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ABSTRACT 

 

 Presented is a radiometric sensor and associated electromagnetic propagation 

models, developed to facilitate non-invasive core body temperature extraction. The 

system has been designed as a close-proximity sensor to detect thermal emissions 

radiated from deep-seated tissue 1 cm – 3 cm inside the human body.  The sensor is 

intended for close proximity health monitoring applications, with potential implications 

for deployment into the improved astronaut liquid cooling garment (LCG). 

 The sensor is developed for high accuracy and resolution.  Therefore, certain 

design issues that distort the close proximity measurement have been identified and 

resolved.  An integrated cavity-backed slot antenna (CBSA) is designed to account for 

antenna performance degradation, which occurs in the near field of the human body.  A 

mathematical Non-Contact Model (NCM) is subsequently used to correlate the observed 

brightness temperature to the subsurface temperature, while accounting for artifacts 

induced by the sensor’s remote positioning from the specimen.  In addition a tissue 

propagation model (TPM) is derived to model incoherent propagation of thermal 

emissions through the human body, and accounts for dielectric mismatch and losses 

throughout the intervening tissue layers. 

 The measurement test bed is comprised of layered phantoms configured to mimic 

the electromagnetic characteristics of a human stomach volume; hence defines the human 

core model (HCM).  A drop in core body temperature is simulated via the HCM, as the 
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sensor monitors the brightness temperature at an offset distance of approximately 7 mm. 

The data is processes through the NCM and TPM; yielding percent error values < 3%. 

 This study demonstrates that radiometric sensors are indeed capable of subsurface 

tissue monitoring from the near field of the body.  However, the following components 

are vital to achieving an accurate measurement, and are addressed in this work: 1) the 

antenna must be designed for optimum functionality in close proximity to biological 

media; 2) a multilayer phantom model is needed to accurately emulate the point of 

clinical diagnosis across the tissue depth; 3) certain parameters of the non-contact 

measurement must be known to a high degree of accuracy; and 4) a tissue propagation 

model is necessary to account for electromagnetic propagation effects through the 

stratified tissue. 
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CHAPTER 1        

INTRODUCTION 

 

Microwave radiometers have been used in a wide range of remote sensing 

applications such as astronomy, atmospheric science and geology;  however in the past 

35 years they have also been studied for use in the area of biomedical microwave sensing.  

Biomedical microwave sensing is the science of using Radio Frequency (RF) devices and 

instrumentation as a way of retrieving biological data from the human body.  Microwave 

sensors can nondestructively measure and or quantify certain properties of objects in 

harsh or sensitive environments where direct contact to the object under investigation is 

unachievable [1].  One such environment is the human body, wherein the objects under 

investigation are internal tissue and organs.  Advances in microwave radiometry have 

facilitated the use of RF technology in biomedical sensing applications by retrieving the 

electrical and thermal properties of human tissue and organs.  As a result microwave 

radiometers have been used in cancer (brain, breast, thyroid, etc…) detection/treatment, 

hyperthermia, and biomedical imaging by means of microwave thermography [1] – [4].  

 As microwave radiometry becomes more prevalent in biomedical applications, 

this work explores the feasibility of a close proximity modality for non-invasive 

monitoring of human tissue.  The aim of this work is research and development towards 

subsurface monitoring of absolute tissue temperatures from the near field of the human 

body.  In an effort to diagnose core body temperature, we are particularly interested in 
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noninvasively measuring the thermal emissions radiated from blood-fatty tissue through 

layers of skin and muscle.  RF tissue phantoms are implemented as the measurement test-

bed to simulate the human body in normal and adverse conditions.  The sensor is 

intended to be deployed inside the uniforms of servicemen or as a hand held device for 

non-contact monitoring of temperature differentials inside the human body.  Therefore 

the radiometer and measurement test bed were configured to replicate a health sensor 

positioned a short distances (10 mm – 50 mm ) from the body.   

 The goal is to identify, analyze, and mitigate the problems associated with close 

proximity, non-invasive health monitoring using radiometric sensors.  Previous studies 

have shown that developing an application specific (human monitoring) sensor and 

anenna design are essential to achieving such goals in the on-body approach [5] – [7]. 

Based on our preliminary works, we have discovered that modeling of the propagation 

effects in the tissue and antenna-body near field is also vital, especially for the non-

contact measurement.  Therefore the antenna, measurement test bed, and associated 

propagation models developed for this work are the main contributions of this study. 

 

1.1 Motivation 

   The current sensor is intended for integration into the astronaut Liquid Cooling 

Garment (LCG) to non-invasively monitor astronaut core temperature in the improved 

lunar extravehicular activity (EVA) suit.  Transition from extreme environments during 

lunar missions could lead to large differences in skin surface temperature and core body 

temperature (Figure 1).  To achieve thermal stabilization heat is discarded from the liquid 

cooling system through a network of tubes.  Physiological studies have proven that skin 
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surface temperature alone does not provide an accurate estimate of core body temperature 

even with correction [8].  Therefore the inlet temperature of the EVA suit does not alone 

provide sufficient diagnostic data.  As a result, sensors that measure the skin surface 

temperature and or inlet suit temperature such as thermistors, infrared-IR thermometers, 

or thermocouples, should be supplemented with additional measurement modalities 

which are capable of subsurface data extraction.   

 Microwave radiometry serves as a feasible solution since radiometric sensors 

detect electromagnetic radiation naturally emitted across the depth of the tissue/material 

under investigation (T/MUI) in the form of brightness temperature. By means of 

microwave thermography, the detected brightness temperature is used to generate thermal 

gradients of TUI.  Hence, our prime focus is to noninvasively monitor human core 

temperature and variations thereof by analyzing the brightness temperature data extracted 

from the measurement.  The current sensor is designed to operate within the L frequency 

band of 1 GHz – 2 GHz,  a spectrum which permits sufficient detection of emissions 

from deep within the body.  The theoretical detection depth is up to 30 mm, enabling 

thermographic measurements through layers of skin fat and muscle tissue [1]; as a result 

the extraction of core body temperature is possible with proper positioning.  The long-

term goal for this work is to expand the utility of the system to a network of radiometric 

sensors positioned throughout the uniform of astronauts or servicemen at clinical 

diagnostic points (i.e. wrist-pulse, chest-heart beat, and core-body temperature) for 

retrieving various physiological data from the body.  
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Figure 1.  Surface body temperature (left) versus core temperature (right). 

 

1.2 Contributions to the Practice  

This study is expected to be the trailblazer for future works in area of close-

proximity biomedical sensing and health monitoring using microwave radiometers. 

Subsequent contributions to the advancement of the practice have been made in the areas 

of antenna – sensor design for biomedical applications, RF tissue phantom development, 

electromagnetic propagation effects in the near field of the body and electromagnetic 

propagation throughout stratified tissue.   

Close-proximity tracking of tissue temperature is conceptually demonstrated in 

the preliminary study of a total power radiometer (TPR), which is the 1st generation 

design.  This initial study demonstrates the sensor design considerations from a 

biomedical sensing perspective.  In particular, the effects of calibration, thermal 

stabilization, antenna – front end integration, and the design of the antenna itself, has a 

substantial effect on the accuracy of the measurement.  These design considerations are 

employed in the development of the 2nd generation sensor, which incorporates various 

design enhancements that improve the performance of the sensor.  

Measurement and testing is performed on RF tissue phantoms which have been 

designed to mimic the electrical properties of human skin, muscle, and blood-fatty tissue 

in the L frequency band.  A notable contribution in this area is the development of a solid 

Core Body Temperature!Surface Body Temperature!
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skin-muscle phantom in composite form.  Layered configurations of these phantoms are 

used to develop the human core model (HCM), which is believed to be  the first phantom 

model configured to mimic a three dimensional volume of an abdominal cavity.  

Some of the most significant contributions of this work are in the areas of 

antennas and propagation, as the antenna design has been deemed “critical” to the 

radiometric measurement.  For this reason, we have identified the antenna requirements 

for biomedical radiometric sensing applications.  We have also demonstrated certain near 

field propagation effects which distort the performance of the antenna at short distances 

from the body.  An analysis of these near-field effects is used to design a cavity backed 

slot antenna (CBSA), with characteristics that circumvent these phenomena, enabling 

optimal sensor performance in the presence of human tissue.  The CBSA has also been 

designed to meet the necessary requirements for microwave biomedical sensing.   

In the context of electromagnetic propagation, there are certain artifacts that 

obstruct the close proximity measurement that cannot be accounted for in the antenna 

design.  These artifacts are identified and a mathematical formulation in the form of a 

non-contact propagation model is derived to compensate for them.  A sensitivity analysis 

is performed to determine the non-contact parameters to which the measurement is most 

sensitive.   

A tissue propagation model (TPM) is developed to emulate the electromagnetic 

propagation effects, taking into account losses and dielectric mismatch as thermal 

emissions propagate through the body.  The TPM presented and applied to the human 

core model (HCM), a physical representation of a conical stomach volume of skin, 

muscle, and blood-fatty tissue.  The brightness temperature measurements for the HCM, 
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extracted by the radiometer, are correlated to the TPM. This provides an expression for 

the emitted temperature at the skin surface as a function of the emissions from the 

intervening layers.  Ultimately, the core temperature can be resolved by solving for the 

muscle temperature in the TPM – radiometer expression, by applying heat transfer theory 

to the thermal profile of the tissue. 

 

1.3 Organization of the Dissertation 

 This dissertation is organized into six chapters.  Chapter 2 presents an overview of 

microwave radiometry theory, a review radiometric sensors design for biomedical 

applications, and justification for the close-proximity. 

 Chapter 3 presents a preliminary investigation of the 1st generation TPR to 

establish a benchmark measurement for comparison purposes throughout the remainder 

of the work.  In this chapter, various tissue phantoms have been identified and 

characterized for testing purposes.  An analysis of the antenna performance 

characteristics in the antenna-body near field is used to identify occurrences which 

impede the measurement.  As a result, certain design methods have been implemented to 

compensate for these near-field effects.  Ultimately, proof of concept is established in this 

chapter through successful tracking of a blood-fatty tissue phantom within the dynamic 

range of human body temperatures.   

 Chapter 4 presents the 2nd generation design, which incorporates enhancements to 

the sensor, antenna, and measurement test bed.  Enhancements to the sensor include 

continuous calibration and miniaturization for improved performance.  The antenna, a 

cavity backed slot antenna, is designed to preserve functionality in the presence of human 
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tissue.  The measurement test bed is enhanced to a multilayer human core model (HCM) 

which mimics the electrical properties of an abdominal cavity across the depth of the 

tissue.  The experimental setup is also presented in this chapter. 

 Chapter 5 presents the derivation of the non-contact model (NCM) which 

accounts for obstructive artifacts which further impede the close proximity measurement.  

A considerable improvement in accuracy is achieved after the experimental data from 

Chapter 4 is processed through the NCM.  Thereafter, a sensitivity analysis is performed 

on the NCM parameters to identify the parameters the measurement is most sensitive to.  

 The tissue propagation model (TPM) is presented in Chapter 6 which models 

radiative transfer through the human body, accounting for losses in the tissue as well as 

dielectric mismatch.  The NCM data is processed through the TPM towards an absolute 

temperature measurement.  Lastly, the conclusions are drawn in Chapter 7 along with a 

discussion of the major findings of this investigation.   
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CHAPTER 2  

A REVIEW OF MICROWAVE  RADIOMETRY 

 

2.1 Theory 

 Microwave radiometry is a branch of microwave sensing which provides a 

passive sensing technique for detecting naturally emitted electromagnetic radiation.  

Microwave radiometers are highly sensitive wireless receivers which detect noise power 

radiated from objects in the form of brightness temperature.  The power density (P) 

emitted by the object is proportional to its brightness (TB) and physical temperatures 

(Tphy) as demonstrated in ( 1 ), where e is the emissivity of the object, k is Boltzmann’s 

constant and B is the bandwidth of the power density.   

 

€ 

P = kTphyB
T = TB × e

e =
TB
TPhy

TB =
P
ekB

 ( 1 )  

   
 The theory of microwave radiometry originated in the 1920’s when a scientist by 

the name of Max Planck discovered that all matter emits natural electromagnetic energy 

in his proof of “Plancks Law”.  He also discovered that this emitted energy is 

proportional to the frequency and temperature of the matter under investigation (MUI).  
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Planck’s Law ( 2 ) provides a relationship between emitted energy, frequency and 

temperature.   

 

€ 

BfPlanck =
2hf 3

c 2

1

e
hf
kT −1

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
 ( 2 ) 

   
Rayleigh Jean’s Law is typically used in radiometric sensing applications, since it is an 

approximation of Planck’s law, simplified for microwave frequencies.  This is mainly due 

to the fact that the microwave band encompasses a small segment of frequencies within 

the electromagnetic spectrum (0 Hz – 1025 Hz), ranging from ~300 KHz – 300 GHz.  It is 

also important to note that Rayleigh Jean’s Law is normalized to a particular temperature, 

usually 300 ºK (80 ºF) which is essentially ambient temperature and provides a linear 

relationship between brightness temperature and frequency.  Rayleigh’s expression is 

provided in ( 3 ).  Figure 2 illustrates a comparison of Planck’s curves and Rayleigh Jeans 

curves at normal body temperature.  

 

€ 

BfRayleigh =
2 f2kT
c 2

=
2kT
λ2

 ( 3 ) 
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Figure 2.  Comparison of Rayleigh Jean's law and Planck's law at normal body 

temperature 98 ºF. 

 

2.2 Biomedical Radiometric Sensing 

 Microwave radiometers are likely to become common clinical instruments due to 

their vast range of applications such as oncology, surgery, gynecology, urology, 

mammography, just to name a few [1] – [7].  In particular, radiometers are used in 

microwave thermography as a means of generating thermal gradients of the MUI by 

quantifying the detected electromagnetic radiation which is in the form of emitted 

brightness temperature TB.  

 The emitted brightness temperature is dependent the electrical properties of the 

object under investigation; i.e. permittivity, permeability, and conductivity.  With respect 

to biomedical sensing the permittivity or dielectric constant is the most important [1].  

Particularly the penetration depth is dependent on permittivity as a function of frequency.  

In general, materials with a lower permittivity allow deeper sensing depths.  As described 

in [1] other useful relations can be made between water/oxygen content and permittivity; 
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such relations are the foundation for most microwave and radiometric sensors designed 

for biomedical sensing applications.   

 Permittivity is a measure of how much energy an object stores or dissipates amid 

an electric field.  Permittivity is a complex number which varies with frequency; the real 

part denoting objects energy storage and the imaginary part representing the loss factor.  

In the presence of an electric field materials arrange their ions to receive energy from that 

field.  The measure of how easily the electric field vectors permeate through the object 

for a given area is the permittivity which is determined by dividing the electric flux (D) 

by the strength of the electric field (E), and is measured in farads per meter (F/m), ( 4 ).   

 

€ 

ε =
D
E

 ( 4 ) 

   
 The emissivity e is a constant which ranges from zero to unity, with unity being 

the emissivity of a perfect emitter implying that all of the power from the object is 

emitted.  A perfect electric conductor (metal) has an emissivity of zero, implying that no 

power is emitted, but conducted through the material. Fresnel’s equations demonstrate 

the relationship between emissivity and the electrical properties (permittivity) of human 

tissue ( 5 ) where Θ is the viewing angle of the sensor.  This relation between power, 

emitted brightness temperature, and permittivity is expresses in, ( 1 ), ( 4 ) and ( 5 ).  

Similar relationships are used in analyzing biological data in biomedical microwave 

sensing [7].   

 

€ 

e =1− ε cos(Θ) − ε − sin2(Θ)
ε cos(Θ) − ε − sin2(Θ)

2

 ( 5 ) 
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2.3 Contact Radiometry 

 A review of a few of the most significant contributions to on-body radiometric 

sensors is presented in this section.  These radiometers demonstrate successes in the areas 

of blood glucose monitoring, cancer detection, and neurology.  Considering that the 

majority of the research in biomedical radiometric sensing has been done in the area of 

breast cancer detection, the RTM-01-RES was selected for this review, since it is among 

the most extensively studied.  Also presented is one of the most novel applications for the 

technology, a microwave radiometer designed for blood glucose monitoring.  The 

objective of this study is to present previous successes in on-body radiometric sensing.   

 

2.3.1 A Radiometric Sensor for Blood Glucose Monitoring  

 This study begins with one of the most interesting applications of biomedical 

radiometric sensing, blood glucose monitoring.  In [7] Laura Ballew and researchers from 

the Baylor School of Medicine developed a microwave radiometer capable of tracking 

changes in blood glucose levels.  Previous authors (E.C. Green [9]), have derived 

relations between blood glucose and permittivity.  As stated in section 2.2 the brightness 

temperature is also related to permittivity. This work combines the relations between 

blood glucose, permittivity, and brightness temperature, and concludes that an increase in 

the radiometer brightness temperature is correlated to an increase in blood glucose levels.  

 

2.3.1.1 Design and Specifications 

 Ballew’s radiometer is a superheterodyne receiver with a Dicke calibration 

scheme. A rectangular waveguide was used as the antenna. The design frequency was 
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chosen to be within 4.5 – 6.5 GHz, yielding a penetration dept of  1 cm – 1.5 cm.  This 

depth was chosen to facilitate the detection of blood flow in areas of low muscle content.  

The theoretical resolution of the radiometer is 0.2 °C (~0.36 °F) enabling the detection of 

subsurface temperatures with high accuracy.  The device specifications were not 

measured, however the theoretical values are provided in Table 1. 

 

Table 1. Theoretical design specification of Ballew's radiometer. 

Parameter  Value 
Frequency of Operation (GHz) 4.5 – 6.5  
Pre-Detection Bandwidth (MHz) 600 
Depth of detection of thermal abnormality (cm) 1 – 1.5 
Temperature Resolution (°F)   0.065 

 

 

2.3.1.2 Measurement and Results 

 The concept was demonstrated through the soda test, a standard experiment for 

blood glucose detection [9].  To implement the soda test, the wrist of the patient is firmly 

placed at the input of the radiometer.  As the patient consumes a soda the brightness 

temperature of the radiometer is tracked up to one hour before and after consumption.  

The results of the soda test are shown in [7] which demonstrate an apparent increase in 

the brightness temperature over time.  A similar plot is presented in Figure 3.  These 

results imply that the radiometer was able to successfully track changes in blood glucose 

levels.  However an absolute blood glucose measurement was not attempted. This 

research proved that radiometers can monitor variations in blood glucose; however more 

research should be conducted before characterizing microwave radiometers as clinical 

blood glucose sensors.   
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Figure 3.  The radiometer output monitored as blood glucose level changes. The diagram 
was regenerated from [7]. 

 

2.3.2 RTM-01-RES 

 One of the most advanced radiometers developed for biomedical sensing 

applications is the RTM-01-RES, a computer based radiometer, capable of detecting 

abnormalities in human tissue and organs [5].  The RTM-01-RES was initially developed 

in 1996 by RES LTD, a company based in Moscow, Russia.  Since its initial 

development, this radiometer has been engineered for a wide range of applications such 

as urology, gynecology, surgery, mammography, and IR thermography.  

 The RTM-01-RES has been most widely studied in the area of cancer detection, 

with most the work done in the area of breast cancer diagnosis. This is attributed to the 

fact that the RTM-01-RES can detect carcinoma in its pre-clinical stages. Palpation, 

mammography and ultrasonography are traditional clinical diagnostics used to diagnose 

anatomical disparities in the breast.  However, research has proven that anatomical 

disparities in human tissue are preceded by physiological variations (temperature 
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differentials).  In fact temperature changes may be caused by inflammation and increased 

cell metabolism, and are associated with degenerating tissue.  The RTM-01-RES detects 

these psychological variations by generating temperature fields of internal tissue to detect 

malignant carcinoma at pre-clinical stages.   

 

2.3.2.1 Design and Specifications 

 The RTM-01-RES is a Dicke radiometer with null balancing and a slipping circuit 

to reduce fluctuations caused by interactions between the biological object and the 

antenna.  The frequency of operation is 1.15 – 3.8GHz.  The device specifications for the 

RTM-01-RES are quite impressive (Table 2).  The radiometer has a penetration depth 

from 3 cm – 7 cm depending on the dielectric properties of the tissue.  The measurement 

range of internal tissue and organs ranges from 32 °C – 38 °C, which equates to 89.6 ºF – 

100  ºF.  The resolution of the radiometer is 0.2 °C (~0.36 °F) enabling the detection of 

temperature differentials with high accuracy.  

 

Table 2. RTM-01-RES device specifications. 

Parameter  Value 
Frequency of Operation (GHz) 1 – 3.5  
Pre-Detection Bandwidth (MHz) 100 
Depth of detection of thermal abnormality (cm). 3 – 7 
Temperature Resolution (°F)   0.36 
Measurement Range (°F)   90 – 100 

 

 



 

  16 

2.3.2.2 Measurement and Results 

 This section provides results from a RTM-01-RES diagnosis of breast cancer.  

The procedure is implemented with the patients lying on their backs with their hands 

behind their head, in order to normalize the positions of the measurement points of 

interest (flatten the breast).  Ten evenly distributed diagnosis points on each breast are 

measured: the areola, centers of the quadrants, borders between the quadrants and 

auxiliary regions.  The antenna is heated to the temperature of the subject for contact 

sensing, to bring the patients body temperature to a homogenous state.  If the patient feels 

cold or uncomfortable the measurement could be distorted.  The antenna is gently 

contacted on each of the points of interest for 20 s – 30 s  on each breast.  To maintain 

reliability, the points of interest are measured sequentially on the left then right breast.  If 

the temperature differential between the investigation points of the left and right breast is 

more than ±0.8 ºF, there is a possibility of an error and the measurement procedure 

should be repeated.  If such differentials are consistent, there is a high probability of 

abnormalities such as carcinoma in the breast, and or measurement area of interest.  

 The following diagnosis denotes a high risk of breast cancer:   

1) Increased thermal differentials between the corresponding of the left and right 

breast.  

2) Increased thermal differentials between sites on the same breast. 

3) Higher dispersion of the temperature differential between the left and right 

breast. 

4) Differentials between the nipple sites of the breasts. 
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5) High ductal (nipple) temperature in the damaged breast in comparison with 

average breast temperature, with respect to age.  

Examples of internal temperature distributions for normal and cancerous breasts are 

shown in Figure 4. The right breast is diagnosed with ductal (nipple) cancer, and 

illustrates an elevated temperature in the ductal (middle) region of the breast.   

 

 
Figure 4.  Thermal distribution of a healthy (left) and cancerous (right) breast. The 

diagram was regenerated from [5]. 

 

 The RTM-01-RES also has implications in neurology, particularly in the 

treatment and monitoring of muscular disorders and the detection of spinal abnormalities. 

Figure 5 illustrates application of the RTM-01-RES in neurology by distinguishing spinal 

abnormalities.  The red (dashed) line is a thermogram  of a deforming spondileus of a 67 

year old patient, which is compared with a thermogram of a healthy 21 year old patient 

with no abnormalities (blue).  

 



 

  18 

 
Figure 5. Thermogram of a deformed (red - dashed) and healthy spine (blue). 

 

2.4 Limitations of the Contact Radiometry 

 Though on-body radiometric devices have been successful as biomedical sensors, 

there are some drawbacks that justify the need for a non-contact approach in certain 

applications.  Recent studies (2006-present) have shown that there are several 

deployment issues specific to the on-body convention which may or may not be 

negligible depending on the application [10] – [12].  For instance, thermal conduction 

between the tissue and sensor can induce measurement uncertainties by distorting the 

temperature profile when the sensor is placed in direct contact with the body [5], [10], 

[12].  On-body sensors are also uncomfortable and may cause skin contusions under 

conditions of extended use. 

 Additionally, placing the antenna in direct contact with the tissue under 

investigation (TUI) creates near field diffusion wherein the detected fields are scattered 

throughout the TUI [10].  In the principle of core body temperature extraction, near field 
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diffusion limits the sensing depth which leads to detection of signals from areas closer to 

the tissue surface rather than the core.  Though the area of maximum detected field 

strength is normal to the antenna with the expected Gaussian-shaped contour, thermal 

emissions from random areas within tissue induce measurement errors due to the 

degraded sensing depth.  The recorded detection depths of actual on-body sensors are 

well below the theoretical limit, which could be partly due to the near field diffusion 

phenomenon [11].  The diffusion phenomena may be tolerable in cancer detection and or 

imaging applications where the brightness temperature of the specimen (i.e. cancer, brain 

activity, glucose variations) is distinguishable, being that its dielectric properties create 

stronger emissions than the surrounding tissue [4].  Though diffusion limits the detection 

depth, emissions from the specimen are 25%-35% stronger than the surrounding tissue 

and therefore detectable closer to the surface. However, in core body temperature 

extraction the dielectric properties of the tissue layers are relatively uniform across the 

lateral sensing profile.  As a result the detected emissions are a function of the physical 

temperature of the specimen, which is at most 4% stronger than the surrounding tissue. 

Considering that healthy body temperature is approximately 98.6 ⁰F with a dynamic 

range of ±4%, the human core emits weaker brightness temperatures that are difficult to 

detect due to the uniform dielectric profile of surrounding tissue.  Therefore the degraded 

depth of detection induced by diffusion considerably impedes the ability to detect weaker 

subsurface temperature differentials emitted from the human core. Hence it can be argued 

that a non-contact approach is necessary to mitigate sensor placement issues, reduce 

measurement uncertainty, and enhance detection depth. 
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2.5 Non-Contact Radiometric Sensing 

 Recent successes in non-contact radiometry support the technological feasibility 

for true, non-invasive biomedical sensing [11] – [13].  As of late (2002-current), 

promising results have been achieved via remote (in this case, d < 0.8 m) monitoring of 

thermal and electrical conductivity variations of muscle and brain phantoms.  In [12], a 

radiometric system is employed for intracranial imaging consisting of a directional 

antenna and/or array, and a large ellipsoidal cavity (1.5 m) for focusing microwave 

energy into the desired regions of the brain.  A conformal antenna array and matching 

material between the antenna and specimen theoretically improves beam focusing to 

adequate detection depths for subsurface field imaging; the thickness of the matching 

material is crucial for optimal performance [12] – [13].   

 Of the current non-contacting modalities virtually none embody close proximity 

detection capabilities.  The majority of the close proximity and near field measurement 

studies are in the preliminary stages, encompassing only simulation, theoretical, and 

conceptual demonstration. None of the previous studies have demonstrated an absolute 

subsurface temperature measurement at a range of a few centimeters from the TUI.  The 

deficiency of a solid knowledge base within this area is essentially attributed to certain 

propagation challenges, which occur in the reactive antenna-body near field (Figure 6) 

such as electromagnetic (EM) field dispersion, antenna resonance shifts, bandwidth 

degradation, and impedance mismatch.  Many authors have stated that these propagation 

challenges in the human body near field create daunting instabilities [11] – [14].  Others 

have identified these challenges as significant but very few solutions have been offered, 

other than to follow the on-body convention.   
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Figure 6.  Radiometric sensor positioned in the near field of a human core model (HCM). 

 

 In [10] the near field dispersion phenomenon is explained and potential solutions 

are presented.  The potential of close proximity brain imaging is investigated through 

simulation of electromagnetic field images across a cranium model. The latter 

demonstrates methodologies for maximizing resolution, detection depth, and sensitivity 

by means of application specific antenna design and proper antenna offset distance.  

Subsequent conceptual (simulation) studies imply that displacing the antenna precisely 10 

mm – 20 mm from the specimen further improves the detection depth and pattern 

contour, beyond that of the matching layer approach mentioned in [13].  These 

simulations also demonstrate that precise offset minimizes near field diffusion. Though 

the results were promising, in-depth experimental studies are still necessary to 

characterize close-proximity radiometry as a viable biomedical sensing methodology. 
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CHAPTER 3  

PRELIMINARY STUDY: THE 1ST GENERATION DESIGN 

  

 A conceptual demonstration of close proximity biomedical radiometry is 

demonstrated in this preliminary study of a total power microwave radiometer (TPR).  

The sensor is projected to be integrated into the uniforms of servicemen or as a hand-held 

device.  Therefore, the radiometer and test bed are designed to replicate a health sensor 

positioned in close proximity (7 mm – 35 mm) to human tissue.  The TPR was chosen for 

this initial study due to its relatively simple design which has been well studied in a broad 

range of non-invasive and or remote sensing applications; geo-science, remote 

monitoring of high temperature materials, and biomedical monitoring [15] – [18].  It is 

also the baseline design for more advanced radiometer architectures such as Dicke, Hach 

and noise injection [18].  This pool of prior knowledge reduces the number of unknowns 

when correlating the biomedical requirements of the close proximity approach to the 

sensor design parameters.  In essence, some performance specifications can be estimated 

based on previous works.  For instance, the TRR is designed for high resolution, with 

minimal components, which are desired characteristics for a stand alone or integrated 

health-monitoring device [17].  The drawbacks are sub-optimal accuracy and 

measurement uncertainty caused by gain drifts and instability in the low noise amplifiers 

[15].  Previous studies have proven that these phenomena can be mitigated through, 
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external calibration, device miniaturization and or thermal stabilization which will be 

implemented in Chapter 4. 

 One of the most significant contributions of this work is an analysis of the non-

contacting nature of the sensor, which presents certain challenges that have been 

identified as substantial obstacles by previous authors (e.g. [16], [19]).  Some of the most 

problematic design challenges are related to antenna performance degradation, as the 

antenna comes in close proximity to and or touches the body [19].  These phenomena are 

demonstrated by analyzing the performance characteristics of a printed dipole antenna in 

the near field of a blood-fatty tissue phantom.  We propose various antenna design 

methodologies and near-field models to compensate for these effects.  Until this work, 

very few solutions have been provided other than to follow the on-body convention, and 

none of the proposed non-contacting methodologies are feasible for a stand-alone device, 

capable of real time physiological monitoring.   

 Measurement and testing is performed on the test bed, which consists of a tissue 

phantom with the electrical properties (dielectric constant ε) similar to human tissue 

within the spectrum of 1 GHz – 2 GHz, which covers the frequency band of the TPR.  In 

this initial study, we are particularly interested in noninvasively tracking temporal 

changes in a blood-fatty tissue phantom to demonstrate proof of concept.  Tissue 

phantoms that mimic skin and muscle have also been identified to provide a more 

accurate model of the body.  The applications of these phantoms models are limitless; 

biomedical telemetry devices, non-contact wireless sensors and wearable devices just to 

name a few.  As the work progresses, layered configurations of these tissue phantoms 

will be configured to model the body’s clinical diagnostic points, where the sensor is 
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expected to be positioned.  These enhancements improve the accuracy of the test bed 

towards a clinical trial comparison.  However the scope of this preliminary study is to 

first conceptually prove that biological data can be extracted from a simplified 

measurement test bed via close proximity total power radiometer measurements, identify 

the artifacts which obstruct the measurement, and provide solutions to mitigate these 

artifacts.   

 

3.1 A TPR Designed for Biomedical Sensing Applications 

 The TPR design consists of an antenna, RF front end, down conversion stage, low 

frequency circuitry and a voltage detector for rectification. A block diagram of the TPR 

design is presented in Figure 7.  The overall dimensions when placed inside of a metal 

enclosure for thermal stabilization are 50 cm x 9 cm x 4 cm.  The sensor is essentially a 

high gain (~70dB) receiver that detects thermal emissions radiated from human tissue, 

which can be related to core temperature.  The 1.4 GHz design frequency (fc) enables an 

acceptable detection depth; up to 30 mm into muscle and blood, and 90 mm into fatty 

tissue [20].  The antenna is a printed dipole (PD) in a non-metal cavity designed at 1.4 

GHz, with a 400 MHz bandwidth.   

 The next stage is the RF front end, a super-heterodyne receiver with the following 

components: multi-port RF switch, isolator, low noise amplifier, and band-pass filter.  

The switch connects to the antenna and two broadband (1 GHz – 18 GHz) reference 

temperature loads.  Through calibration the reference loads are used to relate the signal at 

the radiometer input to an absolute temperature.  A 50Ω termination submersed in 

cryogenics (liquid nitrogen) is used for the cold load (77 ⁰K), while an attenuated diode 
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noise source is used for the hot load (~7618 ⁰K).  The isolator attenuates unwanted noise 

emanating from the radiometer in the direction of the antenna, which may reflect off the 

specimen and or feed-back into the system input.   

 Next, the RF LNA is chosen to have a very low noise figure (NF < 0.6 dB), since 

the NF determines the input noise temperature of the first amplifier, which has a 

substantial effect on the overall noise temperature of the receiver (T’REC) [18].  A noisy 

system can cause degradation in accuracy and precision since T’REC is inversely 

proportional to the sensor resolution (ΔT).  In particular T’REC and ΔT are related by ( 6 ) 

where τ, β and T’A are respectively, the sensor integration time, bandwidth, and noise 

temperature of the antenna.  For this reason, a very low noise amplifier at the radiometer 

front end maximizes ΔT.  High resolution sensors are vital for extracting subsurface 

tissue temperature, due to the fact that the dynamic sensing range could be as low as 10 

ºF – 15 ºF.  This range becomes even smaller, in the case of core body temperature 

extraction, as heat related disorders are diagnosed at ±5 ºF from homeostasis, 98.6 – 100 

ºF.  However, the primary function of the radio frequency (RF) low noise amplifier 

(LNA) is to aid in distinguishing the minimal detectable signal from the noise floor, by 

amplifying the emissions from the tissue under investigation (TUI).  Since the human 

body temperatures are very close to that of ambient temperature, the RF LNA is chosen 

to have a high gain (30 dB) within the sensing band of interest (1.1 GHz – 1.6 GHz).   

 After amplification and filtering, a mixer with a 1.1 GHz local oscillator (LO) 

frequency performs double-sideband down-conversion to the intermediate frequency (IF).  

The low frequency circuitry consists of a low pass filter and two 21 dB gain IF LNAs, 

and is used to eliminate harmonics induced by down-conversion and amplify the input 
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signal to a suitable level for subsequent rectification.  At this stage in the system the IF 

band is DC – 400 MHz.  A DC block is added to protect the preamplifier from LO 

harmonics generated from down-converting.  In the final stage, a Schotty diode is used 

for rectification of the IF band into a DC output voltage, proportional to the noise 

temperature at the radiometer input.  The magnitude of the output voltage is then related 

to the intensity of the brightness temperature of the tissue under investigation (TUI), 

through calibration.  

 

€ 

ΔT =
T 'A +T 'REC

βτ
 ( 6 )  

 

 
Figure 7.  Block diagram of the TPR. 

  

3.2 Calibration 

 The TPR employs an internal calibration methodology, wherein hot and cold 

references are measured to generate calibration curves.  The calibration curves in Figure 
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8 were generated by two methodologies.  It is important to note that the voltage offsets in 

the calibration curves in Figure 8, are likely due to positive amplification of the 

negatively polarized rectifier output.  The first calibration methodology (CM1) makes use 

of a diode noise source for the hot load and a 50Ω load immersed in liquid nitrogen as the 

cold load.  The reference noise temperature of the noise source and cold load are 1065  

ºK and 77  ºK, respectively.  A second calibration methodology (CM2) is implemented 

for comparison purposes, which uses a variable attenuator and a noise source, in which 

multiple calibration points are generated corresponding to temperatures ranging from 295  

ºK – 7618  ºK.  Theoretically if there are no gain variations in the system the calibration 

curves and equations for CM1 and CM2 should be identical.  However, our results 

showed some variation in the slopes (system gain): 5.7 mv/K for CM1 and 4.9 mv/K for 

CM2.  As a result gain variations are expected, which are likely due to suboptimal 

thermal stability of the front-end components. Since the total system gain is ~70dB, a 

small variation in gain could result in significant measurement uncertainties.  Hence 

continuous calibration, and system stabilization are critical to achieving optimal accuracy 

and therefore will be included in 2nd generation sensor design.   
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Figure 8.  Calibration curves of the TPR. 

 

3.3 Antenna Requirements for Biomedical Radiometric Sensing  

 Antennas designed for biomedical radiometric sensing are preferred to be high 

efficiency, directional radiators with broadband characteristics.  A relatively compact 

directional radiator is preferred for targeted sensing of human tissue, organs, and or 

clinical diagnosis points (i.e. wrist-blood pressure, chest-heartbeat, core-body 

temperature). Though the size of the aperture is proportional to the directivity of the 

radiation pattern, it is inversely proportional to the frequency of operation which 

determines the sensing/detection depth.  As a result there is a tradeoff between the 

antenna size, directivity, and sensing depth.  

 A broadband antenna enables maximum temperature resolution, which is critical 

in detecting subsurface emissions from internal tissue and organs.  ( 1 ) defines the 

resolution and or minimum detectable signal of a radiometric receiver; where T`A, T`REC, 
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τ, and β are respectively the radiometric temperature detected by the antenna, system 

noise temperature, integration time, and bandwidth. 

 

€ 

ΔT =
ʹ′ T A + ʹ′ T REC

τβ
 ( 7 ) 

   
 The sensor designer has very little control over T`A.  τ is the time needed for an 

accurate measurement of the TUI. Thus for the sensor to achieve high resolution, the 

antenna should be designed such that β is wideband at the sensor design frequency.  The 

antenna should also exhibit a high efficiency which is critical in detecting low emissions 

from internal tissue.  Any reduction in signal integrity caused by the antenna significantly 

degrades the accuracy of the sensor.  Furthermore, an antenna with low efficiency 

heightens front end system loss by increasing T`REC.  T’REC depends largely on the loss in 

the receiver front end and should be minimized to achieve maximum temperature 

resolution.  Therefore a highly efficient antenna is preferred for optimal sensor resolution 

and accurate detection of weak emissions generated from human tissue.   

 

3.4 The Printed Dipole Antenna (PD1) 

 A 1.4 GHz half wavelength printed dipole was selected for the TPR because it is a 

widely studied, compact, broadband aperture with a relatively simple design [21].  In our 

case a fairly compact, planar structure is preferred for ease of integration into uniforms or 

for deployment as a hand held device.  An in-depth analysis of the 1st generation printed 

dipole antenna (PD1) is presented in this section.  Figure 9 provides an illustration of 

PD1, which is designed using the Momentum full-wave electromagnetic simulator in 

Agilent’s Advanced Design System (ADS).  The front, side, and rear views of the 
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antenna are shown in Figure 10 and the dimensions provided in Table 3.  The dipole arms 

are each  λ/4 electrically, which is equivalent to a physical length of approximately 42 

mm.  The arms are fed by a  λ/2 balun, which in theory balances the amplitude and phase 

of the current distribution between the dipole arms.   

 

3.4.1 Characterization 

 The free space characterization in Figure 11 and Figure 12, shows that there is a 

very good agreement between the measured and simulated resonance, bandwidth (250 

MHz), reflection coefficient (S11), and radiation pattern.  As a result it can be inferred 

that the simulated and measured radiation characteristics (gain, directivity, and 

efficiency) are also comparable; these values are provided in Table 4.  

 

 
Figure 9.  Momentum simulation of PD1. 
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Figure 10.  Front (left), side (middle), and back (right) views of PD1. 

 

Table 3. Dimensions of PD1. 
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Parameter Value 

Overall Dimensions LxWxH (mm) 70x110x0.8 

Height / Substrate Thickness (mil) 31 

Length of  λ/4 Dipoles (mm) 42x2 
Length of Balun  λ/4 Short and 

 λ/4 Open (mm) 30.3x2 

Ground LxW (mm) 32x19 
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Figure 11.  Measured versus simulated S11 of the printed dipole antenna in free space. 

 

 
Figure 12. Measured versus simulated normalized radiation pattern of PD1 in dB scale. 
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Table 4.  PD1 antenna characteristics. 
 

 

 

 

 

 

 

3.4.2 Body Effects 

 As the antenna comes into the near field of the body, the antenna characteristics 

are distorted.  Figure 13 demonstrates resonance shifts and antenna input match 

degradation, which arise from the antenna being at short distances (7 mm – 35 mm) from 

the TUI.  More specifically, when the TUI – sensor offset is varied from 7 mm to 35 mm, 

the resonant frequency shifts from the 1.4 GHz design frequency to 1.5 GHz.  Any 

divergence from fc degrades the IF band input into the detector which subsequently 

reduces resolution, and in this case the depth of detection.  In addition, the magnitude of 

the resonance is degraded by ~10 dB which would result in signal loss of at least 10% at 

the air – antenna interface.  Most importantly, the bandwidth decreased from 250 MHz to 

150 MHz when the antenna was brought within 7 mm of the TUI, which will degrade the 

sensor resolution, by a factor of at least 2.  These characteristics will vary depending on 

the antenna, yet such losses considerably obstruct the accuracy of the sensor.   

 

Parameter Value 

Resonant Frequency (GHz) 1.45 

Gain (dB) 1.56 

Directivity (dB) 2.45 

Efficiency (unit less) 0.85 

Bandwidth (MHz) 250 
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Figure 13. Antenna S11 degradation versus offset distance from the phantom. 

 

3.4.3 Cavity Effects 

 The printed dipole generates an omni-directional radiation pattern (Figure 12), 

though a more directive pattern is desired in biomedical sensing applications [22].  A 

directional pattern could be achieved by adding a ground plane behind the dipole but the 

tradeoffs would be degraded bandwidth and increased aperture size, which are both 

undesirable characteristics for antennas deployed in biomedical applications [22].  For 

this reason a non-metal cavity was designed to isolate the antenna from background 

radiation (Figure 14).  The cavity is comprised of Plexiglas, and lined with a near field 

absorbing material (supplied by ARC technologies1) designed to suppresses unwanted 

side and back lobe contributions by a factor of 20 dB.  The cavity is adjustable such that 

tissue – sensor offset can be varied from 0 mm to 60 mm, enabling characterization of the 

sensor and antenna at distances representative of a health-monitoring device inside of an 

astronaut’s uniform.   
                                                
1 ARC Technologies, 11 Chestnut Street, Amesbury  MA 01913 
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Figure 14. Non-metal cavity used for the printed dipole antenna. 

 

 
Figure 15. Bottom (left) and top (right) views of the PD1 inside the cavity. 

 

 Since the cavity itself induced changes in the antenna performance, the original 

printed dipole (PD) was redesigned (PDRE) for optimal performance inside the cavity, by 

matching the impedance of the balun feed and tuning the dipole lengths for frequency 

selection. The orientation of the antenna inside the cavity is illustrated in Figure 15.  The 

best performance was achieved with the antenna inset 6 cm inside cavity.  Figure 16 

shows the degraded S11 responses of PD1 in the cavity and the improved response of 

PDRE.  The dimensions of PD and PDRE are described in Table 5.  
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Figure 16.  Cavity effects of PD1 versus PDRE. 

 

Table 5.  Dimensions of PD and PDRE. 
 

 

 

 

 
 

 

 

3.5 Measurement Test Bed 

In order to benchmark the performance of non-invasive biomedical sensors, 

reconfigurable phantom models are needed which are capable of mimicking the physical 

and electrical properties of the tissue across the sensing depth.  The body is a complex 

system, consisting of skin, muscle, blood and fatty tissue, with dissimilar electrical and 

physical properties.  As a result, each tissue layer will affect the performance of the 
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Parameter PD PDRE 
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Substrate Thickness (mil) 31 31 

 λ/4 Dipoles Length (mm) 42x2 47x2 
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λ/4 Short and λ/4 Open (mm) 30.3x2 30.3x2 

Ground LxW (mm) 32x19 32x19 
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sensor.  Therefore, discrete phantoms, which model only one tissue layer at a time, do not 

provide the best replica of the body.  To accurately depict the electrical profile of the 

TUI, layered phantom models must have a form factor similar to that of the tissue 

volume.   

 In this work various tissue phantoms have been developed and characterized 

which mimic the electrical properties of the intervening tissue layers of an abdominal 

cavity within the frequency band of 1 GHz – 2 GHz.  However, only the blood phantom 

was used for simplification of the radiometric temperature measurement in this proof of 

concept demonstration.  

 The phantoms were characterized with respect to complex dielectric constant 

using the Agilent 85070E dielectric probe kit, and the results compared to the Gabriel 

model, which is used as the standard for human tissue characterization [23].  Since the 

tissue impedance is an important parameter for characterizing on-body sensors and near 

field antenna performance, the impedance of the phantoms were also calculated and 

presented in the analysis.  

 

3.5.1 Blood-Fatty Tissue Phantom 

 Herein blood-fatty tissue was simulated using a mixture of hydroxethylcellulose 

(HEC), salt, sugar and water, the most prominent compounds in human blood as well as 

fatty (cellulose, salt, water) tissue (Table 6) [24].  To model blood and fatty tissue inside 

the stomach, a weighted average of the dielectric properties of the tissue is applied, 

assuming 12% body fat and 88% blood, which results in a dielectric constant of 53, and 

an impedance of 50Ω at fc.  Figure 17 outlines the development process, and the recipe is 
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provided in Table 8.  As illustrated in Figure 18 and Figure 19, the blood phantom has a 

dielectric constant of 54 and impedance of 51Ω at fc, which is equivalent to the findings 

of Gabriel and others in the literature.  

    

 

Table 6. Recipe for blood-fatty tissue phantom [24]. 
 

 

 

 

 

 

 

Ingredients % By 
Weight 

Water 56 

Sugar 0.76 

Hydroxylethylcellulose (HEC)  41.76 

Salt  1.21 

Bactericide 0.27 
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Figure 17. Development process for the blood-fatty tissue phantom. 
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Figure 18. Comparison of the real (ε’r) and imaginary (ε''r) dielectric constant (εr) of the 

blood-fatty tissue phantom to the Gabriel model. 

 

 
Figure 19. Comparison of the blood-fatty tissue phantom impedance (Z) to the Gabriel 

model. 
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3.5.2 Hybrid Skin-Muscle Phantom 

 Presented is the first hybrid skin–muscle phantom in a solidified composite form.  

As described in the introduction, the majority of the current tissue phantoms are discrete 

materials, usually liquids, whereas the human body is compromised of layered volumes 

of interconnected solids as well as liquids.  Composite or hybrid phantoms provide a 

more accurate model of the body’s clinical diagnostic points, which is important in 

improving the precision of the measurement test bed, as it is very difficult to model such 

a complex biological systems as the human body.  Solid phantoms can be shaped into 

three dimensional volumes of human tissue without the support of casts or containers 

which may alter the relative dielectric, and or impedance profile of the phantom.   

 The skin-muscle phantom in Figure 20 is developed using a simple mixture of 

44% water and 56% TX-151, provided by the Oil Center Research2.  The process is 

presented in Figure 21, and the recipe in Table 7.  The surface of the hybrid phantom 

mimics damp skin, to account for perspiration in conditions of extreme heat and or 

condensation deposits in cold environments.  The skin layer has non-uniform thickness, 

ranging from 1 mm – 2 mm, which is comparable to the combined thickness of the 

dermis, epidermis, and hypodermis.  The muscle layer is located immediately below the 

skin layer, and also has a non-uniform thickness of 7 mm to 8 mm.  The electrical 

characteristics of the skin and muscle layers are presented below in Figure 22 – Figure 

25.  When preserved in an airtight enclosure, the electrical and physical characteristics of 

the phantom will remain relatively stable for at least 6 months. 

                                                
2 Oil Center Research, 616 W. Pont Des Mouton Road, Lafayette LA 70507 
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Figure 20. The hybrid skin-muscle phantom. 

 

 
Figure 21. Development process for the hybrid skin-muscle phantom. 

 

Table 7. Recipe for hybrid skin-muscle phantom. 
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Figure 22. Comparison of the real (ε’r) and imaginary (ε'’r) dielectric constant (εr) of the 

skin phantom to the Gabriel model. 

 

 
Figure 23. Comparison of the skin phantom impedance (Z) to the Gabriel model. 
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Figure 24. Comparison of the real (ε’r) and imaginary (ε''r) dielectric constant (εr) of the 

muscle phantom to the Gabriel model. 

 

 
Figure 25. Comparison of the muscle phantom impedance (Z) to the Gabriel model.  

 

3.6 Measurement Results 
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the PDRE positioned facedown inside the cavity, parallel to the TUI, offset ~25 mm from 

the phantom (Figure 15).  The physical temperature is tracked using an infrared 

thermometer (IR) at the surface of the phantom and a digital thermometer (DT) located 

internally, at a depth of ~50 mm.  In an effort to simulate a drop in core body 

temperature, the phantom temperature was varied from 111 °F to 65 °F, which is just 

outside the dynamic range of human body [25].  Human core temperatures (Tc) in the 

range of 93 °F < Tc < 101 °F are considered normal. Temperatures outside this range are 

considered adverse with Tc < 93 °F being Hypothermic, and Tc ≥ 102 °F considered 

exhaustion or heat stroke.   

 An analysis of the experimental data, showing the comparison of temporal 

variations between the TPR, the IR and the DT, is provided in Figure 27.  The curves in 

this figure are normalized to the initial temperature reading of the TPR.  The internal and 

surface temperatures of the phantom are virtually identical which implies that the 

phantom temperature is uniform throughout.  The similarities in the curves prove that the 

TPR indeed demonstrates the general ability to track changes in tissue temperature from 

the near field of the TUI.  However, there are some differences in the morphology of the 

TPR curve as compared to the IR and DT.  In particular, the slope changes in the 

radiometric curve exhibited in time intervals 3 and 6 are likely due to spurious signals 

detected in the antenna back lobe.  They could also be an effect of amplifier gain drifts, 

which were predicted from the results of the calibration analysis in section 3.2.  In 

addition the radiometric measurement appears to be colder than the IR and DT which is 

likely due to factors relating to the non-contacting nature of the sensor, e.g., reflection 

loss at the antenna input, back/side lobe contributions, air-skin reflections, noise radiated 
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by the receiver, and the emissivity of the specimen.  These artifacts contribute to the 

radiometric measurement and are heightened in close proximity sensing applications.   

 

 
Figure 26. 1st generation measurement test bed. 

 

 
Figure 27. Results – normalized phantom measurements: TPR vs infrared thermometer 

(surface) and digital thermometer (internal).   
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3.7 Conclusion 

 Presented is the initial development of a radiometric sensor for noninvasive, close 

proximity biomedical monitoring.  Although the ability to track temporal changes in the 

specimen temperature has been qualitatively demonstrated, certain phenomena have been 

identified which distort close proximity radiometric measurements. The measurement 

results imply that absolute specimen temperature extraction is plausible, however a 

mathematical model is necessary to account for certain artifacts which arise due to the 

non-contacting nature of the sensor.  Solutions in the area of antenna design are provided, 

by implementing an absorbing cavity to suppress unwanted radiation opposite the TUI, 

and designing the antenna for optional functionality in close proximity to the body.  We 

have also identified receiver instability characteristics which are represented by the 

variations in the slopes of the calibration curves and are likely due to thermal drifts in the 

RF components.  The proposed solutions are a miniaturized design with an enhanced 

calibration scheme and thermal stabilization.  Hence a 2nd generation design is presented 

in CHAPTER 4, which incorporates continuous calibration to mitigate receiver 

instabilities and an improved antenna design to compensate for the near field effects. 
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CHAPTER 4  

2ND GENERATION DESIGN 

 

 This chapter presents various enhancements to the sensor and antenna design, to 

mitigate certain artifacts which obstruct the close proximity measurement.  

Experimentation and testing are performed on an enhanced measurement test bed, a 

multilayer phantom model which mimics a three dimensional volume of an abdominal 

cavity.  The modifications to the 1st generation sensor facilitates improved accuracy and 

resolution by means of a miniaturized design which incorporates a continuous calibration 

scheme.  The most noteworthy enhancement is the 2nd generation antenna, in which its 

novelty lies within the performance characteristics that aid in preserving the functionality 

of the sensor in the antenna-body near field.  

 

4.1 Design of a Microwave Radiometer for Biomedical Sensing (MRBS) 

 The (MRBS) is a continuous calibrating TPR with direct conversion (D – C) in-

phase (I) quadrature (Q) demodulation, I/Q. When compared to the superheterodyne 

based TPR, the advantages of  the D – C I/Q architecture are reduced cost, power 

consumption, radio frequency components, and high linearity [26].  Most importantly, the 

architecture is well suited for miniaturization.  These characteristics are ideal for the 

intended application, a stand alone health monitoring device, integratable into the 

uniforms of astronauts or servicemen for core body temperature monitoring. 
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 The design consists of a cavity backed slot antenna (CBSA) [22], RF front end, 

and I/Q channels with an integrated rms detector. The block diagram is shown in Figure 

28.  Analogous to the TPR, the MBRS design frequency is 1.4 GHz which in theory, 

provides sensing depths up to 30 mm through skin, muscle, tissue [20], enabling the 

measurement of the blood temperature beneath the abdominal cavity. The antenna is a 

CBSA, designed for optimal functionality in close proximity to the body.  The front end 

consists of a multi-port RF switch, isolator, low noise amplifier, and band-pass filter.  

The switch connects to the antenna and three reference temperature loads.  A 50Ω 

termination at room temperature is used for the cold load (71 ºF), while an attenuated 

diode noise source is used for the hot load (235 ºF).  The third standard is an open circuit, 

which is used to determine the noise temperature generated by the radiometer in the 

direction of the antenna (TREV) and or reflected back into the system (T’REV).  An L-Band 

isolator is used to attenuate TREV, while in effect the noise temperature of T’REV is 

equivalent to the physical temperature of the isolator.  The final component in the RF 

front end is the band-pass filter, which has a center frequency of 1.4 GHz with a 100 

MHz bandwidth.  The band pass filter attenuates spurious signals outside of the sensing 

band of interest and passes the signal contributions emitted across the targeted detection 

depth.   

 After amplification and filtering the signal is equally divided into the I and Q 

channels for D – C demodulation (LO = fc), and subsequent rms rectification to DC 

output voltages.  The schematics of the I/Q channels are equivalent to the low frequency 

circuitry in the first generation design presented in section 3.1  In general, I/Q 

demodulation involves direct conversion D – C at the design frequency (fc) via two 
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mixers with the local oscillator frequencies synchronized to fc, and 90º out of phase, thus 

the term in-phase quadrature.  As a result the image frequency is centered at 0 Hz and 

both positive sidebands are preserved in the I and Q channels, as the negative sidebands 

and respective harmonics are canceled and or filtered.  In theory the I and Q outputs are 

combined to reconstruct the double-sideband signal, however only one channel is 

considered in this study for simplification.   

 Compared to the TPR architecture, the overall size reduction of the MRBS allows 

for enhanced stability, resolution, and accuracy.  The dimensions of the MRBS are 22 cm 

x 6.3 cm x 4 cm which equates to a size reduction of about 50%, when compared to the 

1st generation TPR (50 cm x 9 cm x 4cm) initially presented in section 3.1.  Thermal 

stabilization is more efficient and easier to implement on smaller devices with fewer 

components, as a result the accuracy of the sensor is improved substantially.  Thermal 

stability of the MRBS is achieved by a metal enclosure.  The signal transmission path is 

also shortened, which reduces front end losses that contribute to the receiver noise 

temperature (T’REC).  The result is improved resolution, as T’REC and ΔT are inversely 

proportional,  ( 6 ).  
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Figure 28.  Block diagram of the MRBS. 

 

4.2 Calibration 

 Continuous calibration is implemented in the MRBS design which minimizes 

measurement uncertainty and improves resolution.  When compared to the TPR, in which 

only one calibration curve is generated per experiment, the MRBS generates a calibration 

curve for each TB measurement.  In effect, each data point is extracted with optimal 

precision, given that the noise temperature of the calibration standards are know to a high 

degree of accuracy.  As described in the previous section, three standards are measured 

during each calibration cycle; hot TH, cold TC, and open TO.  The time interval for each 

cycle, including the specimen temperature TSC (TUI) is approximately 1.3 s.  The results 

is a substantial reduction in the allowable time window for gain drifts in the RF 

components, which in-turn minimizes measurement uncertainty.  Continuous calibration 

also enables the detection of small temporal changes in the TUI, and therefore improves 

ΔT.   
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4.3 A Cavity Backed Slot Antenna (CBSA) for Near Field Biomedical Radiometry  

 The most noteworthy enhancement of the 2nd generation sensor is the antenna; a 

cavity backed slot antenna (CBSA), designed to satisfying the requirements for near field 

human body detection.  By combining the advantages of annular slot and cavity backed 

antennas, the CBSA is designed to compensate for obstructive antenna-body effects, 

initially demonstrated in section 3.4.2 of the preliminary study.  The antenna is a 

directional, broadband radiator, design at 1.4 GHz.  It is also frequency tunable and or 

reconfigurable for implementation in other biomedical sensing applications.  

 Although spiral, patch, array, and other antennas commonly used in biomedical 

sensing applications were considered, the performance characteristics of cavity and 

annular antennas are best suited for the close proximity approach and provide better 

design flexibility.  Multiple degrees of freedom in the antenna design are desired, mainly 

due to the varying performance characteristics in the near-field of the body.  With respect 

to sensor performance, the main advantage of annular slot antennas over patch antennas 

is improved bandwidth.  Conversely annular slot antennas generally radiate an omni-

directional pattern due to the lack of a ground plane whereas a directive antenna with 

good efficiency is preferred in biomedical applications.  A commonly used high 

efficiency directional antenna is a microstrip array but its large aperture size and narrow 

bandwidth at low GHz frequencies makes this antenna undesirable for the current 

application and design frequency.  Therefore a probe fed cavity antenna is chosen for this 

study because it is a highly efficient, broadband, directional radiator which can be scaled 

in size by introducing a dielectric fill.  
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4.3.1 CBSA Design Concept 

 The CBSA consists of an annular slot antenna in contact with a cylindrical metal 

cavity [27].  The CBSA dimensions are given in Figure 29.  The cavity is filled with a 

Teflon dielectric, and excited by an internal coaxial probe.  The internal probe excites the 

inner patch of the annular slot aperture.  Frequency tuning of the antenna is another 

important feature of the internal probe, enabling detection at multiple sensing depths.  

Tunable antennas are especially useful in the biomedical arena for detection of multiple 

clinical diagnostic points.  Implementation of the cavity further improves antenna 

bandwidth, gain, directivity, and suppresses surfaces currents while forcing radiation in 

broadside direction towards the TUI.  The dielectric fill allows for reduced aperture size, 

and lower frequency operation.  An adjustable specimen holder is integrated on top of the 

cavity which regulates the distance between the phantom and antenna from 7 mm – 25 

mm, the estimated distance between the body and projected  health monitoring device. 
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Figure 29. Dimensions of the CBSA. 

 

4.3.2 Simulations 

 The CBSA was simulated in Ansoft HFSS to validate that the desired antenna 

characteristics were achieved.  The material properties of the Plexiglas specimen holder 

and Teflon used to fill the cavity were not uniform and varied from sample to sample. As 

a result, the Plexiglas and Teflon were characterized using the Agilent HP8750 dielectric 

probe kit, and modeled in HFSS.  The antenna was initially designed to operate in free 

space then redesigned for functionality in close proximity (7 mm) to a skin tissue 

phantom (εr ~44).  The skin phantom was also characterized in house and modeled in the 

simulator.  

 As illustrated in Figure 30, the various antennas parameters provide design 

flexibility with regard to size, bandwidth and design frequency.  The resonant frequency 

decreases for increased values of W, ρi, εr and ρo.  Bandwidth increases for increased 

values of W, D, and t and decreases as εr is increased.  In general, the design process 
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involves configuring these parameters for optimal antenna performance at short distances 

from the TUI.  

 

 
Figure 30.  CBSA design parameters and their effect on bandwidth (BW) and design 

frequency (fc). 

 

 As illustrated in Figure 31 the simulation results prove that the CBSA is 

broadband (300 MHz), and works well in close proximity to a skin tissue phantom at the 

design frequency of 1.4 GHz.  Simulations also show that the antenna is very efficient 

(88%),  and tunable to ~50 MHz per mm (MHz/mm) of the feed length (Figure 31). The 

simulated gain and directivity are 3.4 and 3.9 dB, respectively. 
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Figure 31. Simulations if S11 in close proximity to a muscle tissue phantom.  This figure 

also shows tunability as a function of feed L: 50 MHz/mm. 

 

4.3.3 Measurements and Human Body Characterization 

 The CBSA was fabricated and measurements were performed in three conditions: 

in close proximity to a skin tissue phantom, in free space and in close proximity to a 

human core.  Following are the details of the experiments in each condition.  

 First the antenna is positioned in close proximity to a skin tissue phantom.  The 

measured and simulated results are comparable.  The reflection coefficients at the design 

frequency (1.4 GHz) are -22 dB and -20 dB for measurements and simulations, 

respectively.  The measured bandwidth is ~400 MHz, which is ~100 MHz wider than that 

of the simulation (Figure 32).  The difference between the measurement and simulation is 

likely due to the difficulty in fabricating a cavity antenna without boundary 

discontinuities between the cavity walls and radiating aperture (slot antenna).  Previous 

research has shown that nearly perfect contact is needed between waveguide structures to 
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avoid boundary condition discontinuities.  Whereas the CBSA cavity is analogous to a 

cylindrical waveguide, any slight discontinuity in the waveguide/cavity walls can 

produce variations in the surface currents and thus impedance.  

 

 
Figure 32. S11:  measured versus simulated results with the phantom offset 7 mm from 

the CBSA. 

 

 Second the antenna is characterized while radiating in free space.  The 

measurement results in Figure 33 confirm that directionality was achieved.  The 

measured and simulated radiation pattern results were also comparable.  The offset 

between the antenna and tissue is chosen at the distance in which the worst case 

degradation occurred in the preliminary study.  By analyzing S11 data in Figure 13, it is 

apparent that the antenna degradation is inversely proportional to the offset distance, with 

7 mm being the worst case scenario.  Since an acceptable performance can be achieved at 

larger offset distances, the antenna is designed for optimal performance in the worst case 

scenario.  Therefore the 7 mm offset was chosen for the remainder of this study.  
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 The measurement results in Figure 34 show that at 1.4 GHz the CBSA has a very 

high reflection when radiating in free space, but when positioned in close proximity to 

the phantom the reflection is very small, enabling the detection of very low emissions 

from the TUI, with very low signal loss due to mismatch.  This feature could also be used 

to automatically activate the sensor when brought into a certain distance from the body. 

  

 
Figure 33. Measured versus simulated normalized radiation pattern of CBSA in dB scale. 
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Figure 34. S11 in free space versus phantom with 7 mm offset. 

 

 Finally, the antenna was characterized 7 mm from the core of a human subject to 

verify that the antenna performance holds in practice. Figure 35 shows that the S11 of the 

antenna in close proximity to the phantom and core of the human subject are virtually 

identical.  This data provides further evidence that the phantom as well as the antenna are 

well suited for pre-clinical biomedical experimentation.   
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Figure 35. S11: human core versus phantom with 7 mm offset. 

 

4.4 Measurement Test Bed 

 The measurement test bed is a three layer human core model (HCM) which 

mimics a conical volume of an abdominal cavity, 50 mm deep with diameters of 55 mm 

and 75 mm at d = 0 and d = 50 mm, respectively.  As illustrated in Figure 36, this volume 

ideally captures the antenna-sensor main probing region incident to the stomach, which 

generally takes the form of a Gaussian contour.  The HCM is comprised of layered 

volumes of the solid skin-muscle tissue phantom and liquid blood-fatty tissue phantom 

previously presented in section 3.5.  The ability of the HCM to accurately emulate a 

human core is demonstrated in the comparison of the electrical properties (Z, εr) of the 

skin, muscle, and blood-fatty tissue phantoms to the Gabriel model. The results were 

strikingly comparable for each tissue layer; the blood-fatty tissue phantom comparisons 

are illustrated in Figure 18 – Figure 19,  the skin phantom in Figure 22 – Figure 23 and 

the muscle phantom in Figure 24 – Figure 25.   
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4.4.1 Rationale for the Human Core Model  

 The HCM was developed to provide a more concise electromagnetic model of an 

abdominal cavity than the more commonly used single layer phantoms.  Such phantoms 

are usually developed using simple solid, semi-solid (gels), or liquid solutions [28], [29].  

Previous studies have proven that “dielectric layering greatly influences” the radiometric 

measurement, therefore single layer phantoms cannot accurately mimic the emissive 

properties of layered volumes human tissue [30].  This loss in accuracy, could create 

considerable measurement errors, since microwave radiometers detect very low TB 

emissions which are dependent on the electrical properties of the tissue. 

 Liquid phantoms, usually comprised of saline or a water bolus, have a dielectric 

constant similar to water (~78) at room temperature and 1.4 GHz, whereas human muscle 

has a dielectric constant of ~54, skin ~44, and fat ~10.  As a result the detectable 

emissions from liquid phantoms will differ from those of human tissue. 

 Semisolids or gel phantoms have been developed which have similar electrical 

characteristics to that of skin and muscle tissue, however they are not as durable as solid 

phantoms.  Though semisolids provide a more accurate representation of the body’s 

electrical characteristics across the surface of the TUI, some disadvantages exist when 

modeling three dimensional volumes of the body’s clinical diagnostic regions.  For 

instance thin tissue layers ( < 2 mm) such as skin are difficult to develop and manage.  

Moreover, the versatility of the test bed is reduced, since less dense semisolids may not 

hold the form factor of the tissue volume, especially at elevated temperatures indicative 

to that of heat related disorders.   
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 Until this work, no solid skin-muscle phantoms have been developed with 

electrical properties analogous to human tissue within the 1 – 2 GHz frequency band.  

There are some single layer phantoms (muscle) which employ an outer shell or cast to 

hold the form of the TUI.  However, the electrical characteristics of the casts, usually 

plastics, are distinctly dissimilar at the air – skin interface.  This interface is  the first and 

therefore critical boundary for extracting subsurface data from the TUI, due to sizable 

reflections which occur at that boundary which lead to radiometric signal loss. [29] 

presents a solid 2/3rd muscle phantom which is the currently best available technology for 

mimicking a human torso.  Yet again, this 33% difference in the dielectric constant may 

present significant measurement errors when extracting deep-seated tissue temperatures 

using microwave radiometers.    

 

4.4.2 Design of the Human Core Model  

 The HCM is a durable phantom, designed to mimic the region of diagnosis for 

core body temperature monitoring, using a layered configuration of the phantoms 

previously presented in section 3.5.  Layers 1 and 2 of the HCM make up the hybrid skin-

muscle phantom, comprised of  a composite material developed using water and TX-151.  

The skin layer has a non-uniform thickness, ranging from 1 mm – 2 mm, which is 

comparable to the combined thickness of the dermis, epidermis, and hypodermis.  The 

muscle layer is located immediately below the skin layer, and also has a non-uniform 

thickness of  7 mm to 8 mm.  Core body temperature is essentially based on the 

temperature of the circulating blood through the cranial, thoracic and abdominal cavities 

[31].  Therefore Layer 3, the inner core, is a liquid volume ~40 mm deep which mimics 
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blood and fatty tissue inside the stomach.  The inner core is located inside of a plastic 

container which with housing to secure the skin-muscle phantom approximately 1 mm in 

thickness.  Since the radiometer detects thermal emissions across the depth of the tissue, 

the effect of the container is negligible, being that it’s a thin, highly emissive material, 

located beneath the critical air-skin interface.  Herein, extreme body temperature changes 

are simulated by varying the temperature of the inner core to temperatures representative 

of heat related disorders.   

 

 
Figure 36.  The human core model (HCM). 

 

4.5 Experimentation 

 As illustrated in Figure 37, the measurement test bed is analogous to the 

experimental setup presented in the preliminary study, except the skin-muscle phantom is 

added to complete the human core model (HCM).  Although the second generation 

design incorporates various enhancements to the test bed, the experimental procedure 

remained consistent with the 1st generation design, to provide an exact performance 
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comparison and demonstrate the repeatability of the measurement.  The measurements 

were performed with the HCM positioned approximately 7 mm from the antenna.  In an 

effort to mimic changes in core body temperature; the temperature of the skin and muscle 

phantom layers were kept constant, as the temperature of the core was varied just outside 

the dynamic range of extreme body temperatures; 107 °F – 92 °F: Human body 

temperatures in the range of 92 °F to 100 °F are considered normal. Temperatures outside 

this range are considered adverse with T < 92 °F being hyperthermic, and T ≥ 100 °F 

exhaustion or heat stroke [25].  

 The physical temperature of the skin phantom was tracked using a thermocouple 

placed on the surface.  The inner core was tracked using an average temperature from 

three evenly spaced internal thermocouples positioned at a depth of ~35 mm beneath the 

skin layer and ~22 mm beneath the muscle layer.  The brightness temperature of the HCP 

was tracked using the radiometer and the raw data was processed via the NCM [32].  The 

post processed NCM results are presented in section 5.2.1 along with a sensitivity 

analysis in the section 5.2.2.  
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Figure 37.  2nd generation measurement test bed. 

 

4.6 Conclusion  

 This chapter presents the 2nd generation design, which consists of a modified 

sensor design and enhanced antenna to circumvent obstructive phenomena which 

typically occur in the near field of the body.  Device miniaturization and continuous 

calibration allows for improved stability, accuracy, and resolution without the need for 

additional automatic gain control circuitry.  The D – C I/Q architecture enables device 

miniaturization by means of smaller components.  In turn, thermal stability is easier to 

implement on devices with a smaller form factor.  A multiport RF switch is added for 

continuous calibration which generates a calibration curve for each measurement interval.  

To facilitate optimal performance of the sensor at short distances from the TUI, a CBSA 

is designed to compensate for impedance mismatch, bandwidth degradation, and other 

near field effects previously demonstrated in the preliminary study.  Table 8 demonstrates 

the antenna performance enhancements as compared to the 1st generation design.  These 
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performance specifications were selected are based on the antenna requirements for 

biomedical applications, presented in section 3.3.  This chapter also presents an enhanced 

measurement test bed, which has been modified from a discrete to multi-layer human 

core model (HCM) that mimics a three dimensional volume of an abdominal cavity.  The 

results from experimentation and testing of the MRBS on the HCM is presented in 

section 5.2.1.  

 

Table 8. PD1 versus CBSA performance characteristics.  
 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

Parameter PD1 CBSA 

Resonant Frequency (GHz) 1.45 1.41 

Gain (dB) 1.56 3.4 

Directivity (dB) 2.45 3.9 

Efficiency (unit less) 0.85 0.88 

Near-Field Bandwidth (MHz) 150 400 
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CHAPTER 5  

THE NON-CONTACT MODEL 

 

 This chapter provides a comprehensive investigation to first identify then isolate 

the artifacts that obstruct the near field measurement.  Although proper antenna design 

and offset distance can mitigate antenna-body effects towards subsurface temperature 

tracking, the preliminary study (presented in section CHAPTER 3), as well as [10] – [12] 

provide evidence that simply minimizing near field effects is inadequate for absolute 

temperature extraction.  This is mainly due to the fact that the detectable energy emitted 

from deep – seated tissue is yet quite difficult to extract due to various reasons: 1) 

thermal emissions at microwave frequencies are very low, on the order of 10-14 watts; 2) 

these substantially faint signal levels are slightly larger than the ambient temperature 

noise floor, and are extracted from a potentially noisy environment; 3) in addition to 1) – 

2), the detectable energy is attenuated considerably upon reaching the input of the 

receiver due certain artifacts which arise as a result of the non contacting nature of the 

sensor:  Imperfections in the antenna design, and sizeable signal loss at the air – skin 

interface are the most critical. 

 Therefore a Non-Contact Model (NCM) is derived which correlates the observed 

brightness temperature to the subsurface temperature which accounts for 3), since the 

sensor itself is designed to compensate for 1) – 2).  Thereafter the radiometric data 

extracted from experimentation in section 4.5 is processed through the NCM and a 
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sensitivity analysis is presented to determine the degree to which non-contacting artifacts 

effect and or degrade the measurement.  

 

5.1 Derivation  

 The Non-Contact Model (NCM) presented herein provides a mathematical 

formulation to account for artifacts that arise from the sensor’s remote positioning from 

the TUI.  The parameters which affect the measurement are first identified and then 

conjugated to derive the NCM.  Though similar parameters have been presented in [33] 

from a far-field remote sensing perspective, in this work the NCM parameters are defined 

in the context of near field radiometric sensing. 

 Figure 38 illustrates the three stages of the NCM derivation presented in this 

section:   

1) Measurement of Brightness Temperature, T’’SKN 

2) Correction at the Antenna Interface, T’SKN 

3) Correction at the Air-TUI Interface, TSKN 

TSKN is the final output of the non-contact model and represents the subsurface 

temperature across the depth, extracted at a point just below the surface of the skin. 
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Figure 38. Stages of the NCM. 

 

5.1.1 Stage 1 – Measurement of the Brightness Temperature  

 Before applying the NCM, the specimen brightness temperature (T’’SKN) is 

extracted from the measurement via calibration, which relates the input T’’SKN to the 

output indicator (voltage, power, current), where T’’SYS is the total noise contribution 

delivered to the system before the NCM correction.  In our case the voltage output is 

correlated to an absolute temperature from the physical temperatures of the calibration 

loads inside the radiometer.  

 

€ 

T ' 'SKN = TSYS  ( 8 )  
 

5.1.2 Stage 2 – Correction at the Antenna Interface  

 The antenna is the primary sensing mechanism for non-invasive extraction of 

biological data from the TUI, thus a complete understanding of the antenna parameters is 

of critical importance to obtaining an accurate measurement.  Due to the close, non-

contact positioning of the sensor and the TUI, the antenna parameters presented are 

characterized from a close proximity perspective.   

C
B
S
A 

HCM MRBS 

TREV 

TPL(1-X) 



 

  69 

 The antenna efficiency (ηe), physical temperature of the antenna (Tp) and the 

antenna transmission efficiency due to the impedance match (X), mutually affect the 

signal (biological data) detected by the antenna.  An antenna with a low efficiency 

attenuates the detected signal by a factor of ηe.  As discussed in Chapter 2, thermal 

conduction from the TUI heightens (Tp), in close proximity sensing applications.  X is 

derived by first integrating the near field reflection coefficient (ΓA-I) across the antenna 

bandwidth B, where Δf and df denote the frequency step of the integral ( 9 ).  Ideally the 

antenna is designed such that the 10 dB return loss bandwidth encompasses the frequency 

band of the radiometer as determined by its internal filtering.  Transmission is denoted as 

one minus the reflection; accordingly the formula for X is presented in ( 9 ). 

 

€ 

X =1− ΓA −I
B
∫

2
df =1−

Δf ΓA −I
2∑

B
   ( 9 ) 

   
 The combination of suboptimal antenna efficiency and impedance mismatch 

attenuates the detected signal.  Moreover, antenna-TUI thermal conduction, results in the 

generation of thermal noise which propagates through the system and distorts the T’’SKN 

measurement.  These phenomena are modeled in ( 10 ), where T’SKN-1 is the first step in 

the T’SKN derivation.  

 

€ 

ʹ′ T SKN −1 =
TSYS −Tp (1−ηe )X

ηe X
  ( 10 ) 

 From the antenna-body near field the specimen brightness temperature is 

extracted via the main probing footprint, illustrated in Figure 39, which is equivalent to 

the antenna main lobe in the far field.  This region also defines the spatial resolution of 

the sensor.  An antenna with a perfect broadside radiation is unrealizable.  Therefore 

some ambient temperature contributions from the secondary probing hemisphere (TSL) 
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will affect the measurement.  ηml and ηsl represent the efficiency of the main probing 

footprint and secondary probing hemisphere, respectively.  ηml is calculated through 

normalization of the antenna main beam efficiency resolved to its near field component, a 

similar approach is employed by near field ranges to resolve the far field radiation 

pattern; a review of the theory is presented in [34].  The relationship between ηml and ηsl 

is provided in ( 11 ). 

 

€ 

ηsl =1−ηml  ( 11 ) 

By combining equations ( 8 ) - ( 11 )the derivation incorporating all of the antenna 

parameters is presented in ( 12 ), where T’SKN-2 is the second step in the T’SKN derivation.  

 

€ 

ʹ′ T SKN −2 =
ʹ′ T SKN −1 −TSL (1−ηml )

ηml  
( 12 ) 

As illustrated in Figure 38, noise emanating from the input of the radiometer receiver in 

the direction of the antenna (TREV) is a function of the transmission loss (L) in the signal 

path between the antenna and radiometer.  TREV can be mitigated by integrating an 

isolator in the radiometer-antenna transmission path.  The noise temperature that is then 

reflected back into the system input is denoted by T’REV in ( 13 ), where TPI is the 

physical temperature of the component at the reflection interface (in this case an isolator 

termination). 

 

€ 

ʹ′ T REV = TpI L(1− X) ( 13 ) 
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Figure 39.  Antenna near field main primary probing footprint (90 ≤ θ , θ ≥ 270) and 

secondary probing hemisphere (90 < θ < 270) in the elevation (θ) plane. 

 

The final derivation of the stage 2 NCM, incorporating the antenna interface correction 

and T’REV is presented in ( 14 ) and Figure 40. 

 

€ 

ʹ′ T SKN = ʹ′ T SKN −2 − ʹ′ T REV =

TSYS − ʹ′ T REV −TSL (1−ηml )ηe X −Tp (1−ηe )X
ηeηml X

 

 
( 14 ) 

 

 
Figure 40.  Corrections at the antenna interface. 
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5.1.3 Stage 3 – Correction at the Air-TUI Interface 

 Stage 3 of the NCM accounts for the effects of the specimen emissivity denoted 

by e. The product of e with the physical temperature yields the specimen brightness 

temperature.  As described in [35] the input impedance of the antenna (50 Ω) is usually 

well matched to the human body (~59Ω) at radio frequencies.  Thus, when the antenna is 

placed in direct body contact electromagnetic (EM) waves are coupled through the 

antenna-body boundary with negligible interference.  In non-contact sensing applications 

EM propagation becomes non-trivial due to impedance discontinuities across the air-TUI 

boundary.  Human tissue typically has a very high relative permittivity εr, with the lowest 

being fat (εr = ∼9) and the highest being blood (εr = ∼59).  When a material with a high 

dielectric constant is bounded by air, sizeable reflections are introduced.  As a result 

weak EM emissions from the TUI are attenuated by a factor of 40% - 60% at RF 

frequencies.  This phenomenon significantly heightens the difficulty in attaining an 

absolute subsurface temperature measurement.   

 Herein the emissivity of the TUI is represented by ( 15 ) and is related to the εr of 

the specimen by ( 16 ).  The air-skin reflection is defined by RA-S, with εr denoting the 

relative permittivity of the specimen. 

 

€ 

e =1− RA −S
2

 ( 15 ) 
   
 

€ 

RA −S =
1− εr
1+ εr  

( 16 ) 

   
While the strong impedance mismatch at the air-TUI interface attenuates the emissions 

from the TUI, it has the effect of intensifying the ambient atmospheric contributions 
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(TDN).  Accordingly, e, RA-S, X, ηml and ηe also impact the effect of TDN.  The complete 

NCM is presented in ( 17 ) 

 

€ 

TSKN =
TSYS − ʹ′ T REV −TSL (1−ηml )ηe X −Tp (1−ηe )X −TDN Xηmlηe (1− e)

ηeηml Xe  

( 17 ) 

  
 

 

5.2 Implementation  

 The NCM was applied to radiometric data extracted from measurements 

performed on the enhanced test bed (discussed in section 4.4 – 4.5), to emulate 

subsurface temporal monitoring.  The accuracy of the NCM is validated first, through an 

analysis of the measurement data extracted from the test bed before and after being 

processed through the model.  These results demonstrate a substantial improvement in 

accuracy after applying the NCM.  Thereafter, a sensitivity analysis is performed to show 

the sensitivity of the measurement to the model parameters.  

 

5.2.1 Data and Results 

 In Figure 41 the extracted temperature profile of TSKN is compared with the 

physical temperatures of the skin and core.  These results show that TSKN follows the 

thermal profile of the inner core, which is very different from the thermal profile of the 

skin surface.  Also illustrated in Figure 41 is the degree to which the accuracy of the 

measurement is improved following application of each stage of the NCM.  T’’SKN 

follows the thermal trend of the inner core more precisely than that of the skin layer but 

with minimal accuracy.  As enhancements are added to the model, the correlation to the 

inner core temperature improves with T’SKN, and TSKN provides the optimal response.  
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Figure 42  shows the absolute percent difference between the physical temperature of the 

core and the extracted temperatures from each stage of the NCM.  As the temperature of 

the core decreases as a function of time, thermal energy is conducted through muscle and 

skin layers, which heightens the emissions from the intervening layers.  In essence, the 

radiated emissions across the tissue depth are heightened at the T’SKN, and TSKN 

interfaces.  As a result the percent difference between the core, T’SKN, and TSKN seem to 

decrease as a function of time, as illustrated in Figure 42.  The highest percent difference 

between TSKN and the core is 8%, and this value will be considered as a reasonable 

percent difference threshold for the sensitivity analysis that follows in section 5.2.2.  

 The results in Figure 41 and Figure 42 also reveal that TSKN is lower than the 

physical temperature of the inner core.  This result is expected and is due to the fact that 

wave propagation through the HCM layers is attenuated and non-coherent, resulting in 

reflections and signal loss from layer to layer.  As a result the percent difference between 

the physical and radiometric measurements are fairly high.  A direct correlation between 

the detected brightness temperature and the inner core temperature requires the additional 

step of incorporating the propagation effects of the HCM into the extraction process, 

which is demonstrated in the chapter following.  
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Figure 41.  Physically measured temperatures of skin and core model (dashed  lines) and 
brightness temperature measurements (solid lines) before (T’’SKN) and after applying the 

NCM (T’SKN, TSKN). 
 

 
Figure 42.  Absolute, percent difference between the core temperature (Nom), skin 

surface (Skin) and radiometer measurements before (T’’SKN) and after (T’SKN, TSKN) 
applying the NCM. 
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5.2.2 Sensitivity Analysis of the NCM Parameters 

 A sensitivity analysis was performed to determine the model parameters to which 

the measurement is most sensitive, which would in turn identify the parameters which 

require more precise characterization and monitoring.  The nominal value of each 

parameter is assumed to provide the optimal TSKN response.  The analysis is performed 

via percent error plots of TSKN as the NCM parameters are varied from their nominal 

values within ranges that would be realizable in practice.  Certain parameters cause a 

change in the TSKN response over time therefore the analysis is performed in 15 minute 

intervals with “start” denoting the point in the measurement at which the core 

temperature is 107 ºF.    

 Figure 43 demonstrates that if X is slightly degraded to 0.9 from 0.957 the percent 

error would be 12%, which is much greater than the 8% threshold.  This result is 

noteworthy because the characteristics of most antennas vary when in close proximity to 

biological media. In practice, X could degrade to well below 0.9.  An accurate 

measurement was achieved in this work by designing the antenna for optimum 

functionality in close proximity to the TUI, therefore minimizing input match reflections.  

As shown in Figure 44, the measurement is also quite sensitive to TDN. A ±5% variation 

from the nominal TDN value of 65 ºF (ambient temperature), induces error percentages of 

±36%, which is also well beyond the threshold.  This is attributed to the fact that sizable 

contributions of TDN are reflected across the tissue into the sensor, contrary to on-body 

radiometric sensors which have no reflected TDN contribution due to the sensor being in 

direct contact with the TUI. In practice TDN varies with the temperature of the space suit 

and therefore must be known to a high degree of accuracy.  Implied by equations ( 15 ) –  
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( 17 ), this TDN reflection phenomenon has the greatest effect on media with a high 

dielectric constant such as skin tissue.   

 

 
Figure 43. Percent error in the TSKN measurement taken at 15 minute intervals as X is 

varied from the nominal value (Nom) of 0.957. 
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Figure 44.  12 Percent error in the TSKN measurement taken at 15 minute intervals as TDN 

is varied from the nominal value (Nom) of  65 ºF. 

 

 The measurement is least sensitive to Tp, e, ηe, ηml and especially ΤSL (see Figure 

45) which further justifies the close proximity approach and enables design flexibility. 

For instance, section 2.1 references previous works which describe placement issues 

associated with the on-body approach that distort the measurement such as thermal 

conduction between the specimen and ΤP.  Figure 46 provides evidence that the close 

proximity measurement is not very sensitive to ΤP.  However, this parameter should be 

known with good accuracy, since the percent error increases beyond the desired 8% 

threshold as TP is varied by ±5%.  Figure 47  illustrates that the measurement is least 

sensitive to e, and the percent error varies with respect to time.  This data implies that 

variations in e from person to person will have minimal effect on the accuracy of the 

close-proximity measurement.  The same analysis was performed on ηe and ηml and the 

percent error results were virtually identical – there was a small variation in TSKN 
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measurement over time and the 8% error thresholds occurred around 0.6, whereas the 

nominal values are 0.88 and 0.95, respectively, Figure 48.  

 

 
Figure 45. Percent error in the TSKN measurement taken at 15 minute intervals as TSL is 

varied from the nominal value (Nom) of 65 ºF. 
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Figure 46. Percent error in the TSKN measurement taken at 15 minute intervals as ΤP is 

varied from the nominal value (Nom) of 65 ºK. 

 
 

 
Figure 47. Percent error in the TSKN measurement taken at 15 minute intervals as e is 

varied from the nominal value (Nom) of 0.444. 
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Figure 48. Percent error in the TSKN measurement taken at 15 minute intervals as ηe is 

varied from the nominal value (Nom) of 0.88. 
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and main probing hemisphere enables antenna design flexibility.  The measurement is 

least sensitive to the emissivity of the specimen, which implies that the MRBS 

performance will have minimal variation from person to person.  
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CHAPTER 6  

TISSUE PROPAGATION MODEL (TPM) 

 

 This chapter presents a mathematical model for incoherent propagation of thermal 

radiation throughout the human body.  The model is developed to complement subsurface 

body temperature measurements made using the MRBS, and processed through the 

NCM.  The data presented in this chapter was aggregated from the experiment in section 

4.5.  The NCM was applied to the experimental data and the results presented in section 

5.2.1.  In this chapter, the post-processed NCM data is yet again processed through the 

TPM, which further improves the accuracy towards an absolute core body temperature 

measurement.  The core body temperature extraction process is presented in section 6.4. 

 

6.1 Rationale for the TPM 

 Microwave radiometers detect the brightness temperature of the specimen across 

the sensing depth, which is dependent on the electrical properties of the intervening tissue 

layers.  For this reason, previous studies have demonstrated that “dielectric layering 

greatly influences” the radiometric measurement [30].  In the context of electromagnetic 

wave propagation, the human body is characterized as a lossy medium, comprised of 

stratified tissue with dissimilar permittivity values.  These characteristics heighten the 

complexity of extracting subsurface physiological data from the body. As 

electromagnetic waves propagate through the body, a portion of the power is dissipated 
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due to the lossy nature of the tissue.  The isotropically-propagating energy is further 

attenuated by dielectric mismatch which gives rise to reflections at the tissue boundaries.  

As a result, thermal emissions radiated from deep within the body have only a marginal 

effect on the brightness temperature at the skin surface, making it very difficult to 

monitor changes in core body temperature without considering the electrical properties of 

the blood and muscle tissue.   Supporting data has been presented in physiological studies 

which provides evidence that the skin surface temperature alone does not provide an 

accurate estimate of core body temperature even with correction [8].  In fact, thermal 

variations on the order of ±7 ºF from homeostasis, 98 ºF, will only result in a change in 

skin temperature of ±1 ºF. Here the need for a non-invasive measurement method 

becomes apparent.   

 In section 4.5, subsurface temperature variations of the HCM were tracked using 

the MRBS without considering a priori knowledge of the electrical properties of the 

internal tissue, i.e. muscle and blood-fat.  Only the dielectric properties of the skin 

surface were considered in the analysis.  After applying the NCM, an acceptable percent 

difference of 1.2% - 8% was achieved between the physical temperature measured 

internally using thermal probes, and the radiometric brightness temperature, even though 

the emissive properties of the deep-seated tissue were not considered (see Figure 42 in 

section 5.2.1).  Nevertheless, the accuracy of the measurement can be improved by taking 

the electromagnetic properties of the subcutaneous tissue into account.  Moreover, the 

percent difference between the brightness temperature and physical temperature should 

be minimal, well below 3 °F (3%), since small deviations in core body temperature are 



 

  85 

used in the diagnosis of heat related disorders [25], and as a pre-clinical diagnostic tool 

for disease and other health related abnormalities.   

 For instance, thermal homeostasis of the human body is maintained from 98 °F to 

100 ºF.  Heat exhaustion and stroke are diagnosed at temperatures above 104 °F, which is 

only ~6% above homeostasis.  Moderate to severe hypothermia is diagnosed below 90 ºF, 

or 9% below homeostasis.  Therefore the percent difference values achieved using only 

the NCM are unacceptable for true core body sensor.  Hence, the goal of this work is to 

improve the accuracy of the close proximity radiometric sensing modality to a percent 

difference value well below 2% by introducing a mathematical formulation to model 

radiative transfer through the human body.  

  

6.2 The TPM Derivation 

 The tissue propagation model (TPM) depicts radiative transfer through three 

tissue layers of an abdominal cavity compromised of skin, muscle, and blood-fatty tissue. 

Accordingly, the TPM derivation is applied to the HCM, with the tissue defined as 

stratified lossy dielectrics.  Coherent transmission effects and angular dependence is 

ignored in the TPM since scattering will be negligible at the air-skin boundary which is 

spatially homogeneous, given that the wavelength of the sensing frequency of 1.4 GHz (λ 

= 230 mm) is much larger than the roughness of the tissue under investigation TUI [36], 

keratinocyte skin cells with size and roughness on the order of micrometers.  Therefore, 

in our case the more complicated coherent approach, will yield results very similar to that 

of the incoherent approach, as demonstrated in the final analysis.  It has also been proven 

that the angular dependence is negligible in media with a high dielectric constant [36] 
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such as human tissue, since the polarization of the waves emanating from the tissue will 

remain relatively normal to the respective boundary or transmission interface.  Moreover, 

the radiated signal is expected to be co-polarized with the observation angle of the sensor, 

assuming the device remains relatively parallel with the TUI inside the uniform of 

servicemen.   

 The TPM derivation is based on Ulaby’s equations for apparent brightness 

temperature of a terrain with a nonuniform dielectric profile in [36].  These equations 

have been correlated to the HCM, except the reflection at the muscle-blood boundary is 

ignored since the dielectric contrast between muscle and blood-fatty tissue layers is 

minimal.   

 The TPM derivation is implemented in four levels: 

1) Definition of the Individual Strata (tissue layer) Emissions, Ts.t 

2) Derivation of the Up and Down-Welling Emissions per Layer, Tt.U and Tt.D 

3) Derivation of the Net Apparent Emissions from all Stratum, TB 

4) Derivation of Apparent Brightness Emissions, TAP.B 

A graphical representation of the TPM is presented below in Figure 49.   
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Figure 49.  Graphical representation of the TPM. 

 

6.2.1 Definition of the Individual Strata Emissions 

 To begin, the strata temperatures Ts.t are defined, which are the total transmitted 

emissions (before reflections) at each tissue layer, with t representing the tissue layer 

itself: t = a – air ,  t = sk – skin , t = ml – muscle , and  t = bl – blood.  The expressions for 

Ts.t are provided in ( 18 ) – ( 20 ), wherein Lt is the loss in the tissue and Tt is the physical 

temperature of the strata. The formula for the loss contributions in each layer (Lt), is 

presented in ( 21 ) where αt is the attenuation constant ( 22 ), δt is the thickness of the 

tissue layer, εr,t’’ is the imaginary part of the dielectric constant and εr,t’ the real part, per 

layer.   
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6.2.2 Derivation of the Up and Down-Welling Emissions per Layer 

 To derive an expression for the up and down-welling contributions per layer, a 

similar procedure is followed to that of [36], wherein a binomial expansion (1-χ)-1 is 

formed from a derived expression which takes into account all reflections and losses 

throughout the stratified tissue.  The formula for χ is presented in ( 23 ).  In this case, χ 

accounts for losses and reflections between the air – skin and muscle – blood boundaries, 

while discarding the negligible reflections at the skin – muscle boundary.  The closed 

form of the binomial series is multiplied by an additional (1–Γa) to account for 

transmission at the air – skin interface.  We define this closed form expression as the 

coefficient of multiple reflections (CMR) in ( 24 ), where Γt is the reflection coefficient at 

the tissue boundary as illustrated in Figure 49. The CMR is used in the derivation of the 

individual up and or down-welling temperature contributions in each layer.  Thus, the up-

welling  contribution for the blood-fatty tissue layer is presented in ( 25 ), while the up 

and down-welling contributions for the muscle and skin strata are defined in ( 26 ) –        

( 27 ),  and ( 28 ) – ( 29 ), respectively. 
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6.2.3 Derivation of the Net Apparent Emissions from all Stratum 

 The net apparent brightness emissions from all stratum (TB) is comprised of the 

up and or down-welling emissions per layer, while taking all reflections into account. The 

total up and down-welling contributions for each individual layer is represented by TB.t in 

( 30 ) – ( 32 ).  As illustrated in Figure 49, TB.bl acts as a source, due to its assumed 

infinite thickness, and only has an upwelling temperature contribution Tbl.U ( 30 ).  

Infinite thickness is assumed in TB.bl since the depth of the blood-fatty tissue layer goes 

beyond that of the sensor penetration depth.  TB.ml  and TB.sk are comprised of up-welling 

emissions TtU as well as down-welling emissions TtD.  These expression are provided in   
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( 31 ) – ( 32 ).  Hence, TB is effectively the sum of the net apparent emissions from all 

three layers ( 33 ). 
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6.2.4 Derivation of Apparent Brightness Emissions 

 The ultimate goal is to formulate an expression for the net apparent brightness 

temperature emitted at the skin surface TB.AP, as a function of TBt, the emissions from the 

intervening layers.  TAP.B takes into account the net brightness contributions from all 

stratum (TB ( 33 )), as well as the down-welling ambient temperature TDN.  As described 

in [18], TDN is attenuated by multiple reflections and losses in the tissue layers.  By 

assuming, thermal equilibrium i.e. Tsk = Tml = TDN, TDN can be equated to TB, to resolve a 

second coefficient of multiple reflections denoted by CMR2 ( 34 ), yielding ( 35 ).  Thus 

the final expression for TB.AP is presented in ( 36 ).   
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6.3 Applying the TPM 

 By employing the formulas derived in section 6.2, the process of applying the 

TPM to the HCM is straightforward.  TB.AP is a function of the reflections (Γt), electrical 

properties (αt, Lt) and physical characteristics (δt, Tt) of the strata, where αt is the 

attenuation constant,  Lt is the loss, and δt the thickness of layer t.  The calculated values 

for αt, δt, Γt and Lt are provided in Table 9.   

 Illustrated in Figure 50 are the results from the comparison of the emitted 

brightness temperature calculated from TB.AP of the TPM in ( 36 ) to T’SKN, the brightness 

temperature detected by the radiometer.  The coherent based Wilheit model is also used 

in the comparison to show that coherent propagation effects can indeed be ignored [37].  

This assumption is proved via the small percent between the TPM and Wilheit model 

(Figure 51).  The similarities in the curves demonstrate that the radiometric measurement 

T’SKN is analogous to that of the TPM (TB.AP) and Wilheit models with percent error 

values on the order of 1% – 2.5%.  Error values of this degree are quite impressive 

considering that the measurement is quite sensitive to many factors, as demonstrated in 

the analysis in section 5.2.1.  For instance a 1 degree inaccuracy in the atmospheric 

temperature could yield error values on the order of 10% – 15%, as illustrated in Figure 

44 of section 5.2.2.  

 

Table 9. Calculated values of αt, Zt, Γt and Lt. 

LAYER  
Z 

(mm) 
Γ 

(unitless) 
α 

(m-1) 
L 

(unitless) 
BLOOD 40 0 34.66 19.45 
MUSCLE 8 0.01 41.62 1.946 
SKN 2 0.561 37.1 1.181 
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Figure 50.  Emitted brightness temperature at the surface (Skin) of the HCP measured by 

the MRBS and compared to the TPM and Wilheit model.  

 

 
Figure 51.  Percent error plots: MRBS – TPM, MRBS – Wilheit,  Model and Wilheit – 

TPM.   

 

6.4 Core Body Temperature Extraction  

 Ultimately, core temperature extraction is plausible by solving for Tbl in the TB.AP 

expression ( 37 ).  αt, δt, Γt and Lt are calculated from ( 21 ) – ( 22 ) as a function of the 
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layer thicknesses δt, which in practice can be estimated, based on the body fat percentage, 

weight, and height of the individual.  The remaining unknowns are Tsk and Tml, the 

physical temperatures of the skin, and muscle respectively. Tsk is typically a measurable 

quantity, monitored by an infrared thermometer.  Tml is resolved by applying heat transfer 

theory to the tissue layers and deriving a differential equation to express the heat transfer 

profile of Tml as a function of Tsk and Tbl.  Finally, T’SKN can be substituted for the 

remaining unknown TB.AP, since the two are analogous.  With all of the remaining 

unknowns resolved, core body temperature is extracted by solving simply for Tbl in ( 37 ). 
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6.5 Conclusion 

 This chapter presents a derivation of the TPM which is the final component for 

core body temperature extraction using microwave radiometry.  The four level derivation 

is based on a similar procedure employed in [36] for net apparent brightness temperature 

of stratified dielectric media.  The TPM is applied to the HCP and the results were 

compared to that of the radiometric measurement taken by the MRBS.  The results were 

promising, yielding only marginal error, on the order of 1.5% - 2.5%. Such promising 

results infer that the extraction of core temperature can be achieved with high accuracy 

by implementing mathematical models to supplement the radiometric measurement, 

however certain parameters must be monitored to a high degree of accuracy.  
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CHAPTER 7  

SUMMARY AND RECOMMENDATIONS FOR FUTURE WORKS 

 

7.1 Summary 

 Presented is a microwave radiometer and associated design methods for non-

invasive monitoring of core body temperature.  The long term goal is to develop a 

multifunctional radiometric health monitoring system, deployable inside the uniforms of 

astronauts, with optimal functionality 2 cm – 4 cm from the body.  Based on a review of 

the literature, we have identified certain drawbacks of the on-body approach which may 

be  intolerable for the current application, therefore a non-contact modality is being 

investigated.  This work demonstrates certain design considerations for the close 

proximity approach however, the most significant contributions lie within the areas of 

antennas and propagation.  

 We begin with a preliminary study, in which certain occurrences which obstruct 

the close proximity measurement have been identified.  The antenna requirements for 

biomedical radiometric sensing were also presented.  Based on these requirements, a half 

wavelength printed dipole (PD1) was selected for 1st generation sensor because it is a 

widely studied, compact, broadband aperture with a relatively simple design.  However, 

when brought in close proximity to the body, the antenna characteristics are distorted in 

the form of resonance shifts, impedance mismatch and bandwidth degradation. These 

phenomena induce considerable degradation in the end to end system performance.  
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These obstructive artifacts are demonstrated empirically by characterizing the antenna in 

the near-field of RF tissue phantoms, which have been developed as the experimental test 

bed for measurement and testing purposes. Compared to traditional saline phantoms, the 

test bed in this study is comprised of tissue phantoms with electrical properties closer to 

that of human tissue, enabling more precise characterization of the antenna-body effects 

as related to sensor performance.  Solutions in the area of antenna design are provided 

by implementing an absorbing cavity to suppress unwanted radiation opposite the 

specimen.  However the antenna characteristics change when inside the cavity; therefore 

the antenna is reconfigured for cavity operation using common design techniques 

(impedance matching, frequency tuning).  We have also discovered receiver instability 

issues which are represented by the variations in the slope of the calibration 

curves/equations, which is likely due to thermal drifts in the RF components.   

 Based on findings from the preliminary study, a 2nd generation design was 

developed which incorporates continuous calibration for receiver instabilities, an 

enhanced antenna design, and associated non-contact propagation model to correct for 

errors which arise due to the non-contacting nature of the sensor.  The 2nd generation 

sensor is  33% smaller than the 1st generation design, which in turn improves the stability 

and resolution of the system. The 2nd generation antenna is a cavity backed slot antenna 

(CBSA) designed for non-contact biomedical radiometric sending. Compared to the 1st 

generation printed dipole antenna (PD1), the CBSA is more efficient and provides a 

considerable improvement in bandwidth (B > +150) MHz.  The gain and directivity were 

also enhanced by at least 1.5 dB.  By optimizing the antenna design parameters, the 

CBSA has been configured to meet the requirements for biomedical applications and 
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account for near field antenna – body effects.  The antenna is broadband ( > 400 MHz) 

and very efficient (88%), enabling high sensor resolution.  It is also a directional radiator, 

designed at 1.4 GHz for targeted detection of core body temperature emissions from 

depths of < 27 mm.  The internal feed enables tunability of 50 MHz/mm of the feed 

length and adds novelty to the design in biomedical applications by reducing the intensity 

of antenna feed currents which may interact with the body.  Measurements and 

simulations of the antenna S11 in close proximity to the phantom are comparable, as well 

as the radiation patterns. From these results, it was concluded that the CBSA is a good 

candidate for biomedical sensing applications and best suited for the current application, 

relative to the PD1.  

 Although the CBSA enhances end-to-end performance of the system, a perfect 

antenna is not realizable, therefore a mathematical representation in the form of a non-

contact model (NCM) was implemented to mitigate certain artifacts not accounted for in 

the antenna design.  The model is presented in three phases for extraction of the 

measurement, corrections at the antenna interface, and a final correction at the critical air 

– tissue boundary.   

 Close proximity measurements were performed on the enhanced measurement 

test bed using the 2nd generation sensor and the results were processed at each stage of the 

NCM.  The 2nd generation sensor is a microwave radiometer designed for biomedical 

sensing applications (MRBS).  The enhanced test bed is a three layer human core model 

(HCM) which mimics the dielectric properties of a human stomach volume; skin, muscle, 

and blood-fatty tissue.  As the blood temperature was varied within the range of normal 

body temperature and conditions of heat related disorders, the MRBS monitored the 
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brightness temperature of the HCM, while the physical temperatures were tracked using 

thermal probes positioned throughout the HCM.  The measurement data was processed 

through the NCM and a sensitivity analysis was performed to determine which model 

parameters the measurement is most sensitive to.  The results demonstrate that the 

measurement is most sensitive to atmospheric contributions and antenna impedance 

match, the latter being influenced by the presence of biological media.  The close 

proximity measurement is less sensitive to the physical temperature of the antenna, which 

has been known to distort on-body measurements.  Furthermore, minimal sensitivity to 

the antenna efficiency and main probing hemisphere enables antenna design flexibility.  

The measurement is least sensitive to the emissivity of the specimen, which implies that 

the MRBS performance will have negligible variation from person to person.  It is 

important to note that proper shielding of the antenna and sensor from ambient noise is 

critical for achieving a highly accurate measurement.  Ultimately, the correlation between 

the core temperature of the HCM and the extracted subsurface temperature was within 

8% difference after applying the NCM.   

 With the goal of achieving a percent error of < 3%, the accuracy of the 

measurement is further enhanced by developing a tissue propagation model (TPM) to 

account for losses and multiple reflections throughout the stratified tissue.  The TPM is 

based on Ulaby’s derivation of an expression for the net emissions from a multilayer 

medium with a non-uniform dielectric profile.  Incoherency is assumed since propagation 

will be solely based on the power density of the propagating emissions, whereby phase 

effects are negligible.  This assumption is mainly attributed to the fact that scattering will 

be minimal, due to the size of skin cells, as compared to the sensing wavelength.  In 
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addition, the sensor is expected to remain relatively parallel with the tissue, which further 

negates phase and or angular dependence.    

 The TPM derivation is presented in four levels, beginning with a definition of the 

fundamental model components and complexity is added at each level, towards the 

complete derivation.  First the emissions from the individual strata (Ts.t) are defined at 

level 1, with t representing the tissue layer; sk = skin, ml = muscle and bl = blood – fatty 

tissue.  Next, the derivation of the up and down-welling emissions per layer, Tt.U and Tt.D, 

are presented in level 2 which are combined at level 3, to make up the net apparent 

emissions from all strata (TB).  The atmospheric contributions (TDN) are introduced at 

level 4 to complete the full derivation of the apparent brightness emission TAP.B radiated 

at the skin surface.  Justification for the incoherent approach is demonstrated by 

comparing the TPM to the coherent Wilheit model, yielding percent error (PE) results of 

< .5%.  Thereafter the TPM response is correlated to the brightness temperature 

measurement of the HCM from the MRBS.  The percent error between the two 

measurements was < 3%.  As a result, the MRBS measurement can be substituted for the 

output of the TPM, which provides an expression for the brightness temperature 

emissions measured at the skin surface, as a function of the subsurface tissue.  

Ultimately, this expression is used to extract core body temperature by solving for the 

remaining unknowns: 1) The loss (Lt), reflections (Γt), and attenuation (αt) per layer (t) 

and are calculated based on the material properties;  2) the physical temperature of the 

skin (Tsk) is a measurable quantity which is typically monitored using an infrared 

thermometer;  3) the physical temperature of the muscle layer (Tml) can be resolved using 

heat transfer theory by applying a system of differential equations at the tissue 
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boundaries;  4) at this point the remaining unknowns have been resolved and the inner 

core temperature Tbl can be extracted via first order linear equation.   

 

7.2 Recommendations for Future Works 

 To achieve the long term goal of developing a real time, field deployable 

radiometric health monitoring system, we plan to continue this research with strong 

emphasis on optimizing the performance of the sensor, characterization of the antenna – 

body near field, and refining of the current tissue propagation model.  The technical 

objectives are to:  I) design a 3rd generation sensor with enhanced gain control, data 

processing techniques, and the capability of measuring changes in the emissivity of the 

specimen as well as temperature; II) perform an experimental study on the antenna – 

body effects using various near-field antennas to derive a model which characterizes the 

close-proximity electromagnetic effects, as a function of antenna offset distance; and III) 

refine the previously developed tissue propagation model to account for an additional 

tissue layer and perform a sensitivity analysis of the model parameters to determine the 

sensitivity of the measurement to different body types. 

 The rationale for the enhancements to the 3rd generation sensor are to measure the 

emissivity of the tissue, which changes as a function of temperature, and implement 

advanced design enhancements and averaging schemes.  Correcting for emissivity error 

which results from temperature changes in the stratified tissue, is critical for optimal 

accuracy in non-contact as well as on-body radiometric sensor technologies [38]. This 

correction is trivial at the skin surface, however the level of difficulty is heightened as a 

function of the tissue depth.  Therefore an additional Dicke “emissivity” standard will be 
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added to the third generation design.  The concept is to monitor variations in the 

emissivity of the standard by changing its input mach until the radiometer is balanced, i.e. 

output = 0.  This provides the emissivity profile of the tissue across the sensing depth.  

By adding the additional standard, there exists some degradation in resolution [39].  To 

offset this loss in performance, an additional automatic gain control stage will be 

implemented, which is expected to improve the accuracy of the sensor beyond our current 

percent error value of < 3% (see section 6.3).  Additional data processing techniques will 

also be implemented since the calibration cycle of the current 2nd generation design is 

approximately 1.4 s per measurement, whereas the system is capable of thousands of 

calibration cycles per second.  Improving the frequency of calibration provides more 

measurement (data) samples, which can be averaged using advanced algorithms to 

improve the resolution of the sensor.  

 In an effort to better understand the antenna performance, as a function of the 

distance from the body, we plan to characterize the antenna-body near field, by resolving 

constants to fit a near-field propagation model.  The design and development of 

directional antennas with optimal performance (S11 < −20dB, efficiency > .85) at short 

distances from the body is vital for the success of this project.  In general, the 

characteristics of various near field antennas will be measured at various distances from 

the human core tissue phantom model to complete stage 3 of a two port network, whereas 

stage 1 is the electrical characteristics of the phantom model presented in section 3.5, and 

stage 2 is the antenna-body near field which is considered as the device under test (DUT).  

Genetic algorithms will be used to match the DUT to the electrical response of stage 3.  

Repeatability across the various antenna types will enable the extraction of the electrical 
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constants to derive the near field propagation model.  This model will be used to design 

candidate antennas with characteristics that fit the model. The near-field model will also 

enable the design of feedback networks with automatic impedance matching integrated 

onto the candidate antennas.  Proposed are conformal geometries such as fabric antennas 

that can be easily integrated into uniforms or miniaturized cavity antennas in which the 

sensor can be fully integrated as a hand held device.  

 To further improve the accuracy of the current TPM, we plan to add an additional 

layer which can be used to model, fatty and connective tissue such as cartilage.  The 

derivation will follow a similar procedure to that of section 6.2.  Thereafter a sensitivity 

analysis will be performed to determine the sensitivity of the measurement to different 

body types by changing the thickness and dielectric properties of the tissue within 

reasonable ranges for the human body.  The exact values will be determined from a 

statistical analysis of data aggregated from an additional study which will be conducted 

to determine the thickness of the tissue layers of an abdominal cavity based on the height, 

weight, and age of the individual.  The objective is to use the TPM to derive body 

standards for the sensor which can be generated by inputting the height, weight, and age 

of each user.  In essence, this body type calibration customizes the sensor’s measurement 

extraction algorithms for each individual user.   
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