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Non-Contact Characterization of Dielectric Conduction on 4H-SiC

Helen N. Benjamin

ABSTRACT

Consistent charge or defect control in oxide grown on silicon carbide (SiC) 

continues to be difficult to achieve and directly impacts the electrical performance of 

SiC-based metal oxide semiconductor (MOS) devices.  This research applied non-contact

Corona-Kelvin metrology to investigate the charge transport in oxides grown on n-type 

4H-SiC epitaxial substrates. The cost and engineering science impact of this metrology 

are significant as device fabrication is avoided leading to quick determination of 

electrical characteristics from as-grown oxide films.  Non-contact current-voltage (I-V) 

measurements of oxide on SiC were first demonstrated within this work and revealed that 

Fowler-Nordheim (F-N) current emission was the dominant conduction mechanism at 

high electric fields.

Oxides on SiC were grown at atmospheric pressure (thermal oxides) or at a 

reduced pressure (afterglow oxides) ambient and examined using non-contact charge-

voltage (Q-V), capacitance-voltage (C-V), equivalent oxide thickness (EOT), and I-V 

methods.  The F-N conduction model was modified to address charge trapping and 

effective barrier effects obtained from experimental oxide films.  Trap densities 

determined with this metrology were used to show that the F-N model including their 
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density and position was adequate for thermal oxides on SiC but not for afterglow films.  

Data from the latter films required further modification of the theory to include a 

chemical effect of the oxide growth process on the effective conduction band offset or 

barrier.  This work showed that afterglow chemistry was able to vary the effective 

conduction band offset from 2.9 eV, typical of thermal oxidation of SiC, up to 3.2 eV.

Stress induced leakage current (SILC), an excess above the F-N base current 

resulting from prolonged current through the dielectric films, was also investigated.  

Multiple point SILC testing was used to identify statistical effects of process variations 

and defects in as-grown oxide films on SiC.  These results open the possibility to improve 

oxide manufacture on SiC using methods common in the silicon IC industry.  This work 

demonstrated the first non-contact F-N current determination in oxides on SiC and 

showed both charge trapping and chemical dependencies of as-grown films.  Future 

studies may extend the findings of this work to further improve this important dielectric-

semiconductor system.
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Chapter 1. Introduction

1.1. Research Objectives and Motivation

Silicon carbide (SiC), a wide band gap semiconductor, is an ideal candidate for 

the development of the next generation high power, frequency, and temperature device 

applications.  The quality of an oxide can directly influence the electrical performance of 

metal oxide semiconductor (MOS) devices.  Process induced charges in the oxide, which 

can either be neutral, positive, or negatively charged, impact the reliability and integrity 

of gate oxides in MOS devices.  The commercialization of silicon-based MOS devices is 

due to over four decades of research based on the control of charges at the silicon 

dioxide/silicon (SiO2/Si) interface or in the bulk of the oxide.  For example, one popular 

treatment to reduce charges in the oxide is the addition of a post annealing process after 

oxidation and metallization of the gate.  The realization of commercialized SiC-based 

power devices, controlled by MOSFETs (field effect transistors), is contingent on the 

control of charges in the oxide.  Currently, an optimized oxidation process, for this binary 

semiconductor, to reduce charges in the oxide remains under investigation.  Extensive 

analysis to obtain significant consistent statistical data for SiO2/SiC characterization is 

costly and time consuming using standard measurement techniques accepted for SiO2/Si 

characterization.
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The aim of this research was to investigate the application of non-contact stress 

induced leakage current (SILC) testing for oxides grown on 4H-SiC epitaxial substrates.  

Non-contact SILC testing has been successfully established for oxide characterization on 

Si substrates to detect the vulnerability of an oxide film to breakdown or become 

conductive. Oxide breakdown induced by SILC testing on SiO2/Si systems has been 

generally characterized by trap-assisted tunneling.  In the advent of integrated-circuit (IC)

chip miniaturization, one popular characterization technique done on thin oxides grown 

on Si is SILC testing [1-5].  This testing has also been used to characterize thick oxides 

on Si [6, 7].  Currently, oxides grown on SiC substrates for MOSFETs used in power 

devices are nominally 500 Å thick.  The gate oxide is predominately characterized by

current-voltage measurements to determine such parameters as its Fowler-Nordheim

tunneling characteristics and its time-to-breakdown characteristics. Prior to this research, 

SILC testing on SiO2/SiC systems has not been extensively reported in literature.  Since 

this testing technique does not exist for the characterization of oxides on 4H-SiC 

substrates, it is intended to have the same characterization success established for SiO2/Si 

systems.

Specifically, this work investigated the details and variations in the conduction 

mechanism of an oxide grown on n-type 4H-SiC substrates using a modified non-contact 

characterization tool.  Stress induced leakage current is the excess current in addition to 

the Fowler-Nordheim current for oxide thicknesses greater than 50 Å.  It was essential to 

establish the Fowler-Nordheim current as the dominate conduction mechanism for each 

experimental oxide.  The testing methods developed identified the Fowler-Nordheim 

current on each oxide.
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It was observed that the value for the effective barrier height and the effective 

mass in the oxide were influenced by oxidation process conditions.  These two 

parameters are important because they define the Fowler-Nordheim curve characteristic.  

The effective barrier height in this case is related to the conduction band offset of the 

oxide-semiconductor interface.  Trapped charges in the oxide also strongly influenced the 

Fowler-Nordheim characteristics and as a result, a variation of the Fowler-Nordheim 

equation was addressed.  The location of the trapped charge and its centroid was further 

analyzed to fit the experimental data to a modified Fowler Nordheim tunneling equation.

After establishing this current, seventeen sites on various oxides were subjected to

non-contact SILC testing and analyzed.  The goal was to use the effective SILC value as 

an indicator to identify weak spots around the oxide surface.  It was shown that this 

unique characterization method for oxides on n-type 4H-SiC has the potential to be used

as a measure of oxide reliability.  In addition, it enabled a fast assessment of an oxidation 

process in the absence of fabricated capacitors or transistors.
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Chapter 2. Overview of Electrical Stress Testing Methodology of Dielectrics

2.1. Standard Measure of Oxide Quality

The reliability of an oxide grown on SiC substrates dictates its success in IC

chips.  Gate oxide of Si-based devices, such as capacitors or field effect transistors, have 

been extensively researched over four decades and summarized by D.J. Dumin, D.J. 

Dimaria, J.H. Sathis and others [3, 8-11].  A simple MOS capacitor test device is 

composed of a semiconductor, a gate oxide, and a gate (see Figure 2.1).  The gate is 

either a metal plate or doped poly-silicon, where a voltage or current can be applied.

Figure 2.1: A simple MOS capacitor.

Oxide breakdown is the wear out mechanism in the oxide after losing its insulating or 

resistive properties in the presence of high or low electric fields due to the breakage of 

SiO2 bonds in its lattice structure.  There are two types of oxide breakdown: destructive 

(hard breakdown (HBD)-irreversible) and non-destructive breakdown (soft breakdown 

(SBD)-reversible).  These breakdowns can be due to intrinsic failures, such as the quality 

of the oxide, extrinsic failures, such as electrical stress, or both.  The quality of the oxide 

SiO2

Si

gate
V or I
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corresponds to its processing condition (e.g. free from metal contamination), its 

uniformity, its surface roughness, and any other form of micro-defects.  The ability to 

monitor an oxide behavior over a range of electric fields in the oxide can be performed 

using either a current or voltage ramp test.

2.2. Overview of 4H-SiC Substrates

Silicon carbide (SiC) crystal growth is not manufactured by the highly engineered 

Czochralski (CZ) crystal growth method, but from the seeded sublimation growth method 

[12].  By comparison with the CZ method for silicon substrates, SiC substrates are 

defective and require a high quality epitaxial layer due to underlying crystal defects such 

as, open-core screw dislocations (micro-pipes) per cm2 and low angle boundaries.  As a 

result, these substrates are 100 times more expensive than silicon substrates.  Silicon 

carbide substrates are orientated between 3 to 8 degrees off-axis and have two terminated 

surfaces, silicon and carbon.  In the Miller notation, which describes crystallographic 

directions in a unit cell, the silicon face is on the (0001) plane while the carbon face is on 

the (000

1 ) plane.  The numbers in the parentheses represent the coordinates x, y, z, and c 

axes in the unit cell.  The c-axis corresponds to the stacking direction.  The fabrication of 

devices mostly occurs on the silicon face.

The basis of every SiC crystal comprises of a silicon atom surrounded by four 

carbon atoms forming a tetrahedral structure (see Figure 2.2).  Likewise, each carbon

atom bonds to four nearest-neighbor silicon atoms.  The distance between a neighboring 

silicon or carbon atom is approximately 3.08 Å.
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Figure 2.2: Four carbon atoms covalently bonded with a silicon atom [12].

Out of 200 SiC crystal systems, one of the commonly used SiC crystal geometries or 

polytypes for MOS-based power devices is 4H-SiC.  This crystal geometry is depicted as 

4H-SiC because it has a hexagonal crystal structure, whose repetitive stacking sequence 

of four layers of silicon-carbon atoms, is arranged as ABCBABCB to complete one unit 

cell.  The position of A, B, and C each represent a layer of atoms.  Figure 2.3 illustrates a 

4H-SiC three-dimensional lattice structure [13].

Figure 2.3: A 4H-SiC three-dimensional lattice structure [13].

C

Si

C

CC
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The 4H-SiC substrates used for this study were 80 off-axis and were doped with nitrogen.  

Nitrogen impurities in the crystal lattice depicted that its conduction type was n-type 

because of the addition of negative charge carriers.  Table 2.1 lists the properties of 4H-

SiC and Si.  These properties make 4H-SiC substrates attractive candidates for power 

switching devices.

Table 2.1: Properties of 4H-SiC and Si at room temperature (300K) [14-16].

Crystal Structure 4H-SiC Si

Band gap Energy (eV) 3.25 1.12

Instrinsic Carrier 
Concentration (cm-3)

2x10-8 1x1010

Breakdown Field (V/cm) 1.5-4x106 3-4x105

Bulk Electron Mobility 
(cm2/Vs)

( to c-axis)

(|| toc-axis)

~1050

~800

~1350

Thermal Conductivity 3.3 1.5

Saturation Velocity (cm/s) 2.2x10-7 1x10-7

Lattice Constant (Å)
a=3.073 
c=10.05

a=5.43

As seen in Table 2.1, the critical breakdown field of 4H-SiC is an order of magnitude 

higher than silicon, making it conducive for high power blocking or switching in power 

devices.  These properties continue to make this binary semiconductor a promising 

candidate for power devices due to its capability to block high voltages, switch at high 

frequencies, and operate at high temperatures.
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2.2.1. Silicon Carbide (SiC) Oxidation Theory

The two types of oxidation growth method used in this study were atmospheric 

thermal oxidation and afterglow oxidation.  An overview of the oxide growth kinetics on 

SiC is presented.  Silicon carbide is the only binary compound semiconductor whose 

native oxide is silicon dioxide (SiO2).  Similar to oxidation of Si, thermal oxidation of

SiC can be either in dry O2, pyrogenic H2O, or both.  The growth kinetics of SiO2 on SiC 

is not the same as on Si due to the presence of carbon atoms. The oxidation growth rate 

on SiC is an order of magnitude slower than Si under the same conditions [17-22].  One 

reason attributed to this phenomenon is the oxidation of carbon.  Based on the model for 

the oxidation of Si, the model for the oxidation of SiC is expressed as [17]

)(2  tBAXX (2.1)

CO

r

O

f

CO

r

O

f

D

K

D

K

h

K

h

K

A







2

2

5.1

5.1
1

(2.2)
















CO

r

O

f

COrOf

D

K

D

K
N

CKCK
B

2

2

5.1
0

**

(2.3)

where X is the oxide thickness, t is the oxidation time,  is the initial thickness, B is a 

parabolic rate constant, B/A is a linear rate constant, Kf is the rate constant of the forward 

reaction, Kr is the rate constant of the reverse reaction, O2 is oxygen, CO is carbon 

monoxide, h is the gas-phase transport coefficient, D is the diffusion coefficient, C* is the 

equilibrium concentration, and N0 is the number of oxidant molecules incorporated into a 
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unit volume of the oxide layer.  Table 2.2 lists the chemical reactions at the SiC interface 

during the growth of a dry thermal oxide.

Table 2.2: Chemical reactions during dry thermal oxidation of SiC [20].

Sequence Chemical Reaction

Primary
















CSiOOSiC

COSiOOSiC

22

222

3

Secondary











COOC

SiOCCOSiC

22

32

2

2

From the chemical reactions, the oxidized carbon is out-diffused in the form of a gas.  

The amount of carbon remaining in the oxide, as a result of incomplete carbon oxidation, 

leads to the accumulation of carbon or carbon clusters at the SiO2/SiC interface.  These 

clusters form a density of interface states or traps near the interface [23]. Other reported 

sources of traps near the interface are due to carbon or silicon interstitials and stable 

carbon pairs [21].

The four most cited types of charges associated with SiO2/Si systems and more so 

in SiO2/SiC systems are fixed oxide charge (Qf), mobile oxide charge (Qm), oxide trapped 

charge (Qot), and interface trapped charge (Qit).  Figure 2.4 illustrates the location of 

these charges after a thermal oxidation of Si [24].



Figure 2.4: Location of oxide charges after a thermal oxidation of Si
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[25-27].  These tests are used to analyze an oxide under a range 

of electric fields to reveal intrinsic or extrinsic failures.  When a critical charge density
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The electric field in the oxide cannot be directly measured.  
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be calculated from the voltage drop across the oxide (Vox) divided by the oxide thickness

(tox) (see equation 2.4).

ox

ox
ox t

V
E  (2.4)

Both of these techniques reveal how the current conduction in an oxide over a range of 

electric fields can provide information about the charge-to-breakdown (Qbd), the 

breakdown voltage (Vbd), and the time-to-breakdown (Tbd).

The main disadvantage using such techniques is the inability to establish the

potential defect mechanism leading to the breakdown of the oxide.  In the following 

sections, other techniques, such as constant current stress (CCS), constant voltage stress 

(CVS), time dependent dielectric breakdown (TDDB), and stress induced leakage current 

(SILC), are standard measurements used to examine the defect mechanisms leading to 

oxide breakdown.  These device-based measurement methods are described with the 

intention of applying similar technique principles for the investigation of oxides on 4H-

SiC wafers using non-contact Corona-Kelvin metrology.

2.4. Conduction Mechanisms of Dielectric-Semiconductor System

In this research study, oxides greater than 80 Å were stressed using a constant 

corona current to induce an electric field, greater than 5 MV/cm, in the oxide.  In this 

field range, the current may conduct as Fowler-Nordheim emission or Poole-Frenkel 

emission.
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2.4.1. Poole-Frenkel Conduction

In 1938, Poole-Frenkel conduction, named after Horace H. Poole and Yakov 

Frenkel, is a process due to the field-enhanced thermal ionization of electrons from 

charged or neutral traps.  Therefore, the current flow is due to the contribution of traps in 

the bulk of the dielectric [28].  The Poole-Frenkel plot is defined as ln(Jpf/E) versus E , 

where the current density (Jpf) , based on the Boltzmann approximation, is given by [29]





























kT

qEq

CEJ
r

pf 

 0
exp (2.5)

where is the ionization potential in eV of the Coulombic traps in the oxide, C is the

proportionality constant related to the density of the trap centers, k is Boltzmann’s 

constant, T is the temperature,  is the factor, which varies between one and two 

depending on the relative concentration of acceptor traps (1) or donor traps (2) within the 

oxide, 0 is the permittivity of vacuum, r is the dielectric constant, q is the electronic 

charge, and E is the electric field in the dielectric.  The ionization potential is the energy 

required for a trap charge to overcome the influence of the trapping center in the absence 

of an electric field. The Poole-Frenkel plot yields a straight line and is expressed as [29]
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q
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J rpf
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

lnln 0

3

(2.6)

The slope of this line is used to assess whether or not the dielectric conduction was due to 

Poole-Frenkel.
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For a SiO2/Si system, the Poole-Frenkel current density was calculated based on an 

ionization potential of 1 eV,  of 1, and a proportionality constant of 1x10-13.  These

parameters were reported values in literature for silicon dioxide [29].

Figure 2.5: Example of Poole-Frenkel plot for SiO2 on Si.

Based on these parameters, the slope of this line is 0.015 (see Figure 2.5).  According to 

Equation 2.6, this slope decreases if there are less acceptor traps within the oxide (=2) to 

0.0074.  In this study, the slope was the only parameter used to check the occurrence of 

Poole-Frenkel conduction in an experimental oxide.
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2.4.2. Fowler-Nordheim Conduction

In 1928, Sir Ralph Fowler and Lothar W. Nordheim introduced a theory to 

explain field emission from a metal into vacuum.  The Fowler-Nordheim current density

characteristic, based on the free-electron gas model and tunneling probability by the 

Wentzel-Kramers-Brillouin (WKB) approximation method, was related to the electric 

field at the surface of an emitter.  This current density was expressed as [30]

  





 


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where h is Planck’s constant, q is the electronic charge, F is the electric field,  is the

barrier height, m is the free-electron mass, t(y) and v(y) are correction factors, k is 

Boltzmann’s constant, and T is the temperature.  The correction factors, t(y) and v(y), 

rendered the image potential rounding effect on the top of the barrier [30, 31].  Forty 

years later, the Fowler-Nordheim equation was modified for emission from a metal into 

silicon oxide.  Fowler-Nordheim conduction occurs when electrons tunnel from the 

semiconductor conduction band into the oxide conduction band, through the deformation 

of the potential barrier at the oxide-semiconductor interface.  As the applied voltage 
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across the oxide exceeds the semiconductor electron affinity, the potential barrier changes

from an impenetrable rectangular barrier to a penetrable triangular barrier [32].  Figure 

2.6 illustrates this phenomenon with an energy band diagram of a MOS device.

Figure 2.6: Energy band diagrams depicting a MOS device without stress (a) and under 
Fowler-Nordheim tunneling (b).

The semiconductor electron affinity potential (eV) is defined as the potential difference 

between the vacuum level and the bottom of the conduction band [33].  Based on

photoemission measurements, the electron affinity for Si is given as 4.05 eV [16] and 4H-

SiC is given as 3.62 eV [15].

In the modified Fowler-Nordheim equation, the free electron mass (m) was 

replaced by the effective mass of an electron in the oxide band gap (mox).  Coefficients A, 

B, and c were modified from Equation 2.8 to 2.10 as [34]
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where Eox is the electric field in the oxide (defined by Equation 2.4) and b is the 

effective barrier height.  This effective barrier height “takes into account barrier height 

lowering and quantization of electrons at the semiconductor surface” [33].  Internal 

electron photoemission is a standard measurement method used to determine the band 

offset of a semiconductor-dielectric interface.  Using photoemission measurements, it 

was reported that the effective barrier height represented the conduction band offset in an 

oxide-semiconductor system [34].  Unless otherwise noted, the electric field in the oxide 

for the Fowler-Nordheim plot is represented as E throughout the document.  The Fowler-

Nordheim plot is defined as ln(J/E2) versus (1/E), which yields a straight line expressed 

as

ln(A)
E

1
B

E

J
ln

2














 (2.14)

The slope of this line corresponds to negative B and the intercept of the line is equal to 

the natural log of A.  From the Fowler-Nordheim plot, the effective mass in the oxide and 

the effective barrier height are obtained by simultaneously solving Equation 2.11 and 

2.12.  An example of a Fowler-Nordheim plot is shown by Figure 2.7.
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Figure 2.7: An example of a Fowler-Nordheim plot.

In Figure 2.7, the image force barrier lowering effects on the current density led to a

parallel shift of the line resulting in slightly higher values of J/E2.

The modified Fowler-Nordheim equation was simplified further, when the low 

temperature approximation was used and the image-force barrier lowering was ignored 

(because of its negligible effect on the tunneling distance (see Figure 2.7)) to [33, 35]
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For an ideal case, Equation 2.15 assumed that charges trapped in the oxide were 

negligible.  It was also derived under the following conditions: “the electrons in the 

emitting electrode can be described by a free Fermi gas; electrons in the oxide have a 

single effective mass (mox); and the tunneling probability is derived by taking into 

account the component of the electron momentum normal to the interface only” [33, 35].  

The ratio of mox/m is represented as Mox throughout the remainder of the document. 

Table 2.3 shows a few commonly used effective mass in the oxide, (Mox), reported for Si-

based MOS devices using either a Franz or parabolic dispersion relation.

Table 2.3: Commonly used effective oxide mass for Fowler-Nordheim calculations.

Reference
Effective Mass in the 

Oxide (Mox)
Effective Barrier Height

[36] 0.36 3.15 eV

[34] 0.42 3.25 eV

[35] 0.50 2.9 eV

These values may change based on a particular oxidation process.  In this instance, the 

effective barrier height and Mox calculated from the experimental Fowler-Nordheim plot, 

for a lightly nitride oxide on Si, was 3.05 eV and 0.38, respectively [37].

Non-contact Corona-Kelvin metrology, used to obtain Fowler-Nordheim 

characteristics for an un-metallized gate oxide on Si, was first pioneered by R. Williams 

and M. Woods in 1973 [38].  The fundamental principles of this metrology will be 

described in Section 2.8.  The measured current density (Jexp) was expressed as [39, 40]
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where 0 is the permittivity of vacuum and r is the dielectric constant, V(t) is the surface 

voltage decay data following the cessation of corona charge, and V0 is the potential 

difference between the Kelvin-probe and the oxide, prior to corona charge deposition.  

Equation 2.15 and Equation 2.16 were combined and the solution was given as [39, 40]
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where E0 is the initial field for the time after the cessation of corona charges.  The 

Fowler-Nordheim plot was defined as log(t+to) versus 1/Eox, which was analogous to 

ln(J/E2) versus (1/E).  The electric field in the oxide was calculated based on Equation 

2.4. Any presence of oxide charges in the oxide was observed by a shift between the C-V 

curves taken before and after Fowler-Nordheim current stress.  Fowler-Nordheim 

characteristic for un-metallized oxide thicknesses ranging from 500 Å to 2600 Å on Si 

was reported to have a barrier height of 2.9 eV and Mox of 0.48 [39].  These values are 

comparable to Si-based MOS devices (see Table 2.3).



2.5. Constant Current Stress Technique

Constant current stress (CCS) test is also known as a current limited or 

compliance-limited stress test method 
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Constant Current Stress Technique

Constant current stress (CCS) test is also known as a current limited or 

limited stress test method [10].  It is a measurement technique where a 

predetermined density of coulombs per second is applied to the oxide until the gate 

voltage, measured as a function of time, drops abruptly.  This abrupt voltage drop is 

indicative of oxide breakdown (see Figure 2.8).  In CCS testing, the current flowing 

through the oxide is by Fowler-Nordheim conduction.  During CCS, the electric field is 

esired current stress factor.  The power supply raises or lowers 

the voltage drop across the device to maintain the desired current.  As the flux of charges 

increases, the electric field in the oxide increases and these charges may or may not 

become trapped within the oxide. The generation rate of trapped charges is assumed to be 

constant as this is related to the supplied current. Subsequently, the continuous formation 

a conductive path leading to oxide breakdown.

: An example of a gate voltage-time characteristic of a MOS device obtained 

Constant current stress (CCS) test is also known as a current limited or 

is a measurement technique where a 

ied to the oxide until the gate 

voltage, measured as a function of time, drops abruptly.  This abrupt voltage drop is 

indicative of oxide breakdown (see Figure 2.8).  In CCS testing, the current flowing 

During CCS, the electric field is 

he power supply raises or lowers 

.  As the flux of charges 

de increases and these charges may or may not 

The generation rate of trapped charges is assumed to be 

ontinuous formation 

time characteristic of a MOS device obtained 



21

In Figure 2.8, the device sustained an oxide field greater than 13 MV/cm for one minute 

until reaching an oxide breakdown at 15 MV/cm.  The oxide breakdown mechanism 

during CCS testing is related to an impact ionization process and trap creation process

[41, 42].

Impact ionization is a process where point defects in the oxide are caused by 

trapped holes recombining with free electrons injected either from the substrate or the 

gate.  Unlike impact ionization, trap creation is a process where electrons with energies 

greater than 2 eV liberate hydrogenous species, such as atomic hydrogen radicals, from 

the substrate.  These species may cause interface traps or oxide traps at or near the 

SiO2/Si interface [43].  Non-contact CCS testing was also performed on oxidized Si 

substrates with the intention to achieve oxide breakdown.  This result will be discussed in 

Chapter 4.  Another electrical stress test used to predict the lifetime of an oxide is known 

as time dependent dielectric breakdown (TDDB).

2.6. Time Dependent Dielectric Breakdown (TDDB)

Time dependent dielectric breakdown (TDDB) technique applies either a constant 

current or voltage stress to a gate oxide at a given temperature and monitors the time it 

takes for the oxide to breakdown.  Elevated temperatures are used to accelerate testing as 

a means to quickly induce device failure. A gate oxide failure is defined when it 

surpasses a predefined leakage current limit or drops below a predefined voltage [33].  

Using the TDDB technique, percolation and other physical models were developed to 

postulate the defect mechanisms leading to oxide breakdown.



22

Fundamentally, all models are based on the concept that a critical defect density leads to

oxide breakdown [8, 9, 43-45].  Other models relating the electric field in the oxide to the 

time-to-breakdown with temperature were also developed [3, 46].

Constant voltage stress (CVS) test is a measurement technique where a constant

potential is applied to a MOS device and the gate current is measured as a function of 

time.  The power supply adjusts the current to maintain a constant electric field in the 

oxide.  The breakdown mechanism is similar to a CCS test.  In a typical CVS test, a 

series of capacitors are tested simultaneously using contact probes on a grounded 

measurement chuck.  As each gate oxide is stressed, defects are created at localized areas

within the oxide.  The time it takes for each capacitor to electrically short or fail is 

monitored and either the first detectable or final breakdown is recorded.  The reliability 

of the gate oxide is then evaluated by plotting the cumulative probability versus time-to-

failure or time-to-breakdown for each group of capacitors.  The Weibull distribution, 

which predicts the reliability of a product and models the failure rate, is commonly used 

for TDDB statistical data acquisition.  The cumulative failure probability in the Weibull 

distribution for oxide breakdown is described as [45]

 )/(1)( xexF  (2.20)

))1ln(ln( FW  (2.21)

where F is the cumulative failure probability, x is charge or time,  is the charge or time 

where 63.2% of the samples failed,  is the slope parameter, and W is the Weibit or 
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Weibull parameter.  The Weibull cumulative distribution F(x) for various slope values is 

plotted in Figure 2.9 [47].

Figure 2.9: Weibull cumulative distribution for a population fraction failing by time [47].

This slope parameter is obtained by plotting the Weibit versus ln(x).  Plotting the log of 

the time-to-breakdown versus the applied electric field in the oxide also yields the

constant, , which is referred to as the “electric-field acceleration factor”, since this factor 

is proportional to 2/1 oxE [46].
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Figure 2.10: An example of a Weibull plot [48].

Figure 2.10 illustrates a TDDB distribution for thirteen 100 m diameter MOS capacitors 

tested at a constant voltage stress of 37 volts at 2500C [48].  A straight line represents that 

the devices had a similar breakdown mechanism.  The “kink” and “bend” on the curve is 

usually interpreted as the occurrence of a different breakdown mechanism.  In Figure 

2.10, there are two bends in the curve, one at 31% and the other at 72%.  Early failures in 

the first group, below 20%, were probably due to extrinsic failures.  In the second group, 

from 25% to 70%, another type of failure mode occurred.  The last group lasted for a 

longer time and failed with a different type of failure mechanism.  Reliability engineers 

isolate the type of failure modes and rectify the first two types of failures.  The goal is to 

have the capacitors sustain longer time durations to shift the distribution to the right.
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To characterize the defect density for all oxide thicknesses, stress times, and 

electric fields, an equation fitted on the Eyring formulation was defined by [3]
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where kT is the thermal energy in eV, and f(t/to) is the normalized time dependence of the

trap generation.  The reported gate oxide breakdown mechanism in SiC-based n-type 

MOS or nMOS devices after TDDB testing is as follows:

1. After testing 48 nMOS capacitors at room temperature, the slope of the Weibull 

distribution plot of the charge-to-breakdown indicated that the oxide breakdown 

was due to either wafer properties, such as the epitaxial surface roughness and 

metal impurities, or intrinsic failures. [49]

2. Two breakdown modes, edge breakdown and dislocation-related breakdown, were 

reported after testing 120 4H-SiC-based nMOS capacitors at room temperature.  

Oxide degradation was found to be caused by the dislocation defect density. [50]

3. After testing 40 6H-SiC based nMOS capacitors at 1450C-3050C, the TDDB 

results revealed a high field acceleration factor at fields greater than 7 MV/cm.  

The oxide was reliable if the electric field in the oxide was kept below 5 MV/cm 

at 1500C.  The temperature was found to be inversely proportional to the oxide 

reliability.  The oxide breakdown mechanism was due to intrinsic failures. [51]

4. After testing 4H-SiC nMOS capacitors and double implanted MOSFETs at 

2000C, TDDB results showed that the failure mechanism varied at oxide fields 
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above 6 MV/cm due to current tunneling or impact ionization.  After TDDB 

testing, it was also confirmed, through the use of electron-beam-induced current 

(EBIC) measurement, that the oxide breakdown mechanism was not due to the

epitaxial SiC film defects under the oxide as reported in 1 and 2.  Further analysis 

is ongoing to identify the defects responsible for oxide breakdown. [52]

In this research study, seventeen sites were measured on various oxide surfaces by SILC 

testing to obtain similar statistical analysis.  The normal or Gaussian distribution function 

was used to assess the data distribution because of the short time durations used for this

analysis.  The function depicting the population fraction failing by a given parameter, 

such as time or voltage, is given as [47]
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where  is the population mean,  is the population standard deviation, and y is the 

parameter causing failure, i.e. voltage.  A normal cumulative distribution function plot is 

illustrated in Figure 2.11 [47].
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Figure 2.11: A normal cumulative distribution function for a population failing by y [47].

The experimental data set was sorted in ascending order before the probability graph was 

plotted.  The formula used to generate the plotting position is expressed as
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where Pi is the percent cumulative probability, i is the number of measured sites 

(1,2,3,…etc.), and n is the test sample size.  The distribution results will be shown in 

Section 4.6.

2.7. Contact Stress Induced Leakage Current (SILC) Technique

Contact stress induced leakage current (SILC) is referenced in this study as the 

technique tested with MOS devices.  Stress induced leakage current is defined as the 

increase of oxide leakage current after high field stress compared with the current prior to 

stress. It encompasses time dependent components, such as transient and steady-state 

components [53, 54] and is usually observed at electric fields between 4 to 8 MV/cm 

[33].  The conduction in oxide thicknesses greater than or equal to 50 Å at these fields is 
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commonly due to Fowler-Nordheim current characteristics.  As previously mentioned, 

Fowler-Nordheim tunneling occurs when electrons tunnel from the semiconductor 

conduction band into the oxide conduction band through a triangular barrier at the oxide-

semiconductor interface.  Stressing the oxide, beyond the Fowler-Nordheim tunneling 

regime, generates defects in the oxide.  As a result, the current flows through the oxide by

trap-assisted tunneling [3, 6, 54-58].  It is widely known that as an oxide degrades, under 

electrical stress, local defects or traps generated within the oxide structure create an 

increase in the current density, which lead to “thermal runaway” [3].

Figure 2.12 illustrates an energy band diagram of an nMOS device during SILC.  

In this tunneling regime, generated trapped charge sites, containing neutral electron traps,

act as “stepping stones” for tunneling carriers, thereby assisting more current leakage to 

flow through the oxide [53].

Figure 2.12: A sketch illustrating an nMOS (a) without stress and (b) after SILC.
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These defects represent electron traps, interface traps, positively charge donor like states, 

or neutral electron traps [11, 45].  Neutral traps may be positively or negatively charged 

by acquiring a hole or an electron, respectively.  This type of SILC has been classified as 

type-A SILC, trap-to-trap tunneling or trap-assisted tunneling (TAT) [3].  There are three 

modes of SILC: type-A, type-B, and type-C.  The conduction mechanism for B-mode 

SILC occurs after partial breakdown, while the conduction mechanism for C-mode SILC 

occurs after final breakdown.  An example of these three SILC modes is illustrated in 

Figure 2.13 [3].

Figure 2.13: An example of SILC modes [3].

Based on various annealing kinetics after SILC measurements and charge-to-breakdown 

measurements performed on MOSFETs, the type of trap generation from SILC was 

reported to differ from the traps created by charge-to-breakdown [59].  Out of the three
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SILC modes, A-mode SILC will be investigated in this research using non-contact SILC

testing.  This is because the current injected in the oxide did not lead to hard breakdown.

2.8. Non-Contact Stress Induced Leakage Current (SILC) Technique

Non-contact stress induced leakage current testing characterizes an oxide in the 

absence of fabricated devices.  The definition of SILC remains the same as in contact 

SILC.  The fundamental principle for this metrology will be discussed in the following 

sections.

2.8.1. Corona-Kelvin Metrology

Early in the 1970s, non-contact Corona-Kelvin metrology was introduced to 

investigate thermal oxides grown on silicon substrates in the absence of a metal or doped 

poly-silicon gate [60]. Fowler-Nordheim tunneling characteristics on oxide thicknesses 

greater than 500 Å were examined using corona ions.  These ionic charges were 

deposited on the surface of the oxide for a given amount of time.  After the cessation of 

charge, the contact potential difference (Vcpd) at the surface of the oxide was monitored 

and recorded based on the Kelvin method.

Corona ions, generated from air, are formed by applying a high DC voltage (kV) 

to a discharge electrode.  The composition of these ions is dependent on the 

environmental air condition, such as the relative humidity.  A positive voltage creates 

positive corona charges which may either be composed of H+(H2O)n ions [61] or 

[H3O]+(H2O)n ions[62].  A negative voltage creates negative corona ions composed of

n23 O)(HCO , n22 O)(HO ,or O [61, 63].



31

Depending on the voltage polarity, these ionic charges generate an electric field in the 

oxide when they are deposited on the oxide surface.  They are removed from the oxide 

surface by rinsing the substrate with de-ionized (D.I.) water or neutralized by depositing 

the opposite ionic polarity [60].

The technique of the Corona-Kelvin method utilizes a Kelvin probe to determine 

the contact potential difference (Vcpd) at the surface of the oxide after the deposition of 

corona ions.  The probe consists of a 2-4 mm diameter metal plate referred to as the 

reference electrode. It is connected to a lock-in amplifier and other relevant electronics

for noise to signal enhancement (see Figure 2.14).  The distance between the probe and 

the surface of the oxide is nominally less than a fraction of a millimeter.

Figure 2.14: A sketch of Kelvin probe measurement.

The probe vibrates vertically at a low frequency to induce an alternating current (Jac) 

through the circuitry.  This current is defined as

   tCVVJ ocpdbac sin (2.25)

where Vb is a DC bias voltage and Co is the capacitance between the substrate and the 

reference electrode.  To extract Vcpd from Equation 2.25, the DC bias voltage is varied to
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null the electric field, created between the electrode and the substrate.  The contact 

potential difference (Vcpd) is then determined when the DC bias voltage renders the 

displacement current to zero.  At this instance, the bias voltage value is equal to Vcpd.  

The contact potential difference is expressed as

sboxmsbcpd VVVV   (2.26)

where ms is the semiconductor-reference electrode work function difference, Vox is the 

voltage drop across the oxide, and Vsb is the voltage drop across the surface barrier or 

space charge region.  

The use of ions generated by corona discharge followed by measuring the contact 

potential difference at the oxide surface was classified as Corona Oxide Characterization 

of Semiconductor (COCOS) metrology in the late 1990s [5, 64-67].  The integrity of thin 

oxides on Si has been investigated using this measurement approach [68, 69].  

Commercial tools using this metrology for whole wafer characterization are 

manufactured by Semiconductor Diagnostics, Inc. (SDI), Tampa, Florida [70].  

Characterization parameters include acquiring the flat band voltage, interface trap 

density, total dielectric charge, SILC value, and the capacitance of an as-grown oxide 

film [69, 71].  Biasing the surface of the oxide with corona charges is the fundamental

criterion to perform non-contact capacitance-voltage (C-V) measurements and current-

voltage (I-V) measurements.
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2.8.2. Capacitance-Voltage Measurements

Capacitance-voltage (C-V) measurements detect the influence of interface trap 

charges and other charge defects within the oxide.  In addition, C-V measurements are 

used to determine other characteristics of the oxide such as the oxide thickness, the oxide 

breakdown field, the work function difference between the semiconductor and the gate 

electrode, and the oxide conductivity [72].  Capacitance-voltage plots characterize the 

total capacitance of an oxide-semiconductor system within four ideal regions of 

operation: accumulation, flat band, depletion, and inversion regions.  For a low frequency 

(<1kHz) measurement, these regions are defined as follows [73]

1. Accumulation: the concentration of majority carriers near the oxide-

semiconductor interface is larger than in the bulk of the semiconductor.  The

oxide capacitance (Cox) is

 
ox

gr
ox t

A
C

 0 (2.27)

where tox is the oxide thickness and Ag is the area of the gate.

2. Flat band: equilibrium state in the bulk of the semiconductor (no band bending). 

The flat band capacitance (Cfb) is

sox

sox
fb CC

CC
C


 (2.28)

where Cs is the semiconductor capacitance.

3. Depletion: the concentration of majority carriers near the oxide-semiconductor

interface is smaller than in the bulk of the semiconductor. The capacitance (C) is
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dox

dox

CC

CC
C


 (2.29)

where Cd is the depletion layer capacitance.

4. Inversion: the concentration of minority carriers exceeds the majority carriers near

the oxide-semiconductor interface. The capacitance is equal to the oxide 

capacitance, Cox.

If no oxide charges are present within the oxide, the flat band voltage is equal to the 

semiconductor-metal work function.  In the presence of oxide charges, the flat band 

voltage is defined as [33]


ox

oxt
msfb C

Q
V  (2.30)

where Qoxt includes the interface trapped charge, the fixed oxide charge, the oxide 

trapped charge, and the mobile oxide charge.  Unlike Si-based MOS systems, SiC-based 

MOS systems at room temperature cannot form an inversion region due to the low

thermal generation rate of minority carriers.  One way this region can be formed is 

through the introduction of these carriers into the substrate by an ion implantation of a 

doped source region.

In the non-contact low frequency or quasi-static C-V method, a pulse of corona 

charge Qc(n) is deposited on the surface of the oxide. The semiconductor is placed into a 

region where the concentration of electrons near the oxide-semiconductor interface is 

larger than in the bulk of the semiconductor.  This region is referred to as the 

accumulation region for an n-type semiconductor or the inversion region for a p-type 
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semiconductor.  The deposited corona charges are imaged in the semiconductor’s space 

charge region or surface barrier and in any traps in the oxide, which can exchange charge 

with the semiconductor [66].  The energy band diagram illustrating these charges, with 

respect to the reference electrode, is seen in Figure 2.15.

Figure 2.15: Energy band diagram after the deposition of corona charges.

Immediately, after the deposition of corona charges on the surface of the oxide, a time 

varying contact potential difference Vcpd(n)(t) is then measured (see Equation 2.26). This 

voltage is measured with a precision of 0.1 mV.  Afterwards, series of corona charge 

quantities, Qc(n+1), are deposited on the surface of the oxide to slowly transition the 

semiconductor from accumulation to depletion to inversion.  Each increment of charge is 

followed by the measurement of the contact potential difference as a function of time, 

Vcpd(n+1)(t).  The total capacitance, Ctot, is derived from
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where n and n-1 represent the immediate and immediate past increments of charge 

application.  In Equation 2.31, the change of the contact potential difference (Vcpd) 

eliminates the contribution of ms and is expressed as

SBoxcpd VVV  (2.32)

Figure 2.16 shows an example of a non-contact C-V characteristic of a 150 Å thermal 

oxide on a p-type Si substrate and a 400 Å afterglow oxide on an n-type 4H-SiC 

substrate.  These C-V characteristics were measured in the dark.
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Figure 2.16: Non-contact C-V characteristics of (a) a 150 Å thermal oxide on a p-type Si 
and (b) a 400 Å afterglow oxide on an n-type 4H-SiC.

The most commonly used calibrated corona charge, deposited during C-V measurements,

was 0.016 C/cm2.  In Si, this density of charge does not damage the oxide [74].
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2.8.3. Equivalent Oxide Thickness (EOT) Measurement

Capacitance-voltage characteristics of an oxide measured in either the dark or 

light was used to calculate its equivalent oxide thickness.  The equivalent oxide thickness 

was determined in the region where the semiconductor was placed into accumulation.  

The C-V characteristic of the oxide, measured in light, is obtained with the same quantity 

of charge and step increments used in the dark.  When the oxide is measured under 

illumination, the light generates excess electron-hole pairs in the semiconductor depletion 

layer or space charge region.  As a result, the voltage drop across the surface barrier is 

minimized to a negligible value.  When the oxide is measured in the dark, the voltage 

drop across the surface barrier is minimized to a negligible value in accumulation.  In 

both cases, the oxide capacitance is accurately determined since the measured voltage is 

only taken across the oxide (see Equation 2.33).

accillcpd

c

accdarkcpd

c
ox dV

dQ
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
 (2.33)

where Cox is the oxide capacitance measured in the dark or light.  The equivalent oxide 

thickness is then calculated, in reference to SiO2, as

ox

or

C
EOT


 (2.34)

where r is the dielectric constant and 0 is the permittivity of vacuum.  The EOT can also 

be extracted from the slope of the deposited corona charge and the measured voltage drop 

across the oxide within the accumulation region.
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Equation 2.34 is also referred to as the capacitance equivalent thickness (CET).  It has 

been reported that EOT obtained for oxides grown on 4H-SiC substrates is comparable to 

Ellipsometer measurements [75].  Figure 2.17 illustrates a non-contact C-V measurement 

characteristic of a 499 Å afterglow oxide on an n-type 4H-SiC substrate measured in the 

dark and in the light, respectively.

Figure 2.17: Non-contact C-V characteristic of a 499 Å afterglow oxide on an n-type 4H-
SiC measured in the dark (circles) and in the light (asterisks).

In Figure 2.17, the C-V curve taken in the light does not deplete because of the excess 

minority carriers generated by the light.



40

2.8.4. Current-Voltage Measurements

Prior to non-contact current-voltage (I-V) measurement, a blanket of positive 

corona charge (~10-7 C/cm2) is deposited over the entire surface of the oxide to minimize 

lateral charge spreading at a measurement site.  Current-voltage measurements are

performed under illumination to measure only the voltage drop across the oxide.

A quantity of corona ions is deposited on the surface of the oxide to generate an 

electric field in the oxide.  As ionic charges buildup on the surface of the oxide, the oxide

voltage increases linearly with time.  The voltage drop across the oxide remains linear 

until the injection of electrons from the substrate occurs by Fowler-Nordheim tunneling.  

The onset of the Fowler-Nordheim voltage is equal to the conduction band offset voltage.  

As the flux of corona ions induces tunneling of electrons from the semiconductor into the 

oxide conduction band, the buildup of ionic charges on the surface of the oxide stops 

when the electron current density reaches the corona ionic current density, which is 

controlled by the power supply [64, 67].

After the cessation of charge, the corona charge decay is expressed as

dt

dV
C

dt

dQ cpdc  (2.35)

This condition is referred to as a Self-Adjusting Steady State (SASS) condition [65, 76].  

The current density, Jexp, is calculated from the measured dielectric voltage decay given 

by
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Based on the classical non-contact Fowler-Nordheim analytical equation (see Equation 

2.18), the oxide voltage decay was fitted to a logarithmic time dependence curve as 

shown in Equation 2.37.

    ttba
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


 (2.37)

where a1 and b1 are constants from the logarithmic curve fitting and are related to the 

Fowler-Nordheim coefficients, A and B. [39, 76].  An example of various oxide voltage 

decays with respect to a positive corona current density, in A/cm2, on Si is illustrated in 

Figure 2.18.

Figure 2.18: Oxide voltage decay after corona charging [76].
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In Figure 2.18, the electric field in the oxide is proportional to the corona current density.  

For longer time durations, the precision of the SASS voltage increases.  The electric field 

in the oxide can be calculated with further accuracy by including ms

 
.

ox

msillcpd

ox t

V
E


 (2.38)

In SiO2/Si systems, holes injected from the Si valence band is negligible due to a higher 

potential barrier of 4.73 eV at the oxide-semiconductor valence band.  Non-contact SILC 

testing is based on non-contact I-V measurement principles. Its methodology will be 

discussed in the next section.

2.8.5. Stress-Induced Leakage Current Method

A controlled ionic current is used to perform non-contact SILC testing.  Before 

stressing the oxide to calculate SILC values, a sufficient quantity of corona charges is 

deposited for a few seconds to produce substrate injection of electrons.  This quantity of 

charges induces an electric field in the oxide greater than 5 MV/cm.  The contact 

potential difference is measured in a 20-second interval following a 5-second charge 

deposition.  The calculated current density is fitted to a predicted Fowler-Nordheim

current.  It is assumed that this small charge fluence does not give rise to defects above 

the Fowler-Nordheim current.  Fluence is defined as the product of the calibrated ionic 

current and the deposition time.  It has units of coulombs per cm2 (C/cm2).  After 

confirming that the experimental current was by Fowler-Nordheim conduction, the 

corona deposition time was increased.  The oxide is stressed beyond the Fowler-
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Nordheim tunneling regime and electron traps or defects are created within the oxide, as 

shown in Figure 2.19.

Figure 2.19: Energy-band diagram during non-contact SILC.

The voltage decay is monitored and the total experimental current density is calculated 

based on Equation 2.36.  The total experimental current density (Jt) is expressed as

.JJJ NFSILCt  (2.39)

In Equation 2.39, the component of the calculated current due to SILC is subtracted from 

the Fowler-Nordheim current.  The SILC density is typically one or more orders of 

magnitude above the Fowler-Nordheim current.  Therefore, the total calculated current is 

essentially equal to the SILC value.  However, the thickness is not calculated from EOT 

but from the measured Fowler-Nordheim current after the 5-second charge deposition.  
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the current density versus the oxide electric field is plotted to determine the oxide 

thickness.  The oxide thickness is adjusted to fit the theoretical Fowler-Nordheim current

curve for a given oxide-semiconductor system.  This thickness adjustment is accurate if 

the effective mass in the oxide and effective barrier height values are precisely known.  

The theoretical Fowler-Nordheim current curve is based on Mox of 0.36 and an effective 

barrier height of 3.15 eV.  These values are the default values for atmospheric thermal 

SiO2/Si systems defined in the FAaST 230 tool’s software.  Figure 2.20 illustrates an 

example of this method for a thermal SiO2/Si system.

Figure 2.20: Example of determining thickness with the Fowler-Nordheim current 
density [64].
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This determined thickness also matched the independently measured EOT value for this 

thermal oxide grown on a p-type Si wafer.  Once the thickness is determined, SILC 

values are calculated.  A constant oxide field value is then chosen to compare the SILC

densities at their respective stress fluence.  An increase in the density of the leakage 

current indicates a localized weak spot in the oxide structure, which may be susceptible 

to more defect formation.  A weak spot maybe due to process contamination.  

Preliminary, non-contact SILC testing was first used to characterize two oxide growth 

methods, pyrogenic steam oxide and afterglow oxide, on n-type 4H-SiC substrates [77].  

The results revealed that the afterglow oxide showed less susceptibility to defect 

formation at a field of 6 MV/cm and a charge fluence of 1.55 mC/cm2.

2.9. Statistical Issues in Device-Based Measurements

Even though a new technique using dual voltage and time integration was 

developed to characterize long-term TDDB measurements [44], there exist two major 

disadvantages in obtaining TDDB distributions.  First, it is time consuming when testing 

various voltages, currents, and temperatures. This data acquisition may take months or 

even years to report.  Second, TDDB testing requires a large group of MOS devices to be 

tested consecutively to obtain statistical distributions.  These distributions predict the 

lifetime of the oxide and the intrinsic or extrinsic mechanism responsible for breakdown.  

Statistical data acquisition of an oxidation process requires the correct mathematical 

expression for the time-to-breakdown (tbd) or time-to failure (TF), which is dependent on 

the electric field induced in the oxide.  Based on either the Anode Hole Injection model 

((1/E)-model) or the Thermochemical model (E-model), the time-to-failure can be 

expressed as [3]
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Q
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where  and G represent the field acceleration parameters in the two respective models, 

Q1 is the thermal activation energy required for bond breakage, and Q2 is the thermal 

activation energy associated with the current-induced hole injection into the oxide.  Since 

the electric field cannot be directly measured using the current state-of-art metrology 

techniques, the accuracy of the voltage and thickness measurements are critical.  Any 

errors in the thickness can lead to an erroneous field calculation (see Equation 2.4)

resulting in an over or under estimation of the lifetime of the oxide.  Probable causes of 

an oxide thickness error from a C-V measurement are: an incorrect value of the gate area

and an incorrect dielectric constant value.  The cost to predict the lifetime of an oxide 

grown on SiC can be expensive, as these substrates are more costly than Si substrates.

2.10. Chapter Summary

The reliability of an oxide can be assessed using electrical stress testing methods.  

The reported failure mechanisms of oxides for Si-based and SiC-based MOS devices,

under high electric fields, were presented using TDDB measurements.  An exact defect 

mechanism leading to the breakdown of an oxide for SiC-based MOS devices has not 

been reported.  The conduction mechanisms, Fowler-Nordheim and Poole-Frenkel

emission, were explained to analyze the conduction obtained in the experimental oxides 
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using non-contact SILC testing.  The principle technique of non-contact C-V

measurements and non-contact SILC testing were also introduced.
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Chapter 3. Experimental Procedures

3.1. Non-Contact Instrumentation

The Ion-Drift (ID) Spectrometer tool and the Film Analysis and Substrate Testing 

(FAaST) 230 tool were the non-contact metrology tools utilized to investigate the 

oxide/4H-SiC interface.  In the following section, a brief description of each tool will be 

presented.

3.1.1. Film Analysis and Substrate Testing (FAaST) 230 and Components

The commercial Film Analysis and Substrate Testing (FAaST) 230 tool was 

modified to investigate oxides grown on 4H-SiC substrates.  One unique modification 

implemented to the tool was the use of a UV light (=375 nm) diode instead of a green 

light diode.   The light generates free minority carriers to eliminate the surface barrier 

voltage drop across the 4H-SiC substrate’s space charge layer.  The components within 

the tool, which was utilized to perform non-contact C-V measurements and non-contact 

SILC measurements, are illustrated below.
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Figure 3.1: Schematic of the measurement apparatus based on ref. [64].

In Figure 3.1, the charging station located on the left comprised of a needle type corona 

discharge electrode and light diodes, and the measurement station located on the right

included a Kelvin probe and light diodes.  The probe consisted of a platinum reference 

electrode plate and the vibrating frequency was set to 1600 Hz. Within the corona dose 

generation modulation, a high DC voltage between + 5 KV to +10 KV supplied the 

corona discharge electrode to create corona ions.  The probe and the corona source were 

positioned about 500 m above the oxide surface.  The distance of the corona discharge 

electrode above the wafer was automatically controlled by the computer within a 

calibrated range to achieve the desired corona dose.  The corona charge deposition on the 

dielectric surface was measured either by the instrument directly or calibrated.  The 

density of the charge deposition was influenced by the level of the voltage, the charging 

time, the distance between the corona source and the oxide surface, and the charge 

interaction with any surface charges on the oxide [78].  The ion production could be set 
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from 10-7 to 10-4 A/cm2.  After the cessation of charge deposition, in less than a couple of

seconds, the Kelvin probe determined the contact potential difference (Vcpd) at the 

deposition site with a precision of 0.1 mV (refer to section 2.8.1).  The probe transfer to 

this site was achieved by a mechanical actuator. The voltage decay measurement 

acquisition was terminated after a predefined time.

The diodes were used to illuminate the oxide surface.  As previously mentioned, 

when the dielectric is measured under illumination, the light generates excess electron-

hole pairs in the semiconductor depletion or space charge layer, which minimized the 

voltage drop across the surface barrier to a negligible value.  The change of the contact 

potential difference was equal to the change in the voltage drop across the oxide.  

Subsequently, the change in the voltage drop across the surface barrier was obtained by 

[66]

   
illcpddarkcpdsb VVV  (3.1)

  oxsbdarkcpd VVV  (3.2)

  .oxillcpd VV  (3.3)

For non-contact C-V measurements, the user input the desired charge value in units of 

q/cm2 for a particular number of incremental steps.  The software then calculated the 

necessary corona current and time needed to generate this charge density.  On the 

contrary, for non-contact SILC measurements, the user input a value from +0.2 to +0.8 in

the corona current parameter.
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This parameter was proportional to the power supply and it directly produced a calibrated 

ionic corona current in the A/cm2 range.  The corona deposition time was also entered 

by the user.  The measurement cycle depended on the number of stress fluence (corona 

current multiplied by the deposition time) level(s) requested.

3.1.2. Ion-Drift Spectrometer

The Ion-Drift Spectrometer was an experimental tool based on the FAaST 230 

tool’s contact potential difference measurement principles.  One of the major differences 

between this tool and the FAaST 230 tool was the corona discharge electrode.  The 

corona source encompassed a wire discharge electrode and its enclosure (see Figure 3.2).

Figure 3.2: Sketch of the (a) wire enclosure, (b) discharge distance to the wafer, and (c) 
aperture diameter.
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The opening at the top of the wire enclosure allowed air to flow into the enclosure so 

corona ions may be created.  The diameter of the aperture’s opening, which was placed at 

the bottom of the enclosure, controlled the amount of corona charges deposited on the 

oxide surface.  The user interface was similar to the one used in the FAaST 230 tool for 

non-contact SILC measurements.  The user input a value from +0.2 to +0.8 in the corona 

current parameter and the corona deposition time in seconds.  This tool was used as a 

training tool for three purposes: 1. to understand the non-contact Corona-Kelvin

measurement method; 2. to verify the current limitation from the corona source; and 

finally, 3. to indicate the influence of constant corona current stress on C-V

measurements.

3.2. Pre-Oxidation Cleaning Procedure

Prior to oxidation, if the wafers were previously oxidized, the wafers were 

submerged in a (10:1) H2O:HF solution for 5 minutes to remove the oxide.  This was 

followed by de-ionized (D.I.) water rinse cycles and a (2:1) H2SO4:H2O2 or piranha clean 

for 10 minutes.  The wafers were then rinsed and dipped in a (1:1) H2O:HCL solution for 

10 minutes and rinsed.  Afterward, the wafers followed a standard cleaning procedure for 

bare silicon.  Standard clean 1 (SC1) and standard clean 2 (SC2), developed by the Radio 

Corporation of America [79], removed organic and metallic surface contamination from 

the wafer.  Figure 3.3 illustrates the RCA cleaning procedure used in this study.
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Figure 3.3: RCA cleaning procedure.

The D.I. water used for cleaning and rising had a resistivity of 18 Mohm-cm.  The HF dip 

after SC1 and SC2 removed any thin layer of chemical oxide formed during the standard 

cleans.  Subsequently, the wafers were oxidized using either an afterglow (AG) furnace 

system or an atmospheric furnace system.

3.3. Oxidation Sequence/Interval Experiments

The substrates used in this work were commercially available 80off-axis n-type 

4H-SiC epitaxial wafers. These 3-inch wafers had an n-type epitaxial layer, grown on the 

(0001) Si face, with a nitrogen doping concentration of approximately 5x1015/cm3.  This 

concentration was determined by a non-contact doping profiling method [80].  These 

wafers were reused or recycled allowing substrate cost-savings to the project and the 

characterization of a variety of oxidation processes.
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Rinse Rinse

Rinse
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3.3.1. Brief Description of Afterglow (AG) Furnace

The afterglow (AG) or remote plasma vacuum furnace system has been shown to 

oxidize 4H-SiC at a lower oxidizing temperature, time, and pressure [75, 77] than 

possible for this material when compared to an atmospheric furnace system.  The 

afterglow system is illustrated in Figure 3.4. Only the primary gas inlet was used.  The 

gases available were Argon (Ar), Oxygen (O2), Nitrous Oxide (N2O), Nitrogen (N2), and 

Forming gas (H2:N2). Forming gas (FG) was a mixture of 4-5% H2: 96-95% N2.  A 

microwave plasma source generated neutral atomic and excited molecular species of O2, 

N2O, and FG.  The furnace idle temperature and pressure in a N2 ambient was 4000C at 

0.3 Torr. To load the wafers, the system was brought up to atmospheric conditions, 

where the wafers were centered in the growth zone of the furnace and placed under 

vacuum in a N2 ambient.  

Figure 3.4: Sketch of afterglow furnace system [77].



55

In a non-excited media, the temperature was stabilized to the oxidation temperature.  The 

standard oxidation was performed at 8500C for 90 minutes at one Torr in the remote 

plasma excited mixture of O2: N2O: FG with a gas flow rate of (3: 0.2: 0.5) liters/minute.  

Following oxidation, the wafers were either annealed at a specific temperature and time 

in a non-excited media or unloaded.  Argon was the standard gas used to stabilize the

temperature either between anneals or prior to unloading.  The wafers were then unloaded 

in a N2 ambient at a specific temperature.

3.3.2. Afterglow (AG) Oxidation Parameter Variations

Thirteen afterglow oxide recipes were reported in this work.  Three major 

measurement sequences will be presented along with their purpose.  A detailed listing of 

each afterglow oxide recipe can be found in Appendix A.  The oxidation parameter 

variations included surface pre-conditioning, oxidation time variation, and post-oxidation 

annealing.

The objective of the first stage in this study was to establish and verify the 

conduction mechanism of annealed and non-annealed oxides, under a high oxide field 

(greater than 5 MV/cm), as Fowler-Nordheim conduction.  The annealed AG recipes

were varied by the gas media mixture and temperature used for post-oxidation annealing

(see Table 3.1). The post-oxidation anneals used for comparison were Argon (Ar) 

anneal, Re-oxidation (Re-ox) anneal, Oxygen-nitrous anneal, or Oxygen-FG anneal.
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Table 3.1: Annealed afterglow (AG) recipes.

AG Anneal Recipe Anneal Description Duration Time (min)

I_A Re-ox anneal 60

I_B Re-ox anneal 25

II Ar anneal 60

III Re-ox and Ar anneal 120

IV Oxygen-FG anneal 120

V Re-ox anneal 360

VI Oxygen-nitrous anneal 120

The AG oxides referred to as AG I_B, AG IV, AG V, and AG VI were modified in the 

following manner: in AG I_B, the oxidation time was reduced from 90 minutes to 40 

minutes; and in AG IV, AG V, and AG VI, instead of Ar, the same anneal gas ambient 

was used to stabilize the temperature to the anneal temperature.  These minor variations 

were included to observe the influence of growth thickness and anneal variation on the 

Fowler-Nordheim characteristics.  The variation in the post-oxidation anneal was to 

verify the influence of charges in the oxide on the Fowler-Nordheim plot, since it was 

reported that the density of interface states is decreased by post-oxidation anneals [14].  

Table 3.2 lists the modification within the non-annealed recipes.
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Table 3.2: Non-annealed afterglow (AG) recipes.

Non-Annealed AG 
recipes

Modified Process Unload Temperature

AGW I N/A 6000C

AGW II No FG pre-treatment 6000C

AGW III 10 minutes of oxidation 8500C

AGW IV
No FG pretreatment and 
10 minutes of oxidation

8500C

AGW V Oxidation mixture media 6000C

AGW VI Oxidation mixture media 6000C

The influence of the surface pre-conditioning, the oxidation growth time, the variation of 

the oxidation mixture media, and the unloading temperature on the Fowler-Nordheim 

characteristics were observed for the non-annealed AG oxides.  The measurement 

sequence is illustrated in Figure 3.5.

Figure 3.5: Measurement sequence to calculate JF-N.

Non-contact C-V
C=dQc/dVcpd

Calculate JF-N

Cox(dVox/dt)

Determine 
EOT=ere0/Cox
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The results of the first stage prompted the objective for the second stage of 

measurements.  In this stage, the trapped charge distribution within AG oxides was 

examined.  The trapped charge distribution may exist in the bulk of the oxide or at the 

oxide interface.  Afterglow IV oxide was the primary afterglow oxide process recipe used 

for this experiment.  To perform this task, the oxidized substrates were etched in a diluted 

HF solution bath of 100:1 (H2O:HF) at 240C.  Figure 3.6 shows the etch pattern and 

quadrant created on a substrate.

Figure 3.6: Etch pattern and quadrant designation on the substrate.

The wafers were then dehydrated using three methods: a hotplate at 2000C for 5 to 60 

minutes, a rapid thermal processing (RTP) anneal in Ar at 8000C for 2 minutes, and an 

afterglow non-excited Ar anneal at 6000C for 20 minutes.  The measurement sequence is 

illustrated in Figure 3.7.

Reference

BF

E C

A

Primary

D
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Figure 3.7: Measurement sequence to calculate trapped charge.

Finally, the objective for stage three was to analyze the potential breakdown 

mechanism and assess the growth oxide consistency using SILC testing at seventeen sites

on the wafer.  Afterglow recipes AGW I, AG I_A, AG II, and AG III were repeated at 

least three times on the same substrate.  The influence of the environmental/processing 

conditions, which included unintentional contamination from the cleaning procedure or 

the furnace, was observed by the leakage current measurements.  The measurement 

sequence is illustrated in Figure 3.8.

Non-contact C-V
C=dQc/dVcpd

Stress Oxide for 15s 
calculate J15s

Calculate Trapped 
Charge

Qt=(DVFB)Cox

Calculate JF-N

Cox(dVox/dt)

[J=Cox(dVox/dt)]

Determine 
EOT=ere0/Cox

Non-contact C-V
C=dQc/dVcpd
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Figure 3.8: Measurement sequence to obtain SILC data acquisition.

3.3.3. Thermal Oxidation

To compare the AG oxides to atmospheric oxides, n-type 4H-SiC oxidized 

samples, Thermal TA and Thermal TB were obtained from two separate industrial 

laboratories.  The oxide on these 3-inch diameter wafers were grown using an 

atmospheric furnace.  Oxidation occurred at a temperature greater than 11000C followed 

by a nitric oxide (NO) anneal at a temperature not exceeding 11500C.

Non-contact C-V
C=dQc/dVcpd

Non-contact SILC

Calculate JF-N

Cox(dVox/dt)

JSILC= Jafter stress –Jbefore stress

[J=Cox(dVox/dt)]

Determine 
EOT=ere0/Cox
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Chapter 4. Experimental Results and Discussion

4.1. Measurement Test Conditions

To ensure proper wafer backside contact with the measurement chuck, the oxide 

was stripped from the carbon face of each wafer using hydrofluoric (HF) vapor.  

Following the 5-minute HF vapor etch, the wafers were subjected to D.I. water rinse 

cycles and dried with a nitrogen air gun.  Since the relative humidity (R.H.) affected the 

amount of corona discharge ions generated in air, all measurements performed on the 

FAaST 230 tool were taken at an R.H. level between 45% and 50%. The room 

temperature ranged from 19 to 200C.  On the contrary, the Ion Drift Spectrometer was not 

in a controlled environment and as a result, the relative humidity and temperature was 

recorded for each measurement.  Unless otherwise noted, the oxide field range, chosen to 

calculate the predicted Fowler-Nordheim characteristics, was based on the field range of 

the experimental data.

4.2. Non-Contact Corona Current Stress

Two sets of experiments were performed on the Ion-Drift Spectrometer: constant 

corona current stress and corona deposition time versus C-V characteristics.  To have a 

known reference, thermal oxides on p-type (100) Si wafers were used for these sets of

experiments.  The objective of the first experiment was to determine the current 

limitation of the measurement tool.
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Each oxide was stressed with negative corona charges until the current density (following 

such stress) reached between 10-6 A/cm2 and 10-5 A/cm2.  Negative charges were used to 

place the semiconductor into accumulation to induce substrate injection of electrons.  

Two oxides, 320 Å and 365 Å thick, were stressed.  The large aperture was chosen since 

more corona charges were deposited on the oxide surface.  As shown in Figure 4.1, the

current density range of 10-6 to 10-5 A/cm2 was not achieved even though the electric field

in the oxide was greater than 13 MV/cm.  The electric field breakdown for silicon dioxide

ranges from 10 to 14 MV/cm.  Table 4.1 shows the measurement conditions and 

parameters.

Figure 4.1: Current density versus Vcpd for various corona currents.
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Table 4.1: Stress current measurement parameters and conditions.

Oxide 
Thickness 

(Å)

Room 
Temp (0C); 
R.H. (%)

Corona 
Current 

Parameter

Corona 
Deposition 
Time (s)

Pulse 
Duration 

(s)

Oxide 
Electric 

Field 
(MV/cm)

320 23; 68 -0.3 15 105 14

365 25; 70 -0.8 3 57 13

365 24; 66 -0.5 10 110 14

Various corona currents and times were tested to obtain the desired breakdown field.  As 

seen in Figure 4.1, the highest current density achieved was approximately 

0.01A/cm2.  Even though more charges were deposited at the maximum current 

parameter, the voltage potential, along with the current density, leveled at a particular

value.  It was concluded that the corona source was current limited.

The objective of the second experiment was to observe the influence of the corona

deposition time versus C-V characteristics.  Using standard device based contact 

measurements, capacitance-voltage plots can be used to illustrate the influence of the

interface trap density (see Figure 4.2).
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Figure 4.2: Theoretical ideal Dit=0 (before stress) and Dit 0 (after stress) [33].

In Figure 4.2, the minimum capacitance increased as a result of the formation of interface

trap defects.  The same concept was predicted to occur once the oxide was stressed with 

corona ions.  The measurement protocol included: 1. obtain the initial C-V, 2. stress the 

oxide using negative corona charges for 10s, and 3. re-measure the C-V.  Step two was 

repeated for 10s, 11s, 12s, 13s, and 14s.  The total cumulative time was 70s.  Table 4.2 

reiterates the measurement procedure.
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Table 4.2: Stress measurement protocol.

Measure Time (s) Cumulative Time (s)

C-V

1st Stress 10 10

C-V

2nd Stress 10 10+ 10= 20

C-V

3rd Stress 11 20 + 11= 31

C-V

4th Stress 12 31+ 12= 43

C-V

5th Stress 13 43+ 13=56

C-V

6th Stress 14 56+ 14= 70

The corona current parameter was set at -0.8.  Each C-V measurement was done at an 

incremental charge of ~0.03 C/cm2.  Below illustrates the results for two different sites 

on a 150 Å thick oxide.
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Figure 4.3: Capacitance-voltage characteristics versus corona stress.

(a)

(b)
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In Figure 4.3, as the time of stress increased up to the cumulative time of 70s, the 

minimum capacitance and depletion width increased.  The minimum capacitance is the 

value at which the curve depletes before weak inversion occurs.  This phenomenon may 

be due to the creation of traps or a high charge density on the oxide surface.  At the 

depletion region, the total capacitance without interface trap charges is equal to the series 

connection of the oxide capacitance and the depletion layer capacitance (see equation 

4.1).

 
itdox

itdox
t CCC

CCC
C




 (4.1)

where Cox is the oxide capacitance, Cd is the depletion capacitance, and Cit is the interface 

trap capacitance.  As Cit increased, the total capacitance in the depletion region also 

increased.  Since the charge deposited on the oxide surface cannot be directly measured, 

it was calculated using a calibrated capacitor.  The results from this capacitor revealed 

that the deposited charge was in the range of micro-coulombs.  As a result of the 

experiments, the Ion-Drift Spectrometer tool could be used for non-contact C-V 

measurements but the location of the tool was not ideal for non-contact SILC

measurements on 4H-SiC oxidized wafers.  The relative humidity and room temperature 

varied on a daily basis which created inconsistencies on the quantity of ionic charges.  

Hence, the deposited charges could not be efficiently calibrated for a sequence of 

repeatable measurements.  In summary, it was shown that the corona source is current 

limited and high corona charge fluences induced trapped charges in the oxide.
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4.3. Potential Factors Affecting the Accuracy of the Contact Potential Difference

The contact potential difference (Vcpd) was determined by the Kelvin method as 

stated in Section 2.8.1. A Kelvin probe is connected to a lock-in amplifier and other 

relevant electronics.  As the reference electrode vibrated periodically at a defined 

frequency, the lock-in amplifier detected a displacement current defined by Equation 

2.25.  The DC bias voltage varied until this current approached zero.  The precision of the 

determined Vcpd was within 0.1 mV.  According to Equation 2.25, the height of the probe 

and the frequency of the sinusoidal signal affect the determined Vcpd.  Internal 

calibrations were performed on known SiO2/Si systems to verify the accuracy of the 

measurement.  The height of the probe from the surface of the substrate was calibrated

between 200 m and 500 m.

After corona deposition on the surface of the oxide, Vcpd was measured.  There 

were essentially three unknown components of Vcpd , the semiconductor-reference 

electrode work function difference, the voltage drop across the oxide and the voltage drop 

across the semiconductor surface barrier (see Equation 2.26).  The work function varied

based on the semiconductor doping levels and condition of the probe’s surface.  It 

primarily caused a shift in the calculated electric field.  This work function offset effect

was not observed when determining the capacitance and current density because the 

change in the contact potential difference was calculated (see Equation 2.32). The 

voltage drop across the oxide and the voltage drop across the semiconductor surface 

barrier were determined by following the procedure described in Section 3.1.1.
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The contact potential difference was measured as a function of time.  A

logarithmic regression analysis of the inverse of the measured Vcpd versus time was 

performed to determine the characteristic of the curve, which was related to the predicted 

Fowler-Nordheim current density equation coefficients.  The corresponding R-squared 

value determined if the data fitted to this function.  The R-square value ranged from 

0.997 to 1 for all measured data.  The current density was then calculated at each 

increment of time from the fitted voltage decay and the oxide capacitance (see Equation 

2.36).

4.4. Fowler-Nordheim Conduction in Afterglow Oxide and Thermal Oxide on 4H-SiC

After the pre-charging treatment, all measured oxides were given a high dose of

positive corona charge for a 5-second duration under illumination.  The substrate was 

placed into deep accumulation.  The corona current parameter was set to 0.8.  This low

charge fluence, 40 C/cm2, created a high oxide field for the occurrence of Fowler 

Nordheim tunneling and established the maximum voltage drop across the oxide.  This 

maximum voltage was known as VSASS.  The oxide voltage (Vox) decay was monitored 

for 20 seconds after the cessation of corona charging.  The average EOT value for each 

oxidized wafer was obtained from their accumulation capacitance.  This thickness was 

used in the calculation of the experimental Fowler-Nordheim current density. The 

valence band offset in reference to SiO2 for 4H-SiC is 3.05 eV as oppose to 4.73 eV for 

Si [14].  Substrate injection of holes, from this binary semiconductor, was energetically 

not feasible.  The injection of holes would require enough energy to go against the 

direction of the electric field in the oxide created by a quantum of positive corona charge.  
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In this regards, only substrate injection of electrons was considered to occur, when a

quantum of positive corona charge was deposited on the surface of the oxide.

Before this current was analyzed, each oxide was compared to the Poole-Frenkel 

slope for SiO2 to verify that the conduction was indeed by Fowler-Nordheim conduction. 

In Figure 4.4, the slope of the experimental oxides, AG IV (0.023) and Thermal TA 

(0.029), did not match the Poole-Frenkel theoretical slope of 0.015 accepted for silicon 

dioxide.

Figure 4.4: Poole-Frenkel plot comparing theoretical and experimental oxides.

The theoretical Poole-Frenkel current density was calculated based on an ionization 

potential of 1 eV and a proportionality constant of 1x10-13. Both of these parameters 

were reported in literature for silicon dioxide [29].  The theoretical slope assumed that a 
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significant number of acceptor traps were present within the oxide at room temperature 

and as a result  was set to one.  According to Equation 2.6, the slope decreases, if there 

were less acceptor traps within the oxide (=2), to 0.0074.  This slope was not remotely 

close to the experimental slopes.  The proportionality constant calculated from the 

intercept of the Poole-Frenkel plot for the experimental oxides indicated that the density 

of trap centers was in the range of 10-28 to 10-24.  Due to the mismatch between the slope 

of the theoretical line and the experimental lines, it was concluded that the conduction 

through the experimental oxides was not due to Poole-Frenkel.  Although, the line for 

Thermal TA intersected the theoretical Poole-Frenkel line, the parameters which affected 

the slope, the dielectric constant and the value of , could not rectify the angle between 

the lines.

The Fowler-Nordheim characteristics were analyzed for each AG oxide and 

thermal oxide of 4H-SiC substrates.  The experimental Fowler-Nordheim characteristics 

of oxidized Si samples, with oxide thicknesses greater than 50 Å, had an overall good 

match to the predicted Fowler-Nordheim current characteristic (see Figure 4.5).  As seen 

in Figure 4.5, the Fowler-Nordheim characteristic is independent of oxide thickness.
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Figure 4.5: Fowler-Nordheim plot for various thermal oxide thicknesses on Si.

In this study, the effective barrier height was established by two methods.  The first 

method utilized the measured current (Jexp) from I-V measurements.  It was then fitted to 

the predicted theoretical Fowler-Nordheim current characteristics defined in the software 

and the thickness was determined.  The default theoretical Fowler-Nordheim current 

characteristic for SiO2/Si systems was based on Mox of 0.36 and an effective barrier 

height of 3.15 eV.  The change implemented in the software for SiO2/4H-SiC systems, 

with regards to the default values, was the effective barrier height.  It was changed from 

3.15 eV, the conduction band offset for SiO2/Si [36] to 2.7 eV, the conduction band offset 

for SiO2/4H-SiC [81].  The effective mass in the oxide was not changed since it was 

previously shown that AG oxide or thermal oxide grown on 4H-SiC substrates had a 
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relative dielectric constant of 3.9 [75].  However, the thickness value from the I-V 

measurement did not match the independently measured average EOT value from C-V 

measurements.  This indicated that trapped charges and the oxidation process chemistry

influenced the measured voltage.  To optimize the measured Fowler-Nordheim curve to 

the theoretical Fowler-Nordheim curve, the effective barrier height was varied until the 

thickness fitted to + 5% of the independently measured average EOT value.  Table 4.3 

along with Figure 4.6 shows the effect of oxidation process chemistry on the effective 

barrier height for SiO2/4H-SiC systems.  The x-axis on the graph represents the oxidation 

process for a thermal oxide and AG oxides (annealed and non-annealed).

Table 4.3: Oxidation process chemistry variation.

Afterglow oxidation at 8500C, 90 min. in excited media: (O2:N2O:FG) with 
variation of FG flow

Process FG Flow Parameters of Post Oxidation Anneal

(l/min) Temp (0C)
Time 
(min)

FG 
(l/min)

N2O 
(l/min)

O2(l/min)

TH TB Thermal atmospheric oxide, outside vendor

AG I_A 0.5 850 60 0.5 0.2 3

AG IV 0.5 950 120 1 - 3

AG V 0.5 900 360 0.5 0.2 3

AG VI 0.5 950 120 - 0.3 4

AG VIII 0.5 AG IV after RCA clean and anneal (2h, 11000C, Ar)

AGW V 1 - - - - -

AGW VI 1.3 - - - - -
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Figure 4.6: Oxidation process chemistry influence on the effective barrier height for
SiO2/4H-SiC systems (see Table 4.3 for oxidation process representation).

In Figure 4.6, the estimated effective barrier height value slightly varied depending on the 

oxidation process conditions.  It is shown that a post-oxidation anneal in (O2: FG) slightly 

decreased the estimated effective barrier height, when compared to a post-oxidation 

anneal in (O2: N2O).  Comparing AGW V and AGW VI, the estimated effective barrier 

height slightly increased to 3.2 eV for a variant of the oxidation growth mixture, when

compared to 3.1 eV for a slight FG increase in the oxidation growth mixture.  The 

oxidation of 4H-SiC at a temperature greater than 11000C following a NO post-oxidation 

anneal at a similar temperature (Thermal TB) revealed a reduced estimated effective 

barrier height of 2.9 eV, when compared to AG oxidation of 4H-SiC at a temperature of 

8500C.  The AG VIII oxide is the same as AG IV oxide, except for the addition of a 2-

hour 11000C Ar anneal after SC1 and SC2 cleans without HF dip.  This oxide had a lower 

estimated barrier height value of 3.03 eV compared to AG IV oxide.
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Similar evidence of the oxidation process influence on the effective barrier height has 

been reported in literature on SiO2/Si systems.  The effective barrier height increased up 

to 0.2 eV due to microscopic atomic structural changes in an oxide grown on silicon 

within a controlled chemical environment [82].  This method was used to calculate the 

effective SILC values for a given oxidation process.

In the second method, Fowler-Nordheim current was calculated using Equation 

2.36. From the Fowler-Nordheim plot, the experimental slope value for each oxide was 

extracted and the effective barrier height was calculated using Equation 2.12.  The 

Fowler-Nordheim analysis reported in literature for SiO2/SiC systems assumes Mox= 0.42

and calculates the effective barrier height using Equation 2.12.  As a result, two effective 

mass in the oxide values were compared: Mox= 0.36, used for Fowler-Nordheim 

characteristics in the FAaST 230 tool; and Mox= 0.42, used commonly for SiO2/SiC 

systems [83-87].  Table 4.4 and Table 4.5 show the effective barrier height calculated 

based on an assumed effective mass in the oxide.
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Table 4.4: Calculated effective barrier for annealed 4H-n-type experimental samples.

Oxidation 
Process

EOT 
(Å)

Oxide 
Electric Field 

(MV/cm)

Experimental 
Slope (V/cm)

b based 
on 0.36 

(eV)

b based 
on 0.42

(eV)

AG I_A 515 6.1 to 6.9 -1.81E+08 2.70 2.56

AG I_B 320 6.2 to 7.0 -1.91E+08 2.79 2.65

AG II 500 6.0 to 6.8 -1.87E+08 2.75 2.61

AG III 554 6.1 to 6.9 -1.82E+08 2.70 2.57

AG IV 520 6.1 to 6.9 -1.81E+08 2.70 2.56

AG V 489 6.1 to 6.9 -1.76E+08 2.65 2.51

AG VI 480 6.3 to 7.0 -1.97E+08 2.84 2.70

Thermal TA 517 5.3 to 5.9 -1.81E+08 2.69 2.55

Thermal TB 439 5.5 to 6.1 -1.87E+08 2.75 2.61

Thermal TC 318 6.1 to 6.9 -1.87E+08 2.75 2.62

Table 4.5: Calculated effective barrier for non-annealed 4H-n-type experimental samples.

Oxidation 
Process

EOT 
(Å)

Oxide 
Electric Field 

(MV/cm)

Experimental 
Slope (V/cm)

b based 
on 0.36

(eV)

b based 
on 0.42

(eV)

AGW I 511 6.1 to 6.9 -1.83E+08 2.71 2.57

AGW II 433 6.2 to 6.9 -1.89E+08 2.77 2.63

AGW III 160 5.6 to 6.2 -1.70E+08 2.58 2.45

AGW IV 135 5.7 to 6.3 -1.71E+08 2.59 2.46

AGW V 412 6.0 to 6.7 -1.88E+08 2.76 2.62

AGW VI 310 6.2 to 7.0 -1.84E+08 2.72 2.59
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In Figure 4.7, the Fowler-Nordheim plot is influenced by post-oxidation annealing, since

there was a slight variation in the slopes of the oxides.

Figure 4.7: Fowler-Nordheim plot of AG annealed oxides.

Although the oxidation process conditions varied, the AG oxides’ Fowler-Nordheim 

slope was comparatively independent of oxide thickness. The slight parallel shift,

between the various annealed experimental AG oxides, indicated that the density of the 

oxide and trapped charges in the oxide affected the intercept and slope of the Fowler-

Nordheim plot. The offset between the experimental lines and the theoretical line could 

be due to a variant of the effective mass in the AG oxides.
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From the experimental data, the effective mass in the AG oxide could not be accurately

extracted from the slope and intercept of experimental Fowler-Nordheim plots.  As seen 

in Equation 2.15, the effective mass in the oxide is included in the pre-exponential and 

exponential factor of the Fowler-Nordheim current density equation.  Any slight error in 

the intercept of the line results in a significant change of Mox.  This was not a concern for 

the measurements on SiO2/Si systems.  Therefore, it was possible that the intercept for an 

AG oxide on 4H-SiC was affected by the quantization of the energy level of the electrons 

tunneling through the oxide.  To confirm this hypothesis, Fowler-Nordheim plot of

thermal oxides measured under the same conditions was compared to the theoretical

Fowler-Nordheim line (see Figure 4.8).

Figure 4.8: Fowler-Nordheim plot of thermal annealed oxides.
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All of the experimental thermal oxides were parallel to the theoretical line, with Thermal 

TA being in close proximity to this line.  The offset between the experimental thermal 

oxides and the theoretical line, however, was still present.  There are three possible 

explanations.  The first possibility was based on the assumption that traps created during 

Fowler-Nordheim stress on oxidized n-type 4H-SiC were not negligible as compared to 

oxidized Si samples.  The second possibility was based on the assumption that the 

dielectric constant of oxide grown on 4H-SiC was not 3.9 as accepted for thermal silicon 

dioxides [16].  However, the second possibility was discredited.  A simulation of this

parameter revealed that the dielectric constant needed to be increased more than 100% of 

its current value to match the theoretical intercept value.  Finally, the third possibility was 

based on the fact that the value of the effective mass in the AG oxide could be higher 

than 0.42m.  In addition to the AG annealed oxides, the non-annealed 90-minute oxides 

also exhibited a similar oxide field range compared to the annealed oxides (see Figure 

4.9).
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Figure 4.9: Fowler-Nordheim plot of non-annealed AG oxides.

In Figure 4.9, the ten minute non-annealed oxides, AGW III and AGW IV shifted toward

the theoretical line.  This variance further indicated that the Fowler-Nordheim 

characteristics had a dependence on the oxidation of n-type 4H-SiC substrates.  The 

effect of the FG pre-treatment was not significant on the Fowler-Nordheim plot except by 

thickness comparability.  The FG pre-treatment led to a higher growth rate and better 

oxide thickness uniformity throughout the wafer.  This evidence was seen through C-V 

measurements of five measurement sites on the wafer taken in the dark and light, 

respectively. These regions were located on the wafer’s top, right, center, left, and bottom 

point sites.  The offset was still evident with non-annealed oxides, which confirmed the 

first and third possibilities conjectured earlier.
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As seen in Table 4.4 and Table 4.5, using an assumed Mox of 0.36 instead of 0.42, 

the experimental effective barrier height value is in proximity to 2.7 eV. However, in 

Figure 4.10, the theoretical line with Mox of 0.36 has a greater offset when compared to 

the experimental oxides.

Figure 4.10: Comparison of experimental data and predicted Fowler-Nordheim lines.

The predicted Fowler-Nordheim lines implied that AG oxides had an effective barrier 

height value greater than 2.7 eV, contrary to the value found using internal electron 

photoemission study [81].  To further investigate this offset, the influence on the self-

adjusting steady state voltage (VSASS), the effective mass in the oxide, effective barrier 

height, and trapped charges in the oxide will be analyzed in the proceeding sections.
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4.4.1. Self Adjusting Steady State (SASS) Voltage on Oxides

The self-adjusting steady state voltage, VSASS, was determined for each oxide after 

the Fowler-Nordheim conduction.  The corona current density was set to 8 A/cm2.  Each 

oxide was further stressed with the same high dose of positive corona charge in 100s 

increments.  It was reported that the SASS voltage correlated to the band offset in a 

dielectric-Si system [76].  The SASS voltage reported for SiO2/Si systems was taken at 

1.2 seconds.  In this study, the SASS voltage for SiO2/4H-SiC systems was taken at 1.7 

seconds due to the later stabilization of the voltage measurement acquisition.  The total 

stress cumulative times were 5s, 105s, 205s, 305s, and 405s on AG oxides and up to 505s

for thermal oxides.  Figure 4.11 illustrates the VSASS trend for all experimental annealed

oxides.
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Figure 4.11: Steady-state voltage experimental oxide comparison.

In Figure 4.11, comparing comparable thicknesses, the AG oxides had a higher steady 

state voltage than the thermal oxides.  This indicated that the AG oxides had a higher

tunneling barrier height.  At the highest stress time, the AG oxides tend to slightly 

decrease in voltage when compared to the thermal oxides, which was attributed to the 

post-oxidation anneal treatment.

4.4.2. Significant Parameters: Effective Mass in the Oxide and Barrier Height

To examine the shift in the Fowler-Nordheim plot between the experimental 

oxides and the predicted Fowler-Nordheim characteristics, only AG IV and Thermal TA 

oxides will be used since their thickness was comparable.  The possibility, which 
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assumed that the traps induced in the Fowler-Nordheim regime were negligible, is 

discussed in the following paragraph.

The effective mass in the oxide and effective barrier height from the theoretical 

curve were varied to fit the experimental oxides.  First, the effective mass in the oxide 

was increased and the effective barrier was kept constant at 2.7 eV (see Figure 4.12).

Figure 4.12: Variation of Mox on the predicted Fowler-Nordheim characteristics.

For the AG oxides, Mox was approximately 0.57 and for the commercial thermal oxides, 

it was about 0.44.  Further increase in Mox did not lead to an exact match for the AG 

oxides.  There are three probable causes: the trapped charge influence on the oxide field,

the oxide structure’s incorrect effective barrier height, or both.  The effective mass in the 
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oxide increases as a result of the electron’s dispersion during tunneling.  Theoretically, 

the effective mass in the oxide is based either on a Franz dispersion relation or parabolic 

dispersion relation [34, 36, 88].  These dispersion relations are attributed to the tunneling 

electron energy momentum in the oxide band gap.  This momentum includes the electron 

wave vector of the tunneling electron and the total tunneling electron energy from the 

semiconductor conduction band edge.  In Table 2.3, the standard accepted value for Mox

on SiO2/Si system ranged from 0.36 to 0.5.  A Mox of 0.42 is the typical value chosen for 

SiO2/SiC systems since it is assumed that electrons tunneling in the oxide band gap have 

similar dispersion relationship. Determining the dispersion relation for SiO2/SiC was 

beyond the scope of this study.  To demonstrate the influence of varying the effective 

barrier height on the Fowler-Nordheim plot, the theoretical line was evaluated over the 

same oxide field using a constant Mox of 0.36 with an effective barrier height of 2.7 eV, 

2.9 eV, 3.15 eV, and 3.25 eV, respectively (see Figure 4.13).



86

Figure 4.13: Theoretical Fowler-Nordheim plot varying the effective barrier height with 
Mox of 0.36.

In Figure 4.13, as the effective barrier height increased, the intercept and the offset 

between the lines decreased.  The slopes of the lines were nominally in the same range 

~108 V/cm.  The apparent reduction or increase in the calculated effective barrier height 

for the experimental oxides compared to 2.7 eV (the theoretical effective barrier height 

for SiO2/4H-SiC) was attributed to the influence of trapped charge in the oxide.  Trapped 

charges were confirmed by an observed shift of the flat band voltage on re-measured C-V

measurements.
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4.4.3. Comparison with Fowler-Nordheim Literature Data on Oxide-n-type 4H-SiC 
Devices

Figure 4.14 illustrates an example of a typical measurement performed on 4H-

SiC-MOS devices to analyze the Fowler-Nordheim conduction.   The voltage is swept at 

a defined rate (dV/dt) and the current is measured.  A spike in the current indicated the 

breakdown of the oxide.

Figure 4.14: Example of current-voltage characteristics of a 4H-SiC MOS capacitor with 
a 500 Å gate oxide measured at room temperature [52].

The displacement current, below the Fowler-Nordheim voltage knee, changed to a

conduction current from the conduction band, above this voltage knee.  The area of

interest for non-contact I-V measurements was within the Fowler-Nordheim voltage 

Displacement 
current 
measurement floor= 
C(dV/dt)

Oxide Breakdown

F-N Knee

Area of interest to 
non-contact I-V
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knee.  The maximum electric field attained during non-contact I-V measurements was

approximately 7 MV/cm.

Equation 2.15 is the standard Fowler-Nordheim equation used historically to

analyze SiO2/SiC devices.  Only a few research groups have explored the occurrence of 

Fowler-Nordheim tunneling regime on SiC-based MOS devices with respect to 

temperature [85-87].  It was concluded that higher temperatures decreased the effective 

barrier height.  At room temperature, the conduction band offset at the SiO2/4H-SiC 

interface was determined to be 2.7 eV using internal electron photoemission (IPE) [81].  

As a result, the theoretical Fowler-Nordheim plot for SiO2/4H-SiC systems is based on 

the effective barrier height of 2.7 eV and on an assumed effective mass in the oxide. This 

Mox is commonly chosen as 0.42 and is taken from measurements done on SiO2/Si 

systems [34].  Table 4.6 includes the effective barrier height values reported for 4H-SiC 

MOS devices after Fowler-Nordheim injection of electrons from 4H-SiC into the oxide 

conduction band.  These values were calculated from the Fowler-Nordheim plot slope 

using Equation 2.12 with an assumed Mox of 0.42.
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Table 4.6: Reported effective barrier height for 4H-SiC MOS devices at room 
temperature.

Reference
Gate oxide 

Tox (Å)
Experimental 
Slope (V/cm)

Effective 
Barrier Height 

(eV)

Oxide Electric
Field (MV/cm)

[83] 400 -2.06E+08 2.78 6.9 to 8.3

[85] 230 -1.90E+08 2.64 7.7 to 10

[86] 93 -1.73E+08 2.48 6.3 to 7.1

[84] 670 -1.96E+08 2.70 7.1 to 10

[87] 225 -1.68E+08 2.43 6.3 to 10

In Table 4.6, although the oxidation process conditions in each report varied, the Fowler-

Nordheim slope was comparatively independent of oxide thickness.  Figure 4.15

illustrates the comparison between device-based contact measurements and non-contact 

measurements.  The Fowler-Nordheim characteristic of the un-metallized thermal oxide 

is comparable to metallized oxides.
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Figure 4.15: Fowler-Nordheim conduction comparison of contact versus non-contact 
measurements.

The current density for the experimental oxides is lower than the metallized oxides due to 

the current limitation of the non-contact measurement system.  The inconsistency 

observed by these studies in the effective barrier height value indicates the sensitivity of 

the fabrication process.  It was postulated to be due to the effect of the post-oxidation 

annealing condition used, which influenced the quantity of charges in the oxide.

4.4.4. Influence of Trapped Charge in the Oxide

To reiterate, Fowler-Nordheim conduction occurs when electrons flow into the 

oxide conduction band through a triangular potential barrier.  If oxide charges are located 

within the Fowler-Nordheim tunneling regime, the centroid of these trapped charges 
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influences the voltage drop across the oxide and changes the shape of the potential barrier 

from triangular to a non-triangular barrier.  In the presence of these charges within the

Fowler-Nordheim tunneling regime, the oxide field (F) is given as [89-91]
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where Qt is the trapped charge in the oxide, x is the centroid of the charge distribution 

measured with respect to the semiconductor/SiO2 interface, tox is the oxide thickness, Vox

is the voltage drop across the oxide, r is the dielectric constant, and 0 is the permittivity 

of vacuum.  Figure 4.16 illustrates the influence of charge trapped within the Fowler-

Nordheim tunneling regime in SiO2/Si system [92].
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Figure 4.16: Charge trapped within tunneling regime in SiO2/Si system: (a) negative 
charge trapping, (b) positive charge trapping [92].

In Figure 4.16, the gradient of the potential in the oxide changed depending on the 

polarity of the trapped charge.  The modified oxide field is lowered as predicted by 

Equation 4.2 due to trapped charge.  To account for this effect, the Fowler-Nordheim 

current equation was modified and denoted as Jnon [91]
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Equation 4.3 assumes that the trapped sheet charge is uniformly distributed within the 

oxide.  To illustrate the effect of this modification, an example of a theoretical Fowler-

Nordheim plot with trapped charges within or outside the Fowler-Nordheim tunneling

regime is shown in Figure 4.17.

Figure 4.17: Example of trapped charge outside or inside the Fowler-Nordheim tunneling 
regime in a 500 Å oxide.

As seen in Figure 4.17, charges within the Fowler-Nordheim tunneling regime increased

the slope of the line.  The angle between the theoretical line without trapped charges and 

the theoretical line with trapped charges, within the Fowler-Nordheim tunneling distance,
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also increased as the oxide field decreased.  This angle is controlled by the location of 

this trapped charge centroid.

4.4.5. Fowler-Nordheim Equation Modification for Oxide-4H-SiC

The influence of the trapped charge in an experimental oxide was verified by re-

measuring its C-V characteristics after stress.  A flat band voltage shift marked the 

presence of trapped charges in the oxide.  The offset between the Fowler-Nordheim 

theoretical line and the experimental lines could only be resolved with the assumption 

that trapped charges were within the Fowler-Nordheim tunneling regime. Equation 4.3

was fitted to the experimental oxides in the attempt to minimize or eliminate this offset.  

The quantity of the trap charge was estimated by

  ox
final

fb
initial
fbt CVVQ  (4.6)

where initial
fbV and final

fbV are the flat band voltage taken before Fowler Nordheim 

conduction and after a moderate stress, respectively, and Cox is the oxide capacitance.  

Figure 4.18 illustrates the C-V characteristics of the experimental oxides before and after 

stress.
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Figure 4.18: Capacitance-voltage characteristics of AG IV and Thermal TA oxides before 
and after stress.

The trapped charge density for Thermal TA oxide and AG IV oxide was evaluated to be -

4.07x10-7 C/cm2 and -7.06x10-8 C/cm2, respectively.  A Mox of 0.42 did not provide a 

reasonable overlay to the experimental oxides.  Since the calculated effective barrier 

height value was in proximity to 2.7 eV (the conduction band offset for SiO2/4H-SiC 

systems), Mox was chosen to be 0.36 for the non-triangular theoretical Fowler-Nordheim 

current characteristic (see Table 4.4 and Table 4.5).  
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Figure 4.19: Non-triangular Fowler-Nordheim plot fitted to experimental oxides.

As seen in Figure 4.19, to obtain a nominal overlay to the non-triangular Fowler-

Nordheim theoretical line, the location of the charge centroid was adjusted to 25 Å for 

Thermal TA oxide.  However, the afterglow oxide did not provide an overlay at the 

minimum distance of 10 Å.  Contrary to Thermal TA oxide, the non-triangular Fowler-

Nordheim model parameters could not intersect the AG IV oxide without a change in the 

barrier height from 2.7 eV to 3.1 eV.  This further indicated that the AG oxide structure 

has fundamental differences from the thermal oxide structure. This increase in the

effective barrier height for the AG oxide was also an indication that the AG oxidation 

growth method modified the surface of the interface.  It has been reported that oxidation 

of 4H-SiC with atomic nitrogen and hydrogen at a temperature of 7500C revealed a 
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disordered Si-rich surface [22].  An investigation of the Fowler-Nordheim derivative also 

suggested that in the presence of negative trapped charge, the exponential oxide field 

dependence and the effective barrier height value increased [89]. The non-triangular 

Fowler-Nordheim theoretical line only intersected the experimental lines, which revealed 

that the exact location of the trapped charge centroid is a critical fitting parameter.  The 

perfect match will depend on the exact charge value and location of the charge centroid 

within the oxide.  To potentially obtain the location of the trapped charge centroid and the 

charge distribution within an AG oxide, an AG oxide thickness was etched back and 

analyzed.

4.5. Distribution of Trapped Charge in Oxide on 4H-SiC

The oxide recipe used for this experiment was AG IV oxide.  This oxide was 

etched back to obtain various thicknesses.  Prior to testing, the wafers were subjected to 

two dehydration treatment: a hotplate anneal and a high temperature Ar anneal.  After the 

average EOT was obtained by non-contact C-V measurements in light, the Fowler-

Nordheim analysis was examined for each quadrant (see Figure 3.6).  Subsequently, the 

C-V characteristic for each quadrant was re-measured to estimate the trapped charge 

within each thickness.

4.5.1. Diluted Hydrofluoric Acid Etch Rate on Oxide-4H-SiC

In Figure 3.6, the corresponding time for etch quadrant is as follows: region A 

was etched for 2 minutes; region B was etched for 5 minutes; region C was etched for 3 

minutes; region D was not etched; region E was etched for 8 minutes; and region F was 

etched for 10 minutes.  Afterglow IV oxide was repeated twice for this experiment.  This 
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oxide was also grown on n-type Si wafers.  Before each wafer was etched, the uniformity 

of the oxide was checked by measuring 5 sites on the wafer (top, bottom, right, left, and 

center).  For the 4H-SiC wafers, non-contact C-V measurements determined the average 

EOT on each site.  For the Si wafers, the average oxide thickness was determined by 

Ellipsometer measurements.  This is because afterglow oxidation process was too harsh 

for the silicon surface, as evident through noisy non-contact C-V characteristics.  The 

difference between the two oxidation process runs, AG IV _EA and AG IV_EB, was the 

excitation plasma power level. The first plasma run was set to approximately 900 W and 

the second plasma run was set about 1100 W.

A linear regression analysis was then performed to determine the etch rate.  In 

Table 4.7, the etch rate, along with the corresponded R-squared value, is reported for 

each oxidation process run.

Table 4.7: Etch rate comparison between 4H-SiC and Si wafers at 240C.

Oxidation 
Run

Etch Rate (Å/min) for 
Si

Etch Rate (Å/min) for 
4H-SiC

AG IV_EA 41 (R2=0.937) 46 (R2=0.939)

AG IV_EB 32 (R2=0.996) 36 (R2=0.992)

The oxide on 4H-SiC etched at a slightly faster rate than the oxide on Si.  The etch rate 

variation between Si and 4H-SiC differed only by a few angstroms.  In the first oxidation 

process run, AG IV_EA, the R-squared correlation did not give a relatively good fit to the 

data but gave a better fit for the second oxidation run.  This was attributed to the as-
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grown oxide uniformity and density structure.  Figure 4.20 and Figure 4.21 illustrates the 

linear regression fit for each oxidation process run.

Figure 4.20: Oxide thickness after diluted HF etching for oxide AG IV_EA.
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Figure 4.21: Oxide thickness after diluted HF etching for oxide AG IV_EB.

4.5.2. Influence of Dehydration Procedure on Oxide-4H-SiC

The AG IV_EA oxide on 4H-SiC was dehydrated using two methods: on a 

hotplate at 2000C for 5 minutes and a rapid thermal processing (RTP) anneal in Ar at 

8000C for 2 minutes.  Afterglow IV_EB oxide on 4H-SiC was also dehydrated using a 

hotplate at 2000C for one hour and an afterglow Ar anneal at 6000C for 20 minutes.  

Following each dehydration method, the experimental Fowler-Nordheim tunneling 

current was analyzed.  The influence of moisture on the electric field in the oxide is 

demonstrated in Figure 4.22.  The random behavior of the voltage, influencing the 

electric field in the oxide, was attributed to the presence of water molecules absorbed on 

the surface of the oxide (see Figure 4.22 (b)).  The effect of the absorbed moisture was 
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more prominent on the Fowler-Nordheim slope of the thinnest oxide.  This behavior was 

corrected by the high temperature Ar anneal treatment, which eliminated the error in the 

measured voltage drop across the oxide for both oxidation processes.

Figure 4.22: The influence of a dehydration method on the Fowler-Nordheim plot (a) AG 
IV_EA and (b) AG IV_EB.

(a)

(b)
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4.5.3. Effective Trapped Charge Distribution

Afterglow IV_EB oxide was used to investigate the trapped charge distribution 

and determine its centroid within the oxide.  After obtaining the Fowler-Nordheim 

regime, the oxide was given a small charge fluence of 0.12 mC/cm2 before re-measuring 

the C-V in each quadrant.  The effective trapped charge in the oxide was calculated using 

Equation 4.6.  To further study the influence of trapped charge on the electrical signature 

of the Fowler-Nordheim plot, the thickness in four quadrants were etch down from: 376

Å to 265 Å; 287 Å to 178 Å; 209 Å to 164 Å; and 125 Å to 79 Å.  These oxide 

thicknesses were subjected to a 5-minute 1:1 (H2O:HNO3) diluted nitric clean followed 

by another 5-minute 1:1 (H2O:HCL) diluted hydrochloric clean.  Between each solution 

clean, the wafer was rinsed with D.I. water.  Afterwards, the wafer was annealed in Ar in 

the afterglow system for 20 minutes at 6000C.  The same measurement procedure was 

repeated.  In Figure 4.23, the variation of the slopes of the thinner oxides indicated that 

the distribution of the trapped charge did not appear to be uniformly distributed in the 

oxide.  In addition, etching and cleaning conditions also influenced the Fowler Nordheim 

characteristic.
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Figure 4.23: Fowler-Nordheim plot of thinner oxides (unfilled geometric shapes) 
compared to thick oxides (filled geometric shapes).

The thinnest oxide, 79 Å, exhibited a straight line but had a different slope as compared 

to the thicker oxides.  The parallel shifts of the second etched regions indicated the 

influence of further hydrogenation on the oxide surface.  This effect was seen in the

distribution of the calculated effective trapped charge.  Figure 4.24 illustrates the 

behavior of the effective trapped charge in the etched AG oxide and un-etched AG oxide.
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Figure 4.24: Absolute trapped charge versus oxide thickness.

In Figure 4.24, the un-etched 500 Å oxide showed a similar quantity of trapped charges 

in the oxide.  Two possible trends were predicted as thickness decreased.  As the 

thickness was etched back, the density of the trapped charges tends to decrease as the 

thickness decreased to 175 Å.  Below this thickness value, the density of the trapped 

charge did not follow either of the predicted trends.  A higher trapped charge value was 

also noted for an un-etched 146 Å AG oxide (AG VII).  Further investigation to explain 

this phenomenon for oxide thicknesses less than 175 Å is ongoing.  Table 4.8 summarizes 

the measurement parameters for AG IV_EB such as the flat band voltage, current at the 

SASS voltage, and the effective trapped charge, in an attempt to explain the trapped 

charge distribution.
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Table 4.8: Effective trapped charge calculation parameters.

Oxide 
Thickness 

(Å)

Initial 
Vfb

(V)

Final 
Vfb(V)

Qt

(C/cm2)

Initial 
Eox at 
VSASS 

(MV/cm)

Final Eox

at VSASS

(MV/cm)

F-N 
current 
at VSASS

(A/cm2)

Final 
current
at VSASS

(A/cm2)

495 0.6 2.82 -0.150 6.75 6.73 0.060 0.054

406 0.43 1.57 -0.097 6.90 6.89 0.058 0.057

376 0.53 2.72 -0.200 6.70 6.78 0.064 0.059

287 0.4 1.62 -0.150 6.83 6.91 0.058 0.056

265 0.7 1.18 -0.063 7.21 7.14 0.053 0.051

209 0.38 1.09 -0.120 6.66 6.91 0.056 0.052

178 0.85 1.06 -0.041 6.49 6.98 0.058 0.059

164 0.62 1.75 -0.240 7.20 7.13 0.051 0.056

125 0.38 1.46 -0.300 7.02 6.94 0.050 0.123

79 0.49 0.78 -0.130 6.75 5.95 0.085 0.118

In Table 4.8, although these oxides were subjected to the same charge doses, the initial 

flat band voltage varied independent of thickness.  However, this behavior was not 

evident before the etching process.  The flat band voltage before the etching process was 

about 0.9 volts on 5 sites of the wafer (center, bottom, top, left, and right).  The possible 

reason for this variation in the flat band voltage is the influence of a hydrogenated oxide 

surface.  The high temperature, Ar anneal, may have left the oxide with shallow trap 

centers.  However, the electric field in the oxide remained at a constant value of ~7

MV/cm before and after stress except for the thinnest oxide region.  The increase in the 

current density after stress, for thicknesses below 175 Å, was attributed to an increase in 
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the trapped charge density.  As a result of this experiment, the trapped charge centroid 

could not be determined due the influence of unintentional trap creation within the oxide.  

The influence of these charges was evident through C-V characteristics.  Charge trapping 

and de-trapping effect impacted the accuracy of the contact potential measurement.

4.6. Non-Contact Stress Induced Leakage Current (SILC) Analysis

A controlled ionic current of 8 A/cm2 was used for all measurements.  Non-

contact stress induced leakage current (SILC) testing was performed to characterize four 

oxidation process recipes, AGW I, AG I_A, AG II, and AG III.  The difference between 

these recipes was the post-oxidation anneal: AGW I was not annealed; AG I_A included 

a re-oxidation anneal; AG II included an Ar anneal; and AG III included both a re-

oxidation anneal and an Ar anneal. The impact of the process conditions, which included 

unintentional contamination from the cleaning procedure or from the furnace 

environmental conditions, was investigated.  To obtain statistical data acquisition on an 

oxide, seventeen test sites were evaluated on the 3-inch diameter substrates (see Figure 

4.25).
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Figure 4.25: Measurement site positions.

4.6.1. Oxidation Process Influence on Leakage Current

The leakage current calculation depended on the oxide thickness, the dielectric 

constant, and the differentiation of the measured oxide voltage with respect to time (see 

Equation 2.36).  An example of non-contact SILC density versus stress time is shown in 

Figure 4.26 on a 150 Å thermal oxide grown on Si.
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Figure 4.26: Effect of stress fluence on a 150 Å thermal oxide grown on a p-type Si
substrate.

In this example, a 150 Å thermal oxide grown on a p-type Si substrate was stressed for 

100s and then in three 200s increments.  The charge fluence ranged from 0.8 mC/cm2 to 

5.6 mC/cm2.  In Figure 4.26, it was observed that the SILC density increased by two 

orders of magnitude from the lowest fluence to the highest fluence.  The slope of the line 

is almost horizontal at 700s.  This demonstrated the limitation of the corona current 

source.  At this current level, the trap density was at its maximum.  However, at a field of 

5.9 MV/cm, the difference between the 5s and 100s stress was minimal, indicating that 

the density of traps was comparable.  As the stress fluence increased, the current flowing 

across the oxide also increased.  Therefore, the density of trapped charge was 
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proportional to the current density.  This behavior was expected to occur on AG oxides 

grown on n-type 4H-SiC substrates.

For non-contact SILC, the leakage current is calculated from the excess current

above the Fowler-Nordheim current characteristics.  To fit the theoretical Fowler-

Nordheim curve with the assumption of Mox= 0.36, the barrier height value was adjusted 

until the thickness determined from the I-V measurement was fitted to +5% of the

independently measured average EOT value of each oxide.  For the AGW I, AG I_A, AG 

II and AG III oxides, the estimated barrier height value was determined to be 3.1 eV.  As 

a result, the SILC values obtained through this optimization was known as effective SILC 

values.

4.6.2. Oxide Consistency: Statistical Distribution

Each measurement site was stressed in 100s increments (see Figure 4.27) to 

observe any trends in the effective SILC characteristics.  The normal distribution was 

used to investigate the effective SILC values.  The fluence ranged from 0.8 mC/cm2 to 

3.2 mC/cm2 assuming a steady calibrated ionic current of 8 A/cm2 from the corona 

source.  Figure 4.27 illustrates the typical plot a user sees when selecting each site after 

the measurement has been performed.
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Figure 4.27: Current density versus oxide field at point (10, 10) for AG I_A oxide.

The measurement sequence at each site was as follows: step 1: 5s charge deposition and 

monitor the contact potential difference for 20 seconds; and step 2: 100s charge 

deposition and monitor the contact potential difference for 60 seconds.  Step two was 

repeated three more times.  Table 4.9 summarized the stress measurement protocol.

Table 4.9: Stress measurement protocol for SILC measurements.

Charge Deposition Time Cumulative Stress Time

5s 5s (establish F-N conduction)

100s 100s

100s 100s +100s= 200s

100s 200s+ 100s= 300s

100s 300s + 100s= 400s
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Once the measurement sequence was completed, the wafer was automatically positioned 

to another measurement site.  For each new site, the measurement sequence was repeated.  

Figure 4.28 illustrates a typical probability plot with respect to the stress time on AG III

oxide taken at 5.7 MV/cm.

Figure 4.28: Probability plot for AG III oxide at each cumulative time.

In the above figure, there are three straight lines: one below 30%, the second between 30 

to 70%, and the third above 80%, which indicated weak areas on the wafer.  The leakage 

current increased two orders of magnitude from the sites within the 30 percentile range to 

sites within the 80 percentile range.  This was attributed to an increase of defects in the 

as-grown oxide film.  Since the differences between the curves were minimal, the data 

analyzed for each oxide was taken at 400s for each repeatable run.
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The electric field chosen to perform data analysis was at 5.7 MV/cm as it 

encompassed the stressed curves.  Each oxidation process run was repeated and analyzed 

to determine if the effective SILC values were consistent on the same oxidation recipe.  

These oxidation recipes were repeated at least three times.  The same cleaning procedure 

and oxidation plasma excitation power was kept relatively constant for each run.  The 

first three oxides, AGW I, AG I_A, and AG II, was repeated three times except for AG 

III which was repeated twice.  This was because the microwave power supply was 

replaced.  One of the specifications of the new power supply which differed from the old 

power supply was the magnetron head.  Figure 4.29 shows the probability plot of AGW I

oxidation process run repeatability.

Figure 4.29: Probability plot of AGW I oxidation process run repeatability.
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In Figure 4.29, AGW I oxide did not include a post-oxidation anneal.  In the first process 

run, 70% of the wafer sustained a leakage current below 5x10-9A/cm2.  The second 

process run had five straight lines in the curve, which indicated that the cleaning 

procedure was not optimal and unintentional contamination occurred.  The third process 

run was similar to the first process run except for two site areas, which showed a leakage 

current greater than 1x10-8 A/cm2.  In summary, the optimum acceptable current for each 

region was defined at 1x10-8 A/cm2.  Under this condition, 80% of the wafer sites passed 

in the first and third process run, and 40% of the wafer sites passed for the second run.  

Figure 4.30 shows the probability plot for AG I_A oxidation process run repeatability.

Figure 4.30: Probability plot of AG I_A oxidation process run repeatability.
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Figure 4.30 shows the trend for an oxidation process run which included a 60-minute re-

oxidation anneal at the same oxidation temperature of 8500C.  Compared to the second 

and third process runs, the first process run had a higher current density and the leakage 

current varied slightly throughout the wafer.  Subsequent process runs indicated that the 

cleaning process of the wafer improved.  At a current leakage of 1x10-8 A/cm2, 

approximately 80% of the wafer sites passed in process runs two and three, and 50% of 

the wafer sites passed in the first process run.  Although the third process run showed a 

lower leakage current at 80%, the curve had three “kinks” above 50%.  These were 

attributed to weak spots in the as-grown oxide film.  In summary, the re-oxidation anneal 

did not significantly lower the current leakage throughout the wafer.  Figure 4.31

illustrates the probability plot of AG II oxidation process run repeatability.
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Figure 4.31: Probability plot of AG II oxidation process run repeatability.

In Figure 4.31, this oxidation process included an Ar anneal for one hour at 9500C.  All 

three process runs showed a comparable leakage current below 60% of the measurement 

sites.  Above 60%, the first process run showed approximately a linear increase in the 

current compared to the others.  Leaky sites were attributed to the possibility of 

unintentional process contamination.  In conclusion, similar to the re-oxidation anneal, 

the high temperature Ar post oxidation anneal showed an improvement in each 

subsequent processing run within 60% of the wafer area.  Finally, Figure 4.32 shows the 

repeatability of the oxidation process run, which combined both the Ar and re-oxidation 

post anneal.
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Figure 4.32: Probability plot of AG III oxidation process run repeatability.

In Figure 4.32, 40% of the measurement sites on both process runs sustained a leakage 

current of 3x10-9 A/cm2, which is an improvement compared to the other oxidation 

processes.  However, between 40% and 80%, both process runs showed an opposite 

density of trap formation, as apparent by the slope of their line.  Above 80%, the leakage 

current increased linearly for both process runs.  In summary, this post-oxidation process 

did not improve the oxide tendency to form defects throughout the wafer.

The repetition of the oxidation process runs showed how non-contact SILC 

testing can be used to assess the oxidation process conditions and cleaning protocols.  

Figure 4.33 shows the corresponding sites on the wafers which had leakage currents 

greater than 1x10-7 A/cm2 in these experiments.
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Figure 4.33: Leakage current sites greater than 1x10-7A/cm2.

Stricter cleaning protocols were implemented for subsequent oxidation process runs and a 

standard excited plasma mixture was used to clean the furnace tube prior to loading the

wafers for oxidation process runs.  Non-contact SILC has the potential to assess the 

reliability of oxides grown on 4H-SiC substrates.

AG WI

AG  I_A; AG II

AG II

AG II

AG III
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Chapter 5. Conclusion

5.1. Summary of Research Contributions

Non-contact Corona-Kelvin metrology was used to investigate the charge 

transport in various oxides grown on n-type 4H-SiC substrates.  The measurements used

were voltage-charge (V-Q) measurements, capacitance-voltage (C-V) measurements, 

equivalent oxide thickness (EOT) measurements, charge trapping (Qt) evaluation 

measurements, and current-voltage (I-V) measurements.

Variations of afterglow oxides and thermal oxides were compared. After the 

deposition of a charge fluence of 0.04 mC/cm2 on the oxide surface, Fowler-Nordheim 

conduction was identified for the first time.  The electric field in the oxide at this regime 

was greater than 5 MV/cm for thick oxides.  The experimental Fowler-Nordheim 

characteristics compared to the classical Fowler-Nordheim characteristics revealed an 

offset between the plots.

This offset was greater for thick AG oxides as compared to thermal oxides.  The 

AG oxidation variation parameters influenced the Fowler-Nordheim characteristics.  The 

three dominant variation parameters were the pre-conditioning treatment of the substrate 

surface prior to oxidation, the oxidation growth time, and the post-oxidation anneal.  The

offset between AG oxide thicknesses less than 160 Å and the theoretical line in the 

Fowler-Nordheim plot was marginally reduced.  The effective barrier height and the 
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effective mass in the oxide are the two defining parameters in the current density

equation describing the Fowler-Nordheim conduction.  The theoretical classical Fowler-

Nordheim plot used an effective barrier height of 2.7 eV and an effective mass in the 

oxide of 0.42m.  This effective barrier height value, which represented the conduction 

band offset at the SiO2/4H-SiC interface, was independently found using standard

photoemission experimentation.  The effective mass in the oxide was the common value 

used in 4H-SiC MOS devices for Fowler-Nordheim analysis.

To fit the experimental data to the effective barrier height of 2.7 eV, the effective 

mass in the oxide was assumed to be 0.36m.  Using this value, the calculated effective 

barrier height for both thermal and AG oxides was comparable to the calculated effective 

barrier height value found in literature using 4H-SiC MOS devices.  However, this 

effective mass in the oxide did not correct the offset between the classical Fowler-

Nordheim curve and the experimental Fowler-Nordheim curves.  As a result, a modified 

Fowler-Nordheim equation, which accounted for trapped charges and their centroid 

location within the Fowler-Nordheim tunneling regime, provided a proximate overlay for 

the thermal oxides but not for the AG oxides.  An additional adjustment of the barrier 

height value of 3.1 eV for the AG oxides was necessary to provide this overlay with a

reasonable location of the trapped charge.  This result was an indication that the AG

oxidation growth method modified the surface of the substrate and the oxide grown could 

be silicon enriched.  Recently, it was found that a 146 Å AG oxide on new 4H-SiC 

substrate revealed an effective barrier height of 2.75 eV using the EOT optimization 

parameter.
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To further investigate the distribution of the trapped charge and their location in

AG oxides, various AG oxide thicknesses, ranging from 490 Å to 79 Å, determined that 

trapped charges are not uniformly distributed in the oxide.  The density of trapped 

charges increased for oxide thicknesses less than 175 Å indicating that shallow traps are 

not neutral.  These traps influenced the measured voltage drop across the oxide.  The 

electric field in the oxide decreased as a result of these traps.  It was determined that 

hydrogenation of the oxide surface increased the trapped charge density. The source of 

the hydrogenation of the oxide was from the diluted HF solution.  The high temperature 

Ar anneal possibly led to unintentional surface roughness changes.  This post-etching 

anneal was performed since the hotplate did not completely dehydrate the surface of the 

oxide.  Moisture in the oxide influenced the value of the measured voltage.  Determining 

the exact location of the trapped charge could not be achieved using the etch-back

experimental procedure.

Currently, only Fowler-Nordheim data on SiC-based MOS devices have been 

published in the literature but not SILC data.  Non-contact SILC testing only caused area 

defects in various sites for a particular oxide growth recipe in the absence of fabricated 

devices.  Caution should be taken when defining the Fowler-Nordheim current.  As a 

result, the effective SILC values were reported for a particular oxidation process.  

Various oxidation process parameters could not be compared with SILC testing because 

changing the effective barrier height, to fit the thickness determined from I-V 

measurements to EOT, impacts the electric field in the oxide.  Subsequently, the Fowler-

Nordheim current characteristic is changed.



121

Taking this condition into consideration, non-contact SILC revealed the 

effectiveness of an anneal treatment.  Normal probability plots of the effective SILC 

value variation gave a quick assessment of the oxide reliability.  Stress times were 

proportional to the quantity of the defect formation.  Constant corona current testing 

revealed that this test does not cause destructive breakdown of the oxide.  Non-contact C-

V, EOT, and SILC show promise to be used for in-line monitoring of as-grown oxide 

films.  Two benefits of applying in-line monitoring techniques to SiC technology are the 

absence of device fabrication and the quick assessment of an oxide to identify process 

variations to defect. These techniques may enable the optimization of an oxidation 

growth process to effectively control oxide reliability, in an attempt to commercialize 

4H-SiC-MOS devices.

5.2. Future Work

The location of the trapped charge and it is distribution within the oxide need to 

be addressed on un-etched thin AG oxides.  With this information, the Fowler-Nordheim 

equation, which includes the effects of trapped charge within the Fowler-Nordheim 

tunneling regime, should be re-examined.  If this set of experiments does not adjust the 

Fowler-Nordheim experimental curves characteristics to the theoretical curve 

characteristic, then the Fowler-Nordheim equation should be modified further.  The 

theory to determine the effective mass in the oxide and the image force effect also require 

further examination.  The image force of an electron tunneling through trap centers may 

decrease the intercept value.
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To confirm the structural changes during the AG oxidation of n-type 4H-SiC 

substrates, X-ray photoelectron spectroscopy (XPS), which measures the elemental 

composition of a surface, should be performed on AG oxide films.  If AG oxidation of 

4H-SiC is lightly nitrated, then it would further support the increase of the effective 

barrier height value.  It has been reported that SiO2 containing nitrogen grown on silicon 

varied the effective barrier height and the effective mass in the oxide [93].  Also, 

sequential oxidation process runs should be performed with variation of oxidation 

parameters to improve AG oxide reliability, such as surface pre-conditioning, oxidation 

chemistry, and post-oxidation anneal. Longer and higher temperature post-oxidation 

anneals may result in the reduction of shallow trap charges in the oxide.  This post-

oxidation anneal treatment may provide an effective barrier height close to 2.7 eV.

Statistical acquisition of dielectrics grown on 4H-SiC using non-contact SILC 

assessment can be used to acquire fundamental information about the oxide-substrate 

interface.  Reliability curves can be developed from various dielectrics to compare 

different oxidation process parameters.
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Appendix A: Afterglow Oxide Recipes

Table A.1: AG I_A Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3
FG Pre-

treatment
600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850 O2 : N2O : FG (3:0.2:0.5) 90 Yes

6 ReOx Anneal 850 O2 : N2O : FG (3:0.2:0.5) 60

7 Ramp Down 850 to 600 Ar (0.23) 75

8 Unload 600 N2 (10) 5

Table A.2: AG I_B Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3
FG Pre-

treatment
600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850 O2 : N2O : FG (3:0.2:0.5) 40 Yes

6 ReOx Anneal 850 O2 : N2O : FG (3:0.2:0.5) 25

7 Ramp Down 850 to 740 Ar (0.23) 5

8 Unload 740 N2 (10) 5
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Appendix A (Continued)

Table A.3: AG II Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3 FG Pre-treatment 600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850
O2 : N2O : FG 

(3:0.2:0.5)
90 Yes

6 Ramp Up 850 to 950 Ar (0.23) 24

7 Ar Anneal 950 Ar (0.23) 60

8 Ramp Dow 950 to 600 Ar (0.23) 90

9 Unload 600 N2 (10) 5
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Appendix A (Continued)

Table A.4: AG III Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3 FG Pre-treatment 600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850
O2 : N2O : FG 

(3:0.2:0.5)
90 Yes

6 ReOx Anneal 850
O2 : N2O : FG 

(3:0.2:0.5)
60

7 Ramp Up 850 to 950 Ar (0.23) 24

8 Ar Anneal 950 Ar (0.23) 60

9 Ramp Down 950 to 600 Ar (0.23) 90

10 Unload 600 N2 (10) 5
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Appendix A (Continued)

Table A.5: AG IV Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3 FG Pre-treatment 600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850
O2 : N2O : FG 

(3:0.2:0.5)
90 Yes

6 Ramp Up 850 to 950 O2 : FG (3:1) 20

7 ReOx Anneal 950 O2 : FG (3:1) 120

8 Ramp Down 950 to 600 Ar (0.23) 90

9 Unload 600 N2 (10) 5
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Appendix A (Continued)

Table A.6: AG V Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3 FG Pre-treatment 600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850
O2 : N2O : FG 

(3:0.2:0.5)
90 Yes

6 Ramp Up 850 to 900
O2 : N2O : FG 

(3:0.2:0.5)
10

7 ReOx Anneal 900
O2 : N2O : FG 

(3:0.2:0.5)
360

8 Ramp Down 900 to 600 Ar (0.23) 90

9 Unload 600 N2 (10) 5
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Appendix A (Continued)

Table A.7: AG VI Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3 FG Pre-treatment 600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850
O2 : N2O : FG 

(3:0.2:0.5)
90 Yes

6 Ramp Up 850 to 950 O2 : N2O (4:0.3) 20

7 ReOx Anneal 950 O2 : N2O (4:0.3) 120

8 Ramp Down 950 to 600 Ar (0.23) 90

9 Unload 600 N2 (10) 5
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Appendix A (Continued)

Table A.8: AG VII Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3 FG Pre-treatment 600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850
O2 : N2O : FG 

(3:0.2:0.5)
7 Yes

6 Ar Anneal 850 Ar (0.23) 60

7 Ramp Down 850 to 600 Ar (0.23) 75

8 Unload 600 N2 (10) 5

HF Vapor Etch

9 Load 600 N2 (10) 5

10 Ar Anneal 600 Ar (0.23) 20

11 Unload 600 N2 (10) 5
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Appendix A (Continued)

Table A.9: AGW I Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3 FG Pre-treatment 600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850
O2 : N2O : FG 

(3:0.2:0.5)
90 Yes

6 Ramp Down 850 to 600 Ar (0.23) 75

7 Unload 600 N2 (10) 5
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Appendix A (Continued)

Table A.10: AGW II Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 850 Ar (0.23) 38

3 Oxidation 850
O2 : N2O : FG 

(3:0.2:0.5)
90 Yes

4 Ramp Down 850 to 600 Ar (0.23) 75

5 Unload 600 N2 (10) 5

Table A.11: AGW III Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3 FG Pre-treatment 600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850
O2 : N2O : FG 

(3:0.2:0.5)
10 Yes

6 Unload 850 N2 (10) 5
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Table A.12: AGW IV Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3 Ramp Up 600 to 850 Ar (0.23) 38

4 Oxidation 850
O2 : N2O : FG 

(3:0.2:0.5)
10 Yes

5 Unload 850 N2 (10) 5

Table A.13: AGW V Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3 FG Pre-treatment 600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850
O2 : N2O : FG 

(3:0.2:1)
90 Yes

6 Ramp Down 850 to 600 Ar (0.23) 75

7 Unload 600 N2 (10) 5
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Table A.14: AGW VI Recipe.

Interval Description Temp (0C) Gas Flow (l/min)
Time 
(min)

Excited 
Media

1 Load 400 N2 (10) 5

2 Ramp Up 400 to 600 O2 : N2 (0.5:3.5) 28

3 FG Pre-treatment 600 FG (4) 20 Yes

4 Ramp Up 600 to 850 Ar (0.23) 38

5 Oxidation 850
O2 : N2O : FG 
(2.5:0.15:1.3)

90 Yes

6 Ramp Down 850 to 600 Ar (0.23) 75

7 Unload 600 N2 (10) 5
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