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Abstract 

The following dissertation addresses the study of nano-magnetic devices configured 

to produce logic machines through magnetostatic coupling interactions.   

The ability for single domain magnets to reliably couple through magnetostatic 

interactions is essential to the proper functionality of Magnetic Cellular Automata (MCA) 

devices (p. 36). It was significant to explore how fabrication defects affected the 

coupling reliability of MCA architectures. Both ferromagnetic and anti-ferromagnetic 

coupling architectures were found to be robust to common fabrication defects. 

Experiments also verified the functionality of the previously reported MCA majority gate 

[1] and a novel implementation of a ferromagnetic MCA majority gate is reported. 

From these results, the study of clocking Magnetic Cellular Automata (MCA) 

interconnect architectures was investigated (p. 54). The wire architectures were 

saturated under distinct directions of an external magnetic field. The experimental 

results suggested ferromagnetic coupled wires were able to mitigate magnetic 

frustrations better than anti-ferromagnetic coupled wires. Simulations were also 

implemented supporting the experimental results. Ferromagnetic wires were found to 

operate more reliably and will likely be the primary interconnects for MCA. 

The first design and implementation of a coplanar cross wire system for MCA was 

constructed which consisted of orthogonal ferromagnetic coupled wires (p. 68). 

Simulations were implemented of a simple crossing wire junction to analyze micro-

magnetic dynamics, data propagation, and associated energy states. Furthermore, two 

systems were physically realized; the first system consisted of two coplanar crossing 
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wires and the second was a more complex system consisting of over 120 nano-magnetic 

cells. By demonstrating the combination of all the possible logic states of the first 

system and the low ground state achieved by the second system, the data suggested 

coplanar cross wire systems would indeed be a viable architecture in MCA technology. 

Finally, ongoing research of an unconventional method for image processing using 

nano-magnetic field-based computation is presented (p. 79). In magnetic field-based 

computing (MFC), nano-disks were mapped to low level segments of an image, and the 

magnetostatic coupling of magnetic dipole moments was directly related to the saliency 

of a low level segment for grouping. A proof of concept model for two MFC systems was 

implemented. Details such as the importance of fabricating circular nano-magnetic cells 

to mitigate shape anisotropy, experimental coupling analysis via Magnetic Force 

Microscopy, and current results from a complex MFC system is outlined. 

 



1 
 

  Chapter 1

Introduction 

 Motivation 1.1

As the term “nano” has become more mainstream, at times it would seem the 

neoteric phenomenology of nano-science has been whittled into a chic prefix which is 

often misused. The physical constraints of nano-dimensions create fundamentally unique 

behaviors of materials and particles thought to be thoroughly understood. For example, 

a material such as gold at macroscopic scales is chemically inert but when reduced to 

nano-particles can be used as an energetic catalyst, or carbon, when found in a 

nanotube structure exhibits ballistic electron transportation properties mimicking 

conductivity only found in superconducting materials. These are just two natural 

examples of nano-science that substantiates unique opportunities for the technological 

advancement of humanity and should not be lost in translation. The study and 

understanding of nano-phenomena presents a defining opportunity to fundamentally 

discover and alter the way “stuff” works. 

The United States of America formally acknowledged the importance of 

Nanotechnology in 2000 with the creation of The National Nanotechnology Initiative 

(NNI), which defined Nanotechnology as “…the understanding and control of matter at 

dimensions between approximately 1 and 100 nanometers, where unique phenomena 

enable novel applications.” The semiconductor technology sector is particularly 
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interested in nano-phenomena as it is directly related to the profit model of the industry. 

In 2003, the CEO of Intel Craig Barnett stated,  

"The importance of Moore's Law, and its promise of smaller, more powerful products 

built at lower cost, remains the focus of continuing investments by those in our 

industry who are determined to remain competitive. For Intel, the path is clear. The 

fundamental value of silicon innovation and integration is certain for future product 

generations ahead, as it continues to create customer benefits and serve as the 

foundation for outstanding new products."  

Moore‟s law states that every 2 years the density of devices doubles and has held true 

since the prediction in 1965 [2], but it is nearing the end of its life due to quantum 

effects at critical scaling  dimensions. This presents dilemmas for current CMOS 

technology, yet it also actualizes new opportunities to explore alternative novel 

technologies. Dr. Paola Gargini, the director of strategy at Intel, believes around 2015 

hybrid chips will emerge with other technologies such as grafted nanotubes and novel 

materials [3]. Nano-electro-mechanical field effect transistors (NEMFET) and Carbon 

Nanotube Tunnel field effect transistors (CNTFET) are excellent examples of 

nanotechnology creating interesting alternatives to resolve issues of mainstream 

devices, such as CMOS. In the following paragraphs NEMFETs and CNTFETs are briefly 

discussed to emphasize how nanotechnology can provide creative solutions to issues 

with current technology.  

As the dimensions of CMOS transistors continue to scale, parasitic leakage currents 

have become more problematic and are non-ideal for low power applications. A non-

traditional approach to resolve sub-threshold leakage in CMOS transistors is the Nano-

Electro-Mechanical Field Effect Transistor (NEMFET) [4-6]. A NEMFET uses a nano-
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electro-mechanical transducer to convert electrical energy into mechanical displacement 

which is attached to the FET‟s gate electrode. When the gate voltage is off (VG=0), the 

electrostatic forces between the FET‟s gate and the dielectric above the channel, pulls in 

the gate electrode into direct contact with the dielectric. This causes the channel to fully 

deplete, cuts current flow from the source to the drain, and becomes the off  state of 

the NEMFET. To turn the device on, the gate voltage is increased, which reduces the 

depth of the depletion region and allows for current to flow from the source to drain. 

Once a threshold is reached, the gate voltage is sufficient to overcome the electrostatic 

forces and the gate breaks contact with the dielectric above the channel.  This device 

demonstrates a sub-threshold swing smaller than 60mV/decade at room temperature, 

which is the fundamental limit of MOSFETs, and is ideal for low power applications. It is 

interesting to observe the likeness of the first 1947 transistor, which was a mechanically 

suspended point contact switch, and how its contemporary state-of-the-art counterpart 

NEMFET returns to those roots.    

Similarly, Carbon Nanotube Tunnel Field Effect Transistors (Tunnel CNFET) provide 

solutions to issues such as thermally limited sub-threshold swing, source-drain leakage 

current, and higher device density when compared to traditional CMOS devices [7-9]. 

Carbon nanotubes have been heavily researched due to their unique properties, such as 

high strength, ballistic transportation, and the ability to mimic semiconductors. When 

designing a FET the semiconducting single wall carbon nanotube (CN) is particularly 

interesting. By altering the doping profile throughout the length of the nanotube such 

that a P-I-N (p-doping, intrinsic-doping, n-doping) junction is formed, a transistor can be 

created using the carbon nanotube as the channel. The CN is connected to a source, 

drain, and a gate similar to MOSFET device. By changing the voltage of the gate, the 
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field effect is able to bend the conduction/valence bands and reduce the band gap. 

Carriers are then able to use the quantum tunneling effect to tunnel from the conduction 

to valence band or vice-versa. The Schottky barriers between the contacts at the 

source/drain and the carbon nanotube are typically minimal and the energy barrier 

needed to be overcome is of the band gap in the carbon nanotube. 

 Both NEMFETs and CNTFETs provide alternatives to overcome physical design 

issues with field effect transistors, which are enabled by nanotechnology, and were 

specifically discussed to demonstrate solutions offered by nano-science. The scope and 

breath of nanotechnology is quite considerable and affects many aspects of humanity, 

from enhancing the structural properties of cement mortar through the use of nano-

particles for construction [10], to the use of magnetic nano-particles for drug targeting 

and cancer therapy [11]. Using the unique properties of nanotechnology, the focus of 

this work is to demonstrate a logic paradigm that utilizes a ferromagnetic nano-structure 

as a logical switch in a fundamentally different magnetic computing machine.  

 Significance 1.2

In the past, there has always existed an alternative technology to continue the 

advancement of computational technology. From punch cards to vacuum tubes to 

bipolar transistors to current complementary metal oxide semiconductor field effect 

transistors; scientists and engineers have made great advancements in the 

computational power and physical minimization of logic devices. At the initial stage of 

many successor technologies, history has shown them to be inferior to their respective 

predecessor and often impractical to implement; but as the devices continued to be 

developed, the successor technology eventually provided greater benefits to industry 

and ultimately the consumer. Currently, conventional CMOS technology is predicted to 
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reach its full potential by 2015, after which there is no clear front runner to continue the 

rapid improvement of technology. The impact of CMOS technology is clearly evident by 

the public consumption of electronic devices from the late 1980s to the present day. The 

research presented in this dissertation explores a new computing paradigm where the 

single domain magnetic dipole moment of a ferromagnetic nano-structure is used as a 

logical switch. The nano-magnets are arranged to couple with one another to create 

larger complex networks of a magnetic computing machine and has been labeled by the 

industry as an emergent technology. 

Every year an international consortium of experts from the technology sector, called 

the International Technology Roadmap for Semiconductor (ITRS), gather to provide a 

roadmap for the future with the sole purpose of identifying significant technologies to 

advance the industry. Companies such as Intel Corporation, Hewlett-Packard, Texas 

Instruments, and IBM Corporation, rely on this roadmap as a guide to help determine 

what significant technologies are materializing. In 2009, the ITRS Emerging Research 

Devices identified Magnetic Logic as an emerging technology and stated,  

“Nano-magnetic logic has potential advantages relative to CMOS of being non-

volatile, dense, low-power, and radiation-hard. Such magnetic elements are 

compatible with MRAM technology, which can provide input-output interfaces. 

Compatibility with MRAM also promises a natural integration of memory and logic. 

Nano-magnetic logic also appears to be scalable to the ultimate limit of using 

individual atomic spins” [12]. 

Detailed within is the study of that fundamental shift from the displacement of the 

electron as a basic switch, as found in transistor technology, to using the intrinsic spin of 

the electron to create a switch for logic. By fabricating ferromagnetic structures at nano-
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dimensions a unique phenomenon occurs, the formation of a single magnetic domain 

(as opposed to multiple domain structures found at larger scales). This distinct magnetic 

state, which occurs only at the nano scale, presents unique opportunities to create a 

new type of computation machine based on the interaction of magnetic dipole moments. 

Magnetic logic exhibits extraordinary innovation possibilities, such as the potential to 

scale the size of a magnetic switch down to an atom, and could conceivably be the next 

significant advancement in computational logic. 

 Contributions 1.3

The use of nano-phenomena at the device level is relatively modern, and the use of 

nano-magnetism as a logical switch in computation is even earlier in its development. 

Therefore, the intention of this study was to simulate, implement, and test fundamental 

aspects of different magnetic logic systems. In particular, the focus was on the 

interaction between neighboring magnetic cells and how several factors, such as surface 

roughness or coupling architectures, affected nano-magnetic systems. Within this study, 

not only were previously reported pioneering results verified [13, 14], but the design, 

simulation, fabrication, and testing of novel nano-magnetic logic systems under various 

conditions were explored. Specifically the following contributions are detailed: 

 The effect of size, surface, and shape irregularities of rectangular nano-

magnets and the associated magnetostatic coupling reliability in Magnetic 

Cellular Automata (MCA) was analyzed (p. 36). The first implementation of a 

ferromagnetic majority gate, as well as two ferromagnetic majority gates 

feeding into a third ferromagnetic majority gate was presented. This was the 

largest known logic circuit demonstrated in MCA. The investigations 

demonstrated a highly predictable interaction of ferromagnetic and anti-
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ferromagnetic coupling and a robustness to nominal fabrication defects 

associated with bottom up fabrication techniques. 

 The first direct comparison of magnetic frustrations for ferromagnetic and 

anti-ferromagnetic MCA wires under external magnetic clocking fields in the 

in-plane hard axis, out-of-plane hard axis, in-plane easy axis, and spinning 

magnetizing field was experientially investigated (p. 54). Simulations were 

also implemented to attain the magnetic energy associated with magnetic 

frustrations and correctly coupled ground states. The results showed that 

ferromagnetic wires were able to mitigate magnetic frustrations better than 

anti-ferromagnetic wires and suggest out-of-plane magnetic fields as a 

possible clocking solution. 

 The design, implementation, and testing of a novel ferromagnetic coplanar 

crossing wire systems was also presented (p. 68). The simulation of two 

ferromagnetic wires intersecting at a 90 degree angle has been discussed as 

well as the experimental implementation of two coplanar crosswire systems 

was  reported. The novel crosswire system was found to be functional and 

offered a unique architecture for Magnetic Cellular Automata.  

 The analysis of a unique Magnetic Field-Based Computing (MFC) system 

consisting of nano-magnetic disks to implement perceptual grouping of 

segmented edges through magnetic energy minimization for image 

processing was explored (p. 79). A proof of concept was explained and 

fabricated. The results showed that the circular disk can indeed be used to 

establish a saliency between edges of an image by exhibiting coupling along 

a particular magnetization direction. This can reduce a computational 
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bottleneck found in the perceptual organization process of grouping 

segments in computer vision. 

These contributions helped to bolster the foundation of magnetic computational 

devices and provided perspective to the feasibility of realizing magnetic logic. Potential 

benefits of using magnetism for computation range from the prospect of ultra-low power 

devices for mobile applications to radiation tolerant circuitry for space exploration and 

other extreme environments. 

 Outline of the Dissertation 1.4

The outline of this dissertation is as follows: 

 Chapter 2 Nano-Magnetic Systems reviewed current state-of-the-art nano-

magnetic systems. 

 Chapter 3 Fabrication of Nano-Structures via Electron Beam Lithography 

provided an overview and details of the Electron Beam Lithography 

fabrication process used in the physical realization of the magnetic nano-

structures. 

 Chapter 4 Introduction to Single Domain Nano-Magnets for Cellular Automata 

investigated rectangular single domain magnetic structures and discussed 

how physical parameters of fabrication, such as defects, affect the coupling 

interaction between neighboring cells. MCA majority gates structures are also 

discussed. 

 Chapter 5 Magnetic Cellular Automata Interconnects discussed ferromagnetic 

and anti-ferromagnetic wire architectures for MCA under various external 
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magnetic clocking fields. Details on the ability of the wire architectures ability 

to mitigate frustrations were discussed. 

 Chapter 6 Magnetic Cellular Automata Coplanar Cross Wire Systems detailed 

the design and implementation of a novel cross wire system that could 

intersect on the same device plane without undesired cross talk. 

 Chapter 7 Magnetic Field-Based Computing for Image Processing explored 

the proof of concept and physical implementation of mapping the quadratic 

energy minimization of coupled dipole moments to the maximization of the 

quadratic edge affinity in the grouping process of perceptual organization. 
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  Chapter 2

Nano-Magnetic Systems 

 Introduction 2.1

Nano-magnetic systems have recently shown great promise in the advancement of 

logic and memory. Novel emerging magnetic systems have been reviewed in the 

following sections. In particular, Magnetic Cellular Automata was discussed in great 

detail as it demonstrated very promising results such as scalability, room temperature 

operation, and functioning logic components. 

 Magnetic Cellular Automata 2.2

In Cellular Automata (CA), a basic cell has distinct enumerated states which are 

determined by its current state and the state of its neighbors. These cells are positioned 

such that direct neighbors will influence and change each other‟s current state. A good 

example of a cellular automaton is John Conway‟s Game of Life [15, 16]. Quantum 

Cellular Automata, or QCA, is a flavor of CA in which the intrinsic and extrinsic properties 

of the cell(s) are based on the quantum effects of an electron(s). An interesting fact of 

CA is that it is not limited to a specific technology; meaning that there are several 

physical implementations of a CA cell which embody the electron differently and make 

use of distinct quantum effects. Currently, there are three prominent variants of CA; 

Magnetic, Electronic, and Molecular [17-42]. The beauty of CA is that each cell is a self-

contained element, needing no external energy to maintain a state. The desired state  

will  always  be  one of  the possible  energy minimum  configurations of  the cell.  
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There is no need for constant power to operate a CA system; external energy is only 

provided during switching of states, making CA an inherently low power system. Another 

excellent characteristic of CA is that it is a lead-less system, meaning there is no need 

for physical interconnects between all of the CA cells. Cells interact with neighbors via 

coupling forces which depend on the particular CA schema. This significantly reduces the 

already stringent requirements to fabricate any real nano-scale device. Figure 2-1 

depicts a simple comparison of transistor and QCA technologies. Thus far, of the various 

CA schema, only Magnetic QCA has been able to demonstrate successful operation at 

room temperature [43] [44].  

In Magnetic Cellular Automata (MCA), a basic cell is a nano-magnet; these magnetic 

cells are arranged in various grid-like fashions to accomplish computing. Cells in MCA 

 

Figure 2-1 (A) is a diagram of transistors in series which depicts various external 
energies and interconnecting wires. Transistors require a constant energy supply to 
operate which is not necessary for QCA. (B) is an abstract representation of a QCA wire. 
The leftmost cell can be considered a state of ‟1‟ and the rightmost cell state ‟0‟. The 
external source forced the leftmost cell to change its state to a ‟1‟ which forced the 
neighboring center cell to a logical ‟1‟. The last rightmost cell, which is a ‟0‟ and will 
eventually change to a logic ‟1‟ because of the coupling force experienced from the 
neighboring cell.  
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are enumerated based on their single domain magnetic dipole moments and are 

inherently energy minimums. The single domain phenomenon only occurs in nano-scale 

magnets, and if engineered properly can reduce the cell‟s coercivity. This enables lower 

magnetic fields to alter the magnetic moment of a cell and provides desired switching 

characteristics. Two distinct and significant advancements in MCA have been made and 

are summarized in following subsections. 

2.2.1 Single Domain Nano-Dots 

In this scheme, a computing network is created by placing an elongated elliptical 

input dot followed by circular dots to form a wire as shown in Figure 2-2 [43, 45-52]. 

The elliptical input dot requires a greater magnetic field to change states than the 

circular dots due to the shape anisotropy. Once the state of the input dot has settled, it 

is propagated down the circular MCA wire. The input dot‟s state is set to a logical ‟1‟ or 

‟0‟ by applying a single magnetic field pulse along the wire of dots at +300 Oe (returning 

to 0 Oe) or -300 Oe (returning to 0 Oe), respectively. To ensure that the magnetic pulse 

used to set the input dot did not set the circular dots states as well, the same magnetic 

pulse  of  ±300 Oe was sent along the wire without the presence of the input  dot.  The 

 

 

Figure 2-2 is a depiction of Cowburn‟s et al. circular MCA chain. The leftmost magnetic 
dot can be assumed to be a logical ‟1‟, while the rightmost can be assumed to be a 
logical ‟0‟. In this wire the two leftmost magnetic dots have coupled. Assuming 
information is being driven from left to right, the final dot which has a state of ‟0‟ will 
flip to a logical ‟1‟ to minimize local magnetic energies. 
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dipole moments of the circular nano-dots were not uniformly aligned to the external 

field, which ensured the propagation of information was due to the magnetostatic  

coupling forces and not the external field applied to set the input dot. A weak oscillating 

magnetic field of ±25 Oe at a 30Hz frequency, combined with a -10 Oe bias magnetic 

field was also applied to the entire network of dots to propagate the state of the input 

dot down the wire of circular dots. To propagate or reverse the state of the network a 

soliton was created [43]. Once created, usually near the end of the QCA wire, the 

soliton can move back and forth along the chain depending on the magnetic oscillating 

field. Figure 2‑3 depicts how the propagation of states could occur. Notice at T2 when 

the soliton (dark blue bar) reaches the input dot, it will stay between the input dot and 

the first circular nano-dot. Once the magnetic oscillating field begins to rise, the soliton 

will begin to move forward along the chain, as depicted at T3. Had the input dot been 

set to 0 (magnetic dipole moment pointing to the left) and the soliton moving backward, 

 

Figure 2-3 shows the operation of a chain of circular nano-dots propagating information. 
The graph depicts an oscillating external magnetic field with a -10 Oe bias which is used 
to drive information along the wire. At time T1, the majority of the circular wire has 
followed suit with the larger elliptical input dot. At T2, the negative phase of oscillation 
combined with the bias has sufficient energy to reverse the state of the circular wire by 
propagating a soliton. At time T3, the soliton has begun to move forward along the 
chain during the positive phase of oscillation of the applied field. 
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as depicted at time T2, the soliton would be lost and another would need to be created. 

In the network described above, the circular dots were fabricated to a diameter of 110 

nm, at a thickness of 10 nm, on a pitch of 135nm as shown in Figure 2‑2. The size and 

shape ensured that the ferromagnetic circular dots made of a Supermalloy 

(Ni80Fe14Mo5X1, where X was other metals) had single domain magnetic moments. This 

is important, considering that the enumeration of states is based on the orientation of 

magnetic dipole moments and switching dynamics. It was found that the circular dots 

with a diameter of 100 nm and thickness of 10 nm exhibited ideal switching 

characteristic [53]. The minute amount  of  energy  required  to  saturate  the  dots,  

starting  at  about  5 Oe, and the high residual magnetization, about 80%, are prime 

characteristics produced by these single domain nano-dots [53]. The magnetostatic  

energy (PE in the magnetic field) between two dots in this network was about 200 kbT, 

(where kb is the Boltzmann‟s constant and T is the temperature) and should be at least 

40 kbT to keep thermal errors below one per year [53].  

2.2.2 Field-Coupled Nano-Pillars 

In a nano-pillar network, a basic cell consists of a shape engineered single domain 

magnet as shown in Figure 2-4 (A) [1, 13, 22-25, 29, 30, 44, 54-60]. Due to the shape 

anisotropy, the pillars develop easy and hard axis of magnetization. A magnetic dipole 

moment experiences lower demagnetization energy when aligned along the easy axis of 

magnetization, and hence, is in an energetically favorable state. Conversely, when 

aligned along the hard axis, the magnetic dipole moment is unstable and will eventually 

align itself along the easy axis to reduce the demagnetization energy. This allows for the 

enumeration of states along the easy axis of magnetization and creates a digital mode 

of operation for Magnetic Cellular Automata. 
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A MCA wire is constructed by placing nano-pillars side by side, as shown in Figure 

2-5 (A). Proper data propagation occurs when all the magnetic dipole moments of each 

cell in the MCA wire are in an anti-parallel arrangement. Assume the wire‟s initial state in 

Figure 2-5 (A) was with each cell‟s magnetic dipole moments pointing along the hard 

axis of the magnets. Csaba et al. suggested an “adiabatic pumping” scheme [55] where 

the energy barrier required for switching is reduced by first applying a magnetic field 

along the hard axis. This causes the nano-pillar‟s magnetic dipole moment to align itself 

along the hard axis which is the initial state before an input is given. This state is 

energetically unfavorable, making it possible to supply a weaker external magnetic input 

field to the system. Once an input is given, magnetostatic coupling energies between 

the magnets causes data to propagate down the wire.  Several shapes, shown  in  

Figure 2-4 (B), were also studied under an adiabatic and rotating demagnetization fields 

to investigate the anti-ferromagnetic coupling  order [23].  It  was  determined  that 

symmetric shapes demonstrate longer data propagation lengths with an adiabatic 

demagnetization field, while the asymmetric shapes performed better under the rotating 

demagnetization field.  

 

Figure 2-4 (A) shows the fabrication dimensions of a permalloy nano-pillar. Due to the 
shape anisotropy, an easy and hard axis of magnetization were created. (B) are various 
shapes that were studied under different demagnetization fields to determine coupling 
order lengths. 
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Figure 2-5 (B) is a MCA majority gate, which was the first logic gate fabricated in 

this type of CA [1]. The shape of the rectangular nano pillar was chosen because of the 

bi-stable nature. The shape anisotropy of the nano-pillars introduced a high energy 

barrier between the two stable states, thereby making them less error prone. The higher 

energy barrier also led to more power dissipation but was mitigated by an adiabatic 

switching/pumping mentioned previously. The nano-pillars dimensions were 35nm thick, 

had a width of 70nm, height of 135nm, and were made of permalloy. The nano-pillars 

were fabricated via an electron beam lithography process. The MCA majority gate was 

shown to have performed all possible logic combinations of a three input gate and 

operated at room temperature. This was significant since a majority gate can implement 

the essential logic gate functions necessary to implement any Boolean function. 

Research studies have also been conducted to investigate the low power operation 

and defect characterization of MCA devices. MCA devices will need a clock 

implementation for synchronous operation and many have proposed using an external 

magnetic field as a clocking mechanism [44, 61, 62]. The clock energy along with the 

 

Figure 2-5 (A) depicts a magnetic QCA wire. An external input is given to the wire which 
had sufficient strength to coerce the rest of the wire to change its state accordingly. (B) 
is a Magnetic QCA Majority Gate. The gate has three inputs (external energies); the 
output will depend on the dipole moments of the inputs. In this example, the topmost 
and leftmost inputs have the positive end of the dipole moment pointing downward and 
the bottom input has its moment pointing upward. The majority of the inputs are 
pointing downward so the center pillar is the result of the majority. 
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energy necessary to provide an input is the total energy of an MCA system. The energy 

loss was calculated for a 32-bit MCA ripple carry adder and was found to be 0.004 - 

0.285 pJ at a switching frequency of 108, which is in the worst-case scenario on par with 

larger low power CMOS devices [61]. MCA devices have also been found to be robust to 

common fabrication defects and have shown long range ordering [23, 63].  

This particular implementation of Magnetic Cellular Automata, which uses 

rectangular nano-magnets as the basic cell, was of primary interest in this dissertation 

due to their bi-stable nature and room temperature operation [44]. The formation and 

reliability of a single domain magnetic moment of a ferromagnetic nano-structure, and 

the magnetic coupling between neighbors are discussed in detail Chapter 4. Chapter 5 

explores how ferromagnetic and anti-ferromagnetic wire architectures perform under 

different clocking fields. A novel ferromagnetic cross wire system, investigated in 

Chapter 6, is also presented which utilizes rectangular ferromagnetic nanostructure as a 

basic cell for MCA. The research presented within this dissertation, coupled with the 

pioneering work previously reported, continues to move MCA to the forefront of 

magnetic logic devices. 

2.2.3 Biaxial Magnetocrystalline Anisotropy  

MCA will most likely need a clocking structure to align magnetic cells into a hard axis 

of magnetization. Alignment into the hard axis allows for previous states to be erased 

and lowers the work needed to overcome the energy barrier to „flip‟ a nano-magnet. 

Once a nano-magnet is aligned in a hard axis of magnetization, for example via an 

external magnetic field, the external energy is removed to allow the magnetic cells to 

settle into a lower energy state along the easy axis of magnetization. During this 

relaxation time the nano-magnets are very easily influenced by the external  forces of a  
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neighboring cell, which is the very essence of cellular automata. If an input is given to 

one nano-magnet it will drive its neighbor which in turn drives its neighbor and so on.  

Recently, Carlton et al. has suggested introducing a magnetocrystalline biaxial 

anisotropy energy into magnetic simulations to increase the relaxation time of a nano-

magnet [64]. Many ferromagnetic materials exhibit magnetic anisotropy such that 

magnetic properties differ along crystal planes, as shown in Figure 2-6. If a magnetic 

cell is engineered such that the clock is provide along the hard axis, the 

magnetocrystalline anisotropy will provide energy to increase the relaxation time. The 

benefit of the biaxial anisotropy energy is it will allow time for an input to flow 

throughout a system. For example, if the propagation time for a magnetic cell is 100 

picoseconds , as estimated by Carlton et al. [64], the relaxation time for a clock domain 

of a wire will have to be less than that propagation time to insure signal integrity. The 

extra energy provided by the biaxial anisotropy will increase the relaxation time, and 

therefore allow for proper data propagation within clocking boundaries and mitigate 

magnetic frustrations. 

 

Figure 2-6 (A) is a BCC crystal of iron which exhibits magnetic anisotropy along different 
crystal planes. Image (B) is a FCC crystal of cobalt. Note for cobalt the [111] crystal 
direction is the easy axis of magnetization. 
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 Magnetic Nano-Rings 2.3

Magnetic nano-rings present an interesting architecture, particularly for storage 

elements [54, 65-69]. Magnetic Random Access Memory (MRAM) has many of the same 

benefits as magnetic logic, such as non-volatility, extreme longevity, radiation hardness,  

etc., but one of the current dilemmas in the technology is the neighbor-neighbor 

magnetostatic interaction. Magnetic nano-rings have shown a propensity to reduce this 

interaction as well as controllability via external magnetic fields and more recently 

through spin torque transfer [68, 70, 71]. 

Magnetic nano-rings consist of circular soft magnetic disk with the center removed 

as shown in Figure 2-7. An intriguing feature of the magnetic nano-rings design is the 

possible onion or vortex states. Figure 2-7 (A) and (B) show the magnetic onion states. 

What is striking about these configurations is the fact that similar magnetic poles are in 

close proximity and the presences of magnetic flux where the poles coincide. The other 

two stable configurations are given in Figure 2-7 (C) and (D). These closed-flux states 

are  in  a vortex  configuration. The benefit of  a vortex  state  for  memory  is the  zero  

 

 

Figure 2-7 (A) and (B) show the two stable configurations of the onion state in a 
magnetic nano-ring. The arrows represent the magnetic moment of the nano-rings. The 
onion states are similar to single domain magnets due to the production of stray fields. 
Image (C) and (D) are the stable vortex configurations of the nano-rings. This 
configuration has zero stray fields. 
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stray field of the closed-flux configurations. This reduces any significant magnetostatic 

interaction with neighboring bits allowing for higher bit densities.  

Magnetic nano-rings can also act similar to single domain nano-disks. The flux 

created by an onion state is similar to the stray fields created by single domain magnets. 

By placing nano-rings in close proximity, they can interact through their magnetostatic 

fields. Experiments have also demonstrated a structure where the nano-rings are linked 

together and  magnetic information is coupled between rings [72]. 

 Magnetic Domain Wall Logic 2.4

Another type of nano-magnetic system is driven by the motion of a domain wall. A 

domain wall is the boundary where a magnetic dipole moment gradually transitions from 

one direction to the opposite direction, such as a Bloch wall. By constructing a magnetic 

nanowire magnetic dipole moments are formed parallel to the length of the wire due to 

magnetic shape anisotropy, as shown in Figure 2-8 (A). In a sufficiently long nanowire, 

multiple domains form along the length of the wire, and in between these magnetic 

 

Figure 2-8 (A) shows two different nano-wires with a contiguous magnetic domain in 
opposite directions. (B) depicts two different types of domain wall configurations, one 
with a head to head configuration and the other with a tail to tail. Whenever there is a 
domain wall present the magnetization opposing the motion of the domain wall is 
considered a logical „0‟. Figures (C), (D), and (E) are progressions of the operation of a 
NOT gate. For this abstraction an external magnetic field (H) was applied to move the 
domain wall into and through the kink which performs an inversion of the logical state. 
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domains are domain walls, as shown in Figure 2-8 (B). Researchers have  demonstrated 

the manipulation of domain walls through the use of external magnetic fields and spin 

torque moment transfer [73-77].  

A pioneering experiment in domain wall logic was the demonstration of a NOT gate 

[78]. By introducing a kink in the nanowire, as shown in Figure 2-8 (C), the inverse of 

the logical state can be attained. The manipulation of the domain wall was done through 

a rotating external magnetic field (H) which moved the domain wall through the kink, as 

shown in Figure 2-8 (C)-(E). To enumerate the logic the flow of the domain wall must be 

taken into account. In the example given in Figure 2-8 (C) the domain wall was moving 

from left to right. To the left of the domain wall was considered a logical „1‟ while the 

opposite magnetization on the right side of the domain wall was a logical „0‟. The 

domain wall was then propagated up and through the corner, and then down the wire 

via an external rotating field (H). As can be seen in Figure 2-8 (D), once the domain wall 

passed through the corner, the state of the wire was inverted and could be shifted along 

the rest of the wire. Using this structure, a magnetic shift register was also 

demonstrated [73, 78]. Shift registers are used in many logical components and are an 

essential component of a central processing unit. The magnetic shift register was 

successfully operated at 27 MHz and inverted the same domain wall approximately 

100,000 times. This demonstrated the stability of the domain wall. 

Subsequently a logical AND gate was experimentally proven and is shown in Figure 

2-9 (A)  [75]. The AND gate consisted of two input wires which taper down to a junction 

point. This junction point was connected to a thicker output wire where the domain wall 

was propagated along via an external  magnetic field. The junction point acts as a valve,  
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providing an energy barrier. Using the same logical nomenclature as the NOT gate, a 

magnetic moment that opposes the flow of the domain wall was considered a logical „0‟. 

Figure 2-9 (B) depicts a logical „1‟ injected into Input 1 (domain wall motion from left to 

right). Once the domain wall reached the junction, the external magnetic field could not 

overcome the energy barrier. Therefore the output remained a „0‟. Figure 2-9 (C) has 

both Input 1 and Input 2 set to a logical „1‟. With the injection of a domain wall into 

both inputs, and the external magnetic field, there now was enough energy to overcome 

the barrier of the junction point and Figure 2-9 (D) proceeds. Domain walls were 

introduced in the referenced work through the use of injection pads. It is also possible 

to induce domain walls through the use of short current pulse or via magnetic fields 

from current carrying wires [73, 76]. With the demonstration of an AND and NOT gate, 

all the necessary requirements to produce any logic circuit had been achieved. More 

recently domain walls have shown the propensity to be controlled via spin torque 

momentum transfer [76, 77, 79, 80]. This could lead to more practical implementation 

of controllers and integration with other technologies such as CMOS and MRAM. 

 

Figure 2-9  (A) shows the basic domain wall logic structure of an AND gate. It is made 
of two tapered input wires which meet at a junction point. Assuming that (A) was the 
initial state (B) shows where a logical „1‟ was injected into Input 1. (C) depicts a logical 
„1‟ being injected into both Input 1 and Input 2. Due to the energy barrier at the 
junction point, (D) can only be reached from (C).  
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  Chapter 3

Fabrication of Nano-Structures via Electron Beam Lithography 

 Introduction 3.1

Electron beam lithography (EBL) is a high resolution fabrication method often used 

to repair/create masks for photolithography and nano-imprint lithography. The shorter 

wavelength of an electron and the lack of diffraction limitations found in traditional 

photolithography light sources allows for features down to 4 nanometers to be realized 

using EBL [81]. Although the throughput of an EBL direct write process is much lower 

than photolithography, research continues to create a commercially viable EBL system. 

For the purpose of investigating ferromagnetic nano-structures, EBL provides the 

flexibility of easily prototyping several different structures with the high resolution 

necessary for the fabrication of nano-magnetic logic systems. In the following sections 

the EBL process used throughout this research is detailed. 

 Overview of Electron Beam Lithography Process 3.2

The bottom up EBL approach began by coating a silicon substrate with an electron 

sensitive positive resist, namely polymethylmethacrylate (PMMA). The resist was then 

exposed using a JEOL 840 thermionic Scanning Electron Microscope (SEM) retrofitted 

with a Nabity NPGS lithography system to create the desired mask patterns [82]. The 

exposed areas were removed via a chemical developer using a solvent of methyl isobutyl 

ketone (MIBK): isopropanol 1: 3. A soft ferromagnetic material was then deposited via a 

Varian Model 980-2462 Electron Beam Evaporator. A bond was formed between the 
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ferromagnetic material on the resist in the non-developed areas, as well as on the 

substrate where the developed resist had been removed. The final liftoff step involved 

using a solvent (acetone) which removed the resist from the substrate leaving behind 

only the ferromagnetic metal on the exposed substrate areas. 

Several variations of the EBL process outline above were used in the fabrication of 

the nano-magnetic structures, such as molecular weights of electron sensitive resists, 

development times, and metal thickness. Specific details pertaining to each phase of the 

research can be found in the respective chapters. In the proceeding sections 

background information on the theory for each step of the process and the rationale for 

specific methods used are discussed.  

 Electron Beam Resists 3.3

Electron sensitive resists may be classified into two categories, positive and negative. 

When exposed to an electron beam, a chemical reaction is induced in a negative 

electron beam resist which causes crosslinking between polymer chains. The crosslinked 

polymer chains become insoluble, while the unexposed polymer chains are soluble 

creating selectivity. A positive electron beam resist also has chemical reactions induced 

by the electron beam energy which degrades the polymer molecules into smaller chain 

scission molecules. The chain scission molecules are more soluble than the unexposed 

polymer and can be developed using an organic solvent. 

For the purpose of fabricating nano-structures with thickness ranges and lateral 

dimensions in the nano-regime, polymethylmethacrylate (PMMA) is the positive resist 

standard for high resolution lithography. Although the low sensitivity of PMMA reduces 

the commercial usability of the resist, the high contrast and low swelling during 

development are significant factors contributing to the high lateral resolution. The 
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dissolution rate of PMMA can be understood via the exposure resist model given in 

equation 3-1, where R is the dissolution rate for the exposed resist, 0R is the 

dissolution rate for the unexposed resist, 0M  is the initial molecular weight, nM is the 

molecular weight post exposure, a  is the developers kinetic solubility dissolution 

parameter, and sG  is the scission efficiency [83].  

a

s

a

n MkQGMMkRR )1()/(/ 000  
         (3-1) 

From the model, it is given that the dissolution rate is inversely proportional to the 

molecular weight. As the electron beam induces chain scissions in the positive resist, the 

molecular weight of PMMA is reduced and therefore more soluble than the unexposed 

higher molecular weight PMMA. Figure 3-1 shows a main chain scission for 

polymethylmethacrylate which lowers the molecular weight of the resist creating the 

desired selectivity between exposed and unexposed areas.     

 Preparation and Application of PMMA Resist 3.4

In order to fabricate a device, a substrate is needed. N-type 250mm thick silicon 

wafers were used throughout the fabrication process as the substrate due primarily to 

 

Figure 3-1 shows a chemical reaction induced by the exposure of the positive resist 
polymethylmethacrylate (PMMA). The main molecular chain is given on the left and the 
scission of the main chain is shown on the right. The lower molecular weight of the 
chain on the right makes the resist more soluble in a developing solvent. 
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the atomically smooth surface and lack of magnetic response. The surface was prepared 

for resist coating using the RCA cleaning procedure outlined in Table 3-1. The purpose 

of the RCA cleaning procedure was to remove organic, ionic, and heavy metal 

contaminants in order to prepare the Si wafer surface for the application of the electron 

sensitive resist. A spray on solvent clean of acetone, followed by isopropanol, and dried 

Table 3-1 outlines and describes the process steps used for the RCA cleaning 
procedure. 

Process Description 

Rinse wafers with DI water for two rinsing 

cycles 
Rinses any superficial debris 

Dip in HF (50:1) for 20 seconds Removes native oxide 

Rinse with DI water for two rinsing cycles Rinses off any residue 

Dip in SC1  for 10 minutes @ 60ºC 

2000ml of DI water; 330ml of Hydrogen 

Peroxide; 330ml of Ammonium Hydroxide 

(6:1:1) 

 
Removes insoluble organic contaminants 

Rinse with DI water for two rinsing cycles Rinses off residue 

Dip in HF (50:1) for 20 seconds Removes chemical/native oxide 

Rinse with DI water Rinses off residue 

Dip in SC2 for 10 minutes @ 60ºC 
2000ml of water; 330ml of Hydrogen 

Peroxide; 330ml of Hydrochloric acid (6:1:1) 

 
Removes ionic and heavy metal contaminants 

Rinse with DI water for two rinsing cycles Rinses off residue 

Dip in HF (50:1) for 20 seconds Removes chemical/native oxide 

Rinse with DI water for two rinsing cycles Rinses off residue 

Dry with Nitrogen Gas Removes possible water spots 
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using nitrogen gas was also done prior to the resist application to remove any possible 

contaminates from handling. The substrates were spun dried at 5000 rpm for 2 minutes 

to promote the evaporation of any residual solvents without altering the temperature of 

the substrate.    

The application of the PMMA onto the wafer was accomplished using a Laurell 

Technologies WS-400A-8NPP/Lite Spin Processor. Due to the nature of the research, 

most of the fabricated devices were less than 40 nm thick and therefore thin layers of 

resist were necessary. A Teflon pipette was used to deposit a 25mm circle of PMMA at 

room temperature. The recipe used to apply a uniform coating of PMMA is given in 

Table 3-2. After the resist was spun, a prebake was done in a convection oven at 170°C 

for 30 minutes to remove any excess solvent.  The spin recipe was successfully used for 

applying resist layers ranging from 30 nm to 120 nm with no adhesion issues.  

The two molecular weights of PMMA used were 495,000 and 950,000 in anisole, 

which were commercially available from MicroChem [84]. The percentage of PMMA to 

anisole was diluted to less than 2% for the desired film thickness by adding anisole. For 

high resolution electron beam lithography, a single layer of 950k MW PMMA was able to 

Table 3-2 outlines the resist spinner recipe used for 495K and 950K PMMA ranging from 
30-120 nm of thickness. 

Process Step Description 

1 Dispensed a 25mm diameter drop of PMMA resist  

2 Pre-ramp up: 0-500 rpm 5 seconds 

3 Ramp up: 500-5000 rpm 45 seconds 

4 Ramp down: 5000-0 rpm 5 seconds 

5 Prebake: 170°C for 30 minutes 
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successfully meet the critical dimensions of 20 nm between each nano-magnetic device. 

A bilayer resist process was also used where the lower molecular weight PMMA was 

spun as bottom layer, prebaked, followed by the same procedure for the higher 

molecular weight for the top layer. The higher molecular weight PMMA provided the 

better contrast while the more sensitive bottom layer created an undercutting profile 

ideal for a clean liftoff. 

 Scanning Electron Beam Exposure 3.5

Traditional exposure methods use light to develop photoresist down to just below a 

micron, but for high resolution lithography, electron beam exposure systems continue to 

offer researchers low cost rapid prototyping of submicron feature sizes. Figure 3-2 

shows a typical Scanning Electron Microscope (SEM) column. The beam is focused via 

magnetic lenses and is scanned across the surface of a sample via deflectors. SEMs have 

several possible electron gun sources, such as thermal field emission cathodes, cold field 

 

Figure 3-2 is an abstraction of a scanning electron microscope column. For electron 
beam lithography, thermionic emission filaments are often used due to the stable 
emission current. 
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emission cathodes, and thermionic emission sources which are preferred electron beam 

lithography. Field emission sources are excellent for imaging via secondary electron 

excitation due to the high brightness of the source, but are prone to contamination from 

gases in the vacuum system which can cause a drift in the emission current [85]. The 

stability of a SEM‟s emission current is critical to the proper exposure of resists and is 

not an issue with thermionic sources. A tungsten thermionic emission source emits 

electrons by providing thermal energy to overcome the work function of the metal; 

breaking the electron free from the material into the vacuum. A uniform thermionic 

source‟s emission current density can be model by the Richardson-Dushman (equation 

3-2) where J is emission current density, GA is the Richardson constant (1.20 x 106 Am-

2 K-2), T is temperature, W is the metal‟s work function, and k is the Boltzmann 

constant (8.617 343 × 10−5 eV K−1) [86]. 

kT
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GTeAJ



                        (3-2) 

 

 

Figure 3-3 represents two different electron beam energies entering an electron 
sensitive resist and substrate. The figure on the left is at a lower acceleration voltage 
and the backscattered electrons expose the resist as well as the forward scattered 
electrons. The figure on the right is at a higher acceleration energy and the resist is 
exposed primarily by forward scattered electrons. 



30 
 

The exposure mechanisms of electron sensitive resists depend on several factors, 

such as the atomic number of the substrate, beam energy, and resist thickness. Figure 

3-3 depicts how electrons scatter as they traverse the resist and substrate mediums. As 

electrons move through the resist, energy is deposited into the medium through 

interactions between the primary beam and the resist molecules. When the incident 

beam of accelerated electrons (where acceleration voltages range from 20-50kV) enters 

the resist, interactions with a thin resist (<100nm) are small, and only minute amount of 

initial energy is deposited into the resist. The transparent resist allows most of the 

energy to enter the substrate which induces several types of reactions such as x-rays, 

auger electrons, and secondary electrons. As the incident electrons interact with the 

substrate, several scatter back into the resist known as backward scattered electrons. 

Higher energy beams penetration deeper into the substrate and have less resist 

exposure due to backscattered electrons, while lower energy beams have a broader 

lateral profile in the resist and can suffer from the proximity effect. Higher energy 

electron beams offer improved resist exposure profiles but require higher doses of 

energy to expose the resist. The energy deposited by energetic electrons into resist can 

be modeled using the Bethe energy model, where E  is the electron energy, x  is the 

distance of the electron trajectory, en  is the electron density of the atoms, e  is the 

charge, and I  is the mean excitation energy [87]. 
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From this equation it can be understood that as electron beam energy is increased, the 

amount of energy imparted to the resist per unit length decreases. As higher 

acceleration energies are used, higher doses are needed to expose the resist.   
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 Resist Development 3.6

In order to selectively remove resist, a developer solution normally removes a resist 

of lower molecular weight more effectively than the same resist of a higher molecular 

weight. The developer solution is specific to the particular chemistry of a given resist 

and the necessary activation energy needed to dissolve it. Figure 3-4 (A) depicts the 

developing process of a sample that has both exposed and unexposed areas of a 

positive resist placed into a developer solution. The developer penetrates the lower 

molecular weight resist removing it from the substrate, while the higher molecular resist 

areas swell as a resistance mechanism to dissolution. Swelling is normally an undesired 

condition of developing and can cause negative effects such as bridging [87]. Once the 

developer is removed and the resist is dried a mask is created. In order for the 

dissolution of the lower molecular weight resist to occur, a solvent must provide the 

necessary activation energy to uncoil the resist molecules. The solubility parameter and 

resist contrast for various developers of PMMA have been studied and are used to 

 

Figure 3-4 (A) depicts the sequential development process (top to bottom) for a positive 
resist such as PMMA. Figure (B) shows the interaction between the developer solution 
and resist. As the developer penetrates the resist, a gel layer is formed. The activation 
energy necessary for the PMMA to uncoil is provided by the penetrating developer 
molecules.  
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calculate the dissolution rate in equation 3-1[83]. A poor developer with low activation 

energy will provide insufficient energy to efficiently break intermolecular and 

intramolecular forces of the resist. This increases the dissolution time which in turn 

increases swelling, deforming the desired mask pattern. The combination of a high 

molecular weight PMMA resist, and a developer solution of MIBK:Isopropanol 1:3 was 

used in this research to attain the high resolution lithography necessary for the creation 

of magnetic logic devices. 

The same development recipe was used for a single layer of 950K PMMA and the 

bilayer 495K-950K (bottom-top layer) of PMMA and is given in Table 3-3. Since the top 

950K PMMA layer of the bilayer resist provides the desired mask dimension it dictates 

the development time and is the same when using only single layer of 950K PMMA. The 

lower molecular weight bottom layer of 450K PMMA dissolves at a fast rate, which 

created the desired undercutting profile and ensured proper liftoff. 

 Film Deposition 3.7

For the fabrication of nano-magnetic logic devices, a soft ferromagnetic metallic 

material demonstrates ideal characteristics for logical switching [14, 49]. There are 

several methods available for the deposition of thin ferromagnetic films such as 

electroplating and sputtering.  Both  aforementioned  techniques  are  ideal  for  specific  

Table 3-3 outlines the development process used for a single layer of 950K PMMA and 
for s bilayer 495K-950K PMMA (bottom-top) resist. 

Process Step Description 

Development MIBK:Isopropanol 1:3 for 60 seconds constant stirring  

Rinse Isopropanol 20 seconds constant stirring 

Dry Nitrogen gas 
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fabrication situations, particularly when the conformal coating of a surface is desired. In 

this research electron beam evaporation was used for thin film deposition; primarily due 

to line of sight deposition which aids in the liftoff process and the preservation of the 

ferromagnetic alloy stoichiometry [88]. 

An electron beam evaporation uses an electron filament (as known as an electron 

gun) to vaporize a solid material source shown schematically in Figure 3-5. As the 

source material is heated via the thermal energy provided by the electron beam, it 

under goes a matter phase transitions from a solid to a gas. The phase transitions of a 

source are dependent on the physical material properties and can be characterized by 

the vapor pressure. If the vapor pressure for a material is above 10-2 Torr it will typically 

go through a standard matter transition (solid to liquid to gas), and are readily 

evaporated. Other elements such as Chromium (Cr) have vapor pressure below 10-2 Torr 

and transition directly from a solid to a gas in a process known as sublimation. These 

materials are harder to evaporate and have lower evaporation rates. Most of the devices 

 

Figure 3-5 is a schematic of an electron beam evaporator. The electron beam from the 
filament provides thermal energy to the solid source which causes the matter to 
transition into a gas phase. The evaporated source proceeds to grow a thin film of the 
material as it interacts with the surface of the target.  
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reported in this research were made of commercially available permalloy and nickel 

pellets. Both materials were readily evaporated in a vacuum of 10-6 Torr using a Varian 

Model 980-2462 Electron Beam Evaporator at rates of 1-8 Å sec-1. 

Once the source material is evaporated into a gas using a vacuum deposition system 

such as an electron beam evaporator, the gas can be modeled using the ideal gas law. 

An important parameter to consider during deposition is the pressure at which the 

material is evaporated. The vacuum pressure at the time of the evaporation determines 

the mean free path of a gas molecule and is given in equation 3-4, where p is the 

pressure of the vacuum system, and d  is the diameter of the gas molecule.  

22 pd

kT


 

                         
(3-4) 

Assuming the source material travels in a straight line from the evaporation source 

to the intended target, the mean free path of a material dictates how far a molecule can 

travel before it interacts with another molecule in its environment. For example, a 

molecule with a diameter of 4 Å at a vacuum pressure of 10-7 Torr has a mean free path 

of 60 meters [89]. It was determined that for the physical setup of the Varian 

evaporator used in this research, a vacuum pressure of 10-6 Torr would ensure minimal 

contamination during deposition. The position of the target in relation to the evaporation 

source was also considered and the growth rate can be predicted using equation 3-5, 

where p is the density, m is the mass evaporation rate, is the angle normal to the 

source plane, and is the angle normal to the target plane, as shown in Figure 3-5. 
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 Liftoff  3.8

The final step in the additive electron beam lithography process involved selectively 

dissolving the remaining resist mask. Similar dissolution kinetics for the chemical 

development of a resist applies to the liftoff process. Instead of having dissimilar 

dissolution rates for a resist of different molecular weights as with the development 

step, in the liftoff process a solvent has to select between an organic resist material and, 

in this case, an inorganic ferromagnetic metal. The process used for the dissolution of 

the PMMA resist consisted of an ultrasonic agitation of the sample in a warm bath of 

acetone. The sample was agitated for approximately 10 minutes followed by an 

isopropanol rinse and dried using nitrogen gas. Once the resist was dissolved, the only 

remaining metal was the metal which formed a bond directly with the substrate and a 

cross-sectional diagram of the liftoff process is given in Figure 3-6. 

 

 

 

Figure 3-6 is cross-sectional view of the liftoff process. After the ferromagnetic metal 
layer has been evaporated, the sample is placed in a solvent which dissolves the resist 
and removes the unwanted metal layers. The final metal device layer is left in place 
bonded to the substrate‟s surface. 
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  Chapter 4

Introduction to Single Domain Nano-Magnets for Cellular Automata 

 Introduction 4.1

The interactions of orderly fabricated nano-magnets and the viability of nano-

magnetic structures as logical building blocks is an area of great interest [12]. With few 

examples of orderly coupled nano-magnetic logic systems published, in this chapter the 

study of coupling between single domain dipole moments is discussed. A transitory 

introduction to magnetism is given leading into a discussion on the formation of single 

domain dipole moments. The coupling dependences of physical parameters such as size, 

surface roughness, and shape irregularities are also discussed. In particular, nano-

magnets with an aspect ratio near 2:1 were of interest due to their bi-stable nature and 

functionality [1, 44]. The bi-stability created by the shape anisotropy (i.e. the 2:1 aspect 

ratio of the cell) significantly reduces meta-stable states, which in turn allows proper 

coupling between neighboring nano-magnetic cells. The objective of this chapter was to 

alter physical parameters of the cells and examine the resultant magnetostatic coupling 

interaction of single domain rectangular nano-magnetic. 

 Magnetism and Magnetic Materials Overture 4.2

The phenomenon known as magnetism arises from the angular momentum of a 

charged particle, generally the electron. Magnetism from an atom can originate from the 

orbital angular moment of an electron (L), the intrinsic angular momentum (S), or a 

combination of the two. The energies of both quantities are defined in quantum 
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mechanics by the quantum numbers l and s. The other two quantum numbers 

associated with magnetism, ml and ms; correspond to the angular momentum 

component along an external magnetic field (B). Following Pauli‟s exclusion principle and 

Hund‟s rule, it is possible for an atom to exhibit a net magnetic resultant force, known 

as a magnetic dipole moment. Based on the electron configurations of elements, 

materials can be classified into five magnetic categories: diamagnetic, paramagnetic, 

anti-ferromagnetic, ferrimagnetic, and ferromagnetic. 

Diamagnetism is defined by materials that have a generally weak, negative magnetic 

susceptibility (Xm=-10-6). Magnetic susceptibility is defined in equation (4-1), where 

HXM m            (4-1)  

M is the material‟s magnetization vector, mX  is the magnetic susceptibility, and H

is an external magnetizing field. From this relationship it is clear if the magnetic 

susceptibility is negative, the magnetization of the material M will be in the opposite 

direction of the applied magnetizing field H . Materials made of elements with closed 

shells and subshells, as well as many organic materials, are diamagnetic.  

Paramagnetic materials have a small positive magnetic susceptibilities (10-5 ~10-4) 

which are comprised of atoms with unpaired electrons. These unpaired electrons have a 

net resultant magnetic moment but are weakly coupled to neighboring atoms. Each 

atomic magnetic moment can be considered independent such that in the absence of a 

magnetic field the magnetic moments are aligned in random directions and the material 

has no net magnetization. Once an external magnetic field is applied, the magnetic 

moments experience a torque which causes them to align in the direction of the field 

causing a net magnetization. When the external field is removed, the  alignment  of  the  
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moments are randomized again and the net magnetization is lost. Anti-ferromagnetic, 

ferrimagnetic, and ferromagnetic material also exhibit paramagnetic behavior above a 

critical temperature, were the atomic magnetic ordering energy is dominated by thermal 

energy. 

 Anti-ferromagnetic materials also have small positive magnetic susceptibilities 

similar to paramagnetic materials, but demonstrate atomic magnetic ordering as shown 

in Figure 4-1 (A). Below the Neel temperature TN, a Body Centered Crystal (BCC) unit 

cell of Chromium (TN ~ 37.5°C), exhibits anti-ferromagnetic ordering such that the total 

net magnetic moment of the crystal is zero. Above the Neel temperature, anti-

ferromagnetic materials become paramagnetic. Different types of anti-ferromagnetic 

ordering exist for compounds such as cubic perovskites, which are shown in Figure 4-1 

(B). For perovskites, the G-type ordering is due to an indirect superexchange interaction 

of the oxygen atoms which force the magnetic moments of neighboring atoms into an 

anti-ferromagnetic arrangement.   

 

Figure 4-1 (A) depicts the anti-ferromagnetic ordering of a Chromium BCC crystal. The 
(+) and (-) signs represent the two possible spin states. The center atom contributes 
one atomic magnetic moment and the corner atoms combine to contribute a total of 
one opposing atomic magnetic moment to the unit cell. The magnetic moment for the 
unit cell is zero, which is the definition of an anti-ferromagnetic material. (B) shows 
several different anti-ferromagnetic atomic magnetic orderings for a simple cubic lattice.  
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Ferrimagnetism is very similar in nature to anti-ferromagnetism with regards to 

magnetic atomic ordering, but the magnetic sublattices are not equivalent as shown in 

Figure 4-2 (A). This causes a net magnetization difference between sublattices and, 

unlike anti-ferromagnetism where there is no net magnetization, a ferrimagnetic 

material exhibits a net magnetization (M >0) below the Curie temperature (Tc). 

Ferrimagnetic materials have very large, positive magnetic susceptibility and become 

paramagnetic above the Curie temperature. Ferrimagnetic materials are often electrical 

insulators and do not suffer from eddy currents caused by rapidly changing magnetic 

fields. This makes ferrimagnetism very useful for automated applications and is used in 

many electronic devices.        

If all the atomic magnetic dipole moments of a material are aligned in the same 

direction, as shown in Figure 4-2 (B), this material is defined as ferromagnetic. 

Ferromagnetic materials have very large positive values of magnetic susceptibility and 

vary based on the strength of the magnetizing field. The origin of ferromagnetic and 

 

Figure 4-2 (A) is a two dimensional slice of a ferrimagnetic crystal lattice. The larger 
magnetization of the green atoms creates a total net magnetization along that particular 
direction. (B) is a BCC unit cell of an iron crystal. A ferromagnetic material is defined by 
each atomic magnetic moment having the same spin. The (+) signs indicates all the 
atoms are of the same spin. 



40 
 

anti-ferromagnetic ordering between nearest neighbor atoms is actually not so 

classically intuitive. If two bar magnets were placed near each other it understood that 

they would couple in an anti-ferromagnetic or ferromagnetic manner, but this direct 

dipole-dipole interaction is actually not the origin of magnetic atomic ordering between 

nearest neighbors. Indeed, within a ferromagnetic material a quantum mechanical 

exchange interaction (direct and/or indirect) is the basis for magnetic ordering. The 

exchange interaction is governed by the lowering of electrostatic columbic energies 

within Pauli‟s exclusion principle. The energy associated with the direct Heisenberg 

exchange interaction is given in equation (4-2), where 1S
 
 and  2S are two  interacting   

21)( SSrJUexch              (4-2) 

spins separated  by distance 21 rrr  , and )(rJ is  the exchange  integral with 

units of energy. When the exchange integral is positive the resulting coupling of the 

spins is ferromagnetic; conversely when the exchange constant is negative the spins are 

coupled in an anti-ferromagnetic fashion. The Heisenberg exchange interaction is the 

dominant effect for spins 1S  and 2S  that have electron clouds with considerable 

overlapping and are atomically separated on the order of nearest neighbor (NN) or next 

to nearest neighbor (next-NN). Ferromagnetic materials are used in various electronic 

applications and were the primarily materials used in this study.          

 Magnetic Domains 4.3

 Although ferromagnetic transitional metals such as Ni, Fe, and Co are permanent 

magnets, they can also be found to exert no net magnetic force due to the formation of 

domains within a material. When a ferromagnetic material is sufficiently large, in general 

greater than the mesoscopic range, multiple magnetic domains are created inside of the  
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magnet, which arrange themselves to reduce the overall potential energy. These 

domains are commonly found in opposition to one another by 180 degrees and 

separated by a domain wall, as depicted in the initial state (I) of Figure 4-3 of the 

hysteresis curve.  

Following the different points throughout the hysteresis curve provides a good 

example of magnetic domains and domain wall motion through the stimulus of an 

external field. It also presents the concepts of multiple domain structures and single 

domain magnetic dipole moments. At point (I) in Figure 4-3, a magnet was found with a 

total magnetization of zero due to the minimization of magnetostatic energy through the 

creation of multiple domains. As an external magnetizing field (H) was applied the total 

magnetization of the magnet increased. The magnetic domain with a larger component 

in the direction of the applied field expanded and is shown on the subsequent point on 

the curve. Eventually all the magnetic domains became aligned in the same direction as 

the applied field. The absence of domain walls is known as a single domain magnetic 

 

 

Figure 4-3 is half of a magnetic hysteresis curve. Point „I‟ is the initial condition where 
the magnet has a net magnetization of 0. As an external magnetic field is applied (H) 
the appropriate magnet domains expand and contract as shown throughout the curve.  
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dipole moment. As can be seen at the next point, the magnet was still not completely 

aligned in the direction of the applied magnetic field. This was due to an easy axis of 

magnetization, which in this case was due to the shape anisotropy of the magnet. 

Magnetic saturation (Ms) is defined as the point where the magnet has all possible 

magnetic moments aligned in the direction of the external field and is indicated by the 

image at the following point on the curve. Any external field applied greater than (Ms) 

will not change the magnitude or direction of magnetization. As (H) was ramped down 

until there was no external field present, the curve shows that the magnet still had a net 

magnetization. This is known as the remanent magnetization (Mr). Finally, another field 

was applied known as the coercive field. The energy necessary to demagnetize the 

remanent magnetization is defined as the coercivity. The final point on the curve 

demonstrates the formation of closure domains, which removed all magnetic flux. The 

formation of multiple domains is a complicated process and for the purpose of MCA is 

undesirable. The objective was to produce switches that couple with one another 

through magnetostatic field interactions and therefore the intent was to create magnetic 

cells that were single domain in nature.  

Figure 4-4 is of a nickel anti-ferromagnetic MCA wire. In Figure 4-4 (A) each 

magnetic cell was approximately 400(l) x 200(w) x 30(th) nm3. The image on the left 

was an atomic force microscopy (AFM) height image which represented the physical 

dimensions of the system, and on the right was the magnetic force microscopy (MFM) 

image illustrating the magnetic moments. The complicated magnetization found in the 

MFM image was due to the multiple domains formed within each magnetic cell in the 

wire.  The  formation  of   multiple   domains   is  dependent  on  energy   minimizations  
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factors  such  as  crystalline  anisotropy  and   shape  anisotropy [90].  Figure 4-4 (B) is 

another chain with the same aspect ratio of 2:1, where each cell was approximately 

200(l) x 100(w) x 30(th) nm3. It was evident that the each magnet had a more regular 

single domain magnetic dipole moment. Furthermore, the magnetic dipole moments 

appear to be coupled to one another via magnetostatic fields. The reduction of size 

caused single domain moments of each cell to couple in a digital fashion between 

neighbors and is the essence of MCA systems. A single domain magnetic system affords 

the opportunity for a new logic and memory paradigm to be explored. 

 Fabrication Process 4.4

The electron beam lithography process began by coating a Si wafer with a resist, 

namely PMMA. This was accomplished by using a Laurell Technologies WS-400A-

8NPP/Lite Spin Processor, which spun the wafer at high speeds causing the PMMA resist 

 
(A) 

(B) 
 

Figure 4-4 (A) is an AFM height amplitude plot (left) and a MFM phase plot (right). The 
dimensions of each Nickel rectangle in (A) were 200(w) x 400(l) x 30(th) nm3. The 
complicated multiple domain structures arose from the physical dimensions and material 
properties of nickel. (B) is a nickel system with dimensions of 100(w) x 200(l) x 30(th) 
nm3. The MFM image clearly shows a single domain magnetization as well as an anti-
ferromagnetic coupling order. 
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to spread evenly over the entire wafer. A bilayer PMMA recipe was chosen using 495K 

molecular weight as the bottom layer and 950K molecular weight as the top layer. The 

495K bottom layer was spun first and, then baked, followed by the 950K top layer being 

spun and baked. The purpose of the bilayer PMMA was to ensure a clean liftoff, which 

was aided by the undercutting profile created in the low molecular weight PMMA.  

A pattern was designed using DesignCAD2000 NT. The most effective line spacing, 

exposure doses, points, and focus were determined by using diagnostic designs, such as 

the wheel pattern and spot burn process. A sample of the Si wafer coated with bi-layer 

PMMA was then loaded into the JEOL 840m retrofitted with the NPGS lithography 

system and a beam blanker. The SEM was then focused, and the stigmation was 

adjusted for optimal resolution. The pattern was selected and written via the NPGS 

system. Afterwards, the sample was unloaded and prepared for chemical development. 

It was placed in a bath of MIBK and Isopropanol (1:3) for approximately seventy 

seconds, followed by a twenty second Isopropanol bath, and finally nitrogen dried.  

A ferromagnetic material was chosen for deposition, in this case nickel and 

permalloy (Ni80Fe20), and was evaporated via a Varian Model 980-2462 Electron Beam 

Evaporator. A vacuum of approximately 2 µTorr was achieved and the material was 

evaporated at a rate of 5 Å sec-1. Once the desired thickness of the material was 

deposited, the next stage was the liftoff step. The sample coated with the ferromagnetic 

material was placed in a heated ultrasonic acetone bath for approximately 15 minutes, 

which selectively lifted off the unwanted PMMA and left the fabricated magnetic 

structure intact. 



45 
 

 Magnetic Coupling of Single Domain Nano-Magnets 4.5

For magnetic logic systems to be considered a viable technology, reliable interaction 

between magnetic switches must be realized. Interactions between magnetic switches 

are accomplished through the coupling of spins which create magnetic dipole moments. 

There are different ways for spins to interact but here the interaction was based on 

magnetostatic field interactions. The field interaction between magnetic cells will 

intuitively be affected by the physical dimensions of each magnetic cell. Particularly, how 

factors such as surface roughness and shape irregularities affect coupling interaction is 

important since the surface area begins to dominate volume at the nano-scale.  

Figure 4-5, Figure 4-6, and Figure 4-7, are a set of images of three different chains 

of nano-magnetic cells and have the following images from top to bottom: a SEM 

surface image, an AFM 3-D surface plot, an AFM 2-D surface image, and a MFM image. 

Each  figure   is  of  the  same  chain  of  nano-magnetic  cells   and  each  cell  has  the  

 

Figure 4-5 is four different sets of data of the same MCA interconnect. The top figure is 
a SEM image, followed by a 3D representation of an AFM plot. Next is an image of a 2D 
AFM plot and the bottom image is a MFM phase plot. From these images significantly 
irregularities in the cell structure and surfaces are visible. The fourth cell from the right 
has no in-plane moment detected due to the surface imperfection. 
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dimensionality of approximately 160nm height x 80nm width x 40nm thickness. The 

rational was to compare the magnetic moments of each cell and the resulting magnetic 

coupling of neighbors to: surface roughness, shape regularity, cell spacing, and cell size. 

These results showed that nickel had single domain characteristics parallel to the  

substrate  (in-plane)  at  dimensions  mentioned  above  as  evident  in Figure 4-5, 

Figure 4-6, and Figure 4-7. It can also be noted that strong magnetic coupling is 

exhibited due to the anti-parallel alignment of the cells.  

In Figure 4-5, there are several nano-magnetic cells with very irregular shapes, 

irregularly spaced, and with uneven surfaces. The AFM images clearly show the surface 

roughness where the SEM images present the shape irregularities, cell spacing, and cell 

spatial orientation. Here it can be seen that even if the magnet did not have a uniform 

shape and neighbors are not completely parallel to one another, that single domain 

magnetic dipole moments still formed and data propagation still occurred, evident via 

the  anti-parallel   coupling  of  cells 5  through  10 (left to right).  Cells 1  and  2 had an  

 

Figure 4-6 is another four sets of data of a different MCA wire. The top figure is a SEM 
image followed by a 3D representation of an AFM plot. Next is an image of a 2D AFM 
plot and the bottom image is a MFM phase plot. In this chain, the cells with a smoother 
surface have better defined symmetrical dipole moments. 
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unwanted coupling state which can be attributed to the surface irregularities. It is also 

noted that where there are large protrusions on the surface of a cell, the magnetic 

moment seems to be voided as evident in cell 4.  

Figure 4-6 is a different chain of nano-magnets. Overall the various cells had a 

smoother surface and more regular shape than the chain presented in Figure 4-5. Cells 

2 and 4 had large bulges on the surfaces and the MFM image depicted magnetic voids in 

corresponding areas. Cells 2 and 3 were in an undesired configuration, with like 

orientations of their magnetic moments, which was attributed to the irregular surfaces. 

It was also noted that even though cell 1 had a very irregular shape (almost square) it 

still managed to form a desired single domain magnetic moment. 

Figure 4-7 was an ideally fabricated chain of nano-magnetic cells. It was seen that 

the shape, surface, spacing, and orientation were better than that of the previous chains 

mentioned above. In this fabricated chain of nano-magnetic cells, there was no 

configuration errors, all magnets were in an anti-parallel orientation and thus 

 

Figure 4-7 is another four different sets of data of an ideal MCA wire. The top figure is a 
SEM image followed by a 3D representation of an AFM plot. Next is an image of a 2D 
AFM plot and the bottom image is a MFM phase plot. This is an ideal chain, where the 
shape of the cells was regular and the surface roughness had been reduced. As a result 
the single domain dipole moments are were strongly coupled with no magnetic 
frustrations. 
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propagating information correctly. This could mainly be attributed to the surface 

evenness of the nano-magnetic cells.  

These experiments demonstrated that for an anti-ferromagnetic coupling scheme, 

shape uniformity was a much more lenient requirement than the surface roughness for 

reliable data propagation. Several irregularly shaped rectangular nano cells were able to 

establish single domain magnetic moments. The irregularly shaped cells were also able 

to propagate data to neighboring cells which was exhibited via an anti-parallel magnetic 

coupling. It was noted that configuration errors, where neighbors have similar magnetic 

dipole moment orientations, occurred near cells that had irregular surfaces. The 

reliability of anti-ferromagnetic MCA wires therefore relied on the fact the surface must 

be uniformly smooth in order to propagate data properly. 

The arrangement of how nano-magnets couple with one another and the robustness 

to fabrication defects was a more subtle aspect of MCA. As mentioned previously, an 

anti-ferromagnetic arrangement was susceptible to significant fabrication defects. In 

Figure 4-8, a ferromagnetic chain was shown with similar dimensions to the anti-

ferromagnetic wires mentioned earlier in this section. The top image was an AFM image 

and the bottom was the corresponding MFM image. The AFM image clearly showed 

substantial irregularities in both shape irregularities and surface roughness. Similar types 

of defects showed magnetic frustrations in an anti-ferromagnetic wire, but the 

ferromagnetic wire demonstrated the robustness to such defects in the MFM image of 

Figure 4-8. The reproducibility of ferromagnetic coupling in wires with surface 

irregularities was confirmed in Figure 4-9.  Overall, ferromagnetic coupled wires were 

found to be more robust to fabrication defects when compared to anti-ferromagnetic 

MCA wires due to coupling energies and is explored in Chapter 5.    
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Figure 4-8 is an AFM amplitude height plot of a ferromagnetic chain which shows the 
highly irregular shape and surface roughness. The image on the bottom is the MFM 
phase plot of the chain and shows the single domain magnetic moments. In general 
ferromagnetic coupling was found to be more robust to large fabrication defects. The 
sizes of the nano-magnetic cells were 100(l) x 50(w) x 30(th) nm3. 

 

Figure 4-9 is the AFM height amplitude plot of five ferromagnetic chains (left). The 
image to the right is the corresponding MFM phase plot. Although the AFM image shows 
irregularities in the structures the MFM image shows the highly ordered coupling of the 
chains. 
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Although fabrication defects such as surface roughness, shape irregularities, and 

spacing irregularities may cause erroneous data propagation; these defects could be 

significantly reduced through the perfection of the fabrication process. The levels of 

irregularities, at these dimensions, needed to seriously affect the coupling dynamics was 

very significant and most fabrication defects could be avoided through the fine tuning of 

the fabrication process such as having a constant evaporation rate without significant 

evaporation spikes. Therefore it could be concluded that magnetic cells for MCA had the 

capability to mitigate erroneous coupling due to common fabrication defects. If the 

magnetic coupling of MCA cells were reliable it follows that more complicated 

arrangements of MCA should be able to perform complex logical operations. 

Imre et al. demonstrated the first MCA logic gate to function at room temperature 

[14]. The gate was a majority voter which can also be considered to have the 

functionality of both a two bit OR gate or a two bit AND gate by fixing an input to a 

logical „0‟ or „1‟. All the possible combinations of the 3 bit majority gate were 

demonstrated and Figure 4-10 is an expansion of the majority gate. The majority gate 

presented in Figure 4-10 had a total of 9 extra magnetic cells added to the logic gate‟s 

inputs and output then the previously reported gate. As can be seen in Figure 4-10, the 

logic operation performed a majority vote of the inputs given.  

Figure 4-11 is a ferromagnetic majority gate, which was the first to be proposed and 

demonstrated. The difference between this layout and the previously reported MCA 

majority gate was that the coupling at the input cells as well as the output cells was 

ferromagnetic, unlike Figure 4-10 that had both ferromagnetic and anti-ferromagnetic 

coupling. As mentioned earlier in the section, ferromagnetic coupling seemed to be more 
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robust to fabrication defects. The AFM image of the ferromagnetic majority gate shown 

in Figure 4-11 (A) clearly showed some surface roughness present. The logic operation 

of a ferromagnetic majority gate also differed from the previously demonstrated mixed 

coupled gate. The logical state of a wire was defined by the direction of the 

informational flow as shown in the MFM image Figure 4-11. The white arrows 

represented the inputs to the voter cell which was outlined by a white rectangle. Based 

on the given inputs to the voter cell, the correct output was propagated along the black 

arrow. What was particularly interesting about the configuration in this MFM image was 

the opposing result of the voter cell to the vertical input wire. The fact that the voter cell 

was opposed to the vertical input wire was a  direct  result  of  the  dipole  moments  

provided  by  the  horizontal  inputs.  This demonstrated the functionality of the voter 

cell responding to the inputs provided by the gate and shows the possibility of a 

ferromagnetic MCA majority gate structure.  

 

Figure 4-10 (A) is an AFM height amplitude plot of a MCA majority gate. Notice that 
there is anti-ferromagnetic coupling as well as ferromagnetic coupling in the design of 
the structure. (B) is a MFM phase plot. The poles have been overlaid with identifiers to 
help interpret the image. The rectangle in the center outlines the voter cell which 
“votes” based on the inputs. The inputs were the vertical cells at the bottom, left and 
right of the image.  
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Figure 4-12 was a set of ferromagnetic majority gates feeding into a third majority 

gate. This was one of the largest systems of MCA logic to be demonstrated. There was 

one magnetic frustration found in the entire system. Through experimentation it was 

found that one frustration was predictably present in a three majority gate system. It 

was also important to note that there was not a frustration at the voter cell; all magnetic 

frustrations had been found at the peripherals of the gates.  Since ferromagnetic 

coupling was determined to be reliable, as shown in several examples in this chapter, it 

was reasoned the issue arose from the ability to control informational flow. How the 

magnetic system was driven from input to output was a non-trivial issue. It was also 

reasoned that propagation errors, such as the one shown in Figure 4-11, were directly 

related to the fact that there was no control of where the data started and ended.  

Without a means of synchronous computation via a clocking mechanism, magnetic 

frustrations  and the  orderly  operation of  logic  would  not  be possible. The  following 

 

Figure 4-11 (A) is an AFM height amplitude plot of a ferromagnetic MCA majority gate. 
Notice that all the coupling between the input chains and the output chains were 
ferromagnetic. (B) is the corresponding  MFM phase plot. The poles have been overlaid 
with identifiers to help interpret the image. The rectangle in the center outlines the 
voter cell which “votes” based on the inputs. An important configuration to notice is the 
voter cell has voted based on the two horizontal input chains and opposed the vertical 
input chain. 
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chapter explores how different types of external fields interacted with ferromagnetic and 

anti-ferromagnetic MCA wires along different magnetization axes. By studying the 

interaction of MCA wires with an external clocking field a more realistic clocking 

mechanism may be realized. A thorough understanding of signal propagation, switch 

delay, and system clocking will be a necessity if MCA logic systems are to materialize as 

a viable technology. 

 

 

Figure 4-12 is a MFM phase plot of two ferromagnetic MCA majority gates feeding into a 
third majority gate. All voter cells in the design had no magnetic frustrations.  
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  Chapter 5

Magnetic Cellular Automata Interconnects 

 Introduction 5.1

In order for any logic machine to work, there must be communication between the 

various logic components throughout a design. One can observe this at several different 

levels throughout the design automation process with transistor technology. From 

individual transistor level, to inter-gate signaling, or the signaling between logical black 

boxes, the interconnecting wire is fundamental to every aspect of any logic system. 

Without a means of communicating results from one logic structure to another, 

computation is inconsequential. Hence, the reliability of an interconnecting wire 

providing accurate information is crucial to the functionality of a system.   In MCA, there 

have been wires prototyped demonstrating a high order of coupling  [23]; encouraged 

by these results, similar work was produced and the results indeed verified successful 

operation [91]. 

To progress towards implementing more complex circuitry, it was necessary to 

control information propagation of an interconnecting wire via a clock. Csaba et al. 

proposed using an adiabatic clocking method that used an external magnetic field [13]. 

The external magnetic clocking field saturated the nano-magnets, causing the overall 

magnetic dipole moment to align itself along the in-plane hard axis of the nano 

structure. The clocking field would then be reduced as an input was provided. The study 
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of wire architectures under such clocking fields was significant to the advancement MCA 

systems and presented here.  

 Wire Architectures 5.2

In MCA there were two types of interconnects that had been proposed, 

ferromagnetic coupled wires and anti-ferromagnetic coupled wires. The different types 

of interconnects were created through fabricating the wires in the different 

arrangements shown in Figure 5-1. For both wire architectures the desired state was 

always the lowest possible local energy minimum. Since magnetic systems worked to 

lower their overall magnetization energy MCA has taken advantage of the physics.  

 Anti-ferromagnetic wires had several intriguing factors associated with them, such 

as a built in inverter. When information was properly propagated down a wire each 

magnet had the inverted state of its immediate neighbor as shown in 1. This occurred 

due to the repulsion forces experienced by similar magnetic poles. A logical 

 

Figure 5-1 depicts correct data propagation for ferromagnetic and anti-ferromagnetic 
wires, which are the lowest ground state energy. For the ferromagnetic wire the 
magnetic dipole moments are oriented in the same direction, where anti-ferromagnetic 
wires are in opposing directions. 
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error occurred when neighboring magnets had like states, shown in Figure 5-2. This is 

known as a magnetic frustration because of the high demagnetization energy 

experienced by pinning like poles next to each other. 

Ferromagnetic wires were arranged in a head to tail fashion as shown in 1. Data 

propagation occurred through magnetic field interactions of each cell. Proper logical 

exchange occurred when all magnetic dipole moments were arranged in the same 

direction as shown in 1. Magnet frustrations occurred when neighboring cells had 

dissimilar magnetic dipole moments as depicted in Figure 5-2. 

In the proceeding sections the first experimental results were presented comparing 

shape engineered ferromagnetic and anti-ferromagnetic wires under various magnetic 

clocking fields. The experimental observations show that ferromagnetic wires were less 

likely to have magnetic frustrations. Simulations were also implemented which bolster 

the conclusion that ferromagnetic wires operate in a more reliable manner than anti-

ferromagnetic wires.   

 

Figure 5-2 depicts incorrect data propagation for ferromagnetic and anti-ferromagnetic 
wires. The presence of like poles in close proximity makes this an undesired high energy 
state. This is called a magnetic frustration. 

 



57 
 

 Fabrication Process 5.3

The electron beam lithography process began by coating a Si wafer with a resist, 

namely PMMA. This was accomplished by using a Laurell Technologies WS-400A-

8NPP/Lite Spin Processor, which spun the wafer at high speeds causing the PMMA resist 

to spread evenly over the entire wafer. A bilayer PMMA recipe using a 495K molecular 

weight as the bottom layer and 950K molecular weight as the top layer was chosen. The 

bottom layer was spun, then baked, followed by the top layer being spun then baked. 

The purpose of the bilayer PMMA was to ensure a clean liftoff which was aided by the 

undercutting profile created in the low molecular weight PMMA.  

A pattern was designed using DesignCAD2000 NT. The most effective line spacing, 

exposure doses, points, and focus were determined by using diagnostic designs such as 

the wheel pattern. A sample of the Si wafer coated with bi-layer PMMA was then loaded 

into the JEOL 840m retrofitted with the NPGS lithography system and a beam blanker. 

The SEM was then focused and the stigmation was adjusted for optimal resolution. The 

pattern was selected and written via the NPGS system. Afterwards, the sample was 

unloaded and prepared for chemical development. It was placed in a bath of MIBK and 

Isopropanol (1:3) for approximately seventy seconds, followed by a twenty second 

Isopropanol bath, and finally nitrogen dried.  

Permalloy (Ni80Fe20), was then deposited via a Varian Model 980-2462 Electron 

Beam Evaporator in a vacuum of approximately 5 µTorr at a rate of 2 Å sec-1. The 

sample coated with the ferromagnetic material was placed in a heated ultrasonic 

acetone bath for approximately 15 minutes which selectively lifted off the unwanted 

PMMA and left the fabricated magnetic structure intact.  
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 Experimental Setup 5.4

The specific ferromagnetic and anti-ferromagnetic wires used for the experiment are 

shown in Figure 5-3. A Veeco DI 3100 was used to collect all Magnetic Force and Atomic 

Force Microscopy data.  SEM metrology  was accomplished using a Hitachi S-800. The 

dimension each nano-magnetic cell was approximately 100 (l) x 50 (w) x 30 (th) nm. 

The spacing between each cell was approximately 20 nm and the nano-magnets were 

not annealed. 

An electromagnet powered by a 300W regulated dc power supply was used to 

provide uniform magnetic fields of approximately 200mT (2000 Gauss). A NIST 

traceable Gauss meter from AlphaLab Inc. was used to measure the fields provided by 

the electromagnet. The remanent magnetization was recorded via Magnetic Force 

Microscopy and the binary states of a nano-magnetic cell were enumerated based on 

the alignment of the magnetic dipole moment along the easy axis.           

The following procedure was used to provide the different directions of external 

magnetic excitations to the MCA wires. The sample was placed inside of an 

electromagnet  which  had  an  approximate remanent field of  0T.  It was followed by a  

 

(A) 

(B) 

Figure 5-3 (A) is an SEM image of the ferromagnetic wire and (B) is of the anti-
ferromagnetic wire. The dimensions of the magnets were approximately 100 (l) x 50 (w) 
x 30 (th) nm3. 
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(A) 

(B) 

Figure 5-4 (Spin magnetic field) (A) is a MFM image of the ferromagnetic wire and (B) is 
the anti-ferromagnetic wire. There were very few frustrations in (B) and the 
ferromagnetic wire had no frustrations. 

 
(A) 

 
(B) 

Figure 5-5 (Z-axis magnetic field) (A) is the ferromagnetic wire and (B) is anti-
ferromagnetic wire.  The number of incorrect alignments increased in (B). The 
ferromagnetic wire had no frustrations. 

 
(A) 

 
(B) 

Figure 5-6 (Easy axis magnetic field) (A) is the ferromagnetic wire and (B) is anti-
ferromagnetic wire. In (B) there was a significant amount of frustrations. For anti-
ferromagnetic wires, this type of clocking field is was undesirable. The magnetic 
moments must overcome the shape anisotropy energy to align in an anti-ferromagnetic 
fashion. The ferromagnetic wire had no frustrations. 

 
(A) 

 
(B) 

Figure 5-7 (Hard axis magnetic field)  (A) is the ferromagnetic wire and (B) is anti-
ferromagnetic wire. In (A) an interesting configuration occurred as pointed out by the 
arrow. The cell‟s magnetic dipole moment appeared to be void. It can  could be seen 
that the cell is was surrounded by like poles, hence forcing the peculiar state. 
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ramp up period of approximately 2 seconds to 200mT. The sample was left in the 

saturating field for 5 seconds, followed by a ramp down over 2 seconds. 

Simulations were calculated using the NIST provided OOMMF tool. The following 

parameters were used to simulate Permalloy systems via OOMMF; magnetic saturation 

(Ms) 860e3 A/m, exchange stiffness (A) 13e-12 J/m, and a damping co-efficient 0.5. 

 Results 5.5

In Figure 5-4 through Figure 5-7, the MFM images depict the remanent 

magnetization of both the ferromagnetic (top) and anti-ferromagnetic (bottom) MCA 

wires. Each individual magnet has been overlaid with an outline to help interpret results. 

A blue outline was used to point out an undesired condition, i.e. a frustration.  

In Figure 5-4, the wires were rotated while inside of the magnetic field, similar to the 

method used by Bernstein et al. [24]. The magnetic field was provided to both wire 

architectures using the procedure outlined above. Afterwards, the nano-magnets were 

allowed to settle into the lowest possible ground state. As shown in Figure 5-4, there 

 

Figure 5-8 is an MFM image where a 
magnetic field was provide to 
ferromagnetic wires along the hard axis. 
The bottom most wire was the same wire 
shown in Fig 5-7. Although that particular 
wire had frustrations, the three 
neighboring wires above it did not. 

 

Figure 5-9 is a graph which summarizes 
the percentage of frustrations per wire 
based on the direction of the magnetic 
field. The field strength for all fields was 
approximately 200mT (2000 Gauss). 
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were a few frustrations present in the anti-ferromagnetic wire architecture. 

Interestingly, the ferromagnetic wire was able to reach the lowest possible energy state 

with no frustrations present. 

In Figure 5-5, the magnetic field was provided along the z-axis of the wires (out-of-

plane hard axis). This aligned the magnetic moments in a high energy state due to the 

shape anisotropy of the nano-magnets. The field was removed and the wires were 

allowed to settle. It was evident that the number of frustrations present in the anti-

ferromagnetic wire architecture increased, whereas the ferromagnetic MCA wire 

architecture was able to settle with no frustrations. 

Similarly, in Figure 5-6, a magnetic field was provided along the easy axis of the 

magnets for both wire architectures. In this instance, the differences in behavior 

between the architectures became clearly evident. For the anti-ferromagnetic wires this 

was the least desirable type of field to provide. It forced the magnetic moments of each 

magnet to arrange itself in a high energetically unfavorable state, by forcing repelling 

poles to exist next to each other. Once the field was removed, the repelling forces of like 

poles must overcome the shape anisotropy energy to align in a more energetically 

favorable anti-ferromagnetic state. It was clear that the number of frustrations in Figure 

5-6, for the anti-ferromagnetic wire architecture, was significantly worse. In the case of 

the ferromagnetic wire architecture though, this would clearly be the preferred type of 

field to provide. Since the magnetic field lies along the easy axis of the nano-magnets, 

this would lead to the least amount of frustrations for the ferromagnetic wire 

architecture. 

In Figure 5-7, the magnetic field was provided along the in-plane hard axis of the 

nano-magnets. This forced the magnetic moments to align themselves in an unfavorable 
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state due to the shape anisotropy of the nano-magnets. Once the magnetic field was 

removed, the magnetic moments attempted to align themselves along the easy axis of 

the nano-magnetic cells. In the anti-ferromagnetic wire, there were several frustrations 

present. The ferromagnetic wire also showed some susceptibility to magnetic 

frustrations, with a few undesired states. A very interesting configuration is pointed out 

by an arrow in Figure 5-7. There were two similar poles on either side of the nano-

magnet. The magnetic moment for the trapped nano-magnetic cell appears to absent. It 

is possible that the stray field of the out of plane magnetic moment was too weak for 

the MFM to detect.  

In Figure 5-8, the ferromagnetic wire from Figure 5-7 was the bottom most wire. As 

can be seen in the image, there were three neighboring wires above it. The MFM image 

shows all three neighboring wires were able to reach a ground state with no magnetic 

frustrations. So although the ferromagnetic wire in Figure 5-7 did have some frustrations 

present, when providing a field along the in-plane hard axis, neighboring wires did not.  

The graph in Figure 5-9 summarizes the number of frustrations for both 

architectures for a given type of magnetic field. This experimental data suggested that 

the ferromagnetic MCA wire architecture could be more robust to fabrication defects 

than the anti-ferromagnetic wire and was more likely to reach a lowest possible ground 

state than the later. 

OOMMF  solved a given problem by integrating the Landau-Lifshitz equation (5-1), 

where M was the point-wise magnetization, Heff was the effective magnetic field,   was 

the gyro-magnetic ratio, and   was the damping co-efficient. Heff was calculated in Eq. 
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(5-2), where E was the total energy of the system. The total energy E, calculated in Eq. 

(5-3), described the total average energy density of all the magnetically active elements 

where; Ez was the Zeeman energy, Ed was the demagnetization energy, Eex, was the 

exchange energy, and EA was  the anisotropy energy [92]. 
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The total energy density of all magnetic elements (E) from the simulation is 

highlighted in dark blue in Table 5-1 for both the desired ground state (G) and a meta-

stable state (Meta) for anti-ferromagnetic and ferromagnetic architectures. Interestingly, 

it was worth noting that the total energy of both possible states for the anti-

ferromagnetic scheme was lower than the total energy of the equivalent ferromagnetic 

state. At first glance this would lead one to believe anti-ferromagnetic wires would act 

more reliably, but this does not capture the observed results. In the experiments above, 

Table 5-1 provides various energies associated with a two nano-magnet ferromagnetic 
and anti-ferromagnetic system. It captured the two possible states of both schemes, 
namely the ground state and meta-stable state. 

Architecture States 
(G=ground, MS=meta-

stable) 

Exchange 
Energy 

(J /m^3) 

Demag 
Energy 

(J /m^3) 

Total 
Energy 

(J /m^3) 

(Meta) 
3255.46 56798.92 60054.38 

 ( G ) 
3918.31 43112.37 47030.69 

( G ) 1365.99 50932.46 52298.45 

(Meta) 2687.185 67491.31 70178.49 
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the ferromagnetic scheme was able to minimize the total number of frustrations and 

therefore operate in a more reliable manner. 

These results are attributed, but not limit too, the ferromagnetic wires ability to 

mitigate frustrations more so than the anti-ferromagnetic wires due to the energy 

difference between the two possible states for the local architectures, also known as the 

kink energy. The kink energy was defined in Eq. (5-4)   where; UMS was the energy 

associated with the meta-stable (frustrated) state, and UG was the energy associated 

with the desired ground state.  

GMSKink UUE 
,
                 (5-4) 

Figure 5-10 shows an abstraction of the experiment carried out above where the 

external magnetic field was given along the z-axis. When the system was forced to align 

itself along the z-axis, the total energy was very high, and once the external field was 

removed both architectures attempt to minimize their local energies. As mentioned 

above, the total energy of the desired state for the anti-ferromagnetic wire was lower 

than that of the ferromagnetic wire. Nevertheless, this was not considered by the locally 

implemented architectures, only the kink energy or the energy between the possible 

ground and meta-stable states for the particular architecture was present at the time 

the external field was removed. As shown in Figure 5-10, the kink energy for the 

ferromagnetic wire was much greater than the anti-ferromagnetic wire, and therefore, 

the ferromagnetic architecture had a higher propensity to mitigate undesired 

frustrations.  

The nucleation of frustrations in the experiments for both wire architectures were 

primarily attributed to a multiple driver scenario. Without an input driving the system, it 

was highly probable for a wire  to  have  multiple  drivers.  This  could  be  explained  by 
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picturing a wire in a clocked state along the hard axis. Once the magnetic clocking field 

was removed, any nano-magnetic cell in the chain could become the driver to its 

neighbor. In fact, multiple drivers could occur throughout a wire, in opposing directions. 

This lead to magnetic frustrations and was not representative of the ideal operation of a 

MCA system.      

A more ideal ferromagnetic wire situation was implemented in a simulation and is 

shown in Figure 5-11 and Figure 5-12. A driver was present as well as a clocking field. 

In Figure 5-11 and Figure 5-12, the leftmost magnet was used as the driving input cell 

by providing an external input field to this particular magnet only. The rest of the wire 

was in a clocked state, where a saturating magnetic field was provided along the in-

plane hard axis. The clock was released instantaneously and the wire was allowed to 

settle. As shown in Figure 5-11 and Figure 5-12, the ferromagnetic wire settled 

according to the driver. For the experiment above, providing the clocking field along the 

 

Figure 5-10 shows the possible states for the ferromagnetic and anti-ferromagnetic 
wires and over the duration of the experiments. The higher kink energy for the 
ferromagnetic wire provided an explanation of its greater ability to mitigate unwanted 
frustrations. 
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in-plane hard axis lead to only a few frustrations, but in simulation with an input present 

the wire operated as desired.  

 Conclusion 5.6

Two types of MCA wire architectures were fabricated; ferromagnetic and anti-

ferromagnetic. By providing clocking fields to the wires, and investigating the remanent 

magnetic dipole moments, the results revealed ferromagnetic wires to exhibit 

exceptional data propagation. The ferromagnetic wires‟ superior ability to mitigate 

frustrations over the anti-ferromagnetic wires was attributed to the higher kink energy 

of the ferromagnetic scheme. Providing a clocking field along the z-axis of the nano-

magnets, where experimentally there were no frustrations found in the ferromagnetic 

architecture, would eliminate possible clocking complexities encountered in dense 

layouts that contain in-plane wires at different angles. A practical and feasibly simplistic 

clocking method could then be implemented for ferromagnetic wire architectures by 

providing the clocking field along the thickness of the magnetic cells.   

 

Figure 5-11 shows three snapshots of a 
chain switching from „0‟ to „1‟.  At time step 
(a) the ferromagnetic wire was in an initial 
state of „0‟. At time step (b) a clocking field 
was given and an input of „1‟ was provided. 
As can be seen at time step (c) the chain 
completely switched to match the driver 
cell. 

 

Figure 5-12 shows three snapshots of a 
chain switching from „1‟ to „0‟.  At time step 
(a) the ferromagnetic wire was in an initial 
state of „1‟. At time step (b) a clocking field 
was given and an input of „0‟ was provided. 
As can be seen at time step (c) the chain 
completely switched to match the driver 
cell. 
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Magnetic Cellular Automata does not have to be limited to just one type of wire 

architecture per design though. Indeed, the ferromagnetic wires could be mixed with 

the anti-ferromagnetic wires in the same design and there could be some circumstances 

where one would be more desirable than the other. The data suggested that for 

relatively long data propagation, the ferromagnetic wire architecture would be the 

preferred implementation for MCA systems. 
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  Chapter 6

Magnetic Cellular Automata Coplanar Cross Wire Systems 

 Introduction 6.1

The novelty of Cellular Automata (CA) and the associated fabrication difficulties 

created a great opportunity for experimental research to be conducted. An Electronic 

Quantum Cellular Automata (EQCA) proof of concept cell was demonstrated to work, but 

the experiment was conducted at a temperature of 70 mK [93]. Due to the energies 

involved, the dimensions necessary for EQCA to work at room temperature were 

approximately a few nanometers. This created a challenge for current fabrication 

technology. This difficulty allowed for designs such as crossing wires to be theoretically 

proposed and critiqued, but  required a physical actualization to make such architectures 

viable.  

Tougaw et al. proposed the idea of coplanar wire crossings for EQCA, and explained 

that by physically rotating the electron sites by 45°, as shown in Figure 6-1 (C), two 

coplanar crossing wires could propagate information successfully [94]. Figure 6-2 (B) 

shows the crossing wire system propagating information. Wire 1 was propagating a 

logical 1, while wire 2 was propagating a logical 0. The cells in wire 2 had a 45° rotation 

in order to minimize any influence that it could have had on wire 1. Walus et al. 

explained that the 45° rotated junction cell had a null effect on neighboring cells of wire 

1 regardless if it was propagating a „0‟ or a „1‟ [95]. Concerns are also expressed over 

coplanar crossing wires. Walus et al. states that 45° cross wires breaks the non-rotated 
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wire into several weakly coupled segments [95]. This is due to the energies associated 

with the columbic interactions of EQCA. Bhanja et al. further characterized various cross 

wire architectures with triple modular redundancy, double-triple modular redundancy 

and thick crossing wires in terms of polarization loss and thermal stability by modeling 

the cross wire system as probabilistic Bayesian network model [38]. The coplanar cross 

 

Figure 6-1 is a standard abstract representation of MCA and EQCA cells. The top row 
can could be interpreted as a logical zero and the bottom a logical one. (A) enumerates 
the nano-magnetic cells based on their magnetic dipole moments. (B) depicts the 
standard QCA cell. Two electrons are represented as red dots. The white dots are the 
alternate electron sites which the electrons tunnel to in order to reduce the cells overall 
energy in accordance with its neighbors. (C) shows the same EQCA cell only the sites 

are rotated by 45°. This is necessary for a cross wire layout in EQCA. 

 

Figure 6-2 (A) is an abstract representation of two coplanar crossing wires. The area 
where the two wires cross is called the junction. Information propagation is shown via 
the arrows. (B) is a representation of QCA coplanar crossing wires. For traditional 
current carrying wires, the junction would create a source of error and this type of 
structure would not be viable. 
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wire systems were probabilistically inferred under various thermal conditions and the 

robustness was characterized under single missing cell defects.  

The architecture was ported into a MCA construct by designing a ferromagnetic 

coplanar cross wire system. Figure 6-3 shows an abstract representation of the 

ferromagnetic cross wire system that was designed. It was composed of two 

perpendicularly intersecting ferromagnetic coupled wires.  

As depicted by the green arrows, information was propagated along the two wires 

without a loss of information. The MCA cross wire systems were experimentally studied 

under various magnetic fields and the results are presented in the following sections. 

 Design  6.2

The design of the ferromagnetic coupled cross wire system is depicted in Figure 6-3. 

The orthogonal wires allowed for minimal interference between the crossing wires. The 

shape anisotropy created a preferred axis of magnetization which was also the ground 

states of the nano-magnet. The energy necessary to align the magnetic moment along 

 

Figure 6-3 is an OOMMF simulation of our MCA cross wire system design. There are  
two ferromagnetic coupled wires outlined by the green arrows. The magnetic dipole 
moments of each nano-magnetic cell is represented by the grey arrows. The magnet 
moments lie along the easy axis of the nano-magnets. 
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the hard axis was very high, therefore, the wires were designed perpendicular to one 

another. The magnetic fields produced by wire 1 interacted with the hard axis of the 

cells in wire 2, which mitigated undesired interference coupling.  

The following parameters were used to simulate the Permalloy systems via OOMMF; 

a magnetic saturation of (Ms) 860e3 A/m, an exchange stiffness of (A) 13e-12 J/m, and 

a damping co-efficient of 0.5. The system‟s initial magnetization was along the thickness 

of the magnets. It was then allowed to settle into the ground state depicted in.  It is 

worth noting that the interaction of the intersecting wires was neutral during the 

operation of the cross wire system due to the nature of ferromagnetic coupled wires. As 

can be seen in Figure 6-2, at the junction both north and south poles were presented to 

the other wire, which in essence produced a net cancelling effect.  Thus, the wires were 

able to cross in the same plane with virtually no interference. 

 Fabrication Process 6.3

A Si wafer was coated with PMMA via a Laurell Technologies WS-400A-8NPP/Lite 

Spin Processor. It spun the wafer at high speeds causing the PMMA resist to spread 

evenly over the entire wafer. A single thin layer of 950K molecular weight PMMA was 

used. Afterwards, it was baked in an oven at 170°C to provide even heat over the entire 

wafer. This evaporated and removed any solvent left in the resist to ensure resist purity, 

which was critical to the nanometer electron beam lithography process. 

The cross wire patterns were designed using DesignCAD2000 NT. The most effective 

line spacing, exposure doses, points, and focus were determined by using the diagnostic 

wheel pattern. A sample of the Si coated with 950K molecular weight PMMA was then 

loaded into the JEOL 840m retrofitted with the NPGS lithography system and a beam 

blanker. The SEM was then focused and the stigmation was adjusted for optimal results. 
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The pattern was selected and written via the NPGS system. Afterwards, the sample was 

unloaded and was ready to be developed. For this particular process, the developer, 

MIBK: Isopropanol 1:3 was cooled via liquid nitrogen. The sample was then developed 

at the sub-zero temperatures. This allowed for glassing to occur during the molecular 

chain scission process [81]. This resulted in sharper resist edges after development 

which translated to better defined edges for the nano-magnets.  

Permalloy was then deposited, via the Varian Model 980-2462 Electron Beam 

Evaporator. A vacuum of approximately 2 μTorr was achieved and an evaporation rate 

of 2 Å sec-1 was used. Once the desired thickness of the material was deposited the 

liftoff process was done. The sample coated with Permalloy was placed in a heated 

ultrasonic acetone bath for approximately 15 minutes.  

 Experimental Setup 6.4

Two cross wires similar to the design shown in Figure 6-2 were fabricated. A Veeco 

DI 3100 was used to collect all Magnetic Force and Atomic Force Microscopy data. SEM 

 

Figure 6-4 is a SEM image of the two coplanar cross wire system. Each cell was made of 

permalloy rectangles with the dimensions of 200(l) x 100(w) x 30(th) nm3. 
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metrology was accomplished using a Hitachi S-800. Figure 6-4 shows a topological SEM 

image of a simple cross wire system where each wire was composed of ten nano-

magnets. Figure 6-5 is a 3D representation of an AFM image taken of the same cross 

wire structure.  As can be seen in the SEM image, there were a few lateral spatial 

irregularities as well as some irregularly shaped cells. On average, most cells were 

approximately 100 x 50 nm2 with a spacing of 20 nm between each cell. This was a non-

ideal physical implementation of a ferromagnetic crosswire system, but if successful, 

would demonstrate the robustness of the system with respect to fabrication defects. 

The following procedure was used to provide the various external excitations to the 

magnetic system via an electromagnet. The sample was placed inside the electromagnet 

followed by a ramp up period of approximately 2 seconds to 200mT along the thickness 

of the magnets. The sample was left in the saturating field for 5 seconds, followed by a 

ramp down over 2 seconds. 

 

Figure 6-5 is an AFM image of the two coplanar cross wire system. The AFM height 
image captured the surface irregularities of the crosswire system. 
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Simulations were calculated using the NIST provided OOMMF tool. The following 

parameters were used to simulate permalloy systems;  magnetic  saturation (Ms) 860e3 

A/m, exchange stiffness (A) 13e-12 J/m, and a damping co-efficient 0.5. 

 Results 6.5

 A cross wire similar to the one shown in Figure 6-3 was fabricated. Figure 6-4 

shows a topological SEM image of the cross wire system where wire 1 and wire 2 were 

each composed of ten nano-magnets. Figure 6-5 is a 3D representation of an AFM 

image taken of the same cross wire structure. By combining these types of metrology, a 

more accurate representation of the cross wire structure was obtained. In the SEM 

image, there were a few lateral spatial irregularities, as well as, some irregularly shaped 

cells. On average, most cells were approximately 100 x 50 nm2 with a spacing of 20 nm 

between each cell. The AFM data allowed the surface roughness and thickness of the 

nano-magnets to be determined. In the 3D AFM image, the surfaces of the nano-

magnetic cells were visibly non-uniform, with several peaks covering the surfaces. 

Previously, it was reported that surface roughness led to faulty data propagation for 

anti-ferromagnetic wires, here, the intent was to determine if surface roughness had a 

 

Figure 6-6 is a MFM image of all possible combinations for a simple cross wire system. 
White ellipses have been overlaid to outline each nano-magnet. The arrows represent 
the flow of data propagation for each wire. 
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significant role in the coupling of ferromagnetic wires as well [91]. Bryan et al. also 

noted that edge roughness increased the coercivity of rectangular nano-magnetic 

structures [96]. The thicknesses of the cells are approximately 35 nm with a maximum 

peak height of 104 nm. We have determined, via bearing analysis, that approximately 

55% of the surface is covered with peaks greater than 10 nm above the thickness. This 

presents a less than ideal case for the physical implementation of a ferromagnetic cross 

wire system, but if successful, could demonstrate the robustness to fabrication defects 

of the system. 

Figure 6-6 shows the four possible combinations for data propagation in a two 

coplanar cross wire system. An external magnetic field was provided for stimulus and 

then removed. Afterwards, the system was allowed to settle in an energy minimum. The 

blue arrows represent the orientation of the magnetic dipole moments along the wires. 

As can be seen, there were no frustrations present in any four of the combinations and 

 

Figure 6-7 is a SEM image of the complex cross wire system. The system consisted of 
six wires with nine junctions. Each wire was 20 nano-magnets long. 
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the system reacted as expected. It is worth stating the particular system presented here 

was a non-ideal sample, due to the irregularities mentioned above. also important to 

mention that in all of the experiments with coplanar cross wires, frustrations at the most 

critical area of the system, namely, at the junction were never observed. The junction 

area can be considered as the four nano-magnetic cells where the two wires intersect 

each other, as shown in Figure 6-3. Due to the nature of magnets, if the junction 

performed in a reliable manner, any subsequent nano-magnetic cell in the wire would 

not experience signal loss. Meaning, for MCA coplanar cross wire systems, the wire was 

not segmented into smaller slices. The magnetization of the cell participating in the 

junction, once settled, would provide a self-gaining effect. This is due to the nano-

magnet attempting to minimize its internal magnetic energy. For a nano-magnet 

neighboring the junction, the magneto-static energy it experiences would be similar to 

neighboring a cell in a traditional wire. 

In an effort to determine if indeed the hypothesis of wires being self-gaining after 

the junction was true, in other words wires not becoming segmented into smaller 

sections at each junction, a more complex cross wire system was fabricated. The MCA 

system consisted of six wires, each 20 nano-magnets long, as shown in the SEM image 

Figure 6-7. Each magnet was approximately 100(l) x 50(w) x 35 (th) nm3 and the 

system had a total of nine junctions. As mentioned before, an external field was 

provided for stimulus, removed, and then the system was allowed to reach a ground 

state. The arrows in Figure 6-8 depict the orientation of the magnetic dipole moment 

along the wires and there were no frustrations at any of the junctions. In fact, there 

were no frustrations in the entire system except in one location. This is highlighted in 

with a blue circle. This scenario was familiar and only occurred once in large complex 
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system. Due to the complex nature of providing inputs and clocking fields at the nano-

level, currently, the system was left to attain an energy minimum after the external field 

was removed. During this occurrence, a multiple driver scenario was created in the wire. 

As depicted in Figure 6-8, this occurred most frequently near the terminal locations of 

the wire. This result was found to bolster the viability of MCA as a technology. If a 

complex system such as this was able to attain an energy minimum on its own without 

the help of a driving input, it would seem that the system will be very capable of 

minimizing its total energy. 

 Conclusion 6.6

Unlike EQCA, where there was a rotated cell in the center of the junction (Figure 6-2 

(B)), the design of an MCA cross wire system has a free area of space shown in Figure 

6-3. The four possible logic combinations of a two coplanar cross wire system were 

 

Figure 6-8 is a MFM image of the complex cross wire system. The system consisted of 
six wires with nine junctions. Each wire was 20 nano-magnets long. The blue circle 

shows the only magnetic frustration in the system. 



78 
 

experimentally demonstrated, even though, physically, the system was less than ideal. 

This demonstrated the robustness of ferromagnetic coupled cross wires systems towards 

common fabrication defects. Furthermore, a complex cross wire system consisting of 

120 nano-magnetic cells with nine junctions was fabricated and was able to reach an 

agreeable minimum energy. The concerns of segmentation of wires due to junctions, as 

in EQCA, did not seem to manifest themselves in these experimental investigations. 

The results lead to the conclusion that MCA cross wire systems were inherently able 

to reach energy minimums and that ferromagnetic cross wire architectures were likely to 

be realized in MCA. This could possibly enable the technology to increase the density of 

switches, develop new layout algorithms to optimize space in the design automation 

process, as well as simplify the fabrication process by removing several multilayer 

alignment steps for signal propagation, thus increase yield. 
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  Chapter 7

Magnetic Field-Based Computing for Image Processing 

 Introduction 7.1

The detection of significant features in an image is a computationally expensive 

process. The term perceptual organization is used to describe the act of recognizing 

important features of an image. It is generically broken down into three steps:  

 Segmentation: extraction of features from an image such as edges, pixel 

intensity, etc. 

 Grouping: relating low level segments of an image into larger perceptual 

groups such as surfaces, background, foreground, etc. 

 Recognition: matching groupings identified as significant to a known model 

such as a building, human, etc. 

Although each step has its own associated complexities, grouping is specifically 

important when reducing computational intensity. Particularly useful is the fact that 

grouping does not require exact computational accuracy, meaning that solutions that are 

near the optimal result are acceptable. The grouping of low level segments can be 

accomplished through a quadratic energy maximization process [40]. Traditional 

Boolean architectures found in supercomputers normally reduce problems such as the 

optimization of quadratic problems, into finding exact solutions to arithmetic problems 

and logical operations. This is very demanding on a Boolean system and is not 
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necessarily required for the grouping of visual objects, and magnetic nano-systems 

present a unique way to accomplish such a task [40].  

The magnetic energy minimization of a nano system can provide sufficiently accurate 

solutions when variables are carefully mapped to nano-structures. The correlation 

between a variable from the segmentation of an image, in this case an edge, can be 

translated to a nano-magnetic disk.  The magnetization of the nano-disk along a 

particular direction can then be related to the saliency of that particular variable (edge). 

The energy minimization occurs when neighboring magnets influence each other‟s 

magnetization vector through magnetic dipole field interactions. The magnetic dipole 

moments arrange themselves such that similar poles are far apart reducing the 

magneto-static energy of the system. The reduced form of the Hamiltonian for magnetic 

energy is given in equation (6-1), where 
z

iM  is the magnetization vector of nano-diski, 

z

jM  is the magnetization of a neighboring nano-diskj, and ijE is the quadratic energy 

term in terms of the distance between neighboring magnets given in equation (6-2) 

[40]. 
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In vision processing, edge grouping can be accomplished through assigning an 

affinity between edges based on factors, such as the angle between the edges, distance 

between edges, and continuity. Therefore, when grouping edges based on assigned 

affinities, the desire  is to  maximize the affinity energy. The affinity  energy used here is  
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Figure 7-1 (A) is a grayscale image of a group of buildings taken from above. (B) is the 
same image post low level segmentation. (C) is the magnetic field based model where 
the white circles are nano-magnetic disk. The spacing between each magnet is carefully 
placed so that the quadratic dipolar interaction is proportional to the quadratic affinity 
between edges. 

 

 

 

Figure 7-2 (A) is a layout of numbered magnetic nano-disk which correspond to the 
edges of an image. (B) depicts the magnetic initialization of the MFC system, where the 
red represents a positive pole and yellow represents a negative pole. (C) represent a 
possible ground state of the system after the external field is removed. If the 
magnetization is taken along axis M, the magnetization component of nano-disk 1, 2, 
and 3, will be larger than those of magnets 4 and 5. 
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given in equation (6-3), where ix  is an edge, jx  is another edge, and ijA is the 

quadratic affinity term given in equation (6-4) [40].  
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 Proof of Concept 7.2

A Magnetic Field-based Computing (MFC) system is able to solve the edge grouping 

quadratic problem through the natural minimization of magnetic energy. By carefully 

spacing the magnetic cells such that the dipolar interaction energy ijE
 
is inversely 

proportional to edge affinity energy ijA , the magnetization vector of the cells can then 

be related to the saliency of that edge [40]. If an image is given for feature detection, 

such as the one in Figure 7-1 (A), Figure 7-1 (B) is the low level segmentation of that 

image. The goal is to define a magnetic field-based computing (MFC) model, such as the 

one presented in Figure 7-1 (C), to determine the significant features of the segmented 

image, and group them together for the final recognition process. 

A small MFC system consisting of five nano-magnets very similar to a subsection of 

Figure 7-1 (C) given in Figure 7-2 was the starting point of the study. The white circles 

represent magnetic nano-disks, enumerated from left to right. The disks were made of 

permalloy with the thickness being much less than the lateral dimensions to force in-

plane single domain magnetic dipole moments. The experiment would proceed by 

applying an external magnetizing field along a particular direction as shown Figure 7-2 

(B). Afterwards, the field would be removed and the magnetic cells would be allowed to 
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settle into a ground state as shown in Figure 7-2 (C). The natural tendency for magnetic 

energy to be minimized, in this case primarily due to magneto-static coupling, would 

lead magnets 1-3 to arrange themselves in a ferromagnetic fashion. It was also possible 

for magnet 4 to experience a degree of coupling with magnets 1-3 which could be 

demonstrated via an anti-ferromagnetic coupling. . The coupling exhibited by magnets 

1-3 would be intentional since the inter-spacing distant was smaller than that of 

magnets 4 and 5, and would be part of the computational linear placement algorithm 

[40].  

If the magnetization vector of each magnet is taken along axis M as shown in Figure 

7-2 (C), the magnetization of magnets 1-3 would be greater than those of magnets 4 

and 5. As mentioned previously, this magnetic interaction can be modeled via a 

quadratic term and is computational intensive but occurs naturally in the physical world, 

at least on the order of nano-seconds [97].   The magneto-static quadratic term was 

inversely proportional to the quadratic edge affinity, which determines the salient 

features of the image. So by setting appropriate affinity thresholds, the edges 

corresponding to magnets 1-3 would be regarded as a significant grouping, while 

magnets 4 and 5 would not.  

 Fabrication Process 7.3

A Si wafer was coated with PMMA via a Laurell Technologies WS-400A-8NPP/Lite 

Spin Processor. It spun the wafer at high speeds causing the PMMA resist to spread 

evenly over the entire wafer. A single thin layer of 950K molecular weight PMMA was 

used. Afterwards, it was baked in a convection oven at 170°C to provide even heat over 

the entire wafer. This evaporated any solvent left in the resist to ensure resist purity, 

critical to the nanometer electron beam lithography process. 
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The MFC systems were designed using DesignCAD2000 NT. The most effective line 

spacing, exposure doses, points, and focus were determined by using diagnostic wheel 

pattern. A sample of the Si coated with 950K molecular weight PMMA was then loaded 

into the JEOL 840m retrofitted with the NPGS lithography system and a beam blanker. 

The SEM was then focused and the stigmation was adjusted for optimal results. The 

pattern was selected and written via the NPGS system. Afterwards, the sample was 

unloaded and was ready to be developed. For this particular process the developer, 

MIBK: Isopropanol 1:3.  

Permalloy was then deposited, via the Varian Model 980-2462 Electron Beam 

Evaporator. A vacuum of about 2 μTorr was achieved and evaporation was conducted at 

a 2 Å sec-1. Once the desired thickness of the material was deposited; the liftoff step 

was next. The sample coated with Permalloy was placed in a heated ultrasonic acetone 

bath for approximately 15 minutes. 

 

Figure 7-3 (A) is a CAD design of nano-disk in microns. Critical dimensions are given as 
36nm in between 100nm disks. (B) depicts the corresponding fabricated pattern.  
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 Results 7.4

As mentioned above, the size, spacing, and placement all correlated to features of 

an image; therefore proper fabrication of a design was imperative. Figure 7-3 (A) and 

(B) is a CAD design and SEM image, respectively. The purpose of this figure is to 

demonstrate the degree of accuracy in which the desired layout was fabricated. On a 

larger scale though, there were instances where some common irregularities associated 

 

 

Figure 7-4 (A) shows the phase graph and magnetic image of a single domain magnet 
taken via a MFM. (B) is the same for the vortex state which is identified by the eye in 
the center of the magnet. Notice that the repulsive force at the eye of the vortex was 
much weaker than the attractive force experienced around the eye. In fact the force 
experienced at the eye was on the same order of magnitude as the background noise. 
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with the electron beam fabrication process occurred. It was important to explore how all 

these parameters affect the ability of a MFC system to couple and therefore extract 

salient features. In this section the possible states of a nano-magnet in the system were 

discussed and how physical dimensions of a nano-magnetic affected the overall 

coupling. 

The magnetic nano-disks used throughout the experiments were made of permalloy 

which had uniaxial magnetocrystalline anisotropy. The circular shape combined with the 

magnetocrystalline anisotropy allowed for a nano-disk to have an easy axis of 

magnetization of 360 degrees. For the proof of concept, the thickness was reduced to 

try to induce an in-plane single domain magnetic moment. The in-plane moments would 

couple with neighbors through magneto-static interactions. Figure 7-4 are MFM phase 

graphs with the corresponding image of the possible states. There was an interesting 

dynamic between the formation of a vortex or single domain moment in nano-disks 

which was a formulation of material, diameter, and thickness. Indeed, a complete 

implementation of magnetic field computation could benefit from the ability to switch 

between single domain and vortex states, particularly because the vortex state had no 

stray field. This would essentially remove any participation of a nano-disk (in the vortex 

state) from the computational process. For the purpose of these experiments the goal 

was to create in-plane dipole interactions through single domain magnetic moments.  

A simple MFC system was chosen for the first experiment and shown in Figure 7-5. 

The permalloy nano-disks had a thickness of approximately 32.527 nm and a diameter 

of a 156.56 nm. The purpose of this experiment was to see if the three leftmost 

magnets  would  exhibit  strong coupling,  while  the  two rightmost  magnets  exhibit  a 
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weaker coupling.  The stronger  coupling  would  be  due   to   the  closer   spacing  and  

Figure 7-5 (B)  shows the magnetic  image  of  the  system. In the MFM image certain 

magnets were in a vortex state while others were not. It was clear that the desire 

coupling between the leftmost magnets was not evident. The magnets were expected to 

be in a similarly oriented single domain magnet moment, which demonstrated the 

coupling between the states. The fact that there were vortex states in the system, in 

this situation, was undesired, and was most likely due to the thickness to radius ratio. 

Although there has been research in the formation of vortex and single domain 

moments, most of this work was studying the nano-disk as decoupled entities. Indeed 

most work had spaced the nano-disk far enough apart such that magneto-static 

interaction from neighbors can be neglected. The interest of the MFC systems presented 

in this study was to have nano-disk couple though single domain magneto-static 

interactions. Investigating how the potential energy of a neighboring magnet affected 

the state of a nano-disk and the formation of vortices was necessary. 

 

 

Figure 7-5 (A) is an AFM height amplitude image and corresponding graph. (B) is the 
MFM image of the first simple MFC system. It was difficult to interpret if any coupling 
had taken place. 
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When considering the fabrication layout and dimensions of the next system, the size 

of the nano-disk was reduced to remove the possible formation of a vortex state. Also, 

an elongated structure was introduced (magnet 1) to be used as a driver of the coupled 

magnets (magnets 2 and 3). The shape anisotropy energy of the elongated magnet 

forces a magnetization direction along the long axis, and therefore if neighboring 

magnets were coupled they should respond to the driver cell. Figure 7-6 shows a force 

plot of the AFM amplitude image to the right. The average dimensions of the nano-disks 

were approximately 130 nm in diameter and 20 nm thick. The reduction of dimensions 

should reduce or eliminate vortex states in the system and force all the magnetic 

moments to be single domain. As expected, all the nano-disks were in single domain 

configurations, with the magnets 1-3 exhibiting strong coupling. 

Figure 7-7 are MFM images of the second MFC system scanned in various directions 

sequentially. Figure 7-7 (A) is a typical MFM scan of the system with the  slow scan 

direction from bottom to top, and the fast scan direction from left to right as depicted by  

 

 

Figure 7-6 is an AFM height amplitude image and corresponding graph of the second 
simple MFC system. As can be seen in the graph the diameter of the measured nano-
disk is 131.75 nm and the thickness is 21.658 nm. This was a 15.8% reduction in 
diameter and 33.4% reduction of thickness when compared to the first system.  
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the arrow. As desired, the three leftmost magnets seemed to be in a single domain 

state. Moreover, the general angle of the magnetization for magnets 1-3 was in the 

same direction.  This demonstrated ferromagnetic coupling order and therefore magnets 

1-3 were considered to be strongly coupled. If a magnetic analysis of the state of the 

entire system were made, these three magnets would be considered strongly coupled 

along axis M of Figure 7-2 (C). The high degree of magnetization along the M axis 

represents a salient relationship. To ensure that the magnetization was not due to the 

scanning of the MFM tip, meaning that the tip was not significantly altering the state of 

coupling between neighbors along the scan direction, Figure 7-7 (B) and (C) are images 

with the scan direction at 90 degrees and 180 degrees, respectively. From these sets of 

images  it  was clear that the set of three magnets were strongly coupled and  were  not  

 

 

Figure 7-7 (A) is a MFM scan of the second MFC system at a 0 degree scan angle. The 
images have been rotated to ease interpretation and the arrows represent the scan 
paths. The slow scan direction was at the tail end and the fast scan direction is depicted 
by the head of the arrow. The magnets are referred to as magnets 1-5 from left to 
right. (B) is the same system scanned at 90 degrees. Notice the magnets 1-3 retained 
their magnetization from (A) while magnets 4 and 5 were altered by the scan. (C) is a 
scan at 180 degrees. Magnets 1-3 retained their magnetization due to the ferromagnetic 
coupling between each other. 
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being aligned by the scanning of the tip. This demonstrated the ability of nano-disks to 

establish single domain moments, and couple based on placement. 

When analyzing the  two right most magnets (magnets 4 and 5), which should be in 

a decoupled single domain state due to the distance in between their nearest neighbors, 

some abnormal magnetic states are depicted in Figure 7-7. Magnet 4 of the two 

decoupled nano-disks in Figure 7-7 (A) exhibited a pinwheel type magnetization. At first 

glance it did not appear to be either of the possible magnetic configurations discussed 

earlier in the chapter, namely single domain or a vortex. This was due to sample tip 

interaction which caused the nano-disk to flip its magnetization during data acquisition. 

Even though the tip altered the magnetic state of the nano-disk, the single domain 

moment could still be extrapolated via the presence of the strong dipoles. By retracing 

the scanning process of the tip, as represented by the arrow, the single domain moment 

could be followed as it flips throughout the scan from bottom to top. The stray field 

from  the scanning tip was  sufficiently strong to flip the  magnetization  of  the  magnet  

 

 

Figure 7-8  is a AFM amplitude image of magnet 4 of the second MFC system (right). As 
can be seen in the graph, the magnet is in fact elliptical. This creates an easy axis of 
magnetization in the horizontal direction which is along the blue line. 
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approximately 3-4 times during the scan.  Even though the magnet was in a single 

domain configuration, because it was decoupled from neighboring elements, the 

magnetic stray field from the tip was sufficiently strong to alter the state of the nano-

disk.  

When the leftmost nano-disk was examined (magnet 5) it appeared as if there were 

two smaller magnets inside of the nano-disk aligned from bottom to top in Figure 7-7 

(A). Again, the interpretation of this magnet was not obvious. Figure 7-7 (B) can help 

deduce what type of magnetic state that magnet 5 was in. By following the scan 

direction in Figure 7-7 (B) a single domain state could be resolved by using similar logic 

mentioned in the paragraph above for magnet 4. Although this did explain the situation 

in Figure 7-7 (B), it did not explain the magnetic state depicted in Figure 7-7 (A) or (C) 

for the same magnet. It also did not explain the magnetic configuration shown in Figure 

7-7 (B) for magnet 4. In order to interpret the magnetization in the aforementioned 

example, the shape of the magnets must be accounted for as well as the scan direction. 

Figure 7-8 and Figure 7-9 are AFM amplitude scans of magnets 4 and 5, respectively. In 

 

 

Figure 7-9 is a AFM amplitude image of magnet 5 of the second MFC system (right). As 
can be seen in the graph the magnet is in fact elliptical. This created an easy axis of 
magnetization in a vertical direction which is along the blue line. 
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those images the purple line represented the shorter axis and the light blue line was 

drawn across the longer axis. After closer inspection, the shape was found to be more 

elliptical than circular. Figure 7-8 shows magnet 4 having a longer horizontal axis by 

approximately 24 nm, while Figure 7-9 shows magnet 5 to have a longer vertical axis by 

19 nm. The elliptical shape created an easy axis of magnetization along the longer axis 

due to shape anisotropy. When the tip was scanned horizontally along magnet 4 in 

Figure 7-7 (A) and (C), the single domain moment could be seen before flipping but 

when scanned along the vertical hard axis, as in Figure 7-7 (B), only one scan of the 

brighter pole was seen before the magnetization flips. The tip was scanned over one 

pole several times (the left half of the magnet) and showed the darker profile. Once it 

reached the opposite pole (the brighter right side) the tip-sample interaction forced the 

like poles of the tip and nano-disk to flip the magnetization, which made the right half of 

the disk represent the attractive force (darker) as well. A similar explanation can be 

used for the magnetization of magnet 5 in Figure 7-7. The reason that more of the 

repulsive force (bright pole) could be extracted for magnet 5 in Figure 7-7 (A) than 

magnet 4 in Figure 7-7 (B) can be explained by the smaller difference between the easy 

and hard axis. The shape of magnet 5 was closer to a circle than magnet 4 by 5 nm. 

This reduced the shape anisotropy energy which allowed for more of the moment to 

align in the harder axis before completely flipping the magnetization. With this 

understanding of the shape anisotropy and scan directions, it was determined that the 

decoupled magnets were also single domain in nature. 

When interpreting the results from the second MFC system some conclusions were 

drawn. The smaller dimension and ratio of diameter to thickness had created the desired 

single domain magnetizations. The magnets that were more closely spaced displayed 
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ferromagnetic coupling, while the magnets that were further apart were more strongly 

influenced by sample-tip field interactions. The distinction of flipping or not flipping the 

magnets via tip scanning was in fact a satisfying way to qualify whether or not magnets 

were strongly coupled, and therefore whether the magnets represented a salient 

relationship. The successful implementation and new understanding of the coupling and 

scanning dynamics encouraged the fabrication of a larger more complex system. 

A third MFC system was implemented and the layout is given in Figure 7-10 (B). The 

feature sizes of the system were altered, as shown in Figure 7-10 (A), to investigate 

changes in the magnetization of the nano-disk. It was evident by the layout that this 

system was much more complex and more neighbor-neighbor interaction would take 

place. Figure 7-10 (C) is the corresponding magnetic image of the system where the 

outlines of the nano-disks have been overlaid in white. During the evaluation of the 

system, it was evident that as the thickness of the system was reduced it became much 

more susceptible to the stray field of the tip. This interaction made it more difficult to 

interpret results. Some important features to point out were that many of the 

horizontally coupled magnets displayed a ferromagnetic ordering. It also appeared that 

a row of ferromagnetic coupled nano-disks were coupled to a neighboring row through 

an anti-ferromagnetic arrangement. There were also several instances of vortex states 

throughout the system as well as many magnets displaying very weak magnetizations. 

The current hypothesis is that these weaker magnetizations are in anti-vortex 

configurations.  

Another instance of the pattern was fabricated and shown in Figure 7-11. The graph 

in Figure 7-11 (A) shows a difference of 32 nm in diameter between the third and fourth 

system. Interestingly, the sample appeared to be more heavily influenced by the tips 
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stray field which was demonstrated by the flipping of the nano-disk. Also when 

comparing the magnetic data from this system to the previous one, more magnets were 

in a single domain configuration. There were also more magnetic moments that were 

not resolvable in the previous system with the larger nano-disk. Currently, steps to 

reduce the tip-sample interaction are being taken, such as exploring alternative 

magnetic microscopy methods and fabricating custom magnetic tips to reduce the 

sample tip interaction. 

 Conclusion 7.5

Magnetic Field-based Computing (MFC) has the potential to provide solutions 

towards the grouping of low-level segments into relevant features of an image in a 

unique manner. A proof of concept consisting of 5 nano-magnetic disks that related to 

low-level edge segments of an image has been provided. The proof of concept was 

fabricated and strictly adhered to a placement algorithm that correlated magneto-static 

interactions to the edge affinity energies of an image. The significance of creating nano-

disk to specific dimensions was displayed by the undesired formation of preferred axes 

of magnetization and the formation of magnetic vortices. The strong magneto-static 

interaction revealed by nano-disks 1-3 was established via the ferromagnetic coupling 

exhibited by the nano-magnets. Nano-disks 4-5 were strongly influenced by the MFM tip 

and caused the magnet moments of the magnets to flip during data acquisition. The 

switching of nano-disk 4-5, and the lack of variation in magnetic dipole moments of 

nano-disk 1-3 due to the magneto-static coupling, was determined to be a satisfying 

way of qualifying strong field interactions of magnets. The strong coupling resolved the 

edges that mapped to nano-disk 1-3 as significant, and could be grouped into a salient 

feature of an image. The time necessary for the magnetic systems to settle into an 
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energy minimum was the computational time necessary to accomplish the grouping of 

low-level segments. Two larger systems have also been fabricated and are currently 

being evaluated to investigate the effectiveness of MFC for perceptual organization in 

computer vision.  
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(C) 

Figure 7-10 (A) is a AFM height amplitude force plot of MFC system 3. (B) shows the 
entire arrangement of nano-disk. (C) is the MFM data gathered from the system. White 
circles were overlaid on the image to relate the physical placement of the nano-disk. 
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(C) 

Figure 7-11 (A) is a AFM height amplitude force plot of MFC system 4. (B) shows the 
entire arrangement of nano-disk. (C) is the MFM data gathered from the system. 
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  Chapter 8

Conclusion 

 Synopsis 8.1

The use of nano-magnetic switches for computation is a novel application that offers 

several potential benefits, such as a high density of switches, ultra-low power devices, 

integration with MRAM, non-volatile operation, and radiation hardness. Corroborative 

data has been presented regarding the reliability of magnetic coupling through field 

interactions, and it has been found that nano-magnetic cells were robust to common 

fabrication defects associated to the electron beam lithography process. The data 

experimentally verified the functionality of a previously reported Magnetic Cellular 

Automata (MCA) majority gate, and a larger majority gate system was shown to be 

operational. Furthermore, a new ferromagnetic coupled majority gate based on the 

experience of ferromagnetic architectures being less prone to magnetic frustrations was 

introduced. A working ferromagnetic majority gate was demonstrated and a logic 

network of two ferromagnetic majority gates feeding into another ferromagnetic 

majority gate was also presented. Though the results have shown that the 

ferromagnetic majority gate network always had one magnetic frustration, this could be 

attributed to the absence of computational synchronization for Magnetic Cellular 

Automata. 

The first comparative study of ferromagnetic and anti-ferromagnetic MCA wire 

architectures under external clocking fields was also introduced. Four different external 
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magnetic fields to magnetize the system were provided: an in-plane easy axis, an in-

plane hard axis, an out-of-plane hard axis, and a spinning field to both a ferromagnetic 

and anti-ferromagnetic wire with magnetic cells of approximately 100 (l) x 50 (w) x 30 

(th) nm3. The external magnetic energy was removed and the wires were allowed to 

settle into local magnetic energy minimums and analyzed for magnetic frustrations. The 

experimental results showed ferromagnetic wires were less susceptible to magnetic 

frustrations than anti-ferromagnetic wires by up to 67% when magnetized along the in-

plane easy axis. The energy associated with two magnetic cells arranged in an anti-

ferromagnetic and ferromagnetic coupling scenario was simulated and the high energy 

meta-stable state (magnetic frustration) and the low energy ground state were 

compared. The kink energy, which is the energy difference between the meta-stable 

state and the ground state, was 4,856.35 J/m3 larger for ferromagnetic wire than the 

anti-ferromagnetic wire architecture. The improved mitigation of ferromagnetic wires 

over anti-ferromagnetic wires could be attributed to the larger energy gap between the 

meta-stable state and ground state of ferromagnetic wires. From these results it was 

concluded that ferromagnetic wires will likely be the main interconnect for MCA. It was 

determined that providing an out-of-plane clocking field could eliminate complexities 

that could arise from having both horizontal and vertical in-plane magnetic interactions 

for computation. The out-of-plane clocking field could allow for magnetic clocking 

domains to be established and be insensitive to the in-plane orientation of data 

propagation in a MCA circuit. 

The capacity of having wires cross on the same device plane had been a theorized 

feature of Quantum Cellular Automata (QCA) yet to be physically realized. The first 

design and implementation of a Magnetic Cellular Automata coplanar crosswire system 
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was presented here. The system was designed to use the ferromagnetic wire 

architecture and intersect two wires at a 90 degree angle. The rectangular shape of the 

magnetic cells created an easy and hard axis of magnetization and the 90 degree angle 

utilized the in-plane hard magnetization axis to abate any cross talk interference 

between intersecting wires. Simulations were implemented to verify functionality and 

analyze coupling dynamics. The coplanar crossing wires were then fabricated in two 

systems; a simple two crosswire system with a total of 20 magnetic cells and a larger 

complex system consisting of 6 ferromagnetic coupled wires with 120 nano-magnetic 

cells. The four possible logic combinations of the smaller system were demonstrated via 

Magnetic Force Microscopy and results were shown from the larger complex system. The 

ability for the complex system to settle into a nominal ground state energy, and the 

validation of all the possible logic combinations of the smaller system, established the 

feasibility of coplanar crossing wires in Magnetic Cellular Automata. 

  A novel unconventional mapping of a vision algorithm to the energy minimization of 

magnetic dipolar interaction was also presented. Magnetic Field-Based Computing (MFC) 

using circular magnetic nano-disks, were used and correlated to edges of a low level 

segmented image. The purpose was to use the magnetic nano-disk to solve the 

quadratic problem of grouping edge segments together. Computing edge affinity 

through accepted Boolean methods is computationally intensive and is often the bottle 

neck in the perceptual organization of image processing in the area of computer vision. 

By placing nano-disks at specific locations, the quadratic edge affinity term of the edge 

grouping equation, was effectively mapped to the quadratic distance term of magneto-

static interactions for nano-disks. The solution of grouping salient edges together was 

accomplished in the time it takes for the magnetic system to settle into a ground state. 
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A simple 5 nano-disk system was fabricated, and explored how factors such as disk 

thickness affected the formation of single domain and vortex states. Examples were 

provided demonstrating that a minimal value of 19 nanometers caused an elliptical 

shaped nano-disk and formed an easy and hard axis of magnetization due to shape 

anisotropy energy, which altered the behavior of the MFC system. The correlation of the 

magnetization vector along a particular axis to the significance of an edge was 

established and proven to be feasible. The experimental results of larger more complex 

systems were also presented and are currently in the process of being analyzed. 

 Future Endeavors 8.2

The synchronization of a larger Magnetic Cellular Automata (MCA) system via a 

clocking structure has yet to be realized. This essential feature of MCA is an ongoing 

area of investigation and we are exploring the use of nanowires and multiple 

metallization planes to create clocking domains. This will allow for the control of data 

flow from input to output and move the technology closer to a functioning logic device. 

Also, the ability to provide inputs in an efficient manner is of pronounced 

importance. Currently MRAM has employed different methods of writing to a magnetic 

storage cell. We are presently exploring MRAM writing methods, such as spin torque 

transfer, as a means of providing inputs to magnetic cells in MCA. 

In addition, we are also exploring alternative magnetic microscopy methods to 

reduce the interaction between the measuring apparatus and the sample, such as 

Lorentz Microscopy, Electron Holography, and X-ray Magnetometry. Magnetic Force 

Microscopy can have strong sample-tip interactions with a magnetically soft sample and 

can alter the state of the nano-magnet, such as described when imaging the Magnetic 

Field-based Computing systems in Chapter 7. The alternative microscopy methods 



102 
 

mentioned above could potentially provide quantitative analysis and yield real time 

dynamics of a system. 
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