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Development of UHF Micromechanical Resonators and Arrays Based on Silicon-On-

Insulator (SOI) Technology 

Mingke Xiong 

ABSTRACT 
 

 A novel micromachining technology on SOI substrates is presented that is capable 

of producing on-chip high-Q resonators and resonator arrays equipped with high aspect-

ratio (30:1) microstructures and nano-gap capacitive transducers filled with high-k 

dielectrics. The newly developed IC-compatible MEMS microfabrication process 

consists of merely three standard photolithography steps, which is much simpler than the 

other SOI-based resonator device technologies.  In order to achieve the optimum 

performance and yield of the resonators and resonator arrays, this SOI-based fabrication 

process has been carefully designed and investigated step by step.  

 For capacitively-transduced extensional mode (e.g., radial-contour and wine-glass 

mode) resonators, formation of nano-scale capacitive gaps and large resonator-to-

electrode overlap area is essential for reducing the motional resistance Rx and DC bias 

voltage by strengthening the capacitive transduction. Atomic Layer Deposition (ALD) 

technology with superb conformability and uniformity as well as outstanding thickness 

controllability is used to deposit the ultra-thin layer (~10 nm) of high-k dielectric material 

that acts as the solid capacitive gaps, which allows the mass production of on-chip 

capacitively-transduced resonators and resonator arrays with greatly enhanced 
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electromechancial coupling coefficient, and thus lower motional resistance and DC bias 

voltage.  

 Using this technique, high-Q micromechanical resonators and resonator arrays on 

SOI substrates operating at ultra-high frequencies (UHF) have been developed. The 

ultimate goal of this project is to implement on-chip narrow-band micromechanical filters 

with unprecedented frequency selectivity and ultra-low insertion loss. By fine-tuning the 

nonlinear characteristics of the capacitive transducers enabled by the new SOI 

technology, novel on-chip mechanical signal processors for frequency manipulation, such 

as mixer and multiplier, will be investigated.  
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CHAPTER 1 INTRODUCTION 
 

Ever since David E. Hughes introduced the concept of electromagnetic waves in a 

signal system eight years before Hertz's experiments, wireless communication has 

gradually become one of the most exciting areas and has started to play an increasingly 

significant role in our everyday lives. Today, wireless communication technology makes 

impact on our lives in all aspects, such as cellular telegraphy, satellite communication, 

broadcasting, wireless sensor network, and a lot more [1]. Particularly, these 

achievements have led to a low-cost, power-efficient wireless communication system as 

well as the overwhelming boost of personal wireless communication devices like cellular 

phone, Global Positioning System (GPS), Personal Digital Assistant (PDA), portable PC, 

so on so forth. According to statistics released by Global System for Mobil 

Communications (GSM), the number of global GSM subscribers has surpassed 3 billion 

in 2008 and will continue to grow by over 10% annually.  

However, the overly crowded spectrum, which is fully occupied by a wide variety 

of wireless communication standards, has imposed a big challenge in reception of the 

desired signal among substantial amount of interferences in adjacent frequencies. Hence, 

on-chip and fully integrated devices with better band selection are needed in order to 

catch up with the fast development of wireless communication system.  

In order to satisfy the stringent specifications for communication standards, 

especially those based on traditional superheterodyne architecture, a number of high 

quality (Q)-factor mechanical components are required for precise frequency generation 
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and selection. So far, tremendous efforts have been devoted to using alternative 

transceiver architectures, such as direct conversion (zero-IF) [2], low-IF [3, 4], and RF 

sampling down-conversion [5], which rely on higher levels of transistor integration to 

minimize the need for high-Q passives at RF front-ends. Unfortunately, performances of 

them are not ready yet to compete with that of their counterparts in traditional 

superheterodyne architecture, thus trumpeting a need for on-chip replacements of the 

high-Q RF passives (e.g., filters, resonators, etc.). 

Recent development in the radio frequency micro-electro-mechanical systems (RF 

MEMS) technology has attracted a great deal of attention from both academia and 

industries, which holds great promises to potentially revolutionize the entire regime of 

the wireless technology by bringing together microelectronics and micromechanical 

elements. As such, the implementation of complete wireless transceivers on a single chip 

could lead to a viable solution to many current issues and challenges in present-day 

wireless communications. Particularly, due to their orders-of-magnitude smaller size as 

compared to traditional off-chip passives (e.g., quartz crystal, ceramics, etc.), the next 

generation of wireless transceivers equipped with RF MEMS components can be realized 

with greatly enhanced performance. A CMOS-compatible MEMS technology has been 

demonstrated lately that enables alternative communication architecture by facilitating 

the integration of high-Q passive devices with active transistor electronics, allowing great 

size reduction, lower power consumption and enhanced performance [6].  

Among the various types of MEMS devices and applications, capacitively-

transduced micromechanical resonators have obtained most interests due to their UHF to 

SHF operation frequencies and ultra-high Q-factors exceeding 10,000 [7-11]. In addition 
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to their superb frequency selectivity, the use of capacitive transduction makes the 

resonators operating under electric charge potentials with no dc current flow thus no dc 

power consumption. Moreover, due to the fact that the resonance frequency is defined by 

the lateral dimensions, capacitively-transduced resonator offers CAD layout-definable 

frequencies. Other benefits include better thermal stability [12], higher frequency stability 

[13], better voltage-controlled tunability [14], better CMOS-compatibility, and self-

switching capability [15].  

1.1 Background of Wireless Transceiver Architecture 

A transceiver is a device that consists of both a transmitter and a receiver sharing 

the same electronic circuitry. A transmitter modulates the baseband data and up-converts 

it into a carrier frequency with sufficient power amplification. Key parameters of the 

transmitter performance are the modulation accuracy, signal purity, and RF output power 

level. The main function of a receiver is to demodulate the desired signal from the 

presence of undesired interference and noise. Therefore, comparing to a transmitter 

which processes a locally available strong signal, a receiver is much more challenging 

because of the requirement of high dynamic range and high out-of-band attenuation. 

Due to the increasing data traffic, the associated signal bandwidth is limited. As a 

result, selectivity becomes the most important characteristic of a receiver, which is 

defined by the capability of picking up the wanted signal while rejecting adjacent 

frequency interferers. Filters with high off-band attenuation are used to select the narrow 

band channels. The selectivity of a filter is determined by its quality factor, Q, given by: 

BW
fQ 0=

                                                               1.1
                        

where f0 is the center frequency and BW the 3 dB bandwidth of the filter.  
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In the following sections, several most popular receiver architectures and a novel 

MEMS-based architecture proposed this work are discussed.   

1.1.1 Superheterodyne Architecture 

Since invented by Edwin Armstrong in 1917, superheterodyne architecture has 

still been used within a majority of wireless systems. As illustrated in Figure 1.1, the 

desired signal received by an antenna passes through a pre-select bandpass filter, a low 

noise amplifier (LNA), and then an image-reject filter to remove the out-of-band 

interference as well as the image frequency. The selected RF signal is then converted to 

an intermediate frequency (IF) signal by mixing with a local oscillator (LO) signal 

generated by a voltage controlled oscillator (VCO). A channel-select filter is used to 

assign the desired channel and reject all the in-band interference. This is followed by an 

analog-to-digital converter (ADC) and a digital signal processor (DSP) that perform the 

demodulation and data decoding to provide the output baseband data, respectively.  

 

Figure 1.1 Simplified architecture of a superheterodyne receiver with single down-

conversion.   

As shown in Figure 1.1, high-Q vibrating mechanical components, such as 

ceramics, quartz crystal, and surface acoustic wave (SAW) resonator are used to integrate 

with bandpass filters and oscillators. Filters utilizing such technologies successfully 
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extinguish themselves by outstanding quality factor, low insertion loss, high percent 

bandwidth, and high out-of-band rejection [16]. Oscillators also benefit from high-Q 

because the phase noise decreases as Q increases. However, as the demand for  high-

selectivity devices keeps on increasing, quartz and SAW devices have gradually failed to 

satisfy the stringent high-Q requirement. More importantly, current high-Q devices are 

bulky, where off-chip components make the ultimate miniaturization of the wireless 

communication systems difficult.  

1.1.2 Direct Conversion Architecture 

 

Figure 1.2 Simplified architecture of direct conversion receiver.   

The motivation of ever increasing integration level has led to the invention of the 

direct conversion receiver, which is also known as “homodyne” or “zero-IF” [3, 4]. 

Figure 1.2 shows a simplified architecture of direct conversion receiver. As the local 

oscillator frequency in direct conversion receiver is set equal to the RF frequency, the IF 

frequency becomes zero and the image frequency could be successfully eliminated. 

Hence, eliminating image-reject filter that is required in superheterodyne architecture 

enables the reduction of the number of off-chip components. Nevertheless, several issues 

remain in today’s communication system. The LO-leakage due to the settings of the same 

RF and LO frequency results in a time-varying dc offset, and can lead to degradation of 
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the upper boundary of the dynamic range. Thus, complicated offset cancellation 

techniques are needed in practical implementations.  

1.1.3 Architecture Based on RF MEMS Resonator 

 

Figure 1.3 Simplified architecture of RF MEMS resonator-based channel select receiver.  

Considering the size and extra cost of the large quantity discrete high-Q 

components, a technology that can realize the multi-channel selection on a single chip 

monolithic implementation will be highly desirable. Recent advances of CMOS-

compatible micro-electro-mechanical-system (MEMS) technology has made it possible to 

implement on-chip RF MEMS elements, which are able to not only reduce the size, cost 

and power consumption, but also achieve better performances (high frequency, high-Q, 

high dynamic range, sharp cut-off, etc.). Aside from direct replacement of the off-chip 

high-Q passive devices, an RF channel-select architecture has been demonstrated [6]. 

Figure 1.3 presents the system block diagram for a newly-invented RF channel select 

receiver that takes full advantages of achievable complexity utilizing MEMS elements. 

CMOS-compatible micromechanical devices with high-Q (>10,000) and high frequencies 

(>1 GHz) have been reported recently [7-10, 17, 18], providing the potential of 

integration of wireless communication system. In addition to miniaturization, if channel 

selection is possible at RF carrier frequencies, succeeding electronic components such as 
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LNA and mixer are no longer needed to handle the power of alternate channel 

interference. Therefore, dynamic range can be greatly relaxed, allowing significant 

reduction in power consumption as well as the cost.  

1.2 Macro-scale Vibrating Mechanical Resonator for Wireless Communication 

Nowadays, frequency-selective mechanical components, such as ceramic and 

quartz crystal resonators, are needed for RF and IF bandpass filtering and local oscillator 

reference frequency generation. Outstanding performances have been achieved including 

low insertion loss, small percent bandwidth, sharp cut-off, and dynamic range. However, 

the most popular RF passives are all off-chip components that must interface with 

transistor at the board level, thus imposing two main technical challenges in next-

generation multiband wireless transceivers: size and cost. The following sections will 

focus on the status of current off-chip components used in wireless communications and 

then explain the requirement for their replacement.  

1.2.1 Ceramic Device 

Piezoelectric materials, such as barium titanate and Lead-Zirconate-Titanate 

(PZT), have been used in many fields since the discovery of piezoelectric effect in 1880. 

Barium titanate ceramic is a good candidate for electromechanical transducers because of 

their high electromechanical coupling coefficient, ease of fabrication, and non water 

solubility. However, two key weakness of this material have greatly limited its further 

development, namely bad temperature coefficient and low Curie point. On the other 

since PZT ceramics are discovered in 1954, they have rapidly taken the places of barium 

titanate in most piezoelectric applications due to their high electromechanical coupling 

factor, good frequency-temperature characteristics, and suitable quality factor.  
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Various types of ceramics with high dielectric constant and good temperature 

stability have been investigated and implemented into practical dielectric filters over the 

past decades [19-22]. The dielectric filters at frequencies up to 75 GHz have been widely 

used in wireless communication applications. However, ceramic filters have been facing 

the issue of “bulky” size as the increasing requirement of miniaturization of wireless 

communication systems.  

1.2.2 Quartz Crystal Device 

 

Figure 1.4 Mode shapes of quartz crystal unit: (a) contour shear mode; (b) thickness shear 

mode.  

Quartz crystal is made of single crystal silica that has piezoelectric properties.  

Quartz crystal has various vibration modes according to its crystallinity and 

piezoelectricity. Parameters that determine the resonance frequency are different 

depending on the vibration mode. As shown in Figure 1.4 frequencies of a contour shear 

mode resonator (CT cut, DT cut) and a thickness shear mode resonator (AT cut, BT cut) 

are determined by the length of one side of the square and the thickness, respectively. 

Some of the vibration modes, such as AT cut and GT cut crystal units, have zero 

temperature coefficient over a broad temperature range, and therefore these two crystal 

units have excellent frequency-temperature characteristics. Moreover, quartz crystal is 

extremely stable both physically and chemically – no significant frequency change after 
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aging, which permits the widely use of quartz crystals with accurate frequency control 

[23], timing[24, 25] and filtration [26, 27].  

In particular, among the off-chip components in wireless communication 

transducers, quartz crystal used in reference oscillators is the most difficult to be 

miniaturized and integrated on chip, since the its Q-factor is too high to be matched by 

current on-chip devices. The Q’s of on-chip elements such as on-chip spiral inductor for 

the LC tank, on conventional CMOS silicon are limited to less than 10, nowhere near the 

required high quality factor for reference oscillators [28]. Hence, lots of efforts are 

focused on finding replacements for the high-Q but bulky quartz crystals that dominate 

the market of reference oscillators. An ultrahigh-Q oscillator based on 60 MHz wine-

glass mode disk resonator using a hybrid combination of on-chip components (see section 

1.3.2.3 ), has exhibited an oscillator phase noise of -110 dBc/Hz at 1-kHz offset from the 

carrier, and -132 dBc/Hz at far-from-carrier offsets. Astonishing performances make this 

technique a very promising alternative to quartz crystal  to meet the GSM reference 

oscillator phase noise performance specifications (of -130 dBc/Hz at 1-kHz offset from a 

13-MHz carrier and -150 dBc/Hz at far-from-carrier offsets).  

1.3 Micromechanical Resonators for Wireless Communication 

Due to the ever increasing demand for multi-band and multi-functional wireless 

handsets, on-chip high-Q resonators have become the only viable choice for numerous 

future wireless applications. Although nanomechanical resonators have been proven with 

their ability to operate at GHz frequencies even in their fundamental mode [29, 30],  they 

are also more susceptible to scaling-induced performance limitations, such as the 

adsorption/desorption noise and temperature fluctuation noise, than their MEMS 



10 
 

counterparts. For instance, noise sources such as Brownian motion and Johnson noise, 

which are considered negligible for most of MEMS devices, become significant as the 

sizes of nanomechanical resonators continue to shrink [31]. Additionally, insufficient 

power handling is another issue that may hinder the rapid deployment of NEMS devices 

in wireless systems to satisfy today’s communication standards. Even though packaging 

devices under proper pressure and temperature conditions may mitigate the noise 

problems, the more serious constraints in power handling ability would remain 

unresolved. Moreover, both MEMS and NEMS resonators operate with higher motional 

impedance than their macro-scale counterparts. Hence, in order to seamlessly interface 

the MEMS/NEMS resonators with the macro-scale electronics such as antennas, 

strategies for reducing their equivalent motional impedance are urgently needed. This 

paper will review both device-level and system-level methodologies for lowering the 

motional impedance of the resonators. As such, the implementation of capacitive 

transducers filled with high-k dielectrics to improve the electromechanical coupling 

coefficient would be considered as one of the device-level methods; whereas parallel 

combination of a large array of resonators enables reduction of the motional impedance 

while improving the overall linearity and power handling ability would be treated as a 

system-level approach. In terms of the readiness to be inserted into 50 Ω-matched 

wireless subsystems, MEMS resonators would be a much more practical choice 

comparing to NEMS. Therefore, development of MEMS resonators becomes essential for 

realization of the next-generation wireless systems. 
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1.3.1 Piezoelectrically-Actuated Resonators 

Piezoelectric materials, such as zinc oxide, aluminum nitride, barium titanate and 

lead-zirconate-titanate (PZT), have been widely studied for numerous device applications 

since its discovery in 1880. Piezoelectric material deforms when an electric field is 

applied, whereas any strain induced in piezoelectric material generates charges within the 

material. A simple piezoelectrically-actuated resonator consists of a piezoelectric material 

and a mechanical structure along with strategically placed electrodes, which are 

employed to facilitate the coupling between the mechanical and electrical domains. When 

the applied ac signal matches the resonance frequency with a particular mode shape of 

interest, the MEMS resonator will vibrate at its resonance. Different types of 

piezoelectrically-actuated resonators are discussed and compared in this section.  

1.3.1.1 Surface Acoustic Wave (SAW) Resonators 

 

Figure 1.5 Schematic of a typical SAW resonator [32].  

A Surface Acoustic Wave (SAW) resonator consists of three parts, as illustrated 

in Figure 1.5: piezoelectric substrate, interdigital finger transducers (IDT) locating on the 

crystal surface, and reflectors disposed near the opposite ends of IDT. The SAW 

resonator utilize surface acoustic wave vibrating between two reflectors and the resonant 

frequency is determined by both the width of IDT and spacing between two fingers. The 

equation can be expressed as  
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λ
svf =                                                                1.2                        

where  is the velocity of the surface acoustic wave in the piezoelectric substrate, and λ 

is the pattern period of the IDT, as shown in Figure 1.5.  

Unlike the bulk-acoustic-wave device, acoustic energy propagates along and is 

confined to a single surface of the substrate. Hence, SAW devices are not as sensitive as 

their bulk-acoustic-wave counterparts to the substrate shape or scale, resulting in a much 

easier design and fabrication. In addition, due to the lower power density that occurs in 

the distributed geometry, SAW devices have superior power handling capability as 

compared to bulk-wave devices. As a result of these advantages, SAW devices are widely 

used in today’s wireless communication systems [33].  

1.3.1.2 Bulk Acoustic Wave (BAW) Resonators 

Another type of acoustic wave is bulk acoustic wave (BAW). Unlike surface 

acoustic wave, the bulk acoustic wave travels from one surface through the bulk material 

to the other surface to form so called bulk acoustic wave. BAW devices usually operate 

with resonance frequencies of 1~20 GHz [34-37]. BAW resonators have many features 

superior to mostly used devices such as SAW devices and ceramic devices. Comparing to 

ceramic and SAW devices, it has a high Q-factor that leads to low insertion loss and 

sharp cut-off characteristics and low power consumption with reduced size. Figure 1.6 

shows the Agilent process using free-standing membranes that are anchored at edges to 

the silicon substrate.   
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Figure 1.6 Device implementation for the two types of bulk acoustic wave (BAW) 

resonators with two different types of acoustic isolation methods [32]: (a) SMR employs 

Bragg’s reflector; and (b) FBAR sits on top of air cavity. 

In a typical BAW device, the acoustic layer is stacked in between the top and 

bottom electrodes, where the acoustic wave is confined. The performance of a BAW 

device is heavily dependent upon the impedance mismatch on the boundary of the 

piezoelectric body which helps trapping the as-generated acoustic wave within. Two 

different kinds of implementation are mostly used, as illustrated in Figure 1.6: solid 

mounted resonator (SMR) and film bulk acoustic resonator (FBAR). In SMR, the BAW 

structure is sitting on top of multiple reflective layers (Bragg’s reflector) [38] to 

reflect/retain the acoustic wave back into the piezoelectric film. On the other hand, FBAR 

simply uses an air cavity to create a huge impedance mismatch. The operation principles 

of SMR and FBAR are the same except the technology employed to provide the acoustic 

isolation. Compared to SMR, FBAR is much easier to fabricate as it does not require the 

perfect quarter wave length reflective layers. Since 2002, FBAR has been widely 

employed for wireless telecommunications.  

However, in order to achieve precise frequencies and a better yield, the thickness 

of each thin film must be accurately controlled from device to device, which may cause a 

serious problem in FBAR device fabrication. Nevertheless, as wireless communication 



14 
 

technology pushing towards to the ultimate miniaturization, multi-function transceivers 

that operate at different frequencies instead of a set of several discrete components are 

soon going to be needed, which is a serious bottleneck against the current FBAR 

technology. 

Recently, due to the advance of micromachining technology, a new type of BAR 

device has attracted large attention. Unlike conventional FBARs, the novel contour-mode 

FBAR device (see Figure 1.7) uses its lateral dimension (i.e., radius of the disk or the 

width of the ring) to control resonance frequency, thus allowing implementation of 

multiple frequency circuitries on a single chip. It has been proven that piezoelectrically-

transduced contour-mode resonators have unique characteristics, such as a CAD-layout 

definable resonance frequency, high quality factor up to 4,300 at 230 MHz and low 

motional impedance (50~700 Ω), thus making it a perfect candidate as the key building 

block for the next generation wireless transceivers [39, 40]. 

 

Figure 1.7 Contour mode ring resonator [39]: (a) one port circular ring resonator; (b) one 

port square-shape ring resonator. 

Figure 1.8 depicts the top-view image and measured frequency characteristics of 

post-CMOS compatible AlN-based dual-mode filter developed by Sandia National 

Laboratory, which employs an unique molded tungsten (W) technique along with the 
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AlN process to realize potentially higher Q [41]. In addition, this technology allows the 

scaling of AlN resonators into the GHz range without introducing spurious modes or 

reducing the quality factor, but offering acceptable power handling for both the transmit 

and receive paths in full-duplex radios. 

 

Figure 1.8 (a) Photo of an AlN dual-mode filter; (b) measured transmission (S21) of the 

AlN dual-mode filter, along with simulated response based on its equivalent circuit 

model with different termination impedance [41]. 

As good as it seems to be, these newly-emerged piezoelectric MEMS resonators 

still have some remaining issues to be addressed. On one hand, the FBAR resonator, 

whose resonance frequency is controlled by its thickness, is not amenable to realization 

of multiple frequencies on a single-chip.  On the other hand, piezoelectrically-transduced 

contour-mode resonators suffer from its relatively low frequencies. In addition, the 

relatively large temperature coefficient in the range of 25 ppm/°C [42] as opposed to 2 

ppm/°C [43] of less for capacitively-transduced resonators is yet another concern. In 

order to overcome these issues, there are ongoing research studies which focus on 

optimization of piezoelectrically-transduced MEMS resonators. 
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1.3.2 Capacitively-Transduced MEMS Resonators  

Capacitively-transduced resonator offers in general the highest frequency-Q 

product among micromechanical resonators, due to the employment of high quality 

structural material which is much less susceptible to acoustic losses to the substrate as 

opposed to piezoelectrically-actuated resonators. Besides the high frequency selectivity, 

the use of capacitive transduction also allows the resonators to operate under a dc bias 

voltage without dc current flow, thus consuming ultra-low dc power. Moreover, 

capacitive transduction is also employed in large part to simplify future integration with 

transistors. Additionally, the employment of extensional-mode resonators with CAD-

layout definable resonance frequencies provide a solution to resolve the key limitations of 

the conventional film bulk acoustic resonators (FBARs), in which the thickness of the 

piezoelectric film determines the resonance frequency. Unfortunately, the majority of 

capacitively-transduced MEMS resonators developed so far suffer from their excessive 

motional impedance, which hinders their direct implementation into the wireless systems. 

On the contrary, much lower motional impedance in the range of 50 Ω can be easily 

obtained in MEMS resonators equipped with piezoelectric transducers.  

This section reviews recent progress in the research and development of MEMS 

resonators in silicon and CVD diamond materials for wireless communications, with a 

particular focus on existing and possible solutions of the aforementioned issues. 

1.3.2.1 Flexural Mode Beam Resonator 

Vibrating beam micromechanical resonators have attained a great deal of attention 

over the past few years, due to their achievable VHF and UHF ranges, high Q’s, tiny 

sizes, and virtually zero dc power consumption. Three different types of beam resonators 
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have been widely investigated and utilized in various areas, including sensing, actuation 

and communication [43]. Categorized by their boundary conditions, they are clamped-

free beam resonators (i.e., cantilevers) [44], clamped-clamped beam resonators [45, 46], 

and free-free beam resonators [47], shown by Figure 1.9 (a), (b), and (c), respectively.  

 

Figure 1.9 Schematic view of different types of beam resonators: (a) cantilever beam 

resonator; (b) clamped-clamped beam resonator; (c) free-free beam resonator.  

Cantilevers have much lower resonant frequencies and worse dynamic range 

when compared to free-free beam and clamped-clamped beam resonators because of their 

relatively low stiffness. However, for the case of clamped-clamped beam resonators, 

larger stiffness is gained at the cost of higher anchor dissipation, which makes it much 

harder to achieve high-Q at high frequencies - Q reduces from 3,000 to less than 300 

when resonant frequency increases from 10 MHz to 70 MHz. Although high Q-factor can 

be achieved by shrinking dimensions (masses) of clamped-clamped beam resonators [48], 

inadequate dynamic range and power handling capability of such devices are hard to 

satisfy most communication applications.  

On the other hand, free-free beam resonator has been demonstrated with center 

frequency of 30 ~ 90 MHz and Q of ~8000 [47]. As shown in Figure 1.9 (c), the free-free 

beam resonator is supported at its flexural node points by four torsional beams which are 
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anchored to the substrate. The supporting torsional beams are designed with quarter-

wavelength dimensions, which acoustically isolate the free-free beam from the rigid 

anchors. Thus, ideally, the free-free beam operates as if it is levitated without any anchor. 

The ideally eliminated anchor dissipation enables the free-free beam design greatly 

surpasses previous clamped-clamped beam resonators, allowing much higher Q-factor.  

1.3.2.2 Radial-Contour Mode Disk Resonator 

Polysilicon micromechanical radial-contour mode disk resonators have been 

firstly demonstrated with Q’s over 1500 at frequency of 1.14 GHz in vacuum and air, 

respectively [49]. One year later, the similar resonator with resonance frequency up to 

1.156 GHz along with measured Q’s > 2650 has been reported. In addition, a 734.6-MHz 

version has been demonstrated with Q’s of 7,890 and 5,160 in vacuum and air, 

respectively [9]. Figure 1.10 shows the SEM picture and frequency response spectrum of 

a polysilicon self-aligned radial-contour mode disk resonator. 

 

Figure 1.10 SEM image and measured frequency response in (a) vacuum and (b) air for a 

polysilicon capacitively-transduced radial-contour mode disk resonator [9].  

Self-alignment of the supporting stem to the exact center of the resonator disk 

allowing the superior symmetrical modal vibration of the resonator is the key to obtain 

high-Q at gigahertz frequency range while retaining the similar micro-scale dimensions 

and adequate power handling. Self-alignment allows the resonator disk being supported 
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by the stem at the motionless nodal point at the center of the disk during its pure radial 

vibration, and minimizes the energy loss to the substrate from the center anchor, thus 

allowing high-Q in spite of the high resonator stiffness that is essential for maintaining 

decent power handling capability. As illustrated in Figure 1.11, the self-aligned center 

anchor is achieved by defining both the stem position and the disk edges during a single 

lithography step (i.e. in one mask), which effectively eliminate the misalignment between 

two different masks (the first one defines the stem and the second mask aligned to the 

previously patterned stem to pattern the disk around the center stem), as opposed to 

previous resonator designs [50]. Another difference between this self-aligned disk 

resonator and the previous one is that an electrically accessible substrate contact is 

included in the present design, which successfully eliminates feedthrough current and 

allows much cleaner measurement of frequency characteristics (see Figure 1.12).  

 

Figure 1.11 Comparison between (a) a previous disk resonator process; (b) the self-

aligned disk resonator process [9]. 
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The complete process flow of the self-aligned radial-contour mode disk resonator 

is illustrated in Figure 1.12: (a) a layer of high-temperature oxide (HTO) is deposited on 

n+ Si substrate by LPCVD, followed by a layer of LPCVD Si3N4; (b) substrate contact 

trenches are dug through the SiO2/Si3N4 layer by wet/dry etch, then the first layer of 

polysilicon is deposited via LPCVD and POCl3 doped, and finally patterned to form 

ground planes, interconnects and substrate contact pads; (c) a field HTO is deposited via 

LPCVD, followed by the structural POCl3 doped LPCVD polysilicon layer, and then 

capped with a film of HTO served as the hard mask for structural polysilicon dry etch and 

as the spacer layer to separate the disk and the overhanging electrodes; (d) after annealed 

in N2 atmosphere for an hour, the spacer HTO film and the structural polysilicon layer are 

patterned, defining not only the shape of the disk but also an opening at the center of the 

disk, which is eventually the location of the stem; (e) an LPCVD sidewall sacrificial 

HTO layer is conformally deposited with a specific thickness that equals to the desired 

electrode-to-disk capacitive gap spacing; (f) the sidewall sacrificial HTO layer is 

removed in the stem opening, after which the stem and electrode via are opened down to 

the polysilicon substrate contacts; (g) a third layer of POCl3 doped polysilicon is 

deposited and then patterned not only to define the side electrodes but also to refill the 

center via, forming a self-aligned stem; (f) the structure is released in HF to yield the 

final cross section view.   
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Figure 1.12 Fabrication process flow of the self-aligned radial-contour mode disk 

resonator.  

1.3.2.3 Wine-glass Disk Resonator 

En route to pursuing higher-Q, polysilicon wine-glass mode disk resonator using a 

stem-less, side-supporting suspension structure has been demonstrated at frequency of 74 

MHz with Q’s as high as 98,000 in vacuum and 8,600 in atmosphere [51] (see Figure 

1.13). The lack of a center stem allows this device to minimize anchor losses, thus 

achieving higher Q. However, the device operates at a relatively lower frequency range 

due to the native of wine-glass vibration mode.  
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Figure 1.13 SEM photo and frequency response spectrum in (a) air and (b) vacuum of a 

polysilicon wine-glass mode disk resonator [51].  

A perspective-view schematic of the wine-glass mode disk resonator in a typical 

two-port bias and excitation configuration is illustrated in Figure 1.14.   

 

Figure 1.14 Perspective-view schematic of the wine-glass mode disk resonator in a 

typical two-port bias and excitation configuration. 

1.3.2.4 Wine-glass Mode Ring Resonator 

Despite the sufficient high-Q and high frequency for applications of wireless 

communication achieved by the two aforementioned types of capacitively-transduced 

resonators (i.e. radial-contour mode disk resonator and wine-glass mode disk resonator), 

their large motional impedance (> 1 MΩ) is so far too high to compete with today’s 

conventional RF components, which are designed to match to the front-end system 

impedance of 50 Ω.  
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An extensional wine-glass ring (EWGR) resonator structure [8], shown in Figure 

1.15, has been designed so that the resonance frequency primarily depends upon the 

width of the ring other than the average radius, thus the ring’s perimeter sidewall surface 

area is independent of its frequency. Because the motional impedance of a capactively-

transduced resonator is proportional to the overlap area between the resonance structure 

and the electrodes, the impedance of the device can be strategically designed simply by 

choosing an appropriate radius without affecting its frequency. In order to achieve lower 

impedance than previous micromechanical resonators, inner and outer electrodes are used 

for a side-supported EWGR to increase the electrode-to-disk overlap area exhibiting a 

moderate impedance of 282 kΩ with DC-bias of 10 V at 1.2 GHz. In addition, the mode 

shape of the ring resonator combines the aspects of previously demonstrated modes, 

radial-contour mode [52] and wine-glass mode [51], to achieve the best of each design. 

Specifically, the EWGR structure allows ultra high resonance frequency due to the use of 

the radial-contour mode, and higher Q because of stemless side-supporting structure 

resembling the wine-glass mode. As demonstrated in [8], frequencies as high as 1.2 GHz 

with a Q of 3,700, and 1.52 GHz with a Q of 2,800, have been successfully achieved, 

with the motional resistance 2.2 times lower than the measured resistance of the radial-

contour mode disk counterparts.  
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Figure 1.15 Perspective-view schematic of the extensional wine-glass ring (EWGR) 

resonator with typical driving and sensing configuration.  

Moreover, by properly designing impedance-mismatched resonator-to-anchor 

transition,  Q’s of 14,603 at 1.2 GHz has been achieved, as demonstrated by the spoke-

supported “hollow disk” EWGR resonator [53]. The device is supported by a center stem 

with four supporting beams attached to the ring at notched nodal locations, achieving 

minimal anchor losses, thus raising Q to 14,603 from 5,846 at 1.2 GHz. In addition, the 

supporting beams are designed to match the quarter wavelength of the resonance 

frequency to further prohibit energy dissipation from the center anchor to the resonance 

ring. SEM picture and measured frequency characteristics are shown in Figure 1.16 for 

the “hollow disk” EWGR device.    
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Figure 1.16 SEM picture and measured frequency characteristics of a (a) un-notched and 

(b) notched “hollow disk” EWGR device [53].  

1.3.2.5 Internal Dielectrically-Transduced Bar Resonator 

  However, the cost of extending frequencies by scaling dimensions of MEMS 

resonators is greatly increased motional impedance Rx, which is a function of electrode-

to-disk gap spacing, d, overlap area, A, and dielectric constant of the material using for 

the capacitive gap, ε, respectively, written as:  
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Thereby, replacing air-gap that is employed by most capacitively-transduced 

resonators with solid gap filled by high-k dielectrics has several benefits. It is desirable to 

achieve smaller gap spacing, to prevent stiction symptoms of air-gap transducers, and to 

enhance capacitive sensing and reduce motional impedance due to higher dielectric 

constant, which will become even prominent as frequency goes higher and as the 

dielectric thickness approaches acoustic half-wave length in silicon [10]. A dielectrically-

transducer silicon bar resonator with 15 nm nitride solid gap has been demonstrated with 

the so far highest resonance frequency of 6.2 GHz and Q of 4,277 as shown in Figure 

1.17. A frequency-Q product of 3.1×1013 at 4.7 GHz was also reported as the highest in 
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polysilicon reported to date [10]. A silicon bar resonator employing 10 nm air + 90 nm 

HfO2 and 100 nm air capacitive gap exhibited an impedance of 1,256 Ω and 40,356 Ω, 

respectively, with Q > 66,000 at 223 MHz, showing that high-k dielectric solid gap can 

effectively reduce the motional impedance [54].  

 

Figure 1.17 Picture of a bulk-mode resonator and the measured frequency characteristics 

at different vibrating mode [10].  

1.3.3 Resonator Based on Silicon-on-Insulator (SOI) Technology 

A lot of efforts have been made on VHF and UHF micromechanical resonators 

using polycrystalline silicon as the structural material. As demonstrated in the previous 

sections, astonishing performance of the resonators (i.e., high-Q, high frequency, etc.) 

have been achieved, however, higher-than-normal motional impedance is still the main 

issue that hinders its further development. Silicon-on-insulator (SOI) technology based 

on wafer bonding technique provides the possibility of greatly increased overlap area 

between resonator body and electrodes, which is able to reduce the motional impedance 

of the resonator while improving the power handling ability. Motional resistance as low 

as 43.3 kΩ has been measured for a 18 µm-thick disk resonator operating in its wine-

glass mode at 149.3 MHz with Q of 45,700 in vacuum and 25,900 in atmosphere, which 

is orders of magnitude smaller than the 883 kΩ of a 3 µm thick device [55].  
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In addition, comparing to conventional silicon substrate and surface 

micromachining, SOI technology distinguishes itself in several aspects: (1) the use of 

single crystal silicon as the structural layer other than commonly used polycrystalline 

silicon provides superior mechanical properties, such as lower energy dissipation due to 

less crystallographic defects [56] and lower internal stress [57]; (2) specific thickness, 

dopant type and concentration of the device silicon layer are available in commercial 

manufacturers, thus minimizing the need of the structural polysilicon deposition and 

doping during the fabrication process, which requires precisely controlled equipment and 

processing environment; (3) buried oxide layer offers superior dielectric isolation which 

protects the device Si layer from parasitic effects induced by the substrate [58].  

Various techniques have been developed to fabricate suspended single Si 

structures on SOI substrate, which will be discussed and compared with each other in the 

following section, with a focus on the aspect of the fabrication techniques.  

1.3.3.1 Fabrication on SOI Substrate Utilizing Electron Beam Lithography 

Electron beam lithography has been used for nanostructure patterning for years 

with resolution limit as low as several nm [59]. Combination of electron beam 

lithography and conventional silicon micromachining technique provides the possibility 

of fabricating MEMS devices with nano-scale structures.  

A typical e-beam lithography-enabled MEMS device process includes four steps 

[60] as illustrated in Figure 1.18: (1) resist (e.g., PMMA) patterning by e-beam 

lithography; (2) metal lift-off; (3) Si anisotropic etching using metal as the hard mask; (4) 

underlying SiO2 isotropic etching to suspended resonator’s body.  
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Figure 1.18 Fabrication process using e-beam lithography for creating suspended NEMS 

device on SOI substrate.  

1.3.3.2 Fabrication on SOI Substrate Utilizing Focus Ion Beam (FIB) Technique 

Focus Ion Beam (FIB), which uses Ga+ ion to scan over the surface of a sample in 

a similar way as the electron beam in a scanning electron microscope (SEM), can mill a 

very narrow trench on Si substrate by accurately positioning on the sample at high current 

density [61], offering a promising alternative of conventional UV lithography technology 

to fabricate nano-scale electrode-to-disk gaps in a capacitively-transduced resonator. 

MEMS resonators with capacitive gaps less than 100 nm on thin SOI substrate has been 

demonstrated [62]. The fabrication process (see Figure 1.19) is based on a combination of 

standard UV lithography and a subsequent FIB milling with only two levels of 

photolithography, yielding the final SEM view in Figure 1.20.  
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Figure 1.19 Schematic of the process of MEMS resonator with nano-gap utilizing FIB 

milling technique: (a) thermal oxide is grown on SOI wafer; (b) photolithography is used 

to open the release hole; (c) nano-scale gaps are achieved by FIB milling; (d) patterns are 

transferred to SiO2/Si/SiO2 layers by high aspect-ratio dry etch; (e) metal contacts are 

patterned by lift-off process after striping the top SiO2 layer; (f) the resonators are 

released by etching away the buried oxide.  

 
Figure 1.20 Bulk lateral resonator with narrow air gap (<100 nm) fabricated by the 

proposed FIB-based process [62].  
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1.3.3.3 SOI Fabrication by Conventional Si Micromachining Technique 

Although nano-scale devices and narrow capacitive gaps can be achieved by e-

beam lithography and FIB technique, low productivity and high cost have hindered the 

further employment in mass production of micromechanical resonator fabrication. On the 

contrary, the conventional Si surface and bulk micromachining technique remains as the 

best choice to fabricate VHF/UHF and high-Q capacitively-transduced resonators.  

Single crystal silicon capacitively-transduced micromechanical resonators with 

sub-100 nm electrode-to-disk gaps based on high aspect-ratio poly and single crystal 

silicon (HARPSS) fabrication technique have been successfully demonstrated at VHF 

range with Q as high as 45,700 in vacuum (see Figure 1.21) and 25,900 in atmosphere. 

Motional resistance as low as 43.3 kΩ has been measured for a 18 µm-thick disk 

resonator operating in its wine-glass mode at 149.3 MHz, which is orders of magnitude 

smaller than the 883 kΩ of a 3 µm thick device [55, 63, 64].  

 

Figure 1.21 (a) SEM image and (b) frequency response of an 18 μm-thick wine-glass disk 

resonator on SOI substrate [55]. 

The HARPSS fabrication process is shown in Figure 1.22: (a) thermal oxide is 

grown on SOI wafer and patterned, then Si3N4 is deposited by LPCVD and patterned by 

lithography; (b) trenches on device Si layer is etched by DRIE with SiO2/Si3N4 as the 
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hard mask; (c) a thin layer of sacrificial oxide is deposited by HTO and is blanket etched 

on the surface, leaving only on the resonator sidewalls; (d) doped polysilicon is deposited 

by LPCVD and patterned on the surface to form the wire-bonding pads, then a thin layer 

of metal is deposited on the wire-bonding pads by e-beam evaporator; (e) releasing 

openings are etched in the device Si layer and the polysilicon inside trenches using 

photoresist mask; (f) buried oxide layer is removed by SiO2 wet etch to suspend the 

device.   

 

Figure 1.22 Fabrication process flow of HARPSS resonator on SOI substrates.  

However as described above, the HARPSS process on SOI substrate consists of 6 

lithography steps as well as several etching and deposition steps, which makes the 

fabrication process very complicated and time-consuming. A much simpler IC-

compatible process on SOI substrate has been reported utilizing Chemical Mechanical 

Polishing (CMP), achieving 100 – 200 nm capacitive gaps with expected operating 
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frequency of the high-Q resonator extend to MHz and GHz range [65]. Utilizing a similar 

fabrication process, study done by D. Grogg [66] has demonstrated a laterally vibrating 

bulk-mode resonators based on connected parallel beam resonators (PBRs) with Q of 

100,000 and motional impedance of  55 kΩ at 24.58 MHz.  

 

Figure 1.23 SEM image of (a) the disk resonator and (b) a zoom-in on the 200 nm gap 

[66].  

The cross-section view of the CMP based fabrication process is illustrated in 

Figure 1.24: (a) starting with SOI substrate, a layer of LPCVD SiO2 (TEOS) is deposited 

and then patterned, which defines the resonator disk structure, followed by a conformal 

coating of un-doped polysilicon thin layer, serving as the electrode-to-disk capacitive gap 

spacing; (b) a second layer of SiO2 (TEOS) is deposited via LPCVD, followed by a 

combination of CMP and wet SiO2 etch to expose the polysilicon layer; SiO2 dry etch is 

then performed to etch the second SiO2 (TEOS) layer; (c) 1st and 2nd SiO2 (TEOS) layers 

as hard mask, resonator disk and side electrodes are then patterned by a Si dry etch, 

forming an air gap with a nano-scale width determined by the previous polysilicon layer; 

(d) a back-side SiO2 wet etch is used to remove the remaining SiO2 (TEOS) layer and at 

the same time to transfer the Si patterns down to the buried SiO2 layer; (e) a thick layer of 
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photoresist is spun, exposed and developed, not only to remove the undoped polysilicon 

layer but also to serve as a lift-off mask for the metal film in the following step; (f) a film 

of metal is plated and patterned by lift-off process; after striping the photoresist and 

releasing the structure in HF, a final cross section view is yield. 

 

Figure 1.24 Fabrication process flow of the TEOS and CMP based method.  

However, currently demonstrated fabrication processes either are very 

complicated (e.g., HARPSS process) or require nonstandard techniques (e.g., CMP). 

Moreover, the thickness of the capacitive air gap is limited by the thermal oxidation 

process and the small dielectric constant of air is not ideal for a capacitive transducer as 

well. A novel high aspect-ratio SOI micromachining technique is presented in this work 

that is capable of producing vertical disk resonators and resonator arrays with ultra-thin 

high-k dielectric solid gap by a simplified process consisting of merely three lithography 

steps. The detailed processing steps will be discussed in Chapter 3.  



34 
 

1.4 Resonator Array 

 In the ideal case - an array of N resonators, if the resonators are excited at exactly 

the same resonance frequency, the output current will increase by N times for the same 

input voltage, thus lowering the motional impedance by N times. Unfortunately, even a 

tiny frequency mismatch can dramatically affect the combined output. Mechanical 

coupling provides a superb solution to the frequency-matching problem, which 

mechanically forces all coupled resonators vibrating at the same frequency as the signal 

of a given modal resonance frequency applied to the overall resonator array. By means of 

mechanical coupling and excitation of a parallel array of corner-coupled polysilicon 

transverse-mode square plate resonators (see Figure 1.25), motional impedance of the 

“composite” resonator array has been successfully reduced down to 4.4 kΩ at 64 MHz, 

4.8 times smaller than the 21.3 kΩ measured by a single square resonator, with Q > 9000 

[67]. 

 

Figure 1.25 SEM image and frequency response spectra of a single and mechanically 

coupled square resonator arrays with three and five resonators, respectively [67].  
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1.5 Capacitively-Transduced Resonators Using Materials Other than Si 

Among the currently available thin-film-depositable materials, diamond offers the 

best mechanical properties, which has potentials to realize the best the frequency-Q 

performance. Chemical vapor deposition (CVD) polycrystalline diamond was employed 

as the material for the resonance disk and polysilicon for the anchoring stem, successfully 

raising the Q of radial-contour mode disk resonators to 11,555 in vacuum at frequencies 

of 1.51 GHz [68]. An acoustic impedance mismatch between the two different material 

suppresses energy transfer from the disk to the stem, thus eliminates anchor losses and 

leading to a higher Q. A MEMS cantilever type resonator exhibited a resonance 

frequency of 318.2 KHz with Q > 116,000, the highest reported value for a 

polycrystalline cantilever resonator [69]. Ultra nanocrystalline diamond (UNCD) thin 

film deposited by hot filament chemical vapor deposition (HFCVD) has been 

demonstrated, with Young’s modulus up to 920 GPa [70], showing a great potential for 

MEMS resonators to achieve even higher operating frequencies. For applications such as 

sensing and wireless communication, mechanical resonators with a high Q and high 

resonance frequency are desirable, as they would lead to the coveted high resolution and 

high frequency selectivity for sensors and wireless transceivers, respectively. Of course, 

less energy losses also implies lower power consumption, which is crucial for the 

portable sensors and wireless transceivers. In addition to the outstanding mechanical 

strength, diamond as a promising alternative to Si or SiC offers a lot more outstanding 

properties, such as exceptionally low friction coefficient, excellent thermal stability, great 

chemical inertness, and very good plasma etching selectivity to Si and SiO2 making 

micromachining much easier [71].  
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A comparison of mechanical properties and relevant frequencies among several 

common MEMS materials is summarized in Table 1.1.  

Table 1.1 Properties for different materials and their relevant frequencies.  

Material 
Young’s 
Modulus 
E (GPa) 

Density 
ρ (kg/m3)

Acoustic 
Velocity 

(m/s) 

Frequency 
Scaling 
Factor 

Polycrystalline Silicon 150 2.33 8024 1 
Silicon or SOI 
Substrate 165.7 2.33 8433 1.05 

Silicon Carbide  415 3.12 11500 1.433 
Polycrystalline 
Diamond (800°C-
1000°C) 

1144 3.5 18076 2.256 

Ultrananocrystalline 
Diamond (UNCD) 
(<400°C) 

920 3.5 16210 2.02 

 

Material other than commonly used polysilicon, diamond, or single crystalline 

silicon has also been investigated [72-74]. Some metals have been applied as a main 

structural material of MEMS resonator by taking the advantage of its low deposition 

temperature. Particularly, electroplated nickel can be deposited at 40°C-60°C to obtain 

potentially high aspect radio along with its low cost. With a frequency range from 18 

MHz to 426 MHz, electroplated-Ni-based MEMS resonators have been built with Q’s of 

6,405 and 2,467 in vacuum and in air, respectively [75]. Another attractive benefit from 

this type of devices is their compatibility to simple fabrication over CMOS circuitry, 

since the fabrication temperature is lower than 100 ºC, thus making it amenable to post-

CMOS MEMS device fabrication [76]. 

1.6 Overview 

Despite many efforts being made in past studies for the purpose of reducing 

motional impedance, using employment of nano-scale high-k solid gap, usage of SOI 
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substrate and coupling resonators in an array, there has never been sufficient effort in 

putting all possible techniques together to achieve a optimally low impedance and 

ultimately to realize a 50 Ω match to the front-end circuitry. A newly-developed 

fabrication process based on SOI technology utilizes atomic layer deposition (ALD) for 

formation of nano-scale solid capacitive gap with high-k dielectric material. Through 

ALD technology, which is capable of providing superb conformability and uniformity as 

well as outstanding thickness controllability, an ultra-thin layer (~10 nm) is deposited on 

a high-aspect-ratio feature formed by deep reactive ion etch (DRIE) on SOI, thus 

allowing the mass production of on-chip capacitively-transduced resonators and resonator 

arrays with greatly enhanced electromechanical coupling coefficient. The newly 

developed IC-compatible MEMS microfabrication process consisting of merely three 

standard photolithography steps, thus showing a great advantage as opposed to other 

SOI-based resonator device technologies. In addition, the newly developed SOI process 

allows DC-bias voltage to be directly applied on to the substrate, which ensures the 

resonator body to be grounded perfectly, thus having a great promise to achieve 

minimized feed-through capacitance by steering feed-through current to ground. Figure 

1.26 illustrates the schematic-view of a 3-by-3 disk resonator array on SOI substrate and 

the corresponding measurement configuration.  
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Figure 1.26 Schematic of a 3-by-3 disk resonator array on SOI substrate 

and its measuring configuration.  

Chapter 2 presents a theoretical derivation of wine-glass mode shape of a disk 

resonator and a ring resonator as well as equivalent circuit models. Chapter 3 details the 

novel fabrication methodology on SOI substrate. Finally, Chapter 4 concludes this thesis 

and discusses possible future research directions.  
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CHAPTER 2 RESONATOR DESIGN 
 
2.1 Extensional Wine-glass Mode and Resonance Frequency Design 

2.1.1 Wine-glass Mode of a Disk Resonator 

Figure 2.1 illustrates key dimensional parameters of a capacitive disk resonator in 

polar coordinate (r, θ) with origin located at the center of the circular plane, which is of 

radius R anchored by two side-support beams of width b and length L. A pair of 

input/output electrode located on each side of the disk, span an equal angle of θe and 

separate from the disk by a capacitive gap of ds and dd for the sensing (input) and driving 

(output) electrodes, respectively. The device operates in a two-port bias, excitation and 

measurement configuration. In order to excite the device into resonance vibration, a 

direct-current DC-bias Vp is applied to the resonant structure and an AC voltage signal vd 

to the driving electrode, generating an electrostatic input force pointing outward from the 

disk. When the frequency of the input signal vd matches the wine-glass mode resonance 

frequency of the disk, the resulting force drives the disk into a elliptic vibrating mode as 

illustrated by the dot line in Figure 2.1.  

The elliptic mode (i.e. wine-glass mode) involves both radial and circumferential 

displacements, with four nodal points locating at the disk periphery, 90° apart from each 

other, where the supporting beams are aligned to in order to mitigate the anchor losses. 

The wine-glass mode generates a DC-biased capacitance between the disk and the output 

electrode which sources an output current is. The resonator disk is made of low-resistivity 
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single crystal silicon, while the input/output electrodes are built with p-type doped 

polysilicon.  

 

Figure 2.1 Top view of a wine-glass mode disk resonator. 

A comprehensive derivation of the in-plane vibration of a disk resonator and the 

mathematical expression of its mode shape and resonance frequency is provided by this 

section. Due to the orders of magnitude smaller vertical dimension (i.e. thickness, h) of 

the resonance structure than that of its lateral dimension (i.e. radius, R), it may be 

assumed that the vibration variables are independent of the thickness. In addition, effects 

of supporting beams on the in-plane vibration can be negligible, if narrow beams are 

located on the nodal points on the edge of the vibrational disk. Thus the resonator disk 

can be modeled approximately as an ideal 2-D circular thin plane with free edges, which 

results in a plane stress scenario.  

The differential equation of a 2-D disk in-plane vibration, as derived by Love 

[77], may be expressed as  
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where ( )( )νννλ 211 −+= E  and ( )νμ += 12E  are Lame’s constants, E, ν, and ρ are 

Young’s modulus, Poisson’s ratio, and density of the resonance structure material, 

respectively. The displacement vector u may be defined in terms of pressure-wave (P-

wave) scalar potential, Φ, and shear-wave (S-wave) vector potential, Ψ, as [78]  

Ψ×∇+Φ∇=u                                                   2.2    

Combining equation 2.1 and 2.2, the scalar potential, Φ, and the vector potential, Ψ, can 

be written as 
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α, β are propagation velocities of the P-wave and S-wave, respectively.  

 Equation 2.3 and 2.4 may be solved, in terms of the trigonometric and Bessel 

function. For time-harmonic excitation with time dependence tj me ω , the mode shape may 

be expressed as  

( ) ( ) tj
mmmm

memRrkJA ωθ ⋅⋅⋅=Φ cos/                               2.8 
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( ) ( ) tj
mmmm

memRrhJB ωθ ⋅⋅⋅=Ψ sin/                                2.9 

where mm fπω 2= is the angular resonance frequency of the m-th order, Am and Bm are 

constants determined by the excitation amplitude, and km and hm are  

αω /Rk mm ⋅=                                                        2.10 

./ βω Rh mm ⋅=                                                       2.11 

In equation 2.8 and 2.9, Jm is the Bessel’s function of first order of the m-th order. The 

mode order, m, represents numbers of the nodal diameter in the free vibrational response. 

When m = 0, the disk resonator entails an axisymmetric uncoupled mode, the 

displacement is only in the radial direction (radial) or in the circumferential direction 

(torsional) with no nodal rings. While m = 1 implies a nonzero response at the center 

point of the disk. Finally, when m is equal to or larger than 2, nodal points on the disk 

periphery will occur, which are well-suited for attaching the supporting beams to obtain 

low-loss suspension[79].  

 By substituting equation 2.8 and 2.9 into 2.2, the time-independent radial (U) and 

circumferential (V) components of the displacement, u, may be expressed as 
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 Let σr and τrθ be the normal and tangential stress at any boundary point of the 

disk. For a disk with free edge, the stress at the boundary must vanish, namely,  
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which leads to the mode frequency equation given by [80]   
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Substituting Equation 2.12 and 2.13 into 2.14 and 2.15 leads to the following 

matrix:  
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which is associated only with km, hm, and ν. Thus, the ratio between the constants of Φm 

and Ψm is calculated as:  
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From equation 2.12, 2.13, and 2.18, the radial displacement at (r, θ) can be 

written, instead of 2.12 and 2.13, as 

( ) r
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R
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When m = 2, the disk resonator operates in its wine-glass mode, the dimensionless 

maximum radial displacement at the disk edge can be expressed as 
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 Since the capacitive gap is extremely small compared to the size of the disk, the 

disk-to-electrode configuration can be treated as a parallel plate capacitor. Hence, the 

electrostatic excitation force for driving and sensing electrode, can be given by [64] 
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where Fd, Fs, dd, ds are the electrostatic force and capacitive gaps for the driving and 

sensing electrodes, respectively, ε is the permittivity of air, and A denotes Am (m = 2).  

For a disk and its side electrodes spanning an angle of θe, the electrostatic 

excitation force for driving and sensing electrodes, can be expressed as 
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It should be noted that the equation 2.16 is solely a function of the Poisson’s ratio 

of the resonance structure material. Given km determined by 2.16, the resonance 

frequency can be calculated by equation 2.10 or 2.11, shown as 
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where m ≥ 2. 

 

Figure 2.2 Mode shapes and resonance frequency for a 20 μm radius single crystal silicon 

<100> disk calculated from the theoretical derivation using COMSOL Multiphysics 3.5a 

with (a) m = 2; (b) m = 3; (c) m = 4; (d) m = 5. 

Mode shapes and the corresponding resonance frequencies are obtained by 

solving equation 2.16 using COMSOL, some of which are shown in Figure 2.2. As 

illustrated in Figure 2.2, the wine-glass mode shape that we study in this work appears 

when m =2. The related mechanical parameters of single crystal silicon (SCS) along 

<100> orientations used in the theoretical derivation are listed in Table 2.1.  
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Table 2.1 The related parameter for a disk resonator.  

 

2.1.2 Wine-glass Mode of a Ring Resonator 

A compound resonance mode design, named “extensional wine-glass resonator”, 

or “EWGR” in [8], which combines two previously demonstrated modes, radial-contour 

mode [52] and wine-glass mode [51], together with a geometric advantage of a ring 

structure, is described in this session.  

 

Figure 2.3 Top view of a wine-glass mode ring resonator. 

Figure 2.3 illustrates the schematic of a wine-glass mode ring resonator, 

identifying key dimensions and an excitation configuration. Similar to wine-glass mode 

disk resonator, the ring resonator is anchored by supporting beams set to the quasinodal 

points at the ring outer periphery, which minimizes the anchor loss and thus retain the 

highest Q. Electrodes are designed around the ring structure, both inside and outside, 

Material
Single crystal 
silicon <100> Polysilicon

Young's modulus (E ) [Mpa] 170 160
Possion's ratio (ν ) 0.28 0.22

Thermal expansion parameter (α ) 
[1/K]

0.0000026 0.0000026

Density (ρ ) [kg/m3] 2330 2320
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connected by bridges hanging over the resonator body, for the purpose of obtaining the 

largest transducer overlap capacitance. Excitation mechanism of the ring resonator is 

similar to the disk resonator. The device firstly converts the input ac signal, vd, to a 

mechanical force to excite the ring resonator into a modal vibration at the resonance 

frequency, thus generating a mechanical displacement between the ring structure and side 

electrodes. The mechanical displacement is then converted back to an electrical signal, 

sensed by the output electrode.  It should be noted that output current is only generated if 

the dc-bias voltage Vp is finite. When Vp = 0 V, the device is effectively “off”. Thus, the 

capacitively-transduced micromechanical resonator with dc bias voltage essentially acts 

as a switch.  

The “EWGR” mode shape consists of four quarter cycles to finish an entire modal 

vibration cycle. In the first quarter cycle, starting from the original ring shape, the two 

ring quarters along x-axis gradually expand while the other two quarters along y-axis 

gradually contract, finally reaching the maximum expansion of the x-axis quarters and 

maximum contraction of y-axis quarters. Then the motions of the x-axis and y-axis 

quarters become contraction and expansion, respectively, until reaching the maximum 

displacement at the end of the first half cycle, as illustrated by the dotted line in Figure 

2.3. In the second half cycle, the motion is reversed with the continuing contraction in x-

axis quarters and expansion in y-axis quarters. After reaching the maximum 

displacement, the ring starts to restore towards the original state, finishing the entire 

cycle. As a result, expansion and contraction is similar to the radial-contour mode 

vibration, indicating that a high frequency can be achieved, while the displacement of the 
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inner and outer perimeters of the ring resembles the mode shape of a wine-glass disk, 

which minimizes anchor-related dissipation to allow high-Q performances.   

Figure 2.3 indicates a 2-D ring plate in the cylindrical coordinates (r, θ) with 

origin point at the center of the ring, where the thickness of the ring is much lesser than 

the inner and outer radius of the ring, whose effect on vibration is negligible while still 

offering sufficient precision. The time-independent radial and tangential displacement Ur 

and Uθ may be expressed as [81] 
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and ρ, E, and ν are the density, the Young’s modulus, and the Poisson’s ratio of the ring 

structure material, respectively. ωn is the n-th order angular resonance frequency. A, B, C, 

D are the constants determined by excitation amplitude.  

Boundary conditions at r = Rout and r = Rin are as follows, due to the zero normal 

(σr) or tangential (τrθ) stress at the free outer and inner ring edges [81]:  

0
111 222 =

∂
∂
⋅

−
⋅+⋅

−
⋅+

∂
∂
⋅

−
=

θν
ν

ν
ν

ν
σ θU

r
E

r
UE

r
UE rr

r                2.31

01
22

=⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂
⋅+

∂
∂

⋅
+

=
r

U
r

U
rr

UE r
r

θθ
θ ν

τ .                                     2.32 



49 
 

Substituting equation 2.20 and 2.21 into 2.22 and 2.23 yields the resonance 

frequency given by 

( )20 12 νρπ −
=

Ehf                                                       2.33 

where h is a ring geometry-related parameter that satisfies [81] 
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where Rin and Rout are the inner and outer radius of the ring, respectively, Jn and Yn are the 

Bessel function of the first and second kind, and n is the circumferential order of the 

mode shape.  
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Considering the extensional wine-glass mode of a ring resonator is basically the 

expansion and contraction in the ring width, which is similar to the longitudinal vibration 

of a bar, the resonance frequency, thus, can be approximately expressed as [8] 

L,5,3,1,
20 == mE
W
nf approx ρ

                                         2.36 

where inout RRW −= is the width of the ring, and n is the order of the mode shape.  

2.2 Equivalent Circuit Model 

 

Figure 2.4 The two-port electrical circuit model represented by Y-parameters.  

A model describing the admittance parameters (Y-parameters) of a 

micromechanical disk resonator is developed to aid in analysis and design of the device. 

As shown in Figure 2.4, four Y-parameters in the two-port equivalent circuit model are 

defined as the ratio of the current measured at one port to the voltage at the driving port 

while short-circuiting the undriven port [82], expressed as 

0
22

0
21

0
12

0
11

)(
)()(,

)(
)()(

)(
)()(,

)(
)()(

==

==

==

==

ds

ds

vs

s

vd

s

vs

d

vd

d

jv
jijY

jv
jijY

jv
jijY

jv
jijY

ω
ωω

ω
ωω

ω
ωω

ω
ωω

                               2.37 

 Equation 2.37 can be expressed as the product of the mechanical force-

displacement transfer function, ( ) ( )ωω jFjZ / , the electromechanical coupling at the 

input and output ports, η1, η2, η1’, and η2’, where η1 and η2 denotes the electromechanical 

coupling from the driving electrode to the sensing electrode, while η1’ and η2’ denote the 
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coupling from the sensing electrode to the driving electrode. The input and output 

coupling terms can be expressed as [83] 
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where Qs and Qd are the charge going through the driving and sensing electrode, 

respectively, and the displacement Z here denotes the vibration amplitude A/R. By 

combining the above equations, Y11 and Y21 may be rewritten as [83] 
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To determine the resonator admittance, three terms on the right side of equation 

2.42 and 2.43 must be expressed in terms of the electromechanical properties of the 

resonator.  
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Figure 2.5 An infinitesimal element dθ along the circumferential direction θ. 

As illustrated in Figure 2.5, along the circumferential direction, θ, as the reference 

point, the effective mass for an infinitesimal element, dθ, may be expressed as [64] 

( ) θρθ dURhdm R ⋅∑⋅⋅⋅= 22                                    2.44 

where rd
R
rUr ′⋅⋅=∑ ∫

1

0

2 is the integral for the kinetic energy.  

The dynamic behavior of the infinitesimal element can be described by the 

second-order equation of motion, as 
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where cd is the damping-related coefficient for the infinitesimal element and fe(θ) is the 

radial electrostatic force per unit radian. Multiplying 2.45 by the mode shape, 

( ) RU⋅θ2cos and integrating from 0 to 2π, gives rise to 
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where Cd is the damping-related coefficient of the disk resonator. Thus, the equivalent 

mass and equivalent stiffness, respectively, can be expressed as  

22
RURhM ∑⋅⋅⋅⋅= ρπ                                            2.47 

2ω⋅= MK                                                                2.48 

The equivalent electrostatic stiffness and the equivalent force for wine-glass mode 

disk resonator, by substituting the electrostatic excitation force calculated in 2.24 and 

2.25 to 2.46, may be expressed as 
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Hence, the equivalent mechanical model for the disk resonator can be written by 
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From 2.51, the first term of the admittance parameter equation (i.e. the force-

displacement transfer function of the resonator), can be determined via modal analysis, 

which is 
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where Q is the quality factor of the disk resonator.   
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Substituting 2.51 to 2.38 and 2.41, the coupling of the input and output electrodes 

can be written as [64]:  
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Similarly, Y12 and Y22 can be derived, expressed as 
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Substituting 2.52- 2.56 to 2.42 and 2.43 gives rise to the transfer function in the 

form of Y-parameters of a series RLC tanks with the equivalent inductance, capacitance, 

and resistance expressed as, respectively [64] 
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Figure 2.6 Electrical equivalent circuit model for a two-port disk resonator.  

Note that R21 is commonly referred to the motional resistance. Therefore, the 

electrical equivalent circuit model of a two-port disk resonator may be derived as shown 

in Figure 2.6 where C0 represents the electro-to-resonator overlap capacitance.  
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CHAPTER 3 MICROFABRICATION PROCESS OF THE WINE-GLASS MODE 

DISK RESONATOR AND ARRAY ON SOI SUBSTRATE  

3.1 Microfabrication Process on SOI Substrate 

Given the advantages of utilizing SOI substrate described in Chapter 1, the 

fabrication process is designed to reduce the complicity associated with SOI substrate 

while producing the best performance of the resonator device. Particularly, instead of 

solely applying dc-bias to the resonator body, the whole substrate is grounded in this 

process, allowing the possibility of minimized feed-through capacitance. A layer of 

boron-doped poly-Si is deposited serving as the electrodes for ac input and output, 

isolated from dc by a composite film of thermally grown SiO2 and ALD high-k dielectric 

as shown in Figure 3.1.  

 

Figure 3.1 Cross-section view of a single wine-glass disk resonator on SOI substrate. 

The fabrication process of the wine-glass mode resonator on SOI substrate is 

based on bulk micromachining and surface micromachining, including substrate etching, 
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several thin film deposition steps and selective removal of thin films. The entire process 

flow is illustrated in Figure 3.2 in cross-sectional view.  

 

Figure 3.2 Cross-section view process flow of a wine-glass disk resonator on SOI 

substrate.  

Starting with a SOI wafer, a 1.5 μm thick layer of SiO2 is grown by wet oxidation 

on the SOI wafer. AZP4620 photoresist is used for the 1st photolithography step due to its 

high resistibility to plasma etch. The resist patterns are then transferred to the SiO2 layer 

by deep reactive ion etch (DRIE) (AMS 100, Alcatel Micro Machining Systems) using 

the CH4/C4F8 chemistry. With the patterned SiO2 layer as hard mask, the device Si layer 
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is etched by Si DRIE that employs Bosch process [84] with buried SiO2 as a stopping 

layer, yielding the schematic view and SEM image in Figure 3.3. 

 

Figure 3.3 SEM, cross-section, and 3-D schematic view after the 1st lithography step and 

Si DRIE to define the resonator body structure. 

After patterning the resonator structure by DRIE process, a layer of 10 nm-20 nm 

HfO2 is deposited to serve as the high-k dielectric solid gap between the disk resonator 

body and surrounding electrodes. ALD deposition using SavannahTM S100 system from 

Cambridge Nanotech was used to deposit HfO2 at 200°C with Hf(NMe2)4 (Strem 

Chemicals Inc., 99.99%) and H2O used as the precursors. The substrate was alternatively 

exposed to Hf(NMe2)4 and water vapor that were carried by nitrogen flow for a desired 

cycle number with 0.9 Å/cycle deposition rate. The HfO2 film is then annealed in N2 

atmosphere at 800°C for 5 minutes for the purpose of reducing its etch rate in HF 

solution used to remove the buried SiO2 layer and release the resonator structure.  
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Following the ALD process, 2 µm of poly-silicon is deposited via LPCVD at 

605°C and then doped by boron–nitride solid source at 1050°C, achieving Rs of 20~30 

Ω/sq. To define the electrodes, a layer of SU-8 3025 photoresist is next spun 30 µm-thick 

to completely submerge the poly-silicon topography deep under the quasi-planarized 

photoresist film. After exposing and developing the photoresist, the poly-silicon 

electrodes are patterned via a combined dry and wet Si etch to yield the cross-section 

shown in  Figure 3.4.  

 

Figure 3.4 SEM, cross-section and 3-D view after the 2nd lithography step and Si etch to 

define the electrodes. 

A subsequent (3rd mask) layer of photoresist is spun, exposed and developed, for 

the purpose of releasing the resonator structure as well as opening via to the dc bias 

substrate. After soaking in 49% concentrated HF, the final cross-section of Figure 3.5 is 

formed. During the releasing step, the high-k dielectric capacitive solid gap is well 

protected because of two main reasons: (1) it is very difficult for the HF to enter the nm-
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scale gap spacing while a large area of SiO2 is exposed directly towards the solution; (2) 

N2 annealing makes the etch rate of HfO2 much lower than that of SiO2.  

 

Figure 3.5 SEM image, cross-section and 3-D view of the final device. 

3.2 High-Aspect-Ratio Si DRIE 

DRIE is one of the most important and popular techniques among the options for 

fabricating high aspect ratio structures (HARS) in silicon. The Bosch process, also called 

time multiplexed deep etching (TMDE), successfully fulfils the requirements of HARS: 

high etch rate, good selectivity to masking material, anisotropy, and compatibility with 

other processes. The basic etching mechanism is based on etch/deposition cycle to allow 

silicon anisotropic etching by cycling SF6 and CF4 gases, as illustrated in Figure 3.6.   
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Figure 3.6 Schematic view of Bosch process principle.  

Single crystal silicon can be etched by any halogen atoms, such as F, Cl, Br, I, but 

only can react with F atoms spontaneously:  

( ) ( ) 044 GSiFFSi gs Δ+⇒+  

SF6 is used in Bosch process to create F radicals while being dissociated in plasma: 

FSFSF +→ *
56  

Silicon etch rate depends on the available F partial pressure and on the area of 

silicon to be removed. However, the etching of silicon in F chemistry is pure isotropic, 

hence another gas is essential to provide protection to the side walls. C4F8 is dissociated 

to -(CF2)- species able to react with Si to create the polymer protecting the Si side walls. 

In the meantime, the polymer deposition on the mask can improve the mask selectivity. 

To sum up, SF6/C4F8 cycling reactions in Bosch process can be expressed as: 
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Etching: 4
*4 SiFFSi →+ (volatile molecule) 

Passivation: ( ) ( ) nCFCF −−→−− 22 (Teflon like material), 

as shown in Figure 3.7.  

 
Figure 3.7 Schematic view graph of the two-step Bosch process.  

 The Si DRIE recipe used in this work is listed in Table 3.1. A small portion of O2 

is added to C4F8 in order to achieve higher aspect ratio. During the passivation step, very 

weak O2 plasma is formed and a small amount of deposited polymer can be removed, 

thus increasing Si etch rate and aspect ratio while keeping the selectivity in a good range.   

Table 3.1 Different Si DRIE recipe used in this work.  

 

A simplified physical model can be used to simulate the Bosch process. As 

illustrated in Figure 3.8, for a complete deposition/etch cycle, within the deposition time 

of t1, a thin layer of polymer with a thickness of a1·t1 is deposited, where a1 is the 

polymer deposition rate. In the etch step with a time of t2, the first portion of t2 is used to 

SF6 flow rate 
(sccm)

SF6 pulse time 
(s)

C4F8/O2 

flow rate 
(sccm)

C4F8/O2 

pulse time 
(s)

A 300 3 200/20 1.4 2400
B 300 3 200/21 1.4 2000
C 300 2.6 200/22 1.4 2400
D 300 3 200/23 1.8 2400

Etching Passivation
Cycle

Source power (w)Recipe
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remove the polymer deposited on the bottom of the feature and the rest of t2 is spent on 

silicon etch, which can be expressed as 

· ,                                                               3.1 

where a2 is the polymer removal rate.  

Given the isotropic Si etch rate of a3, the etch depth achieved during one 

deposition/etch cycle can be written as 

· · · ,                                                3.2 

 

Figure 3.8 A simplified model for the Bosch process: in one deposition/etch cycle, the 

deposition step lasts for a period of t1, and the etch step for t2, which includes both 

polymer removal and Si isotropic etch.  

Therefore, an oxygen plasma cleaning process is required at the end of each etch 

to remove the passivation layer deposited on the sidewalls of the DRIE patterned 

SEM image of Figure 3.9(a) shows the evidence of polymer accumulation on Si sidewalls 

after DRIE, and Figure 3.9(b) is taken from the same sample after 10 min oxygen plasma 

cleaning process. As seen, residues on the sidewall are removed in oxygen plasma.  
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Figure 3.9 SEM photos of DRIE Si sidewalls (a) before and (b) after oxygen plasma 

treatment.  

High aspect-ratio DRIE is an essential step that enables fabrication of many 

MEMS devices such as high precision motion sensors [85, 86] and high performance low 

motional capacitively-transduced resonators [55, 87]. In these applications, trench aspect-

ratio, sidewall smoothness and trench profile are amongst the critical process parameters. 

Optimization of these parameters will be discussed in detail in the following sections. 

3.2.1 Etch Rate 

From equation 3.2 the etch rate can be increased in several ways. First, the overall 

Si etch rate can be increased by increasing the isotropic Si etch rate a3, which can be 

realized by increasing the ICP source power, SF6 gas flow rate and pulse time. Second, if 

step time is fixed, the overall etch rate can also be increased by reducing the polymer 

deposition rate a1, which can be realize by decrease C4F8 flow rate and duration time.  
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For the purpose of obtaining better sidewall smoothness and better control of the 

trench thickness, the etch rate of 8~9 μm/min of the original recipe (see Table 3.1) needs 

to be reduced. The effect of source power, SF6 pulse time and C4F8/O2 pulse time on Si 

etch rate have been studied independently. The Si etch rate decreased as the source power 

or SF6 pulse time reduced and C4F8/O2 pulse time increased, which shows a perfect 

match to  equation 3.2 as illustrated in Figure 3.10.  

 

Figure 3.10 Si etch time vs. (a) source power, (b) SF6 pulse time, and (c) C4F8/O2 pulse 

time.  
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3.2.2 Sidewall Smoothness 

One limitation of Bosch process is the sidewall “scalloping” formed due to 

etch/deposition cycle. The scallop size, i.e. peak-to-peak dimension, is the etch depth 

achieved during etching step in one cycle, L, suggesting that the scallop size is directly 

linked to the Si etch rate. Thus high etch rate is often achieved at the expense of rougher 

sidewalls in Bosch process.  

As demonstrated in section 3.2.1, Si etch rate decreases when source power, SF6 

pulse time increases and C4F8/O2 pulse time decreases. SEM images in Figure 3.11 shows 

a reduction of scalloping size when the Si DRIE recipes (i.e. recipe B, C, and D shown in 

Table 3.1) is modified to realize lower etch rate.  

 

Figure 3.11 SEM photos of Si sidewall scalloping formed by different Si DRIE recipes: 

(a) original recipe A; (b) recipe B with reduced source power; (c) recipe C with reduced 

SF6 pulse time; (d) recipe D with increased C4F8/O2 pulse time.   
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3.2.3 Aspect Ratio Dependent Etching (ARDE) 

MEMS devices usually have structures with different dimensions and aspect 

ratios that coexist on a single microchip. However, Si etching is aspect ratio dependent, 

which can be manifested in two ways: first, for a specific feature, etch rate decreases as 

the aspect ratio increases over time; second, for features with different dimensions, etch 

rate is higher of wider features than narrower features.  

The Si etch rate decreases when etch time increases, which dropped from ~ 10 

μm/min in a 1 min etch to ~ 7.5 μm/min in a 9 min one, as depicted in Figure 3.12. The 

etch rate reduction could be caused by insufficient passivation layer etching during a 

deposition/etch cycle. Therefore, the polymer deposited at the bottom of the etched 

trenches accumulates as the etch time increases, leading to a longer polymer removal step 

time and a shorter Si isotropic etch step time, thus a reduced Si etch rate.  

 

Figure 3.12 Overall Si etch rate decreases with increasing etch time.  

 In addition, as the aspect ratio of the trench increases, effective removal of the 

passivation layer becomes more crucial mainly because of the decayed ion flux down to 
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the bottom of the trench (see Figure 3.13). Hence, the Si etch rate decreases as the trench 

dimension decreases.  

 

Figure 3.13 Si etch rate decreases dramatically as aspect ratio increases.   

3.3 Atomic Layer Deposition (ALD) 

 

Figure 3.14 Schematic concept of ALD process.   

Atomic Layer Deposition (ALD) is a gas phase deposition method for ultra-thin 

films [88]. Comparing to other deposition techniques, ALD has many advantages, such as 

excellent conformal and uniform coating on a very large area, as well as thickness and 

composition control at atomic level. ALD is based on self-limiting surface reactions. 



69 
 

During ALD process, two (or more) precursors are pulsed onto the substrate alternatively, 

and the pulses are separated by purges with an inert gas. Generally, a-b-c-d is referred as 

one cycle, where a is the pulse time of the first precursor, c is that of the second 

precursor, b and d indicate the purging period of inert gas after each pulse of precursor. In 

each cycle, a series of saturative reactions happen on the substrate surface and an atomic 

layer of target material is formed, described in Figure 3.14. This self-limiting growth is 

the key feature for ALD. During each cycle, gaseous precursor reacts with the solid 

substrate surface. Atoms which are included in the target material are absorbed to the 

substrate surface until the amount of atoms saturate. Simultaneously, atoms which are not 

included in the target material are removed as reaction byproducts [89]. Thus, as the 

number of cycles is determined, the target material with accurate thickness should be 

expected. Figure 3.15 shows a SEM photo of a ~ 50 nm layer of HfO2 deposited by ALD 

on Si substrate. 

 

Figure 3.15 SEM image of a thin film of HfO2 of ~ 50 nm deposited by ALD on Si 

substrate.  

Table 3.2 summarizes the precursors and deposition rate at different temperatures 

of HfO2, showing that deposition rate increases as deposition temperature decreases.  
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Table 3.2 Precursors, deposition condition and rate of HfO2 deposited by ALD. 

 
 

In order to protect the high-k dielectric material deposited by ALD in the SiO2 

releasing process, thus enabling the optimized dielectric transducer, the etch rate in HF of 

HfO2 film at different deposition temperature is then investigated. As-deposit HfO2 film 

is etched in 50:1 HF and the film deposited at lower temperature showed lower etch rate, 

thus higher resistivity to HF, as illustrated in Figure 3.16. HfO2 film is then annealed at 

800oC for 5 minutes in a tube furnace with an N2 ambient at atmospheric pressure and 

etched in 49% pure HF. Etch rate of annealed HfO2 film in HF drops dramatically, which 

is almost zero in pure HF. Thickness of HfO2 films is measured by Rudolph ellipsometer 

with reflective index of 2.05.  

 
Figure 3.16 Etch rate in HF of HfO2 deposited at different temperature and with different 

post-deposition treatment.  

Flow rate (sccm) Pulse H2O (s) Wait (s) Pulse Hf(NMe2)4 (s) Wait (s)
Deposition rate 

(Å/cycle)
150 20 0.015 60 0.15 60 1.0523
200 20 0.015 25 0.1 25 0.9012
250 20 0.03 5 0.3 5 0.8444

Temperature (oC)

Deposition condition
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In addition, grazing incidence x-ray diffraction (GI-XRD) measurement obtained 

by Philips PW3040 X’pert PRO system indicates that not only the deposition rate, crystal 

structure of these materials also depends on the deposition temperature and annealing 

treatments, as demonstrated in Figure 3.17. XRD patterns show that all peaks grow 

dramatically when ALD HfO2 films are annealed, suggesting a much better crystallized 

film is obtained after annealing. Moreover, as deposition temperature decreases, all 

monoclinic peaks (i.e., oriented in (110), (200), and (201)) grow in intensity while the 

peak near 2θ = 30.4o does not, which corresponds to either a tetragonal or orthorhombic 

phase.  This observation suggested that the tetragonal or orthorhombic phase is preferred 

in higher deposition temperature.  

 

Figure 3.17 XRD spectra of ALD HfO2 films on thermal oxide underlayer showing the 

effect of deposition temperature and annealing.   

 ALD HfO2 film is served as a high-k dielectric solid gap in the capacitively-

transduced resonator, thus making the dielectric constant a crucial property of the film. 
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High frequency (HF) Capacitance-Voltage (C-V) measurements are performed on the as-

deposit and N2 annealed ALD HfO2 films with a deposition temperature of 150oC. 

Aluminum top circular electrodes with diameter of 1 mm are deposited by an e-beam 

evaporator through a shadow mask and HP 4145B was used for C-V measurements.  

 

Figure 3.18 HF C-V measurement of a MOS capacitor with ALD HfO2 film as dielectric.  

 As shown in Figure 3.18, the capacitance of the ALD HfO2 film increases from 

800 pF to 2.5 nF after annealing. With an assumption that the capacitance of the HfO2 

film equals to accumulation capacitance, the dielectric constant can be calculated as 

,
·

·
,                                                     3.3 

where Cox is the capacitance of the dielectric layer, d is the thickness of the HfO2 film, A 

is the area of the aluminum electrode, and ε0 is the dielectric constant of a free space. 

Hence, the calculated dielectric constant of the ALD HfO2 film deposited at 150oC is 6.06 

and 15.66 for as-deposit and annealed film, respectively, suggesting that annealed HfO2 

is preferred in this process not only because of its high resistivity to HF solution but also 

because of its much higher dielectric constant.  
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CHAPTER 4 CONCLUSION 

  Due to the high-Q and CAD-layout definable ultrahigh resonance frequencies, 

MEMS resonators offer a promising on-chip replacement to eliminate the board-level RF 

passives, thus leading to ultimate miniaturization and performance improvement. In 

particular, the future transceiver architecture can benefit from large arrays of 

micromechanical resonator filters, because of their tiny sizes and low power 

consumption, and possibility for multiband selection. It is beyond doubt that researches 

on MEMS devices for wireless communication on device and system level still have a 

boarder space to develop and will make influence in the near future.  

  However, the excessive motional impedance has impeded further development of 

the capacitively-transduced MEMS resonators. Motional impedance is a function of 

several parameters, including the disk-to-electrode overlap area, gap distance of the 

dielectric, and dielectric constant of the gap material. SOI technique provides a promising 

approach to greatly enhance the overlap area thus reduce the motional impedance, while 

offering better mechanical and thermal characteristics of single crystal silicon comparing 

to conventionally used polycrystalline silicon. Therefore, this work is preceded for the 

purpose of designing a novel fabrication process of capacitively-transduced MEMS 

resonators and resonator arrays on SOI substrate, which can be CMOS compatible and 

much easier to realize than currently available processes.   

Bosch process is used to etch the device Si layer of a SOI wafer in order to define 

the resonator body structure. Insight investigation has been performed for the purposes of 
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optimizing Si etch rate, Si trench sidewall smoothness and profile. The optimized 

parameters, including gas pulse time, flow rate, power, and post-etching surface 

treatment, are experimentally demonstrated in this work.  

The solid capacitive gap is deposited by ALD, and high-k dielectric materials are 

chosen. The dielectric constant of these high-k materials under different deposition 

conditions and different post-deposition treatments has been studied.  
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Appendix A: Polysilicon Disk Resonator on SOI Substrate Process Traveler 
 
A.1 Deposit Isolation Layers 

A.1.1 Thermally grow 2 um SiO2 on SOI substrate 

Equipment: FNB2  

A.2 Pattern Resonator Body Structure (Mask 1) 

A.2.1 Lithography AZ4620 ~5.0 um 

Dehydration bake: 5 min @ 150°C 

Spin: Laura Spinner 

HMDS: 20 sec @ 1500 RPM 

AZ4620: 20 sec @ 1500 RPM 

         50 sec @ 4000 RPM 

                    10 sec @ 6000 RPM                          

Softbake: 5 min @ 100°C 

Exposure: 5 sec @ 25 mW/cm2, vacuum contact 

Develop: 4 min in diluted (4:1) AZ 400K 

A.2.2 Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 100 watts 

Time: 10 min 

A.2.3 SiO2 DRIE 

Equipment: Alcatel AMS 100 
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Appendix A (Continued) 

C4F8: 17 sccm 

He: 150 sccm 

CH4: 13 sccm 

Power: 2800 watts 

Time: 1.5 min 

O2 chamber clean: 1.5 min 

A.2.4 Si DRIE 

Equipment: AMS 100, Alcatel Vacuum Technology, France 

SF6: 300 sccm, 3 sec 

C4F8: 200 sccm; O2: 20 sccm, 1.4 sec 

Power: 2400 watts 

Pulsed power: 25 ms @ 100 watts; 75 ms @ 0 watts 

Substrate temperature: -15 °C 

Time: 4 min 

Etch rate: ~0.8 um/min 

O2 chamber clean: 5 min 

A.3 Deposit and Anneal Dielectric layer (HfO2)  

A.3.1 Deposit HfO2 by Atomic Layer Deposition (ALD) ~ 20 nm 

Equipment: Savannah, Cambridge NanoTech Inc. , USA 

Temperature: I=O=200 °C, T=V=B=150 °C 

Flow rate: 20 sccm 

Recipe: pulse H2O, 0.015 sec 
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Appendix A (Continued) 

wait 25 sec 

pulse Hf(NMe2)4, 0.1 sec 

wait 25 sec 

cycle 220 

Deposition rate: 0.9 Å/cycle  

A.3.2 HfO2 Anneal 

Equipment: tube furnace 

Temperature: 800 °C 

Gas: N2 

Time: 5 min 

A.4 Deposit and Dope Poly-Si Layer 

A.4.1 Deposit poly-Si by Low Pressure Chemical Vapor Deposition (LPCVD) ~2 

um 

Equipment: FNB 4 

Program: Z9641 

Temperature: 605 °C 

Time: 290 min 

Deposition rate: ~70 Å/min 

A.4.1 Dope poly-Si using solid source 

Equipment: FNB 3 

Solid source: BN1050, Saint-Gobain Ceramics & Plastics, Inc., USA 

A.4.1.1 Predeposition 



87 
 

Appendix A (Continued) 

Program: M4007 

Temperature: 1050 °C 

Time: 30 min 

A.4.1.2 Drive-in 

Program: M4008 

Temperature: 1050 °C 

Time: 30 min 

A.4.1.3 Deglaze 

20 min in 6:1 BOE 

A.4.1.4 Low temperature dry oxidation 

Program: M4005 

Temperature: 900 °C 

Time: 20 min 

A.4.1.5  Deglaze 

20 ~ 50 min in 6:1 BOE until the surface become hydrophilic  

A.4.1.6 Sheet resistance measurement ~ 20 Ohm/sq 

Equipment: four-point probe 

A.5 Pattern Poly-Si Electrodes (Mask 2)  

A.5.1 Lithography SU-8 3025 ~ 50 um 

Dehydration bake: 5 min @ 150 °C 

Spin: Laura Spinner 

   10 sec @ 500 RPM 
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Appendix A (Continued) 

40 sec @ 2000 RPM 

Soft bake: 12 min @ 95 °C 

Exposure: 20 sec @ 25 mW/cm2, hard contact, with high-wavelength pass 

 filter 

Post exposure bake: 1 min @ 65 °C; 4 min @ 95 °C 

Develop: 8 min in SU-8 developer 

A.5.2 Descum 

Equipment: Plasma Therm 

O2: 50 sccm 

Pressure: 300 mTorr 

Power: 100 watts 

Time: 10 min 

A.5.3 Poly-Si RIE 

Equipment: Plasma Therm 

SF6: 50 sccm 

Pressure: 100 mTorr 

Power: 100 watts 

Time: 4 min 

A.6 Pattern Opens to Substrate Contacts (Mask 3) 

A.6.1 Lithography S1827 ~2.8 um 

Equipment: Laura Spinner 

Spin time: 30 sec @ 3500 RPM 
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Appendix A (Continued) 

Softbake time: 1 min @ 115°C 

Exposure time: 14 sec @ 25 mW 

Develop time: 70 sec 
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