to which it barely sticks to 7059 glass. After the Zn depositing the sample is taken 

out and loaded into chamber 1 again to deposit a sequence of runs in the order of Cu-Sn-

Cu. Once this run is done we finally form a stack of 5 layers in the order Cu-Zn-Cu-Sn-

Cu, where Zn and Sn are encapsulated between copper layers. The final step involves 

selenization of the sample under elemental Se flux at substrate temperatures varying 

between 300 to 500 degrees centigrade. The procedure would be well understood as we 
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discuss results in the next chapter by which we can understand the reason behind this 

process.  

 

3.3.4 CdS Deposition 

The CdS layer is deposited on the CZSS layer using ammonium hydroxide, 

cadmium acetate and thiourea. The process starts by preparing individual solutions of 

74.5 ml of Ammonium hydroxide (NH4OH), 59.6 ml of cadmium acetate 

[Cd(CH3CO2)2], 59.6 ml of thiourea [SC(NH2)2] and 400 ml of DI water. First the 

ammonium hydroxide and cadmium acetate are poured into DI water in the amounts 

specified. The solution is then heated to 30 degrees centigrade. At this point thiourea is 

added to the solution and the temperature is heated to 80 degrees centigrade. Once it 

reaches 80 degrees the temperature is maintained for 7 minutes. At the end of the time the 

sample is taken out and rinsed under DI water for sometime to remove particulate matter 

on the sample and blown dry with compressed nitrogen. 

 

3.3.5 I-ZnO Deposition 

The intrinsic ZnO layer is deposited on CdS layer using RF sputtering. The 

material is deposited for a thickness of 1000 angstroms at a constant rate of 1 angstrom 

per second. Oxygen flow rate is controlled at 10% of the rate of argon.  

 

3.3.6 Al-ZnO Deposition 

The deposition of Al-ZnO is also done by RF sputtering under the influence of 

argon gas. A mask is laid on the sample to pin point the contact regions on the sample. 
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Desired thickness of 3000 angstroms is deposited at a rate of 1 angstrom per second. The 

Al-ZnO is used as top contact for the J-V measurements. 

 

3.3.7 Device Isolation 

Scratching off all the layers till we reach the moly layer along the grid pattern 

does the device isolation for each point of contact of the Al-ZnO. A back contact is made 

at an inactive region on the sample till the moly layer using a blade. Indium is used for 

better contact on the moly by melting it on moly for the back contact and avoids shorts 

with the Al-ZnO contacts. 

  

3.4 Material Characterization 

Below I would briefly describe all the methods used for material characterization. 

They would include Scanning electron microscope, and X-ray diffraction. 

 

3.4.1 Scanning Electron Microscope 

The scanning electron microscope is used on the samples made to study the lateral 

and cross sectional imaging. The SEM is mainly used on CZSS layers deposited on direct 

soda lime glass and 7059 corning glass to study the elemental composition in order to 

attain stoichiometry. A 200k X magnification is used to pin point the location on the 

sample we intended to study. Different ranges of operating voltages were used varying 

from 10kv to 25kv (max) based on the film thickness. As the electron beam reaches only 

into the first 5k angstroms into the sample we had to vary the thickness so as to get an 

accurate value for the composition of the films made.   
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3.4.2 X-Ray Diffraction  

The X-ray diffraction is used on the samples to study the structural and phase 

information. A film area of 1 cm
2
 is characterized along a range of 20≤2θ≥90. 

 

3.5 Device Characterization 

The device characterization techniques I used include transmission, current 

voltage and external quantum measurements. They are discussed briefly below. 

 

3.5.1 Transmission Measurement 

 All the samples prepared on 7059 glass are tested for their optical properties using 

transmission measurements. We use a Silicon crystal as reference to study the transmitted 

light through the sample. Light is passed through the sample and transmission is 

measured at different wavelengths varying from 400nm to 1100nm. The data obtained is 

used to study the bandgap of the material.  

 

3.5.2 Current-Voltage (J-V) Measurement 

All the devices are tested for their I-V measurements both under darkness and 

under light. The voltage is swept from -0.1-0.5 volts. And the corresponding current is 

plotted. 
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4. FILM GROWTH ANALYSIS AND RESULTS 

 

4.1 Kinetics and Thermodynamics of Film Formation 

By the end of chapter three we come to a point where we are ready to determine 

what exactly we have fabricated at each stage of different material depositions. It is very 

important to understand the optical properties and morphology of the CZSS layer in 

comparison with CIS and CIGS absorber layer to validate the potential of this material 

too make it to the large scale manufacturing level. This we can only do if we perform 

intense analysis and error correction of minute details and first determine its functionality 

at the cell stage.  

From a manufacturing perspective it is advantageous to deposit metals and then 

selenized it with solid selenium source. Selenium is a highly volatile element in vapor 

phase and gets into every nook and corner of the chamber. Over that the content of 

selenium need to achieve desire stoichiometric films is high. This is a major concern and 

shortcoming in a vacuum based material deposition. This is not only costly but also 

produces rapid build up of Se content inside the reactors. At a manufacturing level this 

results in the need for frequent cleaning of the chambers and hence adds to downtime 

[21]. The main reason behind all this is because of the low sticking coefficient of Se to 

the growth surface. This in turn is because of two reasons, firstly because of the 

formation of chains and rings by Se [21] and secondly due to the kinetics and 
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thermodynamics of surface interactions. The figure below shows a plot as to how much 

the ratio of Se with metal flux ratios is dependent on the operating substrate temperature 

[21]. It clearly shows that by operating at a higher substrate temperature of the film at 

500 degrees we almost achieve the desired amount of Se content (50%) in the film as 

compared to 300 degrees for the same flux rate. This observation was done on CIGS 

films and might not behave the same with respect to Kesterite material.  

 

Fig. 4.1. Se incorporated in a CIGS film. [21] 

 

Compound formation from Selenization of metal precursors is a complex of 

kinetics and thermodynamics. Kinetics deals with the diffusion of metals through other 

metals and compounds. And thermodynamics is the formation of compounds from 

precursors, which can be metals or precursors binaries of MSe with temperature as the 

variable.  As I have mentioned before we form the stack of metals in the order Cu-Zn-Cu-

Sn-Cu, based on which most of the copper is present at the moly interface and zinc and 

tin on top of it sequentially. The objective of forming CZSS is greatly dependent on 
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getting all these metals to reach a common place where they see Se flux at the desired 

amount to form the Kesterite compound at an optimum temperature.  

The access of Se to the metals and how it actually forms binaries of MSe is not 

really known. But we can postulate two scenarios, which could be occurring. (1) All the 

metals diffuse to the surface region and when present in individual desired quantities and 

the optimum thermodynamic temperature see Se and form CZSS. (2) The Se itself 

diffuses through the metals reaching the surface and also their binaries with Se to reach 

metals buried underneath to form precursors with those metals or CZSS itself. To 

understand this we need to have a clear picture of the diffusion scenario of how each 

metal diffuses. Thus we conducted an experiment where we deposited metals with their 

operating temperatures and duration in the following way Cu (1185° C) for 50 min, Zn 

(295° C) for 95 min, Cu(1185°C) for 5 min, Sn (1200°C) for 50 min and finally Cu 

(1185°C) for 5 min. Once we formed this stack we selenized it at Se (205°C) for 95 min 

at a substrate temperature of 300°C to form a film. The sample is then tested for its 

composition using Energy dispersive spectroscopy (EDS) using a scanning electron 

microscope. The sample is annealed multiple times and similar testing is performed on it, 

the reason for this would be explained as we go along in the discussion.
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Table 4.1. EDS results of CZSS 50 sample after each anneal. 

  Source temperature & Time    At%(EDS)     

Cu Zn Sn Se Sub. Temp Cu Zn Sn Se 

         

1185 295 1200 205 300 14.08 29.23 29.64 27.06 

50+5+5 95 50 95      

   205 300 13.38 30.57 24.92 31.14 

    95      

   205 400 36.1 14.64 3.52 45.75 

   95      

   205 400 34.61 9.14 6.77 49.49 

   95      

   205 400 33.47 6.98 9.21 50.35 

   95      

   205 400 33.2 9.22 8.31 49.28 

   95      
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After the first anneal at 300°C we see that we are CU poor (14.08 % which is 

supposed to be around 25%), Zn and Sn are very high than needed at around 29% each 

and Se at 27% which almost half of what we desire. This explains the diffusion of metals  

at 300°C in the following way. Cu which is the lower most layer in the stack, started to 

diffuse up to the surface passing through Zn and Sn. The Zn also diffused through Sn to 

the surface and the Sn, which is already predominantly present at the top of the stack, 

remained there. The Se content at 27% indicates that the metals are still not selenized 

properly, which also confirms the presence of various metal and MSe binary precursors 

to be present in the film.  

So we anneal the sample again maintaining both the substrate temperature 

(300°C) and Se flux as the same as the first selenization run. The EDS shows numbers 

similar to the first anneal. Thus we can understand two phenomena to be occurring at this 

situation. (1) Operating the substrate temperature at 300°C isn’t doing justice for our 

objective to bring all elements to the surface to form CZSS. Thus we need to vary the 

substrate temperature to understand and improve the diffusion phenomena of each 

individual metal. (2) As we have discussed before the sticking coefficient of Se depends 

on the operating substrate temperature. Thus operating the temperature at 300°C isn’t 

getting enough Se to react to the growth surface as we desire. Based on our above two 

conclusions we decided to increase the substrate temperature to 400°C in the next anneal 

step. The EDS after the third selenization run gave us results, which were different from 

the previous results. Before we discuss the results we should always keep in mind that the 

EDS can just see the top 1-micron of the estimated 5-micron thick sample. What ever is 

present below that is not known by EDS testing on the sample. So coming back to EDS 
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results after the third selenization run the Cu shot up to 36% from 13% which shows that 

Cu diffuses very easily through both the other metals and reached the surface where it 

could now see Se. The Zn and Sn dropped down to 9% and 6% from 30% and 24% 

respectively. And Se reached 46%, which is pretty close to what we want. Thus we can 

now understand that Cu diffuses better than Zn and Sn to the surface. The Zn and Sn are 

buried under the Cu and thus their right amounts in the sample cannot be determined 

using EDS as it can only see the top 1-micron of the film. After which additional anneals 

were performed on the same sample to see if the Zn and Sn would come up to the 

surface, but the EDS results didn’t show much change. The figure 4.2 shows the 

composition for each of the constituents after each anneal step based on the EDS data. 

The plots for each of the metals show how they move along after each anneal step in the 

top 1-micron of the film. Thus we can summarize the above in the following few 

sentences. Initially all the metals are around the same Atomic percentage after the first 

and second anneal at 300°C. At 400°C Cu diffuses rapidly to the surface and is selenized. 

Sn is pushed back by Cu diffusing through it while some Zn remains in the EDS area. 

With further anneal steps Zn approaches its deposited value indicating it has spread 

uniformly. Sn climbs back up to attain the same composition as Zn(10%) indicating 

perhaps the formation of CZSS. Thus we can expect the top 500 nm to contain CZSS and 

CuSe due to large Cu presence. 
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Fig. 4.2. Film composition as a function of number of anneal times. 

 

 After the first anneal step in the sample CZSS 50 we know we don’t have enough 

Se content in the film. Though we expect some part of the film to be Kesterite material, 

the remaining film could be occupied by other phases present due to the insufficient Se 

content and also the operating substrate temperature. Based on the background 

knowledge of this film we know a large portion of these secondary precursors would 

have ZnSe, Cu2SnSe3 and binaries of CuSe. These intermediate phases as well as the 

desired CZSS form according to phase diagrams and forming energies. The phase 

formation can occur at the top surface of the film and also in the bulk of the film. Since 

Cu diffuses well to the top surface we can expect binaries of copper selenide to be present 

at the surface. From Ahns paper we know that the ZnSe is generally found at the 

moly/CZSS interface and Cu2SnSe3 would be present in the bulk of the film, as we know 

Sn does not easily diffuse to the surface even after repeatedly annealing the sample. Thus 
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the initial few runs were done to understand the kinetics of the individual metal and MSe 

binary precursors in the film.  

 We have tried various orders of deposition of metals before they are selenized. 

The table below shows the different ways we implemented to synthesize the CZSS 

material and the problems we faced in doing so.  

 

Table 4.2. Different order of depositions implemented. 

Glass Type Procedure Observation 

7059 Zn/Sn-Cu-Selenization 

(300°-500°) 

Loss of Zinc 

7059 ZnSe-Sn-Cu-Selenization 

(300°-500°)  

Flaking , Non Uniform, 

ZnSe not reacting 

7059 Cu/Sn-ZnSe-Selenization 

(300°-500°) 

Flaking 

7059 Cu/Sn-Zn/Se (300°-500°) Flaking, Loss of Zinc 

7059 Zn/Se-Cu/Sn-Selenization 

(300°-500°) 

Puffy look, non-uniform 

SnO2 Zn/Se(275°C)-Cu/Sn-

Selenization (300°-500°) 

ZnSe at the glass, Flaking 

SnO2 Zn-Cu/Sn-Selenization 

(300°-500°) 

Non-uniform Zn in step 1 

SnO2 Cu-Zn-Cu-Sn-Cu-

Selenization (300°-500°) 

EDS picking up Sn from the 

glass 
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Table 4.2. (Continued) 

7059 Cu-Zn-Cu-Sn-Cu-

Selenization (300°-500°) 

Good uniform samples 

 

 Looking at the table above, we observed the problems, which we encountered by 

depositing the metals in different ways. Thus we came down to stacking the metals and 

then selenizing it, which gave us uniform samples with no flaking problem.  

 Our primary tool of determining the composition of the films formed is Electron 

Dispersive Spectroscopy (EDS) using a Scanning Electron Microscope. But the 

disadvantage of this technique is it only sees the top 500nm of the film. Thus what 

material is present underneath it is not studied. The diffusion phenomenon of each metal 

observed in the figure 4.2 would be the same even if we made a thinner film. In order to 

determine the right composition of a film we need to resort to making thinner films by 

which the EDS could scan through the entire thickness of the film. 

 There is evidence that heating a film containing Zn above 300°C in the absence of 

Se flux can cause the Zinc to diffuse to the surface and leave the film. This peculiar 

phenomenon is not the same with respect to Cu and Sn. The anneal procedure we 

followed till now during Selenization process was that we made the film see Se flux only 

after the substrate temperature reached its set value ranging from (300°-500°C). But those 

films where the substrate temperature is higher than 300°C, the EDS results indicated 

barely any zinc left in the sample. These were observed on thinner films in order to avoid 

the conflict of the limitations of EDS. The table below indicates the EDS results. 
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Table 4.3. Controlling loss of zinc 

 

Cu Zn Sn Se 
Sub. 

Temp. Cu(At%) Zn(At%) Sn(At%) Se(At%) 

1185(Temp.) 295(Temp.) 1200(Temp.) 210(Temp.) 350 23.22 3.12 19.63 54.03 

10+1+1(min) 13(min) 4(min) 30(min)      

1185 295 1200 210 400 27.69 3.09 17.47 51.75 

10+1+1 13(Blue) 4 30           

1185 295 1200 215 300+400 14.75 18.28 12.53 54.44 

10+1+1 13(Blue) 4 40      

         

         

1185 295 1200 215 300+350 11.43 26.34 7.84 54.4 

10+1+1 13(Blue) 4 40           
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 The table indicates the first two runs where the sample is heated to its set 

substrate temperature after which it starts to see selenium flux. We can see that the Zinc 

percentage is very low though and we are sure we have enough Zn present in the metal 

stack we formed before Selenization. Thus we came to the conclusion that the Zn leaves 

the film when heated above 300°C with no Se flux. In order to counteract this problem 

we came up with a new anneal procedure by which we completely controlled the loss of 

Zinc. This procedure involved a two-stage process. We heated up the sample to 300°C 

where we selenized it for 20 minutes as we know we do not lose Zn at this temperature. 

This step helps the metals to properly diffuse within each other as we have explained 

earlier in the diffusion phenomenon. In the second step we increased the substrate 

temperature to 350C or 400°C based on the experiment where we again selenized the 

sample for 20 minutes. Another modification was that we made the sample see Se flux 

once it reached 200°C while heating up to 300°C and while cooling down till 250°C at 

the end of Selenization. The results were very much distinguishable to the films done in 

the old method.  As we can see in the table above we actually have more zinc than 

required, which we completely lost in the old anneal method. Thus now we had to reduce 

the amount of zinc content to attain perfect stoichiometric films. 
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Fig. 4.3. %Cu variation under the new anneal procedure when we retain Zn. 

 

 Previously when we were using the old anneal procedure, the %Cu observed in 

the EDS is proportional to the Cu deposition time. The reason behind this as we know Cu 

reaches the top surface faster than any other precursor metal and gets selenized. But we 

also know we lost Zn in the film. But after we started using the new anneal procedure, we 

observed that the %Cu read by the EDS is less than what is expected. Thus is prevented 

to reach the surface as used to by the Zn. This is shown in the figure 2.4.  

 

4.2 XRD Analysis 

 Now that we have made films which are close to the stoichiometry we desire, we 

proceed forward in analyzing it with XRD through which we hope to determine what 

phases we form. We swept the sample through a range of 20°≤2θ≤80° where we 

observed peaks which correlate to the CZSS material. The plots below shows the XRD 

analysis and its corresponding stick pattern for the CZSS 50 sample. 
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Fig. 4.4. XRD for CZSS 50. 

 

 The plot above shows strong peaks at angles of 27.154 and 45.146 which 

correspond to the CZSS material. We know from our background knowledge that ZnSe 

peaks perfectly coincides with the CZSS peaks. Another important observation we made 

was that Copper Tin Selenide, which is one other possible phase formation also coincides 

with the CZSS and ZnSe peaks, which makes it even more complicated. Thus we have to 

distinguish between the peaks of these three materials to determine what material we are 

forming, which is to some extent a limitation on XRD.  

 In XRD, the beam is scanned along the sample over a certain length, but because 

we are dealing with very thin films here of the order of 1 micron this technique is 
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questionable to be accurate. Thus an advanced technique in XRD called the grazing 

incidence is used on our samples where the sample holder is not rotated and the beam hits 

the sample at minimal angle at around 0.5-1° with respect to the surface. Thus the beam 

grazes along the surface because of which the beam sees more of the sample now though 

it’s a very thin film. This technique was used on all the samples we have done and we 

could observe better-defined peaks as compared to the old procedure.  

 In order to carefully compare and differentiate the XRD plots of all the three 

materials (CZSS, ZnSe and Cu2SnSe3), we have made our own ZnSe and Cu2SnSe3 

samples. Plots for CZSS 84 & 88 done at substrate temperature 350°C and CZSS 85 done 

at substrate temperature 400°C are shown below sequentially. 

 

Fig. 4.5. XRD plot for ZnSe. 



67 

 

 

Fig. 4.6. XRD plot for Cu2SnSe3. 

 

 

Fig. 4.7. XRD plot for CZSS 84 done at 350°C. 
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Fig. 4.8. XRD plot for CZSS 88 done at 350°C. 

 

 

Fig. 4.9. XRD plot for CZSS 85 done at 400°C. 
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If we observe the above plots, we can come to a conclusion that irrespective of the 

material (CZSS, ZnSe and Cu2SnSe3), the XRD peaks are positioned the same based on 

their 2θ angles. But if we closely observe the ZnSe plot, there are two peaks at angles 25° 

and 29° which are not present in either the CZSS or the Cu2SnSe3. If we look at the plot 

for CZSS 50 we see these peaks present in them too. But we need to remind ourselves of 

the fact that CZSS 50 is not a stoichiometric film. Thus we can conclude that if our CZSS 

films do really have ZnSe, then we should be able to see these two peaks. Another 

important conclusion we need to make here is, because we know that our films CZSS 

84,85 & 88 (irrespective of the substrate temperature) are stoichiometric films based on 

the EDS data, and if we do not have ZnSe in them then we should not have Cu2SnSe3 as 

well.  

 The stick pattern of CZSS 88 is shown below in fig. 4.10. The peaks of CZSS and 

copper tin selenide perfectly coincide with the peak list but we can observe a minor 

variation with respect to the ZnSe peak. Also there few peaks in the peak list which can 

be only observed in the CZSS peaks. The Ahns paper indicates that there is no such 

variation in their XRD analysis done at different substrate temperature as indicated in 

chapter 2, but they do not consider the possibility of Copper Tin Selenide at all. This 

could be due to that fact that they report the loss of Sn in their films went operating at 

higher temperatures, which is not the case with our films. Irrespective of the temperature 

we performed Selenization at, we could observe the presence of Tin at its desired level.  
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Fig. 4.10. Stick pattern for CZSS 88, peak list indicates the observed peaks, Red- CZSS, 

Blue- ZnSe and Green- Cu2SnSe3. 

 

Based on the XRD plots it is most likely that the film is CZSS and not ZnSe or 

Cu2SnSe3. But we cannot completely ignore the presence of both these materials in our 

films. Maybe they are present but in trace amounts. Thus we can conclude saying that the 

XRD data is definitely supportive but not conclusive.  

 

4.3 Bandgap Determination 

 All the samples we have made are studied optically by doing transmission 

measurements on them. The observed data was used to plot the absorption coefficient of 

that sample to compare with the information we have from the Ahns paper and standard 

CIS plot.  
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The Standard band gap value of CIS is said to be around 1eV, which is where we 

expect the CZSS bandgap to be, as no concrete data is available stating its bandgap value. 

Ahns paper indicates his bandgap values of sample done at 320°C and 400°C with blue 

and brown lines respectively as shown in the figure below. He says the shift in bandgap is 

because of the presence of ZnSe at higher temperatures. Our samples done at 400 

Degrees coincide perfectly with those of Ahns plot at 400 degrees.  

 

Fig. 4.11. Our bandgap plots in comparison with Ahns and copper tin selenide.  

 

 In this figure 4.6 we give a comparison of our samples done at 400 degrees in 

comparison with Ahns plots at 320°C and 400°C degrees and the copper tin selenide plot. 

Ahn reports that his sample done at 320° is CZSS material. He feels that XRD is not an 

accurate method of determining the material we are forming, thus resorting to bandgap 

plots to determine the material being formed. All our plots of samples done at 400°C 

coincide with Ahns 400°C plot, indicating some ZnSe presence. Thus we need to observe 

if it’s the same case when we make our samples at 350°C as well. The plot of copper tin 
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selenide distinguishes itself from all other plots based on bandgap as indicated in the 

figure 4.11. 

 

 

Fig. 4.12. CZSS films done at 350°C in comparison with Ahns plots.  

 

 Samples 84 and 88 were selenized at 350°C and their optical properties are 

measured and compared with Ahns samples done at 350°C and 400°C. CZSS 84 sample 

is Zinc poor with metal ratios of Zn/Sn = 0.77 and Cu/(Zn+Sn) = 1 as compared to CZSS 

88 whose ratios are Zn/Sn = 1.39 and Cu/(Zn+Sn) = 0.67. Both the plots of these two 

samples are close to the Ahns sample done at 320°C but the CZSS 84 almost coincides 

with it. Thus the Zinc percentage in the sample affects its position in the bandgap plot 

though both are operated at the same substrate temperature. However, it is apparent that 

substrate temperature is the dominant variable. 
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Fig. 4.13. (αhν)
2
 vs Zn/Sn ratio of films done at 350°C and 400°C. 

 

The above plot shows the (αhν)
2
 vs Zn/Sn ratio of films done at 350°C and 400°C. 

If the Zn/Sn ratio is increasing, ideally the plot should be linear till 2.5, which 

corresponds to the bandgap of ZnSe. But we observe that the plots are saturating and not 

linearly increasing as we increase Zn/Sn ratio.  

 

Fig. 4.14. Series 1: Film with only ZnSe & Cu2SnSe3, Series 2: Ahn 320°C, Series 3: Ahn 

400°C and Series 4: Cu2SnSe3. 
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 So what if all the Zn was forming ZnSe and Cu and Sn were forming Cu2SnSe3? 

In order to know where the plot for bandgap for such a sample would be we determined 

the position for such a sample by adding the approximate thickness of Zn in a Cu2SnSe3 

film sample we have done. The plot as we can see in the figure 4.14 perfectly coincides 

with the Ahn 320°C plot. Thus this begs the question about the phase composition of all 

our films done at 400°C. What is the phase composition of all these films, which makes 

their bandgap to shift to higher bandgap values than 1 eV. We are not sure at the moment 

about the phase composition of the films at 400°C. Thus we can conclude saying that our 

films at 350°C do have most of CZSS based on the Ahns 320°C plot and also on the 

XRD results but for films done at 400°C we are not really sure of the phase composition 

though we know we don’t have much of ZnSe in them based on XRD results. 

 

4.4 Device Results 

 Now that we studied the film’s optical properties and XRD, we now try to 

encapsulate the CZSS film between molybdenum and CdS layer, with ZnO layers on top 

to make fully functional devices. At this point of time we could not make many samples 

to study the device characterization. All the dots are tested both in darkness and under 

light. The voltage is swept and the corresponding current is noted.  

 Most of the dots are acting as resistors and there is no convincing data we could 

present at the moment. The I-V plots for a dot which we felt had some life in it is shown 

below. There are few aspects we still need to work on to improve the device 

characterization results. Firstly the non-uniformity of CZSS on moly samples. Secondly 

to control the particulate formation during CdS layer deposition. Thirdly both the ZnO 
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and Al-ZnO layer, where we are trying to optimize the substrate temperature and 

thickness. 

 

Fig. 4.15. Left: I-V in darkness, Right: I-V under light. 
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5. CONCLUSION 

 

Our objective of this study was to synthesize the Kesterite material in a process 

flow, which is advantageous at a manufacturable stage with no secondary phase 

formation. We have understood the way by which the metals move through each other 

during selenization achieving the desired ratio of Zn/Sn to be 1. Thus the potential kinetic 

and thermodynamic barriers to forming films this way seem not to be insurmountable.   

Using the new anneal procedure which could counteract many problems we faced before 

like losing zinc. The Films were made at stoichiometric metal ratios at different substrate 

temperature varying from 300-500°C. Our XRD plots indicate supportive results that we 

are forming the Kesterite material though not conclusive. Based on the optical 

measurements we could conclude that we are forming the Kesterite material in 

comparison with the Ahns paper. However we wish to fine tune our understanding on the 

optical properties of this material at films done at temperature higher than 350°C. As a 

future work we also have to modify the i-ZnO, Al-ZnO depositions to increase 

conductivity and performance of the final device. But the advantage we hold is the 

process flow, which is easier to go through at a manufacturable level.  
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