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Development of CdTe Thin Film Solar Cells on Flexible Foil Substrates 
 

Deidra R. Hodges 
 

ABSTRACT 

Cadmium telluride (CdTe) is a leading thin film photovoltaic (PV) material due to 

its near ideal band gap of 1.45 eV, its high optical absorption coefficient and availability 

of various device fabrication methods. Superstrate CdTe solar cells fabricated on glass 

have to-date exhibited efficiencies of 16.5%. Work on substrate devices has been limited 

due to difficulties associated with the formation of an ohmic back contact with CdTe. The 

most promising approach used to-date is based on the use of an interlayer between the 

CdTe and a metal electrode, an approach that is believed to yield a pseudo-ohmic contact. 

This research investigates the use of ZnTe and Sb2Te3 as the interlayer, in the 

development of efficient back contacts.  

Excellent adhesion and minimum stress are also required of a CdTe thin film solar 

cell device on a flexible stainless steel (SS) foil substrate. Foil substrate curvature, 

flaking, delamination and adhesion as a result of compressive strain due to the coefficient 

of thermal expansion (CTE) mismatch between the flexible SS foil substrate and the solar 

cell films have been studied. A potential problem with the use of a SS foil as the substrate 

is the diffusion of iron (Fe), chromium (Cr) and other elemental impurities into the layers 

of the solar cell device structure during high temperature processing. A diffusion barrier 

limiting the out diffusion of these substrate elements is being investigated in this study. 



 

 ix

Silicon nitride (Si3N4) films deposited on SS foils are being investigated as the barrier 

layer, to reduce or inhibit the diffusion of substrate impurities into the solar cell. Thin 

film CdTe solar cells have been fabricated and characterized by AFM, XRD, SEM, 

ASTM D3359-08 tape test, current-voltage (I-V) and spectral measurements. 

My individual contributions to this work include the Molybdenum (Mo) 

development, the adhesion studies, the silicon nitride (Si3N4) barrier studies, and EDS 

and SEM lines measurements and analysis of substrate out-diffused impurities. The rest 

of my colleagues focused on the development of CdTe, CdS, ZnTe, the CdCl2 heat 

treatment, and other back contact interlayer materials.  
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Chapter 1 
 

Introduction 

 

1.1 Historical Overview of Photovoltaics 

 

The conversion of sunlight directly into electricity using the photovoltaic 

properties of suitable materials is a distinctively green but underutilized energy 

conversion process. Solar cell technology has been historically used in providing 

electrical power for spacecraft, and more recently for terrestrial systems. The driving 

force for the recent and ongoing technological development is the realization that the 

traditional fossil energy resources, coal, oil and gas, are not only limited, but are harmful 

to the environment, depleting the ozone layer through the emission of carbon dioxide. 

The use of sunlight offers a favorable and promising alternative to the worldwide energy 

problems. 

 The photovoltaic effect of the solar cell operation was discovered in 1839 by a 

French physicist, and one out of a family of four generations of scientists, Alexandre-

Edmond Becquerel. He was the father of Henri Becquerel, a French physicist, Nobel 

laureate, and one of the discoverers of radioactivity. The first solid state materials that 

showed a significant light-dependent voltage between two contacts were selenium in 

1876 and later cuprous oxide [1]. Almost simultaneous with the beginning of silicon  
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solar cell technology was the first development of cuprous sulfide/cadmium sulfide 

heterojunctions, which served as the basis for intense research on thin-film solar cell 

devices [2]. The solar cell using a diffused silicon p-n junction was first developed by 

Chapin, Fuller, and Pearson in 1954 [3]. Subsequently, the cadmium-sulfide solar cell 

was developed by Raynolds et al [2]. The demand for a reliable, long-lasting power 

source was the major reason for the application of solar cells, and by 1958 the first silicon 

solar cells were used in spacecraft.  

 Interest arose in solar cells as an alternative energy source for terrestrial 

applications in the mid-1970s after the political crisis in the Middle East, the oil embargo, 

the realization that fossil fuel sources were limited, and recently the current political 

crisis in the Middle East, and the latest war with Iraq. We peaked in domestic oil 

production in the 1970’s and as far as crude oil is concerned, we will never again produce 

as much domestic oil as we did at the turn of the century in 2000, even if we drill as hard 

as we can in the Artic National Wildlife Refuge and offshore combined. The gap between 

the United States oil consumption and production will only continue to widen. The cost 

target for electricity from a photovoltaic plant operating for 30 years was established in 

1986 to be equal to about 0.06 US$/kWh. It was estimated that this requires module 

efficiencies in the range of 15% to 20% for a flat panel system and 25% to 30% for a 

system operating under concentrated sunlight [1].  

 Photovoltaics has experienced extraordinary growth during the last few years with 

overall growth rates between 30% and 40% making further increase of production 

facilities and attractive investment [4]. In 2008, the world-wide photovoltaic industry 

delivered some 6,941 MW of photovoltaic generators shown in Figure 1 [5].    



 

Year

Figure 1.  World PV production growth. [5] 

 

1.2 Thin Film Solar Cells Current Status 

 

The photovoltaics’ (PV) market is dominated by crystalline silicon solar modules 

which require thicknesses of approximately 200-300 μm and high energy intensive 

processes. Expensive materials and processes limit the potential for future long term cost 

reductions. Thin film polycrystalline low cost alternatives to silicon have emerged. Thin 

film solar cells require only a few microns of film thickness and less energy intensive 

processes. The market share for thin-film PV in the US continues to grow rapidly and 

was reported at more than 44% in 2006, as illustrated in Figure 2 [6]. 
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Figure 2.  Market share for thin-film PV in the US. [6] 

 

The typical range of the thin-film technology is a layer of about 1-µm thickness or 

less. A variety of thin-film deposition techniques are available, offering great flexibility 

for the thin-film preparation. Other advantages of thin film solar cells are that less 

material is required and that the thin layers can be deposited on many different substrates. 

Thin films can be deposited either as polycrystalline, nanocrystalline, or amorphous 

layers. 

The choice of materials for photovoltaic conversion is based on a number of 

requirements including: 

1. A direct band gap with nearly optimum values for either homojunction or 

heterojunction devices. 

2. A high optical absorption coefficient, which minimizes the requirement for 

high minority carrier lengths. 
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3. The possibility of producing n- and p-type material, so that the formation of 

homojunction as well as heterojunction devices is feasible. Generally p-type 

material is preferred because electrons in many cases have a higher mobility, 

and the materials therefore exhibit a higher minority carrier length. Another 

reason is that most suitable window materials have an n- type character, and a 

p- type absorber is needed in a heterojunction device. 

4. A good lattice and electron affinity match with large band gap (window) 

materials such as CdS or ZnO so that heterojunctions with low interface state 

densities can be formed and device limiting conduction band spikes can be 

avoided. 

These requirements are fulfilled by a number of II-VI compounds. For 

photovoltaic applications, only cadmium and zinc compounds are directly suitable. They 

are direct band gap semiconductors, with high absorption coefficients and can be used as 

thin-film materials. Cadmium telluride (CdTe) is a leading thin film photovoltaic material 

due to its near ideal band gap of 1.45 eV, its high optical absorption coefficient and 

availability of different device fabrication methods, for solar energy conversion.  A thin 

film of CdTe with thickness of approximately 2 μm will absorb nearly 100% of the 

incident radiation [7]. 

The status the thin film CdTe/cadmium sulfide (CdS) solar cell is 16.5% 

efficiency for devices on conducting glass substrates [8], as illustrated in Figure 3, 7.8% 

efficiency for devices on flexible metallic substrates [9] and 8.6% efficiency for devices 

on flexible polymer substrates [10].  

 



 

 

Figure 3.  Best research solar cell efficiencies. [8] 

 

1.3 Solar Cells on Flexible Substrates: Recent Progress  

 

Conventional polycrystalline thin film solar cells are usually manufactured on 

thick glass substrates and offer no weight advantage or shape adaptability for curved 

surfaces.  Producing thin film solar cells on flexible metal foil substrates offers several 

advantages for space as well as terrestrial applications.  CdTe solar cells on glass 

substrates have efficiencies exceeding 16%, and recent development CdTe solar cells on 

flexible metal foils in a substrate configuration report efficiencies in the range of 3.8 to 

8% [9, 11, 12]. Challenges in the development of CdTe devices on metallic substrates is 

the formation of an effective ohmic contact with CdTe and the incorporation of an 
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additional buffer layer as an ohmic contact to increase the cell efficiency.  The criteria of 

matching thermal expansion coefficients and work function, limit the choice of substrate 

and contact materials. An additional consideration is the change to the ohmic contact 

properties, as a result of diffusion of impurities during the CdCl2 annealing treatment and 

from the stainless steel substrate.  Recent progress on the fabrication technology of 

CdTe/CdS solar cells on flexible metallic substrates is reviewed, from three different 

groups: 

 

1. The University of Toledo with 7.8% efficiency solar cells 

a. Mo substrate sheet 100 μm thick 

b. CdTe, CdS, ZnTe:N, ITO  RF sputtered 

c. Mo - 250°C @ 18mTorr Ar 

d. CdTe & CdS – 36 – 38 W RF Power 

e. Vapor CdCl2, 30 min. 390°C anneal 

f. 1,000 Å ITO  

 

2. The University of Kentucky and the University of Texas with 6% efficiency 

solar cells 

a. Mo foil - 0.1 mm thick 

b. Cu & Te evaporation - 500Å 

c. CdTe thermal evaporation, Tsub = 220°C, 5 μm  

d. CdCl2  solution and anneal @ 300 - 500°C for 1 – 4 hours 

e. CdS – thermal evaporation ( 2 CdS layers) 
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f. CdCl2  treatment, anneal and In doping 

g. ITO, ZnO RF sputtered (temperature dependencies) 

h. In – thermal evaporation or solder 

 

3. National Autonomous University of Mexico with 3.5% efficiency solar cells  

a. Mo foil 

b. CSS CdTe - Tsource = 670°C, Tsub  = 570°C 

c. Saturated solution of CdCl2, anneal at 400°C 

d. Br-methanol rinse 

e. CBD CdS at 90°C 

f. ITO RF sputter 

g. In – solder 

 

1.3.1  University of Toledo: 7.8% Efficiency  

 

 This group has achieved AM1.5 conversion efficiencies of 7.8% on 0.05 cm2 area 

devices [9].  Their best cells had a nitrogen-doped ZnTe layer between the Mo and the 

CdTe.  Mo/ZnTe/CdTe/CdS/ITO cells were fabricated on Mo sheet substrates 100 μm 

thick.  The device structure is shown in Figure 4.  The polycrystalline CdTe, CdS, ITO, 

and ZnTe films were grown using planar magnetron radio-frequency (RF) sputtering.  

The Mo temperature during growth was 250°C; 18 mTorr of argon sputter gas flowing at 

a rate of 27 sccm and 36 to 38 W of RF power were used for both CdS and CdTe growth.  

The cells received a standard 30 min. annealing at 390°C in a vapor CdCl2 atmosphere 



 

and then a 100 nm thick ITO top electrode sputtered through a mask to define typically 

16 cells on the substrate.  The use of a 150 nm ZnTe:N layer resulted in some 

improvement in the device performance. 

 The spectral quantum efficiency (QE) of a Mo substrate cell is compared with a 

glass substrate cell in Figure 5.  The QE of the substrate cell shows little evidence of 

consumption of CdS, and a much sharper turn-on near 530 nm, consistent with little 

alloying.  A small amount of sulfur (S) alloyed into CdTe lowers the band gap [13].  The 

Mo substrate cell shows a response cut-off at about 10 nm less than for the glass 

superstrate cell.  Figure 6 shows a current-voltage curve of a substrate cell.  The very 

severe roll-over in the first quadrant, indicate the presence of a reverse diode or blocking 

diode. 

Figure 4.  Device structure of the substrate solar cell. [9] 
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Figure 5.  Comparison of the quantum efficiency curves of the substrate and superstrate 

cells. [9] 

Figure 6.  The I-V curve of a typical substrate cell. [9] 

 

1.3.2  University of Kentucky & University of Texas: 6% Efficiency  

 

 The starting substrate consisted of a molybdenum foil of thickness 0.1 mm. CdTe 

was deposited by thermal evaporation; the substrate temperature during deposition was 

220°C. Typical thickness of CdTe is 5 μm. After deposition, CdTe is treated with a CdCl2 

10 
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solution and annealed at temperatures between 300°C and 500°C for 1–4 h. In order to 

ensure an ohmic contact between Mo and CdTe, interlayers (approximately 50nm thick) 

of Cu and Te are evaporated onto the Mo substrate prior to CdTe deposition. 

Next, CdS films are deposited by thermal evaporation and are subjected to CdCl2 

treatment, annealing and indium doping. The top contacting material is made by 

sputtering ZnO, ITO or a combination of ZnO and ITO followed by the thermal 

evaporation or soldering of an indium (In) grid. A schematic of the CdTe–CdS solar cell 

is shown in Figure 7.  It has been observed that at anneal temperatures of 550°C for 2 h, 

CdTe does not peel away from Mo foil nor does it form blisters or bubbles [14]. 

Thin Cu and Te layers are put down before CdTe is deposited on metal.  

Tellurium can dope CdTe and make it heavily p-type, which facilitates tunneling.  

Similar effects can also be obtained with copper.  Also, Cu and Te can form Cu2-xTe 

between Mo and CdTe and make tunneling more effective.  The CdTe evaporation is 

performed at a relatively low temperature (~220°C), post deposition annealing is essential 

for achieving good quality CdTe.  The annealing temperature, time, atmosphere and pre-

annealing CdCl2 treatment have significant effects on the material and electrical 

properties of CdTe.  

 The ITO and ZnO:Al were sputtered on the metal substrate CdS–CdTe solar cell.  

The sputter power for ITO was 40W and for ZnO:Al, the power was 80 W. Three TCO 

configurations were evaluated. These were:  

1. 500–600 nm ITO layer; 

2. 500–600 nm ZnO:Al layer; and 

3. 50–70 nm ZnO:Al + 500–600 nm ITO layer. 



 

The experimental results are shown in Table 1. From Table 1, it can be seen that when 

sputtering was done at room temperature, the Voc of solar cell remained at its original 

level or improved. When the substrate temperature during TCO deposition was higher 

than 150°C, the Voc decreased by about 300 mV. When ITO was sputtered onto CdS at 

350°C, the cell’s Voc was reduced to almost zero.  These results indicate that the 

deposition of TCO layers should be done at low temperature in order to maintain the 

original Voc of the solar cell. 

 Higher open-circuit voltages are achieved when two CdS layers (separated by an 

air anneal) are used instead of a single CdS layer. This indicates the importance of cross 

diffusion of the Te and S across the CdS–CdTe interface. The high series resistance of 

this solar cell, attributed to the top transparent contact, continues to be the limiting factor 

in cell performance. Due to this high series resistance, the fill factor is low and the cell 

efficiency has been limited to 6% in spite of the relatively high open circuit voltage of 

824mV achieved in these cells.  

Figure 7.  The solar cell CdS – CdTe structure. [14] 
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Table 1.  Effects of sputter depositing TCO on the open-circuit voltage of the cell. [14] 

 

1.3.3  National Autonomous University of Mexico: 3.5% Efficiency 

 

 The CdTe thin films were developed on flexible Mo substrates by CSS.  The 

source of CdTe was a thick film of stoichiometric CdTe evaporated on a quartz glass. The 

films were prepared at a substrate temperature of 570°C and a source temperature of 

670°C. The films were treated with a saturated solution of CdCl2 and annealed at 400°C 

in dry air. After the annealing, the CdTe films were rinsed with 0.2 vol.% Br–methanol 

solution for 2 seconds to clean the CdTe surface, followed by a thorough rinsing in de-

ionized water in an ultrasonic bath.  

CdTe/CdS junctions were prepared by depositing approximately 0.1 μm thick 

CdS layer onto the CdTe substrates from a chemical bath containing 0.033M cadmium 

acetate, 1 M-ammonium acetate, 28–30% ammonium hydroxide and 0.067M thiourea. 
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The bath was maintained at a constant temperature of 90°C and continuously stirred 

during the deposition. The CdTe/CdS device was washed with de-ionized water and dried 

in air and later annealed at different temperatures in air. The top contacting material is 

made by sputter depositing ITO on the annealed CdTe/CdS surface followed by soldering 

of an indium (In) grid. 

The XRD spectrum of the as-deposited CdTe film is shown in Figure 8. It can be 

seen that the film is crystalline, but does not have any preferred orientation for the 

crystallites. The SEM image, Figure 9, shows that the film surface contains voids and the 

grain size is in range 1–2 μm. The AUGER depth profile analysis revealed that the 

composition is uniform throughout the thickness of the film and the percentage 

composition of the film is 50.5% Te and 49.5% Cd. 

The I–V characteristics under illumination of a typical device annealed at 400°C 

is shown in Figure 10.  The device parameters were estimated as Voc = 0.5 V, Jsc = 10.6 

mA/cm2, FF = 0.40 and η = 3.5%. Figure 11 and Figure 12 demonstrate the variation of 

the Voc and the Jsc of the devices with the annealing temperature. At each temperature the 

devices were annealed for 30 min. The maximum value of the Voc and Jsc was obtained 

for devices annealed at 400°C indicating that the optimum temperature for the annealing 

process of the CdTe/CdS junction is near to 400°C.  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 8.  XRD spectrum of the as-deposited CdTe film on Mo substrate. [12] 

 

Figure 9.  SEM image of the as-deposited CdTe thin film. [12]  
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Figure 10.  I-V characteristic of a CdTe/CdS solar cell developed on flexible Mo 

substrate. [12] 

 

Figure 11.  Graph showing the dependence on Voc on the annealing temperature on the 

CdTe/CdS device. The markers are experimental data and the line is a guide to the eye. 

[12] 
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Figure 12.  Graph showing the dependence of Jsc on the annealing temperature of the 

CdTe/CdS device. The markers are experimental data and the line is a guide to the eye. 

[12] 

 

 

1.4 Objectives and Motivation 

 

Research into photovoltaic alternatives is imperative to make the technology 

competitive. This includes the development of low-cost techniques, higher efficiency 

cells using new materials and cell concepts, and thin films that require less material. 

Essential to any option is successful tailoring of the semiconductor material and the 

control of the electro-optical properties during each processing step. For thin-film CdTe 

technology, five critical research and development issues need to be addressed: 

1. higher cell efficiencies, ≈ 20% 

2. thinner CdTe cells 
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3. standardization of equipment for deposition of CdTe 

4. higher module efficiency 

5. back-contact stability 

6. control of uniformity over a large area. 

 

The conventional polycrystalline thin film solar cells are usually developed on thick glass 

substrates and offer no weight advantage or shape adaptability for curved surfaces. The 

primary objective of this research is to transform the standard process/product design of 

CdTe solar cells and modules from a glass-to-glass superstrate configuration, into a 

metallic foil substrate configuration using a high throughput process, close-spaced 

sublimation, illustrated in Figure 13. This approach has significant manufacturing and 

product option advantages: 

1. the potential to fabricate cells on flexible and lightweight substrates will result 

in an entire new line of products, 

2. the use of high temperatures for the fabrication of solar cells leads to the 

formation of more efficient junctions, and 

3. NASA’s light weight space applications and satellite systems. 

 

A major challenge associated with the flexible substrate CdTe solar cell, Figure 

14, will be achieving strong adhesion of the solar cell structure onto the metallic foil. 

This research studies of adhesion of suitable metallic films onto a foil substrate, and the 

development and optimization of the deposition process and substrate preparation 

conditions that result in strong film adhesion on the foil substrate. 
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Figure 13.  Glass superstrate to flexible substrate process transformation. 

 

 

Figure 14.  Flexible substrate CdTe solar cell. 

 

For producing highly efficient thin film CdTe/CdS solar cells, the back contact, 

molybdenum has to be relatively free of residual stresses.  Residual stress can result in 

undesirable effects which impact the overall solar cell performance, including, excessive 

deformation, fracture, delamination and microstructural changes in the materials.  If films 
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lift from the substrate, device failure can result, and thereby making poor adhesion a 

reliability problem.  Therefore, both excellent adhesion and minimum stress are required 

of a CdTe/CdS thin film solar cell device.  

An important issue associated with the fabrication of CdTe solar cells is the 

formation of a low resistance back contact. To form an ohmic contact on p-CdTe, metals 

with a work function greater than 5.7 eV are required. There are no low cost metals 

available and the result is the formation of a Schottky barrier at the back contact. An 

alternative approach is the development of a pseudo-ohmic contact to achieve tunneling. 

Buffers can be deposited between CdTe and Mo to achieve a pseudo-ohmic contact. This 

work also focuses on the investigation of buffers such as ZnTe and Sb2Te3 in the 

development of efficient back contacts for CdTe thin film solar cells deposited on 

flexible foil substrates.  Solar cells were fabricated using ZnTe and Sb2Te3 as buffer 

layers. Buffer film thicknesses and deposition process conditions were optimized, with all 

other conditions of other layers remaining constant, and device characteristics studied. 

Thin stainless steel (SS) foils are used as the substrate for the development of 

CdTe solar cells because of the SS foil’s material properties, high temperature stability, 

commercial availability and cost. A potential problem with the use of SS foils as the 

substrate is the diffusion of iron (Fe), chromium (Cr) and other elemental impurities into 

the layers of the solar cell device structure during high temperature processing. A 

diffusion barrier limiting the out diffusion of these substrate elements is being 

investigated in this study. Silicon nitride (Si3N4) films deposited on SS foils are being 

investigated as the barrier layer, to reduce or inhibit the diffusion of substrate impurities 

into the solar cell. Si3N4  coefficient of thermal expansion (CTE) of 3.1x10-6/°K is close 
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to both the back contact layer Molybdenum, with a CTE of 5.1x10-6/°K and the absorber 

CdTe, with a CTE of 5.9x10-6/°K, minimizing thermal expansion mismatch in the device.  

It has already been shown by others developing CIGS cells on stainless steel 

substrates, that substrate impurities like Fe and Cr in the cell’s absorber can lead to 

reduced cell efficiencies [15]. In this study, the effect of the Si3N4 barrier layer is being 

evaluated for its effect on cell efficiency and overall device performance. The optimum 

Si3N4 barrier layer thickness is also being determined. Thin film CdTe cells were 

fabricated with and without a Si3N4 barrier layer. Preliminary results show an 

improvement in the VOC of cells fabricated with a 0.1 µm thick Si3N4 barrier layer. The 

thin film CdTe solar cells have been characterized by XRD, SEM, Secondary Ion Mass 

Spectrometry (SIMS) depth profiles, current-voltage (I-V) characteristics and spectral 

response.  
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Chapter 2 
 

Principles of Solar Cells 

 

2.1 Solar Spectrum   

The radiative energy output from the sun derives from a nuclear fusion reaction. 

This energy is emitted primarily as electromagnetic radiation in the ultraviolet to infrared 

and radio spectral regions (0.2 to 3μm). The spectral distribution of the radiation emitted 

from the sun is determined by the temperature of the surface (photosphere) of the sun, 

which is about 6000°K. The wavelength distribution of the sunlight (power per unit area 

and per unit wavelength) follows approximately the radiation distribution of a black body 

at this temperature, as shown in Figure 15 [16, 17]. The deviations at certain wavelengths 

are due to absorption effects in the sun’s atmosphere.  

The total energy per unit area integrated over the entire spectrum and measured 

outside the earth’s atmosphere perpendicular to the direction of the sun is essentially 

constant. This radiation power is referred to as the solar constant or air mass zero (AM0) 

radiation. Measurements taken at high altitudes have yielded the currently accepted 

average value of 1.353 kW/m2 [18]. The spectral distribution is changed considerably 

when the sunlight penetrates through the earth’s atmosphere. When the sky is clear, the 

light intensity is attenuated by at least 30% because of scattering at molecules, aerosols, 

and dust particles, and absorption by the atmosphere’s constituent gases, such as water 



 

vapor, ozone, or carbon monoxide. The attenuation mechanisms are wavelength-

dependent, which explains the strong absorption bands in the spectral distribution 

measured at the earth’s surface. The scattering of light increases with decreasing 

wavelength so that shorter wavelengths in the original sun beam experience more 

scattering than longer wavelengths.  
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Figure 15.  Spectral distribution of sunlight. Shown are the radiation outside the earth’s 

atmosphere (AM0) and at the surface (AM1.5). [17, 19] 
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The secant of the angle between the sun and the zenith (sec θ) is called the air 

mass and measures the atmospheric path length relative to the minimum path length 

when the sun is directly overhead. Outside the earth’s atmosphere, the air mass zero 

condition (AM0) is constant. The AM0 spectrum is the relevant one for satellite and 

space vehicle applications. The AM1 spectrum represents the sunlight at the earth’s 

surface when the sun is at zenith; the incident power is about 925 W/m2. The AM2 
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spectrum is for θ = 60° and has an incident power of about 691 W/m2. Air mass 1.5 

conditions (sun at 45° above the horizon) represent a satisfactory energy-weighted 

average for terrestrial applications. The total incident power for AM1.5 is 844 W/m2. In 

the U.S. photovoltaic program, the spectral distribution for AM1.5 radiation has been 

adopted as a terrestrial standard to allow meaningful comparison of different solar cells 

tested at different locations. Normalized AM1.5 of 1 KW/m2 is used in our lab testing of 

solar cells.       

 

2.2 Heterojunction Devices  

 

A heterojunction is a junction formed between two dissimilar semiconductors. 

There should be an improvement of the efficiency of solar cell device if it consists of 

materials with different band gap energies which match different parts of the solar 

spectrum. This concept is realized in a heterojunction device formed between 

semiconductors with different band gap energies. Figure 16 [20, 21] shows the energy-

band diagram of two isolated pieces of semiconductors. The two semiconductors have 

different bandgaps Eg, different permittivities ,, different work functions Nm, and 

different electron affinities P. Work function and electron affinity are defined as that 

energy required to remove an electron from the Fermi level EF and from the bottom of 

the conduction band EC, respectively, to a position just outside the material (vacuum 

level). The difference in energy in the conduction-band edges in the two semiconductors 

is represented by ΔEC = (P1 - P2) and that in the valence-band edges by ΔEV. 



 

 

Figure 16.  Energy-band diagram for two isolated semiconductors in which space-charge 

neutrality is assumed to exist in each region. [20, 21] 

 

When a junction is formed between these semiconductors, the energy-band profile 

at equilibrium is a shown in Figure 17 [22] for an n-on-p heterojunction. Since the Fermi 

level must coincide on both sides in equilibrium and the vacuum level is everywhere 

parallel to the band edges and is continuous, the discontinuity in conduction band edges 

(ΔEC) and valence-band edges (ΔEV) is invariant with doping in those cases where Eg and 

P are not functions of doping. The total built-in potential Vbi is equal to the sum of the 

partial built-in voltage (Vb1 + Vb2), where Vb1 and Vb2 are the electrostatic potential 

supported at equilibrium by semiconductors 1 and 2, respectively. 

An n-on-p CdS/CdTe band diagram is shown in Figure 18 [23]. In Figure 18, the 

solid line represents the model of zero band offset between n-type CdS and p-type CdTe, 

while the dashed and dotted lines illustrate the models of cliff and spike offsets 

respectively. The open arrow shows the electron-hole pair generation. The solid arrows 

illustrate the electron and hole transport in including barrier penetration by activation and 
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tunneling. The material with the larger band gap Eg1, n-type CdS, is on the top. Light with 

energy less than the band gap energy Eg1 but greater than Eg2 passes through the first 

semiconductor, which acts as a window, and will be absorbed by the second 

semiconductor, p-type CdTe. Carriers generated in the depletion region and within a 

diffusion length of the junction are collected. Light with photon energies larger than Eg1 

will be more efficiently utilized by the first semiconductor. The advantages of 

heterojunction solar cells over conventional cells include enhanced short wavelength 

response, lower series resistance, if the first semiconductor can be heavily doped, and 

higher irradiation resistance. 

Figure 17.  Energy-band diagram of an n-on-p heterojunction in thermal equilibrium. [22] 

 

A negative ΔEC produces a spike in the conduction band which is undesirable for 

photovoltaic applications. The spike impedes the flow of minority carriers across the 

junction from the p-type to the n-type regions, and the photocurrent will be reduced. Such 

spikes can, however, be avoided by a suitable combination of electron affinities and band 

gap energies [24]. For heterojunctions, there is the inherent problem that the crystal 

structure changes across the junction and an interface is formed between the two  
26 
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Figure 18.  Schematic band structure of an n-CdS/p-CdTe solar cell. [23] 

 

semiconductors. Interfaces can be efficient recombination centers because they introduce 

deep trap levels in the band gap. They can also provide sites for quantum mechanical 

tunneling processes, which is important for current loss mechanisms across the junction. 

In both cases, the interface traps degrade the performance of the solar cell, and it 

becomes essential to produce heterojunctions with a low density of interface traps. The 

density of interface traps is possibly related to the degree of mismatch between the crystal 

lattices of the two semiconductors. Therefore, the requirements for a good n-on-p 

heterojunction solar cell are a small ΔEC and a good lattice match. 

 

2.3 Absorption of Light in Solar Cells  

Eg2 

Eg1 
Light 

 

The light-generated current IL is determined by the absorption behavior of the 

semiconductor. The fraction of incident light D = 1 – R that actually penetrates the 



 

absorbing material can be calculated from the complex refraction index nc =  n – iκ, 

where κ is the extinction coefficient and the reflectivity R given by  
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( ) 22
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where n(λ) and κ(λ) are functions of the wavelength λ of the incident light. For many 

semiconductors, a considerable fraction of light is reflected. Decreasing R improves the 

efficiency of a solar cell. This can be achieved by an antireflection coating or by a 

textured structure of the surface. 

 The important process for photovoltaic conversion is the excitation of electrons 

from the valence into empty states of the conduction band, which can occur if the energy 

of the incident photons is larger that the band gap energy. The light passing through the 

material is absorbed then, and the number of generated electron-hole pairs depends on the 

number of incident photons So(ν) (per unit area, unit time, and unit energy) that can be 

calculated from the spectral distribution of the sunlight in Figure 15. The frequency ν or 

the photon energy hν is related to the wavelength λ by the relation λ [μm] = c/ν = 1.24/hν 

[eV] where c is the speed of light. Inside the crystal the photon flux S(x,ν) decreases 

exponentially according to 

 
c

xSxS O
πκυναανν 4)( with  )exp()(),( =−=   (2) 

 

where 6 is the extinction coefficient and 6(8) is a function of the wavelength 8 of the 

incident light. The absorption coefficient α(ν) is determined by the absorption process in 

the semiconductor and can be used to calculate the generation rate G(x, ν) of electron-
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hole pairs (per unit time, volume, and energy) at a distance x from the semiconductor 

surface. The fraction of photons that penetrate into the crystal is given by So(ν) (1 – R); 

therefore, the number of electron-hole pairs generated per unit time in the volume 

between x and x + Δx can be calculated from the derivative of (2) with respect to x: 

 ( ) ( ) ( ) ( )  )exp(1)(),( xRSxG O ναννανβν −−=   (3) 

 

The quantum efficiency β(ν) (of the internal photoeffect) takes into account that only a 

fraction of the absorbed photon energy generates electron-hole pairs. For many 

compound semiconductors it is observed that β(ν)  1 near the absorption edge. This is 

due to the formation of excitons or bound electron-hole pairs, which carry no charge and 

do not contribute to the conductivity. Near the absorption edge, where the values of (hν – 

Eg) become comparable with the binding energy of an exciton, the Coulomb interaction 

between the free hole and electron must be taken into account. For hν. Eg the absorption 

merges continuously into the absorption caused by the higher excited states of the 

exciton. When hν Eg, higher energy bands participate in the transition processes, and 

complicated band structures are reflected in the absorption coefficient. 

 For photons with energies higher than the band gap energy, the electrons and 

holes carry excess (kinetic) energy that will be dissipated to the lattice until they occupy 

states near the band edges. The kinetic excess energy does not contribute to the 

photocurrent and is wasted in terms of energy conversion. 

 The absorption coefficient α(ν) depends on the band structure of the 

semiconductor. In direct band gap semiconductors, the minimum of the conduction band 

and the maximum of the valence band occur for the wave vector in the Brillouin zone, 
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and the most likely transitions are between states close to the wave vector k = 0. A 

theoretical calculation of the probability for these direct (allowed) transitions gives the 

following result for the absorption coefficient αd as a function of the frequency ν[25]: 
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Eg is the band gap energy, and αo is a constant that is obtained from the calculation, but is 

usually fitted to experimental data.  

Since both phonon absorption and emission are possible, the absorption 

coefficient is the sum of both processes. The absorption coefficients in both cases also 

depend on the temperature through the band gap energies, with usually decrease with 

increasing temperature.  

High dopant impurity concentrations affect the shape of the band edges of a 

semiconductor. The distributions of valence and conduction band states can be 

considered “smoothed out” at the band edges (band tails), which effectively reduces the 

width of the band gap. A calculation of the band gap narrowing ΔEg as a function of 

doping concentration N has been given by Lanyon and Tuft [26]: 
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where , is the permittivity of the semiconductor and LD is the screening or Debye length. 

As is heavily doped semiconductors, the band structure of crystals with a high 

concentration of other lattice defects may also be characterized by band tails near the 
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band edges. The absorption behavior can also be changed by the high electrical fields 

which occur, for instance, in the space charge region of a pn junction. Figure 19 shows 

the absorption coefficient α plotted as a function of wavelength for CdTe and other 

semiconductor materials [27]. 

Figure 19.  Optical absorption coefficients for CdTe and other semiconductors. [27] 

 

2.4 Solar Cells under Illumination   

 

A semiconductor under illumination shows an increased conductivity. For the 

photovoltaic conversion, it is necessary to separate the light-generated electrons and holes 

and collect them at external contacts. This requires an internal electric field, which can be 
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generated in semiconductors, by heterojunctions and homojunctions. The carrier 

concentrations for a non-degenerate semiconductor are given by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

KT
EeE

Np FpV
V

φ
exp   (6) 

 ⎟
⎠
⎞

⎜
⎝
⎛ −−

=
KT

EeE
Nn FnC

C
φ

exp   (7) 

 

where the potential N is related to the local electric field by E = -grad N. NC and NV are 

the density of states of the conduction and valence band, respectively, EFn and EFp are the 

quasi-Fermi energies for electrons and holes, n are p are their concentrations, and e is the 

(positive) electron charge. 

The basic equations that describe the flux of electrons and holes in a 

semiconductor under illumination are the current-density equations 

 ( )pDpe pp ∇−=  EJ p μ   (8) 

 ( )n ∇−= nn Dne EJn μ   (9) 

and the continuity equations 
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The diffusion coefficients Dn and Dp are related to the mobility of the carriers :n, :p by 

the general Einstein relationship D = (kT/e):. For light generated carriers, the generation 

rates for electrons and holes are equal to Gn = Gp = G.  
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Under normal illumination conditions for solar cells (AM 1.5), the product GJ is 

usually smaller than the majority carrier concentration; therefore, only the quasi-Fermi 

energy of the minority carriers is essentially changed. When an external electrical field E 

is applied and a current flows, the total current density J is given by 
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Solar cells require a pn-junction design illustrated in Figure 20 [1]. It consists of a 

shallow junction formed near the front surface, a front ohmic contact in the form of 

stripes and fingers, and a back ohmic contact that covers the entire back surface. The 

internal electric field E = -∇qN leads to an inhomogeneous distribution of electrons and 

holes, and the calculations of the currents requires the solution of the complete current-

density equation and continuity equation. The potential N(r) is determined from Poisson’s 

equation, 

 ( ) ( )( )pnrNrNe
AD +−−−=Δ

oεε
φ   (14) 

 

where ND(r) and NA(r) are functions of the position and are usually equal to the 

concentrations of completely ionized acceptors and donors on each side of the junction. , 

is the dielectric constant of the material, and ,o is the permittivity of the vacuum. 



 

Figure 20.  Schematic diagram of a pn-junction solar cell, defining basic parameters. [1] 

 

For an abrupt pn junction with uniform doping concentrations on each side of the 

junction, the usual approximation is that within a certain width W the semiconductor is 

completely depleted from charge carriers. The depletion width W derived from (14) is  
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where the internal potential barrier VB = -eNB is determined by the doping concentrations 

ND and NA on either side of the junction 
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The potential NB (or diffusion voltage) determines the maximum voltage that can be 

obtained from an ideal pn junction solar cell. 

When light is incident on the front surface and penetrates the crystal, the number 

of electrons and holes generated at a distance x from the surface is given by the 
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generation rate G(x, ν). In thermodynamic equilibrium, when no current flows, minority 

carriers reaching the edges of the depletion region are immediately accelerated by the 

electric field to the opposite side of the junction. 

A current flows under illumination when the two sides of the pn junction are 

connected externally. The corresponding voltage drop V across the junction in forward 

bias direction is determined by the external load resistance. At the front and back 

surfaces, the excess concentrations are determined by the surface recombination  
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Wp is the width of the p-base neutral region. This photocurrent would be collected from 

the front side of an n-on-p junction solar cell at a given wavelength, assuming this n-type 

region to be uniform in doping level, lifetime, and mobility. Some photocurrent 

generation also takes place in the depletion region. Since the electric field in this region is 

high, the generated electrons and holes are accelerated out of the region. If recombination 

is ignored, the photocurrent density in this case is equal to the number of photons 

absorbed. The total photocurrent IL has to be calculated from the photocurrent density JL 

= Jp + Jn + Jdp by integrating over the entire solar spectrum, and is given by 
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where hνm is the smallest photon energy corresponding to the absorption edge of the 

semiconductor, and A is the active area of the solar cell. 

The photocurrent IL is proportional to the light intensity that enters the crystal. 

The optical performance of a solar cell is frequently characterized by the normalized 

photocurrent JL(hν) as a function of the photon energy hν or wavelength λ. The external 

spectral response (or quantum efficiency) of the cell is the total photocurrent JL divided 

by eSo and the internal spectral response SR(ν) of the cell divided by eSo(1 – R), 

respectively: 
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The maximum photocurrent that can be generated in a solar cell is given by IL. A 

solar cell in an electrical circuit will produce a lower current which is determined by the 

external load resistance and the corresponding operation point on the current-voltage 

characteristics of the device. The total current I for an ideal pn-junction solar cell [22]: 
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where the saturation current is given by (A is the active solar cell area) 
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The factors Fn and Fp account for the finite recombination velocity of electrons and holes 

at the front and back surfaces Sn and Sp. 
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2.5 Solar Cell Model  

 

The solar cell can be represented by a current generator in parallel with a forward 

biased diode as illustrated in Figure 21 [28]. The current generated is proportional to the 

intensity of illumination, and the available power is drawn from terminals which are 

basically in parallel with the diode. The solar cell conversion efficiency relates to: (1) 

reflection – some of the incident light will be reflected from the surface of the cell; (2) 

wavelength – some of the light reaching the cell will have wavelength outside the spectral 

response of the cell and will not produce electron-hole pairs; (3) recombination – of the 

electron-hole pairs created, some will recombine before diffusing to the junction [29]. 

Figure 21.  Equivalent circuit of a PV solar cell. [28] 

 

The energy conversion process involves photogeneration and charge separation. A 

photovoltaic solar cell is basically a semiconductor diode.  The semiconductor material 

absorbs the incoming photons and converts them to electron-hole pairs.  In this 

photogeneration step, the decisive parameter is the bandgap energy Egap of the 

semiconductor.  In an ideal case, no photons with an energy hν < Egap will contribute to 

photogeneration, whereas all photons with an energy hν > Egap will each contribute the 

energy Egap to the photogenerated electron-hole pair, with the excess energy (hν - Egap) 

being very rapidly lost because of thermalization. 
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In the second step of the energy conversion process, charge separation, the 

photogenerated electron-hole pairs are separated, with electrons drifting to one of the 

electrodes and holes drifting to the other electrode, because of the internal electric field 

created by the diode structure of the solar cell. The performance of a solar cell under 

illumination can be completely described by the current-voltage dependence. If we 

consider a typical current-voltage curve of a pn-junction diode in the dark and under 

illumination as shown in Figure 22 [28], we can characterize three parameters that give a 

complete description of the electrical behavior: short-circuit current, ISC, open-circuit 

voltage, VOC, and the fill factor, FF. These three parameters are sufficient to calculate the 

energy conversion efficiency η of the solar cell. 

 

Figure 22.  Current-voltage characteristics of a pn-junction solar cell. [28] 

 

The short-circuit current ISC, which obtained for VOC = 0, is equal to the light-

generated current, ISC = IL, if the series resistance RS is zero. A finite series resistance RS 

reduces the short-circuit current. The open-circuit voltage VOC, which obtained for I = 0, 

is determined by the ratio IL/IS and thus by the absorption and light-generation processes 

and the efficiency with which the charge carriers reach the depletion region. In the ideal 

case where ISR = RS = 0 and Rsh = ∞, then: 
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The performance of the solar cell is eventually determined by the fraction of the total 

power of incident light that can be converted into electrical power. Under illumination, 

the junction is forward biased and the external load resistance determines an operating 

point on the current-voltage curve. The electrical power output P = IV is equal to the area 

of the rectangle. In general, the solar cell will be operated under conditions that give the 

maximum power output. The maximum possible area Pmax = VmaxImax for a given current-

voltage curve determines the fill factor FF, which is defined by 

 
SCOC IV

IV
FF maxmax=   (24) 

 

FF is larger the more “square-like” the current voltage curve is. Typically, it has a value 

of 0.7 to 0.9 for cells with a reasonable efficiency. The three parameters VOC, ISC, and FF 

are sufficient to calculate the energy-conversion efficiency η of the solar cell, which is 

defined by 
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where Pin is the total power of the incident light. The essential material parameters that 

determine the efficiency of the solar cell are the lifetime and mobility of the minority 

charge carriers, and the surface recombination velocities. These parameters are not 

independent from each other and are controlled by physical processes. 
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 The maximum current as a function of the band gap of the semiconductor is 

shown in Figure 23 [30] for the spectral distributions AM0 and AM1.5. The current 

increases with decreasing band gap, since more photons have enough energy to generate 

charge carriers. 

Figure 23.  Short-circuit current as a function of the band gap energy for AM0 and 

AM1.5 spectral distributions. [30] 

 

Saturation current IS needs to be as small as possible for a maximum Voc. With increasing 

Eg the saturation current decreases and the open-circuit voltage increases. This trend is 

opposite from that for ISC; therefore, a maximum in the efficiency exists. Calculations for 

two different sun spectra are given in Figure 24 [22] and show that the optimum band gap 

occurs between 1.4 and 1.6 eV. The near-optimal efficiency for AM1.5 of 30% occurs at 

1.5 eV for CdTe. There are two fundamental reasons for limited efficiency of a 

semiconductor solar cell based on an ideal pn-junction device. First, losses occur because 
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the energy of photons above Eg is wasted in the form of heat. Second, the output voltage 

is smaller than the maximum voltage which corresponds to the band gap energy Eg/e. 

 

Figure 24.  Ideal solar-cell efficiency at 300 °K for 1 sun and for 1000 sun concentration 

for AM1.5. [22] 

 

2.6 Efficiency Losses  

 

The important material parameters are the lifetime and mobility of the minority 

carriers in the bulk, and the recombination velocity at the front and back surfaces of the 

cell. Since the material parameters are closely linked to the technical design and the 
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fabrication of the solar cell, the actual device characteristics of the pn junction will be 

lower than its ideal values. The maximum limit for the photogenerated electric current 

density JL is therefore given by the flux of photons with and energy hν > Egap.   Thus, JL 

decreases with increasing bandgap Egap.  At the same time, the net energy transferred to 

each electron-hole pair increases, as it is equal to Egap. There exists an “optimum” for Egap  

for which a maximum of energy can be transferred from the incident sunlight to the 

totality of photogenerated electron-hole pairs. At this bandgap, roughly half of the 

incident solar energy is transferred. This limit will only be approached if optical losses 

due to reflection, shading by grid patterns, and so forth are minimized and if the 

semiconductor is thick enough to absorb all useful incident photons. 

The maximum limit for Jsc is given by the photogenerated current density JL. Voc 

cannot exceed Egap/q (q is the charge of an electron) and is lower due to recombination. 

At open-circuit conditions, all photogenerated carriers recombine within the solar cell. If 

recombination can be minimized, Voc can more closely approach the limit (Egap/q). From 

thermodynamic considerations of the balance between radiation and generation, one finds 

that recombination cannot be reduced below its radiative component, yielding a lower 

basic limit for Voc [31]. 

Considering FF, Green [30] has calculated it as a function of Voc by assuming that 

the I-V characteristics of a diode are, in an ideal case, an exponential function. The 

calculations show that the limit for FF increases with Egap. The optimum value of Egap for 

the total energy conversion efficiency (including charge separation) is ~1.5 eV, with a 

“limit” efficiency approaching 30% [32].  Figure 24 shows the ideal efficiency at an 
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optical concentration of 1000 suns.  The ideal peak efficiency increases from 31% (C =1) 

to 37% (C = 1000). This increase is primarily caused by the increase of Voc.   

Efficient devices must have high conversion efficiency of solar photons and high 

collection efficiency of excited charge carriers. Thin film solar cells consist of several 

layers of different materials in thin film form. In general, the solar cell consists of a 

substrate, a transparent conduction oxide, a window layer, an absorber layer and a metal 

contact layer. Each of the component materials has different physical and chemical 

properties, and each affects the overall performance of the device. Equally important are 

the interfaces between the different layers.  Each layer has a different crystal structure, 

microstructure, lattice constant, electron affinity; work function, thermal expansion 

coefficient, diffusion coefficient, chemical affinity and mobility, mechanical adhesion 

and mobility, the interfaces can cause stresses, defect and interface states, surface 

recombination centers, photon reflection/transmission/scattering, inter-diffusion and 

chemical changes.   

 

2.6.1  Optical Losses  

 

Losses in the light-generated current directly reduce the short-circuit current and 

the open-circuit voltage. The incident light cannot be fully utilized because of the finite 

reflectivity R. Most commonly used are antireflection (AR) coatings on the top surface of 

a material. Usually AR coatings are deposited as amorphous layers to suppress the light 

scattering at grain boundaries. 
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A further improvement is possible by the use of multiplayer coatings with 

different refractive indices. Another possibility for changing the reflectivity is by 

texturing the surface. This can be produced with particular etchants that preferentially 

attack inclined crystallographic planes so that pyramidal structures form. With the 

combination of both techniques, it is currently possible to keep the total reflectivity below 

3% [1]. Optical losses also occur because of the finite thickness of the solar cell. In order 

to collect the major fraction of the sunlight inside the cell, a certain thickness of the 

material is required. The optical thickness of a semiconductor can be reduced by light 

trapping the light inside the crystal so that it is reflected several times between front and 

back surfaces before it is finally absorbed. This requires a mirror at the back side and 

textured surfaces which reflect the light at oblique angles. The incident sunlight is further 

reduced by the metal grid on the front side, which is necessary to make electrical contacts 

on the emitter side of the pn junction.  

 

2.6.2  Recombination Losses  

 

A fraction of the charge carriers is always generated far away from the junction, 

and some losses occur because minority carriers recombine before they can diffuse to the 

device terminals. Several recombination mechanisms can contribute to the minority 

carrier lifetime. Other important recombination centers are the surfaces, dislocations, gain 

boundaries in polycrystalline semiconductors, and interfaces in heterostructure solar 

cells. The recombination at the surface and in the bulk are also the fundamental processes 

that determine VOC. The recombination current yields and increased saturation current, 
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which reduces the open-circuit voltage. The recombination processes in the entire cell 

should be minimized.  

 

2.6.3  Series and Shunt Resistance  

 

The current-voltage characteristics of the pn junction are further modified because 

of a series Rs and shunt Rsh resistance associated with the solar cell. The origin of the 

series resistance is the bulk resistance of the semiconductor and the resistance of the 

contacts and interconnections. The shunt resistance can be caused by extended lattice 

defects in the depleted region or leakage currents around the edges of the cell. Extended 

defects are dislocations, grain boundaries, and large precipitates. Plots for various 

combinations of the series and shunt resistance in Figure 25 [22] show that essentially the 

shape of the current-voltage characteristics and the fill factor FF changed. A shunt 

resistance as low as 100Ω does not significantly change the power output of the devices, 

it can be seen that a small series resistance of only 5Ω reduces the total efficiency by 

30% [1].   

 

2.6.4  Temperature Effects  

 

A considerable fraction of the incident light is transformed into heat and the 

operating temperature of a solar cell can vary over a wide range. The temperature 

dependent material parameters are the band gap energy, which usually decreases, and the 

minority carrier lifetime, which generally increases, with increasing temperature. This 



 

will increase the light generated current and thus ISC slightly due to the increased light 

absorption and the increase in minority-carrier diffusion length. The open-circuit voltage 

will more rapidly decrease because of the exponential dependence of the saturation 

current on the temperature, and correspondingly the fill factor will degrade. The overall 

temperature effect causes a reduction of the efficiency as the temperature increases.    

Figure 25.  Theoretical I-V characteristics for various solar cells that include series and 

shunt resistances. [22] 

 

46 



 

47 

 
 
 
 
 

Chapter 3 
 

Experimental Methods 

 

Several of the crystal growth and thin-film deposition techniques are carried out at 

high temperatures. It is important for the determination of the stoichiometry of the 

compounds to control the vapor pressure of the components at these temperatures. The 

microstructure of the films is mainly determined by the substrate temperature, the lattice 

match of the compound, the substrate properties, the process direction (substrate versus 

superstrate configurations), and the growth rate and pressure during deposition of the 

films. The electronic behavior of the films may also vary considerably with deposition 

conditions.   

The CdTe solar cells can be grown in both substrate and superstrate configuration. 

All thin CdTe/CdS solar cells are of the substrate configuration shown in Figure 26. The 

basic device structure of the substrate cells studied is: stainless steel foil (SS) -

SS/Mo/CdTe/CdS/ITO-based front transparent contact. Deposition techniques used for 

different layers include: rf-sputtering, close spaced sublimation (CSS), and thermal 

evaporation. Additional materials studied as the back contact to p-type CdTe include: 

ZnTe, Sb2Te3, Cu2Te, Cu, and Au. Additional flexible foil substrates studied include: 

tungsten, tantalum, and molybdenum. Detailed device fabrication and characterization 

follows.   



 

 

0.2 – 0.4 :m

0.1 -0.3 :m

2 – 4 :m

0.4 – 1 :m

25 :m

Figure 26.  The CdTe thin film solar cell substrate configuration. 

 

3.1 Substrate Preparation and Pretreatment  

 

Different substrates have different influences on the film microstructure, growth 

of the layers, and the device characteristics. The substrate should withstand high 

temperatures experienced during the cell fabrication process. In addition, elemental 

impurities from the substrate must not diffuse into the layers of the solar cell device 

structure during high temperature processing. The substrate is a passive component in the 

device and is required to be mechanically stable, matching thermal expansion coefficient 

with deposited layers during the device fabrication.   

The substrate selected is a stainless steel foil because of its commercial 

availability, low cost and ability to withstand relatively high temperature processing. 

Flexible stainless steel foil substrates are suitable for roll-to-roll deposition. The adhesion 

of CdTe solar cells on foil substrates with respect to substrate pretreatment on the 
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stainless steel foils. The Ar RF plasma treatment was also investigated and resulted in no 

significant improvements in adhesion.  

The foil substrate surfaces exposed to air are covered by and absorbed 

hydrocarbon contamination layer as a result of the manufacturing process, surface 

preparation, and contact with the atmosphere. As a result, prior to solar cell fabrication, 

substrates were cleaned by ultrasonic solvent clean of three successive 30 minute rinses 

in acetone, methanol, and deionised (DI) water. Substrates were given a final rinse in DI 

water and dried with a nitrogen gas. 

 

3.2 Solar Cell Device Fabrication  

 

3.2.1 Back Contact: Molybdenum (Mo)  

 

For polycrystalline CdTe solar cells, the back contact is applied to the p-type 

semiconductor. To form an ohmic contact, the metal used for the contact should have a 

work function greater than that of p-type CdTe, 5.7 eV.  This aligns the metal Fermi level 

with the upper valence band edge. There are no low cost metals available with the 

appropriate higher work function to form the ohmic contact on CdTe. Use of an 

insufficient metal could result in the formation of a Schottky barrier at the back contact.  

As an alternative approach, pseudo-ohmic contacts are being researched for CdTe 

devices. With this approach, a highly doped semiconductor buffer layer is first deposited 

on a metal film followed by the deposition of the CdTe layer. 



 

 In superstrate configuration, commonly used buffer layer/metallization 

combinations are Cu/Au [33, 34], Cu/graphite [35] or graphite pastes doped with Hg and 

Cu [36], ZnTe doped with Cu [37-39] and Au or Ni metallization, Cu/Mo [40]. 

Alternatively, Cu free back contacts such as Ni:P, ZnTe [41], Au [42] or Sb2Te3/Ni [43] 

contacts have also been investigated [44]. A PVD deposited Sb buffer layer with Mo 

metallization has yielded high efficiency and low degradation in long-term performance 

[43]. Best cell stabilities have been achieved with RF sputtered Sb2Te3 buffer layer with 

Mo metallization as introduced by N. Romeo et al. [45]. Long term stability data for 

different buffer layer/metallization combinations obtained by light soaking at elevated 

temperatures are shown in Figure 27 [44]. 

Figure 27.  Stability of CdTe cells with different back contacts on comparable absorbers. 

Cells with Cu-based contacts show fast degradation while cells with Sb2Te3 /Mo are 

stable.[44] 
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Mo was selected as a metal electrode to be deposited on foil substrates. 

Deposition parameters affect Mo morphology and film resistivity. The baseline back 

contact structure consists of a Mo bi-layer (high-D/low-D), deposited by rf sputtering in 

an Ar ambient, at room temperature; the thickness and resistivity of the bi-layer were 

approximately 0.5 :m and 1.74x10-4 Ωqcm respectively. The first Mo layer deposited 

using low power (150 watts) and high Ar pressure (10 mTorr) resulted in grains that were 

not densely packed, highly resistive and tensile. The second Mo layer deposited using 

high power (400 watts) and low Ar pressure (4 mTorr) resulted in grains that were 

densely packed, least resistive and compressive. The high-D(tensile)/low-D(compressive) 

Mo bi-layer promotes adhesion of the device structure to the foil substrate, also acts as a 

diffusion barrier layer, and a roughness leveling layer. Other materials were investigated 

as back contacts including: ZnTe, Sb2Te3, Mo2C, Cu2Te, Cu and Au. Results will be 

presented in section 4.2, “Development of Back Contacts”.  

 

3.2.2 Absorber: Cadmium Telluride (CdTe)  

 

 CdTe can be deposited using several different deposition methods. When CdTe is 

deposited onto substrates above 449°C, it condenses stoichiometrically as the stable 

phase in this regime [46]. The CdTe phase diagram is shown in Figure 28, is 

characterized by a congruently melting intermediate phase, α-CdTe, which forms at 50 

atomic percent Te.  The high liquidus temperature of 1099°C at 50 atomic percent Te, 

results from a strong ionic binding between Cd and Te atoms.  In the cases of high 

temperature depositions, the films are deposited with Cd deficiencies, resulting in 



 

material property of p-type conductivity.  In the Te-rich limit CdTe is p-type conducting 

since the Fermi energy is pinned closer to the valence band maximum.  Because of the 

high ionicity (72%) of CdTe, the crystallite formed is well passivated and strong 

chemical bonding (5.75 eV) results in high chemical and thermal stability [47].      

 

Figure 28. CdTe phase diagram. [48] 

 

 The most common CdTe solar cell structure is a p-CdTe/n-CdS heterojunction.  

The standard processes used to deposit CdTe thin films are:   

1. Close spaced sublimation (CSS) 

2. Chemical spraying (CS) 

3. Screen printing (SP) 
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4. Chemical vapor deposition (CVD) 

5. Sputtering 

6. Electro-deposition (ED) 

7. Physical vapor deposition (PVD)  

 

The highest reported efficiencies for CdTe laboratory devices have been achieved with 

the close spaced sublimation (CSS) process [36, 49-51].  A thin film of CdTe with 

thickness of approximately 2 μm will absorb about 100% of the incident photons, due to 

its absorption coefficient of 105 cm-1 [47]. 

 There is a 10% lattice mismatch at the CdTe/CdS interface that results in 

dislocations and can impact the grain size.  The CdTe layers grown by high temperature 

(~550°C) CSS processes have grain sizes equivalent to the CdS grain size at the interface, 

but develop into much larger grains of several microns in diameter near the CdTe top 

surface. Figure 29 show the effects of deposition process on grain size, and that small 

CdTe grains re-crystallize into large grains, after a heat treatment process.  However, 

large CdTe grains do not re-crystallize.    

 The CdTe films in the flexible substrate configuration were deposited by CSS at 

substrate temperatures in the 400-650°C range; the CdTe and CdS films were in some 

instances deposited in-situ. The thickness of the CdTe films ranged from 2-4 :m. 

Devices with reduced CdTe layer thickness were investigated and performances were 

comparable to those of thicker CdTe layers. Results are reported in section 4.3, “Optical 

Absorption and Transmission”.  



 

CSS 

ED 

PVD 

 

Figure 29. CdTe grain size (a) as grown, and (b) re-crystallized after heat treatment 

process. 

 

3.2.3 Window: Cadmium Sulfide (CdS)  

 

The primary function of a window layer in a heterojunction is to form a junction 

with the absorber layer while admitting a maximum amount of light to the junction region 

and absorber layer.  For high optical throughput with minimal resistive loss the bandgap 

of the window layer should be as high as possible and as thin as possible to maintain low 
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series resistance.  The optical transmission, thickness and film resistivity can be 

optimized to improve the solar cell device output.   

The most effective heterojunction partner for CdTe, also referred to as a window 

layer, is cadmium sulfide (CdS).  A key reason for the high quality and efficient 

CdTe/CdS junction is the fact that CdTe and CdS are miscible, and a reaction between 

these two materials during the cell fabrication process leads to the formation of an 

interfacial layer of CdS1-xTex  [52].  The formation of this layer is believed to be 

responsible for lowering the interfacial defect density resulting in high efficiency devices 

[7].  The CdS1-xTex can form during a post deposition heat treatment of the of the 

CdTe/CdS structure in the presence of CdCl2.  The enhanced conversion efficiencies 

achieved as a result of the use of this heat treatment are primarily due to: (i) the formation 

of the interfacial layer, (ii) recrystallization and grain growth in the CdTe film, (iii) defect 

passivation/carrier lifetime improvement in the absorber [53]. 

Layers of n-conducting CdS are easily grown by various deposition methods 

including chemical bath deposition (CBD) as well as physical vapor deposition (PVD).  

CdS grows under most deposition conditions in a stable stoichiometric phase, α-CdS, 

which has the hexagonal wurtzite structure.  The CdS phase diagram is shown in Figure 

30.  Under high pressure growth conditions or in thin films, CdS may be found in the 

cubic, metastable zincblende structure.  High vacuum evaporation grown CdS films 

exhibit sub-micron sized, columnar grains that grow with preferred orientation parallel to 

the substrate, shown in Figure 31, [44].  CdS remains the best heterojunction partner for 

CdTe, because high efficiency devices with reduced lattice mismatch can be fabricated 

by forming an interfacial CdS1-xTex alloy layer. 



 

 

Figure 30. CdS phase diagram. [48] 

 

The CdS films in the flexible substrate configuration were deposited by CSS at 

substrate temperatures in the 400-650°C range; the CdTe and CdS films were in some 

instances deposited in-situ. The thickness of the CdS films ranged from 0.1-0.3 :m.  

Following the CdS deposition, all structures were subjected to a heat treatment in 

the presence of CdCl2. The baseline CdCl2 process was carried out by first depositing 

CdCl2 onto the CdS surface by evaporation, and subsequently heat treating the structures 

at temperatures in the range of 380-425°C at atmospheric pressure in the presence of O2.  
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Figure 31.   Characterization of CdTe and CdS layers. (A) TEM micrograph of the cross-

section of a CdTe/CdS cell after deposition—both the columnar grain structure and the 

high density of twins on {111} plains in the CdTe and {0001} plains in the CdS layer are 

visible; (B) a sample area after CdCl2 treatment—both, the CdTe and the CdS layers are 

characterized by grain growth (note the different scale bars), recovery and 

recrystallization; the CdTe/CdS interface exhibits grain coarsening [44]. 

 

3.2.4 Front Contact: Indium Tin Oxide (ITO)  

 

 A highly transparent and conducting oxide (TCO) layer with an electron affinity 

below 4.5 eV is required to form an ohmic contact and a good band alignment with the 

CdS.  If the electron affinity of the TCO is higher than that of CdS, a blocking Schottky 

contact is formed.  Transparent conducting oxides in general are n-type semiconductors 

with good electrical conductivity and high transparency in the visible spectrum.  A low 

resistance contact to the device and transmission of most of the incident light to the 
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absorber layer is ensured.  The conductivity of the TCO depends on the carrier 

concentration and mobility.   

The most commonly used TCOs for CdTe solar cells, ITO, SnO2:F, ZnO and their 

transmission spectra are shown in Figure 32. ITO front contacts are often sensitive to an 

annealing treatment, an increase of the electron affinity from around 4 to 5 eV, caused by 

oxidation or a post-deposition treatment, results in a blocking contact [54, 55].  They are 

often used in combination with a thin intrinsic SnOx layer between the TCO and the CdS 

window layer maintaining a high voltage by preventing possible shunts through pinholes 

in the CdS [56].  Intrinsic (high resistivity) TCO facilitates the use of a thinner CdS layer 

for reducing photon absorption losses for wavelengths smaller than 500 nm [44].  The use 

of a bi-layer transparent contact, one that consists of a low/high resistivity (ρ) stack of 

transparent films has been found to effectively minimize efficiency losses resulting from 

the use of thin CdS films [57, 58].  Table 2 lists typical values of resistivity and 

transmission in the visible region for various TCOs of interest for photovoltaic 

application [59, 60].   

The baseline transparent front contact structure in the flexible substrate 

configuration consists of a SnO2/ITO bi-layer, deposited rf sputtering in an Ar ambient, at 

a pressure of 2-4 mTorr, and at substrate temperatures in the 200-300°C range; the 

thickness of the ITO films ranged from 0.2-0.3 :m. 

 

 

 

 



 

Table 2.  Typical resistivity and transmission (in the visible) for various TCO materials 

investigated for thin film solar cells. [59, 60]. 

 

 

Figure 32.  Optical transmission of different front contacts and buffer layers. 
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3.3 Solar Cell Device Characterization  

 

Solar cells were characterized using standard solar cell techniques such as dark 

and light J-V, and spectral response (SR) measurements. SEM, AFM, XRD, EDS and 

optical transmission measurements were performed to study the structure and 

morphology of the films and devices.  
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Chapter 4 
 

Discussion and Results 

 

4.1 Mechanical Properties and Adhesion  

 

4.1.1 Introduction  

 

Excellent adhesion is required of a CdTe thin film solar cell device fabricated on a 

flexible foil substrate. Interlayer adhesion and cohesion can be a problem for both 

flexible substrate CdTe solar cells [14] and thin-film module reliability [61]. Film 

delamination can result in solar cell performance degradation and device failure. The 

primary objective of this work is to study the device materials and interfaces, and their 

response to stress; and to develop a process that achieves strong adhesion of the solar cell 

structure onto flexible metallic foils. This study is being performed as part of the 

development a novel flexible substrate CdTe solar cell, and the development of an 

efficient, pseudo-ohmic back contact. The basic device structure of substrate cells being 

studied is: SS/Mo/CdTe/CdS/ITO-based front transparent contact. Substrate foils 

evaluated include: SS316, SS430, Tantalum, Molybdenum, and Tungsten. Adhesion is 

being studied by analysis of the foil substrate effects, surface roughness, stress, 

microstructure of Molybdenum, and the coefficient of thermal expansion mismatch 
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between the substrate and the film layers. A major challenge associated with the flexible 

substrate CdTe cell is achieving strong adhesion of the solar cell structure onto the 

metallic foil. Substrate characteristics such as the coefficient of thermal expansion, 

surface roughness and substrate composition, strongly influence growth and properties of 

the following layers. Adhesion failure, flaking, delamination, buckling, and 

contamination by diffusion of impurities from the substrate may occur with some 

substrates, resulting in degradation of the solar cell device performance or complete 

device failure.  

 

4.1.2 Experimental Details and Results  

 

Flexible foil substrates (stainless steel SS316, SS430, tantalum, molybdenum and 

tungsten) were cleaned in an ultrasonic bath with acetone, methanol and deionised water. 

A metal electrode (Molybdenum) was deposited by rf sputtering on the stainless steel 

substrates.  The CdTe/CdS layers were deposited by close spaced sublimation (CSS). 

Substrate temperatures ranged from 300 to 550°C. The solar cell structures were heat 

treated in the presence of CdCl2 for 20 minutes at temperatures ranging from 380-425°C, 

followed by the deposition of an ITO-based front transparent contact by rf-sputtering. 

SEM, AFM and XRD measurements were performed to study the structure and 

morphology of the devices. ASTM D3359-08 tape tests, light I-V characteristics and 

spectral response measurements were used to study the effect of various processing 

conditions on adhesion and of the solar cells devices fabricated. 
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4.1.2.1 Substrate Effect on Adhesion and Morphology  

 

The adhesion of CdTe solar cells on foil substrates with respect to substrate 

pretreatment of the stainless steel foils was investigated. The Ar+ RF plasma treatment 

was also investigated and resulted in no significant improvements in adhesion. The foil 

substrate surfaces exposed to air are covered by an adsorbed hydrocarbon contamination 

layer as a result of the manufacturing process, surface preparation, and contact with the 

atmosphere. Substrates were cleaned by ultrasonic solvent clean of successive rinses in 

acetone, methanol and deionised water.   

The initial layer of Mo in the Mo bi-layer acts as a diffusion barrier on the SS316 

and SS430 substrates, promotes adhesion by reducing stress as the tensile layer before the 

compressive layer of Mo, and helps to smooth the rough surface of the substrate. A 

smooth substrate surface is required for two reasons [63]. First, abrupt changes in the 

surface topography such as spikes or cavities may lead to shunts between the front and 

back contact, and degrade adhesion of the solar to the foil substrate. Second, the 

deposition of impurity diffusion barriers or buffer layers may be easier and more 

successful on a smooth substrate. AFM images of a SS316 foil substrate before and after 

Mo deposition are shown in Figure 33, where the surface roughness of the SS foil 

substrate is decreased 30% after the Mo deposition. 

 

 

 

 



 

 

 

Figure 33. AFM images of SS316 foil substrate surface before and after Mo deposition. 

Before Mo, RA=19nm (left), and after Mo, RA=13nm (right). After the Mo deposition, the 

spikes and cavities are leveled out and surfaced roughness is decreased 30%. 

 

4.1.2.2 Coefficient of Thermal Expansion Mismatch  

 

The coefficient of thermal expansion (CTE) of the substrate must lie in the range 

of the CTE of the CdTe solar cell, otherwise adhesion problems can occur as a result of 

thermal expansion mismatch, as shown in Table 3. The effect of temperature on the 

observed results can be attributed to the differences in the coefficient of thermal 

expansion (CTE) of the various films result in a compressive film stress in the device 

structure. Use of an intermediate adhesion layer with a similar CTE and an alternate 

substrate with a smaller CTE can promote adhesion and is being studied.  
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Table 3.  CTE, surface roughness and microstructure of foil substrates. 

 Substrate 
 Material 

 CTE 
 (x 10-6/°K) 

 ΔCTE 
 (x 10-6/°K) 

 Roughness 
 RA (nm) 

 Lattice Parameter (Å)    
 Crystal Structure 

SS 316 16.5 10.6 19 3.5920 
Cubic 

SS 430 10.5  4.6 3 2.8839 
Cubic 

Ta 6.48 0.58 23 3.3058 
Cubic 

Mo 5.04   - 0.86 10 3.1472 
Cubic 

W 4.5 - 1.4 6 3.1648 
Cubic 

 

 Substrate roughness strongly influences growth, crystal orientation and other 

properties of subsequent layers. Grain boundaries, defects, size, orientation and packing 

density directly impacts the overall solar cell device performance. CdTe solar cell devices 

were fabricated on three different substrates (tantalum, molybdenum and tungsten), using 

the same deposition conditions. The substrate affect on grain morphology is shown in 

Figure 34. Results of the ASTM D3359-08 tape test shows that flaking at the edges 

increases from W to Mo, and delamination within the squares increases from Mo to Ta,  

as the CTE increases within these three foils, as shown in Figure 35. The crystallographic 

orientation of the thin films on the three different substrates was investigated with X-ray 

diffraction. Figure 36 shows the XRD patterns of the films on the different foils. Each 

pattern exhibits a CdTe (111) orientation, with the highest (111) intensity exhibited on 

the Mo foil and lowest (111) intensity on the W foil. 



 

 

a) b) c)

Figure 34. Substrate and surface roughness effect on CdTe solar cell morphology.  SEM  

images of CdTe grains on  a) W substrate, b) Mo substrate, and c) Ta substrate. 

W Mo Ta

VOC=130mV VOC=570mVOC=220m

W Mo TaW Mo Ta

 

Figure 35.  ASTMD3359-08 tape test results. CdTe solar cells were fabricated on three 

different substrates: W, Mo and Ta.  The top row shows images of the as-deposited cells. 

The bottom row shows images of the cells after the CdCl2 heat treatment. CTE mismatch 

minimization promotes adhesion and device performance for as-deposited films. The 

CdCl2 chemical treatment increases flaking and delamination and requires optimization. 

The foil with the smallest mismatch, Ta, has the best solar cell device performance. 
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Figure 36.  XRD patterns of CdTe thin films. Films deposited on the three different foil 

substrates, all exhibiting the CdTe (111) preferred orientation. 

 

4.1.2.3 Molybdenum Bi-layer  

 

Mo was selected as a metal electrode to be deposited on foil substrates. 

Deposition parameters affect Mo morphology and film resistivity. The film deposited 

using high power and low Ar pressure was densely packed, least resistive and 

compressive. The film deposited using low power and high Ar pressure was not densely 

packed, most resistive and tensile. Results are shown in Figure 37 and data summarized 

in Table 4. Our devices use a high-ρ(tensile)/low-ρ(compressive) Mo bi-layer to promote 

adhesion, act as a diffusion barrier layer, and a roughness leveling layer. Results show the 

grain size of Mo on SS increases as both the deposition rate and the pressure decrease. 

The resistivity decreases as the deposition rate increases and the Ar pressure decreases, 

which is in good agreement with the work of others [64, 65]. 
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Figure 37.  AFM images of Mo films on SS foil substrates. Illustrated are the effect of 

deposition parameters on film morphology and resistivity. Images a – c results and 

conditions are summarized in Table 4. 

Table 4.  Molybdenum morphology and resistivity data summary. 

(a) Result of image (a)  b) Result of image (b)  c) Result of image (c) 
4 mTorr 
10 Å/S 

ρ=1.74x10-4 Ω•cm 
AFM 2D Grain 
size=223nm2 

 8 mTorr 
6 Å/S 

ρ=73.6x10-4 Ω•cm 
AFM 2D Grain 
size=309nm2 

 10 mTorr 
2 Å/S 

ρ=228x10-4 Ω•cm 
AFM 2D Grain 
size=910nm2 

Least resistive film 
Most densely packed film 
Compressive stress film 

   Most resistive film 
Least densely packed film 

Tensile stress film 
 

4.1.2.4 Nanoindentation, Film Adhesion and Stress  

 

Nanoindentation measurements were performed (with assistance from Dr. 

Kumar’s research group and the USF Mechanical Engineering Department) with the 

ultimate objective to correlate the film mechanical properties to the deposition process; 

Young’s Modulus and hardness data are shown in Figure 38 for two different samples of 
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Mo films on SS foils listed in Table 4. Although these should still be considered as 

preliminary, it appears that the film deposited at the fastest deposition rate has better 

mechanical properties (and the lowest resistivity). These results are encouraging and 

work to complete the sample matrix of Table 4 is needed. More meaningful adhesion 

measurements based on Nanoindentation are needed. 

 

Figure 38.  Hardness and Young’s Modulus for two different samples (a and b) of Mo 

films on SS foils listed in Table 4. 

 

While studying the effects of the Mo deposition process on the mechanical and 

adhesion characteristics of Mo films, it is important to recognize that the entire solar cell 

will be a multi-layer structure, to be completed by the sequential in-situ deposition to two 

possibly three semiconductors at high temperatures, which could affect the integrity of 

the foil/metal substrate. As already indicated above, solar cell structures are also being 

fabricated in parallel with the Mo adhesion studies. These have the following 
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configuration: SS/Mo/ZnTe/CdTe/CdS, and are deposited on Mo films similar to sample 

(a) 11-28-1 (in Table 4). Semiconductor substrate deposition temperatures were in the 

range of 450-550°C (depending on the desired deposition rates); all deposition times 

being essentially identical and under one minute. 

Figure 39 shows a photograph of three SS substrates (size 3.5 x 5.0 cm2) with the 

multi-layer configuration described above; this image clearly demonstrates the varying 

degree of stress in the substrates (based on the variation in the curvature of the foil). 

Based on the limited number of structures fabricated to-date, there appears to be several 

parameters that affect the degree of curvature; two of them are: (a) the total film 

thickness and (b) the ultimate substrate temperature (and/or the exposure time at high 

temperatures). This work will continue in order to better understand stress and adhesion 

in these structures. The effect of temperature on the observed results can be attributed to 

the differences in the thermal expansion coefficients of the various films which varies by 

a factor of 2 to 3 among the various films and the SS foil substrate. Table 3 lists the CTE 

for the multi-layer stack of materials including the SS foil substrate and the mismatch in 

CTE which affect film stress and adhesion.  



 

 

Figure 39.  SS substrates coated with Mo and the solar cell semiconductors. 

 

An interesting observation made to-date is the fact that based on simple tape-pull 

tests, the increased curvature in the substrates does not necessarily lead to poorer 

adhesion. Film delamination, flaking and debonding has been observed for both extreme 

and minimal curvature as shown in Figure 40. The adhesion of deposited films used in 

CdTe/CdS solar cell devices must be excellent both as-deposited, and after subsequent 

processing. Typically, for low values of adhesion, the electron shells of the adsorbed 

atoms remain intact, and these atoms are held to the surface by Van der Waals forces. 

These atoms are said to be physisorbed on the substrate. For high values of adhesion, 

sharing of electrons between the film and the substrate occurs, and the atoms are 

chemisorbed. Generally adhesion is greater the higher the absorption energy of the 

deposit and/or the higher the number of nucleation centers in the early growth stage of 

the film. Chemisorption due an intermediate-layer or “adhesion layer” formation that 

allows a continuous transition from one lattice to the other results in excellent adhesion. 
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Adhesion is also improved if intermetallic metal alloys are formed. In addition, adhesion 

is strongly affected by the cleanliness of the substrate, and the surface roughness of the 

substrate. Stress in a thin film is generally not sufficient to result in delamination, unless 

the film is extremely thick. More often, high stress results in the cracking of films. 
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Figure 40. Film (a) delamination, (b) flaking, and (c) debonding all as a result of stress, 

poor adhesion and CTE mismatch. 

(c) Debonding (a) Delamination (b) Flaking 

 

Typically, a thin film or multi-layer material bonded to a substrate supports some 

state of residual stress, which has a direct dependence on the film thickness. This residual 

stress can trigger significant undesirable consequences, including excessive deformation, 

fracture, delamination, microstructural changes in the materials, and device failure. This 

stress may be compressive or tensile. Compressively stressed films tend to expand 

parallel to the substrate surface, and buckle up on the substrate. Tensile stressed films 

tend to contract parallel to the substrate surface, and crack if their elastic limits are 

exceeded. Highly stressed films tend to exhibit poor adhesion, and the resistivity of 

stressed metallic films is higher than that of their annealed counterparts. 
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Growth or intrinsic stresses are dependent on:  

1. the materials involved,  

2. substrate temperature during deposition,  

3. growth flux, and  

4. growth deposition conditions.  

The development of intrinsic stresses dependencies include the bonding of the deposit to 

the substrate, the mobility of adatoms on the film material itself, and the mobility of grain 

boundaries formed during growth. The final growth structure is typically metastable. 

Proposed mechanisms for stress generation during film material deposition include: 

 

1. Surface and/or interface stress 

2. Cluster coalescence to reduce surface area 

3. Grain growth, or grain boundary area reduction 

4. Vacancy annihilation 

5. Grain boundary relaxation 

6. Shrinkage of grain boundary voids 

7. Incorporation of impurities 

8. Phase transformations and precipitation 

9. Moisture adsorption or desorption 

10. Structural damage as result of sputtering or other energetic deposition process. 

 

Typically, film-substrate material combinations grow in the Volmer-Weber (VW) 

mode which leads to a polycrystalline microstructure. Characteristic of this growth mode 



 

is that deposited material gathers into discrete clusters or island on the substrate surface. 

Following the initial nucleation of islands of film material, successive stages typically 

include: island growth, island-to-island contact and coalescence into larger islands, 

establishment of large area contiguity, and filling in of the remaining gaps in the structure 

to form a continuous film. Once islands begin to interact to form grain boundaries, the 

process of grain coarsening can also contribute to structural evolution. 

 Nanoindentation measurements were performed and SEM images of indents of a 

solar cell on a SS foil are shown in Figure 41 and Load versus Displacement curves are 

shown in Figure 42.  

 

 

Figure 41.  SEM images of nanoindentation data of a solar cell  

on a flexible foil substrate. 

 

 

74 



 

75 

Load vs. Displacement

0

5

10

15

0 1000 2000 3000

Displacement (nm)

Lo
ad

 (m
N

)
7-11-4A
ITO/CdS/CdTe/ZnT
e/Mo-b layer/SS430

Load vs. Displacement

0
20
40
60
80

100

0 1000 2000 3000

Displacement (nm)

Lo
ad

 (m
N

)

7-11-2A 
ITO/CdS/CdTe/Mo-
bilayer/SS430

Load vs. Displacement

0
100
200
300
400
500

0 1000 2000 3000 4000

Displacement (nm)

Lo
ad

 (m
N

)

5-2-1B
CdTe/Mo2C/Mo-
bilayer/SS316

Load vs. Displacement

0

50

100

150

200

0 1000 2000 3000

Displacement (nm)

Lo
ad

 (m
N

)

8-29-2B
CdTe/Mo-
bilayer/SS430

Load vs. Displacement

0
2
4
6
8

10

0 100 200 300

Displacement (nm)

Lo
ad

 (m
N

)

7-11-5A
Mo-bilayer/SS430

Load vs. Displacement

0
50

100
150
200
250

0 1000 2000 3000

Displacement (nm)

Lo
ad

 (m
N

)

7-11-2A
ITO/CdS/CdTe/Mo-
bilayer/SS430

IT
O

 S
ta

ck
 w

ith
 a

nd
 w

/o
 Z

nT
e 

C
dT

e
St

ac
k

w
ith

an
d

w
/o

M
o2

C
M

o-
bi

la
ye

r v
s 

IT
O

 S
ta

ck
 

Figure 42.  Load versus displacement curves of solar cells on flexible foil substrates. 

 

4.1.3 Conclusions  

 

Mismatch minimization of the substrate’s CTE promotes adhesion and device 

performance of the CdTe solar cell device onto the flexible foil substrate (for as-

deposited films). The effect of the CdCl2 chemical treatment on the CdTe solar cell 

device increases flaking and delamination. Mo bi-layers reduce surface roughness and 

promote adhesion. Adhesion has significantly improved and studies continue with 
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minimizing CTE mismatch in the foil substrate, minimizing the surface roughness and 

optimizing the CdCl2 treatment to promote adhesion of substrate CdTe thin film solar 

cells deposited on flexible foil substrates. 

 

4.2 Development of Back Contacts  

 

4.2.1 Introduction  

 

An important issue associated with the fabrication of CdTe solar cells is the 

formation of a low resistance back contact of high stability. A number of materials are 

being investigated. The most promising approach used to-date is based on the use of an 

interfacial layer between the CdTe and a metal electrode, an approach that is believed to 

yield a pseudo-ohmic contact. The primary objective of this work is to investigate 

materials such as ZnTe and Sb2Te3 in the development of efficient back contacts for 

CdTe thin film solar cells deposited on flexible foil substrates in the substrate 

configuration. The ZnTe band alignment with CdTe is favorable for hole transport and 

can be easily doped p+, and therefore easily contacted with a metal [66]. Extensive 

research on ZnTe doped with Cu has been done by Gessert et al. [67] and Tang et al. 

[37]. Copper-doped ZnTe makes a low resistance contact, although control of the Cu 

diffusing into the bulk CdTe and CdS is critical [37]. It has also been shown that if CdS is 

doped with Cu, this element need not be used for the formation of the back contact [68, 

69]. Antimony telluride (Sb2Te3) deposited at low temperature is amorphous and 

resistive, but at higher temperatures, it crystallizes, and carrier densities increase with 
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substrate temperature to p ≈ 1 x 1020 cm-3 [70-72]. Romeo et al. [45, 62] first proposed 

the use of Sb2Te3 as an intermediate ‘buffer’ layer and demonstrated that the contact to 

CdTe can yield highly efficient and stable devices. Their 100 nm Sb2Te3 layers were 

deposited by sputtering at a substrate temperature of 300°C. There appears to be no 

evidence of Sb diffusion doping the CdTe. Formation of Sb2Te3 as a function of 

sputtering temperature has been investigated systematically [43]. Co-sputtering onto a 

low temperature substrate yields a mixed amorphous/crystalline deposit that converts to 

crystalline Sb2Te3 upon heating. Alternatively the crystalline Sb2Te3 can be formed by 

sputtering directly at temperatures above 200°C [73]. 

 

 

4.2.2 Experimental Details and Results  

 

All thin CdTe/CdS solar cells discussed in this paper are of the substrate 

configuration shown in Figure 43.  The substrates were flexible stainless steel foil, and 

prior to solar cell fabrication were ultrasonically solvent-cleaned in successive rinses of 

acetone, methanol and deionized water.  The baseline metallization electrode structure 

consisted of a molybdenum (Mo) bi-layer, deposited by rf-sputtering at room 

temperature; the thickness of the Mo bi-layer was approximately 0.5 μm. Two different 

materials were investigated as potential back contact layers deposited between CdTe and 

Mo, ZnTe and Sb2Te3.  The ZnTe layer was deposited by close-spaced sublimation 

(CSS); the thickness of the ZnTe ranged from 0.2-0.5 μm. Substrate temperatures ranged 

from 300-550°C. The Sb2Te3 films were deposited using two different approaches:  (a) 



 

deposited by evaporation from Sb2Te3 powder; the thickness of the Sb2Te3 films ranged 

from 0.1-0.2 μm, and substrate temperatures ranged from 150-450°C. (b) synthesized by 

depositing Te and Sb bi-layers and subsequently annealing them at temperatures ranging 

from 150-450°C, to form Sb2Te3.  Both the CdTe and CdS layers were deposited by CSS 

at substrate temperatures in the 400-650°C range; the CdTe and CdS films were in some 

instances deposited in-situ. The solar cell structures were heat treated in the presence of 

CdCl2 in O2-containing ambient. The baseline transparent front contact consisted of ITO 

deposited by rf-sputtering at temperatures in the range of 200-300°C, and a thickness of 

0.2-0.3 μm.  Solar cells were characterized using standard solar cell techniques such as 

dark and light J-V, and spectral response (SR) measurements. SEM and XRD 

measurements were performed to study the structure and morphology of the films and 

devices.  

 

Figure 43.  CdTe substrate device configuration. 
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4.2.2.1 CSS ZnTe  

 

Zinc telluride has already been shown to be an effective back contact layer for the 

standard CdTe superstrate configuration [66] and can be easily deposited by CSS.  The 

valence band position of ZnTe does not impede hole transport, while the conduction band 

can serve as an electron reflector which can have a positive impact on the collection of 

photo-generated carriers in CdTe. For this work no intentional dopant is introduced 

during the CSS deposition of ZnTe or during subsequent processing. 

Figure 44 shows the effect of substrate temperature on the orientation of ZnTe 

films (XRD peak intensity ratio (hkl)/(111)). The data shown are for ZnTe films 

deposited at substrate temperatures in the range of 450-550 °C, and a source temperature 

of 630ºC.  All films were found to exhibit preferential orientation along the (111) 

direction, with those deposited at the lowest temperature being the most highly oriented.  

This effect of substrate temperature on the orientation of ZnTe films has also been 

observed for CSS-CdTe [74, 75]. The ZnTe grain size for the films studied to-date is on 

the order of 0.1-0.3 µm, and the films are compact and consist of relatively uniform 

grains as shown in Figure 45 for a film deposited on a foil/Mo substrate. The resistivity 

of the CSS-ZnTe films was too high, and could not be measured using a four-point probe. 
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Figure 44.  The effect of substrate temperature on the crystallographic orientation on 

ZnTe films deposited by CSS on Mo/foil substrate. 

 

 

Figure 45.  SEM image of a CSS-ZnTe film deposited on a foil/Mo substrate. 
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4.2.2.2 Sb2Te3 Films  

 

Antimony telluride films were prepared using two different approaches:  (a) direct 

evaporation from the Sb2Te3 compound, and (b) synthesis from annealed Sb/Te bi-layers.  

 

4.2.2.2.1     Evaporation from Sb2Te3   

 

Films prepared by direct evaporation from Sb2Te3 were deposited at temperatures 

in the range of 200-400°C.  The XRD spectra for typical Sb2Te3 films deposited on glass 

substrates are shown in Figure 46; Table 5 lists the various diffraction peaks identified in 

the spectra of Figure 46.   Identical results were obtained for films deposited on foil/Mo 

substrates (their XRD spectra are not shown here for clarity, since those contained 

additional peaks from Mo and the foil substrate).  The spectra of the films deposited at 

the three highest temperatures were essentially identical with peaks having very similar 

intensities; all peaks have been identified to belong to the Sb2Te3 compound (see list in 

Table 5).  The films deposited at the two lowest temperatures contain peaks that do not 

belong to the Sb2Te3 phase (shown in italics in Table 5).  These have been assigned to 

Te. 
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Figure 46.  XRD spectra of Sb2Te3 films deposited by evaporation from Sb2Te3 on glass 

substrate. 

 

The resistivity of the Sb2Te3 films deposited on glass was measured using a four-

point probe and is shown in Figure 47 as a function of the deposition temperature. As the 

temperature is increased the resistivity decreases, with an apparent increase for the 

highest temperature; although this is well within the experimental error and must be 

verified with further studies.  The highest and lowest resistivities measured are 5.4 x 10-5 

and 8.0 x 10-6 Ω·m respectively.  Attempts to deposit Sb2Te3 at higher temperatures were 

mostly unsuccessful due to re-evaporation of the compound. 
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Table 5.  22 values and the corresponding (hkl) directions for the Sb2Te3 films. Reference 

Figure 46. 

 2θ [º] 

 200 °C 250 °C 300 °C 350 °C 400 °C 

(003)   8.689 8.6719 8.6976 

(006)   17.4601 17.449 17.5237 
(009)   26.3759 26.3609 26.3349 
(101) 27.6127 27.6049    
(015) 28.2447 28.2094    
(1010) 38.3351 38.3261 38.2853 38.3635  
(0015)  45.8993 44.5778 44.6826 44.6595 
(0018)  54.472 54.1933 54.0657 54.2542 
(1019)  63.2481    

 

Assuming typical values for thin film carrier mobilities of the order of 10-20 

cm2/V·s, the carrier density for the evaporated films shown above ranges from the mid 

1019 to mid/high 1020 cm-3.  These results are consistent with Wang et al. [71] who found 

that for Sb2Te3, the mobility increases nearly five times from 0.7634 to 3.721 cm2/V·s, 

and the carrier density increases less than two times from 8.46 x 1019 to 1.50 x 1020 cm-3.  

It indicates that the drop of electrical resistance is mostly contributed by the increase of 

mobility.  The resistivities obtained here are significantly lower than those reported by 

Romeo et al. [76] for films deposited by sputtering at a substrate temperature of 300°C 

and a film thickness of 300 nm. Crystals of Sb2Te3 prepared from stoichiometric amounts 

of Sb and Te typically contain an overstoichiometric amount of Sb [72]. The excess of Sb 

is closely related with the concentration of native defects, notably the antisite defects, 

where Sb occupies the lattice site of Te. A single negative charge that such a defect 

carries is compensated by a positively charged hole, giving rise to a high background 



 

hole carrier density on the order of 1020 cm-3 at room temperature, and resulting in a 

decrease in electrical resistivity of the Sb2Te3 films developed in this research. 
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Figure 47.  Resistivity of Sb2Te3 thin films deposited by 

evaporation at various substrate temperatures. 

 

4.2.2.2.2     Synthesis of Sb2Te3 Films from Sb/Te Bi-layers  

 

Antimony telluride films were also synthesized by annealing bi-layers of Te and 

Sb in order to ultimately be able to control the stoichiometry of the compound and 

incorporate excess Te or Sb.  For this work the thicknesses of Te and Sb were calculated 

to yield a ratio of 3:2 in order to synthesize the Sb2Te3 compound.  In some cases Te was 

deposited first followed by the deposition of Sb, and in others the sequence was reversed. 

The bi-layers were annealed at various temperatures in inert ambient.  

Figure 48 shows XRD spectra for four Sb/Te films; these were deposited on Mo 

coated foil substrates and were annealed at 200 and 350ºC, with Te or Sb being deposited 

84 



 

first (the legend Sb/Te indicates that Sb was deposited first, and Te/Sb indicates that Te 

was deposited first).  The films annealed at 350ºC contained the Sb2Te3 phase and 

exhibited very similar XRD spectra irrespective of the sequence of deposition of the 

elements.  The films annealed at 200ºC with Sb deposited first did not show evidence of 

the Sb2Te3 being present; however, Sb2Te3 was found in the films where Te was 

deposited first. All films contained peaks associated with Te or Sb.  The main Sb2Te3 

peaks identified in the various films are marked in Figure 48 with “down” arrows. The 

unmarked peaks are associated with the elements or the substrate materials. 
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Figure 48.  XRD spectra for Sb-Te films synthesized from Te/Sb bi-layers. 
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4.2.3 Conclusions  

 

Two different materials are being investigated as back contact candidates for 

substrate CdTe thin film solar cells deposited on flexible foil substrates: ZnTe and 

Sb2Te3. Sb2Te3 films prepared by evaporation from the Sb2Te3 compound have been 

found to be superior to those synthesized by annealing of Te/Sb bi-layers which 

contained elemental phases; processing conditions for films synthesized by annealing of 

elemental bi-layers will have to be improved/optimized in order to produce single phase 

Sb2Te3. The Sb2Te3 resistivity was found to decrease with deposition temperature; the 

resistivity for films studied to date was found to be in the range 8.0x10-6 - 5.4x10-5 Ω·m.  

The decrease in resistivity of Sb2Te3 is attributed to an increase in carrier mobility. Solar 

cell results suggest that ZnTe is more suitable as a back contact material based on the 

highest VOC obtained from ZnTe-contacted cells, even though this material was not 

intentionally doped (and exhibited high resistivity). This suggests that doping of ZnTe 

can result in significant improvements in the back contact characteristics and overall solar 

cell performance. All solar cells exhibited I-V characteristics with a significant roll-over 

in the 1st quadrant suggesting the presence of a strong barrier at the back contact. 
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4.3 Optical Absorption and Transmission  

 

4.3.1 Introduction  

 

The efficiency of a CdS/CdTe solar cell is a key characteristic because it allows 

the device to be evaluated in comparison to other solar cells, and also, other energy 

conversion devices. The CdS/CdTe solar cell efficiency is the fraction of incident light 

energy converted to electrical energy. This conversion efficiency depends on both the 

semiconductor material properties and the device structure. This characteristic is 

dependent on the optical energy that is absorbed in the semiconductor and the excess 

electron-hole pairs (EHPs) generated that produce photocurrents. 

Photogenerated EHPs far away from the depletion region are lost by 

recombination.  It is important to have the minority carrier diffusion length Le in p-CdTe 

as long as possible.  At long wavelengths, around 0.7 µm, the absorption coefficient α of 

CdTe is 104 cm-1 and the absorption depth (1/α) is typically greater than 1 µm.  The 

absorption coefficient is the relative number of photons absorbed per unit distance, 

expressed in terms of cm-1. If the absorption coefficient is large, the photons are absorbed 

over a relatively short distance.  The absorption coefficient in the semiconductor is a very 

strong function of photon energy and bandgap energy. Figure 49 shows the absorption 

coefficient α plotted as a function of wavelength for several semiconductor materials 

[27]. The absorption coefficient increases very rapidly for hv > Eg.  

To efficiently capture these long wavelength photons, the thickness of p-CdTe 

plays a crucial role. This study looks at the optical absorption and transmission effects 
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based on the thickness of p-CdTe, and the overall effects on device performance and 

efficiency.  To determine the optimum thickness of CdTe that will absorb 90% of the 

incident photon energy, we will use the relation, 

 

 Iv(x) = Iv0e-αx   (26) 

 

where Iv(x) is the intensity of the photon flux and is expressed in terms of energy/cm2-s.  

Ideally, if 90 percent of the incident flux is to be absorbed in a distance d, then the flux 

emerging at x = d will be 10 percent of the incident flux, and for CdTe α = 104, then  

 

 d = (1/α)ln(1/0.1) = (1/104)ln(10) = 2.30 µm  (27) 

 

As the incident photon energy increases, the absorption coefficient increases rapidly, so 

that the photon energy can be totally absorbed in a very narrow region. 

 

 

 

 

 

 

 

 

 



 

 

Figure 49. Optical absorption coefficients for various  

semiconductor materials, including CdTe. [27]. 

 

4.3.2 Experimental Details and Results  

 

In this study, all thin CdS/CdTe solar cells were of the superstrate configuration.  

The device structure was Glass/SnO2/CdS/CdTe/C:HgTe-Cu.  The substrates were 

Corning 7059 borosilicate glass.  Before device fabrication, substrates were cleaned in a 

dilute hydrofluoric acid (HF) solution for approximately 10 seconds, followed by a 

deionized (DI) water rinse. The front contact structure consists of a SnO2 bi-layer (low-

ρ/high-ρ), deposited by chemical vapor deposition (CVD); the thickness and sheet 

resistance of the bi-layer were approximately 1 μm and 7-8 Ω/  respectively [7]. The 

CdS films were deposited using the chemical bath deposition (CBD) process in an 
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aqueous bath at 85°C to a thickness of approximately 0.1 μm.  The CdTe films were 

deposited by close-spaced sublimation (CSS) at substrate temperature and source 

temperature of 500°C and 630°C respectively.  Following the CdTe deposition, the 

device structure was subjected to a heat treatment in the presence of CdCl2 onto the CdTe 

surface by evaporation, and subsequently heat treating the structures at 390°C at 

atmospheric pressure in the presence of O2 for 15 minutes.  The back contact process 

consisted of a cleaning step, where the CdTe surface was etched using 0.1 % by volume 

Br2/methanol solution for 10 seconds, followed by the application of a graphite paste 

doped with HgTe:Cu [38, 77] and a heat treatment in inert ambient at 400°C. After 

formation of the back contact, indium was soldered around the cell areas to serve as a 

front electrode.  Solar cells were characterized using standard solar cell techniques, such 

as dark and light J-V, and spectral response (SR) measurements. 

Recent focus in CdTe solar cell research is being dedicated to improving solar cell 

efficiencies and reducing production cost by minimizing materials requirements with the 

utilization of ultra-thin film CdTe devices.  Considering the typical state-of-the-art 

performance characteristics of 840–850 mV, 74–76 %, and 24–26 mA/cm2, for open-

circuit voltage (VOC), fill factor (FF), and short-circuit current density (JSC) respectively 

[7], one approach to advance efficiencies and reduce cost is by using ultra-thin layers of 

CdTe, and scaled down deposition process conditions.  This section describes the results 

of optimizing the CdTe thickness for maximum absorption in the long range wavelength, 

and of optimizing the corresponding scaled down deposition process conditions.  The two 

main post-deposition processes (CdCl2 treatment and back contact diffusion) require 

reoptimization for thin CdTe structures [78]. A. Compaan showed in Ref. [79] from high 
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angle X-ray diffraction (XRD) that chloride processing produces the usual intermixed 

alloy layer of CdSTe more quickly in the cells with thin CdTe. The use of their standard 

30 minute CdCl2 treatment at 387°C resulted in a thicker alloyed layer that was 

detrimental to cell performance [78]. They found the optimum treatment time in their 

process of RF sputtering of CdTe and CdS at approximately 260°C to be approximately 

10 minutes.  In our process of deposition of CdTe by CSS, and CdS by CBD, our 

treatment time was 15 minutes at 390°C. We have not reoptimized this process for our 

thin CdTe structures. Figure 50 illustrates that the transmission increases, with decreasing 

CdTe thickness. However, the sharpness of the CdTe absorption edge deteriorates 

significantly at CdTe thicknesses below 0.8 μm, negatively affecting the overall device 

performance and solar cell efficiency.  

Figure 51 shows the light J-V characteristics of the ultra thin CdTe/CdS cells 

fabricated. The slope of the J-V characteristics at reverse bias, which is used as an 

approximation of the shunt resistance (RSH), appears to be equivalent and infinite for the 

last four devices. However, there is a significance difference in the behavior of the curves 

around VOC. All of the devices exhibit a series resistance (RS), which appears to increase 

for the thinner CdTe devices (0.8 – 1.0 μm).  
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Figure 50. Transmission of solar cells with varied CdTe 

thicknesses ranging from 0.8 μm to 6.3 μm. 
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Figure 51.  Light J-V characteristics for ultra thin CdTe solar cells, with varied CdTe 

thicknesses ranging from 0.8 μm to 6.3 μm. 

 



 

Figure 52 shows the spectral response (SR) characteristics of the solar cells. The 

SR in the blue region (400 – 500 nm) was in the 30 – 35% range for the last four devices, 

indicating that the CdS thickness was appropriate to allow a major portion of the light 

above its band gap to reach the ultra thin CdTe. The three devices with the thinnest layers 

of CdTe exhibited significant recombination losses that further deteriorated in 600 – 800 

nm wavelengths. 
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Figure 52.  Spectral response characteristics for ultra thin CdTe solar cells. Thinner CdTe 

cells exhibit significant recombination losses, especially in the long wavelengths. 

 

Table 6 summarizes the solar cell characteristics for the varied CdTe thicknesses 

ranging from 0.8 – 6.3 μm. Cells below the line all exhibit efficiencies greater than 11%, 

with CdTe thickness ranging from 2.0 – 6.3 μm. Cells above the line exhibit low 

efficiencies, because of the thinness of CdTe, which resulted in significant recombination 
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losses, shown in Figure 52. The best cell efficiency was 12.2%, with a CdTe thickness of 

3.0 μm, 820 mV VOC, 70% FF, and 21.30 mA/cm2 JSC based on the SR measurement. 

 

Table 6.  Summary of solar cell performance based on different CdTe thickness ranging 

from 0.8-6.3 μm. 

Thickness (μm) Sample ID  Voc (mV) Jsc(mA/cm2) FF (%) η (%) 
0.8 3-14-1A 460 9.49 44 1.9 
0.8 3-07-1D 550 14.04 41 3.2 
1.0 3-07-1B 640 15.22 47 4.6 
2.0 3-07-1A 820 21.45 64 11.3 
2.3 3-07-1C 820 21.45 67 11.8 
3.0 3-14-1B 820 21.30 70 12.2 
6.3 3-14-1C 770 21.98 66 11.2 

 

 

4.3.3 Conclusions  

 

Ultra thin superstrate and substrate CdTe solar cells were fabricated and analyzed. 

The best cell efficiency was 12.2% superstrate cell, with a CdTe thickness of 3.0 μm, 820 

mV VOC, 70% FF, and 21.30 mA/cm2 JSC based on the SR measurement. At 2.0 μm 

CdTe, a cell with 11.3% efficiency was fabricated. Further work is required in the 

evaluation range of thicknesses, including the 2.3 μm optimum thickness of CdTe that 

will absorb 90% of the incident photon energy. Also, additional work is required in the 

optimization of scaling down deposition process conditions, to maximize device 

performance and efficiency. 
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4.4 Development of a Barrier Layer  

 

4.4.1 Introduction  

 

Thin stainless steel (SS) foils are used as the substrate for the development of 

CdTe solar cells because of its material properties, high temperature stability, commercial 

availability and cost. A potential problem with the use of a stainless steel foil as the 

substrate is the diffusion of iron (Fe), chromium (Cr) and other elemental impurities into 

the layers of the solar cell device structure during high temperature processing. A 

diffusion barrier limiting the out diffusion of these substrate elements is being 

investigated in this study. Silicon nitride (Si3N4) films deposited on SS foils are being 

investigated as the barrier layer, to reduce or inhibit the diffusion of substrate impurities 

into the solar cell. Si3N4  coefficient of thermal expansion (CTE) of 3.2x10-6/°K is close 

to both the back contact layer Molybdenum, with a CTE of 5.1x10-6/°K and the absorber 

CdTe, with a CTE of 5.9x10-6/°K, minimizing thermal expansion mismatch in the device. 

It has already been shown by others, that substrate impurities like Fe and Cr in the cell’s 

absorber can lead to reduced cell efficiencies [15, 80]. In this study, the effect of the 

Si3N4 barrier layer is being evaluated for its effect on cell efficiency and overall device 

performance. The optimum Si3N4 barrier thickness is also being determined. 
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4.4.2 Experimental Details and Results  

 

All thin CdTe/CdS solar cells discussed in this paper are of the substrate 

configuration shown in Figure 43. The substrates were flexible stainless steel foil, and 

prior to solar cell fabrication were ultrasonically solvent-cleaned in successive rinses of 

acetone, methanol and deionized water.  The baseline metallization electrode structure 

consisted of a molybdenum (Mo) bi-layer, deposited by rf-sputtering at room 

temperature; the thickness of the Mo bi-layer was approximately 0.5 μm. The Si3N4 layer 

was deposited by rf sputtering at room temperature and at 300°C to relieve the stress in 

the thicker Si3N4 films; the thickness of the Si3N4 ranged from 0.05-1.0 μm. Both the 

CdTe and CdS layers were deposited by CSS at substrate temperatures in the 400-650°C 

range; the CdTe and CdS films were in some instances deposited in-situ. The solar cell 

structures were heat treated in the presence of CdCl2 in O2-containing ambient. The 

baseline transparent front contact consisted of ITO deposited by rf-sputtering at 

temperatures in the range of 200-300°C, and a thickness of 0.2-0.3 μm. Solar cells were 

characterized using standard solar cell techniques such as dark and light J-V, and spectral 

response (SR) measurements. SIMS, EDS, SEM and XRD measurements were 

performed to study the structure and morphology of the films and devices. 

 

4.4.2.1 Diffusion of Substrate Impurities  

 

 The diffusion of iron (Fe), chromium (Cr) and other substrate elements into the 

CdTe layer during high temperature processing was investigated by Secondary Ion Mass 
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Spectrometry (SIMS) and EDS lines measurements. It has been reported in literature that 

during the deposition of CIGS on steel foils, detrimental impurities like Fe diffuse from 

the substrate, negatively affect device performance, and deteriorate the cell’s efficiency 

[15, 80-82]. Figure 53 shows a SIMS depth profile of out-diffused substrate impurities Fe 

and Cr measured on a thin film CdTe solar cell fabricated on a stainless steel substrate 

without a diffusion barrier layer. SIMS analysis was conducted at the National 

Renewable Energy Laboratory (NREL). The structure of the sample #3-2-2A in Figure 

53 is SS/Mo bi-layer/ZnTe/CdTe/CdS/SnO2/ITO. This sample has no diffusion barrier. 

The results show a high concentration of out diffused substrate impurity Fe in the 

absorber layer CdTe. Figure 54 shows an EDS lines measurement of sample #3-2-2A, 

also showing out diffused Fe and Cr impurities from the substrate into the absorber CdTe 

layer. The diffusion of Fe could be strongly reduced by a diffusion barrier layer. Figure 

55 is the corresponding SEM cross section image showing the location of the EDS lines 

measurement. 

 



 

Figure 53.  SIMS depth profiles showing high concentrations of out-diffused substrate 

impurities Fe and Cr measured on a thin film CdTe solar cell fabricated on a stainless 

steel substrate without a diffusion barrier layer. 
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Figure 54.  EDS lines measurement of sample #3-2-2A also showing out diffused Fe and 

Cr impurities from the substrate into the absorber CdTe layer. 

Figure 55.  SEM cross section image corresponding to the EDS lines measurement 

performed in Figure 54, showing the location of the high concentration of Fe in CdTe. 
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4.4.2.2 Diffusion Barrier  

 

Various diffusion barriers are capable with respect to their effectiveness in 

blocking substrate constituent diffusion into the CdTe absorber. Barriers include Si3N4, 

SiO2, Al2O3, Cr and thicker metallization Mo layers. This study focuses on Si3N4 layers 

deposited onto steel foils at varying thicknesses and temperatures. The diffusion of Fe 

and Cr into CdTe was measured.  

The structure of the sample #6-23-1A in Figure 57 is SS/Si3N4/Mo bi-

layer/ZnTe/CdTe/CdS/SnO2/ITO. This sample has a 0.5 :m diffusion barrier. The results 

show a very low concentration of out diffused substrate impurity Fe in the absorber layer 

CdTe. This figure shows the EDS lines measurement showing a significant reduction in 

out diffused Fe and Cr impurities from the substrate into the absorber CdTe layer.  

In ref. [15], CIGS thin film solar cells were fabricated on steel substrates with and 

without a diffusion barrier layer. The results indicate all cell parameters are higher for 

cells prepared on steel sheet substrates with diffusion barriers than for cells on bare steel 

substrates without barriers, as shown in the JV comparison curves in Figure 56 [15]. 

Initial data in this study show increased cell performance and efficiency in 

devices with a diffusion barrier, as illustrated in Table 7. Currently, Si3N4 is being studied 

as a barrier layer. Further studies are required to evaluate other barrier layers. 

 



 

Figure 56.  JV characteristics of CIGS solar cells 

with and without a diffusion barrier layer. [15] 

 

Table 7.  Results of solar cells fabricated with and without a Si3N4 barrier layer. The 

device fabricated with a barrier shows an increase in cell efficiency. 

Sample 

Number 

Si3N4  

t (D) 

Device Layers VOC (mV) FF 

(%) 

3-2-2A 0 SS/Mo/ZnTe/CdTe/CdS/SnO2/ITO 590 22 

7-6-3B 500 SS/Si3N4/Mo/ZnTe/CdTe/CdS/SnO2/ITO 620 33 
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Figure 57.  EDS lines measurement of sample #6-23-1A with a 0.5 :m Si3N4  

barrier, showing a significant reduction in out diffused Fe and Cr impurities  

from the substrate into the absorber CdTe layer. 

 

4.4.2.3 Optimum Barrier Thickness  

 

In the work of D. Herrmann et al. in their High-Performance Barrier Layers for 

Flexible CIGS Thin-Film Solar Cells on Metal Foils [83], electrical defects and their 

sources in the SiOx barrier layer were identified. Main defects were caused by mechanical 

damages (scratches, scoring and rolling traces) of the substrate. Surface roughness, 

metallic particles and larger fragments were also sources of electrical defects in the 

barrier layer. With the help of substrate pre-treatment and the deposition of sufficiently 
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thick SiOx layers, perfect insulation properties could be achieved [83]. This is shown in 

Figure 58 for SiOx films of 1, 2 and 3 :m thickness on Kovar® substrates, where the 3 

:m film showed perfect insulation properties [83]. 

 

 

Figure 58.  Insulation of (left to right) 1, 2 and 3 :m thick SiOx  

layers on Kovar® foils. [83] 

 

Initial data in this study show increased cell performance and efficiency in 

devices with a thicker diffusion barrier, as illustrated in Table 8. This study is ongoing to 

determine the optimum Si3N4 barrier thickness and deposition conditions for thin film 

CdTe solar cells deposited on flexible stainless steel substrates. 
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Table 8.  Initial results of solar cells with different Si3N4 barrier thicknesses. 

Sample 

Number 

Si3N4  

t (D) 

Device Layers VOC (mV) FF 

(%) 

6-17-2A 2,500 SS/Si3N4/Mo/CdTe/CdS/SnO2/ITO 100 26 

6-23-1A 5,000 SS/Si3N4/Mo/CdTe/CdS/SnO2/ITO 370 40 

 

 

4.4.2.4 Substrate Type and Surface Roughness  

 

Substrate roughness is a factor that also effects film growth and microstructure 

prepared on flexible metal substrates, and subsequent solar cell device performance and 

efficiency. In a study by W. Batchelor et al. [81] examining the effect of substrate 

roughness on device performance, CIGS cells were prepared on commercially available 

foils with different surface roughness and finishes. The results shown in Table 9 indicate 

that there is a correlation between RMS substrate surface roughness and subsequent 

device performance. Solar cell performance increased with a decrease in substrate surface 

roughness. In a study by R. Wuerz et al. [15], properties of steel substrates and their 

effect on device performance were also investigated. The results are shown in Table 10 

and also show that solar cell device performance increased with a decrease in substrate 

surface roughness. It was shown that a polished surface makes an ideal layer growth 

possible [83]. D. Herrmann et al. in their study of CIGS solar cells on metal foils [83] 

evaluated CIGS solar cells on three different types of metal substrates as shown in Table 



 

11. The results indicate that the best values were obtained on titanium, but on stainless 

steel and Kovar® efficiencies were only lower by about 1%. This was due to slight 

decreases in fill factors and reduced open-circuit voltages. 

 

Table 9. Average surface roughness and corresponding CIGS device parameters. [81] 

 

 

Table 10.  Average surface roughness and corresponding CIGS device performance. [15] 

Substrate D [:m] Roughness  
Ra [nm] 

Voc  
[mV] 

Jsc [mA/cm2] FF [%] η [%] 

Cr steel 24 127 24 648 19.4 71 8.9 
Cr steel 41 100 41 620 16.8 68 7.1 

 

Table 11.  CIGS solar cells on various substrates. [83] 
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Substrate roughness strongly influences growth, crystal orientation and other 

properties of subsequent layers. Grain boundaries, defects, pinholes, gain size, orientation 

and packing density directly impact the overall solar cell device performance. CdTe solar 

cell devices were fabricated on five different substrates with different surface roughness, 

listed in Table 12. The effect of surface roughness on CdTe devices have not been 

performed yet. However, the substrate effect on grain morphology is shown in Figure 59. 

Results indicate that CdTe grains grow very differently on the different substrates due to 

the effects of the substrate microstructure, surface effects and mechanical properties of 

the substrate. There appears to be an inverse correlation between surface roughness and 

grain size, but more research is required in this area. 

 

Table 12.  Surface roughness and other properties of foils researched in this study. 

Substrate 
Material 

CTE 
(x 10-6/°K) 

ΔCTE 
(x 10-6/°K) 

Roughness 
RA (nm) 

Lattice Parameter 
(Å)/Crystal 

SS 316 16.5 10.6 19 3.5920/Cubic 
SS 430 10.5 4.6 3 2.8839/Cubic 
Ta 6.48 0.58 23 3.3058/Cubic 
Mo 5.04 - 0.86 10 3.1472/Cubic 
W 4.5 - 1.4 6 3.1648/Cubic 

 

 



 

 

Figure 59.  SEM images showing substrate effect on CdTe morphology on four different 

substrate foils. Top-left image is stainless steel foil, with grain sizes of 0.5-1.5 :m; top-

right image is tantalum foil, with grain sizes of 2-4 :m; bottom-left image is tungsten 

foil, with grain size of 4-6 :m; bottom-right image is molybdenum foil, with grain size of 

2-4 :m. 
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4.4.3 Conclusions  

 

Effects of substrate impurity out-diffusion and substrate roughness on CdTe 

device performance are being evaluated. The diffusion of substrate elements Fe and Cr is 

evident in solar devices fabricated without a diffusion barrier layer. Use of a Si3N4 

diffusion barrier layer has been shown to suppress the out-diffusion of substrate impurity 

elements, and improve solar cell device performance and efficiency. Additional research 

is required to evaluate the different material options available as barriers, and to 

determine their optimum thickness for best CdTe solar cell device performance. A 

preliminary inverse correlation can be seen between substrate roughness and CdTe device 

performance where smaller surface roughness values yield solar cell devices with higher 

efficiencies. A thicker Mo layer or a thicker barrier layer may serve as a smoothing or 

leveling layer. Additional research is required in this area to determine both the optimum 

substrate roughness and the best type of substrate foil that yield optimum CdTe solar cell 

device performance. 

 

4.5 Flexible CdTe Solar Cells: 6.2% Efficiency  

 

4.5.1 Introduction  

 

Conventional polycrystalline thin film solar cells are usually manufactured on 

thick glass substrates and offer no weight advantage or shape adaptability for curved 

surfaces.  Producing thin film solar cells on flexible metal foil substrates offers several 
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advantages for space as well as terrestrial applications.  CdTe solar cells on glass 

substrates have efficiencies exceeding 16%, and recent development CdTe solar cells on 

flexible metal foils in a substrate configuration report efficiencies in the range of 3.8 to 

8% [9, 11, 12]. Challenges in the development of CdTe devices on metallic substrates is 

the formation of an efficient ohmic contact with CdTe and the incorporation of an 

additional buffer layer as an ohmic contact to increase the cell efficiency.  The criteria of 

matching thermal expansion coefficients and work function, limit the choice of substrate 

and contact materials. An additional consideration is the change to the ohmic contact 

properties, as a result of diffusion of impurities during the CdCl2 annealing treatment and 

from the stainless steel substrate.  Recent progress on the fabrication technology of 

CdTe/CdS solar cells on flexible metallic substrates is summarized in Table 13. 

 

Table 13.  Summary of flexible CdTe solar cells on metallic substrates. 

Rank Group Efficiency 

1 University of Toledo  7.8 % 

2 University of South Florida 6.2 % 

3 University of Kentucky and University of Texas 6.0 % 

4 National Autonomous University of Mexico 3.5 % 
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4.5.2 Experimental Details and Results  

 

Substrate type CdTe solar cells (see Figure 14) were fabricated on flexible 25.4 

:m stainless steel foils. Prior to solar cell fabrication, substrates were ultrasonically 

solvent-cleaned in successive rinses of acetone, methanol and deionized water.  The 

baseline metallization electrode structure consisted of a molybdenum (Mo) bi-layer, 

deposited by rf-sputtering at room temperature; the thickness of the Mo bi-layer was 

approximately 0.5 μm. Back contact buffer evaluated include: ZnTe by CSS in-situ with 

CdTe and CdS at substrate temperatures in the 400-650°C range, Sb2Te3 by thermal 

evaporation at substrate temperatures in the range of 200-300°C, Mo2C by rf sputtering at 

substrate temperatures in the range of 200-300°C, and Au by thermal evaporation at room 

temperature.  Both the CdTe and CdS layers were deposited by CSS at substrate 

temperatures in the 400-650°C range; the CdTe and CdS films were deposited in-situ. 

The solar cell structures were heat treated in the presence of CdCl2 in O2-containing 

ambient. The baseline transparent front contact consisted of ITO deposited by rf-

sputtering at temperatures in the range of 200-300°C, and a thickness of 0.2-0.3 μm. 

Solar cells were characterized using standard solar cell techniques such as dark and light 

J-V, and spectral response (SR) measurements. SIMS, EDS, SEM and XRD 

measurements were performed to study the structure and morphology of the films and 

devices. 
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Results of five different categories of devices fabricated with different back 

contact buffer layers are summarized in Table 14. All of the devices fabricated were 

limited in device performance and efficiency directly as a result of the following: 

1. As a result of the back contact materials used, all of the devices exhibit the 

presence of a back barrier that limits the solar cell Voc and FF;  

2. All of the devices were fabricated on stainless steel foil and are performance 

limited as a result of out-diffusion of impurities (Fe and Cr) from the stainless 

steel substrate; 

3. All of the devices were significantly strained due to the large mismatch in the 

thermal expansion coefficient of the substrate and the CdTe absorber layer, 

and the ZnTe back contact buffer layer; 

4. The surface roughness of the stainless steel substrate also limits the solar 

device performance and efficiency. 

 

Even in the presence of all of the above device performance limitations, thin film 

CdTe solar cells were successfully fabricated on flexible stainless steel foil substrates 

with Mo as the metallization back contact layer. A typical device cross-sectional image is 

shown in Figure 60 for a cell with Mo/ZnTe back contact. 

 

    

 

 

 



 

Table 14.  Summary of devices fabricated with different back contact buffer layers. 

Sample 

ID 

Back 

Contact 

Buffer 

Layer 

Remaining Device 

Structure 

Voc 

[mV] 

FF 

[%] 

Jsc 

[mA/cm2] 

η 

[%] 

6-13-1B Mo  CdTe/CdS/ITO 570 46 19.44 5.10 

5-30-4B Mo  ZnTe CdTe/CdS/ITO 610 54 18.16 5.98 

1-22-4A Mo/ 

Mo2C 

Sb2Te3 CdTe/CdS/In2O3/ITO 580 51 19.42 5.74 

1-11-2B Mo Mo2C CdTe/CdS/In2O3/ITO 630 48 18.27 5.52 

6-26-1A Mo Au CdTe/CdS/ITO 630 50 19.75 6.22 

 

 

ZnTe

ITO/ CdS

 

Figure 60.  Cross section SEM image of foil/Mo/ZnTe/CdTe/CdS/ITO solar cell. 
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Devices fabricated with Sb2Te3 films prepared by evaporation of the Sb2Te3 

compound exhibited better performance that appeared to improve with increasing 

deposition temperature (of the Sb2Te3 films).  Cells contacted with Mo2C exhibited 

promising performance. However, it should be noted that the solar cell fabrication 

process utilizing both contacts is not yet fully optimized and therefore trends may not 

hold true under an otherwise optimized process.   

Cells contacted with ZnTe exhibited the best cost-effective performance to-date 

with efficiencies at the 6.0% level. Cells contacted with Au exhibited the best 

performance to-date with efficiencies exceeding the 6.0% level. Use of all the back 

contact buffer layers improved the cell’s VOC, FF and cell efficiency. Continued research 

is ongoing to identify a high work function material, which establishes an ohmic back 

contact with CdTe, without the back barrier effect. Figure 61 shows light I-V 

characteristics for substrate CdTe cells fabricated on foil substrates; the differences in ISC 

are due to the cell’s different areas; and JSC’s calculated from SR data yield currents in 

the 20-22 mA/cm2 range. Figure 62 shows a SR comparison of CdTe solar cells 

fabricated with the different back contact buffer layers. 
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Figure 61.  Light I-V for substrate CdTe cells fabricated on foil substrates. The 

differences in ISC are due to the cell’s different areas; JSC’s calculated from SR data yield 

currents in the 20-22 mA/cm2 range. 
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Figure 62.  SR comparison of CdTe solar cells fabricated with different back contact 

buffer layers. 

 

4.5.3 Conclusions  

 

Solar cell results suggest that ZnTe is more suitable as a back contact material 

based on the highest VOC obtained from ZnTe-contacted cells, even though this material 

was not intentionally doped (and exhibited high resistivity). This suggests that doping of 

ZnTe can result in significant improvements in the back contact characteristics and 

overall solar cell performance. All solar cells exhibited I-V characteristics with a 

significant roll-over in the 1st quadrant suggesting the presence of a strong barrier at the 

back contact as shown in Figure 61. Research is ongoing in the investigation of other 

high work function metals (Ir and Pt), suitable as potential back contact materials to 

substrate CdTe solar cells. Also, research is ongoing to develop a suitable diffusion 
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barrier to suppress out-diffusion of substrate impurities. Increases in solar cell device 

performance should be realized after the aforementioned enhancements are implemented. 

Substrate CdTe solar cells fabricated on flexible foil have to-date exceeded efficiencies of 

6%. 
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Chapter 5 
 

Conclusions and Future Work 

 

5.1 Conclusions  

 

Challenges in the development of CdTe solar cells on metallic substrates include 

the formation of an efficient ohmic back contact to CdTe or the incorporation of an 

additional buffer layer as a pseudo-ohmic contact, to increase the solar cell’s overall 

performance and efficiency.  Also, the criteria of matching thermal expansion 

coefficients and work function, limit the choice of substrate and contact materials. An 

additional consideration is the change to the ohmic contact properties, as a result of 

diffusion of impurities during the CdCl2 annealing treatment and also out-diffusion of 

impurities from the stainless steel substrate during the high temperature processing of the 

solar cell. Many of these challenges were investigated in this research, the results 

presented and conclusions follows. 

Mismatch minimization of the substrate’s CTE promotes adhesion and device 

performance of the CdTe solar cell device onto the flexible foil substrate (for as-

deposited films). The effect of the CdCl2 chemical treatment on the CdTe solar cell 

device increases flaking and delamination. Mo bi-layers reduce surface roughness and 

promote adhesion. Adhesion has significantly improved and studies continue with 
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minimizing CTE mismatch in the foil substrate, minimizing the surface roughness and 

optimizing the CdCl2 treatment to promote adhesion of substrate CdTe thin film solar 

cells deposited on flexible foil substrates.  

Different materials were investigated as back contact candidates for substrate 

CdTe thin film solar cells deposited on flexible foil substrates: Mo, ZnTe, Sb2Te3, Mo2C 

and Au.  The Sb2Te3 resistivity was found to decrease with deposition temperature; the 

resistivity for films studied to date was found to be in the range 8.0x10-6 - 5.4x10-5 Ω·m.  

The decrease in resistivity of Sb2Te3 is attributed to an increase in carrier mobility.  Solar 

cell results suggest that ZnTe is more suitable as a back contact material based on the 

highest VOC obtained from ZnTe-contacted cells, even though this material was not 

intentionally doped (and exhibited high resistivity).  This suggests that doping of ZnTe 

can result in significant improvements in the back contact characteristics and overall solar 

cell performance.   

Cells contacted with ZnTe exhibited the best cost-effective performance to-date 

with efficiencies at the 6.0% level. Cells contacted with Au exhibited the best 

performance to-date with efficiencies exceeding the 6.0% level. Use of all the back 

contact buffer layers improved the cell’s VOC, FF and cell efficiency. All solar cells 

exhibited I-V characteristics with a significant roll-over in the 1st quadrant suggesting the 

presence of a strong barrier at the back contact.  Substrate CdTe solar cells fabricated on 

flexible foil have to-date reached efficiencies of 6%. 

 

 

 



 

119 

5.2 Future Work  

 

Future work should address the following areas:   

1. Ohmic back contacts: 

a. ZnTe doping,  

b. further studies of the properties of Sb2Te3 as a function of deposition 

parameters,  

c. use of high work function metals, Ir and Pt as back contacts, 

d. optimization of the solar cell process for each type of contact material. 

2. Continued studies of thermal expansion coefficient mismatch minimization, 

by 

a. incorporation of a stress-relief anneal after CdTe deposition   

b. fabricating devices on Ta foil as a substrate, and using a substrate 

diffusion barrier layer. 

3. Developing a diffusion barrier layer to suppress out-diffusion of impurities 

from the metallic substrate during high temperature processing by 

a. evaluating barrier materials: Si3N4, SiO2, Al2O3, Mo and Cr 

b. optimizing barrier thickness. 

5. Utilizing the ‘Stress-induced lift-off method’ (SLIM-Cut) process, illustrated 

in Figure 63, to fabricate thin film CdTe on flexible metallic substrates, lifting 

off the entire device including a deposited metallic substrate layer. In the 

SLIM-Cut process [84], a high thermal stress is induced by a metallization 

layer, resulting in the release of a thick metal foil. 



 

Addressing the above listed items is believed to significantly increase the VOC and FF of 

thin film CdTe solar cells on flexible metallic substrates. 

 

 

Figure 63.  ‘Stress-induced lift-off method’ (SLIM-Cut) process. A high thermal stress is 

induced by a metallization layer, resulting in the release of a 50 :m Si foil. The top row 

shows the remaining substrate and the bottom row, the thin lifted-off silicon layer. [84] 
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