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Blind Signal Detection and Identification Over the 2.4GHz ISM Band for Cognitive 

Radio 

Omar Zakaria 

ABSTRACT 

 ―It is not a lack of spectrum. It is an issue of efficient use of the available spectrum‖--

conclusions of the FCC Spectrum Policy Task Force. 

 

There is growing interest towards providing broadband communication with high bit 

rates and throughput, especially in the ISM band, as it was an ignition of innovation 

triggered by the FCC to provide, to some extent, a regulation-free band that anyone can 

use.  But with such freedom comes the risk of interference and more responsibility to 

avoid causing it.  Therefore, the need for accurate interference detection and 

identification, along with good blind detection capabilities are inevitable.  Since cognitive 

radio is being adopted widely as more researchers consider it the ultimate solution for 

efficient spectrum sharing [1], it is reasonable to study the cognitive radio in the ISM 

band [2]. 

 

Many indications show that the ISM band will have less regulation in the future, and 

some even predict that the ISM may be completely regulation free [3]. In the dawn of 

cognitive radio, more knowledge about possible interfering signals should play a major 

role in determining optimal transmitter configurations. 



xi 

Since signal identification and interference will be the core concerns [4], [5], we will 

describe a novel approach for a cognitive radio spectrum sensing engine, which will be 

essential to design more efficient ISM band transceivers. 

 

In this thesis we propose a novel spectrum awareness engine to be integrated in the 

cognitive radios.  Furthermore, the proposed engine is specialized for the ISM band, 

assuming that it can be one of the most challenging bands due to its free-to-use approach. 

It is shown that characterization of the interfering signals will help with overcoming their 

effects.  This knowledge is invaluable to help choose the best configuration for the 

transceivers and will help to support the efforts of the coexistence attempts between 

wireless devices in such bands. 
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Chapter 1 

Introduction 

 

―Are you ready?‖  This was the message content of the first wireless transmission on 

May 13, 1897 by Marconi [16].  From that early time, people began to realize the 

importance of wireless communication and the scarcity of the electromagnetic spectrum. 

Wireless networks in the US can only operate in the band of frequencies allowed by the 

Federal Communications Commission (FCC), and must follow the rules regulating the 

way that spectrum can be used. The FCC regulations are designed to set usage rules, 

increase the spectrum resource usage efficiency, and to prevent interference. Until 1985 a 

large portion of the spectrum in the US was leased to individuals exclusively for 

particular services such as cellular or TV broadcasting. At that time, interference was not 

a large problem, as long as the users stayed within their assigned band of frequency 

spectrum. 

 

In 1985 the FCC put in place a creative plan by opening an unlicensed band of 2.4GHz 

for wireless networks. This band was regulated by the FCC Part 15 rules [1]. These rules 

allow new and existing technologies to share the same frequency band and try to coexist 

and operate together. The FCC explained that creativity and better spectrum efficiency 

usage would be the results from opening a shared portion of the spectrum for the 

uncoordinated wireless devices. 

 



2 

In 1995, Apple Company petitioned the FCC to create a new unlicensed 5GHz band 

called National Information Infrastructure (NII).  Differing from the 2.5GHz unlicensed 

band, the NII technologies rules restrict possible uses of the NII band to wireless 

networks that use wideband communications. The International Telecommunication 

Union (ITU) announced a number of bands for industrial, scientific and medical (ISM) 

applications and services that are not restricted to any specific wireless technologies.  The 

ITU develops frequency assignments that are adopted by countries in all regions by 

international treaty [4]. 

 

From the early beginnings of the ISM band, it became one of the popular destinations for 

wireless system manufacturers. With the increasing demand for the wireless networks, 

especially with today‘s applications and services that need high bit rate like video 

streaming, there was an increasing need for frequency spectrum resource availability, not 

to mention the importance of peaceful coexistence between wireless users.  Therefore the 

FCC began to encourage innovation and creativity to enhance spectrum usage, and it 

began with the ISM band.  FCC was open to new approaches and techniques to 

efficiently share the spectrum in the ISM band.  One of the more promising techniques 

that were looked at with hope was the cognitive radio.  Cognitive radio has the ability to 

sense, adapt and learn to overcome environment changes and possible interference [36]. 

The biggest challenges with cognitive radio are the ability to identify the existence of the 

primary users and avoid interfering with them or with other cognitive radios. To have this 

ability, cognitive radio needs to constantly sense the spectrum and identify possible 
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wireless users and based on the identification result, make the appropriate decision to 

overcome their effect as interference. 

 

1.1 Organization of the Thesis 

The main topics covered in this thesis can be summarized as follows: 

a. Cognitive radio, models and applications (Chapter 2) 

b. The ISM band and its players, descriptions and analysis (Chapter 3) 

c. Wireless signals features, analysis and extractions (Chapter 4) 

d. Smarter decision making in spectrum sensing (Chapter 5) 

 

The outlines of these chapters are as follows.  In Chapter 2, the cognitive radio concept is 

provided with a brief historical look into cognitive radio evolution over the last decade.  

A conventional model of cognitive radio transceivers [43] is described, and analyzed.  A 

detailed description for various spectrum sensing techniques is provided, with an 

evaluation of each technique‘s performance.  A proposal for a spectrum awareness engine 

is described, to be integrated in the cognitive radio transceivers model.  A description of 

the first two stages (the RF front end and the energy detector) of the proposed model is 

provided.  

 

An extensive study about the ISM band is provided in Chapter 3, along with thorough 

analysis of the main wireless standards that are active in the ISM band. A brief 

description of the main modulation schemes that are commonly used in the ISM band is 

also provided in this chapter. 
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In Chapter 4, a description of the ISM band spectrum sensing feature detector is 

proposed.  We submit a list of wireless signal‘s features that are useful in the process of 

identifying them.  Algorithms are proposed to extract and detect each feature in the list, 

while maintaining the lowest computational complexity as possible.  

In Chapter 5, we demonstrate how different wirelesses standards may inherit similar 

features which may lead to confusion during the detection process.  A novel algorithm is 

proposed to utilize the extracted features before making the decision, along with a 

controlling algorithm, to regulate the rest of the spectrum awareness engine‘s units.  

 

The thesis concludes with Chapter 6, in which we summarize the thesis and discuss open 

research areas. 
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Chapter 2 

Cognitive Radio Model 

 

In this chapter we discuss the cognitive radio technologies and examine the ideology and 

the evolutionary history of the cognitive radios. We will choose one of the proposed 

architecture and try to design a realistic model to be integrated in the proposed cognitive 

radio architecture.  

 

2.1 Introduction 

With the increased number of wireless devices and the number of users, the awareness of 

the frequency spectrum scarcity increased.  From the early dawn of the wireless 

communications era, engineers realized the importance of utilizing the spectrum to 

increase the number of users and provide better quality of service.  A closer look at the 

frequency spectrum allocation by the FCC shows that the spectrum is greatly 

underutilized [32].  Figure 2.1 shows the current frequency spectrum allocation in the US. 
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Fig 2.1 The frequency spectrum allocation in the US [32] 

 

In June 2002, the Spectrum Policy Task Force (SPTF) was established to assist the FCC 

in the process of identifying and evaluating changes in spectrum policy to help increase 

the public benefits derived from the use of the radio spectrum [33].  The SPTF released a 

report in November 2002 [34]. In this report, the SPTF demonstrated that the current 

usage for the spectrum is not very efficient and recommended rules and regulations for 

the efficient use of the radio spectrum and ways to improve the existing spectrum usage. 

Cognitive radio is being widely adapted, as many researchers look to it as the ultimate 

solution for efficient spectrum sharing [35]-[41].  Even though there is no formal 

definition of cognitive radio, the concept is being addressed by researchers in various 

contexts as well as many efforts to standardize it [42].  The FCC attempts to define 

cognitive radio as, ―a radio or system that senses its operational electromagnetic 
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environment and can dynamically and autonomously adjust its radio operating parameters 

to modify system operation, such as [to] maximize throughput, mitigate interference, 

facilitate interoperability, [and] access secondary markets.‖ [47] 

 

The main works of this chapter are to: 

a. Define cognitive radio and analyze its functionalities. 

b. Study one conceptual cognitive radio architecture extensively. 

c. Propose a novel and realistic design for the spectrum awareness engine in the 

mentioned architecture. 

d. Propose a combination of spectrum sensing algorithms to blindly identify primary 

signals. 

 

2.2 Cognitive Radio History 

Cognitive radio is a relatively new concept proposed by Joseph Mitola [35] in 1999.  The 

concept aims to create a new smart generation of communication systems that 

dynamically interact with the environment in real time to modify its parameters, such as 

band of operation, central frequency, waveforms, and the used modulation.  It aims to 

establish wireless systems with a state of awareness that will efficiently utilize the 

spectrum, with the ability to sense, learn and adapt [36].  Cognitive radio provides a 

solution for the spectrum underutilization problem, through an opportunistic spectrum 

usage [37], [38], [40].  The main idea is to temporarily use the frequency channels that 

are currently not occupied by the licensed user (primary) through cognitive radios 
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(secondary) who are constantly looking for opportunities in the spectrum without 

disturbing the primary user. 

In 1999 Mitola described the cognitive radio‘s capabilities through a cognition cycle [35], 

where the cognitive radios interact with the outside world through: 

a. Observation through the cognitive radio sensors 

b. Orientation, to establish priorities 

c. Planning, to develop the appropriate possible set of actions 

d. Decision, to choose the best plan for the current set of factors 

e. Action, to execute the decision that been taken 

f. Learning.  This function is a cross function between observing, planning and 

deciding, to enable the cognitive radio to learn from the past in order to better 

plan in the future. 

 

In 2005 a simplified understanding of the cognitive cycle was proposed by Haykin [36], 

where the focus is on three basic units: 

a. Spectrum sensing unit, which mainly deals with spectrum sensing analysis and 

white holes detection 

b. Channel identification unit, which deals with channel estimation 

c. Dynamic spectrum managements unit, to cognitively manage the spectrum 

resources 
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The publisher explained that spectrum sensing and channel identification functionalities 

are part of the receiver responsibilities, while the dynamic spectrum management‘s 

function is carried out by the transmitter. 

 

In 2008 a novel cognitive radio model was proposed [43]. This model describes a 

cognitive radio transceiver form that consists of mainly four engines: 

a. Cognitive engine 

b. Spectrum awareness engine 

c. Location awareness engine 

d. Environment awareness engine 

 

The author considered the cognitive engine to be the main entity that controls and 

monitors the other entities in the model in order to have goal-driven and self-directed task 

results.  In the four-engine model, all the information generated by the engines goes to 

the cognitive engine so that the proper system configuration, for example, the proper 

waveform, will be decided by the cognitive engine. 

 

The main responsibility of spectrum awareness engine is to handle any job related to the 

frequency spectrum usage and efficiency, not to mention the most important role for this 

engine, the sensing part, where the success of the cognitive radio will greatly depend on 

its ability to detect unoccupied spectrum.  Figure 2.2 demonstrates the cognitive system 

model we will adopt in our research.  
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Fig 2.2 Cognitive radio transceiver (courtesy of the author [43]) 

 

2.3 Spectrum Sensing in Cognitive Radio 

To achieve the main goal of the cognitive radio, which is utilizing spectrum usage, the 

system needs to continuously monitor the spectrum and identify any white spaces that 

may become available.  A brief literature scan shows that there are three common 

techniques that can be used for spectrum sensing: 

a. Matched filter 

b. Energy detector 

c. Cyclostationarity detector 
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Before we explain more about the three techniques, let us assume the following 

hypothesis for detecting a signal: 

 

 

𝐻0 : 𝑦 𝑛 =  𝑤 𝑛                       𝑛 = 0,1 … , 𝑁 − 1                                                                     (1) 

 

 

𝐻1 ∶ 𝑦 𝑛 =  𝑥 𝑛 +  𝑤 𝑛        𝑛 = 0,1 … , 𝑁 − 1                                                                     (2) 

 

where 𝑥 𝑛  is the transmitted signal, and 𝑤 𝑛  is the added white noise.  The white noise 

is usually modeled as a Gaussian zero mean distribution density 𝑤[𝑛]~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑤
2); 

therefore the spectral density of the noise is assumed to be 𝜎2.  𝐻0 represents the null 

hypothesis, and  𝐻1 represents the detection hypothesis.  That means that 𝑥 𝑛  equal zero 

in case of 𝐻0 . 

  

The performance of the detection system can be characterized by two probabilistic 

measurements, the probability of detection  𝑃𝐷 and probability of false alarm 𝑃𝐹𝐴 . The 

probability 𝑃𝐷 describes the probability of detecting the desired signal on the spectrum 

when the signal is truly present. Needless to say, we desire the largest probability. On the 

other hand, 𝑃𝐹 represents the probability that the test incorrectly decides that the signal 

exists when it does not. Therefore we try to minimize the false detection probability value 

as much as we can. It is important to point out that usually in detection systems, 

increasing the 𝑃𝐷 will increase the 𝑃𝐹𝐴  as well, and vice versa. Therefore it is important 

to find the optimum balance between these probabilities in any detection algorithm [50]. 
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2.3.1 Matched Filter 

Matched filter is a filter that maximizes the signal to noise ratio.  The main strength of 

this filter is that due to the coherency; the filter does not need a long time to achieve high 

processing gain [44].  In the case that the receiver has perfect knowledge of the 

transmitted signal, the matched filter will be the optimal detector [45]; in this case the 

optimal detector test statistic will be [48]: 

 

𝑇 𝑦 =  𝑦 𝑛 𝑥[𝑛]                                                                                                                      (3)
𝑁

 

 

This test equation, along with a predefined threshold, γ, will be used in the signal 

detection process, where H1 = T > γ represents the presence of the signal, and H0  = T < γ 

represents the absence of the signal.  The value of threshold 𝛾 is critical as it impacts the 

desired detection and false alarm probabilities. The proof is in the following analysis. 

 

As shown previously,  𝑦 𝑛  is a jointly Gaussian random variable.  Since 𝑇 is a result of 

linear operation of jointly Gaussian random variables, consequently it is Gaussian. 

Therefore, if we define 𝑃 as the average power of the sampled signal [48], which is 

 

𝑃 =
1

𝑁
 (𝑋[𝑛])2

𝑁

                                                                                                                          (4) 

 

then: 
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𝑇~𝑁𝑜𝑟𝑚𝑎𝑙(0,
1

𝑁
𝜎𝑤

2𝑃)         in the case of  𝐻0                                                                        (5) 

 

 

and  

 

 

𝑇~𝑁𝑜𝑟𝑚𝑎𝑙(𝑃,
1

𝑁
𝜎𝑤

2𝑃)         in the case of  𝐻1                                                                        (6) 

 

So the 𝑃𝐷 = 𝑃 𝑇 𝑌 > 𝛾 𝐻1
   

 

𝑃𝐷  = 𝑄  
𝛾−𝑃

 𝑃𝜎 𝑤
2

𝑁

                                                                                                                                (7) 

 

In the same way, 

 

𝑃𝐹𝐴  = P T Y > 𝛾 𝐻0
                                                                                                                      (8) 

 

𝑃𝐹𝐴 = 𝑄  
𝛾

 𝑃𝜎𝑤
2

𝑁

                                                                                                                             (9) 

 

In [48] it is shown that the minimum number of samples needed for a successful 

detection is a function of the Signal to Noise Ratio (SNR) and SNR =  
 𝜎𝑋

2

 𝜎𝑊
2  

 .  Therefore, 

 

𝑁 =  𝑄−1  𝑃𝐹𝐴 − 𝑄−1  𝑃𝐷  2𝑆𝑁𝑅−1                                                                                     (10) 
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N = O(SNR−1)                                                                                                                                 (11) 

 

where the O notation represents the limiting behavior of the original number of samples 

function simplified to focus on its growth rate.  Thus, 1/SNR is considered the lower 

bound on the number of samples which is related to the sensing time.  As we mentioned 

before, in the case that the receiver already has satisfactory knowledge of the transmitted 

signal, the matched filter will be the optimal detector.  However, this is usually not the 

case, as we often do not have prior information about the signal.  Also since the cognitive 

radio will employ matched filter techniques to perform the detection, it will need a 

receiver design for each possible signal, making it difficult to implement in real life [46]. 

 

2.3.2 Energy Detector 

Opposite to the matched filter method, the energy detector is used when there is no prior 

information about the signal.  It also has low computational and implementation 

complexity.  For all these reasons, it is one of the common detectors [48], [49], [50], [51], 

[52].  In this detector the signal energy is compared to a predefined threshold to decide if 

the signal is present or absent.  This threshold can be adjustable in an adaptive way 

depending on the noise variance and the channel [50], [75]. 

Using the same assumption for the 𝐻0  and 𝐻1  in the previous sections, we know that the 

noise variance is 𝜎𝑤
2.   Since we do not have prior information about the signal, we can 

model the samples of the signal 𝑥[𝑛] as a Gaussian random process with variance of 𝜎𝑋
2.  
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The detector test statistic will be: 

 

𝑇(𝑦) =  (𝑦[𝑛])2                                                                                                                       (12)

𝑁

 

 

This test equation, along with a predefined threshold, γ, will be used in the signal 

detection process, where H1 = T > γ represents the presence of the signal, and H0  = T < γ 

represents the absence of the signal.  The value of threshold 𝛾 is critical as it impacts the 

desired detection and false alarm probabilities.  

 

Therefore the 𝑃𝐷 

 

  P D=   𝑃 𝑇 𝑦 > 𝛾 𝐻1
                                                                                                                13  

 

𝑃𝐷  = 𝑄  

𝛾

𝜎𝑤
2−𝑁

 2𝑁
                                                                                                                              (14) 

 

In the same way: 

 

𝑃𝐹𝐴  = P T y > 𝛾 𝐻0
                                                                                                                    (15) 

 

𝑃𝐹𝐴  = 𝑄  

𝛾

𝜎𝑤
2−𝛾−𝑁

 4𝛾+2𝑁
                                                                                                                        (16) 
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Closed form expressions for probability of detection under AWGN and fading (Rayleigh, 

Nakagami, and Ricean) channels are derived.  Average probability of detection for 

energy detector based sensing algorithms under log-normal shadowing and Rayleigh 

fading channels is derived in [76]. 

 

Also it is proven that the minimum number of sampled required is 

 

𝑁 =  𝑄−1  𝑃𝐹𝐴 − 𝑄−1  𝑃𝐷  2𝑆𝑁𝑅−2                                                                                     (17) 

 

N = O(SNR−2)                                                                                                                                 (18) 

 

It is obvious for this kind of detector we need a higher number of samples in case of low 

SNRs compared to the matched filter detector.  Some of the difficulties with the spectrum 

sensing based on the energy detector alone are: 

a. The threshold value selection 

b. The inability to distinguish interference from primary signal 

c. Poor performance under low SNR values [74] 

 

The performance of the energy detector for 10 OFDM symbols in a Gaussian noise 

channel is shown in Figure 2.3. 
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Fig 2.3 The detection probability of the energy detector in different SNR values 

 

2.3.3 Cyclostationarity Detector 

Another technique used recently in research is the cyclostationary features searching in 

signals as a way to identify them.  The cyclostationary theory was first introduced by 

Gardner [54] in his famous paper series about the exploitation of the cyclostationary 

features in random processes [54]-[63].  Gardner tried to analyze the signals by extracting 

the hidden frequencies that exist in manmade signals due to modulation, pulse-shaping, 

shifting in frequency, sampling, repeated spreading codes, and any operation that may 

introduce a signal through the communication system.  The theory explained that the 

communication processes that are applied on the original source signals introduce hidden 

frequencies (the author calls these cyclic frequencies) in the result signal.  These 

frequencies can be detected using a mathematical tool developed by Gardner which is the 
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cyclic autocorrelation and the spectral correlation function.  In the past, the computational 

complexity was a large problem in the cyclostationarity analysis operations due to the 

nature of the estimation [64].  But with the development of FPGAs and microprocessors, 

this theory became popular  is used in many proposed algorithms for signal detections 

[65]-[70]. We will explain more about the cyclostationary analysis in Chapter 4. 

 

2.4 Proposed Model 

Three detection techniques are used in this research for the purposes of spectrum sensing: 

energy detection, matched filtering, and cyclostationary feature detection. The three 

techniques are combined in the spectrum awareness engine design. Figure 2.4 describes 

the proposed spectrum awareness engine. 

 

The proposed model consists mainly of five units: 

a. RF front ends 

b. Energy detector for initial stage channel sensing 

c. Features extraction unit, for detailed detection and identification 

d. Processing unit for decision making and controlling the engine component 

e. Adaptive waveform generator of the transmitter (included for consistency) 
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Fig 2.4 Spectrum awareness engine 

 

As shown in [43], the spectrum awareness engine will pass the information to the 

cognitive engine and both the location awareness and the environment awareness 

engines.  All these engines will cooperate to decide the best configuration for the current 

situation the cognitive radio is in. 

 

An example on how the spectrum awareness engine can cooperate with the location 

and/or environment engines can be that the expected range information of the detected 

signal can be fed to the location awareness engine to participate in the decision making of 

the location, especially in the case of known wireless standards where usually the average 

range of the signal is predefined.  As for the role of the spectrum engine information on 

the waveform configuration, it is important to know signal features such as the duty 

cycle, the used hopping sequence, and the number of subcarriers, in order to design a 

signal that is robust against interference.  In the following subsection we will briefly 

describe each unit of the spectrum awareness engine. 
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2.4.1 The RF Front End 

From the cognitive radio point of view, having an effective spectrum sensing ability 

requires cognitive radio to cover a large range of frequencies at the RF front end and then 

carry on the sampling process through a high speed analog to digital (A/D) converter.  

This particular task became more possible after the development of sub-sampling 

theorem and techniques. 

 

2.4.1.1 The Sampling and Data Conversion Challenge 

In cognitive radio applications, RF signals need to be directly digitized by the cognitive 

radio RF front end [35], [40].  According to Nyquist, in order to successfully reconstruct 

a sampled signal, we must sample the signal at no less than twice the frequency of its 

highest frequency components. Cognitive radio will deal with a wide range of 

frequencies, especially in the range of Giga-Hertz like the ISM band.  This means that the 

ADC needs to sample the signals at much higher speeds than what current ADCs are 

capable of.  To give an example, if we seek a signal in the ISM band with a central 

frequency of 2.4GHz, we will need to sample it with a sampling frequency of at least 

5GHz.  Many techniques were developed to solve this sampling frequency problem in 

cognitive radios.  One of these solutions is the sub-sampling or ―baseband sampling 

theorem‖ technique [80], [79].  This theory states that if a band pass waveform has a 

spectrum over the frequency band: 

 

fl <  f <  fh                                                                                                                                    (19) 

 

and occupied bandwidth of 
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BT = fh−fl                                                                                                                                        (20) 

 

the signal may be reproduced from sample values if the sampling rate is 

 

fs =≥ 2BT                                                                                                                                      (21) 

 

Thus, instead of requiring an ADC with a sampling frequency at the Nyquist rate of at 

least 2fh  , baseband sampling allows an ADC with a much lower sampling rate to do the 

same job. This leads to much lower signal processing. 

 

After sampling the signal, measurements for detection of the primary user will be carried 

out [71].  We can safely say that one of the succession factors for the cognitive radio will 

be the RF front end quality and flexibility to scan wideband in accurate and sensitive 

manners [46].  In the proposed algorithm, the band of interest will be selected, down 

converted to the baseband, and sampled through the wideband antennas with the help of 

adjustable band pass filters and the down converters.  Signals can be found anywhere in 

the spectrum band of interest, which raises the need for adjustable filters and local 

oscillators for the down conversion [78].  The dynamic range of the signal is an important 

factor in the cognitive radio RF front end to have suitable sensitivity for the low SNR 

signals.  This is where the role of the A/D converter comes in, as it should be adaptive 

enough to cover a wide range of dynamic ranges. 
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The output of the filter is sampled at Nyquist rate and N-point FFT is applied to obtain 

the frequency domain samples which can be modeled as: 

 

𝑌(𝑛)= 
𝑊 𝑘                             𝐻0

𝑋 𝑘 + 𝑊(𝑘)            𝐻1

         𝑘 = 1, … , 𝑁                                                                  (22) 

 

where X n  the transmitted signal at the output of the FFT is W(n) is the white noise 

samples, and N is the used FFT size.  Many studies dealing with the RF front end design 

and issues have been conducted [46], [71]-[73].   However, because it is not our focus in 

this study, we will not consider them.  

 

2.4.2 The Energy Detector 

In this research we propose an energy detector as first stage sensing to help detect the 

presence of the signals before we process the sampled data and extract its features.  This 

way we reduce the computational complexity of the whole process.  After successfully 

receiving and sampling the band of interest, the blind signal detection process will begin 

in a form of energy detector to initially decide if there is a signal or just noise.  The 

energy detector will also help in the decision process of whether the width of the band 

pass filter is sufficient enough to capture the whole signal without losing any frequency 

domain information.  Fine tuning to the correct central frequency and bandwidth of the 

presented signal will help in achieving some coherency in the detection.  Furthermore, 

detecting the bandwidth of the signal will help to sample the filtered band at Nyquist rate. 
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The energy detection is performed in the frequency domain.  The magnitude square of the 

fast Fourier transforms (FFT) of the signal is calculated, and the output is compared to a 

predefined threshold γ to make the first judgment if a signal exists or not.  The processing 

gain in this method will be proportional to FFT size N and the averaging time T.  Increase 

in the size of FFT improves the frequency resolution, which is helpful in detecting 

narrow band signals.  Furthermore, if we reduce the averaging time, it improves the SNR 

by reducing the noise power [44].  The energy estimation in the frequency domain can be 

described as: 

 

𝐸(𝑌) =   𝑌(𝑘) 2

𝑘

                                                                                                                      (23) 

 

where 𝑌(𝑘) represents the FFT output of the sampled spectrum and  

 

𝑌(𝑘)= 
𝑊 𝑘                             𝐻0

𝑆 𝑘 + 𝑊(𝑘)            𝐻1

         𝑘 = 1, … , 𝑁                                                                  (24) 

 

So the detection criteria will depend on the test equation, along with a predefined 

threshold γ, where H1 = E > γ represents the presence of the signal, and H0  = E < γ 

represents the absence of the signal.   

 

The impact of choosing the threshold γ on the detection performance was explained in 

Section 2.2.  Figure 2.5 demonstrates the proposed energy detector design. 
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Fig 2.5 Frequency domain energy detector 

 

2.4.3 The Feature Extraction 

When detecting energy in the band of interest which may indicate the presence of a 

signal, the sampled signal will be passed to the features extractor to detect the main 

features that are present, especially the bandwidth and central frequency so as to fine-tune 

the RF front end.  Also in this stage, detailed identification will be carried out based on 

the detecting features present in the signal.  This process will thoroughly be explained in 

Chapter 4 where we illustrate the features extraction methods and the cyclostationarity 

detection method. 

 

2.4.4 The Central Processing Unit (CPU) 

This unit is responsible for the decision making process that is based on the parameters 

coming from the rest of the sensing and feature detection units.  Also, the CPU controls 

the rest of the engine units to optimize the spectrum awareness engine.  This stage will be 

explained in Chapter 5 where we describe the decision making algorithm. 
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2.4.5 Adaptive Transmitter 

After identifying white spaces in the spectrum, detecting if there are any active signal(s),  

and revealing its properties, the spectrum awareness engine should use the proper 

configuration for the transmitter that provides the best spectrum utilization and 

interference robustness.  Some of these configurations will use modulation schemes, duty 

cycle, hopping sequence, band of operation, bandwidth, etc.  By the spectrum awareness 

engine doing this and by cooperating with the rest of the cognitive radio engines, the best 

performance outcome is achieved. 

 

2.5 Conclusion 

In this chapter, we examined the concept of the cognitive radio, and briefly described its 

history and previous work in cognitive radio research.  The cognitive radio is built on the 

principal of opportunity to efficiently utilize the frequency spectrum.  A creative model 

of cognitive radio architecture with location and environment awareness cycles [43] was 

described.  The importance of the spectrum awareness and spectrum sensing of the model 

was addressed and a brief analysis of the various spectrum sensing was conducted.  In 

this chapter we proposed a novel design for spectrum awareness engine and spectrum 

sensing algorithm that will be integrated with the cognitive radio architecture [43].  The 

RF front end and the energy detector unit design were also described.   
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Chapter 3 

The ISM Band 

 

In this chapter we will discuss the ISM band features and the FCC regulations for this 

band. We will discuss the main features of the active wireless standards in the ISM band. 

 

3.1 Introduction 

In the US, the FCC defines the ISM and unlicensed-NII (U-NII) bands as shown in 

Figure 3.1.  The ISM bands are scattered in three different frequency bands, namely 

900MHz, 2.4GHz, and 5.7GHz.  U-NII bands are mainly located in the 5GHz segment of 

the frequency spectrum. 

 

 

Fig 3.1 The ISM and U-NII bands [7] 

 

Those bands are license-free, where manufacturers that build wireless devices operating 

in these bands are not required to buy the spectrum from FCC.  However, there are some 
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regulations concerning these bands and these are outlined in [1].  Each band has its own 

regulation, and regulations may change from one to another. 

 

The 2.4GHz band provides an attractive medium for many applications using the wireless 

technology that currently exists or may come up in the future.  Different from other 

frequency bands where interference is avoided between wireless devices through 

separation of operating frequencies, the ISM is a shared band which allows unlicensed 

wireless activities.  Therefore, coexistence between wireless devices is important to 

ensure performance.  Operating in the 2.4GHz segment of the spectrum, the ISM band 

provides the convenience of the license-free band with worldwide availability.  Many 

wireless standards have been deployed to operate on the ISM band, such as wireless local 

area networks (WLAN), which is considered to be the largest wireless standard active in 

the ISM band. Also operating on the ISM band are the Bluetooth and Zigbee networks, 

some cordless phones, along with non-standard wireless devices like microwave ovens. 

 

Coexistence between various wireless devices in the ISM band was and still is the focus 

of much study and research.  To give an example about its importance, consider a 

wireless access point in a university library which provides the campus population with 

wireless access to the Internet and the university database.  In the same library there are 

students using laptops and PDAs to access the Internet, others using cellulars, with some 

using Bluetooth headsets. All these devices are using the same medium access; 

specifically, the 2.4GHz ISM band.  Many possible scenarios of interference between the 

wireless devices can be envisioned in this specific example.  
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Before we go further with this study, it is reasonable to first identify the standards and 

wireless technologies that are active in the ISM band, so that we can study each separate 

standard and identify its key features.  It is worth mentioning that our main concern will 

be the ISM 2.4GHz band; therefore, we will study the standards that are available in this 

band only. 

 

We presume (as many other studies in the literature do) that the major players in the ISM 

band can be broken down to the following: 

a. WiFi IEEE 802.11 standard 

b. Bluetooth IEEE 802.15 standard 

c. Cordless phones 

d. Zigbee networks IEEE 802.15.4 

e. Microwave 

f. Unknown signals (prospective standards or potential secondary users) 

 

Before we explain the main features, properties, and differences of each standard, we will 

first explain some important modulation techniques that will play a major role in both the 

content of the standards, and the path of blind detection that we adopt in this research. 

 

The main works of this chapter are to: 

a. Analyze the main modulation schemes that are used in the ISM band. 

b. Study the ISM band wireless standards and active wireless devices extensively. 
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c. Identify the physical layer features in each wireless standard which can be used in 

the process of blind identifications. 

 

3.2 The Wireless Communication Systems 

Since the beginning of the wireless communication area, engineers competed to develop 

the best techniques to utilize spectrum usage and enhance spectrum management, in order 

to increase network capacity and achieve the highest bit rate performance, besides many 

other motivations like the security, quality of service, etc.  Communication systems 

evolved over the decades from simple analog modulation like the AM, FM and PM to 

digital modulation like MSK, FSK, and PSK. With advances in integrated circuits and the 

development of the microprocessor, even more developed and complicated forms of 

modulations and wireless communication concepts began to appear, all to support the 

overall performance of current communication systems, and to accommodate modern 

service demands and the rapidly increasing number of users. 

 

3.2.1 Spread Spectrum 

Spread spectrum is one of the popular digital communication schemes because of its 

various properties that makes it suitable for secure, multiple access communication 

networks.  The fact that it is hard to intercept or detect is one reason why it was first used 

by the military [14].  Spreading spectrum may be defined as: 

―…a means of transmission in which the signal occupies a bandwidth in excess of 

the minimum necessary to send the information.  The band spread is 

accomplished by means of a code which is independent of the data, and 
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synchronized reception with the code at the receiver is used for de-spreading, and 

subsequently data recovery‖ [8]. 

 

This means that the occupied bandwidth of certain data is spread to a wider bandwidth, 

which will extend its power over a wider range at the same time.  As shown in Figure 3.2, 

this is achieved by multiplying the signal with a higher frequency code sequence. The 

operation will spread the power spectrum density of the signal, reducing the effect of 

narrow band interference (both intentional and unintentional), which is one of the main 

features of the spread spectrum, as shown in Figure 3.3. 

 

 

Fig 3.2 The process of spreading the information spectrum  
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Fig 3.3 Illustration showing the DSSS immunity to narrow band interference 

 

Other good properties of the spread spectrum are summarized below. 

a.  It has good tolerance towards narrow band interference and jammers. 

b. It has high security due to the use of random codes which are known only to the 

transmitter and receiver. 

c. It is suitable for multiple accessing, where more than one user shares the same 

bandwidth at the same time, such as has been deployed in the CDMA systems. 

 

Spread spectrum can be classified into two main categories: Direct Sequence Spread 

Spectrum (DSSS) and Frequency Hopping Spectrum (FHSS).  The DSSS scheme uses a 

pseudo-random sequence of positive and negative pulses at a very high repetition rate 

(chip rate) to spread the data bandwidth signal. The data signal is multiplied by the 

spreading code in the baseband stage, and then up-converts the signal to the required 

carrier frequency. The form of the spread signal at the output is given by: 
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 𝑠 𝑡 = 𝑎 𝑡 𝑑(𝑡)cos(𝑤𝑐𝑡 + 𝜃)                                                                                        (25) 

 

where a(t) is a sequence of pulses used to spread the data, and d(t) is the digital data.  At 

the receiver, the spread signal is recovered by applying a ―de-spreading‖ code that is 

identical to the spreading signal applied at the transmitter.  Figure 3.4 shows a basic 

system for a DSSS scheme.  The spreading signal is called Pseudo Noise code (PN code).  

The PN sequences are high bit rate binary sequences, which exhibit randomness 

properties just like noise.  The PN code rate is called the chipping rate (to distinguish it 

from the information rate), so-called because the code sequence applied to each bit results 

in chipping the original bit into smaller bits.  The most important property of the PN 

sequence is its correlation properties.  PN sequence should show noise-like correlation 

properties to the outsider, but the sequence is known to the two devices that are using it.  

The definition of randomness was studied by Golomb and requires three properties, 

which are described in [9].  Examples of the PN sequence are the M-sequences, Gold 

codes and Kasami sequences. 
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Fig 3.4 Basic DSSS communication system 

 

On the other hand, in FHSS transmission, the random or PN sequence is used to change 

the carrier frequency in a random manner.  This will cause spreading the data signal over 

a wide range of frequencies, yet no change to the original bandwidth of the data will 

occur. Instead, various portions of the data will be modulated and transmitted over 

different carrier frequencies.  The order and sequence of the carrier frequencies depends 

on the used PN sequence.  The simplest frequency hopping form is given by: 

 

    𝑆𝑚 = 𝐴bm cos 2πfm t PTb
(t − mTb)                                                                                  (26) 

 

where 𝑏𝑚  is the information sequence, 𝑓𝑚  is part of N frequencies chosen to be the 

random frequency sequence; so the data signals hop to a new frequency every number of 

bits, as shown in Figure 3.5.  This way the information data is spread through frequency 

hopping. The time duration over which the data signal spends in each frequency is called 
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the dwell time 𝑇𝑏 .  Figure 3.6 illustrates a simple frequency hopping communication 

system.  

 

 

Fig 3.5 Frequency hopping spread spectrum basic transceiver 

 

 

Fig 3.6 Spectrum of hopping signal 
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3.2.2 Orthogonal Frequency Division Multiplexing (OFDM) 

Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation 

scheme that provides efficient bandwidth utilization. OFDM is a mixture of special form 

of multicarrier modulation and special case of frequency division multiplexing (FDM) at 

the same time.  Where the bandwidth itself is divided into independent subcarriers, each 

subcarrier is modulated by a portion of the data after dividing the data in to parallel parts 

and then re-multiplexed to create the OFDM carrier.  At each subcarrier the data is 

modulated at a relatively low rate. This gives immunity against the delay spread of the 

channel.  Ideally each subcarrier is narrow enough to face a flat fading channel.  

 

One way to intuitively look at the way OFDM works is to use the analogy of making a 

shipment via truck.  We have two options: we can either hire a big truck or four smaller 

trucks.  Both methods carry the same amount of material (data).  But in case of accident 

(interference), only 1/4
th

 the amount of material (data) in the entire shipment will suffer. 

This is exactly how the OFDM shows tolerance towards interference; in the case of 

interference, only some subcarriers will get affected while the rest will not [10]. 

 

The main difference between the FDM and OFDM system is that OFDM does not use 

guard band to separate its subcarrier.  On the contrary, OFDM allows some overlapping 

between the subcarrier without corrupting the data, through the orthogonality of the 

subcarriers, which is the main concept of the OFDM. The subcarriers are chosen in such 

a way that there is no influence of other carriers in the detection of the information in a 

particular carrier when the orthogonality is maintained.  Since the carriers are all 
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sinusoidal waves, we know that the area under one full period of sinusoidal wave should 

equal zero.  In the same way, if we multiply sinusoidal waves with different frequencies, 

the area under the product is zero if the sinusoidal were orthogonal to each other, as 

shown in Figure 3.7. 

 

 

Fig 3.7 OFDM signal of six subcarriers 

 

Although OFDM is relatively new concept, it has gained a great deal of attention during 

the last decade as it overcame many challenges, especially the ones associated with high 

bit rate communication, the main problems being frequency selectivity and time 

dispersion.  OFDM is used by many applications nowadays, including WLAN systems, 

Digital Audio Broadcasting (DAB) [11] and Terrestrial Digital Video Broadcasting 

(DVB-T) [12] in Europe, and in Asymmetric Digital Subscriber Line (ADSL) [13]. 

With all these powerful properties of the OFDM, it has its weak points, such as 

sensitivity to frequency offsets caused by the mismatch between the transmitter and 

receiver oscillator.  This is a problem to the OFDM because it causes loss of 

orthogonality.  Another unprofitable problem is the large Peak-to-Average Power Ratio 

(PAPR) of the OFDM signal, which requires high quality power amplifiers with large 

linear ranges.  Other problems include phase distortion, time-varying channel and time 
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synchronization, which are not our main concerns in this research.  To show the 

importance of the OFDM modulation and because it has a large role in the ISM band 

wireless standards, we will describe in more detail the OFDM system and features in the 

following sections. 

 

3.2.2.1 OFDM System Model 

The Discrete Fourier transform (DFT) of the discrete sequence y(k)with a length of N, 

Y k  is defined as [13] 

 

Y k =  y(k)e−j
2πkn

N

N−1

k=0

                                                                                                                 (27) 

 

and the Inverse Discrete Fourier transform (IDFT) is represented as 

 

y n =
1

N
 Y(k)ej

2πkn
N

N−1

k=0

                                                                                                               (28) 

 

As stated earlier, the OFDM system converts the data stream from serial form to parallel 

blocks, each block with size of 𝑁.  By using IDFT we obtain the OFDM signal.  The time 

domain samples can be described as 

 

𝑥 𝑛 = 𝐼𝐷𝐹𝑇{𝑋 𝑘 }                                                                                                                    (29) 
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𝑥 𝑛 =  
1

𝑁
 𝑋(𝑘)𝑒

𝑗
2𝜋𝑘𝑛

𝑁

𝑁−1

𝑘=0

            𝑛 = 0, … , 𝑁 − 1                                                                          (30) 

 

 

where X(k) is the symbol transmitted on the kth subcarrier and N is the number of 

subcarriers.  The symbols are obtained from the data bits after being digitally modulated 

using one of the modulation schemes like Phase Shift Keying (PSK), Quadrature 

Amplitude Modulation (QAM), etc.  The symbols X k  are considered a frequency 

domain signal and the samples x n  are considered the time domain of the signal.  

We have already stated that the most important fact about the OFDM is the orthogonality 

of the subcarriers.  Only if we achieve orthogonality will we have no effects from the 

other subcarriers in the detection of information at a particular subcarrier at the receiver. 

Otherwise loss of the orthogonality will cause inter-carrier interference (ICI).  Therefore, 

to maintain the orthogonality of the OFDM symbol the following should be achieved: 

 

1

𝑇𝑠
= 𝛥𝑓                                                                                                                                             (31) 

 

Δf is the subcarrier spacing, and Ts is the useful symbol duration.  So if N-point IDFT is 

used, the total bandwidth of the OFDM signal will be 

 

W = NΔf                                                                                                                                          (32) 

 

The time domain signal is then extended to avoid the inter-symbol interference (ISI) 

between symbols.  A typical OFDM system is shown in Figure 3.8. 
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Fig 3.8 Typical OFDM system 

 

3.2.2.2 Cyclic Prefix in OFDM Symbol 

Passing signals through a time dispersive channel may cause ISI and frequency 

selectivity if the delay spread of the channel is greater than the symbol duration.  Having 

ISI in the OFDM system can cause loss of orthogonality which may lead to an ICI 

problem.  To overcome this problem, a method introduced by Peled and Ruiz [15] 

proposed to cyclically extend the OFDM time signal by copying the last part of the 

OFDM time signal, called the cyclic prefix (CP), and replicating it at the front of the 

symbol during the transmission.  This is then removed at the receiver side before 

demodulating the signal.  One issue to be considered is that the CP length should be more 

than the delay spread to assure that the multipath components of the symbols will not 

interfere with the useful symbol to avoid the ISI, as shown in Figure 3.9. This way the CP 

will have three benefits: 
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a. It serves like a guard to protect the symbols from ISI. 

b. It can be used for synchronization and blind signal identification. 

c. It will prevent the ICI because CP will convert the liner convolution with the 

channel impulse response in time, which causes a scalar multiplication in the 

frequency domain, resulting in preservation of the orthogonality. 

 

 

Fig 3.9 Illustration of cyclic prefix extension 

 

The main features and basics of the OFDM system can be summarized by the following: 

a. OFDM can achieve high bit rate with high delay spread tolerance. 
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b. OFDM system divides the data into lower bit rate parallel bit streams, and each 

parallel bit stream is modulated on an individual subcarrier out of N total number 

of subcarriers. 

c. OFDM uses CP technique to avoid ISI and ICI. 

 

3.3 WiFi IEEE 802.11 Standards 

The wireless local area networks (WLAN) technologies appeared in the markets and 

began to quickly increase the number of shipped equipment and the number of users 

thanks to rapid internet growth, businesses data networks, and low-cost integrated 

wireless radio designs.  The first widely deployed wireless LAN solutions used the 

2.4GHz band since in the beginning this band was assigned for spread spectrum 

technologies [4].  Individual and large businesses widely adopted IEEE 802.11 wireless 

network access points and client devices.  

 

IEEE 802.11 standard has three main branches: 

a. IEEE 802.11a, which works in the 5GHz band. 

b. IEEE 802.11b, which works in the 2.4GHz band. 

c. IEEE 802.11g, which works in the 2.4GHz band. 

 

Table 3.1 gives a quick glance at the three standards‘ histories and main features. 
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Table 3.1 The three main branches of the IEEE 802.11 standard 

Protocol 

Release 

Date 

Operation 

Feq. 

Data Rate 

(max) 

Modulation 

Technique 

Range (Radius 

Indoor) 

Range (Radius 

Outdoor) 

802.11a 1999 5 GHz 54 Mbit/s 
OFDM 35 Meters 120 Meters 

802.11b 1999 2.4 GHz 11 Mbit/s 
DSSS 38 Meters 140 Meters 

802.11g 2003 2.4 GHz 54 Mbit/s 
OFDM 35 Meters 140 Meters 

 

 

 

Since our only concern is the blind detection in the 2.4GHz band, we will not deal with 

the IEEE 802.11a standard, not to mention that this standard has a lot of similarities with 

the IEEE 802.11b standard except in the band of operation.  Also worth mentioning is 

that we will only focus on the physical layer features and properties that concern us in our 

detecting algorithm. 

 

3.3.1 WiFi IEEE 802.11b 

The IEEE 802.11b operates in the 2.4GHz band.  The FCC assigns 11 channels in the 

ISM band, as shown in Table 3.2.  For this standard, each channel is 22MHz bandwidth 

[21].  
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Table 3.2 The 11 channels assigned by the FCC to the ISM band 

Channel Lower Frequency Center Frequency Upper Frequency 

1 2.401 2.412 2.423 

2 2.404 2.417 2.428 

3 2.411 2.422 2.433 

4 2.416 2.427 2.438 

5 2.421 2.432 2.443 

6 2.426 2.437 2.448 

7 2.431 2.442 2.453 

8 2.436 2.447 2.458 

9 2.441 2.452 2.463 

10 2.451 2.457 2.468 

11 2.451 2.462 2.473 

 

 

 

Only three of these channels are none overlapping: 1, 6, and 11.  This standard uses the 

DSSS modulation scheme and has different data rate modes, which are 1Mbps, 2Mbps, 

5.5Mbps and 11Mbps. The used spreading codes in this standard are the Barker code 

sequences in the low data rate mode (1, 2 Mbps) and the Complementary Code Keying 

(CCK) in the high data rate mode. 

 

The rest of the main features are shown in Table 3.3.  These spreading codes are used 

because they have low autocorrelation properties, as explained earlier in this chapter. 
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Table 3.3 IEEE 802.11b data rate specifications 

Data Rate Code Length Modulation Symbol Rate Bits/Symbol 

1 Mbps 11 (Barker Code) BPSK 1 MSps 1 

2 Mbps 11 (Barker Code) QPSK 1 MSps 2 

5.5 Mbps 8 (CCK) QPSK 1.375 MSps 4 

11 Mbps 8 (CCK) QPSK 1.375 MSps 8 

 

 

Barker sequences codes consist of sequences of +1s and -1s.  The Barker code lengths 

that are used in the DSSS modulation are 11 and 13.  Table 3.4 shows the possible Barker 

codes. 

 

Table 3.4 Possible Barker codes 

Length Codes 

2 +1 -1 +1 +1 

3 +1 +1 -1 

4 +1 -1 +1 +1 +1 -1 -1 -1 

5 +1 +1 +1 -1 +1 

7 +1 +1 +1 -1 -1 +1 -1 

11 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1 

13 +1 +1 +1 +1 +1 -1 -1 +1 +1 -1 +1 -1 +1 
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On the other hand, CCK code was first proposed by Golay [19].  Binary complementary 

codes are a subset of CCKs.  These codes are pairs of finite code sequences with the same 

length.  The condition for two codes to be considered as complementary of each other is 

that the summation of the auto correlation functions of each code should yield zero, 

except for zero lag, as shown in Figure 3.10.  It must be mentioned that the codes used in 

802.11b are not real but complex (i.e. poly-phase). 

 

 

(a) Autocorrelation of Code 1       (b) Autocorrelation of Code 2 

 

 

(c) Summation of the two autocorrelation  

Fig 3.10  Illustration of the condition for two codes to be complementary to each other  
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In 802.11b, CCK codes are generated using the formula: 

 

𝐶 =  𝐶0, … , 𝐶7 

= (𝑒𝑗  ∅1+∅2+∅3+∅4 , 𝑒𝑗  ∅1+∅3+∅4 , 𝑒𝑗  ∅1+∅2+∅4 , −𝑒𝑗  ∅1+∅4 , 𝑒𝑗  ∅1+∅2+∅3 , 𝑒𝑗  ∅1+∅3 , 

−𝑒𝑗  ∅1+∅2 , 𝑒𝑗∅1)                                                                                                                            33  

 

In 11Mbps and 5.5Mbps data rate modes, data bits are split into chips, each having 8 and 

4 bits respectively.   Those chips are used to generate the spreading CCK code.  In the 

case of 11Mbps, 6 out of 8 bits are used to determine the phase values and the remaining 

two are used to modulate the signal in QPSK by exploiting the common phase term in 

each code element.  While in 5.5Mbps mode, 2 out of 4 bits are used for code generation 

and the remaining two are used for QPSK modulation.  Therefore, the possible number of 

CCK codes for 11Mbps is (26), whereas it is (22) for 5.5Mbps. 

 

Depending on the data bits, the phases ∅1, … , ∅4 are mapped in Table 3.5. 

 

Table 3.5 The generation of the CCK codes depending on the data bits 

 

DIBIT(di+1,di) Phase 

00 0 

01 π 

10 π/2 

11 - π/2 
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It is only reasonable to have a correlation based receiver to detect the IEEE 802.11b 

standard, and this is what happens in reality. At the receiver the signal is correlated with 

every possible codeword.  Figure 3.11 demonstrates a typical diagram for a IEEE 

802.11b receiver [20]. 

 

 

Fig 3.11 A typical IEEE 802.11b receiver 

 

To sum up the properties of the IEEE 802.11b standard: 

a. It operates in the 2.4 GHz frequency range. 

b. It has 11 channels assigned to it in the US, occupying a bandwidth of  22MHz. 

c. Bit rate modes are 1Mbps, 2Mbps, 5.5Mbps and 11Mbps. 

d. It employs Direct-Sequence Spectrum Spreading (DSSS). 

e.  The lower data rates use Barker sequences, whereas the high data rates use 

Complementary Code Keying (CCK). 

 

3.3.2 WiFi IEEE 802.11g 

The IEEE 802.11g operates in the 2.4GHz band.  The FCC assigns 11 channels to it in 

the ISM band, and each channel is 22MHz bandwidth [21].  The used channels are shown 
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in Table 3.2.  Only three of these channels are none overlapping: 1, 6, and 11. Data rate 

modes and modulation order are shown in Table 3.6. 

 

Table 3.6 Data rate modes and modulation for the IEEE 802.11g standard 

 

Data Rate 

(Mb/s) 

Modulation 

Coding 

rate 

Coded bits/ 

subcarrier 

Coded 

bits/Symbol 

Data 

Bits/Symbol 

6 BPSK 1/2 1 48 24 

9 BPSK 3 / 4 1 48 36 

12 QPSK 1/2 2 69 48 

18 QPSK 3 / 4 2 69 72 

24 16 QAM 1/2 4 192 96 

36 16 QAM 3 / 4 4 192 144 

48 64 QAM 2/3 6 288 192 

54 64 QAM 3/4 6 288 216 

 

 

 

This standard uses the OFDM modulation which makes it more effective in a multipath 

environment than the IEEE 802.11b standard. The number of subcarriers is 64, out of 

which 11 subcarriers at the end of both sides of the spectrum are set to zero for spectrum 

shaping reasons and to suppress the sideloops at the end of the OFDM spectrum to 

minimize the ICI. These shut off subcarriers will work as a guard bands at both ends of 

the spectrum.  One subcarrier at zero frequency is set to zero as well, to help the D/A and 

A/D converters and to get rid of the DC offset.  Leaving 52 active subcarriers, four of 

these subcarriers are BPSK modulated pilot tones used for channel estimation.  The 
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subcarrier spacing is 312.5 KHz.  The total OFDM symbol is 4µs; the useful symbol 

duration is 3.2µs, and the CP rate in this standard is 1/4.  Due to the total symbol 

duration, the symbol rate of this standard is 250 KHz.  Due to the use of OFDM system, 

the PAPR is usually high, and it is vulnerable to Doppler spread. 

 

One interesting feature in the IEEE 802.11g standard is that it supports higher data rates 

using the OFDM, and the low rates using CCK/Barker as well, to ensure backward 

compatibility with existing IEEE 802.11b equipment.  

 

To sum up the main features of the IEEE 802.11g standard: 

a. It operates in the 2.4 GHz frequency range. 

b. It has 11 channels assigned to it in the US, occupying a bandwidth of  22MHz. 

c. It has high bit rate modes. 

d. It uses OFDM modulation. 

e. It has a useful symbol duration of 3.2 µs, and a whole symbol duration of 4µs. 

f. It has subcarriers numbering 64, and a subcarrier spacing of 312.5KHz. 

g. It is spectrally efficient. 

h. It is more effective in a multi-path environment (ISI). 

i. It is capable when narrow band interference is present. 

j. It has a high PAPR. 
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3.4 IEEE 801.15.1/2 Bluetooth 

Bluetooth technology was first developed by Ericsson in 1994.  This standard operates on 

the 2.4GHz bandwidth.  It is considered a short range (up to 10 meters) wireless personal 

area network (WPAN).  It became very popular from the beginning of its development 

for its various applications and the services that can be provided through it, from 

cellphone headsets to laptop applications, and many others.  

 

Bluetooth standard uses a mixture of Time Division Duplex (TDD) and FHSS 

transmission mode over 79 channels with 1MHz spacing within the range of 2.400 – 

2.4835GHz assigned to this standard by the FCC.  The central frequencies are chosen 

from the following equation [22]: 

 

𝐹𝑐 = 2402 + 𝐾 𝑀𝐻𝑧 , 𝑘 = 0, … ,78                                                                                        (34) 

 

There are two data rate modes: the basic data rate with symbol rate of 1Mbps and the 

enhanced data rate with symbol rate of 2Mbps/3Mbps. The signal hops from one channel 

to another with a rate of 1600 times per second.  The hopping sequence is derived using a 

pseudo-random sequence determined by the master device in the network and 

broadcasted to the slave devices.  Transmission time is divided in to 625µs time slots. 

One packet of transmission can take from one up to five time slots [23].  Two hopping 

modes in the Bluetooth are available.  The basic is where the device uses a fixed hopping 

list regardless of the channel status.  And the adaptive frequency hopping (AFH) 

incorporates interference identification to update the hopping list and exclude any 
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channel that contains interference source.  There are three defined power categories for 

the Bluetooth transmission, listed below and illustrated in Table 3.7. 

 

 

     Table 3.7 Three defined power categories for Bluetooth transmission 

 

Power Class Max. Output Power 

Nominal 

Output Power 

Min. Output Power 

Distance 

1 100 mW (20 dBm) N/A 1mW (0 dBm) 100m 

2 2.5 mW (4 dBm) 1 mW (0 dBm) 0.25 mW (-6 dBm) 20m 

3 1 mW (0 dBm) N/A N/A 10, 

 

 

To sum up the main features of the Bluetooth: 

a. It operates in the 2.4GHz frequency range. 

b. It has 79 channels with 1MHz separation, occupying a bandwidth of 1MHz. 

c. It has two bit rate modes. 

d. It uses FHSS and TDD. 

e. Its time slot length is 625µs, and the transmission can use up to five time slots. 

f. It has resistance to interference, especially with the AFH mode. 

g. It has three power transmission modes. 

 

3.5 IEEE 802.15.4 Zigbee Networks 

Zigbee is part of the WPAN family that operates in ISM band and has the features of 

being small, low maintenance, and low power.  It is used for communication applications 

that require low data rate, a secure network, and low power consumption.  This standard 
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covers a transmission range up to 75 meters [26].  In the 2.4GHz ISM band, Zigbee has 

16 defined channels with 5MHz bandwidth each.  The central frequency of each channel 

is calculated as: 

 

𝐹𝑐 = 2405 + 5 ∗  𝑘 − 11 𝑀𝐻𝑧  𝑘 = 11,12, … ,26                                                             (35) 

 

The bit rate offered is 250Kbps, with a symbol rate of 62.5Ksps.  The modulation scheme 

used in this standard is the DSSS with a chip rate of 2000Kcps [25].  According to the 

standard specifications [24], the transmitter power is 0.5mW (-3dBm).  One of the main 

advantages of the Zigbee is the low duty cycle communication with less than 10ppm duty 

cycle.  Lowering the duty cycle minimizes the power consumption, thus increasing 

battery life.  Transmission intervals may range as follows [27]: 

 

15.36𝑚𝑠 ∗ 2𝑛 , 0 ≤ 𝑛 ≤ 14                                                                                                        (36) 

 

To sum up the main features of the Zigbee that are useful for our purposes: 

a. It operates in the 2.4GHz frequency range. 

b. It has 16 channels with 1MHz separation, occupying a bandwidth of 5MHz. 

c. Its bit rate is 250Kbps. 

d. It uses DSSS, with chip rate 2000Kcps. 

e. Its time slot length can be between 15.36𝑚𝑠 up to 251.65824 seconds. 

f. It has a low duty cycle (<50%). 
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g. It has low transmission power  -3dBm. 

h. Its range is up to 75m 

 

 
 

3.6 Microwave Ovens 

Microwave ovens (MWO) are the perfect example of non-intentional interference of 

transmitters in the 2.4GHz ISM band.  Although microwave ovens were not meant to 

transmit electromagnetic waves, they usually leak these waves during operation in 

scattered power all over the ISM band.  This phenomenon causes a non-intentional 

interference and disturbs the other devices operating in the same band.  Many studies 

have addressed the microwave signal model and its interference effects [29], [30], [31]. 

Using these studies as reference as well as examining a real microwave recorded signal, 

we noticed that the spectrum in microwave ovens has a distinguished shape (see Figure 

2.12) and an occupied bandwidth of 20MHz, where most of the energy is concentrated in 

15MHz bandwidth.  The time domain signal is transmitted as bursts during the positive 

cycle of the standard electric power lines frequency [29].  When the positive cycle 

voltage exceeds some threshold, two bursts appear (these bursts are referred to in the 

literature as the transient parts).  One starts at the beginning of the ON cycle, and the 

other one at the end of the ON cycle of the microwave.  The width of each transient part 

is  ~1𝑚𝑠 . The microwave signal in the ON mode is somehow similar to frequency 

modulation (FM) signals.  The frequency sweep of the FM signal in the microwave has a 

duration close to half of the time period duration of the electricity power line, so in the 

US it is between 5- 7ms.  There are changing power levels during the frequency sweep of 

the ON period.  These changes in the power level are expressed as an Amplitude 
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Modulated (AM). So, the frequency sweeping part of the microwave signal is modeled as 

a combined AM-FM signal waveform [31].  Figure 3.13 shows a time domain microwave 

signal with the two bursts that represent the transient parts of the ON period marked as A 

and B. 

 

 

 

Fig 3.12 The spectrum of a microwave oven signal 

 

 

 

Fig 3.13 Microwave oven time domain signal 
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Studies have shown that a microwave signal can be best modeled by the following 

mathematical formula [30]: 

 

𝑠 𝑡 = 𝐴𝑥 𝑡 cos 2𝜋𝑓𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑎𝑐 𝑡  ,  𝑡 < 0.5𝑇𝑠                                                    (37) 

 

where  𝑡 = 𝑐𝑜𝑠(2𝜋𝑓𝑎𝑐 𝑡) , and 𝑇𝑠 is the sweep time. 

 

 To sum up the main features of the microwave oven standard that are useful for our 

present study: 

a. It is in the 2.4GHz band. 

b. It has no predefined channels or central frequencies. 

c. It has periodic transmission, occupying a bandwidth of 20MHz. 

d. It transmits in bursts (transient parts) synchronized to electric power lines cycle. 

e. It has a distinguished power spectrum shape. 

f. Its signal is modeled as an AM and FM signal. 

g. Its transient part width ~1𝑚𝑠, the AM-FM part duration is 5- 7ms. 

h. Its duty cycle is close to 50%. 

 

3.7 Cordless Phones 

Cordless telephones have been one of the most popular technologies in the 

telecommunication market for a while now.  Currently, there are many types of cordless 

phones, depending on the band of operation.  Since we are concerned with the ISM band, 

we will focus only on the types that operate on the 2.4GHz range.  The first noticeable 
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feature is that cordless phones do not follow a specific protocol or standard.  Each 

manufacturer defines its own devices‘ features and RF front end specifications.  Most 

cordless phones that work in the 2.4GHz range use FHSS or DSSS.  The devices that use 

DSSS have 8 -16 channels of a bandwidth between 5MHz or 10MHz, compared to the 

Bluetooth with its 1MHz bandwidth 79 channels.  The bit rates for cordless phones are 

less than 100kbps. 

 

3.8 Unknown Signals 

ISM band technology would not be an area of innovation without expecting to have 

unknown signals every now and then, such as new prospective standards, cognitive radio 

secondary users, and new unintentional interference. This class is random and uncertain, 

yet it has to follow the FCC regulation in the ISM band. This fact can help us to form 

some ideas about what we may face.  Therefore, we add unknown signals to our study as 

well to be prepared for any future situation. 

 

3.9 Conclusion 

The ISM band is a license-free band, where wireless activities share the same spectrum 

with very limited regulations.  Due to this fact, it is now one of the attractive bands for 

manufacturers, and many wireless standards are operating in this band.  We have 

described the variety of wireless technologies that are working in this band, and we 

demonstrated how important coexistence is for all these wireless activities to operate 

safely in this part of the spectrum. 
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In this chapter we looked closely at the modulation schemes and communication systems 

that can exist in the ISM band, and demonstrated how each system tries to utilize the 

spectrum and how they handle interference. We also thoroughly examined each of the 

wireless standards and activities that may operate in the ISM band, and we identified the 

main physical layer features and properties of each wireless standard. Different wireless 

standards can utilize the same features or modulation techniques.  
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Chapter 4 

Features Extraction 

 

In this chapter we describe the features extractions stage and explain the algorithms used 

to extract each feature.  A comprehensive list of features that can be used to detect the 

presence of the ISM band technologies is discussed and analyzed. 

 

4.1 Introduction 

As we explained in Chapter 2,  the cognitive radio should have the capability to blindly 

identify interference and try to mitigate its effects.  This capability will be executed in the 

spectrum awareness engine.  In Chapter 2, a novel design for the spectrum awareness 

engine was proposed.  Descriptions of the RF front end and the energy detection 

components were given.  Studies show that energy detection alone is not sufficient to 

have an accurate idea about the available spectrum or the interference [74], [44], [81], 

[82].  Therefore we propose a feature detector stage to deeply explore the captured 

signal‘s features  to try to identify them. 

 

Many studies in the literature examined the various features of the wireless signals.  

Some even proposed methods to extract these features. Some examples include: 

a. In [50], the bandwidth is estimated through the use of FFT operation. 

b. In [84], 4th order cumulants test is used to extract the used carrier systems. 
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c. In [102], moments test is applied to reveal the carrier system. 

d. In [103], a cosine modulated bank filter is used to blindly identify the multicarrier 

modulation 

e. In [108], autocorrelation function is used to estimate the OFDM time parameters 

f. In [110], cyclostationarity is deployed to estimate the OFDM frequency domain 

parameters 

 

As it is shown, different approaches are proposed to extract different types of features.  In 

this research we define the possible features that can be targeted and propose a 

comprehensive algorithms to extract each one of these features with the appropriate 

approach.  

 

The main works in this chapter are to: 

a. Identify the possible PHY layer features that can help in the detection process. 

b. Study the cyclostationarity theory and the cyclostationarity detector. 

c. Build algorithms to detect each of the proposed features. 

d. Propose a feature detector design that consists of handful of algorithms to detect 

the various features. 

 

4.2 Feature Detector 

After applying the energy detection and making the first decision about  signal presence, 

we try to extract as much information as possible from the captured signal.  These signal 

features can be detected using a single approach or multiple approaches such as 
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autocorrelation based test, cyclostationarity based parameters extraction, and joint time 

frequency analysis.  These algorithms can be used together for extracting the different 

features that may present in the signal.  Figure 4.1 illustrates the proposed design. 

 

 

 

 

Fig 4.1 The proposed model 

 

First we define the physical layer features and characteristics that can be used to identify 

signals and interferences as below: 

a. Power related: SNR, Peak to Average Power Ratio (PAPR) 

b. Time of occurrence (statistical observation over a period of time) 

c. Frequency domain related features: central frequency, bandwidth (OBW, 3dB 

BW) 

d. Duty cycle 

e. Statistical characteristics:  mean, variance, CCDF, moments (2
nd

, 3rd …, etc.), 

 autocorrelation function properties 

f. Cyclostationary feature 
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g. Distinguishing between single carrier or multicarrier 

h. Single carrier: digital modulation, DSSS, FHSS 

i. Multicarrier parameters: time (symbol duration, CP duration) and frequency 

(subcarrier spacing, number of subcarriers) 

j. Modulation type and order 

k. Chip rates 

l. Symbol rates 

m. Hopping sequence 

n. FCC regulation 

 

A comprehensive algorithm is proposed to extract each one these features.  One thing to 

point out is that we took in consideration the computational complexity in the design of 

each algorithm. 

 

4.3 Bandwidth and Central Frequency Estimation 

The wireless standards usually utilize predefined bandwidths (depending on the data 

rate).  The bandwidth of a detected signal is estimated, and the bandwidth value is used in 

the process of identification [50], [93].  The same applies to the central frequency of 

operation, as different wireless standards use different predefined central frequencies. 

Even in frequency hopping spread spectrum, there are certain predefined central 

frequencies the devices will operate on, as we observed in the Bluetooth case. 

 

There are some proposed ways in the literature for bandwidth and central frequency 

estimation.  For instance, in [94], wavelets decomposition is used to calculate the 
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bandwidth of the signal.  In [95] the author uses the Welch periodogram to calculate the 

average power spectrum and find out its length, then detects the two endpoints of the 

signal spectrum, calculates the distance between these points, and finds the bandwidth.  

In [50], FFT is applied on the time domain signal, and a threshold is defined to decide 

which frequency bins are occupied to calculate the start and the end of the signal 

bandwidth. 

 

In our proposed algorithm, right after the energy detection stage, we need to check if 

there is one signal or more than one signal in the spectrum, and to make sure that we 

captured all of the signals.  For this purpose we calculate the power spectrum density of 

the signal (PSD), and pass the PSD to an edge detector algorithm to make sure that we 

have only one signal in the sampled spectrum.  To estimate the bandwidth and central 

frequency, we use the time frequency Heisenberg-Gabor inequality concept. 

 

4.3.1 Heisenberg-Gabor Principle 

In many cases, the time-frequency resolution of a signal is restricted to the Heisenberg-

Gabor inequality.  Signals can be characterized in both time and frequency domains at the 

same time by considering their mean localization and dispersions in each of the 

mentioned domains. 

 

If we have: 

 

 𝑥(𝑡) 2                                                                                                                                             (38) 
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and 

 

 𝑋(𝑓) 2                                                                                                                                            (39) 

 

representing the probability distribution of the signal in both time and frequency domain 

respectively, we can calculate the mean and the standard deviation as: 

 

𝑡𝑚 =
1

𝐸𝑥
 𝑡  𝑥(𝑡) 2

∞

−∞

𝑑𝑡          𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒                                                                       (40) 

 

𝑓𝑚 =
1

𝐸𝑥
 𝑓  𝑋(𝑓) 2

∞

−∞

𝑑𝑓                     𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦                                             (41) 

 

𝑇2 =
4𝜋

𝐸𝑥
 (𝑡 − 𝑡𝑚 )2

∞

−∞

 𝑥(𝑡) 2𝑑𝑡                  𝑡𝑖𝑚𝑒 𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔                                            (42) 

 

𝐵2 =
4𝜋

𝐸𝑥
 (𝑓 − 𝑓𝑚 )2

∞

−∞

 𝑋(𝑓) 2𝑑𝑓           𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔                                   (43) 

 

𝐸𝑥 is the energy of the signal and assumed to be finite: 

 

 

𝐸𝑥 =   𝑥(𝑡) 2 𝑑𝑡 < ∞
∞

−∞

                                                                                                          (44) 
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Since we can calculate the power spectrum density of the signal 𝑋(𝑓), we define the 

following: 

 

𝑓𝑚 =
1

𝐸𝑥
 𝑓  𝑋(𝑓) 2

∞

−∞

𝑑𝑓                                                                                                          (45) 

 

𝐵 = 2 
𝜋

𝐸𝑥
 (𝑓 − 𝑓𝑚 )2

∞

−∞

 𝑋(𝑓) 2𝑑𝑓                                                                                       (46) 

 

where 𝑓𝑚  is the central point of the power distribution, hence the central frequency and 𝐵 

is the frequency spreading around the center point, hence the bandwidth.  Then the 

Heisenberg-Gabor inequality is:  

 

BT ≥ 1                                                                                                                                            (47) 

 

The main feature of this method of estimation is the simplicity of computation.  The 

power spectrum density of sampled signals is easily calculated thanks to the simplicity of 

the current FFT circuitry, allowing just two equations to give us a good estimate for the 

bandwidth and the central frequency.  Also this method is independent of the SNR value, 

which means that we do not need an SNR estimator.  Figure 4.2 illustrates the 

performance of the proposed bandwidth estimation algorithm against various SNR 

values.  As we can see, the algorithm gives relatively low error rate in low SNR values. 

The signal used in this evaluation is OFDM signal, 10 symbols, FFT size 512, CP 1/8. 
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It is worth mentioning that in the case of real recorded data, we neglect some samples at 

the beginning and at the end of the signal spectrum to take the roll off factor of the filter 

into consideration and compensate for the drop in magnitude at both ends due to the 

receiver‘s front end filter. 

 

4.4 Power Related Metrics 

The signal power and the SNR of the received signal can be a useful tool to provide an 

idea about the identity of the signal.  For example, in Zigbee networks the power 

transmission is low according to the Zigbee networks specifications (≅-3dBm).  In 

Bluetooth there are three power transmission modes, and each power mode has a specific 

transmission distance; meaning that in the case of Bluetooth technology, the transmission 

Fig 4.2 Bandwidth estimation error with SNR values 
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power can indicate the effective distance of the device. And that is why power metrics are 

calculated in the proposed algorithm and feed into the decision making part of the 

algorithm. 

 

4.4.1 CCDF 

The move to 3G systems and the adoption of OFDM modulations is pushing signals to 

have higher peak-to-average power ratios.  Current OFDM based communication systems 

combine subcarriers, resulting in a peak-to-average.  This signal characteristic can be an 

identifying feature for the OFDM based systems, especially if we have prior knowledge 

about the primary signal statistics [97].  Here the Power Complementary Cumulative 

Distribution Function (CCDF) curves come into the picture as they provide critical 

information about the peak-to-average power behavior of the signal.  The CCDF plot 

describes how much time the signal spends at or above a given power level [96].  

To explain how to construct the CCDF curves, let us consider a signal power level with 

time representation, as in Figure 4.3a.  The signal in the mentioned form is difficult to 

quantify due to its randomness.  In order to get some useful power information from the 

signal, we can statistically describe the power levels with respect to the average power in 

the signal.  Figure 4.3b represents a specific power level above the average.  We calculate 

the percentage of the time the signal spends at or above each power level, which 

represents the probability for that particular power level, as in Figure4.3c.  Then the 

CCDF can be defined as the power levels with respect to the average versus their 

probability.  With the prior knowledge of the expected signal statistics and the channel, 

CCDF can help with the blind identification of the signals, especially the multicarrier 

based ones. 
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       (a) The signal power level in time                      (b) Define average power level 

 

 

  (c) CCDF Curve 

 

Fig 4.3 CCDF implementation 

 

 

Figure 4.4 illustrates the algorithm results for different types of modulations.  
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Fig 4.4 CCDF curves for different modulation schemes 

 

 

4.5 Single Carrier versus Multicarrier 

ISM band contains different types of wireless standards, as explained in Chapter 3.  Some 

standards adopt the multicarrier approach like the OFDM based WLAN, and some take 

the single carrier approach, like cordless phones.  Knowing this, we identify the 

importance of detecting the signal‘s carrier system, not only to participate in the process 

of the decision making of the blind detection but also to reduce the computational 

complexity of the decision making.  There are two methods in the literature to 

discriminate the single carrier and multicarrier systems.  Those are the 4th order 

cumulants test and the moments test. 

 

In the cumulant based test, since OFDM signals has Gaussian distribution or close to 

Gaussian, a time domain statistical test for Gaussianity is applied on the signals [98], to 

detect if the signals are using multicarrier transmission.  This approach was used for the 
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first time by Akmouche in 1999 [84].  According to the cumulants test, cumulants of 

order k > 3, which are generalizations of autocorrelation function, can be used to quantify 

departures from Gaussianity [98].  So if the data in hand (sampled signal) has a Gaussian 

distribution, the k
th

 order cumulants 𝐶𝑘𝑥  disappear for k > 3, where the cumulants 𝐶𝑘𝑥  is 

defined as [98]: 

 

𝐶𝑘𝑥 (𝑖1, … , 𝑖𝑘−1) =   𝑥 𝑖 𝑥 𝑖 + 𝑖1 … 𝑥 𝑖 + 𝑖𝑘−1 

∞

𝑖=−∞

                                                        (48) 

 

Some weak points were noticed in this method of multicarrier test.  For instance, the test 

was SNR-dependent, and the accuracy of the results heavily affected in dispersive 

channels.  For those reasons we chose not to use the cumulants based test. 

 

4.5.1 Moments Based Test 

Moments test was first used as a modulation type and order identifier for single carrier 

systems by evaluating the summation results of power-law elements [101].  Later on, the 

test proposed to be used for the multicarrier signal identifications [100], [102].  To 

explain the moments test algorithm let us consider the baseband sampled signal model as: 

 

𝑦 𝑛 = 𝑥 𝑛 + 𝑛(𝑛)                                                                                                                    (49) 

 

where 𝑦 𝑛  is the received signal, 𝑥 𝑛  is the transmitted signal, and 𝑛 𝑛  is the white 

Gaussian noise. The mixed moments of the received signal will be: 
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𝑀𝑝+𝑞 ,𝑞 𝑦 = 𝐸 𝑦(𝑛)𝑝 × (𝑦(𝑛)∗)𝑞                                                                                          (50) 

 

where the denoted * refers to the conjugation. Therefore we can form: 

 

𝑀2,1 𝑦 = 𝐸 𝑦 𝑛 × 𝑦 𝑛 ∗  = 𝐸  𝑦(𝑛) 2                                                                           (51) 

 

𝑀4,2 𝑦 = 𝐸 𝑦 𝑛 2 ×  𝑦 𝑛 ∗ 2  = 𝐸  𝑦(𝑛) 4                                                                   (52) 

 

𝑀6,3 𝑦 = 𝐸 𝑦 𝑛 3 ×  𝑦 𝑛 ∗ 3 = 𝐸  𝑦(𝑛) 6                                                                    (53) 

 

Furthermore, we define two parameters: 

 

𝑘20 = 𝑀4,2 𝑦 /𝑀2
2,1 𝑦                                                                                                             (54) 

 

𝑘30 = 𝑀6,3 𝑦 /𝑀3
2,1 𝑦                                                                                                             (55) 

 

The ideal values for 𝑘20 and 𝑘30 are shown in Table 4.1. 
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Table 4.1 Ideal values for 𝑘20 and 𝑘30 
 

 

 

 

 

 

Since  𝑦 𝑛 = 𝑥 𝑛 + 𝑛(𝑛), then: 

 

𝑃 = 𝐸  𝑦 2 = 𝐸  𝑥 2 +   𝑤 2 = 𝑆 + 𝑁                                                                             (56) 

 

The moments will be: 

 

𝑀2,1 𝑦 = 𝐸 𝑦 𝑛 × 𝑦 𝑛 ∗  = 𝑆 + 𝑁                                                                                    (57) 

 

𝑀4,2 𝑦 = 𝐸 𝑦 𝑛 2 ×  𝑦 𝑛 ∗ 2  = 𝑘2𝑆2 + 4𝑁𝑆 + 2𝑁2                                                   (58) 

 

𝑀6,3 𝑦 = 𝐸 𝑦 𝑛 3 ×  𝑦 𝑛 ∗ 3 = 𝑘3𝑆3 + 9𝑘2𝑆2𝑁 + 18𝑁2 + 6𝑁3                             (59) 

 

 

 

𝑘20  𝑘30  

64 QAM 1.378 2.21 

32 QAM 1.306 1.88 

16 QAM 1.312 1.93 

MPSK 1 1 

MFSK 1 1 

OFDM 2 6 
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So the new parameters for 𝑦 𝑛  are: 

 

𝑣20 =
𝑀4,2 𝑦 

𝑀2
2,1 𝑦 

=
𝐸( 𝑦(𝑛) 4)

𝐸2( 𝑦(𝑛) 4)
   =

𝑚20(𝑆/𝑁)2 + 4𝑆/𝑁 + 2

(𝑆/𝑁)2 + 2𝑆/𝑁 + 1
                                         (60) 

 

and: 

 

𝑣30 =
𝑀6,3 𝑦 

𝑀3
2,1 𝑦 

=
𝐸  𝑦 𝑛  6 

𝐸3  𝑦 𝑛  2 
=

𝑚30(𝑆/𝑁)3 + 9𝑚20(𝑆/𝑁)2 + 18𝑆/𝑁 + 6

(𝑆/𝑁)3 + 3(𝑆/𝑁)2 + 3𝑆/𝑁 + 1
                  (61) 

 

where 𝑚20 𝑚30 are the parameters 𝑘20 and 𝑘20 scaled by 2, and 6 respectively [102] and 

can be chosen from the Table 4.2. 

 

 

Table 4.2 Ideal values for 𝑚20 and 𝑚30 
 

 

 

 

 

 

 

 

 

 

 

 

𝑚20  𝑚30  

64 QAM 1.378×2 2.21×6 

32 QAM 1.306×2 1.88×6 

16 QAM 1.312×2 1.93×6 

MPSK 1×2 1×6 

MFSK 1×2 1×6 

OFDM 2×2 6×6 
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Let us remember that  

 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(𝑆/𝑁)                                                                                                                (62) 

 

From equation (60) we can derive the SNR equation: 

 

𝑆𝑁𝑅 =
𝑣20 − 2 ±  4 + 𝑚20𝑣20 − 2𝑚20 − 2𝑣20

𝑣20 − 𝑚20
                                                                (63) 

 

Up to this point we need m20 or the modulation type in order to estimate the SNR.  The 

algorithm proposes to use the SNR estimation and modulation characterization in [104] 

jointly to detect the multicarrier signals as follows: 

a. Calculate the moments 𝑀2,1 𝑦  , 𝑀4,2 𝑦 , 𝑎𝑛𝑑 𝑀6,3 𝑦  of the sampled signal. 

b. Calculate 𝑣20, and 𝑣30. 

c. Assume that the modulations that can be detected are A=B+C, either single carrier 

modulations, B={𝑀𝐹𝑆𝐾𝑀=2,4,8, 𝑀𝑃𝑆𝐾𝑀=2,4,8, 𝑀𝑄𝐴𝑀𝑀=16,32,64}, or multicarrier 

modulation, C={OFDM}. 

d. Assume a particular modulation 𝜃 ∈ 𝐴 is received in the sampled signal, the 

corresponding 𝑚(𝜃)
20 and 𝑚(𝜃)

30 can be obtained from Table 4.2. 

e. Estimate the 𝑆𝑁𝑅(𝜃) through the estimation equation (63), using 𝑚20
𝜃 , and 𝑣20

𝜃   

values. 

f. Calculate the estimation value of 𝑣30 we call it 𝑣30
𝜃 , using the 𝑆𝑁𝑅(𝜃), 𝑚20

𝜃 , 𝑚30
𝜃  

values in (61)  equation. 
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g. Repeat steps 4-6 and calculate the 𝑣30
𝜃   for all possible modulations in {A}. 

h. Calculate the estimation error  𝑣30
𝜃 − 𝑣30  for each modulation in {A}. 

i. Finally, select the modulation used in the received signal based on the minimum 

mean squared error(MMSE) criterion:    

 

𝜃 = 𝑎𝑟𝑔𝜃
𝑚𝑖𝑛  𝐸   𝑣30

𝜃 − 𝑣30 
2
                                                                                  (64) 

 

The algorithm is tested for different SNR values, and through 10 sample-spaced 

uniformly distributed channel taps channel, to evaluate the performance.  Figure 4.5 

illustrates the outcome of the algorithm for different modulation schemes, when 

the 𝑚(𝜃)
20, and 𝑚(𝜃)

30 parameters are set to be OFDM signal [100].  We can clearly see 

that we have the minimum (MMSE) values when the signal is OFDM based, which 

indicates that the tested signal was OFDM. 

 

 

 
(a) 10 tabs channel, SNR=10                      (b) 10 tabs channel, SNR=15                            

 

 Fig 4.5 Moments test performance with different SNR values 
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(c) 10 tabs channel, SNR= 0 

 

Fig 4.5 (Continued) 

 

 

4.6 Modulation Order and Type of Single Carrier Signals 

The same algorithm that is described in 4.5.1 is used to identify the digital modulation 

order.  The same (MMSE) argument will hold when the algorithm is applied with 

different modulations parameters and the values that reflect the least MMSE value in 

(64)  will represent the modulation used in the received signal. 

 

Despite the simplicity of the moments test, it has been proven that it can be misleading 

when used to identify the digital modulation orders [105], especially when the received 

signal has FSK modulation.  Figure 4.6 illustrates the results of the moments test 

algorithm when the transmitted signal is FSK, showing that the test gives inconsistent 

results.  We explain how to overcome this problem by using our fuzzy logic-like decision 

making process in Chapter 5. 
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Fig 4.6 Moments test for FSK signals with different orders in 10 tabs channel, SNR=0 

 

4.7 OFDM Signals Parameters Estimation 

There are many proposed algorithms to blindly estimate the OFDM parameters in both 

time domain and frequency domain [107], [108], [109], [110].  In [108], autocorrelation 

is performed and the total symbol duration is estimated through the distance between the 

correlation peaks.  The cyclic prefix (CP) length is estimated through joint time 

frequency transform.  In [109] the useful symbol duration is calculated through 

autocorrelation based algorithm, while the total symbol duration is calculated by finding 

the distance between consecutive peaks in cross correlation based algorithm.  In [110], 

different approaches were taken, where the author estimates the sampling frequency 

using the cyclostationarity introduced by the signal oversampling, uses the result of the 

cyclostationarity to estimate the number of subcarriers, and finally estimates the CP 

length and the symbol duration through cyclostationarity based algorithm.  
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After a detailed search in the literature and testing the proposed methods on both 

simulated and real captured signals, we narrowed down our approaches to the following. 

The OFDM symbol duration will be calculated through an autocorrelation based 

algorithm.  The total symbol duration will be calculated through a slicing cross 

correlation algorithm with fixed window length.  CP duration will be calculated based on 

the total symbol duration and the useful symbol duration results.  The subcarrier spacing 

is calculated from the useful symbol results, which will eventually lead to the calculation 

of the number of subcarriers. 

 

4.7.1 OFDM Time Parameters Estimation 

Let us recall the OFDM signal model and symbol component that we explained in 

Chapter 3. 

 

OFDM system converts the serial data stream into parallel parts of size N  and modulates 

these parts into different subcarriers through the inverse discrete Fourier transform 

(IDFT).The time domain signal can be described as: 

 

 x n = IDFT X k  =  
1

N
 X k ej

2π kn

N
N−1
k=0             n = 0, … , N − 1                                   (65)                           

 

where X(k) is the symbol transmitted on the kth subcarrier and N is the number of 

subcarriers. The OFDM time signal is cyclically extended by copying the last part of the 

OFDM symbol, and replicating it at the front of the symbol during the transmission. 

Figure 4.7 illustrates OFDM symbol structure. 
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Fig 4.7 The structure of the OFDM symbols 

 

where Ts  is the total symbol duration, Tc  is the cyclic prefix duration, and  Tu is the useful 

symbol duration. 

 

Let us also assume that the baseband received signal over multipath channel is: 

 

r(t)=  hl(t)s t − τl + w(t)l−1
l=0                                                                                               (66) 

 

where s(t) is the OFDM signal, w(t) is the white Gaussian noise, hl(t) is the path 

complex gain representation, with the path delay Ʈ 1  and 1 is the sample-spaced channel 

taps.  As shown, OFDM symbol will have cyclic reception, which should cause 

correlation properties to exist between them in the OFDM symbol.  We use this fact to 

develop algorithms to estimate the time parameters of the OFDM symbol.  

 

4.7.1.1 Useful Symbol Duration  

After estimating the central frequency and the occupied bandwidth, the signal can be 

down converted and sampled.  And the autocorrelation function of the received signal 

r(t) can be defined as [109]: 
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E r n 𝑟∗ n + ∆  =  
σs

2+σw
2         ∆= 0                                                                                          

σs
2e−j2πε      ∆= Nu                                                                                (67)

0                 other                                                                                           

  

 

 

Nu   represents the useful symbol duration.  Then the useful symbol duration will be: 

 

Nu
 = 𝑎𝑟𝑔

∆
𝑚𝑎𝑥  

 𝑅𝑈𝑠𝑒(∆) 

𝑒𝑛𝑈𝑠𝑒 (∆)
        ∆= 1,2, … . , 𝑁                                                                            (68) 

 

Where N  is the number of samples acquired during the observation time, RUse(n)  is the 

correlation function of the received signal with different correlation lags, and enUse (n) is 

the power of data in each correlation window to normalize the correlation results.  So the 

peak site Nu
  is the length of useful symbol in samples.  This algorithm is robust against 

the frequency offset and phase offset [111], [112]. The performance of the algorithm is 

tested over different values of SNR and number taps multipath fading channel.  Figure 

4.8 illustrates the acquired peak through the algorithm in different SNR values with a 15 

sample-spaced uniformly distributed multipath channel taps.  The reason that the 

multipath does not overcome the useful symbol duration peak is that at the lag equal to 

the useful symbol duration, the CP of all symbols will correlate at the same time, which 

creates a relatively high correlation power compared to the multipath components peaks.
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             (a) 15 tabs channel, SNR=1                      (b) 15 tabs channel, SNR=5 

 
 

    
               

              (c) 15 tabs channel, SNR=10                        (d) 15 tabs channel, SNR=20 

 

Fig 4.8 Useful symbol duration estimation algorithm results over different SNR values 

for 10 OFDM symbols with useful symbol duration of 512 samples 

 

 

 

4.7.1.2 Total Symbol Duration  

The total symbol duration is estimated through the periodicity feature the OFDM symbol 

has due to the CP [112].  An algorithm has been designed to search for the CP periodicity 

by using a sliding correlation window with fixed window length equal to the possible CP 

lengths and fixed correlation length equal to the estimated useful symbol duration.  To 

reduce the computational complexity we use our knowledge about the possible CP sizes 
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in the wireless system standards, which are 1/4, 1/8, 1/16, and 1/32. Figure 4.9 illustrates 

the mechanism of our algorithm. 

 

 

Fig 4.9 The sliding window technique for estimating the total symbol duration 

 

When using this method, consecutive peaks will be obtained.  As we go closer to the 

actual CP length, we notice that the consecutive peaks become smoother.  However this 

is not sufficient to be detected using MATLAB.  It was observed that the distance 

between neighboring consecutive peaks equals the total symbol duration (symbol 

duration + CP duration);  therefore we measure the distances between the midpoints of 

each two consecutive peaks and use a histogram to detect the most repeated value.  This 

value will be equal to the total symbol duration, therefore: 

 

𝐿21 < 𝐿22 < 𝐿23 < ⋯                                                                                                                  (69) 

 

𝐻 𝑝 = 𝐻𝑖𝑠𝑡 𝐿2 𝑗+1 − 𝐿2𝑗     𝑗 = 1,2,3, …                                                                             (70) 

 

𝑁𝑠 = 𝑀𝑎𝑥 𝐻 𝑝                                                                                                                             (71) 

 



82 

where L21  L22  L23 … is the midpoint of each consecutive peak in the correct sequence in 

which they appear, H p  is the histogram function of the distance between each two 

neighboring peaks, and Ns  is the total symbol duration estimation.  Figure 4.10 illustrates 

the consecutive peaks due to the sliding window algorithm with different values of CP.  

 

 

 
 

Fig 4.10 The result of the sliding window correlation based algorithm when tested on the 

same OFDM symbols for different CP lengths 

 

 

 

4.7.1.3 Cyclic Prefix Duration 

After estimating the useful symbol duration and the total symbol duration, the cyclic 

prefix will simply be the result of subtracting them both:  

 

Nc = Ns − Nu                                                                                                                                 (72) 

 

The actual CP length 
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Up to this point all the time parameters are estimated and detected, and what is left are 

the frequency domain parameters.  Figure 4.11 shows the success rate of our algorithm 

for different SNR values.  

 

 

 

 

4.7.2 OFDM Frequency Domain Parameters 

It was shown in Chapter 3 that it is important for the OFDM symbol to sustain the 

subcarrier orthogonality.  In order to do that, this condition should apply: 

 

1

Tu
= Δf                                                                                                                                            (73) 

 

where Δf is the subcarrier spacing.  Thus, if N-point IDFT is used, the total bandwidth of 

the OFDM signal will be: 

 

Fig 4.11 The success rate of the time parameters estimation 
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W = NΔf                                                                                                                                         (74) 

 

where W  is the total bandwidth of the OFDM signal and N is the FFT size.  Assuming 

that the received OFDM signal sustains its orthogonality and since the useful symbol 

duration is known at this stage, we simply calculate the subcarrier spacing through 

equation (72).  

 

Furthermore, since the total bandwidth is known, the number of subcarrier can be 

calculated as well: 

 

N =
W

Δf
                                                                                                                                            (75) 

 

As it has been illustrated, no prior information is required in all the proposed estimation 

algorithm, and no synchronization is needed. 

 

4.8 Cyclostationarity Features 

Cyclostationarity feature detection is one of the most popular methods for blind signal 

detection and identification [46], [65]-[70], [126].  Many researchers look at the 

cyclostationarity as the answer to many blind identification and spectrum sensing 

problems.  In this section we try to explain the cyclostationarity and its features so that 

we may incorporate it into our signal identification algorithms.  Much of the next section 

is part of the unfinished work of Dr. Arthur Snider [115]. 
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4.8.1 Introduction to Cyclostationarity 

The cyclostationary theory was first introduced by Gardner [54] in his paper series about 

the exploitation of the cyclostationary features in random processes [54]-[63].  In [115] 

the cyclostationary process is described as a stationary random process (signal) that has 

been engineered and modified by a periodic operation, such as amplitude modulating 

(AM) the signal, frequency shifting the signal, sampling the signal, or filtering the signal. 

For the purpose of illustration, let us look at some examples of cyclostationary processes. 

 

Assuming 𝑄(𝑡) is the stationary random signal, then: 

 

𝐸 𝑄 𝑡  = 𝜇𝑄                                                                                                                                (76) 

 

and 

 

𝐸 𝑄 𝑡1 𝑄 𝑡2         = 𝑅𝑄( 𝑡1 − 𝑡2 )                                                                                                  (77) 

 

If we multiply 𝑄(𝑡) with a periodic function like: 

a. Frequency shifting, then:  𝑋 𝑡 = 𝑄 𝑡 𝑒𝑗𝜔𝑡  

b. AM, then:  𝑋 𝑡 = 𝑄 𝑡 cos(𝑤𝑡 + 𝜃) 

c. Sampling, then:   𝑋 𝑡 = 𝑄 𝑡  𝛿(𝑡 − 𝑛𝑇𝑠)∞
𝑛=−∞  

 

All these operations will result in a cyclostationary signal 𝑋 𝑡  and will introduce 

frequencies that were not in the original stationary process. The cyclostationary analysis 
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in [54] is a method to detect these artificial frequencies that was introduced to the 

stationary process for engineering purpose; the goal being to design a tool that will detect 

the hidden frequencies and ignore the original frequencies in the signal: 

 

𝐷𝜔𝑑𝑒𝑡
  𝑋 𝑡  =  

0       𝑖𝑓 𝜔𝑑𝑒𝑡  ≠ Hidden frequencies 
0       𝑖𝑓 𝜔𝑑𝑒𝑡  = Hidden frequencies 

                                                      (78)   

 

where 𝐷𝜔 [ ] is the proposed detector.  In [54],and later in [115], this detector was 

developed in a form of a mathematical tool, that is: 

 

𝐸  𝑙𝑖𝑚
𝑇→∞

1

𝑇
 𝑋(𝑡)𝑒−𝑗𝜔𝑑𝑒𝑡 𝑡𝑑𝑡

𝑇/2

−𝑇/2

   1                                                                                           (79) 

 

To examine the effect of this tool,  we apply it on the three examples of the cyclo-

stationary processes we mentioned earlier: 

a.  Frequency shifting a stationary signal: 

 

𝑋 𝑡 = 𝑄 𝑡 𝑒𝑗𝜔𝑡                                                                                                              (80) 

 

𝐸  lim
𝑇→∞

1

𝑇
 𝑋(𝑡)𝑒−𝑗𝜔𝑑𝑒𝑡 𝑡𝑑𝑡

𝑇/2

−𝑇/2

 = 𝐸  lim
𝑇→∞

1

𝑇
 𝑄 𝑡 𝑒𝑗𝜔𝑡  𝑒−𝑗𝜔𝑑𝑒𝑡 𝑡𝑑𝑡

𝑇/2

−𝑇/2

                     (81) 

                                                 

 

1
 The formula shown was developed by [115], which is slightly different than Gardner‘s mathematical 

representation for the cyclostationary detector [54].  
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𝐷𝜔𝑑𝑒𝑡
=  

𝜇𝑄              𝜔𝑑𝑒𝑡 = 𝜔

0            𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                  (82) 

 

The detector picks up the 𝜔 of the carrier frequency shifter. 

 

b.  AM:   

 

𝑋 𝑡 = 𝑄 𝑡 cos(𝜔𝑡 + 𝜃) =  𝑄 𝑡 
𝑒𝑗 (𝜔𝑡 +𝜃) + 𝑒−𝑗 (𝜔𝑡 +𝜃)

2
                                    (83) 

 

𝐸  lim
𝑇→∞

1

𝑇
 𝑋(𝑡)𝑒−𝑗𝜔𝑑𝑒𝑡 𝑡𝑑𝑡

𝑇/2

−𝑇/2

 = 𝐸  lim
𝑇→∞

1

𝑇
 𝑄 𝑡  

𝑒𝑗 (𝜔𝑡 +𝜃)

2
+

𝑒−𝑗 (𝜔𝑡+𝜃)

2
  𝑒−𝑗𝜔𝑑𝑒 𝑡 𝑡𝑑𝑡

𝑇/2

−𝑇/2

  

=

 
 
 

 
 

𝜇𝑄

2
         𝜔𝑑𝑒𝑡 = 𝜔

𝜇𝑄

2
         𝜔𝑑𝑒𝑡 = −𝜔

0            𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                               (84) 

 

The detector picks up the frequencies of the amplitude modulator. 

 

c. Sampling: 

 

𝑋 𝑡 = 𝑄 𝑡  𝛿 𝑡 − 𝑛𝑇𝑠 =

∞

𝑛=−∞

𝑄 𝑡  
1

𝑇𝑠
𝑒

𝑗2𝜋𝑛
𝑡
𝑇𝑠

∞

𝑛=−∞

                                         (85) 

𝐸  lim
𝑇→∞

1

𝑇
 𝑋(𝑡)𝑒−𝑗𝜔𝑑𝑒𝑡 𝑡𝑑𝑡

𝑇/2

−𝑇/2

 = 𝐸  lim
𝑇→∞

1

𝑇
   𝑄 𝑡  

1

𝑇𝑠
𝑒

𝑗2𝜋𝑛
𝑡
𝑇𝑠

∞

𝑛=−∞

 𝑒−𝑗𝜔𝑑𝑒𝑡 𝑡𝑑𝑡
𝑇/2

−𝑇/2
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𝐷𝜔𝑑𝑒𝑡
=  

𝜇𝑄 

𝑇𝑠
             𝜔𝑑𝑒𝑡 =

2𝜋𝑛

𝑇𝑠  

0                𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                            86  

 

So the detector will pick up the harmonics  of the sampling frequency. 

 

Figure 4.12 illustrates the different cyclostationary detector results for the cyclostationary 

processes examples. 

 

 

        (a) Frequency shift  stationary signal                      (b) AM signal 

 

(c) Sampled signal 

 

Fig 4.12 The cyclostationary detector results for three different cyclostationary signals 

 

 

 

One drawback the detector has occurs when the stationary process (signal) has zero 

means.   
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In this case: 

 

𝐸 𝑄 𝑡  = 0                                                                                                                                  (87) 

 

The detector will not work as planned.  To overcome this problem we pass the signal 

through the nonlinear operation like a quadratic to force the signal mean to be nonzero. 

For instance, passing a zero mean stationary signal through a square law operation will 

change its mean to nonzero. 

 

In [54] the author proposes to multiply the signal with a conjugated shifted version of 

itself as a nonlinear operation to avoid the zero mean signal case. So if: 

 

𝑋 𝑡 = 𝑄 𝑡                                                                                                                                    (88) 

 

then 

 

𝑦 𝑡 = 𝑄  𝑡 +
𝜏

2
 𝑄  𝑡 −

𝜏

2
 

            
                                                                                                      (89) 

 

and the detector will be: 

 

𝐸  lim
𝑇→∞

1

𝑇
 𝑄  𝑡 +

𝜏

2
 𝑄  𝑡 −

𝜏

2
 

            

             
 𝑅𝑄 𝜏  𝑖𝑓  𝜔𝑑𝑒𝑡 =0 

𝑒−𝑗𝜔𝑑𝑒𝑡 𝑡𝑑𝑡
𝑇/2

−𝑇/2

                                                                 (90) 

 



90 

where  𝜔𝑑𝑒𝑡 = 2𝜋𝛼 in Gardner‘s notation.  This final form of the detector is called the 

cyclic autocorrelation function (CAF).  For a signal with finite samples to represent it, the 

cyclic autocorrelation will be estimated by: 

 

𝑅𝑄
𝛼 𝜏 =    𝑄 𝑛 + 𝜏 𝑄 𝑛 − 𝜏             𝑒−𝑗2𝜋𝛼𝑛  

𝑛

                                                                             91  

 

In the process, a spectral correlation function (SCF) is defined to simplify the detector 

function in some cases. The SCF for a sampled signal will be: 

 

𝑆 𝑓, 𝛼 =  𝑅𝑄
𝛼

∞

𝜏=−∞

(𝜏)𝑒−𝑗2𝜋𝑓𝜏                                                                                                    92  

 

Using these tools we can examine the cyclostationarity features of signals.  It is shown 

that all modulated signals contain cyclostationary features [54], [61], [88], [90], [107].  

So it is only reasonable to examine the possible features in the received signal and to try 

to map the detected features to the possible standards. 

 

4.8.2 Cyclostationarity for Signal Detection 

As stated earlier, the cyclostationary approach is one of the most common methods for 

blind detection and spectrum sensing.  In our algorithm we use the cyclostationarity 

features to detect two main hidden periodicities in signals.  Those are the symbol rate of 

the single carrier based signals and the chip rate of the direct spread spectrum (DSSS) 

signals. 
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4.8.2.1 Symbol Rate Detection   

Assume that 𝑎 𝑡  is a zero mean stationary random process, then: 

 

𝐸 𝑎 𝑡  = 0                                                                                                                                    93  

 

and 

 

𝐸 𝑎 𝑡 𝑎 𝑡 − 𝜏  = 𝑅𝑎 (𝜏)                                                                                                              94  

 

a t  has defined autocorrelation and power spectrum density (PSD) where: 

 

𝑆𝑎 𝑓 = 𝐹(𝑅𝑎(𝜏))                                                                                                                         95  

 

Let 𝑥 𝑡  be the amplitude modulation of 𝑎 𝑡  at 𝑓0 carrier frequency: 

 

𝑥 𝑡 = 𝑎(𝑡) cos 2𝜋𝑓0𝑡                                                                                                               96  

 

then the power spectrum density of 𝑥 𝑡  is: 

 

𝑆𝑥(𝑓) =
1

4
𝑆𝑎 𝑓 + 𝑓0 +

1

4
𝑆𝑎 𝑓 − 𝑓0                                                                                       97  

 

Figure 4.13 illustrates the PSD of both signals. 
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Fig 4.13 PSD of 𝑎 𝑡  and 𝑥 𝑡  

 

The carrier frequency f0 in the AM signal is hidden periodicity due to the modulation 

operation.  If we pass the signal though a quadratic operation like square law operation, 

as suggested by [54], the result will be: 

 

𝑦 𝑡 =  𝑥(𝑡)2 = 𝑎(𝑡)2 cos(2𝜋𝑓0𝑡)2                                                                                          98  

 

𝑦 𝑡 =  
1

2
 𝑏 𝑡 + 𝑏(𝑡) cos(2𝜋(2𝑓0)𝑡)                                                                                    99  

 

where: 

 

𝑏 𝑡 = 𝑎(𝑡)2 = K + c(t)                                                                                                           100  

 

𝐾 = 𝐸 𝑎 𝑡 2 > 0                                                                                                                      101  
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Since 𝑏 𝑡  has nonzero mean, this will result in spectral line in the PSD at the zero 

frequency and two spectral lines components in the PSD of 𝑦 𝑡  as shown in Figure 4.14. 

 

𝑆𝑦 (𝑓) =
1

4
 𝐾𝛿 𝑓 + 𝑆𝑐 𝑓 +  𝐾𝛿 𝑓 + 2𝑓0 + 𝐾𝛿 𝑓 − 2𝑓0 +

1

4
𝑆𝑐 𝑓 + 2𝑓0 

+
1

4
𝑆𝑐 𝑓 − 2𝑓0                                                                                               102  

 

 

Fig 4.14 PSD of 𝑏 𝑡  and 𝑦 𝑡  

 

Therefore, the quadratic operation reveals the hidden periodicity of the AM signal. In 

digital communication systems 𝑎(𝑡) is sampled and the pulses (if pulse-shaped) are 

transmitted through a pulse-shaped filter to prepare the signal and make it more suitable 

to be transmitted through the channel, as illustrated in Figure 4.15. 
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Fig 4.15 The pulse-shaping process 

 

To examine the effect of the pulse-shaping let us assume that: 

 

𝑥 𝑡 =  𝑎 𝑛𝑇𝑠 𝑝 𝑡 − 𝑛𝑇𝑠                                                                                                    103 

𝑛

 

 

where 𝑎 𝑛𝑇𝑠  is zero mean data, 𝑝 𝑡  is the pulse shaping filter and  𝑇𝑠 is the symbol rate. 

Then the PSD of 𝑥 𝑡  will be: 

 

𝑆𝑥(𝑓) =
1

𝑇𝑠

 𝑃(𝑓) 2  𝑆𝑎  𝑓 −
𝑚

𝑇𝑠
                                                                                        104 

𝑚

 

 

Figure 4.16 Illustrates the PSD mentioned above. 

 

 

Fig 4.16 PSD of the pulse-shaped signal 𝑥(𝑡) 
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Again, there are no spectral lines in the PSD, but the symbol period will cause a built-in 

periodicity in the signal that we can look for. 

 

If we pass the signal through quadratic transformation of the square law, we have: 

 

𝑦 𝑡 =  𝑥 𝑡 2 =  𝑏 𝑛𝑇𝑠 𝑞 𝑡 − 𝑛𝑇𝑠                                                                                  105 

𝑛

 

 

where 

 

𝑏 𝑛𝑇𝑠 = 𝑎(𝑛𝑇𝑠)2 = K + c(𝑇𝑠)                                                                                               106  

 

𝑞 𝑡 = 𝑝(𝑡)2                                                                                                                                107  

 

𝐾 = 𝐸 𝑎(𝑛𝑇𝑠)2 > 0                                                                                                                  108  

 

Now the squared signal 𝑦 𝑡   has a positive mean, so its PSD will have spectral line 

components at each 
𝑚

𝑇𝑠
 .  As illustrated in Figure 4.17, the PSD representation will be: 

 

𝑆𝑦 (𝑓) =
1

𝑇𝑠

 𝑄(𝑓) 2   𝐾𝛿  𝑓 −
𝑚

𝑇𝑠
 + 𝑆𝑐  𝑓 −

𝑚

𝑇𝑠
  

𝑚

                                                       109  
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Fig 4.17 PSD of 𝑦 𝑡  

 

As we show that spectral lines will appear at each period of the symbol rate, we use this 

feature and apply it on our received signal to detect the symbols rates as follows.  We use 

the effect of nonlinear operations on the pulse-shaped signal to detect the symbol rate, 

pass the received signal through a square law operation, and calculate the power spectrum 

representation: 

 

𝑦 𝑡 =  𝑥 𝑡 2                                                                                                                               110  

 

𝑆𝑦 (𝑓) = 𝐹𝐹𝑇(𝑥 𝑡 2)                                                                                                                 111  

 

If we apply this operation on received signals to test the cyclostationary features, we are 

able to detect a peak that corresponds to the symbol rate of the digitally modulated 

signals, as shown in Figure 4.18a.  Furthermore, [114] and [116] recommend to detect the 

symbol rate feature using the Welch periodogram [117].  A cyclostationarity detector is 

developed using Welch periodogram to detect the symbol rate of the digital modulation 

type signals.  The result of the algorithm is shown in Figure 4.18b.  
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(a) Nonlinearity  based algorithm to detect the symbol rate 

 

 

(b) Welch based algorithm to detect the symbol rate 

Fig 4.18 Symbol rate estimation without and with using Welch periodogram 

 

We notice that there is a dominant peak when the detector frequency is equal to the 

symbol rate.  Furthermore, there is another peak at frequency zero.  To isolate the zero 

frequency peak, we designed the algorithm to search between 0.25𝐵𝑊 − 𝐵𝑊 to make 

sure that we will pick up only the peak corresponding to 
1

𝑇𝑠
.  We picked up this range 

based on the following analysis. 
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In pulse-shaped signal cases, the filter bandwidth and roll-off factor impact the occupied 

bandwidth of the signal as follows: 

 

𝐵𝑊 ∝
1

2
𝑅𝑠(1 + 𝛼)                                                                                                                     112  

 

where 𝛼 is the roll-off factor of the pulse shaping filter, 𝑅𝑠 is the symbol rate, and 𝐵𝑊 is 

the signal bandwidth.  Knowing that 𝛼 < 1, it is obvious that the bandwidth of the signal 

is larger than the symbol rate.  Figure 4.19 illustrates the symbol estimation performance 

with respect to the SNR in 5 Tabs AWGN channel. 

 

 

Fig 4.19 Symbol rate estimation algorithm performances with respect to SNR 
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4.8.2.2 Chip Rate Estimation 

Applying the same algorithm described in the previous section on the DSSS signals will 

result in revealing the chip rate features. 

 

As we explained in Chapter 3, each bit of duration 𝑇 is spread into a sequence of 𝑁 chips. 

Therefore: 

 

𝑇𝑐 =
𝑇

𝑁
                                                                                                                                           113  

 

where 𝑇𝑐  is the chip duration and 𝑁 is the spreading sequence length.  The algorithm 

reveals the chip rate as well as the symbol rate of the original data before spreading.  As 

illustrated in Figure 4.20, the used signal is WLAN signal IEEE 802.11b.  The chip rate 

of this signal is 11Mcps, and the symbol rate is 1Mbps.  We observe discrete spectrum 

lines with symbol rate intervals, as well as a peak at 11MHz that corresponds to the chip 

rate of the system.  Figure 4.21 illustrates a typical WLAN 802.11b transmitter. 
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   (a) Full spectrum of the algorithm output                      (b) Zoomed spectrum 

 

Fig 4.20 WLAN IEEE 802.11b DSSS signal when tested using the nonlinear algorithm 

 

 

 

 

Fig 4.21 Typical WLAN DSSS transmitter 

 

 

 

These discrete spectral lines can help with the detection of DSSS signals by searching for 

their existence.  Also, we estimate the symbol period and the chip width by calculating 

the space of the discrete spectrum lines at the same time.  A similar approach is used in 

[118] and those results matched our algorithm results. 
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4.9 Hopping Sequence 

In frequency hopping spread spectrum (FHSS), a hopping sequence is deployed to spread 

the signal over a wide range of frequencies to avoid interference.  The data stream is 

divided and transmitted over different central frequencies after modulating each part with 

Gaussian frequency shift keying (GFSK).  The knowledge of the used hopping sequence 

is crucial to demodulate the received signal at the receiver.  In this research we propose a 

method to detect the hopping sequence as a unique feature of each FHSS standard. 

 

4.9.1 Joint Time Frequency Analysis 

The main benefits of the joint time frequency (JTF) are to give us the temporal spectrum 

components of the signal.  Using JTF analysis will help us reveal the behavior of the 

signal in both time and frequency at the same time.  This information is particularly 

important in case of frequency hopping signals, where both time information and 

frequency information will be needed to analyze the hopping sequence.  There are a 

handful of studies and approaches about the JTF analysis in the literature [119],  [120]. 

Some use the short time Fourier transform (STFT), others use wavelets transform 

approach, while Gabor expansion is deployed by other researchers.  In this research we 

adapted the STFT approach to conduct our JTF analysis.  In STFT we simply divide the 

signal to short periods of time through a sliding windowing technique, and the Fourier 

transom of each windowed part of the signal is calculated, resulting in a two dimensional 

characterization of the signal. The STFT representation of a given signal is: 

 

𝑆𝑇𝐹𝑇 𝜏, 𝑤 =   𝑥 𝑡 𝑤 𝑡 − 𝜏 𝑒−𝑗𝑤𝜏 𝑑𝑡
∞

−∞

                                                                            114  
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where 𝑥 𝑡  is the signal to be analyzed, and 𝑤 𝑡  is the window function.  As it is shown 

in the equation, the result is a complex function that describes the phase and magnitude of 

the signal in both time and frequency domain.  One thing that should be emphasized is 

that the tradeoff between time domain and frequency domain resolution is associated with 

the window selection [113].  Decreasing the window size will result in a better resolution 

in the time domain information because the length of the signal will be shorter, but the 

frequency domain resolution wills decrease.  In general practices, the window is chosen 

to be either Gaussian or Hanning windows. 

 

4.9.2 Spectrogram 

The spectrogram is one of the common applications of the STFT.  The horizontal axis 

represents time domain, while the vertical axis represents the frequency domain.  A third 

dimension is expressed in the spectrogram using color coding to describe the magnitude 

of the signal at a certain frequency and time point.  The spectrogram is calculated through 

the STFT, and the representation of the spectrogram is: 

 

𝑆𝑝𝑒𝑐𝑡𝑜𝑔𝑟𝑎𝑚 𝑡, 𝑤 =  𝑆𝑇𝐹𝑇(𝑡, 𝑤) 2                                                                                     115  

  

In the digital world we get the spectrogram for a sampled signal through breaking the 

signal samples into overlapped chunks.  Then each chunk is passed through a Fourier 

transform operation to get the signal frequency representation and the spectrum 

magnitude.  A measurement of magnitude versus frequency for each time instant is 
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performed, and the time plot is put side to side to construct the three dimensional image. 

Figure 4.22 illustrates the designed spectrogram. 

 

A spectrogram algorithm is performed on the received FHSS signal to reveal the time and 

frequency information.  The three dimensional matrix is then analyzed to find the central 

frequency of each hop with the time of occurrence.  This way the hopping sequence will 

be detected.    

 

 

Fig 4.22 Spectrogram representation of a Bluetooth signal 

 

There are many features that may be obvious or hidden in wireless communication 

signals.  Identifying these features will be the success factor for any blind detection 

algorithm.  In this chapter we defined the possible physical layer features that can 

participate in the process of identifying an unknown signal.  Bandwidth and central 

frequency is estimated through a novel approach algorithm.  Power related measurements 

of the signal are calculated.  Moments test based algorithm is designed to detect 
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multicarrier signals.  A comprehensive OFDM parameter estimation has been proposed to 

estimate both time and frequency parameters.  An introduction to the cyclostationarity is 

given, and an illustration of the cyclostationarity features detector was described.  

Symbol rate estimation is done through the nonlinearity Welch periodogram approach, as 

well as the DSSS chiprate and symbol rate estimation.  An introduction to the joint time 

frequency analysis is given, along with a comprehensive JTF based algorithm that is 

proposed to detect the FHSS and the used hopping sequence.      

 

4.10 Conclusion 

There are many features that may be obvious or hidden in wireless communication 

signals.  Identifying these features will be the success factor for any blind detection 

algorithm.  In this chapter we defined the possible physical layer features that can 

participate in the process of identifying an unknown signal.  Bandwidth and central 

frequency is estimated through a novel approach algorithm.  Power related measurements 

of the signal are calculated.  Moments test based algorithm is designed to detect 

multicarrier signals.  A comprehensive OFDM parameter estimation is proposed to 

estimate both time and frequency parameters.  An introduction to the cyclostationarity is 

given, and illustration to the cyclostationarity features detector was described.  Symbol 

rate estimation is done through the nonlinearity Welch periodogram approach, as well as 

the DSSS chiprate and symbol rate estimation.  An introduction to the joint time 

frequency analysis is given, along with a comprehensive JTF based algorithm that is 

proposed to detect the FHSS and the used hopping sequence.  
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Chapter 5 

Decision Making Algorithm 

 

In this chapter we describe the decision making process that follows the features 

extraction stage.  We propose novel ISM band blind signal identification algorithms 

which utilize all of the possible detected features before making a final judgment.  

 

5.1 Introduction 

Many algorithms were proposed for blind signal identification, but many of these studies 

target a specific type of signal or one wireless standard.  For instance in [50], the 

proposed algorithm focuses only on the energy detection, bandwidth, and central 

frequency to make the judgment.  In [83]  a threshold for the short time Fourier transform 

is set to identify the DSSS signals.  In [85] bandwidth and energy level of the signal is 

used to identify the signal type.  In [46], [65]-[70] [86]-[90], cyclostationarity is used to 

classify the signals.  In [84]  4th order cumulants test is used to identify multicarrier 

systems, as well as many other algorithms that can be found where only a certain number 

of features are incorporated for the purpose of identification.  This way may be sufficient 

enough to use for the band of interest where only certain licensed operators may be 

present.  In the ISM band, on the other hand, there are many standards that operate at the 

same time, with no license needed.  This makes signal detection and identification more 

complicated, and the uncertainties are larger.  Therefore, to build up reliable blind signal 

identification in the ISM band, we need to make sure that as many eventualities as 
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possible are covered.  This is mainly because in the ISM band many known and unknown 

prospective wireless standards can appear due to the license-free quality of the ISM band. 

In this research we are trying to integrate all the possible features detection methods, and 

collect as much knowledge as possible about the signal.  Only then will we use the data 

we have collected about the received signal to make the judgment. 

 

The main works in this chapter are to: 

a. Propose a framework for the central processing unit in the spectrum awareness 

engine. 

b. Integrate the entire feature extraction algorithms in one controlled unit. 

c. Utilize the detected features in a novel fuzzy logic-like decision making 

mechanism. 

d. Analyze the FCC regulation for the ISM and integrate the features rule into the 

proposed algorithm. 

 

5.2 The Proposed Framework 

The final piece in our spectrum awareness engine will be the control and logic unit that 

will regulate the rest of the component‘s work and utilize the incoming and outgoing 

information.  Let us examine the proposed spectrum awareness engine flow chart that is 

illustrated in Figure 5.1.  The band of interest will be chosen by the transmission upon 

request.  The RF front end will sample the band of interest and pass the sampled data to 

the energy detection unit.  The energy detector will identify the occupancy of the channel. 

If the channel is occupied, the sampled signal will be passed to the feature detector to 
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extract the features and information.  After searching for all the possible features, a 

comprehensive control and decision unit will utilize all the information and make the 

proper decision about the signal‘s nature, will either initiate the proper transmitter 

configuration to overcome the interference or mark the band of interest as occupied, and 

request a change of band. 

 

 

Fig 5.1 The spectrum awareness engine flow chart 
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The performance of the controlling and decision algorithm will define the overall 

effectiveness of our cognitive radio performance.  This is what makes it a very important 

part of our spectrum awareness engine.  The following sections describe the decision 

making flow based on the detected features. 

 

5.3 The Decision Making 

By now we can safely say that wireless standards have overlapping features and 

techniques.  This means that although each wireless standard is unique, there exist 

common physical layer features which can be found between different wireless standards. 

Therefore, making a decision about a detected signal is not as straightforward as it may 

appear, especially if we keep in mind that the ISM band can be the band of operation for 

many wireless standards.  From this point of understanding, we propose a novel approach 

to utilize the detected features while making the final judgment.  

 

In Chapter 3 we thoroughly investigated each possible technology that may appear in the 

ISM band, and we analyzed their main features and characteristics.  Using what we 

learned, an identification table was proposed.  We cross linked each standard with the 

features that may identify it.  Table 5.1 described the mapping of the defined features 

with each wireless standard. 
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Table 5.1 The identifying features for each wireless standard 

 

 

As demonstrated in Table 5.1, some features can be present in more than one wireless 

standard.  This means that there is no precise answer; rather, approximations are more 

appropriate and hence, fuzzy logic reasoning is well-suited to the situation.   For this 

reason, we adapt a fuzzy logic-like approach and soft decision making.  
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5.3.1 FCC Regulations for the ISM Band 

Before we continue describing the proposed decision making algorithm, we need to 

describe one last piece of the puzzle, the FCC regulations for the ISM band.  We 

mentioned before that the ISM is a license-free band, and any wireless device can be 

active in it.  Although the band is license-free, it is not regulation free.  The FCC 

regulates the usage of the ISM band, and these regulations should be followed by any 

wireless device operating in it.  For our spectrum awareness engine, this is one of the best 

reference features.  Because they are mandatory regulations, no one can bypass them. 

Thus, it is important to study the FCC regulations in the ISM band and to try to 

understand them and use these regulations for the benefit of our blind identifications. 

 

In Part 15 Section 15.247 of Title 47 of the Code of Federal Regulations (CFR) [1], 

[121], the FCC put up rules for the frequency hopping systems that operate in the ISM 

band, more precisely the 2.4G ISM band. We summarize the points that deal with the 

2.4GHz band that we also deem to be useful to our algorithms as 
2
: 

a. Frequency hopping systems should have hopping channels frequencies with a 

minimum separation of 25KHz or the 20dB bandwidth of the hopping channel, 

whichever is greater. 

b. The system shall hop to channel frequencies that are selected at the system 

hopping rate from a pseudorandomly ordered list of hopping frequencies. 

c. Each frequency must be used equally on the average by each transmitter. 

                                                 

2
 These regulations are located in Part 15 of the FCC rules (47 CFR 15.247). 
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d. Frequency hopping systems shall use at least 15 hopping frequencies. 

e. The maximum 20dB bandwidth of the hopping channel is 1MHz.  

f. The average time of occupancy on any frequency shall not be greater than 0.4 

seconds within a 30 second period. 

 

We believe that the most important rules are the fifth and sixth, as they state that any 

hopping sequence should have a bandwidth of no more than 1MHz.  This allows us to 

decrease the computational complexity in our algorithm because it means that we do not 

need to check if the signal is frequency hopping if its bandwidth is more than 1MHz. 

Also, it indicates that to check a frequency hopping sequence, we need to observe the 

signal for at least 0.4 seconds. 

 

5.3.2 Control and Execution 

The process begins by first estimating the bandwidth and the central frequency of the 

signal.  If the bandwidth is less than 2MHz, we can safely assume that the signal might be 

a FHSS.  In this case the signal will be passed to the joint time frequency analysis unit to 

check if the signal is FHSS and to extract the hopping sequence.  If the signal bandwidth 

is larger than 2MHz, we can safely assume that the signal is not FHSS;  therefore, we can 

overcome the joint time frequency analysis. 

 

Power related measurements are conducted, as well as the duty cycle information by 

passing the signal through a burst detector.  The signal will be tested for single carrier or 

multicarrier schemes.  If the carrier test indicates that the signal is multicarrier, the 
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OFDM parameter estimation will be applied to extract the time and frequency parameters 

of the signal.  Otherwise, the moments test and the nonlinearity based algorithm is 

executed to determine the modulation scheme.  The outcome will be the modulation type 

and order identification or the confirmation that DSSS exists in the signal.  In case of a 

DSSS signal, we extract the chip rate of the signal through the nonlinearity and 

cyclostationarity test.   The symbol rate is estimated through the nonlinearity test for all 

the single carrier signals and is reported to the decision unit as well.  At the end of this 

flow, we have the features parameters that we described in Chapter 4, and these are fed 

into our decision unit.  Figure 5.2 illustrates the feature detector and the decision making 

unit work flow. 

 

 

Fig 5.2 Feature detection and decision making flow chart 
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5.3.3 Fuzzy Logic and Soft Decision Algorithm 

The concept of fuzzy logic was introduced by Lofti Zadeh, a professor at the University 

of California-Berkeley [92].  The author presented the concept not as a control method 

but as a technique of utilizing data by allowing partial set membership rather than crisp 

set membership or non-membership.  Zadeh reasoned that people do not require precise 

numerical information input, and yet they are capable of highly adaptive control. We 

adapt the same approach in the proposed algorithm. Instead of taking the path of hard 

decision and precise answer in the cognitive radio, we believe that it is more reasonable 

to report a soft decision and probabilities about the present signal.  Therefore, we propose 

the following method to make the decision. 

 

A weight is given to each detected feature, and then according to the developed Table 

5.1, the weight of the detected feature is transferred to the prospective wireless standards 

that match the feature within its standard characterization (we discussed this 

characterization in Chapter 3).  By the end of mapping all the detected features to the 

possible wireless technologies, the algorithm will calculate the total weight of each 

wireless technology, and a probability of the presence of each wireless standard will be 

reported as a soft decision of the current detected signal.  This way we will take into 

consideration all the features present instead of dropping some features when making the 

decision.  The biggest benefit of this is seen in the case of unknown signals or new 

standards, where all the detected signal characteristics will be taken into account when 

setting up the transceiver configurations.  For more illustrations, let us take the following 

examples.  In Example 1, a WLAN standard IEEE 802.11g signal is passed to the 
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features extraction and decision units.  After extracting the features, we have the 

following outputs: 

a. Bandwidth= 20MHz 

b. Fc = 2.417GHz 

c. No FHSS analysis is required, since the bandwidth is >2 

d. Carrier test indicates multicarrier based signal 

e. OFDM time parameters estimation results:  Ts~4 µs Tc~0.8 µs  Tu~3.2 µs 

f. OFDM frequency parameters estimation results:  Δf~ 312.5 KHz N~64 

g. CCDF curves indicate high PAPR 

The algorithm response is illustrated in Figure 5.3 

 

 

Fig 5.3 The algorithm response for a WLAN 802.11g input signal 

 

The decision tree that will be created in the FL decision unit is illustrated in Table 5.2. 
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Table 5.2 The FL decision tree of Example 1 

 

 

The final decision indicates that the biggest possibility is that the detected signal is 

wireless LAN IEEE 802.11g. 

 

Another example is as follows.  Example 2 represents a Bluetooth signal that is passed to 

the features extraction and the decision units.  After extracting the features we have the 

following outputs: 

a. Bandwidth ~ 1MHz 

b. Fc = 2.406GHz 

c. FHSS analysis is required, since the bandwidth is < 2 
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d. FHSS test positive 

e. Hopping sequence 

 

The algorithm response is illustrated in Figure 5.4. 

 

 

Fig 5.4 The algorithm response for a Bluetooth input signal 

 

The decision tree that will be created in the FL decision unit is illustrated in Table 5.3. 
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Table 5.3 The FL decision tree of Example 2 

 

 

The results indicate highest probability for the Bluetooth standard.  Moreover, the 

Bluetooth version 2 has slightly higher probability due to its match with the detected 

hopping sequence. 

 

As we see, the more we know about the features and statistics of the prospective 

standards that we may encounter, the better our algorithm performance will be.  

Recall that the FSK problem we encountered in Chapter 4 is an example of the effect of 

the prior knowledge of standard specifications.  The algorithm in the test for carrier 

system shows some inconsistence when tested for the FSK modulation.  At some points, 
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the algorithm gave a result of OFDM signal while the signal was FSK.  If we were 

making our judgment only based on the result of the carrier system test, we may reach the 

wrong conclusion and think that the signal is OFDM.  But using all the features to make 

the judgment, we see that even though the algorithm gives a positive answer for the 

OFDM, the bandwidth does not support this decision since it indicates an FHSS signal 

with a hopping sequence.  So the final result will have larger probability to back it up that 

the signal is FHSS. 

 

The algorithm performance for different wireless standard is calculated. Table 5.4 

illustrates the success rate of the algorithm blind detection in different SNR 

environments. 

 

 

Table 5.4 The algorithm performance results of success rate detection 
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5.4 Location and Time of Occurrence 

Some additional features we can use for information are the location and time of 

occurrence.  It was shown in [39], [40], [82], [122], and [123] that the location 

information can serve in cognitive cycle improvement.  Furthermore in [40], [123]-[125], 

it was explained how Bayesian theory can be used to incorporate the past experience in 

the future decision making.  Since the cognitive radio will monitor the spectrum 

continuously, the history of the decision making and the spectrum usage information over 

time is valuable to the learning ability of the cognitive radio.  We did not implement an 

algorithm for this particular purpose, but we will describe the general outlines for such 

algorithm for the sake of consistency in the aim of this research.  

 

The Bayesian theory states that a relationship can be established between an event and 

the prior knowledge about it.  This means that it relates the conditional probability of an 

event given a certain observation.  This theorem is considered as a model of learning, 

which makes it a perfect fit in the cognitive radio application.  The Bayesian theorem is 

expressed as: 

 

𝑃 𝐻 𝐸  =
𝑃 𝐸 𝐻  𝑃(𝐻)

𝑃(𝐸)
                                                                                                           116  

 

where  𝐻  represents a specific hypothesis, 𝑃(𝐻) is the prior probability of H that was 

inferred before new evidence, E, 𝑃 𝐸 𝐻    is the conditional probability of seeing the 

evidence 𝐸 if the hypothesis 𝐻 happens is true, 𝑃(𝐸) is the marginal probability of 𝐸 (the 

a priori probability of witnessing the new evidence 𝐸 under all possible hypotheses), and 
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𝑃 𝐻 𝐸    is the posterior probability of 𝐻 given 𝐸.  It is shown in the described formula 

how the prior information (the history) is incorporated to decide the current probability.  

 

5.5 Conclusion 

In this chapter a novel framework for the central processing unit was developed.  We 

demonstrated full utilization of all the extracted features before making the decision.  We 

briefly explained fuzzy logic and integrated it into our algorithm.  We explained how the 

FCC rules are a common ground for the entire possible wireless standard in the ISM band 

and that every device in the band should follow these rules.  These rules were explained 

and analyzed.  We pointed out that some of the rules can be used as features to indicate 

standards, so we integrated those rules into the proposed algorithm to minimize the 

computational complexity.  Some examples were given to demonstrate how the algorithm 

behaves in different situations.  And finally, we briefly explained the importance of the 

time of occurrence and the history of occurrence in the learning process of the cognitive 

radio. 
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Chapter 6 

Summary and Conclusions 

 

6.1 Summary of Works and Contributions 

This research deals with the cognitive radio implementations issues in the 2.4GHz ISM 

band and the possibility of coexistence between cognitive radios and the pre-existing 

wireless standards that are active in the band.  In this thesis, we proposed a new and 

realistic design to the spectrum awareness engine to be integrated with the model 

proposed in [43].  Furthermore, we designed the spectrum awareness engine to be 

compatible with the ISM band. 

 

The contributions and implementations of this thesis can be summarized as follows: 

a. Cognitive radio concepts and proposed models 

We defined and analyzed cognitive radio and its functionalities.  We demonstrate 

the importance of the spectrum awareness and the continued sensing abilities in 

the cognitive radio performance.  We identified the proposed models for cognitive 

radios and explained the common cognition cycle.  We proposed a novel design 

for the spectrum awareness engine which is both realistic and can be implemented 

with the current circuitry capabilities, with the help of the software defined radio. 

We described the weaknesses and problems associated with the two common 

choices for spectrum sensing: the energy detector and matched filter detector. 
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Finally we proposed to use the energy detector only as a pre-stage in order to 

avoid its weaknesses. 

b. The industrial scientific and medical band 

We studied the ISM band characteristics and regulations extensively.  We 

analyzed the wireless standards that may operate in the ISM band.  We identified 

the main features of the wireless standards, especially the physical layer features 

that can be used in the process of blind identifications. 

c. Spectrum awareness engine 

We showed that there are many features which can be used to indicate wireless 

standards that are not utilized.  We proposed a list of features to be used in our 

blind identification design.  Since each feature requires a special way of 

processing to extract it, we proposed appropriate algorithms to detect the features. 

We attempted to increase the performance and accuracy of each algorithm, taking 

into consideration the computational complexity in the process of the design.  We 

proposed an ISM band feature detector design and integrated the implemented 

algorithms for each individual feature into one feature detector. 

d. Decision making and process controlling 

We demonstrated how some features can exist in more than one standard and how 

this may cause confusion in the process of decision making.  We developed a 

work flow for the central controlling unit, to help organize the work of all the 

units together to give the highest performance.  We proposed a proper decision 

making method to utilize all the possible detected features and observations in 

order to avoid conflict, which may be due to the detection of common features or 
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the outside impairments that the signal can suffer from and that may distort some 

features. 

 

6.2 Conclusions 

The ISM band is one of the most popular destinations for wireless standards for many 

reasons, one of which is the fact that it is a license-free band and opens to any wireless 

device.  Although it is a free-to-use kind of band, there are regulations and rules to be 

followed, and in the US those rules are designed by the FCC to ensure fairness and 

innovation by the wireless devices.  Peaceful coexistence between the wireless standards 

is important in the ISM band, and recently, an increasing concern has been given to this 

issue due to the fact that the numbers of users in the ISM band are increasing rapidly, 

which leads to many interference issues.  A certainty is that characterizing the signals 

will help overcome their interference effects, with the cognitive radio as the ultimate 

solution.  

 

The cognitive radio is one very promising technology.  Day by day with the increasing 

developments in microprocessors and the software designed radio, the cognitive radio is 

getting more attention and raises hopes.  Many models and work flows have been 

proposed for the cognitive radio, and more attempts should be done toward converting 

these models to realistic circuitry based models.  The most important capability of the 

cognitive radio is the spectrum awareness performance since the spectrum is the most 

valuable wireless resource. 
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Wireless standards have many features, some common and some different.  In this thesis, 

a novel design has been proposed to utilize all these features to blindly identify the 

signals in order to evaluate how to overcome their effects.  The decision making method 

will have a big impact on the spectrum awareness performance of the cognitive radio, 

especially in a band like the ISM where every device can operate.  Fuzzy logic and a soft 

decision approach should be considered in the cognitive radio functionalities since 

flexibility should be one of the cognitive radio‘s main characteristics. 

 

 

6.3 Future Work 

The ISM band has become very popular and the sanctuary of many wireless standards. 

We expect that this rapid growth will continue, which mean only one thing-- more 

congestion and more interference.  That is why we believe that more research about the 

ISM band cognitive radio should take place.  

 

In this research we study the identifications of the wireless signals assuming that there is 

no interference, and only the signal of interest is present.  For this reason, the next step in 

this research will be to study the effect of interferences on the identification process and 

develop methods to isolate the interfering signals during the identification process. Since 

there are some indications that the ISM band will have fewer regulations, another future 

work can be the study of the features extraction in a total regulation free ISM band. 

Another possible open research area is to study the effect of channel impairments that the 

signal may suffer from and the effect of these impairments on the detection performance 
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and features clearance.  Furthermore, methods can be developed to overcome the channel 

effect during the detection and identification process. 
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