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BASEBAND RECEIVER ALGORITHMS FOR 4G CO-CHANNEL
FEMTOCELLS

Mustafa Emin Şahin

ABSTRACT

The growing interest for high data rate wireless communications over the last few decades

gave rise to the emergence of a number of wideband wireless systems. The resulting scarcity

of frequency spectrum has been forcing wireless system designers to develop methods that

will push the spectral efficiency to its limit. One such method is to have multiple systems

utilize the same spectrum by allowing some unavoidable interference to occur between them.

The idea of co-channel systems is tested in the industrial, scientific and medical (ISM) bands

and it is found to be a very beneficial approach. Therefore, it can be foreseen that co-channel

systems might be a potential solution to the growing spectral crowding problem.

Besides the systems that are designed to be co-channel, it is sometimes also possible

to encounter that multiple systems occupy the same band undesirably. This kind of un-

intentional co-channel system scenarios might occur especially due to the dense re-use of

available frequency bands. Another reason for unwanted co-channel usage might be the

coexistence of third generation (3G) and fourth generation (4G) systems. Since 4G systems

will probably be targeting to use the same frequency bands as their 3G counterparts, and

since the transition from 3G to 4G will take some time, unintentional co-channel scenarios

might be observed between the 3G and 4G systems.

xiii



This dissertation consists of baseband receiver algorithms for OFDMA-based systems

that target at handling the potential co-channel interference (CCI) in various co-channel

system scenarios. Three CCI avoidance and two CCI cancellation algorithms are proposed

that can be applied to intentional and unintentional co-channel systems. Femtocells, which

have recently been introduced as a new class of personal-use base stations that can coexist

with macrocell networks in a shared spectrum manner, might constitute an appropriate

example for both types of co-channel systems. Therefore, they are considered to be one of

the co-existing systems in most of the algorithms presented.
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CHAPTER 1

INTRODUCTION

Over the last two decades there has been an incredible increase in the demand for wireless

services in the entire world. This increase lead to the emergence of a number of advanced

wireless systems whose common goal is to provide a very high data rate to countless users,

which requires an enormous capacity. Since the most basic way of increasing the capacity

of a communication system is to increase the bandwidth, traditionally, all new emerging

wireless technologies have been demanding wider bands than the existing ones. However,

the frequency spectrum is a natural resource and like all other natural resources, it is

not unlimited. Therefore, the crowding in the spectrum is a significant problem that is

threatening the growth of wireless communications.

In order to enable a number of users to utilize a given frequency band, modern wireless

systems employ multiple accessing methods. In time division multiple accessing (TDMA),

users are allowed to access the spectrum at pre-determined time slots. In frequency division

multiple accessing (FDMA), the available spectrum is split into a number of frequency blocks

where each user is allocated one or more block. In orthogonal FDMA (OFDMA), time-

frequency blocks are employed, which are made as compact as possible while maintaining

the orthogonality between them, in order to maximize the efficiency of spectrum usage.

In code division multiple accessing (CDMA), each user is assigned a different pseudo-noise

type of code that is multiplied with the transmitted data to spread it to the available band.

Multiplication with the same code in the receiver part enables separation of multiple user

signals from each other. Another domain that is exploited to allow utilization of the same

frequency band is the power domain. By limiting the signal powers of transmitters to a

certain level, frequency reuse concept can be realized, where the same chunk of frequencies
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are used over and over at tightly parceled cells. A final way of enabling multiple users to

use the same spectrum is realized in space domain through beamforming. By employing

antenna arrays rather than a single antenna, transmit and/or receive signal beams are

formed that make it possible to use a given band repeatedly for users located within the

same area.

The ever growing need for spectrum has been forcing wireless system designers to choose

more aggressive system parameters such as narrower OFDMA subcarrier spacings, longer

CDMA codes, and frequency reuse factors closer to 1. Imposing this kind of aggressive

parameters on a system might result in various forms of interference such as co-channel,

adjacent channel, and multi-user interferences. However, practical system applications so

far have revealed that allowing interference up to a certain level helps increasing the overall

efficiency of spectrum usage.

In an analogy to tolerating some interference for improving the spectral efficiency in

multi-users systems, multiple systems can be made co-channel to maximize the spectral

efficiency while allowing potential interference. This is the case in the industrial, scientific

and medical (ISM) bands, where various different technologies such as wireless local area

network (WLAN) routers, cordless phones, and microwave ovens operate. Another example

for intentional use of the same spectrum by multiple sources is the multiple input multiple

output (MIMO) systems. Although this kind of a system description may sound unusual

for MIMO systems, since every separate transmitter branch transmits different data using

the same band, a MIMO system is indeed a co-channel system on its own.

Apart from the systems that are designed to be co-channel, there are situations where

more than one system’s signals exist in the same band unintentionally. This is the case,

for instance, in cellular systems in which all cells use the same frequency band, i.e. the

frequency reuse factor is equal to 1. In such a case, at locations close to the cell borders, it

is possible to observe interfering signals from multiple sources. Another potential scenario

for unwanted coexistence in the same band might occur during the transition from the third

generation (3G) to the fourth generation (4G) systems. Since it will take some time until

2



Co-channel Interference HandlingInterference AvoidanceOpportunity Detection under Timing Misalignment Interference Scenarios and Frequency Reuse Uplink User Signal Separation InterferenceCancellationReception of MIMO-OFDMA Signals with a Single Receiver Iterative      Co-channel Interference Cancellation 
Figure 1.1 Structure of the dissertation.

all the 3G systems are substituted by 4G systems, it is expected to observe 3G and 4G

systems’ signals interfere with each other. The number of examples for unintentional co-

channel system scenarios can be increased. The common feature of most of these scenarios

is that they are more random in nature compared to the intentional co-channel systems,

and hence, to deal with them is equivalently more challenging.

The baseband receiver algorithms proposed in this dissertation aim at handling the

co-channel interference (CCI) that might occur both in intentional and in unintentional

co-channel system scenarios. These algorithms can be classified as interference avoidance

and interference cancellation methods as illustrated in Fig 1.1. In most of the presented

algorithms, one of the co-channel systems is exemplified by a femtocell network. Femto-

cells are a recently emerged class of limited range, personal use home/office base stations

(BSs) [1]- [3]. The main purpose of femtocell networks is to improve the indoor coverage

of cellular networks. As it will be discussed in detail in Chapters 2 and 3, femtocells can

coexist within macrocells in a split spectrum or a shared spectrum manner. The latter case

constitutes an appropriate example for co-channel systems where CCI is a significant con-

cern, and this is the reason why co-channel femtocells are a case study element throughout
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this thesis. In the following two sections, the two classes of CCI handling methods, namely

CCI avoidance and CCI cancellation, will be introduced.

1.1 Co-channel Interference Avoidance

A wireless signal has distinctive properties in various domains such as time, frequency,

and space. The signals of two different systems can be distinguished from each other as

long as a domain can be found in which the signals do not overlap. Interference avoidance

methods aim at ensuring orthogonality between the co-channel systems, which is realized

by guaranteeing that there is at least one such domain.

The orthogonality can be established in time domain by having the systems transmit at

different time slots; in frequency domain by avoiding any overlap between the spectra of the

systems within the same band; in code domain by assigning different PN codes to different

systems; in space domain by separating the transmitted beams; and in power domain by

making the footprints of the transmit antennas not overlap. It should be noted that there is

a strong similarity between the co-channel interference avoidance approaches and the basic

methods that are used to implement the multiple accessing schemes in wireless systems such

as TDMA, CDMA, and OFDMA.

The avoidance algorithms that will be presented in this dissertation are time-frequency

domain based methods. In these algorithms, co-channel systems that employ OFDMA are

considered, and it is aimed to ensure that the two systems utilize mutually exclusive sets of

resource blocks. In Chapter 2, two different detection methods are investigated for finding

the opportunities within the uplink frequency band of an OFDMA based system with timing

misalignments. An algorithm for determining the synchronization point that minimizes the

inter-carrier interference due to the timing misalignments is proposed.

There might be cases where both co-channel systems are being operated by the same

service provider as in the example of a macrocell-femtocell coexistence. In such a scenario,

it might be considered that the macrocell shares its resource block allocation information

with the femtocells in order to have them avoid CCI. In Chapter 3, an algorithm is proposed

4



for femtocells, which utilizes this information along with local spectrum sensing results to

enable femtocells to determine the usable resource blocks within the macrocell spectrum

both in DL and UL.

In contrast to scenarios where the two co-channel systems are in close collaboration,

it might be possible that the CCI avoidance has to be performed in a semi-blind manner

where the systems have information about only the very basic system parameters of the

other co-channel system. In Chapter 4, we propose two algorithms that might be used for

enhancing the performance in CCI avoidance. The first algorithm enables determining the

size of the resource blocks employed in an uplink OFDMA signal. The second one, on the

other hand, targets at separating the user signals from each other so that the close-by users’

blocks can be determined and avoided more reliably.

1.2 Co-channel Interference Cancellation

In cases where there is an overlap between the two co-channel signals in all usable

domains, CCI cancellation algorithms need to be employed in order to separate the signals

from each other. Compared to the avoidance algorithms, the cancellation methods usually

have a higher computationally complexity, and therefore, their realizability highly depends

on the available digital signal processing power.

The key concept that determines the feasibility of CCI cancellation is the signal separa-

bility. Any differences in the signal properties such as the waveforms and spectra as well as

the differences that the signals attain in the propagation channel such as their delays might

serve as a means of signal separation [4].

It might be possible to separate two single carrier signals that overlap in all domains

in the transmitter side exploiting the differences in the received signals due to the inde-

pendent channels that they propagate through. A good example for signal separation by

taking advantage of the difference in the wireless channels is the MIMO receivers. In this

dissertation, the algorithm presented in Chapter 5 takes MIMO receivers one step further

and introduces reception of MIMO signals with a single receiver. The proposed maximum
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likelihood based algorithm relaxes the hardware requirement of MIMO systems but brings

about a considerably higher digital signal processing necessity. The performance tests show

that the proposed method is feasible for a two transmitter system, however, any similarity

between the two propagation channels degrades the performance.

A more complicated scenario where signal separability might be attainable is the case

of two co-channel signals one of which carries information in time domain, and the other

one in frequency domain. The algorithm presented in Chapter 6 deals with this kind of a

scenario and proposes an iterative cancellation method where a single antenna receiver is

considered. The two co-channel signals are estimated, demodulated, and regenerated in a

successive manner to yield a better estimate of the other signal. It is shown that after a

limited number of iterations, a quite successful signal separation can be obtained.

Future work in this direction includes separation of co-channel signals that overlap in all

readily imaginable domains such as the unintentional co-channel signals that are observed

in cellular systems with frequency reuse factor equal to 1.

1.3 Dissertation Outline

This dissertation primarily consists of five algorithms each of which is covered in a sepa-

rate chapter. The algorithms in Chapter 2, Chapter 3, and Chapter 4 relate to interference

avoidance, while the algorithms in Chapter 5 and in Chapter 6 deal with interference can-

cellation. The interference avoidance related algorithms focus on opportunity detection for

OFDMA-based CR systems with timing offsets, frequency reuse for femtocells, and user

separation in OFDMA-based CR systems, respectively. The two interference cancellation

algorithms, on the other hand, are reception of MIMO signals with a single receiver and it-

erative CCI cancellation. In the remainder of this section, a detailed outline of each chapter

is provided.

6



1.3.1 Chapter 2: Opportunity Detection for OFDMA-Based Cognitive Radio

Systems with Timing Misalignment

Accurate detection of spectrum opportunities within the frequency band of an OFDMA

system carries critical importance for OFDMA-based cognitive radios. In this chapter, we

analyze the opportunity detection performances of energy detection and ESPRIT (estima-

tion of signal parameters by rotational invariance techniques) algorithms in the presence of

timing misalignments in uplink (UL) OFDMA. For the energy detector, the statistics of sub-

carrier power are derived considering timing misalignments, and they are verified through

computer simulations. Using these statistics, which take inter-carrier-interference (ICI) ef-

fects into account, receiver operating characteristics (ROCs) of the energy detector receiver

are obtained. It is shown that energy detection has a considerably better performance than

ESPRIT, especially when the subcarrier assignment changes frequently. Moreover, a closed

form expression is derived for the UL-OFDMA synchronization point that minimizes the

ICI. Finally, it is shown that employing resource allocation blocks with larger sizes in the

primary network yields better opportunities for the cognitive radio.1

1.3.2 Chapter 3: Interference Scenarios and Frequency Reuse for Next-Generation

Femtocell Networks

Femtocells have a strong potential for increasing the efficiency and coverage of next-

generation broadband wireless networks. In this chapter, a co-channel framework for the

coexistence of OFDMA based macrocell and femtocell wireless networks is proposed. It

is based on utilizing the resource blocks of macrocell-associated mobile stations (mMSs)

that are far away to a femtocell base station (fBS), therefore avoiding strong interference

that may occur between a femtocell and close-by mMSs. An avoidance method that jointly

utilizes the spectrum sensing results as well as scheduling information obtained from the

macrocell base station (mBS) is introduced. Moreover, the impact of ICI from the mMSs

in the uplink is discussed and evaluated through simulations.2

1The content of this chapter is published in parts in [5, 6].
2The content of this chapter is published in parts in [7].
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1.3.3 Chapter 4: Uplink User Signal Separation for OFDMA-Based Cognitive

Radios

Spectrum awareness of OFDMA based cognitive radios (CR) can be improved by en-

abling them to separate the primary user signals in the uplink. Assuming availability of

information about the basic parameters of the primary system as well as time synchroniza-

tion to the first arriving user signal, two algorithms are proposed in this chapter. The first

one targets estimating the size of the frequency allocation block of the primary system. The

performance of this algorithm is compared with the results of a Gaussian approximation

based approach that aims to determine the probability of correct block size estimation the-

oretically. The second one is a semi-blind user separation algorithm, which estimates the

carrier frequency offsets and time delays of each block by exploiting the cross-correlations

over pilot subcarriers. A two-dimensional clustering method is then employed to group

the estimates, where each group belongs to a different user. It is shown that the proposed

algorithms can improve the spectrum opportunity detection of cognitive radios. Feasibility

of the algorithms is proved through practical simulations.3

1.3.4 Chapter 5: Reception of MIMO-OFDMA Signals with a Single Channel

Receiver

This chapter proposes to implement reception of MIMO-OFDMA signals using a single

receiver rather than multiple receivers. For this purpose, impairments related to each of

the RF front-end components are investigated. Challenges of MIMO-OFDMA reception

are addressed in comparison with SISO. A complete procedure is provided to receive and

do impairment estimation for WiMAX MIMO signals using a single receiver according to

the IEEE 802.16 standards.4

3The content of this chapter is published in parts in [8, 9].
4The content of this chapter is published in parts in [10, 11].
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1.3.5 Chapter 6: An Iterative Interference Cancellation Method for Co-Channel

Multicarrier and Narrowband Systems

Coexistence of narrowband (NB) and multicarrier technologies will be a major concern

in next generation wireless communication systems due to the co-channel interference prob-

lem. In this chapter, an efficient CCI cancellation method is proposed that may be utilized

for improved coexistence of NB and multicarrier technologies. The method treats both

co-channel signals as desired signals and enhances them in an iterative manner. In every

iteration, the signals are demodulated, regenerated, and subtracted from the received signal

successively in order to obtain a better estimate of the other co-channel signal. Computa-

tional complexity of the proposed method is compared in detail with the joint demodulation

technique. Through computer simulations, it is shown that the proposed method has lower

complexity compared to joint demodulation, and it yields significant gains in the symbol

error rate (SER) performance of both the NB and multicarrier systems.5

5The content of this chapter is published in parts in [12, 13].

9



CHAPTER 2

OPPORTUNITY DETECTION FOR OFDMA-BASED COGNITIVE RADIO
SYSTEMS WITH TIMING MISALIGNMENT

2.1 Introduction

Increasing spectral crowding constitutes one of the major factors that need to be taken

into account when designing future wireless systems. The growing number of wireless tech-

nologies may force future systems to share the same spectrum. Cognitive radio [14] is seen

as a promising approach in this direction [15, 16]. Cognitive radio introduces the concept

of opportunistic spectrum usage [17] in which a secondary network utilizes unused parts of

a spectrum that is owned by a primary system. Cognitive radios are required to reliably

sense the spectrum opportunities in order to minimize probability of false alarms (PFA)

and probability of missed detections (PMD) [18, 19]. For example, in a scenario as in

Fig. 2.1, the secondary users (SUs) in the cognitive radio system need to accurately sense

the spectrum opportunities in the primary network and utilize them in an optimal manner.

Third generation (3G) wireless technologies have mostly been using code division mul-

tiple access (CDMA) in their physical layers. For example, International Mobile Telecom-

munications 2000 (IMT-2000), which is the worldwide standard for third generation (3G)

wireless technologies defined by the International Telecommunication Union (ITU), defines

six standards for 3G networks, three of which are based on CDMA: Wideband CDMA,

CDMA-2000, TD-CDMA/TD-SCDMA, EDGE, DECT, and WiMAX. While the first five

of these standards were approved by ITU in 1999, WiMAX, which is based on orthogonal

frequency division multiple access (OFDMA), was approved by the ITU in 2007. However,

fourth generation (4G) of wireless communications is expected to be dominated by the
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OFDMA technology. OFDMA has a number of advantages over the other wireless tech-

nologies such as easily managing multiple access interference and narrowband interference,

enabling dynamic channel allocation, and allowing simple channel equalization in frequency

domain. Therefore, we consider cognitive radios that employ OFDMA in their physical

layer.

For an OFDMA based cognitive radio, spectrum opportunity can be defined as the set

of subcarriers that are not utilized by the primary system. In order to take advantage of

the spectrum opportunities, orthogonality to the primary system needs to be established.

For such a radio, the first step in spectrum sensing is the detection of the presence of a

primary user, which can be achieved utilizing the cyclic prefix (CP) or the guard band of

the received signal [20]- [22]. After detecting the presence of a primary user, A threshold

based detector such as in [23] can be employed for detecting the spectrum opportunities,

where appropriate selection of the threshold is critical for a good detection performance.

Spectrum sensing performance of energy detectors can be quantified by receiver operating

characteristic (ROC) curves (see e.g. [24]). A particularly challenging scenario that has not

been considered in detail in the prior art for cognitive radio systems is when some of the

uplink (UL) OFDMA user signals arrive at the receiver with delays larger than the CP of the

symbol (see e.g., [25]- [27], and Figs. 2.1 and 2.2 ). For example, in Fig. 2.2, the secondary

user SU-1 communicates with SU-2 utilizing the available spectrum opportunities. However,

the signals of the primary users arriving at SU-2 after the CP of SU-1 (i.e., UL signals of

mobile stations MS-1 and MS-4) result in inter-symbol interference (ISI) as well as inter-

carrier interference (ICI), which may considerably decrease the spectrum opportunities.

An interesting case where such a timing misalignment problem may occur is the co-

existence of a femtocell network [28, 29] with a macrocell network, both of which employ

OFDMA. As discussed in [30] and [31], macrocell and femtocell may coexist through ei-

ther a split-spectrum approach, where both networks are assigned orthogonal bands, or a

shared-spectrum approach, where unused parts of the macrocell spectrum are utilized by the

femtocell that acts as a cognitive radio. In a shared-spectrum scenario, while the macrocell
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users are synchronized with the macrocell base station (BS) through initial/periodic rang-

ing [32, 33], their signals may arrive at the femtocell BS with different delays (see [34] for

an analysis of arrival times at the femtocell BS), which can make detection of spectrum

opportunities by the femtocell quite challenging.

In this chapter, detection of spectrum opportunities in UL-OFDMA is investigated in

the presence of considerable timing misalignment between users (see e.g. [5]). Taking into

account the effects of ICI that appear as a result of timing misalignments, the statistics

of the energy detector receiver are obtained, and the related ROCs for spectrum sensing

are derived. Moreover, a closed form expression for the primary user distance that causes

the strongest interference to the cognitive radio is obtained. Finally, optimum UL-OFDMA

synchronization point that minimizes the interference to the cognitive radio is calculated1.

Through computer simulations, opportunity detection error probabilities using the energy

detector are determined for various scenarios and they are compared with the detection

performance of the estimation of signal parameters by rotational invariance techniques

(ESPRIT) algorithm. Impact of the primary network’s resource allocation block size on

the cognitive radio is also investigated using the parameters specified in LTE and WiMAX

standards.

Organization of this chapter is as follows. Section 2.2 provides the system model, while

Section 2.3 shortly introduces energy detection based and ESPRIT algorithm based spec-

trum sensing approaches and discusses the subcarrier assignment schemes in different wire-

less standards. In Section 2.4, the statistics of the energy detector decision variable are

investigated, and the user distance yielding the highest interference is derived. In Sec-

tion 2.5, ROCs with and without timing misalignment are derived for receivers that employ

noise-based threshold and normalized threshold. Section 2.6 investigates the optimum syn-

chronization point for an UL-OFDMA receiver, Section 2.7 presents the simulation results,

and Section 2.8 concludes the chapter.
1Note that UL-OFDMA synchronization has been investigated in several works in the prior art (see

e.g. [35] and [36] and the references therein). In this chapter, we look at the timing synchronization problem
from a secondary system’s perspective for minimizing interference, which has not been considered in the
literature to the best of our knowledge.
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2.2 UL-OFDMA System Model

Consider an OFDMA system with Nu users in the uplink. The sampled time domain

signal at the transmitter of user i can be written as

x
(m)
i (n) =

√
Ptx,i

∑

k∈Γi

X
(m)
i (k)e

j2πkn
N ,−Ncp ≤ n ≤ N − 1, (2.1)

where m is the symbol index, Ptx,i is the transmit power for user i, k ∈ Γi is the subcarrier

index, Γi is the set of subcarriers of length Ni assigned to user i out of N total subcarriers,

Ncp is the length of the cyclic prefix, and X
(m)
i (k) is the data on the kth subcarrier and

mth symbol of the ith user.

The time domain aggregate received signal is the superposition of signals from all users,

each of which propagates through a different multipath channel and arrives at the receiver

with a delay δ̃i = dNτ̃i/T e, where τ̃i is the propagation delay experienced by user i, and

T is the duration of the useful part of the symbol. Then, aggregate discrete-time received

signal can be expressed as

y(n) =
Nu∑

i=1

yi(n) + w(n), (2.2)

where w(n) denotes the additive white Gaussian noise (AWGN), and

yi(n) =
√

Prx,i

L−1∑

l=0

α
(m)
i (l)

∞∑
m=−∞

x
(m)
i

(
n−Dl,i −m(N + Ncp)

)
, (2.3)

where Prx,i is the received power for user i, L denotes the total number of multipath

components (MPCs), α
(m)
i (l) is the complex amplitude of the lth MPC for user i, and

Dl,i = dNτl,i/T e+ δ̃i, where τl,i is the delay of the lth MPC for user i.

If Dl,i ≤ Ncp, it is easy to prove that the frequency domain signal for the kth subcarrier

of user i is given by

Y
(m)
i (k) =

√
Esc,iX

(m)
i (k)

L−1∑

l=0

α
(m)
i (l)e−

j2πkDl,i
N , (2.4)
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where Esc,i is the average received energy per subcarrier for user i, which is equal to Prx,i.

On the other hand, if Dl,i > Ncp, the FFT window at the receiver will include signals from

two consecutive symbols of the transmitted signal. As a consequence, this will result in

inter-symbol interference as well as inter-carrier interference. Getting the FFT of (2.3), the

received signal on the kth subcarrier of user i can be written as [27]

Y
(m)
i (k) =

√
Esc,i

N

L−1∑

l=0

α
(m)
i (l)

{ Dl,i−Ncp−1∑

n=0

x
(m−1)
i (n + N + Ncp −Dl,i)e−

j2πkn
N

+
N−1∑

n=Dl,i−Ncp

x
(m)
i (n−Dl,i)e−

j2πkn
N

}
. (2.5)

After plugging (2.1) into (2.5) and some manipulation, we have

Y
(m)
i (k) =

√
Esc,i

L−1∑

l=0

α
(m)
i (l)

{
Sd,i,l(k) + I1,i,l(k) + I2,i,l(k)

}
, (2.6)

where the desired signal, interference from the same subcarrier of the previous symbol, and

the total interference from other subcarriers are respectively given as

Sd,i,l(k) = X
(m)
i (k)K1,i,l(k)e

−j2πkDl,i
N (2.7)

I1,i,l(k) = X
(m−1)
i (k)K2,i,l(k)e

−j2πk(Dl,i−Ncp)

N (2.8)

I2,i,l(k) =
1
N

∑

p∈Γi

p6=k

[
1− e

j2π(p−k)(Dl,i−Ncp)

N

1− e
j2π(p−k)

N

]

︸ ︷︷ ︸
hi(p,k)

(
−X

(m)
i (p)e−

j2πpDl,i
N + X

(m−1)
i (p)e

j2πp(Ncp−Dl,i)

N

)

︸ ︷︷ ︸
gi(p)

,

(2.9)

where

K1,i,l(k) =
N −Dl,i + Ncp

N
× I(i, k) ,

K2,i,l(k) =
Dl,i −Ncp

N
× I(i, k), (2.10)
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with I(i, k) denoting an indicator function given by

I(i, k) =





1 , if k ∈ Γi ,

0 , if k /∈ Γi .

(2.11)

Note that the interference terms I1,i,l(k) and I2,i,l(k) will both be zero if the received MPC

is located within the CP duration. The aggregate frequency-domain signal can then be

written as

Y (m)(k) =
Nu∑

i=1

Y
(m)
i (k) + W (k) , (2.12)

where W (k) ∼ CN (
0, σ2

)
is the DFT of w(n), σ2 = N0/2, and CN (

µ, σ2
)

denotes the

distribution of a circularly symmetric complex Gaussian random variable with mean µ and

variance σ2.

2.3 Spectrum Sensing Techniques and Impact of Subcarrier Assignment Scheme

Different methods may be considered for the detection of spectrum opportunities in

an OFDMA system. In this chapter, energy detection and ESPRIT algorithms are con-

sidered. Moreover, impact of subcarrier assignment strategy on the opportunity detection

performance is evaluated.

2.3.1 Energy Detector Method

In the energy detector method, based on (2.6), we consider the following decision variable

and compare it with a threshold ξ

P (m)(k) =
∣∣∣Y (m)(k)

∣∣∣
2 H1

≷
H0

ξ , (2.13)

where hypothesis H1 implies that subcarrier k is occupied, and hypothesis H0 implies that

it is not. A diagram of the energy detector method is provided in Fig. 2.3. Statistics of the
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Figure 2.3 Diagram of the energy detector method.

decision variable P (m)(k) in the presence of timing misalignment will be discussed in more

detail in Section 2.4, while possible approaches for selecting the threshold ξ are discussed

in Section 2.5.

2.3.2 ESPRIT Method

ESPRIT is a high resolution signal parameter estimation algorithm that exploits the shift

invariance property of signals [37]. It belongs to the class of signal subspace methods in that

it relies on an eigendecomposition of the covariance matrix of the received signal [38]. The

algorithm has been employed in a wide variety of applications including direction-of-arrival

estimation in antenna arrays [37], channel estimation in multipath fading channels [39], and

estimating the parameters of sinusoids in noise [40].

The problem of determining the occupied subcarriers in an OFDMA signal can be

considered as identifying the number and frequencies of a set of sinusoids in additive noise.

OFDM based signals are suitable for implementing ESPRIT because they are made shift

invariant by the addition of a cyclic prefix, which means that a time shift not exceeding the

CP does not alter the statistical features of the OFDM signal. Exploiting this property of

the OFDM signal, carrier frequency offset estimation using ESPRIT was performed in [41].

In [42], ESPRIT algorithm was proposed for estimating the occupied subcarriers of an

OFDM symbol. Although it is known that ESPRIT cannot be the optimum detection

method when the maximum delay observed in the system is larger than the CP (due to

the degradation in the shift invariance of OFDM symbols), in this chapter, the ESPRIT
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performance in an asynchronous UL-OFDMA system is simulated to provide a relative

measure for the energy detection performance.

In the practical ESPRIT implementation for determining the occupied subcarriers of

an OFDM symbol, the first step is to estimate the number of occupied subcarriers (Nocp),

which is done via the minimum descriptive length (MDL) algorithm introduced in [43].

Estimation of subcarrier frequencies, on the other hand, is performed by constructing the

auto- and cross-covariance matrices of the received signal. From the received signal y(n),

two sample vectors y(n) and z(n) of length Υ are formed

y(n) = [y(n), y(n + 1), · · ·, y(n + Υ− 1)],

z(n) = [y(n + 1), y(n + 2), · · ·, y(n + Υ)], (2.14)

where Υ is equal to M× (N + Ncp), M being the number of adjacent symbols with the

same occupied subcarriers.

The auto-covariance matrix Ryy and cross-covariance matrix Ryz are obtained as follows

Ryy = E{y(n)y∗(n)}, and Ryz = E{y(n)z∗(n)}, (2.15)

where E{·} denotes the expectation operation. It is important to note that the reliability of

Ryy and Ryz is directly proportional to M. By performing an eigen-decomposition on Ryy,

its eigenvalues are determined, where the minimum eigenvalue λmin is the noise variance2.

Noise power is subtracted from Ryy and Ryz to obtain

Cyy = Ryy − λminI and Cyz = Ryz − λminZ, (2.16)

where I is the identity matrix, and Z is a matrix with ones on the first subdiagonal and

zeros elsewhere. The frequencies of the occupied subcarriers are yielded by the first Nocp

2Note that since Υ > Nocp, Ryy is a singular matrix; hence, Υ−Nocp of its smaller eigenvalues yield the
noise variance.
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Table 2.1 The uplink parameters used in LTE and WiMAX standards.

WiMAX
LTE PUSC 1 PUSC 2 ASP

Nsymb 7 3 3 N(= 1, 2, 3, or 6)
Nsc 12 4 3 9×M (where N ×M = 6)

Block Size 84 12 9 54

largest generalized eigenvalues of the matrix pair (Cyy,Cyz) (The reader is referred to [40]

for a step-by-step guide of the ESPRIT algorithm).

The matrix operations that it requires make the ESPRIT algorithm highly computa-

tionally complex and may induce an extended processing delay. This kind of a delay renders

ESPRIT less feasible in a real-time application.

2.3.3 Subcarrier Assignment Schemes in Different Wireless Standards

In an OFDMA system, time-frequency resources are dynamically shared between users,

exploiting channel variation in both frequency and time domains. The resource allocation,

therefore, takes the form of one or more two-dimensional blocks, where each block is defined

by Nsymb consecutive OFDMA symbols in the time domain and Nsc consecutive subcarriers

in the frequency domain. In the standards, the block is referred using different names; it

is referred as resource block (RB) in LTE, while referred as tile or bin in WiMAX [44]-

[46]. When multiple blocks constitute a resource allocation, those blocks may be either

distributed or localized in the frequency domain so that frequency diversity or channel

dependent scheduling can be appropriately exploited. Fig. 2.8 illustrates the uplink param-

eters for Nsymb and Nsc that are used in different standards3. Note that in essence, all of

the subcarrier assignment schemes (SAS) shown in Fig. 2.8 are blockwise assignments (BA)

with different block sizes.

In the simulations in Section 2.7, along with the blockwise SASs used in different stan-

dards, we also consider a randomized assignment (RA). In RA, each individual subcarrier

may be assigned to a different user, i.e., Nsc = 1, and Nsymb may take any appropriate

3PUSC: partial usage of subchannels, ASP: adjacent subcarrier permutation.
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value. In Section 2.7, we demonstrate through simulations that RA limits the amount of

spectrum opportunities for a cognitive radio most, because it causes ICI to the maximum

number of empty subcarriers. The SASs that provide better opportunities for the cognitive

radio are the BAs that have large Nsc due to the lesser number of empty subcarriers affected

from ICI.

2.4 Statistics of the Energy Detector Decision Variable with Timing Misalign-

ment

In order to analyze how the timing misalignment problem affects the opportunity de-

tection, the statistics of the decision variable in (2.13) have to be evaluated. After plugging

(2.12) into (2.13), we have

P (m)(k) =
∣∣∣Y (m)(k)

∣∣∣
2

=
Nu∑

i=1

∣∣∣Y (m)
i (k)

∣∣∣
2
+ |W (k)|2

+ 2Re
{

W ∗(k)
Nu∑

i=1

Y
(m)
i (k)

︸ ︷︷ ︸
Zero−mean RV

}
+ 2

Nu−1∑

i=1

Nu∑

j=i+1

Y
∗(m)
i (k)Y (m)

j (k),

(2.17)

where the last term of (2.17) is 0 since Y
(m)
i (k) and Y

(m)
j (k) cannot be non-zero simultane-

ously. The statistics of (2.17) can be evaluated by analyzing the statistics of the individual

terms as will be discussed below. To keep the expressions analytically tractable4, we con-

sider L = 1 in (2.6), and drop the multipath indices from related expressions in (2.6)-(2.9).

First, using (2.4), we may write
∣∣∣Y (m)

i (k)
∣∣∣
2

as

∣∣∣Y (m)
i (k)

∣∣∣
2

= Esc,i

∣∣∣Sd,i(k) + I1,i(k) + I2,i(k)
∣∣∣
2

= Esc,i

[∣∣∣Sd,i(k)
∣∣∣
2
+

∣∣∣I1,i(k)
∣∣∣
2
+

∣∣∣I2,i(k)
∣∣∣
2

+ 2Re
{

S∗d,i(k)I1,i(k) + S∗d,i(k)I2,i(k) + I∗1,i(k)I2,i(k)
}]

, (2.18)

4For the derivation of the statistics of (2.17) in a multipath channel, the reader is referred to Appendix B.
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where

∣∣∣Sd,i(k)
∣∣∣
2

=
∣∣∣X(m)

i (k)
∣∣∣
2
K2

1,i(k), (2.19)
∣∣∣I1,i(k)

∣∣∣
2

=
∣∣∣X(m−1)

i (k)
∣∣∣
2
K2

2,i(k), (2.20)
∣∣∣I2,i(k)

∣∣∣
2

=
1

N2

(∑

p∈Γi

p6=k

∣∣∣h2
i (p, k)

∣∣∣
∣∣∣g2

i (p)
∣∣∣ + Re

{∑

p∈Γi

p6=k

∑

q∈Γi

q 6=k,q 6=p

h∗i (p, k)hi(q, k)g∗i (p)gi(q)
}

︸ ︷︷ ︸
Zero−mean RV

)
,

(2.21)

S∗d,i(k)I1,i(k) = X
∗(m)
i (k)X(m−1)

i (k)K1,i(k)K2,i(k)e
j2πkNcp

N , (2.22)

S∗d,i(k)I2,i(k) =
1
N

X
∗(m)
i (k)K1,i(k)e

j2πkDl,i
N

∑

p∈Γi

p 6=k

hi(p, k)gi(p), (2.23)

I∗1,i(k)I2,i(k) =
1
N

X
∗(m−1)
i (k)K2,i(k)e

j2πk(Dl,i−Ncp)

N

∑

p∈Γi

p6=k

hi(p, k)gi(p) , (2.24)

with, as indicated in (2.9),

gi(p) = −X
(m)
i (p)e−

j2πpDl,i
N + X

(m−1)
i (p)e

j2πp(Ncp−Dl,i)

N , (2.25)

hi(p, k) =
1− e

j2π(p−k)(Dl,i−Ncp)

N

1− e
j2π(p−k)

N

, and h2
i (p, k) =

1− cos
(

2π(p−k)(Dl,i−Ncp)
N

)

1− cos
(

2π(p−k)
N

) . (2.26)

Note that (2.22)-(2.24) as well as the indicated terms in (2.17) and (2.21) are zero-mean

random-variables (RVs). Then, the mean of (2.17) can be evaluated as

E
{

P (m)(k)
}

=
Nu∑

i=1

E
{∣∣∣Y (m)

i (k)
∣∣∣
2}

+ ndσ
2 , (2.27)

where nd denotes the degree of freedom (DOF) of noise terms, and calculation of E
{∣∣∣Y (m)

i (k)
∣∣∣
2}

will be discussed in Appendix A.

21



On the other hand, the variance of (2.17) is

Var
{

P (m)(k)
}

=
Nu∑

i=1

Var
{∣∣∣Y (m)

i (k)
∣∣∣
2}

+ 2ndσ
4 + 8ndσ

4
Nu∑

i=1

E
{∣∣∣Y (m)

i (k)
∣∣∣
2}

, (2.28)

where the variances of the first two terms are straight-forward, and the variance of the third

term is calculated as

Var
{

2Re
{

W ∗(k)
Nu∑

i=1

Y
(m)
i (k)

}}

= E
{

4W 2(k)
( Nu∑

i=1

∣∣Y (m)
i (k)

∣∣2 +
Nu−1∑

i=1

Nu∑

j=i

Y
∗(m)
i (k)Y (m)

j (k)
)}

(2.29)

= 8ndσ
4

Nu∑

i=1

E
{∣∣∣Y (m)

i (k)
∣∣∣
2}

. (2.30)

Hence, calculation of E
{∣∣∣Y (m)

i (k)
∣∣∣
2}

and Var
{∣∣∣Y (m)

i (k)
∣∣∣
2}

are sufficient for obtaining

the statistics of (2.17) as in (2.27) and (2.28), as will be illustrated for different modulation

schemes in Appendix A.

2.4.1 User Distance Yielding the Strongest Interference

The ICI power from a certain user is scaled by the received signal energy from that

user, Esc,i, as indicated in (15). However, in (15), the distance-dependency of the received

signal energies was not explicitly taken into account, and it was assumed that Esc,i is a

given parameter. However, in practice, both the received signal’s delay and energy depend

on the distance between the user and the secondary receiver.

Assuming a single tap channel, user delays are directly proportional to the user distances

(di) through D1,i = di
c Ts

, where c is the speed of light, and Ts is the sampling time. Moreover,

Esc,i also depends on di through Esc,i = λ2

(4π)2dγ
i
Ptx, where λ is the wavelength of the

transmitted signal, and γ is the path loss exponent. Since the impacts of di on D1,i and

Esc,i are inversely proportional to each other5, it is expected that the interference power will

5D1,i increases linearly with di, and Esc,i decreases with γth power of di.
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be maximized at a certain distance and then will start decreasing with di. Determining the

di that causes the strongest interference might be useful for certain practical applications.

An example can be a femtocell that has access to the subcarrier allocation map of the

primary system as well as to the locations of the primary users (through its backbone

connection to the primary system). If the femtocell knows that users that are located

at/around a specific distance cause the highest interference, it can avoid using the empty

subcarriers that are adjacent to these users’ subcarriers. Therefore, we analytically derived

a closed-from expression for the user distance that causes the strongest interference.

Through simulations, it is determined that
∑

k 6=p I2
1,i(k) is negligible compared to

∑
k 6=p I2

2,i(k).

Hence, the derivation is based on finding the distance where I2
2,i(k) (ICI) is maximized. The

total interference power that is caused by a certain subcarrier p, summed over all empty

subcarriers, is given by

∑

k 6=p

I2
2,i(k) =

λ2

(4π)2d2
i

2
N2

∑

k 6=p

h2
i (p, k) . (2.31)

Replacing di with cD1,iTs, (2.31) can be rewritten as

∑

k 6=p

I2
2,i(k) =

2(
4πfNTsD1,i

)2

∑

k 6=p

h2
i (p, k) , (2.32)

where f is the carrier frequency of the system. Differentiating (2.32) with respect to D1,i

one obtains

d
∑

k 6=p I2
2,i(k)

dD1,i
=

2(
4πfNTs

)2

(
− 2

D3
1,i

∑

k 6=p

1− cos
(

2π(p−k)(D1,i−Ncp)
N

)

1− cos
(

2π(p−k)
N

)

+
1

D2
1,i

∑

k 6=p

sin
(

2π(p−k)(D1,i−Ncp)
N

)

1− cos
(

2π(p−k)
N

) 2π(p− k)
N

)
. (2.33)
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The point where the ICI power is maximum can be found by equating (2.33) to 0, which

yields

2
D1,i

∑

k 6=p

1− cos
(

2π(p−k)(D1,i−Ncp)
N

)

1− cos
(

2π(p−k)
N

) =
∑

k 6=p

sin
(

2π(p−k)(D1,i−Ncp)
N

)

1− cos
(

2π(p−k)
N

) 2π(p− k)
N

. (2.34)

The trigonometric terms in (2.34) can be approximated using Taylor series expansion under

the condition that the inputs of cos(x) and sin(x) satisfy −1 < x < 1. Although this

condition is met only for very small values of (p − k), approximation is still useful since

ICI is not significant for large values of (p− k). Substituting the sine and cosine functions

in (2.34) with the first two terms of their Taylor expansion, i.e. cos(x) ≈ 1 − x2

2 and

sin(x) ≈ x− x3

3! , one obtains

k=p+a∑

k=p−a

k 6=p

(
D1,i −Ncp

)2

D1,i
=

k=p+a∑

k=p−a

k 6=p

((
D1,i −Ncp

)− 1
6

(2π(p− k)
N

)2(
D1,i −Ncp

)3
)

. (2.35)

where a is a small value that enables Taylor approximation and needs to be set inversely

proportional with Ncp. Empirically, it is found that N
2Ncp

is an appropriate value for a.

Utilizing summation formulas, one obtains

2a
D1,i −Ncp

D1,i
= 2a− 1

6

(
2π

(
D1,i −Ncp

)

N

)2 a(a + 1)(2a + 1)
3

, (2.36)

which, after some manipulations, leads to

D3
1,i − 2NcpD

2
1,i + N2

cpD1,i − 36Ncp(
2π
N

)2(a + 1)(2a + 1)
= 0 . (2.37)

Note that two roots of (2.37) constitute a complex conjugate pair, and the third root is a

real number, which yields the di causing the highest ICI. As it will be verified in Section 2.7,

it is found that a quite accurate approximation for D1,i that yields the highest interference

is 2Ncp.

24



2.5 Receiver Operating Characteristics

For the detection of occupied subcarriers, we consider two types of threshold-based tech-

niques for selecting ξ in (2.13) in this chapter: noise-based threshold (NBT) and normalized

threshold (NT). While the threshold using the first approach is set based only on the noise

level, the threshold using the second approach scales with the total received signal energy.

2.5.1 Noise-based Threshold

If the noise variance σ2 is known, the threshold that satisfies a certain PFA can be

selected. When a subcarrier k is not occupied by any user, (2.13) follows a centralized

Chi-square distribution, whose cumulative distribution function (CDF) is given by [47]

FY (y) = 1− e−y/2σ2
M−1∑

κ=0

1
κ!

( y

2σ2

)κ
, (2.38)

where M = nd/2 is an integer. For complex noise, we have nd = 2, and (2.38) becomes the

CDF of an exponential distribution. Then, the PFA for a certain threshold ξ as in (2.13)

becomes

Pfa(ξ) = 1− FY (ξ) = e−ξ/2σ2
, (2.39)

where the threshold may also be written in terms of the PFA as

ξ = F−1
Y

(
1− Pfa

)
. (2.40)

When subcarrier k is occupied, on the other hand, (2.13) follows a non-centralized Chi-

square distribution, whose CDF is given by [47]

F̃Y (y,Esc,i) = 1−QM

(√
Esc,i

σ
,

√
y

σ

)
, (2.41)
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where QM (a, b) is the Marcum-Q function given by

QM (a, b) =
∫ ∞

b
x
(x

a

)M−1
e−(x2+a2)/2IM−1(ax)dx , (2.42)

with Iζ(x) denoting the ζth order modified Bessel function of the first kind [47]. Then,

using (2.39), probability of detection Pd corresponding to a certain Pfa becomes

Pd(Pfa) = 1− F̃Y (ξ, Esc,i) = QM

(√
Esc,i

σ
,

√
F−1

Y

(
1− Pfa

)

σ

)
. (2.43)

The relationship in (2.43) that relates the Pd to Pfa is commonly referred as the receiver

operating characteristic curves.

In the presence of ICI, since the statistics of the received power will change, the ROC

performance will get worse. In particular, using again the Chi-square distribution6 for

modeling the distribution of
∣∣∣Y (m)(k)

∣∣∣
2

along with (2.27) and (2.28), the probability of

false alarm and probability of detection (PD) that will be observed in the presence of ICI

and using the threshold as in (2.40) is given by

Pfa,ICI(Pfa) =
1

N −∑Nu
i=1 Ni

∑

k=1,...,N,k/∈Γi,

i∈{1,...,Nu}

QM

(√
µ̃(k)

σ̃(k)
,

√
F−1

Y

(
1− Pfa

)

σ̃(k)

)
, (2.44)

Pd,ICI(Pfa) =
1∑Nu

i=1 Ni

∑

k∈Γi,

i∈{1,...,Nu}

QM

(√
µ̃(k)

σ̃(k)
,

√
F−1

Y

(
1− Pfa

)

σ̃(k)

)
, (2.45)

6In Section 2.7.2, it will be verified thorough simulations that Chi-square distribution still well models∣∣∣Y (m)(k)
∣∣∣
2

in the presence of ICI.
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where from the mean and variance of a non-centralized Chi-square distributed random

variable, we may easily obtain

µ̃(k) = E
{∣∣∣Y (m)(k)

∣∣∣
2}
−

ndVar
{∣∣∣Y (m)(k)

∣∣∣
2}

4E
{∣∣∣Y (m)(k)

∣∣∣
2} , (2.46)

σ̃2(k) =
Var

{∣∣∣Y (m)(k)
∣∣∣
2}

4E
{∣∣∣Y (m)(k)

∣∣∣
2} . (2.47)

2.5.2 Normalized Threshold

Note that NBT discussed in the previous section does not take the received energies of

the useful signals into account and selects the threshold based on the noise level. A different

way of setting the threshold, which considers both noise and signal energy levels, is to utilize

a normalized threshold as follows

ξ = Pn + Tnorm

(
Ps+n − Pn

)
, (2.48)

where Pn and Ps+n are the average noise energy and average signal+noise energy, respec-

tively, and 0 ≤ Tnorm ≤ 1 denotes the normalized threshold. Pn can practically be estimated

utilizing the guard bands (GB) of the OFDMA signal. To be more specific, by averaging the

energies measured over the outermost subcarriers of left and right GBs, an estimate that is

affected least from the ICI can be obtained. Ps+n, on the other hand, can be roughly deter-

mined by averaging the energies measured over all subcarriers except the null subcarriers

in the guard bands.

There is a trade-off between probability of false alarms and probability of missed de-

tections in the selection of Tnorm. A too small Tnorm causes many unused subcarriers to

be detected as occupied and gives rise to a high PFA, whereas a too large Tnorm causes

PMD to increase. An analysis of the error probability with respect to the Tnorm employed

is provided in Section 2.7.
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2.6 Determining the Optimum Synchronization Point

Depending on its location relative to the primary receiver, a secondary receiver may

receive UL-OFDMA signals with (D1,i − θ) > NCP for certain users, where θ denotes the

synchronization point. Interference caused by these users may be significant, especially if

the received powers of these users are comparable to users whose (D1,i − θ) ≤ NCP. This

can be the case if the transmit powers of users are unequal, for example due to adaptive

power allocation. In a scenario where received powers from all users are similar regardless

of di, significant interference may be observed.

To have as many spectrum opportunities as possible, the opportunistic system has to

minimize the interference that is caused by the timing mismatch. As a solution, the syn-

chronization point can be determined according to D1,i of uplink users; θ may be shifted

towards a later point than the intuitive synchronization point, which is the delay of the first

arriving user. In practice, user location information (e.g. through GPS) might be utilized

by the secondary system to estimate the D1,i. In the following, a closed form equation

for the interference minimizing synchronization point is derived, denoted by θopt. As in

Section 2.4.1, the derivation is based on minimizing ICI.

Let S denote the point where the useful part of the received signal starts, i.e., S =

θ + Ncp. Assuming a single occupied subcarrier7 pi from each user, and replacing the Ncp

term in h2
i (p, k) given in (2.26) with S, the total ICI power is given by

∑

k 6=pi

I2
2,i(k) =

Nu∑

i=1

∑

k 6=pi

1− cos
(

2π(pi−k)
N (D1,i − S)

)

1− cos
(

2π(pi−k)
N

) , (2.49)

7Note that extension to analysis of interference caused by multiple subcarriers follows straight-forwardly
through including their effects in the summation below.
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where it is assumed that the Esc,i and Ni parameters are the same for all users. Differenti-

ating (2.49) with respect to S and equating it to 0, we have

d
∑

k 6=pi
I2
2,i(k)

dS =
Nu∑

i=1

∑

k 6=pi

sin
(

2π(pi−k)
N (D1,i − S)

)

cos
(

2π(pi−k)
N

)
− 1

2π(pi − k)
N

= 0 . (2.50)

Substituting the cosine and sine terms with the first two terms of their Taylor series expan-

sion, where pi − a < k < pi + a as explained in Section 2.4.1, we obtain

Nu∑

i=1

k=pi+a∑

k=pi−a

k 6=pi

2π(pi−k)
N (D1,i − S)− 1

3!

(
2π(pi−k)

N (D1,i − S)
)3

−1
2

(
2π(pi−k)

N

)2

2π(pi − k)
N

= 0 , (2.51)

which, after some manipulations, yields

Nu∑

i=1

k=pi+a∑

k=pi−a

k 6=pi

(
− 2(D1,i − S) +

(2π(pi − k)
N

)2 (D1,i − S)3

3

)
(2.52)

=
Nu∑

i=1

−4a(D1,i − S) +
Nu∑

i=1

(2π

N

)2 (D1,i − S)3

3
a(a + 1)(2a + 1)

3
(2.53)

=
Nu∑

i=1

−(D1,i − S) + R(D1,i − S)3 = 0 , (2.54)

where R = 1
36

(
2π
N

)2(a + 1)(2a + 1). Ordering the terms in (2.54) according to the powers of

S, a third order polynomial for S can be written as

NuS3 − 3
Nu∑

i=1

D1,iS2 +
(
− Nu

R
+ 3

Nu∑

i=1

D2
1,i

)
S −

Nu∑

i=1

D3
1,i +

1
R

Nu∑

i=1

D1,i = 0 , (2.55)

The only real root of (2.55) is Sopt, and the optimum synchronization point can be found

as θopt = Sopt −Ncp.

A critical point is that if there is a set of users Iu whose D1,i < θopt, then the D1,i term

in (2.55) needs to be replaced by D1,i − θopt for i ∈ Iu, and Sopt needs to be recalculated.

This is because for i ∈ Iu, the received symbol contains samples from the previous symbol,
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and hence, ICI and ISI occur. Therefore, if Iu 6= ∅, it is required to run (2.55) a second

time with D1,i modified for i ∈ Iu to obtain the correct S. In Section 2.7, the analytical

value of θopt obtained from (2.55) will be verified with computer simulations.

2.7 Simulation Results

Extensive computer simulations are performed. In the simulations, both an AWGN

channel and a realistic 6-tap multipath (MP) channel (ITU-R Vehicular A channel model)

are considered. Signal-to-noise-ratio (SNR) for user i is defined as E
{
Esc,i

}
/N0. PMD is

defined as the ratio of number of subcarriers detected as unused although they are used

to N . PFA, on the other hand, is the ratio of the number of subcarriers detected as used

although they are unused to N . We consider a traffic model where the primary users

are continuously transmitting. It is assumed that the scheduling decisions in the primary

network remain the same for a certain period of time. The secondary networks sense the

spectrum within a portion of this duration and utilize the spectrum opportunities before the

scheduling decisions in the primary network change. The simulations target the opportunity

sensing aspects of the spectrum, but how the opportunities are utilized is out of the scope

of this chapter.

2.7.1 Statistics of (2.17) with Timing Misalignment

The mean and variance of (2.13) for a three user scenario are plotted in Fig. 2.4 and

Fig. 2.5, where an AWGN channel is considered. It is observed that theoretical results match

well with simulations. While user-1’s signal arrives at the receiver with a delay smaller than

the CP, user-2 and user-3’s signals arrive at the receiver with delays larger than the CP.

Figs. 2.4 and 2.5 show that the mean and variance of the decision variable
∣∣∣Y (m)(k)

∣∣∣
2

in

unoccupied subcarriers adjacent to the subcarriers of user-2 and user-3 are larger than the

noise level due to the timing misalignment problem, which will increase the PFA. Another

important observation in these figures is that the variance of the decision variable at the

occupied subcarriers of a certain user may increase considerably with the delay experienced
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Figure 2.4 Theoretical versus simulated mean of (2.17) with timing misalignment. User
delays in terms of samples are δ̃1 = 10, δ̃2 = 40, and δ̃3 = 60, while the CP length is
equal to 32 samples. Subcarriers assigned to users are Γ1 = [−100,−99, ...,−69],Γ2 =
[1, 2, ..., 32],Γ3 = [50, 51, ..., 81], respectively.

by that user, which will impact the probability of detection of the occupied subcarriers.

How these factors affect the ROCs will be demonstrated in the next section.

2.7.2 Receiver Operating Characteristics With and Without ICI

The ROCs for the three-user scenario in Fig. 2.4 are illustrated in Fig. 2.6 and Fig. 2.7 for

two different SNR levels. Both theoretical and simulation results are shown for NBT, while

only simulation results are included for NT with Tnorm ∈ {0.2, 0.6}. For theoretical NBT,

(2.43) is used when all the users’ delays are within the CP (no ICI), while (2.44) and (2.45)

are used if any of the users’ delays are larger than the CP (with ICI). The theoretical plots

are well aligned with the simulation results, and it is seen that the Chi-square distribution

well models the distribution of
∣∣∣Y (m)(k)

∣∣∣
2

with or without ICI. For NBT, when the prop-

agation delay experienced by the users exceeds the CP, the PD corresponding to a certain

PFA decrease for all scenarios due to ICI.
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Figure 2.5 Theoretical versus simulated variance of (2.17) with timing misalignment.

When the NTs are used, on the other hand, the thresholds are not specifically condi-

tioned on the PFA values (captured by the x-axis on the plots), but they are set adaptively

based on (2.48). Then, the simulation results are averaged over several realizations in order

to obtain the average PFA and PD values for a given normalized threshold, which are plot-

ted in Fig. 2.6 and Fig. 2.7. It is observed that when the NT in (2.48) is used, the receiver

operates somewhere on the corresponding ROC curves (PD versus PFA relation captured

by equations (2.43)-(2.45)) at the same SNR. Note that for larger received signal energies,

the threshold ξ increases when an NT is used (i.e., the threshold is set adaptively), while it

is constant for NBT. Hence, by using NT, the PFA may be decreased with some acceptable

degradation in the PD. For example, for Esc,i/σ2 = 7 dB and Tnorm = 0.6 (with no ICI), we

have (PFA, PD) ≈ (0.140, 0.920) for NT. When the Esc,i/σ2 is increased8 to 10 dB, with

NT, the (PFA, PD) ≈ (0.040, 0.983). On the other hand, with NBT that uses the same

threshold as in the first case, we would have (PFA, PD) ≈ (0.140, 0.993), where 0.993 is

only slightly larger than 0.983, but 0.040 is considerably smaller compared to 0.140. Hence,
8Noise level is kept constant and received signal energies are increased.
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Figure 2.6 ROCs for Esc,i/σ2 = 7 dB.

through using an NT, considerable improvement may be obtained in the PFA with some

minor PD degradation.

2.7.3 Probability of Opportunity Detection Error with Timing Misalignment

In this section, two different subcarrier assignment schemes (SAS) are considered. The

first one is a blockwise assignment (BA), where each block is defined by Nsymb consecutive

OFDMA symbols and Nsc consecutive subcarriers. Fig. 2.8 illustrates the blocks that are

used in different standards9. The two BA schemes used in the simulations are WiMAX UL

ASP with Nsc = 9 and Nsymb = 6, and WiMAX UL PUSC with Nsc = 4 and Nsymb = 3. The

other SAS considered is a randomized assignment (RA), where each individual subcarrier

may be assigned to a different user. The RA scheme employed in the simulations has Nsc = 1

and Nsymb = 6. Although not used in any standard, this RA scheme is included in our

simulations to investigate the effect of using small number of subcarriers as an assignment

unit.
9PUSC: partial usage of subchannels, ASP: adjacent subcarrier permutation.
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Figure 2.7 ROCs for Esc,i/σ2 = 10 dB.

In the simulations, error probability in opportunity detection is computed as the sum of

PMD and PFA. For all assignment schemes used, the occupancy rate of the subcarriers is

kept at 50% to have equal contribution from PMD and PFA to the total error probability.

The maximum delay that the latest arriving user signal can have is τmax and it is considered

to be between 0 µs and 60 µs, where τ̃i ∼ U(0, τmax) for all users. Note that τmax values

greater than 11.2 µs exceed the CP duration.

Fig. 2.9 and Fig. 2.10 demonstrate the error probability for τmax values up to 60 µs both

for RA and BA, for block sizes 4×3 and 9×6 (shown in Fig. 2.8(c) and Fig. 2.8(d)), respec-

tively. The reason for excluding the simulation results for block sizes given in Fig. 2.8(a) and

Fig. 2.8(b) is their numerical closeness to the other two. Both in Fig. 2.9 and in Fig. 2.10, an

optimum Tnorm is used in all cases (see [5] for a detailed analysis of obtaining optimum Tnorm

in different scenarios). It is observed that in RA, ICI has a more destructive effect on the

detection performance. The two reasons for the error rates being higher in Fig. 2.10 than
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Nsymb = 3
Nsymb = 3 Nsymb = 6Nsymb = 7

Nsc= 12 Nsc= 9
Nsc= 3
Nsc= 4

Figure 2.8 Subcarrier assignment schemes in different standards. (a) A typical resource
block in LTE, (b) PUSC 1 in WiMAX, (c) PUSC 2 in WiMAX, (d) ASP in WiMAX.
For the ASP mode in WiMAX, different options for the block dimensions exist, where
Nsymb ∈ {1, 2, 3, 6} and Nsc = 54/Nsymb (i.e., number of subcarriers per block is fixed to
54).

in Fig. 2.9 are that Nsc is smaller leading to a higher number of affected empty subcarriers,

and Nsymb is smaller resulting in worse noise averaging.

The results of the error probability versus τmax analysis performed for the ESPRIT

algorithm (for a block size of 9× 6) are displayed in Fig. 2.11. It is observed that there is a

considerable performance difference between RA and BA in high SNR values. For low SNR,

ESPRIT performance is considerably poor regardless of the subcarrier assignment scheme

or the τmax value. A comparison of the error probabilities demonstrated in Fig. 2.9 and Fig.

2.11 indicates that the ESPRIT performance is inferior to the energy detection performance

with the given set of simulation parameters. The main reason for this fact is that there are

only 6 symbols over which the ESPRIT algorithm needs to obtain the covariance matrices

it requires. It is found that ESPRIT performance could compete with energy detection

only if the same subcarrier assignment were used over a very high number of symbols, so

that ESPRIT can compute the covariances reliably. The simulation results that compare
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Figure 2.9 Error probability versus τmax for energy detection with blockwise and randomized
assignments (Nsc = 9, Nsymb = 6).

the performances of these two algorithms up to 500 symbols for RA10, 20 dB SNR, and

τmax = 0 µs are plotted in Fig. 2.12. The energy detection curves are obtained for the

optimum Tnorm value for this scenario, which is 0.05, as well as two other non-optimum

values. It is shown that ESPRIT can outperform energy detection at a high number of

symbols, especially when Tnorm is not optimized. However, it is worth to note that ESPRIT

becomes less desirable at higher number of symbols due to its increased computational

complexity.

Another analysis is performed on the variation of the error probability with respect to

Tnorm in order to determine the optimum Tnorm in different practical scenarios. The error

probability versus Tnorm curves are shown in Fig. 2.13 for BA and in Fig. 2.14 for RA. The

curves that correspond to the lowest and highest τmax values considered in the simulations

(0 µs and 60 µs) are displayed for SNRs of 0 dB, 10 dB, and 20 dB, where all received
10Note that actually there is a sensing vs. throughput trade-off in cognitive radio networks, where there

exists an optimal sensing time that maximizes the throughput. Due to space limitations, the reader is
referred to [19] for further details.
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Figure 2.10 Error probability versus τmax for energy detection with blockwise and random-
ized assignments (Nsc = 4, Nsymb = 3).

user signals are assumed to have the same SNR. It is observed that, when SNR is high and

τmax is close to 0 µs, the optimum Tnorm is around 0.05, but a decrease in the SNR or an

increase in τmax changes the optimum Tnorm towards 0.5. Hence, Tnorm may need to be set

adaptively according to the SNR by utilizing the Ps+n and Pn measurements.

The error probability versus Tnorm analysis is performed for different practical macrocell

scenarios, as well. In these practical simulations, received user signal powers are distance-

dependent due to free space path loss. It is aimed to detect subcarriers of users whose

average SNR exceeds 5 dB. Fig. 2.15 shows the error probabilities obtained for BA (block

size 9×6), where the distances of 12 users to the secondary receiver are shown in the legend.

An important observation in Fig. 2.15 is that the optimum Tnorm is found to be around

0.05 in all practical scenarios considered, which matched with the high SNR, low τmax case

in Fig. 2.14.

The variation of interference power with respect to user delay is investigated in Fig. 2.16

for both AWGN and MP channels. The delays considered are round trip delays (RTDs),
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Figure 2.11 Error probability versus τmax for the ESPRIT algorithm with blockwise and
randomized assignments (Nsc = 9, Nsymb = 6).
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Figure 2.13 Error probability versus normalized threshold for blockwise assignment when
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Figure 2.14 Error probability versus normalized threshold for randomized assignment when
all user SNRs are the same; τmax = 0 µs and 60 µs (for SNR = 20 dB, 10 dB, and 0 dB).
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Figure 2.15 Error probability versus normalized threshold for 4 different practical scenarios.

and user signal powers are distance-dependent. Theoretical values for interference power

are computed using (2.26), as well, and they validate the simulation results. Note that for

the MP channel, interference power is usually higher, and interference is observed even for

delays shorter than Ncp due to the dispersiveness of the channel. In Fig. 2.16, the delays

yielding the highest interference power that are calculated using (2.37) are also indicated.

It is observed that (2.37) provides very accurate estimates.

Simulation results for the variation of interference power with respect to the synchro-

nization point (θ) are provided in Fig. 2.17 for case 1, where user distances vary from 150 m

to 1800 m (in steps of 150 m), and for case 2, where user distances vary from 500 m to

1600 m (in steps of 100 m). In both cases, all user signal powers are equal. Theoretical val-

ues are also obtained using (2.49) and they are shown to match with the simulation results.

It is revealed that the point where the interference is minimized (θopt) may be consider-

ably later than the delay of the first arriving signal, and the gain that can be obtained by

optimizing the synchronization point may be as high as 3 dB. In Fig. 2.17, the θopt values
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derived using (2.55) are indicated, as well. It is observed that (2.55) is rather accurate in

estimating θopt.

2.8 Concluding Remarks

In this chapter, the feasibility of spectrum opportunity detection in UL-OFDMA in the

presence of significant timing misalignments is investigated. Energy detection algorithm

is scrutinized through detailed theoretical analyses, which are verified through extensive

computer simulations. Statistics of the energy detection decision variable are derived in the

presence of ICI effects, and are then utilized to obtain the related ROCs. Performance of

the energy detector receiver is found to be acceptable, yielding a better performance than

the ESPRIT algorithm under the practical system parameters considered. A closed form

expression is obtained for the optimum UL-OFDMA synchronization point that minimizes

the interference on the cognitive radio. It is shown that it may be at a later point than the

arrival time of the earliest primary user’s signal.
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CHAPTER 3

INTERFERENCE SCENARIOS AND FREQUENCY REUSE FOR
NEXT-GENERATION FEMTOCELL NETWORKS

3.1 Introduction

The demand for broadband wireless data rates has been pushing the wireless technology

to new horizons. The data rate requirements for the next-generation wireless networks have

been specified under the standard referred as the IMT-Advanced, where, peak rates on

the order of 1 Gbps are targeted for low-mobility scenarios. Femtocells, which have been

recently introduced as a new class of personal-use base stations (BSs) [1]- [3], can help to

achieve some of the key requirements of the IMT-Advanced standard. For example, they

can improve the peak data rates by more than 40 times and the mean data rates by 200

times according to an analysis in [48]. They also eliminate coverage area problems for

indoor scenarios Some other benefits of femtocells include reduced capital and operational

expenditure, reduced bandwidth load and power requirements, increased average revenue

per user, and deployment in operator-owned spectrum. As illustrated in Fig. 3.1, a femtocell

BS (fBS) is connected to the mobile operator’s core network through existing broadband

Internet connection of the user. A macrocell-associated mobile station (mMS) does not have

to be a dual mode terminal in order to communicate both with an fBS and a macrocell BS

(mBS)1.

Besides their uses for enhancing communications, femtocells can interact with smart

home appliances and personal computers inside the house. This way, an fBS-centric network

of home electronics can be formed, which would enable the users to remotely connect to
1Note that the abbreviations H-UE, HNB, M-UE, and NB are used in 3GPP documents for referring to

femtocell mobile station (fMS), fBS, mMS, and mBS, respectively.
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any electrical device at their homes as shown in Fig. 3.1 2. Femto Forum, which is a

business organization established in July 2007 to promote femtocell deployments, provides

some non-communication-oriented femtocell applications in [50] that might be attractive to

consumers. In these exemplary applications, femtocell enables users to

• Automatically synchronize their music collection on their mobile device with their

home PC when a they return home,

• Control their TV from their mobile device,

• Leave virtual fridge notes to be delivered when the recipient returns home,

• Remotely control home appliances such as air conditioning when out of the house.
2The reader is referred to [49] for an in depth discussion of controlling home appliances in a smart home

environment.

Femto MSFridge Home PC

Air Conditioner
Laptop TelevisionFemto BS

Macro MS

InternetRouter
Macro BS

Mobile OperatorCore NetworkFemtocell Network Equipment
No dual-mode MS is needed for hand-off between macrocell BS and femtocell BS

Mobile user’s home

Figure 3.1 Femtocell deployment at homes. Connection between the macrocell and femtocell
is established through the Internet. Home appliances can be controlled by the user through
the fBS.
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Femtocell networks have been studied extensively under the 3GPP standard (see e.g., [51,

52], and the references therein), where wideband code division multiple access (W-CDMA)

is used as the physical layer technology. Even though system capacity and performance

have been analyzed for macrocells and femtocells in the presence of co-channel interference

(CCI) in [1, 3, 30], it can be said that these studies are more specific to CDMA based

systems. There are only limited studies on orthogonal frequency division multiple access

(OFDMA) based femtocell networks (e.g., based on the LTE or WiMAX standards3), which

offer greater flexibility in terms of allocation of frequency resources. In this work, the fo-

cus is on the next-generation OFDMA based co-channel femtocells, which share the same

spectrum with the macrocell network and aim an efficient utilization of spectrum resources

while causing minimum interference to the macrocell network. Some operators summarized

their views regarding LTE femtocells in the 3GPP standard as “femtocell can actively at-

tempt to configure its cell resources to minimize impacts to the operator-deployed cells, and

to avoid interference interactions with other home cells in its vicinity” [53] and “in order to

maximize system capacity and throughputs in the uplink, the fBS could decide to schedule

its users to transmit on those resource blocks that experience the lowest other cell/channel

interference” [54].

Some related work on avoiding interference in OFDMA networks through spectrum

sensing [20] and through intelligent radio resource allocation [55, 56] is available in the

literature in the context of cognitive radio systems; however, these work do not consider

system-specific issues related to femtocells.

Significant improvements in throughput per unit area have been demonstrated in [2]

when OFDMA-based WiMAX femtocells are used (on the order of 15 times throughput

improvement for dense-deployments in large cells); however, co-channel interference was

stated as an important factor that limits the overall network performance. In [57], trade-

offs between public access and private access were compared for WiMAX femtocells through

realistic system-level simulations, and public access was shown to yield considerably larger
3WiMAX uses OFDMA both in downlink (DL) and uplink (UL), while LTE employs OFDMA in DL and

single-carrier frequency division multiple access (SC-FDMA) in UL.
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throughput due to reduced interference. It was discussed in [58] that the throughput of a

näıve co-channel WiMAX femtocell deployment may suffer a lot from the interference; hence,

an interference avoidance technique that uses a dynamic frequency planning technique was

introduced, which considerably improves the throughput performance.

The major goal in this chapter is to introduce an interference avoidance framework be-

tween a femtocell and the mMSs, which is based on not using the resource blocks occupied

by closely located mMSs. Availability of macrocell frequency scheduling information is

considered, and this information is effectively utilized in conjunction with spectrum sens-

ing. Moreover, inter-carrier interference (ICI) from macrocell UL to the femtocell UL is

analyzed. The variation of ICI is with respect to mMS-to-fBS distance is investigated

via simulations, and how ICI affects the decisions about UL spectrum opportunities at a

femtocell is demonstrated.

The rest of the chapter is organized as follows. The system model is provided in Sec-

tion 3.2. CCI and ICI problems in the co-channel femtocell deployment are discussed in

Section 3.3. In Section 3.4, the proposed CCI avoidance framework is introduced. Simula-

tion results are demonstrated in Section 3.5. Section 3.6 concludes the chapter.

3.2 System Model

Since both the macrocell and femtocell networks considered are OFDMA based, their

signals can be modeled in the same way. Also, since the downlink signal has a model that

is similar to any of the uplink user signals (except for the frequency scheduling), only the

UL signal model will be given. Consider an OFDMA system with Nu users in the UL. The

sampled time domain signal at the transmitter of user i can be written as

x
(m)
i (n) =

√
Ptx,i

∑

k∈Γi

X
(m)
i (k)e

j2πkn
N ,−Ncp ≤ n ≤ N − 1, (3.1)

where m is the symbol index, Ptx,i is the transmit power for user i, k ∈ Γi is the subcarrier

index, Γi is the set of subcarriers of length Ni assigned to user i out of N total subcarriers,
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Ncp is the length of the cyclic prefix (CP), and X
(m)
i (k) is the data on the kth subcarrier

and mth symbol of the ith user.

The time domain aggregate received signal is the superposition of signals from all users,

each of which propagates through a different multipath channel and arrives at the receiver

with a delay δ̃i = dNτ̃i/T e, where τ̃i is the propagation delay experienced by user i, and

T is the duration of the useful part of the symbol. Then, aggregate discrete-time received

signal can be expressed as

y(n) =
Nu∑

i=1

yi(n) + w(n), (3.2)

where w(n) denotes the additive white Gaussian noise (AWGN), and

yi(n) =
√

Prx,i

L−1∑

l=0

α
(m)
i (l)×

∞∑
m=−∞

x
(m)
i

(
n−Dl,i −m(N + Ncp)

)
, (3.3)

where Prx,i is the received power for user i, L denotes the total number of multipath com-

ponents (MPCs), α
(m)
i (l) is the lth MPC for user i, and Dl,i = dNτl,i/T e+ δ̃i, where τl,i is

the delay of the lth MPC for user i. If Dl,i ≤ Ncp, the frequency domain signal for the kth

subcarrier of user i is given by

Y
(m)
i (k) =

√
Esc,iX

(m)
i (k)

L−1∑

l=0

α
(m)
i (l)e−

j2πkDl,i
N , (3.4)

where Esc,i is the average received energy per subcarrier for user i, which is equal to Prx,i.

This implies that the received symbol is only a phase rotated version of the transmitted

symbol.

3.3 CCI and ICI Issues in Femtocell Deployments

3.3.1 Deployment Configurations

There are two common spectrum access approaches for femtocell deployments: 1) Dedi-

cated channel access, and 2) Co-channel access. For dedicated channel operation, femtocells

are assigned a separate channel than that of the macrocell. Even though this approach
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mostly eliminates potential interference from the macrocell4, frequency resources are not

efficiently utilized. Co-channel deployment enables more efficient utilization of the avail-

able spectrum, where all the frequency resources of the macrocell are re-used only by the

few users of the femtocell. Co-channel deployments have been commonly preferred in the

prior-art works on femtocell networks due to more efficient utilization of the spectrum re-

sources (see e.g., [1, 30, 57]). For example, [1] reports simulation results with co-channel

femtocell access, where the median of the system-wide sum-throughput improves by nearly

250 b/s/Hz with respect to a scenario without femtocells. However, co-channel interference

still remains a critical problem, especially for scenarios where there are mMSs in the vicinity

of a femtocell. In the access mode referred as the closed-subscriber-group (CSG) mode [51],

close-by mMSs are not allowed to make hand-off to the femtocell network. Especially for

femtocells on the edge of the macrocell, this implies significant interference concerns be-

tween the mMSs and the femtocell. This is because during macrocell downlink, mMSs will

be interfered significantly by the femtocell, while during macrocell uplink, mMSs will be

causing significant interference to the femtocell (see e.g., the discussion on dead zones in [1]).

In [3, 57], it has been shown that due to such interference problems, open access femtocells

(which allow the hand-off of close-by mMSs to the femtocells) will provide better through-

put compared to CSG type of femtocells. However, open-access approach may also have

some concerns such as privacy issues, reduction of available bandwidth per femtocell user,

extra burden on the femtocell owner’s backhaul connection etc. One of the contributions of

the present work is a method for handling the interference from close-by mMSs, by avoiding

to use their frequency resources at the femtocell network, which will be discussed in more

detail in Section 3.4.

3.3.2 CCI Scenarios for mMSs

As discussed in the previous subsection, co-channel implementation brings the advantage

of efficient spectrum usage. However, it also results in CCI between the femtocell(s) and the
4Femtocells may still observe adjacent channel interference from the macrocell.
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Figure 3.2 All possible interference scenarios related to femtocell communications.

macrocell in various ways. In Fig. 3.2, different CCI possibilities are listed according to their

sources, their targets, and whether they occur in the DL or the UL. Interference scenarios

#1−#2 involve the CCI caused by the femtocell network to the macrocell network, scenarios

#3 − #4 involve the CCI caused by the macrocell network to the femtocell network, and

scenarios #5 − #6 are the CCI scenarios between close-by femtocell networks. All these

interference scenarios can be considered for both time division duplex (TDD) and frequency

division duplex (FDD) systems. It should be noted that these scenarios are based on the

rule that femtocell is not allowed to be in DL while macrocell is in UL (in TDD systems),
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or femtocell cannot use the UL frequency band of the macrocell for DL (in FDD systems).

In this chapter, we consider scenario #3, which is the interference to an fBS due to the UL

transmission of macrocell MSs, as well as #4, which is the interference from the mBS to

the fMSs.

The distance between an mMS and a femtocell network may be as large as twice the cell

radius. This suggests that even with co-channel operation, CCI between a femtocell network

and some far away mMSs may be insignificant. Hence, both in UL and DL, a femtocell

network may intelligently utilize the resource blocks of these far away mMSs, and avoid co-

channel operation with close-by mMSs in order to minimize the CCI problem. On the other

hand, since mBS is located at the center of the macrocell, its distance to any particular

femtocell is smaller than the cell radius. Hence, the received interference by the femtocell

is considerably strong and it needs to be cancelled at the fMSs. Some recommendations for

reducing these interference problems have been discussed in [51]. For example, intelligent

power control techniques may be employed by an fBS to manage interference received from

the macrocell or the neighboring femtocells. Open access operation is also described as a

possible solution to handle interference to/from a close-by mMS. Details of the method that

we propose to address CCI will be presented in Section 3.4.

3.3.3 ICI in the Uplink

A different type of interference that may be observed in next generation femtocell de-

ployments is the inter-carrier-interference (ICI) [1, 34, 59]. It is specific to the uplink and

it is caused by the timing misalignment of mMS signals at the femtocell BS. Typically,

the mMSs get synchronized to the mBS in the uplink through a ranging process, where

the mBS determines and announces the instant to start transmission for each mMS. Since

such a synchronization mechanism is not applicable for the fBS, the mMS signals arrive at

the fBS with different delays due to their different distances to the fBS, as illustrated in

Fig. 3.3(b).
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Assuming that the femtocell is synchronized to the first arriving mMS signal in the

uplink, if the delays of some of the other mMSs exceed the CP of the femtocell symbol

(see Fig. 3.3(c)), orthogonality between the subcarriers is lost. This causes inter-carrier

interference in the resource blocks that can be reused by the femtocell network, as illustrated

in Fig. 3.3(d). This is especially a critical problem for femtocells that are located closer to

the macrocell edge [34] due to the increased spread of the mMS arrival times.

Data (fMS UL)CP
τ1 τ2 τ3

(a)
(c) Timeτ4

Timeτ1 τ2 τ3 (b) Timeτ4τsync
Spread of mMS signalsarriving at fBS

TCP fMS signal arrival time at  fBSAll mMS signals within CP duration: No ICImMS signals outside CP duration: results in ICImMS signal arrival times at an fBS 
Spectrum observed
 by the  fBS m-RBsmMS3 (d) FrequencyICI m-RBsmMS4 m-RBsmMS1m-RBsmMS2 f-RBs

Figure 3.3 The relation between the arrival times of mMS signal delays, CP-size, and
ICI. (a) Structure of a femtocell symbol, (b) Signal arrival times from four different mMSs
at an fBS that are within the CP, (c) mMS signal arrival times that exceed the CP, and
(d) Illustration of ICI due to delays larger than the femtocell CP size. (m-RB: Macrocell
resource block, f-RB: Femtocell resource block)
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When there are some Dl,i > Ncp, the received signal on the kth subcarrier of user i can

be written by getting the FFT of (3.3) as follows [27]

Y
(m)
i (k) =

√
Esc,i

N

L∑

l=1

α
(m)
i (l)×

{ Dl,i−Ncp−1∑

n=0

x
(m−1)
i (n + N + Ncp −Dl,i)e−

j2πkn
N

+
N−1∑

n=Dl,i−Ncp

x
(m)
i (n−Dl,i)e−

j2πkn
N

}
. (3.5)

After plugging (3.1) into (3.5) and some manipulation, we have

Y
(m)
i (k) =

√
Esc,i

L−1∑

l=0

α
(m)
i (l)

{
Sd,i,l(k) + Ii,l(k)

}
, (3.6)

where the desired signal and the total ICI are respectively given as

Sd,i,l(k) = X
(m)
i (k)Ki,l(k)e

−j2πkDl,i
N (3.7)

Ii,l(k) =
1
N

∑

p∈Γi

p6=k

[
1− e

j2π(p−k)(Dl,i−Ncp)

N

1− e
j2π(p−k)

N

]

︸ ︷︷ ︸
hi(p,k)

(
−X

(m)
i (p)e−

j2πpDl,i
N + X

(m−1)
i (p)e

j2πp(Ncp−Dl,i)

N

)

︸ ︷︷ ︸
gi(p)

,

(3.8)

where

Ki,l(k) =
N −Dl,i + Ncp

N
× I(i, k) , (3.9)

with I(i, k) denoting an indicator function given by

I(i, k) =





1 , if k ∈ Γi ,

0 , if k /∈ Γi .

(3.10)

The user distance (di) has two opposing effects on the ICI power. Since user delays are

directly proportional di through D1,i = di/(c Ts), where c is the speed of light, and Ts is the
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InterferenceReuse the Spectra of Far-Away Users in the Uplink

mMSNo interference from a far away mMS to the femtocell
Figure 3.4 Femtocell communications in the uplink.

sampling time, a longer distance leads to a larger delay and hence a stronger ICI. On the

other hand, since Esc,i also depends on di through Esc,i = Ptxλ
2/

(
(4π)2dγ

i

)
, where λ is the

wavelength of the transmitted signal, and γ is the path loss exponent, weaker ICI should be

observed at large distances. Therefore, it is expected that the ICI power will be maximized

at a certain distance and then will start decreasing with di.

Knowledge about the variation of received signal as well as ICI powers with respect

to distance can be especially useful in the following specific scenario. Assume that the

macrocell BS provides the fBSs not only with the mMS scheduling information but also

with the geographical coordinates of the mMSs. Moreover, the fBSs are not capable of

spectrum sensing, which means that, for determining the spectrum opportunities, they

solely depend on the information that they receive from the mBS. In this scenario, the fBS
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mBS
fBSfMSReuse the Spectra of Far-Away Users in the Downlink

No interference from the femtocell to a far away mMSmMS
mMS

Downlink Communication
Figure 3.5 Femtocell communications in the downlink. Femtocell senses the spectrum
during UL, identifies the close by users through UL scheduling information, and avoids
using their spectrum specified in DL scheduling information.

can determine the usable occupied resource blocks according to the received signal power

versus distance information. The unoccupied resource blocks that should be avoided due

to ICI, on the other hand, can be found according to the ICI versus distance information.

3.4 Framework for Co-Channel Femtocell Operation

In a CSG femtocell deployment, the potential CCI problem between the femtocell and

mMSs both in UL and DL can be prevented by ensuring that femtocell avoids using the

macrocell resource blocks that belong to nearby mMSs as illustrated in Fig. 3.4 and Fig. 3.5
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Start sensing the macrocell signal Perform synchronizationDemodulate, decode, and interpretDL-MAP and UL-MAP No
Yes

Find close users’ subchannels from DL-MAP, find spectral opportunities avoiding those subchannels
Find close users’ subchannels from UL-MAP, find spectral opportunities avoiding those subchannelsAre there any changes in UL-MAPYes No Sense UL spectrum and determine close users Perform femtocell DL in macrocell DLPerform femtocell UL in macrocell ULAre DL-MAP and UL-MAP provided

Figure 3.6 Simplified flowchart for femtocell implementation. As an example, an IEEE
802.16e WiMAX system is considered, and DL-MAP/UL-MAP information are utilized.

in a simple way. A basic flowchart of the proposed co-channel femtocell implementation is

provided in Fig. 3.6.

The steps of the CCI avoidance based framework that we propose for the UL can be

summarized as follows. First, the fBS receives the mMS scheduling information from the

mBS. Then, it performs spectrum sensing for finding the occupied parts of the spectrum,

which are supposedly the resource blocks of nearby mMSs and determines the spectrum

opportunities by comparing the sensing results with the scheduling information. Finally,

the fBS schedules its fMSs over the spectrum opportunities determined.

The main points of handling the CCI in the downlink, on the other hand, can be

summarized as follows:

• In the uplink, fBS determines the occupied UL resource blocks via spectrum sensing

and utilization of the UL scheduling information. Sources of high signal power are

labeled as closely located users.

• The UL scheduling information indicates which resource blocks belong to which user.

This information can be used to individually identify each closely located user.
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• Utilizing the DL scheduling information obtained from the mBS, the DL resource

blocks that belong to the identified closely located users are found.

• fBS avoids using the resource blocks of close-by users not to cause any interference

to them in the DL. The interference from the mBS that hits the fMSs, on the other

hand, is cancelled via advanced cancellation methods by the fMSs.

An example for the CCI cancellation methods that can be employed by the fMSs is

introduced in [60], where a Least Mean Square (LMS) Maximum Likelihood Estimation

(MLE) method is proposed to estimate the time varying channels and the transmitted

symbols simultaneously. Also, an MLE based joint demodulation algorithm is provided

in [10] for receivers with multiple antennas where availability of reliable channel estimates

is assumed. A detailed discussion of these cancellation methods, however, is beyond the

scope of this chapter.

In the remainder of this section, two critical steps of the proposed co-channel femtocell

operation framework will be discussed.

3.4.1 Obtaining Scheduling Information from the mBS

Scheduling information of mMSs determined by an mBS indicates which resource blocks

are used by which mMSs. We consider two possible methods for the fBSs to obtain the

scheduling information of mMSs from the mBS. These two methods are receiving the

scheduling information through the backhaul, and capturing the scheduling information

over-the-air.

3.4.1.1 Communication of the Scheduling Information over the Backbone

As a first option, the fBS may obtain the scheduling information of the mMSs over the

backbone. In this method, upon initialization, fBS establishes a secure and stable backhaul

connection to the operator network and obtains information about the mMS resource blocks.

Depending on the availability of geo-location information, the mMS scheduling information

provided to an fBS can be limited to the mMSs that are at a certain neighborhood of that
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Figure 3.7 Combining scheduling information with spectrum sensing results. (a) Received
subcarrier powers and the energy detection threshold, (b) Scheduling information for mul-
tiple mMSs, where an LTE resource block size of 12 subcarriers is considered. (c) Energy
detection results matched with scheduling information, false alarms occur due to noise and
due to ICI, (d) Spectrum opportunities detected.

fBS. The mBS needs to make and then deliver the scheduling decision well ahead of the

scheduled transmission, the ahead time being greater than the latency of the backhaul.

Because the large ahead time makes it difficult for a channel dependent scheduler to

capture instantaneous channel variation, efficiency of such a scheduler is likely to be de-

graded. Also delivery of scheduling information consumes precious bandwidth of the back-

haul, which otherwise could be used to deliver the actual data. One possible improvement

to address this efficiency problem is to make ahead scheduling decision (and accompanied

sensing and comparison) only when it is necessary. For example, it can be done only in

the following cases: initialization of fBSs, handoff of mMSs from/to neighboring mBSs,

significant change of channel status, interference level, or resource requests, etc. Most of

the other times, channel dependent scheduler could make scheduling decision considering
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the instantaneous channel status. Resource sharing between the mBS and the fBS can be

made semi-static based on the most recent scheduling that was accompanied by sensing and

comparison.

Note that as an alternative to an fBS making scheduling decisions (based on its spectrum

sensing results and scheduling information from the mBS), the spectrum sensing results of

the femtocell may also be communicated to the macrocell network over the backhaul. Then,

the macrocell network may make global scheduling decisions and communicate these back

to the femtocells. However, considering large number of femtocells, communication of such

information may be costly, and an autonomous operation of the femtocell to make its own

scheduling decisions may be more practical.

In order to lower the burden of spectrum sensing for the femtocell and to limit the

information storage and comparison overhead for the network (such as in the latter scenario

discussed above), the scope of sensing, information storage, and comparison may be limited

to an agreed time interval that is communicated between an fBS and the macrocell network.

The agreement can be made such that the spectrum is sensed for only a certain amount of

absolute time or a certain number of frames, slots, or transmission time intervals (TTIs)

with respect to a particular mBS or fBS in the neighborhood. The scope of spectrum sensing

can be further limited in the frequency domain to a certain set of resource blocks (RBs) or

subcarriers to further decrease the burden of spectrum sensing.

3.4.1.2 Obtaining the Scheduling Information Over the Air

In the second method, the M-UE scheduling information is received from the mBS

over the air. For this purpose, fBS may connect to the mBS as an M-UE, and use this

connection in order to obtain the scheduling information. For example, the DL/UL-MAPs,

which carry the scheduling information of the macrocell mobile stations, are not encrypted

in WiMAX systems. If such information is made available over-the-air in next-generation

3GPP standards, it can be used for improving the spectrum opportunity detection results

at femtocells.
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3.4.2 Jointly Utilizing Scheduling Information and Spectrum Sensing Results

In a well designed OFDMA system, it is expected that almost all resource blocks are

allocated to users. Therefore, scheduling information that the fBS obtains from the mBS

would normally indicate that the spectrum is mostly occupied. However, since many of the

mMSs are far away from the fBS, their resource blocks can still be utilized at the femtocell.

Through spectrum sensing, an fBS can detect resource blocks that are either not used by

the macrocell network, or belong to far away users.

The occupied parts of the UL spectrum can be found by simple means such as energy

detection. Energy detection is performed by taking the Fourier transform of the received

time domain signal r(t), which yields a 1×N frequency-domain sample vector rrec. Then,

its magnitude squared is computed, and compared with an energy detection threshold ξ
(ED)
thrs .

Energy detection outputs for all the received subcarriers can be written as

ΓED = U
(
|rrec|2 − ξ

(ED)
thrs

)
, (3.11)

where U(x) denotes the unit step function that individually applies to all the elements of a

vector x, and ΓED is a 1×N vector with elements ∈ {0, 1} (a 0 implies that the subcarrier

is sensed as unoccupied, while a 1 implies that the subcarrier is sensed as occupied).

Once the spectrum sensing results are available, the fBS may compare the spectrum

sensing results with the UL scheduling information to decide about the spectrum opportu-

nities. Denoting the scheduling vector of a mMS-j with Γ(j)
sch (elements of the scheduling

vector are 0s and 1s), the decision for occupied resource blocks can be made as follows

Γused =
Nu∑

j=1

{
U

(〈ΓED,Γ(j)
sch〉

||Γ(j)
sch||1

− ξjnt

)}
× Γ(j)

sch , (3.12)

where U(x) is the unit step function that applies to all the elements of a vector x, 〈x,y〉 is

the inner product of vectors x and y, ||x||1 is the L1-norm of a vector x, and 0 < ξjnt < 1 is a

joint detection threshold. For example, if ξjnt = 0.5, this means that at least half of the sub-

carriers from a scheduling vector need to be sensed as occupied through energy detection,
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so that the mMS is identified as a nearby mMS. An empirically determined appropriate

value for ξjnt is 0.75.

Spectrum sensing results are impaired with missed detections (MD) and false alarms

(FA) due to additive noise. In the macrocell uplink, another reason for these impairments

is the ICI that is caused by the timing misalignment. If the interference level of an mMS

with an index-j is strong, it satisfies

U
(〈ΓED,Γ(j)

sch〉/||Γ(j)
sch||1 − ξjnt

)
= 1, (3.13)

which implies that if that mMS’s delay is larger than the CP of a femtocell signal, it may

also yield a strong ICI in some resource blocks leading to false alarms. Denote Πint as the

set of mMSs that satisfy the above equality. In order to detect if there are any resource

blocks that are subject to strong ICI, the femtocell checks the neighboring resource blocks

of mMSs that belong to the set Πint. Typically, ICI may impact only few resource blocks

within the neighborhood of a certain subcarrier. Letting NICI denote the number of resource

blocks where ICI may be considered as dominant, the set of resource blocks that will be

checked for the presence of ICI is given by the following vector

Γ̃sch(NICI) =
∑

j∈Πint

(
sign

[
NICI∑

k=−NICI

Lshift

(
Γ(j)

sch, k
)]
− Γ(j)

sch

)
, (3.14)

where Lshift(x, k) is a logical right-shift operator which shifts the elements of a bit-vector x

in k bit positions towards right, and sign(x) is a sign operator which operates individually

on all the elements of a vector x. Once the resource blocks that may be subject to ICI are

obtained in vector Γ̃sch(NICI), they are compared with the energy detection threshold ξ
(ED)
thrs

as follows

ΓICI = U
(
Γ̃sch(NICI)⊗ |rrec|2 − ξ

(ED)
thrs

)
, (3.15)

where ⊗ is used to indicate a term-by-term product. Then, all the occupied resource

blocks are captured by the sum ΓICI +Γused, whose complementary set yields the spectrum
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opportunities. Note that if any information about the delays from the mMSs are available,

such information can be utilized in obtaining the set Πint, where mMSs whose delays are

within the CP-length are not included into the set since they do not cause significant ICI

(they may still yield some ICI due to their multipath components).

As a simple example, consider the macrocell UL scenario illustrated in Fig. 3.7, where

a resource block size of 12 subcarriers as in LTE is considered. The fBS compares the

spectrum sensing results (shown in Fig. 3.7(c)) with the scheduling information (shown

in Fig. 3.7(b)) to determine the resource blocks that constitute spectrum opportunities.

Energy detection applied to the received signal (Fig. 3.7(a)) yields some FAs due to noise

and due to ICI as shown in Fig. 3.7(c). These false alarms may or may not cause a resource

block to be considered as occupied based on their number within each resource block. The

spectrum opportunities found for the illustrated scenario are shown in Fig. 3.7(d), where

scheduling information is plotted again for visual comparison. Note that the spectrum

sensing results indicate that the received signal power for mMS2 is relatively weak because

it is apparently a far-away mMS. This means that the resource blocks associated with mMS2

may be utilized by the femtocell both in the uplink and in the downlink.

3.5 Simulation Results

Computer simulations are performed to analyze the variation of ICI with respect to

distance as well as to quantify the effect of ICI on the successful detection of empty parts

of the spectrum.

The path loss model used in the simulations, which is derived from the Okumura-Hata

model, is obtained from [52]. The model, which is applicable to small to medium cities,

yields the path loss (in dB) as follows

L = 46.3 + 33.9 log(fc)− 13.82 log(hb) +
(
44.9− 6.55 log(hb)

)
log(d)− F (hM), (3.16)
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Table 3.1 Simulation parameters

Parameter Value
Center frequency (fc) 700 MHz, 2 GHz
Bandwidth (B) 5.714 MHz
FFT size 512
Symbol duration 89.9 µsec
CP sizes 1/32, 1/16, 1/8, 1/4
BS height (hb) 30 m, 50 m
MS height (hM) 2 m
MS transmit power 27 dBm
Antenna gain 16 dB
Wall penetration loss 15 dB
Number of Walls 1 (external)
Noise floor of fBS -174 dBm/Hz + 10log10(B) = -106.43 dBm

where fc is the center frequency, hb is the base station height above ground, hM is the

mobile station height above ground, and F (hM) is given by

F (hM) =
(
1.1 log(fc)− 0.7

)
hM − (

1.56 log(fc)− 0.8
)
. (3.17)

Concerning the scenario at hand, hb should be considered as the height of a femtocell BS,

which is found in a high-rise building. The parameters related to wave propagation and

path loss used in the simulations are mainly selected according to the values given in [3]

and [52]. All simulation parameters are listed in Table 3.1.

In Fig. 3.8, the variation of the ICI power depending on the round-trip-delay (RTD) is

plotted where the largest delay corresponds to a distance of 5 km. To obtain the simulated

results, the resource blocks allocated to the mMS2 are randomly spread around the given

spectrum, and ICI is measured by determining the total energy in the unused resource

blocks. The theoretical curves, on the other hand, are plotted utilizing the expressions

for ICI given in (3.8) to verify the simulation results. From the curves plotted, it can be

concluded that
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• ICI is typically close to zero for delays smaller than the CP size. Once the CP is

exceeded, there is a sharp rise in the ICI, but at larger distances ICI decreases due to

increased path loss.

• Under certain conditions, ICI power might be lower than the noise floor, i.e. the effect

of ICI can become negligible.

To investigate how the ICI power is affected by the changes in certain important system

parameters, the ICI versus delay analysis is performed for two different center frequencies

and two BS heights (employing a CP size of 32 samples). The results demonstrated in

show that employing a lower center frequency or having the BS at a higher location might

considerably increase the received interference power.

Another analysis is performed on the error probability in detecting the occupied and

unoccupied subcarriers in the received UL signal via energy detection. The error probability

is computed as the sum of probability of missed detection (PMD) and probability of false
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Figure 3.8 Variation of ICI power wrt. RTD for different center frequencies and femtocell
BS heights.
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alarm (PFA). PMD is defined as the ratio of number of subcarriers detected as unused

although they are used to the total number of subcarriers N . PFA, on the other hand, is

the ratio of the number of subcarriers detected as used although they are unused to N .

Two different subcarrier assignment schemes are considered. The first one is a blockwise

assignment, where the two schemes used in the simulations are an LTE resource block with

12 subcarriers and 7 symbols, and a WiMAX UL PUSC tile with 4 subcarriers and 3

symbols. These schemes will be shortly denoted as 12×7 and 4×3, respectively. The other

assignment scheme considered is a randomized assignment, where each individual subcarrier

may be assigned to a different user. The two randomized assignment schemes employed in

the simulations are 1× 7 and 1× 3. Although not used in any standard, these schemes are

included in our simulations to investigate the effect of using small number of subcarriers

as an assignment unit. The maximum RTD that the latest arriving user signal can have

(τmax) is considered to be between 0 µs and 60 µs, where all other user RTDs are between

0 µs and τmax. Note that τmax values greater than 11.2 µs exceed the CP duration.
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Figure 3.9 Error probability versus τmax for energy detection with blockwise and randomized
assignments.

64



Fig. 3.9 demonstrates the related simulation results, where the signals of all 12 users

are considered to have the same power. An optimum energy detection threshold is used

in all cases (see [5] for a detailed analysis of obtaining the optimum threshold in different

scenarios). It is observed that in randomized assignment, ICI has a more destructive effect

on the detection performance. This is because in randomized assignment, each occupied

subcarrier affects its adjacent subcarriers, some of which may be unoccupied. In the block-

wise assignment, however, the subcarriers that are strongly affected are limited to the ones

that are adjacent to each block. The two reasons for the error rates being higher for block

size 4× 3 compared to block size 12× 7 are that number of subcarriers is smaller leading to

a higher number of affected empty subcarriers, and number of symbols is smaller resulting

in worse noise averaging.

3.6 Concluding Remarks

In this chapter, a framework for an OFDMA based co-channel femtocell implementation

is provided for next-generation broadband wireless communication systems. Co-channel

interference is avoided by determining the spectra of closely located users and not using

their resource blocks both in the UL and DL. Moreover, the impact of ICI is taken into

account, which occurs due to asynchronous arrivals of mMS signals to an fBS. In order to

improve the spectrum sensing results, the scheduling information obtained from the mBS is

utilized. The proposed framework may help in solving the interference problems observed

in the CSG mode of operation in OFDMA based femtocell networks.

65



CHAPTER 4

UPLINK USER SIGNAL SEPARATION FOR OFDMA-BASED
COGNITIVE RADIOS

4.1 Introduction

Spectrum awareness is one of the fundamental features of cognitive radios (CR) [61]. It

has conventionally been considered as a radio’s being aware of the occupied and available

frequency bands within its target spectrum [62]. It is achieved through spectrum sensing,

where interference temperature is measured over the entire spectrum targeted, and the

parts whose energy level exceeds a certain threshold are considered to be occupied [63, 64].

A different aspect was added to the spectrum awareness concept in [65] by attempting to

characterize the source of the signal in the occupied spectrum. In this work, we propose

to enhance the spectrum awareness by providing the cognitive radios with the capability

of separating the primary user signals from each other in the uplink (UL). We consider

orthogonal frequency division multiple access (OFDMA) based CR systems that co-exist

with a primary network that is also OFDMA based1.

Due to the involvement of multiple user signals, the uplink of OFDMA systems poses

a number of challenges that do not exist in the downlink (DL). Most of these problems

including multiuser channel estimation [66], carrier frequency offset (CFO) estimation [67],

synchronization and symbol timing estimation [36, 68], multiuser interference cancellation

[69], and subcarrier and power allocation [70] are investigated extensively in the prior-

art. However, the problem of separating UL user signals without access to the subcarrier

assignment scheme (SAS) has not been investigated in detail in the literature.
1The proposed algorithm can be applicable to single carrier-frequency disivion multiple accessing (SC-

FDMA) based UL systems, as well, given that the resource blocks employed enable estimation of user specific
parameters.
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A practical cognitive radio application where user separation might be quite useful is a

co-channel femtocell network coexisting with a macrocell network [29, 31], both of which

have an OFDMA based physical layer. If the coexistence is based on a shared spectrum

approach where the femtocell utilizes the available parts of the macrocell spectrum in an

opportunistic manner, user separation can be very beneficial to the femtocell. How the user

separation and block size estimation algorithms proposed in this chapter might improve the

spectrum opportunity detection for femtocells is explained in Section 4.6. Other possible

applications regarding femtocell-macrocell coexistence are discussed in detail in [8].

User separation in UL-OFDMA was considered in [71] for interleaved OFDMA systems.

In [71], subcarriers allocated to different users follow a certain periodic structure, which leads

to a user specific CFO. Hence, by estimating the CFOs, different user signals are identified

and separated. In this chapter, however, we propose a semi-blind user separation algorithm

that can be applied to any SAS, which does not necessarily involve any periodicity. The

user separation algorithm considered in this chapter is based on exploiting the differences

in user CFOs and delays. In the uplink of an OFDMA system, CFOs of users vary due to

the differences in oscillator frequencies as well as the Doppler shifts caused by the different

velocities of users. User delays, on the other hand, vary due to the different distances of

users to the UL receiver.

In this chapter, we assume time synchronization to the first arriving UL user signal

as well as availability of information on the basic OFDMA system parameters such as

FFT size, sampling time, and cyclic prefix (CP) duration. Considering scenarios where

information about block dimensions is not available, a block size estimation algorithm is

devised that exploits the correlation between the pilot subcarriers within the same block.

A Gaussian approximation based approach is then introduced that tries to determine the

potential performance of the block size estimation algorithm theoretically.

The second algorithm proposed aims at user separation. It estimates the CFOs and

delays for each block separately by performing cross-correlations over pilot subcarriers,

and groups the blocks in the UL symbol according to their CFOs and delays using the
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Figure 4.1 (a) Flowchart for block size estimation. (b) Flowchart for user signal separation.

subtractive clustering and iterative partitioning techniques. This way, it is able to determine

the number of UL users and to separate their subcarriers. Flowcharts for both the block

size estimation and user separation techniques are illustrated in Fig. 4.1a and Fig. 4.1b,

respectively, which will be discussed in more detail in the later sections. Flowcharts for

both the block size estimation and user separation techniques are illustrated in Fig. 4.1a

and Fig. 4.1b, respectively, which will be discussed in more detail in the later sections.

The organization of the chapter is as follows. Section 4.2 provides the UL-OFDMA

system model. In Section 4.3, the block size estimation method is presented and a Gaussian

approximation approach to block size estimation is given. In Section 4.4, a mathematical

model of the proposed user separation algorithm is provided. In Section 4.6, the potential

contribution of block size estimation and user separation algorithms to spectrum opportu-
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nity detection of cognitive radios is explained. Simulation results are presented in Section

4.7, and Section 4.8 concludes the chapter.

4.2 UL-OFDMA System Model

Consider an OFDMA system with Nu users in the uplink. The sampled time domain

signal at the transmitter of user i can be written as

x(i)(n) =
√

Etx,i

∑

k∈Γi

X(i)(k)ej2πkn/N ,−NCP ≤ n ≤ N − 1, (4.1)

where Etx,i is the total transmitted energy per symbol for user i, N is the FFT size, Γi is

the set of subcarriers with Ni elements assigned to user i out of S used subcarriers, k ∈ Γi

is the subcarrier index, NCP is the length of the cyclic prefix, and X(i)(k) is the data on

the kth subcarrier of ith user.

A received symbol of user i after the FFT operation can be written as

R(i)(k) = X(i)(k) H(i)(k)e−j2πkτi/Nejπξisinc(πξi) ejπkδisinc(πkδi)ejΦi + I(i)(k) + W (k),

(4.2)

where ξi is the carrier frequency offset (normalized by the subcarrier spacing fs/N , where

fs is the sampling frequency), δi is the sampling clock error, τi is the timing offset of user

i, Φi is the random phase noise caused by the instability of user i’s oscillator, H(i)(k) is the

frequency selective channel of user i, I(i)(k) is the inter-carrier interference (ICI) of user

i, and W (k) is complex additive white Gaussian noise (AWGN). In the remainder of this

chapter, it will be assumed that the random phase noise as well as the sampling clock error

in (4.2) are negligible.

From (4.2), it is seen that the CFO has two effects on the received signal. First, it

results in amplitude degradation and a constant phase shift, and second, in ICI. Another

effect, which becomes apparent when the phases of identical pilot subcarriers in two adjacent

symbols are compared [72], is a phase shift that changes linearly over symbols. Taking this
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linear phase shift into account, the received signal over multiple symbols can be modeled as

Y (i)(m, k) = R(i)(m, k)ej2πmξi

(
1+

NCP
N

)
+ W (m, k)

=
[
X(i)(m, k)H(i)(m, k)ejπξisinc(πξi) e−j2πkτi/N + I(i)(m, k)

]
ej2πmξi

(
1+

NCP
N

)

+ W (m, k) , (4.3)

where m is the symbol index.

4.3 Block Size Estimation

Uplink OFDMA signal is composed of independent frequency allocation blocks (B’s)

such as bins or tiles (tile structure in WiMAX UL-PUSC is depicted in Fig. 4.2). A certain

user may use a number of these (not necessarily adjacent) blocks in the UL, depending on

its data rate requirements and scheduling information.

If the coexistence of the primary network and the cognitive radio is cooperative (which

might be the case, e.g., in a cognitive femtocell deployment where both the macrocell and

femtocells are operated by the same service provider), then the primary network might

provide information about its fundamental parameters such as N , NCP, and fs to the

cognitive radio. Although the CR might get informed about the dimensions of B, as well,

it is possible that the CR has to determine the block size blindly.

It is feasible to determine the block size of an UL-OFDMA system in a blind manner

utilizing any received signal Y (m, k) that contains an arbitrary number of symbols, given

that the two following assumptions are valid

• The pilot subcarriers are at the corners of the resource blocks, e.g., as in the PUSC

mode of WiMAX standard2.

• In the transmitter, the (BPSK modulated) pilot subcarriers within the same resource

block are assigned the same value.
2Extensions to other pilot structures may also be possible after certain modifications.
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Subcarriers

Figure 4.2 6 blocks in a WiMAX UL-PUSC system, where each block is a 4x3 tile, i.e.,
K=3 and M=2. Correlations for obtaining ξ̂ are illustrated in the first block, while the
correlations for obtaining τ̂ are illustrated in the second block.

Although the second condition causes some slight increase in the peak-to-average power ratio

(PAPR) of the UL signal, this increase is tolerable especially in a cooperative coexistence

scenario, where the primary network is willing to facilitate cognitive communications.

The pilots in each B are correlated with each other, whereas the data subcarriers are

uncorrelated. Also, there is not a considerable correlation between the pilots in different Bs
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since each B is assigned a random BPSK value for its pilots. The dimensions of B can be

determined by exploiting the correlation between the pilots within the Bs.

The vertical dimension of B can be found by performing autocorrelation over an en-

tire symbol (vertical correlation)3. Without taking the effects of delays and CFOs into

consideration, we define the absolute value of the vertical correlation as

∣∣∣R(V )(l)
∣∣∣ =

∣∣∣E
{
Y ∗(m, k)Y (m, k + l)

}∣∣∣ =





σ2
s + σ2

n l = 0

1
K+1 σ2

s l = K

0 otherwise

(4.4)

where l is the lag index, E{·} denotes the expectation operation, K is the separation between

the pilots in the same symbol of B, σ2
s is the average subcarrier power, and σ2

n is the noise

power. Note that the expectation is performed over all subcarriers, and the 1
K+1 term is

the ratio of the number of pilot pairs in a symbol (number of Bs) to the number of occupied

subcarriers S.

In a similar manner, the horizontal dimension of B can be obtained via an autocorrelation

over rows (horizontal correlation), where a row is the set of subcarriers at the same subcarrier

index k. The absolute value of the horizontal correlation is given by

∣∣∣R(H)(l)
∣∣∣ =

∣∣∣E
{
Y ∗(m, k)Y (m + l, k)

}∣∣∣ =





σ2
s + σ2

n l = 0

1
M+1 σ2

s l = M

0 otherwise

(4.5)

where M is the separation between the pilots in the same row of B. The expectation is

performed over all symbols involved in the correlation, and the 1
M+1 term is the ratio of the

number of pilot pairs (number of Bs) to the number of non-empty subcarriers in a row.

In both vertical and horizontal correlations, the desired peak is the one that is strongest

after the peak at the origin. In order to accentuate the desired peak, noise averaging

is performed by averaging R(V ) over all symbols available, and by averaging R(H) over
3It is assumed that the orientation of subcarriers versus symbols is as depicted in Fig. 4.2
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Figure 4.3 Normalized autocorrelations obtained utilizing a 60 symbol long signal (with
FFT size 512) for a block size of 4x3 at 30 dB SNR in an AWGN channel. (a) Vertical
autocorrelation. (b) Horizontal autocorrelation.

N rows. The desired peak in the vertical correlation is expected to appear at the Kth lag

yielding the vertical dimension of B as K+1. Similarly, the horizontal dimension is obtained

from the horizontal correlation as M+1.

An illustrative example of the vertical and horizontal correlations is provided in Fig. 4.3,

where the main peaks are normalized to 1. The block dimensions that need to be determined

is 4 subcarriers by 3 symbols (4 × 3) as in Fig. 4.2. Hence, peaks are observed in the 3rd

lag in the vertical correlation and in the 2nd lag in the horizontal correlation. In Fig. 4.3a

and Fig. 4.3b, the theoretical curves represent the values provided by (4.4) and (4.5), where

the delays and CFOs are not taken into account. Under the effect of delays and CFOs,

the second curves are obtained, where the desired peaks appear weaker than the theoretical

values. The reason for the weakening of the desired peaks is that the delays and CFOs

introduce different correlations to the subcarriers of each user, which, in effect, deteriorates
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the overall correlations of the pilots. Finally, the correlation values that are obtained in a

practical simulation are plotted, where the desired peaks are considerably weaker. This is

because in a practical scenario, the vertical correlations are averaged over all symbols, only

2
M+1 of which contain pilot subcarriers; and the horizontal correlations are averaged over

all rows, 2
K+1 of which contain pilots. Therefore, the heights of the desired peaks for the

practical case are 1
K+1 × 2

M+1 and 1
M+1 × 2

K+1 for the vertical and horizontal correlations,

respectively, which are equal to each other.

4.3.1 Gaussian Approximation for Block Size Estimation

In both vertical and horizontal correlations performed for block size estimation, each of

the samples in the output of the correlation can be approximated using Gaussian approx-

imation (GA). Ignoring the sample at the zeroth lag, all of the correlation samples have

a zero mean except the sample at the desired peak location. Therefore, the problem of

detecting a peak at the correlator output can actually be considered as finding a variable

with a non-zero mean within a group of zero-mean variables.

Let µl and σl denote the mean and the standard deviation of a correlation value R(l) at

the l-th lag, respectively. If lp denotes the lag corresponding to the peak of the correlation

outputs, we have µlp > 0, and µl is equal to zero otherwise. Taking into account that the

peak detection is performed after absolute value operation, the probability density function

of
∣∣R(lp)

∣∣ can be written as

P
(∣∣R(lp)

∣∣
)

=
1

σlp

√
2π

(
exp

(
−

(∣∣R(lp)
∣∣− µlp

)2

2σ2
lp

)
+ exp

(
−

(∣∣R(lp)
∣∣ + µlp

)2

2σ2
lp

))
. (4.6)

In order for
∣∣R(lp)

∣∣ to have the largest amplitude, all other samples at the other correlation

lags need to have absolute values that are smaller than
∣∣R(lp)

∣∣. This has a probability

of
[
1 − 2Q

(∣∣R(lp)
∣∣

σl

)]C−1

, where C is the half-length of the correlator output excluding

the sample at the zeroth lag. Therefore, the total probability of detection of peak of the
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correlation output can be obtained by the following equation

Pd ≈
∫ ∞

x=0

1
σlp

√
2π

{
exp

(
−

(∣∣R(lp)
∣∣− µlp

)2

2σ2
lp

)
+ exp

(
−

(∣∣R(lp)
∣∣ + µlp

)2

2σ2
lp

)}

×
[
1− 2Q

(∣∣R(lp)
∣∣

σl

)]C−1

d
∣∣R(lp)

∣∣ . (4.7)

Performing (4.7) for both horizontal and vertical correlations yields the probabilities of

detecting the corresponding peaks. Denoting these two probabilities as PV and PH , the

probability of detecting the block size correctly is simply equal to PV × PH .

Note that (4.7) is an approximation due to two primary reasons. First, as discussed

before, noise-cross-noise terms in the pilot correlations are approximated using a GA. Sec-

ondly, all of the correlation samples are assumed to be uncorrelated random variables, which

is not true in practice. The existence of delays introduces correlation between subcarriers in

the same symbol, and the CFOs result in correlation between subcarriers in adjacent sym-

bols. Despite these factors, it will be shown in Section 4.7 that the approximation yields

relatively close results to the simulation results, especially when the block size is estimated

over large number of symbols.

4.4 User Separation Method

The proposed user separation method is based on exploiting the differences in the τi’s

and ξi’s of different UL-OFDMA users. The first step of the method is to determine the

occupied B’s via energy detection. Then, for each occupied B, the UL receiver performs τ

and ξ estimation. Next, occupied B’s are clustered according to their τ and ξ values, where

each separate cluster yields the B’s that belong to a certain user. This way, Γ̂i, which is an

estimate for Γi, is obtained for each user i.

The total energy of each block B can be calculated as follows

Ψ(B) =
∑

(m,k)∈B

∣∣∣Y (m, k)
∣∣∣
2
. (4.8)
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This energy value is averaged over the subcarriers within the block and inputted to an

energy detector that employs a threshold ζ

Ψ(B)
(K + 1)(M + 1)

H1

≷
H0

ζ , (4.9)

where hypothesis H1 implies that block B is occupied, and hypothesis H0 implies that it is

not. Details of energy detection in OFDMA-UL, such as optimizing ζ can be found in [5].

Let β denote the set of all the occupied B’s that satisfy the hypothesis H1 in (4.9). Then,

for each B within β, carrier frequency offset and delay estimations are performed.

Regarding the CFO estimation, an important observation from (4.3) is that the linear

phase shift caused by the CFO affects both the desired signal and ICI the same way. There-

fore, a reliable ξ estimate can be obtained by correlating two identical pilot symbols [72], or

pilot subcarriers in different symbols as illustrated in Fig. 4.2. If µj denotes the indices of

symbols (within the jth block) that carry pilot subcarriers, and Πm,j denotes the subcarrier

indices of pilots in symbol m within B, a ξ estimate for B, which will be denoted as ξ̂j , can

be obtained by performing pairwise correlation between Πm,j in different symbols within

B, separated by M symbols. Ignoring the ICI and noise terms, this correlation would be as

follows

r
(ξ)
j (M) =

∑

m,k

Y ∗(m, k)Y (m + M, k), m ∈ µj , k ∈ Πm,j ,

= ej2πξM
(
1+

NCP
N

) ∑

m,k

|X(m, k)|2H∗(m, k)H(m + M,k)sinc2(πξ), (4.10)

where symbol m + M is within B. ξ̂j can then be obtained as

ξ̂j =
∠

(
r
(ξ)
j (M)

)

2πM
(
1 + NCP

N

) , (4.11)

where

∠
(
r
(ξ)
j (M)

)
= tan−1

(
Im

[
r
(ξ)
j (M)

]/
Re

[
r
(ξ)
j (M)

])
. (4.12)
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Table 4.1 Typical Doppler spreads and coherence times for WiMAX

Carrier Freq. Speed Max. Doppler Coherence Time
2.5 GHz 2 km/h 4.6 Hz 200 ms
2.5 GHz 45 km/h 104.2 Hz 10 ms
2.5 GHz 100 km/h 231.5 Hz 4 ms
5.8 GHz 2 km/h 10.7 Hz 93 ms
5.8 GHz 45 km/h 241.7 Hz 4 ms
5.8 GHz 100 km/h 537 Hz 2 ms

The timing offset causes a phase shift that changes linearly over the subcarriers, but is

independent from the symbol index. If pk,j denotes indices of rows with pilots within B,

a τ estimate for B, which will be denoted as τ̂j , can be obtained by correlating pilots at

different rows separated by K subcarriers (illustrated in Fig. 4.2) as

r
(τ)
j (K) =

∑

m,k

Y ∗(m, k)Y (m, k + K), m ∈ µj , k ∈ pk,j ,

= e−j2πτK/N
∑

m,k

|X(m, k)|2H∗(m, k)H(m, k + K)sinc2(πξ), (4.13)

where subcarrier k + K is within B. The τ estimate for B is obtained as follows

τ̂j =
∠

(
r
(τ)
j (K)

)

−2πK/N
, (4.14)

where

∠
(
r
(τ)
j (K)

)
= tan−1

(
Im

[
r
(τ)
j (K)

]/
Re

[
r
(τ)
j (K)

])
. (4.15)

As seen from (4.10), an important condition necessary for ξ̂j to be reliable is that the

channel can be considered constant during M symbols. Taking the WiMAX standard

as a reference, Table-4.1 [73] provides information about channel coherence times for two

different frequency bands. Given that the WiMAX symbol duration is around 0.1 ms, the

channel coherence time covers up to 20 symbols even at a speed of 100 km/h in the 5.8

GHz band. Similarly, for any typical OFDMA based standard, it can be expected that this

channel constancy condition is met.
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Equation (4.13) also introduces a similar requirement in the frequency dimension. A

reliable τ̂j can only be obtained if Hm(k) for pilots separated by K subcarriers are highly

correlated. Although this condition is met for any K in a single tap channel, in a frequency

selective channel, K is typically taken a small number (e.g., in the WiMAX UL-PUSC

system K is defined as 3).

Once ξ̂j ’s and τ̂j ’s are obtained for all elements of β, the user separation algorithm re-

quires that B’s are clustered according to their ξ̂j ’s and τ̂j ’s, taking both values into account

simultaneously. Each separate cluster generated by the clustering algorithm corresponds to

a different user i and yields its subcarrier allocation vector estimate Γ̂i.

The clustering method first yields an estimate for the number of users (N̂u), which

is determined by finding the cluster centers through the subtractive clustering algorithm

outlined in [74, 75]. A critical input required by the subtractive clustering algorithm is

the ratio of dimensions of the potential clusters, which will be denoted as Dξ̃ and Dτ̃ . In

the next step, utilizing N̂u, the separation is performed via iterative partitioning algorithm

discussed in [76, 77]. Iterative partitioning splits the input data into N̂u initial clusters.

Then, for each cluster, it computes the sum of absolute distances from each point in the

cluster to the cluster centroid, where the centroid is the component-wise median of the

points in the cluster. By minimizing the total of these sums in an iterative manner, the

clusters are determined.

Prior to applying the clustering method, the sets of ξ̂j ’s and τ̂j ’s, which will be denoted

as ξ̂ and τ̂ , respectively, need to be normalized. The normalization is mandated by the fact

that the range of numerical values for τ̂ is wider than the range of ξ̂s by at least two orders

of magnitude. In fact, clustering without normalization results in a user separation that is

solely based on τ̂ values4. In particular, we apply the following normalizations:

ξ̃ =
ξ̂ −min(ξ̂)

max(ξ̂)−min(ξ̂)
, (4.16)

4Computer simulations without applying any normalization resulted in poor user separation perfor-
mances.
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Figure 4.4 Clusters on the τ̃ vs. ξ̃ plane in a 10-user scenario (30 dB SNR is assumed for
all user signals over MP channel).

and

τ̃ =
τ̂ −min(τ̂ )

max(τ̂ )−min(τ̂ )
, (4.17)

respectively, which map both ξ̂ and τ̂ into the interval [0, 1]. Therefore, as shown in Fig. 4.4,

the clustering is performed on a [0, 1]× [0, 1] plane.

A second point related to the subtractive clustering algorithm is that it requires to

optimize the ratio of cluster dimensions for the best performance. This ratio (Dξ̃/Dτ̃ ) is

proportional to the ratio of variances of ξ̃j and τ̃j , i.e.,
(
σ2

ξ̃j
/σ2

τ̃j

)
, which are related to each

other as follows

σ2
ξ̃j

=
Var

(A(τ)
)

Var
(A(ξ)

) σ2
τ̃j

, (4.18)

where A(τ) and A(ξ) denote the sets of all ∠
(
r
(τ)
j (K)

)
’s and ∠

(
r
(ξ)
j (M)

)
’s, respectively. The

Dξ̃/Dτ̃ input of the subtractive clustering algorithm is set as
√

Var
(A(τ)

)
/Var

(A(ξ)
)
. From

(4.18), it is seen that the wider is the range of values that ∠
(
r
(τ)
j (K)

)
can take, the smaller
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is the Dτ̃ dimension of the clusters (the same analogy applies Dξ̃ dimension, as well). More-

over, (4.18) also indicates that σ2
ξ̃j

/σ2
τ̃j

can be found before performing clustering by simply

calculating the ratio of Var
(A(τ)

)
to Var

(A(ξ)
)
. An important assumption regarding (4.18)

is that the ξ and τ values of different users are uniformly spread within [min(ξ), max(ξ)]

and [min(τ),max(τ)], respectively.

A visual example that illustrates the clustering algorithm is provided in Fig. 4.4. It

shows the clusters in a 10-user scenario, where SNR is assumed to be 30 dB for all user

signals, and a multipath (MP) channel is considered along with the delay and CFO values

in Table 4.2. In Fig. 4.4, the large red dots constitute the cluster centers found through

subtractive clustering, and the markers surrounding each of them indicate the resource

blocks that belong to a certain user determined through iterative partitioning.

4.5 User Separation Applications for OFDMA-Based Cognitive Radios

OFDMA-based cognitive femtocells are systems where user separation can be useful in

various ways. This section provides examples of practical applications related to femtocell-

macrocell coexistence that can be realized when OFDMA based femtocells are equipped

with the capability of separating the macrocell mobile station (mMS) signals in the uplink.

4.5.1 Classifying the Source of Co-channel Interference

The spectral occupancy that the femtocell base station (fBS) observes in the received

uplink signal might be caused by mMSs or by other femtocells (fBSs or femtocell mobile

stations (fMS)). Information about the source of this co-channel interference (CCI) can be

beneficial to the fBS because if the occupant is another femtocell, it can negotiate sharing

the occupied spectrum with that femtocell.

The CFO, delay, and power measurements performed for user separation can be utilized

for classifying the source of CCI. Assuming that the mMSs will possibly have a high mobility,

while the locations of fBSs are fixed and the mobility of fMSs are limited, if the CCI is caused

by an mMS, the CFO, power, and delay values measured will be varying over time, whereas
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they will be fairly constant for an fBS, and displaying limited variations over time for an

fMS. Hence, based on these three criteria, the fBS should be able to decide whether the

source of CCI is an mMS or a femtocell.

To be able to track the changes in power and delay of a certain mMS, it is required to

perform the corresponding measurements over multiple consecutive frames, where a frame

is a certain number of adjacent symbols, for the same mMS. That means that the fBS needs

to keep track of the subcarriers assigned to the same mMS over multiple frames. This can

be achieved by building a chain of the clusters with close delay, power, and CFO values

in adjacent frames, assuming that the delay, power, and CFO of an mMS cannot change

sharply from one frame to another.

4.5.2 Hand-off Between Macrocell-BS and Femtocell-BS

In a co-channel femtocell implementation, the subcarrier assignment map of the macro-

cell may have been provided to the fBS. Even in this case, CFO, delay and power measure-

ments can be used to find the direction of movement of an mMS, e.g., it can be concluded

that an mMS is moving away from the fBS when its delay is increasing, and its power level

is decreasing.

Information about the direction of movement of mMSs can make the hand-off decisions

between fBS and mBS more robust. Hand-off decisions solely based on power measurements

can be misleading in case of strong fading, i.e., an instant fading in the signal power can

trigger an unnecessary hand-off. However, if the decrease in power is supported by an

increasing delay measurement, then the hand-off decision would be much more reliable.

Via user separation based on tracking the delays and carrier frequency offsets of macro-

cell users, the users that are just passing by from the vicinity of the femtocell can be

determined so that unnecessary hand-offs between the macrocell and femtocell are avoided.

In a case where a macrocell user needs to be handed over from a macrocell and multiple

femtocells are available, the most appropriate femtocell for hand-off can be determined by

these femtocells by sharing the user separation data they have.
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Figure 4.5 Femtocell operating in the middle of 3 mBSs in a system with frequency reuse
of 3.

4.5.3 Directing Some Femtocell Users to the Macrocell

Information about the number of macrocell users might be useful in a macrocell-femtocell

coexistence, where hand-offs can be performed conveniently between the macrocell and

femtocell. In case of excessive demand for femtocell communications, i.e. when there are

too many users connected to an fBS, it might be necessary to limit the number of femtocell

users in order to relax the computational burden on the fBS. In such a scenario, the fBS

can sense the macrocell uplink signal and determine the number of mMSs by applying user

separation. If it finds that there are too few active mMSs, it can direct some femtocell users

to the macrocell.

Note that an fBS may also reschedule its own users to a different frequency band, if an

mMS using a frequency band reused by the fBS moves closer to the fBS.
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4.5.4 Causing CCI to the Minimum Number of mMSs Possible

In a macrocell system with reuse factor not equal to 1, adjacent cells will be using sepa-

rate frequency bands. In a cellular system where reuse factor is equal to 3, a femtocell that

is located in the middle of 3 mBSs will be detecting signals of all these macrocells as illus-

trated in Fig. 4.5. In this scenario, a co-channel femtocell would be expected to determine

the occupancy of all three bands separately, and pick the band with the least occupancy to

operate. However, if the occupancy rates of all 3 target bands are approximately the same,

it would be reasonable that the fBS picks the band with the least number of users, which it

can detect through user separation, so that the number of macrocell users affected by CCI

is the smallest.

4.5.5 Determining the Close Users

In general, the mMSs that are close to the femtocell BS are determined according to the

power levels in the uplink signal. These decisions might be supported by the delay informa-

tion considering that the mMS transmit powers might not be identical, or a close mMS’s

signal might be shadowed. The necessary delay information for each mMS is obtained while

performing user separation.

Table 4.2 Simulation parameters

Parameter Value
FFT Size 512
Occupied subcarriers 360
NCP, CP Duration 1/8, 11.2 µs
Number of users 10
Sampling frequency 5.714 MHz
Symbol Time 100.8 µs
Bandwidth 5 MHz
CFOs (in Hz) [-500, -400, ..., 0, ... 400, 500]
User distances (in m) [100, 200, 400, 600, ..., 1800]
RTDs (in samples) [4, 8, 15, 23, 30, 38, 46, 53, 61, 69]
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Also, since user separation reveals which subcarriers belong to which mMS, the power

that will be transmitted by the femtocell on different subcarriers can be determined adap-

tively according to the relative distances of the mMSs.

4.6 Using Block Size Estimation and User Separation in Spectrum Opportu-

nity Detection

Opportunistic spectrum usage is one of the main goals of a cognitive radio. It requires

that the CR reliably determines the temporarily empty parts of the spectrum of a primary

network and utilizes them without causing any interference to the primary network. In

this section, we propose techniques that make use of the user separation and block size

estimation methods proposed in the previous sections in order to improve the opportunity

detection performance.

In an OFDMA based primary network, the spectrum opportunities correspond to the

unused subcarriers within the spectrum. A simple method that might be employed for

the detection of these opportunities by the cognitive radios is energy detection, where, the

unused subcarriers may be simply identified through hytpothesis test as follows5

∣∣∣Y (m, k)
∣∣∣
2 H1

≷
H0

ζ . (4.19)

However, with subcarrier based opportunity detection as in (4.19), each of the individual

subcarriers are subject to false alarms and mis-detections. As an alternative, if the resource

block size is perfectly known, the opportunities within the spectrum of a primary system can

be determined via tile-based energy detection using (4.9). Since all the subcarriers within

the same tile should all be affiliated with the same hypothesis (i.e., all subcarriers should

be occupied, or, all subcarriers should be non-occupied), probability of mis-detections and

probability of false-alarms will be minimized compared to the subcarrier-based detection.

If the resource block size is not known, on the other hand, block size detection algorithm
5Similar to (4.9), hypothesis H1 implies that a subcarrier is occupied, and hypothesis H0 implies that it

is not.
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as in Section 4.3 can be utilized to estimate the resource block dimensions and improve the

opportunity detection performance with respect to the subcarrier-based detection.

As a third technique, we also propose an additional method in order to decrease the

false-alarm probability of the block (tile) based opportunity detection with perfect block size

knowledge. In this approach, which we will call user separation based opportunity detection,

we consider each resource block with index j that is estimated to belong to hypothesis H1

(i.e., detected as occupied). Then, hypothesis for the resource block j is changed to H0 if

any of the following criteria is satisfied for the resource block:

• {τ̂ (1)
j , τ̂

(2)
j } < 0, i.e., the delay estimates for tile-j are smaller than 0.

• |τ̂ (1)
j − τ̂

(2)
j | > τthrs, i.e., different delay estimates for the same resource block have a

considerably large difference.

• |ξ̂j | > ξmax, i.e., the absolute value of the CFO estimate for tile-j is larger than the

maximum possible CFO value.

• |ξ̂(1)
j − ξ̂

(2)
j | > ξthrs, i.e., different CFO estimates for the same resource block have a

considerably large difference.

As will be shown in Section 4.7, the performance of user separation based opportunity

detection can be improved using the above tests that pose some constraints on the occupied

resource blocks.

4.7 Simulation Results

Computer simulations were performed in order to determine the success rate in blind

block size estimation, to test the performance of the proposed user separation algorithm,

and to determine the opportunity detection performance using various methods. In the

simulations, the basic system parameters are set according to the WiMAX UL-PUSC stan-

dard, and both an AWGN channel and a 6-tap multipath channel (ITU-R Vehicular A) are

employed. Detailed simulation parameters are provided in Table-4.2, where RTD stands for

the round-trip-delay.
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4.7.1 Block Size Estimation Simulations

The performances of the block size estimation method as well as the Gaussian approx-

imation are simulated using two separate Y (m, k)’s that are 60 symbols and 120 symbols

long.

The variation of the performances with respect to signal-to-noise ratio (SNR) is plotted

for both AWGN and multipath (MP) channels in Fig. 4.6 and Fig. 4.7, where the block

sizes to be found are 4× 3 and 6× 6, respectively.

The results show that the performance heavily depends on the block size. While the

simulated performance is 100% in all cases examined for the 4× 3 block, it can be around

70% for the 6 × 6 block when the SNR is low. There are two reasons for the relatively

lower performance for the 6 × 6 block. First, the number of symbols and rows with pilot

subcarriers is lower, which weakens the desired correlation peaks. And second, the physical

separation between the pilots is larger, which, in a MP channel, decreases the correlation

between them due to the variation of the channel in time and frequency. It is also worth to

note that the Gaussian approximation matches with the simulation results quite well for the

4× 3 block. The match between the simulations and the GA is still acceptable for the 6× 6

block when 120 symbols are available. When there are just 60 symbols, however, there is

an apparent difference between them. This is due to the fact that µlp cannot be estimated

reliably over 60 symbols, and also the correlation between the non-pilot subcarriers has a

non-zero value that is considerably larger than in case of 120 symbols.

4.7.2 User Separation Simulations

Performance of the proposed user separation algorithm was tested via simulations using

the following performance metrics:

Performance in finding the number of users:

PNu = 100×
(
1−

∣∣N̂u −Nu

∣∣
Nu

)
(4.20)
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Performance in finding the user subcarriers:

PΓ = 100×
∑

i,k δD

(
Γ̂i(k)− Γi(k)

)
∑

i Ni
, (4.21)

where δD is the Dirac delta function. The performances obtained in AWGN and MP chan-

nels using a 4× 3 block are demonstrated in Fig. 4.8. The assumption in the corresponding

simulations was that the received SNR is the same for all users regardless of their distance6.

The performance at each SNR is maximized by employing the optimum cluster dimension

given by
√

Var
(A(τ)

)
/Var

(A(ξ)
)
. The results show that better than 90% user separation

performance is achievable for sufficiently high SNR values.

In Table-4.3, additional simulation results are provided for a practical scenario, where

the received powers from different users depend on their distances to the receiver as specified

in Table-4.2 (free space path loss model is considered). The transmission power of users

is 27 dBm, and the received signal SNRs descend from 30 dB towards 5 dB. The blocks

whose power levels do not exceed a certain threshold are discarded as in (4.9). Simulation

results in Table-4.3 show that PNu values that exceed 80% and PΓ values close to 80% are

achievable.

Another analysis is performed to investigate the effect of number of users on the per-

formance in finding the user subcarriers. PΓ is obtained for Nu values 5, 10, and 20. The

CFOs of users are equally spaced between -500 Hz and 500 Hz, while the user distances are

equally spaced between 2000/Nu and 2000 meters. The PΓ curves obtained for both AWGN

and MP channels are shown in Fig. 4.9. It is observed that a smaller user number such as 5

yields considerably higher performance, especially in AWGN channel. It is also important

to note that when the SNR level is high enough, even 20 user signals can be separated with

an accuracy rate that exceeds 80%.
6Note that if the cognitive radio performing user separation is close to the primary receiver, such a

scenario may be valid. Due to power control, the SNRs of the received UL signals at the primary receiver
(e.g., a macrocell BS) would be similar; hence, a close-by cognitive radio (e.g., a femtocell BS) would also
observe similar SNR levels.
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4.7.3 Opportunity Detection Simulations

The results of the opportunity detection simulations are demonstrated in Fig. 4.10 and

Fig. 4.11. The error probability is computed as the sum of probability of false alarms (PFA)

and probability of missed detections (PMD). PFA is the ratio of the number of subcarriers

detected as used although they are unused to N , whereas PMD is defined as the ratio of

number of subcarriers detected as unused although they are used to N . In the related

simulations, the occupancy rate of the subcarriers is kept at 50% to have equal contribution

from PMD and PFA to the total error probability.

In Fig. 4.10, the error probabilities for four different methods are shown for an optimum

(ζ = 0.15) and for a non-optimum (ζ = 0.50) normalized threshold value, where the block

size of the primary system is 4x3. The methods that are employed are subcarrier based, user

separation based, tile based with known tile size, and tile based with estimated tile size. It is

observed that the subcarrier based method yields the worst performance, while the tile based

method performs the best. Therefore, if the tile size is not known, instead of employing

the subcarrier based method, first the proposed tile size estimation can be performed and

then the tile based detection method can be applied. Given that the proposed tile size

estimation for this small block size is very accurate, this way, the detection performance

can be made as good as in the known tile size case. User separation based method is seen

to introduce some errors and to degrade the performance when the threshold is optimum.

If the optimum threshold is not available and an intuitive value such as 0.5 is employed,

however, then the user separation based method improves the performance.

Error probability curves obtained for a block size of 6x6 are demonstrated in Fig. 4.11.

Being different from the 4x3 case, for a 6x6 block, the block size estimation method does

not perform very well. Therefore, the subcarrier based detection method is superior to the

tile based method with tile size estimation. It is noteworthy that the user separation based

method is slightly superior to the tile based method for both optimum and non-optimum

thresholds.
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Figure 4.6 Simulation and Gaussian approximation results for estimating the size of a 4x3
block.
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Figure 4.7 Simulation and Gaussian approximation results for estimating the size of a 6x6
block.
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Figure 4.8 Performances in finding the number of users and separating the user subcarriers
in AWGN and MP channels assuming the same SNR for all users.
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Figure 4.9 Performances in separating the user subcarriers in AWGN and MP channels for
various numbers of users.

90



10 15 20 25 30
0

5

10

15

20

25

SNR (dB)

E
rr

or
 P

ro
ba

bi
lit

y 
(%

)

 

 
Subcarrier based (ζ=0.15)
User separation based (ζ=0.15)
Tile based (ζ=0.15)
Tile based with tile size detection (ζ=0.15)
Subcarrier based (ζ=0.5)
User separation based (ζ=0.5)
Tile based (ζ=0.5)
Tile based with tile size detection (ζ=0.5)

Figure 4.10 Error probability in detecting the spectrum opportunities using four different
methods for a resource block size of 4x3.
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Figure 4.11 Error probability in detecting the spectrum opportunities using four different
methods for a resource block size of 6x6.
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Table 4.3 User separation performances when received powers depend on user distances

AWGN MP
PNu 86.07% 81.25%
PΓ 78.55% 77.78%

4.8 Concluding Remarks

In order to increase the spectrum awareness of OFDMA based cognitive radios, sep-

aration of primary user signals in the uplink is proposed. An algorithm is devised for

determining the frequency allocation block dimensions blindly. The probability of finding

the block size correctly is obtained through a Gaussian approximation based approach, and

it is compared with the simulated performance of the devised algorithm. Moreover a user

separation method is proposed, and a rather high performance is obtained in practical com-

puter simulations proving its feasibility. Spectrum opportunity detection is highlighted as a

potential application area where the proposed methods might be considerably useful. The

improvement in opportunity detection performance of cognitive radios is quantified through

simulations and shown to be significant.
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CHAPTER 5

RECEPTION OF MIMO-OFDMA SIGNALS WITH A SINGLE CHANNEL
RECEIVER

5.1 Introduction

Orthogonal frequency division multiple accessing (OFDMA) is expected to be the en-

abling technology for the fourth generation (4G) wireless communication systems. One of

the features that make OFDMA the primary choice for 4G is its compatibility with the

multiple input multiple output (MIMO) technology [78, 79], because MIMO has a very

significant potential for enhancing wireless systems in capacity, data rate, and coverage

aspects.

MIMO adds the multiplexing gain to the proven transmit or receive diversity gains

of single input multiple output (SIMO) and MISO systems as a result of operating on a

number of parallel channels [80]. It can achieve the high spectral efficiency desired by future

bandwidth-greedy wireless systems at the expense of increased hardware and computational

complexity. MIMO is especially important for OFDMA based WiMAX systems because it

is a part of the IEEE 802.16 and 802.16e standards [81, 82], which are considered suitable

candidates for 4G [83, 84].

Optimally, MIMO signal reception is performed either by using multiple receivers or a

receiver with multiple RF front-ends. In both cases, the hardware cost is a significant con-

cern. In this chapter, an attractive solution to this concern is provided that employs a single

receiver. Considering a WiMAX MIMO system, the primary RF front-end impairments are

analyzed, and a guide to estimate each of them is provided. The possible reasons for differ-

ent impairments in different transmitter branches are addressed. Furthermore, a complete
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procedure that explains how to process WiMAX MIMO signals with a single receiver is

given. The procedure handles the signal from its reception up to the symbol decision stage.

The flow of the chapter is as follows. Section 5.2 discusses the primary RF front-end

impairments. Section 5.3 provides a guide to estimate and remove the effects of RF front-

end impairments. Section 5.4 analyzes the challenges of MIMO systems in comparison to a

single channel system in detail. Section 5.6 describes how to handle WiMAX MIMO signals.

Section 5.7 provides the details about combining the transmitted WiMAX MIMO signals

from two transmitter branches. Section 5.9 concludes the chapter.

5.2 Signal Model and the Primary RF Front-end Impairments

In a MIMO-OFDMA system, the received signal contains the effects of various RF

front-end impairments. These effects have to be determined and removed before making

the symbol decisions. The detailed features of RF impairments have been addressed in [85]

and [86]; here, the essential impact of each of them will be summarized so that the reader

can follow the MIMO solution that will be presented.

If Xm(k) is the transmitted OFDMA signal in the frequency domain, then, ignoring the

inter-carrier interference (ICI) effects, the received signal can be modeled as [87]

Ym(k) = Xm(k) Hm(k) F (k) exp(−j2πkτ/N) exp(jπΩT )sinc(πΩT )

× exp(−jπkδ/fs)sinc(πkδ/fs) exp(j2πkΦm) + Nm(k) , (5.1)

where m is the symbol index, k is the subcarrier index, T is the symbol duration, N is the

FFT size, and fs = N/T is the sampling frequency. The remainder of the parameters and

their effects are as follows:

• τ : The time offset between the transmitter and receiver. It causes a phase shift

that increases linearly over the subcarriers, but does not change from one symbol to

another;
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• Ω : The frequency offset between the oscillators in both sides. It results in a drift that

increases with time. All subcarriers in the same symbol experience the same amount

of shift due to the frequency offset;

• δ : The inaccuracy between the sampling clocks of the transmitter and receiver. The

sampling clock error causes a phase shift in frequency, which grows both with time

and with frequency;

• Φm : Random phase noise, which is caused by the instability of oscillators. It leads to

a phase shift that is the same for all subcarriers in the same symbol, but the amount

of this shift varies between symbols because of the randomness of the phase error;

• F (k) : The effective combined frequency response of the analog filters employed in

both the transmitter and the receiver;

• Hm(k) : Frequency selectivity and time dependency of the channel. Because of its

frequency selectivity, the channel affects the subcarriers differently. It may also vary

over time, especially if a mobile channel is considered;

• Nm(k) : Additive complex noise term.

5.3 Estimation and Removal of Impairments in the SISO Case

The main factors that lead to impairments in the received signal were introduced in

the previous section. In the following, processing the received signal in the SISO case

will be addressed. A step-by-step guide that provides the order and short explanations of

the necessary impairment estimations is given below. As it will be clear, the order of the

estimations is important because each estimation assumes that the other errors that affect

the subcarriers in the same way have already been removed. So, after each impairment

estimation, the corresponding effect has to be removed from the received signal before

proceeding to the next step.
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• Packet Detection: The beginning and the end of the signal packet is determined by

utilizing a simple energy detection method. The threshold may have to be modified

adaptively according to the received noise power. This initial step serves as a rough

timing estimation.

• Frequency Offset Estimation (Time Domain): The received time domain signal Y (n)

is correlated with Y ∗(n + D)

Z(n) =
∑

n

|X(n)|2e−j2πΩD , (5.2)

where D is the symbol length, and |X(n)| is the baseband transmitted signal. Owing

to the (identical) pilot subcarriers that are repeated regularly in time, Z(n) can be

utilized to obtain the frequency offset by computing Ω = ∠Z(n)/− 2πD.

• Finer Frequency Offset Estimation (Frequency Domain): After converting the received

time signal into the frequency domain, the values of all subcarriers including the pilots

become available. Since the effect of frequency offset changes from symbol to symbol,

a finer estimate (Ω̃) can be obtained by correlating the pilots in two different symbols

separated by M symbols (P1,k and P ∗
1+M,k)

Z(k) =
∑

k

P1,kP
∗
1+M,k = e−j2πΩM

∑

k

|P1,k|2, (5.3)

and then computing Ω̃ = ∠Z(k)/− 2πM .

• Finer Timing Offset Estimation: If the received signal contains a preamble (or a

midamble) part that has been added to the signal to facilitate synchronization, a

finer timing estimation can be done. Since the transmitter generates the preamble

according to a certain standard, the same preamble can be generated in the receiver

part, as well. Correlating the preamble with the time domain signal yields a very

accurate timing estimation.
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• Sampling Clock Error Estimation: Error in the sampling clock rate adds a phase

shift that increases both over symbols and subcarriers. Since the effect of frequency

offset (on the symbols) has already been removed, the clock error should be reliably

determined by correlating pilots in different symbols.

• Slope Estimation: A time offset may still exists at this point, especially if no preamble

was sent, since the packet estimation does not determine the signal starting point very

accurately. This time offset will indicate itself as a phase shift that increases with a

certain slope over subcarriers. Since the impact of the sampling clock error was already

canceled in the previous step, this slope can be estimated by comparing the phases of

the subcarriers in the same symbol.

• Random Phase Error Estimation: To determine the random phase error, pilots in

different symbols have to be correlated. This correlation yields the phase error between

the two correlated symbols. Since the amount of error changes randomly from one

symbol to another, it has to be determined separately for each symbol.

• Channel Estimation: Channel estimation is done using again the pilots, which should

be now free from all the impairments mentioned so far. The channel estimates for

the subcarriers between the pilots are obtained by interpolating the pilot values in a

reasonable way.

5.4 Challenges in MIMO Compared to SISO

As opposed to systems with a single input, in MIMO systems, the received signal in-

cludes simultaneously transmitted data from multiple transmitter antennas. Therefore, the

measured error vector magnitude is based on a combined error vector, which cannot be

separated into contributions from separate antennas/transmitter branches. However, un-

der some circumstances, the impairments caused by different branches differ substantially,

and a common EVM estimation fails to reflect the error magnitude for all of the branches

accurately.
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In what follows, the possible factors that lead to different impairment values will be

discussed. The MIMO-OFDMA system considered here has two transmitter branches and

one receiver branch.

5.4.1 Time Offset Between the Branches

In MIMO signal reception, it is desirable to assume that signals from the two transmitter

branches are received simultaneously. However, there may be a time offset between the

received signals if

• the transmitters are not well synchronized with each other,

• or if the distances from each transmitter to the receiver are considerably different from

each other.

In case of a time offset between the transmitter branches, the timing estimation done by

the receiver will not be accurate for at least one of the branches.

5.4.2 Employing Separate Clocks

The oscillator that is needed to generate the sampling instants of the digital-to-analog

converter (DAC) may be common to both branches, or each branch can use a separate

oscillator. If two separate oscillators are employed serving as sampling clocks, there will be

an unavoidable inaccuracy between the sampling periods. This fact will lead to different

sampling clock errors for each branch.

Although it is more reasonable to employ a single clock for the entire transceiver, in

some cases, the different transmitter branches may run separate clocks. This will be the

case if the signals are generated by different sources such as two vector signal generators,

or two collaboratively operating mobile devices each with a single antenna. Even if there

is a single unit with multiple output branches, since each branch will have its own DAC,

there will be still two different sampling clock errors, unless the DACs are run by a common

external clock input.
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5.4.3 Using Separate IQ Modulators

The use of separate IQ modulators in each transmitter branch has various impacts. One

is that it causes the IQ impairments of each branch to be different. Another one is observed

on the frequency offset. Since it is certain that the output frequencies of the oscillators

in each IQ modulator can never be exactly the same, the signals from each branch have a

different frequency offset in the receiver part. Another effect of separate IQ modulators is

seen on the random phase error. Most local oscillators display an inconsistent behavior in

time in terms of the output frequency, i.e. their frequency makes slight variations in time.

This impairment results in phase errors that are random in nature. Therefore, employing

two separate local oscillators will lead to two independent phase errors.

5.4.4 Using Separate RF Components

Since each transmitter branch employs its own mixer, analog RF filters, power amplifier,

and antenna, the signals from each branch will be modified differently before being radiated

into the air. The good thing about the different RF sections is that their effects can be

folded into the channel. Therefore, channel estimations can be considered to reflect the

effect of the RF sections on the received signals.

5.5 Detecting the Impairment Differences by Examining the Constellation Di-

agram

When dealing with MIMO signals, having an idea about the potential impairment differ-

ences between the transmitter branches can facilitate the estimation and removal of these

impairments considerably. If there is a vector signal analyzer (VSA) available to exam-

ine the received signal, Some of these differences can be recognized by investigating the

IQ constellation diagram after the removal of offsets from the received combined signal.

How the constellation looks for a QPSK modulated space-time transmit diversity (STTD)

MIMO signal after the removal of offsets (and before the removal of the channel effects, i.e.

equalization) is shown in Fig. 5.1. Note that there are 16 constellation points (as well as 2
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Pilots
Figure 5.1 The constellation for two QPSK modulated STTD signals before equalization.

collections of pilot symbols and the point in the middle caused by the non-allocated sub-

carriers) in the diagram. There are 16 points because each of the 4 constellation points in

QPSK are summed vectorially with another 4 points. Two of these quadruples are explicitly

indicated with rectangles in Fig. 5.1.

Simulations have been run aiming to see what kind of effects are observed in the con-

stellation when there are certain differences between the two transmitted signals. For this

purpose, various differences were intentionally set between the two signals. When perform-

ing the corresponding simulations, it was assumed that one of the signals is not corrupted

(does not have an impairment) but the other one does. That means, one of the signals has

no IQ imbalance, but the other one has 30% IQ imbalance, etc. It should be also noted

that only one type of impairment difference is assumed to exist at a time; they have been

examined one by one, because it may not be possible to make a reliable guess by simply

looking at the constellation if multiple such impairment differences exist at the same time.
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Pilots
Figure 5.2 π/12 phase difference between the two transmitted signals.

In Fig. 5.2, the effect of π/12 phase difference between the two transmitted signals is

observed. The rotation of the quadruples around their center is apparent. The same effect

can be verified by checking the position of the pilots. Fig. 5.3 shows two signals with 30%

IQ imbalance difference. In Fig. 5.4, the effect of π/12 quadrature error difference between

the signals is shown. Finally, in Fig. 5.5 two signals with 0.002 radian frequency offset

difference are shown. Frequency offset has a similar effect to phase difference in terms

of rotation of quadruples. However, since the phase shift caused by the frequency offset

increases over symbols, a clear shift is seen in the constellation points. Apparently, each

of these impairment differences has a different effect on the constellation diagram, and

studying these visual effects, one can make a strong guess about the possible problem with

the received MIMO signal by just examining the constellation diagram.
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Pilots
Figure 5.3 30% IQ imbalance difference between the two transmitted signals.

5.6 Procedure to Handle WiMAX MIMO Signals

Although the term MIMO implies usage of multiple receivers, it is possible to process

MIMO signals with a single receiver if there is a solution to the fundamental issue how to

separate the constellations and the EVM contributions of each transmitter branch. In the

remainder of this chapter, a WiMAX system will be considered as an example to MIMO

systems using OFDMA. To be more specific, space time coded (STC) downlink (DL) and

uplink (UL) WiMAX signals with PUSC permutation will be analyzed more closely. The

(frequency domain) allocations of pilot subcarriers in DL-PUSC and UL-PUSC are shown

in Fig. 5.6 and Fig. 5.7. In these allocation maps, it is seen clearly that each branch is

transmitting a separate set of pilots that are orthogonal to each other either in frequency or

in time. Basically, this is the feature that enables separating the impairment contributions

from separate branches.
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Pilots
Figure 5.4 π/12 quadrature error difference between the two transmitted signals.

For testing the proposed solution two different 2 × 1 setups are employed. In the first

setup, Tx and Rx antennas are used, whereas in the second one transmitter signals are

combined with an RF combiner and fed to the receiver. The second setup is shown in Fig.

5.8. The WiMAX MIMO system settings, which are common to both setups, are given in

Table 5.1. In these 1024 FFT scenarios, there are 840 subcarriers left after removing the

guard bands.

The solution that will be investigated in this chapter is based on the use of pilot se-

quences. In WiMAX, each Tx branch is transmitting a separate set of pilots that are

orthogonal to each other according to their subcarrier allocation maps. Basically, this is

the feature that enables separating the impairment contributions from separate branches.

The received time domain signal contains pilot subcarriers from both branches, however,

it is not possible to process these pilots separately in time. Therefore, the packet detection

and the time domain based frequency offset estimation can be applicable only if the timing
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Pilots
Figure 5.5 0.002 radian frequency offset difference between the two transmitted signals.

Table 5.1 WiMAX MIMO system settings

Parameter Value
DL / UL Downlink
Number of transmitters 2
Number of receivers 1
MIMO type Matrix B (SMUX)
Permutation PUSC
FFT Size 1024
Number of symbols 14
Bandwidth 10 MHz
Modulations 16QAM & 64QAM
Coding Rates 1/2 & 1/2

offsets and the frequency offsets from the two branches are close to each other. Otherwise,

only after converting the signal to the frequency domain, since pilots from different branches

get separated from each other, one can apply the offset estimations (explained in detail for

a single channel) to pilots from each branch separately.
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Frequency (Subcarrier
s)

Figure 5.6 Allocation of subcarriers in downlink PUSC WiMAX. Implementation of Alam-
outi (space-time) coding is shown.
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Frequency (Subcarrier
s)

Figure 5.7 Allocation of subcarriers in uplink PUSC WiMAX. Implementation of space-
frequency coding is shown.

In the single channel case, after each impairment estimation the corresponding effect was

being removed from the signal. In the MIMO case, however, since each branch has different

impairments, it is not valid to remove the effects from the received signal. Instead, the
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Figure 5.8 The 2x1 MIMO system setup. The outputs of the transmitters are combined
with an RF combiner and provided to a single receiver.

estimated effects are removed from the corresponding set of pilots, only. After determining

and removing all the effects one by one, the channel estimations H(k) can be obtained from

the pilot sets. Before proceeding to the symbol decision step, the impairment estimations

obtained for both channels should be applied to the corresponding channel estimations as

follows

Ĥm(k) = Hm(k) exp(−j2πkτ/N) exp(jπΩT ) exp(−jπkδ/fs) exp(j2πkΦm) . (5.4)
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5.7 Space-Time Transmit Diversity and Combining the MIMO Signals From

Two Transmitter Branches

The two MIMO options that are considered in the 802.16 standard for WiMAX systems

are the space-time transmit diversity (STTD) and the spatial multiplexing (SM). In this and

the following sections, the implementation of these two methods will be explained shortly.

The main focus will be on how to extract the transmitted information from the received

signals in each case.

In the STTD case, Alamouti encoding [88] is applied to subcarrier pairs, where the

same subcarriers of two consecutive OFDMA symbols constitute a pair. In the receiver

part, the STTD signals are combined in a special way that will be explained shortly. A

single receiver is enough for combining STTD signals, and this is very appropriate for the

purpose of employing a single receiver to keep the hardware cost at a minimum.

In the STTD implementation for DL-PUSC WiMAX, which is illustrated in Fig. 5.6,

the signals of the subcarriers x1 and x2, which constitute a subcarrier pair, are transmitted

as [x1,−x∗2], respectively, from the first antenna, and in the order of [x2, x
∗
1] from the

second antenna, according to the Alamouti coding. In the receiver, the signals received at

consecutive symbol times on each carrier pair are

Y1(k) = H1(k)x1 + H2(k)x2 + N1 , (5.5)

Y2(k) = −H1(k)x∗2 + H2(k)x∗1 + N2 , (5.6)

where H1(k) and H2(k) are the channel responses, and Ni is noise. These two received

signals can be combined in two different ways to yield the transmitted signals as follows

C1 = Ĥ1(k)∗Y1(k) + Ĥ2(k)Y2(k)∗

= x1(|Ĥ1(k)|2 + |Ĥ2(k)|2) + Ĥ1(k)∗N1 + Ĥ2(k)N∗
2 , (5.7)

C2 = Ĥ2(k)∗Y1(k)− Ĥ1(k)Y2(k)∗

= x2(|Ĥ1(k)|2 + |Ĥ2(k)|2) + Ĥ2(k)∗N1 − Ĥ1(k)N∗
2 , (5.8)
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where Ĥi(k) are the channel estimations. Assuming that noise has a limited effect, a reliable

estimation for x1 and x2 can be obtained by C1/(|Ĥ1(k)|2 + |Ĥ2(k)|2) and C2/(|Ĥ1(k)|2 +

|Ĥ2(k)|2), respectively.

In UL-PUSC WiMAX, on the other hand, the implementation of STTD is different.

Alamouti coding is applied to adjacent subcarriers in the same symbol (rather than the

same subcarriers in adjacent symbols), as illustrated in Fig. 5.7. Therefore, it is more like

space-frequency coding rather than space-time coding. In the receiver, the signals received

at consecutive subcarrier locations are

Y1(k) = H1(k)x1 −H2(k)x∗2 + N1 , (5.9)

Y1(k + 1) = H1(k + 1)x2 + H2(k + 1)x∗1 + N2 , (5.10)

These signals are combined as follows

C1 = Ĥ∗
1Y1(k) + Ĥ2Y1(k + 1)∗ , (5.11)

C2 = Ĥ∗
1Y1(k + 1)− Ĥ2Y1(k)∗ , (5.12)

and the transmitted signals x1 and x2 can be obtained as in the case of space-time coding.

5.8 Spatial Multiplexing and Joint Demodulation

In spatial multiplexing, each branch transmits a different signal. Ideally, there should

be N receivers if there are N transmitter branches. This way, N independent copies of each

transmit signal can be received. By making use of the channel information, these copies are

combined to obtain the desired signals. If there is a single receiver available, however, the

transmitted signals can only be obtained by doing joint demodulation [89].

In joint demodulation, at every subcarrier each possible IQ signal pair [X1(k), X2(k)]

is considered to be a hypothesis. Each hypothesis is simulated by applying the channel
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responses, and the best hypothesis is determined via a maximum likelihood method

[
X̂1(k), X̂2(k)

]
= arg min

X1(k),X2(k)

{∣∣∣Y (k)− Ĥ1(k)X1(k)− Ĥ2(k)X2(k)
∣∣∣
2
}

, (5.13)

where Y (k) is the received signal, X1(k) and X2(k) are the two signals that constitute the

hypothesis, and Ĥ1(k) and Ĥ2(k) are the corresponding channel estimates.

If two transmitter antennas, each transmitting, for example, a QPSK modulated signal,

are considered, then there are 42 hypotheses to check for each received data subcarrier,

which does not pose a serious computational challenge. However, the complexity of this

method increases proportional to M c, where M is the modulation order, and c is the

number of transmitter branches. Therefore, for MIMO applications that employ a number

of transmitters and use higher order modulations, the computational complexity may set

a practical limit to the feasibility of this method. A version of joint demodulation that

utilizes multiple receivers can be considered as a solution in such a case.

5.9 Conclusion

In this chapter, reception of OFDMA based MIMO signals with a single receiver is

handled. For the OFDMA based signals, the causes for the primary impairments and

the way of eliminating their effects are addressed. Challenges in signal reception that are

specific to MIMO scenarios are analyzed in comparison to the single transmitter case. It is

explained how to make intelligent guesses about the potential problems in received MIMO

signals by examining the constellation diagrams. Finally, but very importantly, a maximum

likelihood based method that enables receiving MIMO-OFDMA signals transmitted from

two transmitter branches with a single receiver is presented.
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CHAPTER 6

AN ITERATIVE INTERFERENCE CANCELLATION METHOD FOR
CO-CHANNEL MULTICARRIER AND NARROWBAND SYSTEMS

6.1 Introduction

Transition from third generation (3G) to the fourth generation (4G) wireless systems

is a major challenge that will be faced in the near future. Two different physical (PHY)

layer technologies that have a high chance of being employed by next generation systems

are Long Term Evolution (LTE) and WiMAX, both of which are multicarrier (MC) systems

and can have a bandwidth up to 20 MHz. Relative to these technologies, 3G systems such

as EDGE, DECT, CDMA-2000, and even W-CDMA with its 5 MHz bandwidth need to

be considered as narrowband (NB) systems. During the transition phase from 3G to 4G,

various multicarrier and NB systems might have to share the same spectrum, which will

result in a severe performance degradation in both systems due to the co-channel interference

(CCI).

Suppression of narrowband interference (NBI) in OFDM systems was considered in the

prior-art [90]- [93]. In [90], linear minimum mean-square error (LMMSE) estimates of the

interference are utilized. The proposed algorithm requires a priori information about the

power spectral density of the NB signal. In [91], a normalized least mean squares (N-LMS)

adaptive noise cancellation algorithm was introduced for suppressing NBI in pilot symbol

assisted OFDM systems. NBI rejection via interferometry spreading codes was proposed

in [92]. In [93], an NBI canceller for OFDM systems is considered, where the NB signal is

estimated over the unused OFDM subcarriers. The feasibility of this method is limited in

practice due to the very few number of unused subcarriers in a well designed OFDM based

111



system. In this chapter, we treat both co-channel signals as desired signals and propose a

method that combats CCI through enhancing both signals in an iterative manner. In the

literature, iterative co-channel interference cancellation was considered in [4]- [99], which

typically focus on narrowband systems and consider that the interferer and victim both use

the same technology. In most of these works, the hunch effect has been typically observed

in the performance results: 1) The bit-error-rate (BER) performance improves with the

increasing signal to interference ratio (SIR) for low SIR values1, 2) It starts degrading with

the increasing SIR for moderate interference levels and gets worse when the interference

power is comparable with the desired signal power, and 3) BER starts improving again

as the SIR increases further. Therefore, it is argued that interference cancellation is most

effective when the interference is sufficiently strong.

In [4], it is emphasized that by exploiting the differences in signal features such as their

delays, initial signal separation can be obtained, which considerably increases the efficiency

of iterative interference cancellation. In the current chapter, we exploit the inherent initial

signal separation that exists due to the multicarrier vs. single carrier natures of interfer-

ing signals as well as the fact that the information is in frequency domain for MC signal

and in time domain for NB signal. The proposed method assumes availability of signal

reception and transmission capabilities for both systems. At each iteration, each signal is

demodulated and then regenerated based on the symbol decisions and the channel impulse

response. This way, a better estimate of the signal is obtained. The regenerated signal is

subtracted from the aggregate signal to obtain an estimation of the other co-channel signal.

Through extensive simulations, it is proved that this method can provide a fundamental

improvement in the performances of both systems in as few as three iterations. The rela-

tively high computational burden (associated with multiple transitions between time and

frequency domains) as well as the extra cost caused by the addition of a second system’s

transceiver functionalities are compensated by the fundamental performance gain obtained.

Our other contributions include a detailed comparison of the computational complexity of
1In other words, interference cancellation works effectively if the received interference is strong and can

be separated easily from the desired signal.
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the proposed method with the joint demodulation technique and evaluation of the Gaussian

approximation (GA) method for characterizing the interference from the other system.

The chapter is organized as follows: Section 6.2 provides application examples and the

system models for the MC and NB systems in consideration. Also, it shortly discusses the

GA based symbol error rate (SER). Section 6.3 reviews the joint demodulation technique

for the NB and MC signals, while Section 6.4 is a detailed description of the proposed CCI

cancellation method. A complexity comparison of the joint demodulation and iterative

interference cancellation approaches is made in Section 6.5, simulation results are presented

in Section 6.6, and the last section concludes the chapter.

6.2 Application Examples and System Model

6.2.1 Application Examples

Earlier examples of coexistence studies in the prior art include [100] and [101], which

investigate the coexistence of code division multiple access (CDMA) and GSM systems. A

contemporary example scenario, where coexistence of NB and multicarrier systems might

be unavoidable, is the co-channel deployment of wideband CDMA (W-CDMA) based fem-

tocells with LTE based macrocells, which has not been studied in the literature to our best

knowledge. Femtocells [28, 29] are miniature cellular networks that have a communication

range in the order of 10 meters. They can coexist with a macrocell network through either

a split-spectrum approach, which leads to an inefficient spectrum utilization, or a shared-

spectrum approach [30]- [102], where CCI is a potential concern. The initial deployments

of femtocells will be mostly based on CDMA based technologies, such as the W-CDMA. In

the future, while macro-cellular networks migrate to wider-band multicarrier-based tech-

nologies such as LTE, it might be expected that it takes a longer time for the consumers

to replace their existing 3G femtocells with their next-generation versions. Hence, an LTE

based macrocell may need to coexist with a large number of 3G femtocells within its cov-

erage area. In a shared-spectrum deployment, this would result in an interference from

the macrocell at a femtocell, as illustrated in Fig. 6.1, which needs to be cancelled at the
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Figure 6.1 An example coexistence scenario for an LTE based macrocell with a W-CDMA
based femtocell during migration from 3G to 4G.

femtocell for an improved performance. Similarly, a W-CDMA femtocell may be interfering

to an LTE based mobile station (MS) nearby, which again needs to be mitigated at the MS.

A particularly important scenario where interference cancellation may yield good gains

for femtocell networks is for the restricted operation mode2 of femtocells, where, the macro-

cell mobile stations (mMSs) are not allowed to make hand-off to the femtocell network even

when the signal quality is superior at the femtocell. As illustrated in Fig. 6.1, this may

result in significant uplink interference from the mMS to the femtocell MSs (fMSs), and

significant downlink interference from the fMS to the mMSs. As discussed before, for the

interference cancellation to become effective, the interference should be sufficiently strong;

therefore, femtocells with restricted access are a good application scenario for interference

cancellation techniques.
2Also referred as the closed subscriber group (CSG) operation.
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Another related example is the coexistence of multicarrier based ultra-wideband (UWB)

systems (see e.g., [103]) with the relatively narrowband technologies (e.g., W-CDMA etc.)3.

It has been shown in [105] that multiband orthogonal frequency division multiplexing (MB-

OFDM) interference may seriously degrade the performance of NB systems at low signal-

to-interference ratios (SIRs). While detect-and-avoid approaches as in [106] are possible

solutions for coexistence, it may not always be feasible to reliably detect the interference.

Also, joint use of the spectrum may be more efficient in several scenarios if interference

cancellation techniques can be successfully deployed. These scenarios include applications

in the ISM bands where MC systems like WiFi coexist with NB systems like cordless phones

and bluetooth devices.

6.2.2 System Model

In this chapter, two different co-channel interference scenarios are considered. The

first scenario involves a MC and NB coexistence, and the second one deals with a MC and

CDMA systems coexistence. The MC system employed has an orthogonal frequency division

multiple accessing (OFDMA) based PHY layer. In both scenarios, it is assumed that the

transceiver functionalities of both co-channel systems are available, but the primary receiver

is the OFDMA receiver, i.e. perfect time and frequency synchronization to the OFDMA

signal is ensured. This fact is illustrated in the diagram in Fig. 6.2, which shows the NB

and OFDMA signals in time and frequency domains. It is demonstrated that synchronizing

to the OFDMA symbols rather than NB symbols is necessary even if a targeted packet of

NB symbols starts and ends somewhere in the middle of the OFDMA symbols.

The sampled downlink OFDMA signal in time domain can be written as

x(n) =
√

Ptx

N−1∑

k=0

X(k)ej2πkn/N ,−Ncp ≤ n ≤ N − 1, (6.1)

3Note that 60 GHz technologies as in [104] also have multicarrier transmission as an option and may face
similar coexistence problems. Several other scenarios for the coexistence of a narrowband and multicarrier
system may also be considered.
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Figure 6.2 Diagram of the OFDMA and NB symbols in time and frequency.

where Ptx is the transmit power, N is the number of subcarriers, k is the subcarrier index,

Ncp is the length of the cyclic prefix (CP), and X(k) is the data on the kth subcarrier.

The received time domain OFDMA signal that traverses through a multipath channel

h(l) with Lmc taps is

y(n) =
√

Prx

Lmc−1∑

l=0

h(l)x(n−Dl) , (6.2)

where Prx is the received signal power, and Dl is the delay of the lth tap. Assuming that

the maximum tap delay does not exceed the CP length, the frequency domain OFDMA

signal can be shown as

Y (k) =
√

PrxX(k)
Lmc−1∑

l=0

h(l)e−j2πkDl/N =
√

PrxX(k)H(k), (6.3)

where H(k) is the channel frequency response.

The baseband narrowband signal can be modeled as

s(n) =
∑
m

amg(n−mT ) , (6.4)

where m is the symbol index, am denotes the mth data symbol, g(n) is the pulse shaping

filter with a roll-off factor α, and T is the symbol duration of the narrowband signal. In
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case of a CDMA signal, s(n) becomes

s(n) =
∑
m

amg(n−mT )p(n−mT ) , (6.5)

where p(n) is the spreading chip sequence with Rc chips. Since s(n) passes through a

multipath channel h′(l) with Lnb symbol-spaced taps4, the received signal becomes

z(n) =
√

Prx

Lnb−1∑

l=0

h′(l)s(n− lT ) . (6.6)

The discrete Fourier transform (DFT) of z(n) will be denoted as Z(k). The main lobe of

the spectrum occupied by Z(k) overlaps with K subcarriers of Y (k) (see e.g., Fig. 6.2 and

Fig. 6.5). Hence, if the center frequency of Z(k) is located at subcarrier κ, the subcarriers

k ∈ [
κ− K

2 , κ + K
2 − 1

]
will constitute the overlapping band (OB).

In time domain, NB symbols constitute structured information from a finite alphabet,

while OFDMA signal behaves like random noise spread over multiple NB symbols. In

frequency domain, on the other hand, OFDMA subcarriers carry structured information,

and NB signal can be considered like random and colored noise covering multiple subcarriers.

This is readily seen from the received signal, which can be denoted in time domain as

r(n) =

NB︷︸︸︷
z(n)+

OFDMA︷ ︸︸ ︷
N−1∑

k=0

Y (k)ej2πkn/N

︸ ︷︷ ︸
y(n)

+w(n), (6.7)

4Note that the symbol-spaced equivalent of any physical channel can be obtained by convolving the actual
channel impulse response with the pulse shaping filter employed and taking symbol-spaced samples.

117



where w(n) is the additive white Gaussian noise (AWGN) with a two sided power spectral

density of N0/2, and in frequency domain as

R(k) =

OFDMA︷ ︸︸ ︷
Y (k) +

NB︷ ︸︸ ︷
1
N

N−1∑

n=0

z(n)e−j2πkn/N

︸ ︷︷ ︸
Z(k)

+W (k), (6.8)

where W (k) is the frequency domain reciprocal w(n).

6.2.3 Gaussian Approximation Based Symbol Error Rate

The symbol error rate of a system under the effect of co-channel interference can be

estimated assuming that the interfering signal amplitude has a Gaussian distribution, which

is known as Gaussian approximation. The SER for a system employing QPSK modulation

and using the GA is given by [47]

PQPSK = 2Q

(√
Eb

N0
2 + σ2

I

)[
1− 1

2
Q

(√
Eb

N0
2 + σ2

I

)]
, (6.9)

where Q denotes the Q-function, Eb is the bit energy, and σ2
I is the interference variance,

which is equal to Prx of the interfering signal.

The GA is rather simple but it is typically not very accurate especially at high SNR

values where the resulting SER tends to be optimistic. For the scenario at hand, based

on (6.7) and (6.8), the interference is a sum of N random variables. Therefore, from the

central limit theorem, this implies that GA for the specific scenario in consideration would

be accurate (especially for large N). The accuracy of the GA is tested in a practical co-

channel interference scenario by comparing it with actual simulation results in Section 6.6.

6.3 Joint Demodulation Method

A well-known and efficient method for handling co-channel signals is to demodulate them

jointly utilizing maximum likelihood estimation [107, 108]. For the coexistence scenario in
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consideration, ML estimation might be performed either in time domain or in frequency

domain. However, time domain requires a smaller number of computations and it is more

desirable to perform the ML estimation in time domain. This is due to the relationship

between K and the number of NB symbols within the OFDMA symbol C, which can be

written as K = (1 + α)C, where α is usually greater than 0.

Denoting the estimates for the NB and OFDMA signals in time domain as ẑ(n) and

ŷ(n), respectively, an ML estimate of both signals can be obtained as

[
âm, X̂(k)

]
= arg min

am,X(k)

{∣∣∣r(mT )− z(mT )− y′(mT )
∣∣∣
2
}

= arg min
am,X(k)

{∣∣∣r(mT )−
Lnb−1∑

l=0

h′(l)am−l −
κ+K

2
−1∑

k=κ−K
2

Y (k)ej2πkmT/N
∣∣∣
2
}

, (6.10)

where y′(n) is the time domain reciprocal of Y (k) for k ∈ [
κ− K

2 , κ + K
2 − 1

]
.

The number of different values that z(mT ) and y′(mT ) can take should be limited in

order for the joint demodulation algorithm to be computationally feasible. This condition is

satisfied for both z(mT ) and y′(mT ) since the data sequences am and X(k) each belong to a

finite alphabet. There are MK possibilities for the OFDMA signal in the overlapping band,

and M possibilities for each of the C symbols in the NB signal, where M is the number of

constellation points depending on the modulation order (e.g., M = 4 for QPSK). Therefore,

the number of possibilities that need to be considered for each NB symbol is MK+1.

Implementing (6.10) requires an exhaustive search through MK+1 possible combinations

of z(mT ) and y′(mT ), which are obtained by applying the channel responses to all possible

values of am and X(k) to yield z(mT ) and Y ′(k), respectively, and also by computing the

inverse DFT (IDFT) for all Y ′(k)s to get y′(mT )s. This exhaustive search as well as the

computations required for obtaining z(mT ) and y′(mT )s render the joint demodulation

method prohibitively complex as it will be clearly demonstrated in Section 6.5.
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6.4 Iterative CCI Cancellation Method

Considering the apparently high complexity of the ML estimation based joint demodula-

tion method, we propose an efficient but low complexity alternative, which we call iterative

CCI cancellation method. The iterative cancellation method solves the co-channel inter-

ference problem through enhancing both Y (k) and z(n) in a successive manner in multiple

iterations. The iterations get started by obtaining and using an initial estimate of either

z(n) or Y (k), which will be denoted as ẑ(n) and Ŷ (k), respectively.

An initial rough estimation for z(n) can be obtained utilizing Z(k) if the power of Z(k)

is high enough that it can be sensed over the OB through energy detection. The threshold

of the energy detector is set according to the average signal-to-noise ratio (SNR) level over

k /∈ [
κ−K

2 , κ+ K
2 −1

]
. In case the number of subcarriers whose energy exceeds the threshold

is close to K, an initial estimate for the NB signal is obtained by taking the IDFT of the

subcarriers k ∈ [
κ− K

2 , κ + K
2 − 1

]
to yield

ẑ(n) =
κ+K

2
−1∑

k=κ−K
2

R(k)ej2πkn/N . (6.11)

If the NB signal is too weak to provide a useful estimate, or if K is unknown, then, following

an alternative approach, R(k) is used as an initial estimate for Y (k).

The main idea of the proposed method is to demodulate the estimated signal, ẑ(n) or

Ŷ (k), and then to regenerate the signal waveform based on the symbol decisions made to

obtain z̃(n) or Ỹ (k). Note that z̃(n) and Ỹ (k) are expected to be cleaner versions of ẑ(n)

and Ŷ (k), respectively, since they are free of AWGN and supposedly less affected by CCI.

Since the initial estimate employed
(
ẑ(n) or Ŷ (k)

)
is corrupted by CCI and AWGN, the

symbol decisions made may include errors. However, the effect of symbol errors made in

ẑ(n) is not localized in frequency domain; on the contrary, it is spread over K subcarriers.

Similarly, a corrupted subcarrier in Ŷ (k) has an impact that is spread over N samples in

time domain. Hence, subtracting z̃(n) with symbol errors from r(n) does not necessarily
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Demodulate NB in time domainRegenerate NBRemove from received signal in frequency
Demodulate OFDMA in frequency domainRegenerate OFDMAIs NB signal detectableYes NoStart processing received signal Take FFT

Is end of iterations reached? Take IFFTTake FFT Yes NoQuit Remove from received signal in time
Take IFFT

Time Domain Frequency Domain
Figure 6.3 Flowchart of the proposed iterative CCI cancellation algorithm.

corrupt subcarriers of Ŷ (k). The same is true when Ỹ (k) with some incorrectly demodulated

subcarriers is removed from R(k); it does not necessarily lead to a ẑ(n) with symbol errors.

The flowchart provided in Fig. 6.3 illustrates the steps that need to be followed after

obtaining the initial signal. The first step is demodulation. The internal stages for de-

modulation are shown for the NB system in a separate flowchart in Fig. 6.4. It starts

with downconverting the signal to the baseband from the intermediate frequency (IF) of

f ′c−fc, where fc and f ′c are the carrier frequencies of the OFDMA signal and the NB signal,
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respectively. If the NB signal is a CDMA signal, this stage is followed by multiplication

with the pseudo-noise (PN) sequence, which is shown with a dashed block in Fig. 6.4. The

rest of demodulation is performed by applying channel equalization, downsampling, and

making symbol decisions to obtain the IQ data. For the NB system, it is assumed that the

carrier frequency f ′c is known, and a channel estimate ĥ′(l) is available5. For the OFDMA

system, downconversion and downsampling stages do not exist6, and channel estimation is

performed over pilot subcarriers to obtain Ĥ(k).

After obtaining the IQ data, regeneration (demonstrated for NB signal in Fig. 6.4) takes

place. The steps that constitute regeneration are upsampling the IQ data, applying pulse

shaping, (if the signal is a CDMA signal) multiplying the signal with the PN sequence,

upconverting it, and convolving it with the baseband channel. Again, upsampling and

upconversion are not performed for the OFDMA signal. The pulse shaping filter used by

the NB system is assumed to be known. If the regenerated signal is z̃(n), its DFT is taken,

and the resulting signal Z̃(k) is removed from R(k) to obtain an estimate for the OFDMA

signal, i.e.

Ŷ (k) = R(k)− Z̃(k) = R(k)− 1
N

N−1∑

n=0

z̃(n)e−j2πkn/N . (6.12)

5The proposed algorithm’s performance for an NB system with channel estimation errors is investigated
through simulations in Section 6.6.

6The received signal r(n) is already downconverted to the baseband based on the carrier frequency fc of
the OFDMA signal.

Convolve with the wireless channelUpsample IQ data Downsample signalApply channel equalization Make symbol decisions,obtain IQ dataDemodulationRegenerationDownconvert signal from IF Upconvert signal to IFMultiply with the PN sequenceApply pulse shaping Multiply with the PN sequence
Figure 6.4 Flowchart of the demodulation and regeneration modules for the NB system.
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If the regenerated signal is Ỹ (k), its IDFT is taken, and the resulting signal ỹ(n) is sub-

tracted from r(n) to obtain an estimate for the NB signal as follows

ẑ(n) = r(n)− ỹ(n) = r(n)−
N−1∑

k=0

Ỹ (k)ej2πkn/N . (6.13)

An important question that might be raised about the proposed method is why the

entire OFDMA band is handled rather than dealing with the OB only, because processing

the entire band has the following disadvantages:

• Since ỹ(n) is the IDFT of the entire OFDMA band rather than the OB only, any

errors made in the demodulation of subcarriers k /∈ [
κ − K

2 , κ + K
2 − 1

]
appear as

additive noise in (6.13). It would be expected that this increases the number of NB

demodulation errors, especially if K is small,

• The complexity of the algorithm becomes proportional to N rather than K (as it will

be analyzed in Section 6.5).

The reasons why we do not deal with the OB only is that K may not always be known

accurately, and also, subcarriers k /∈ [
κ − K

2 , κ + K
2 − 1

]
might have been affected by the

sidelobes of the NB signal. Moreover, through computer simulations, it is found that the

extra noise caused by the demodulation errors outside the OB does not lead to a noticeable

increase in the NB demodulation errors even for K
N ratios as small as 2.5%.

6.5 Computational Complexity

Co-channel interference needs to be canceled in real-time by a mobile station or a base

station that is affected by CCI. Therefore, the computational complexity of the cancellation

algorithm employed is critical. This section aims to provide a comparison of complexities

of the maximum likelihood and the proposed iterative interference cancellation algorithms

in terms of the CPU cycle counts required by multiplication (MUL), addition (ADD), and

comparison (CMP) operations.
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6.5.1 ML Method

According to the information provided in Section 6.3, there are MK possibilities for

K interfered subcarriers in the OFDMA signal, and M possibilities for each of the C NB

symbols. Applying the channel frequency response to the possible OFDMA symbols requires

MKK complex MULs. Applying the channel impulse response to C NB symbols, on the

other hand, requires MC convolutions, where each convolution is equivalent to L complex

MULs and L− 1 complex ADDs.

After appyling the channel responses, all possible OFDMA signals need to be transfered

from frequency domain into the time domain via MK inverse fast Fourier transform (IFFT)

operations of size N . Each IFFT operation requires N
2 log2N complex MULs and N log2N

complex ADDs. Adding the OFDMA and NB signals and subtracting their sum from the

received signal requires 2MK+1C complex ADDs. To obtain the absolute squared differences

for all possibilities, 2MK+1C MULs and MK+1C ADDs are performed. The minimum of

the MK+1 absolute squared values obtained is found performing MK+1 CMPs for all C NB

symbols.

Taking into account that a complex ADD is equivalent to 2 real ADDs, and a complex

MUL is equal to 4 real MULs and 2 real ADDs, the computations required can be listed in

terms of real MULs, real ADDs, and CMPs as in Table 6.1.

6.5.2 Iterative Cancellation

In the proposed iterative cancellation method, for a desired number of iterations I,

2(1 + I) FFT and IFFT operations need to be performed in total, each of which requires

N
2 log2N complex MULs and N log2N complex ADDs. To find whether the NB signal is

detectable over the OB, the absolute squared values for K samples in frequency domain

need to be calculated and compared with a threshold value. These two operations are

performed via 2K MULs plus K ADDs, and K CMPs, respectively.

In each of the I iterations desired, to demodulate the OFDMA subcarriers, N complex

MULs are needed for equalization and N log2M CMPs for making symbol decisions . For
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the demodulation of NB symbols, if a maximum likelihood sequence estimation (MLSE)

equalizer is employed, 4CLML MULs and CML(4L − 2) ADDs are needed (according

to [109]), whereas a linear equalizer (LE) such as a zero-forcing equalizer (ZFE) or an

MMSE equalizer would require CL complex MULs and C(L − 1) complex ADDs. Also,

Clog2M CMPs are necessary for making symbol decisions.

Again in each iteration, to regenerate the OFDMA subcarriers, N complex MULs are

needed to apply the wireless channel effect. In NB symbols’ regeneration, on the other hand,

a convolution is required for applying the channel, which is equal to CL complex MULs

and C(L− 1) complex ADDs, and another convolution for pulse shaping, which is equal to

2CN MULs and 2(C − 1)N ADDs. Finally, in each iteration each of the subtractions from

the received signal in time and in frequency require N complex ADDs. The computations

required for each step of the iterative cancellation method are provided in the second part

of Table 6.1.
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Table 6.2 CPU cycle counts obtained using a XilinX DSP48 slice

N K C L M I ML Iter. I Iter. II
512 40 32 4 4 3 5.3×1028 2.3×106 7.9×105

512 20 16 4 4 3 4.7×1016 1.3×106 5.8×105

512 10 8 4 4 3 4.4×1010 8.6×105 4.8×105

512 40 32 4 16 3 7.0×1052 3.9×108 7.9×105

512 40 32 4 4 5 5.3×1028 3.8×106 1.3×106

512 40 32 1 4 3 5.3×1028 7.8×105 7.8×105

1024 40 32 4 4 3 1.1×1029 3.2×106 1.6×106

6.5.3 Comparison of Complexities

A numerical comparison of complexities of the two algorithms in terms of CPU cycle

counts can be obtained considering that the cycle numbers for ADD, MUL, and CMP

operations, in a Xilinx DSP48 slice for instance, are 1, 3, and 1, respectively [32]. The CPU

cycle counts determined for both algorithms employing various sets of system parameters

are demonstrated in Table 6.2, where Iter. I stands for the iterative cancellation method

employing an MLSE equalizer for the NB system, and Iter. II is the iterative method

employing an LE.

In Table 6.2, it is observed that there is a drastic difference between the cycle numbers

required for ML and Iter. I algorithms. This is caused by the fact that every step of the ML

estimation has an exponential complexity, whereas Iter. I has a linear complexity except

for the MLSE equalizer that it employs. Cycle counts for Iter. II algorithm show that

the complexity of the iterative cancellation can be decreased further by employing a linear

equalizer, especially when M or L is large.

It is seen that parameter K (and C, which depends on K) acts exponentially on the

complexity of ML estimation and linearly on the iterative cancellation. M affects ML

estimation and Iter. I exponentially, whereas it has a negligible effect on Iter. II. N has

a linear effect on all algorithms, and I has a linear effect on the iterative ones. L has a

relatively weak impact on ML estimation and Iter. II, whereas it affects Iter. I exponentially.
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Figure 6.5 The spectra of the received co-channel signals and the OFDMA signal alone
(OFDMA SNR: 30 dB, NB SNR: 20 dB). CDMA spectrum is wider than the NB spectrum
due to multiplication with the PN sequence.

6.6 Simulations

6.6.1 Simulation Parameters

Computer simulations are done to determine the performance of the proposed iterative

canceler in different scenarios as well as to compare it with the joint demodulation method’s

performance. The parameters of the OFDMA, NB, and CDMA systems employed in the

simulations are presented in Table 6.3. The OFDMA symbol occupies 400 subcarriers out

of 512 available ones due to the guard bands and empty subcarriers. The overlapping band,

which is located in the middle of the OFDMA spectrum, is approximately 40 subcarriers

wide for the NB signal, and 128 subcarriers wide for the uplink CDMA signal (illustrated

in Fig. 6.5).

The SER performances of OFDMA, NB, and CDMA systems are investigated both in

AWGN (Figs. 6.6-6.9) and multipath (MP) (Figs. 6.10-6.13) channels. In MP simulations,

availability of a perfect channel estimation is assumed for NB and CDMA, and an efficient
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MLSE equalizer is utilized. For OFDMA, on the other hand, pilot based practical channel

estimation and equalization are performed. In all simulations, while the desired signal power

is varied over a certain range, noise power is fixed, and interference SNR is kept constant.

Signal-to-interference-plus-noise ratio (SINR) is defined as the ratio of the desired signal

power to the sum of interference and noise power over the overlapping band.

In Figs. 6.6-6.13, the uppermost curve shows the performance obtained without applying

CCI cancellation (referred as “without cancellation”), whereas the lowest curve shows the

performance when CCI does not exist (referred as “No CCI”). The three curves in between

demonstrate the SER performances after each iteration7. The SINR values on the x-axis

apply only to the without cancellation curve. As a last note, the no CCI curve is actually

an SER vs. SNR curve shifted leftwards by the amount of interference SNR, which is 30 dB

in Fig. 6.6 and Fig. 6.10; 25 dB in Fig. 6.7 and Fig. 6.11; 20 dB in Fig. 6.8 and Fig. 6.12;

and 15 dB in Fig. 6.9 and Fig. 6.13.

6.6.2 AWGN Channel Results

Fig. 6.6 shows the SER performance of the OFDMA system interfered by an NB system.

At very low SINR levels, since the interfering signal can be detected accurately, the gain

with respect to without cancellation can be as large as 25 dB after the 3rd iteration. As

SINR approaches 0 dB, however, it becomes challenging to separate the two signals from

each other, and the gain drops to around 6 dB. Beyond 10 dB SINR, the SER curve of the
7In Fig. 6.12, the first two iterations are omitted, and the performance curves obtained for two different

channel estimation error levels are displayed instead.

Table 6.3 OFDMA, narrowband, and CDMA system parameters

Parameter OFDMA Narrowband CDMA
Bandwidth 5 MHz 370 kHz 625 kHz
Samples per symbol 512 16 32
Modulation QPSK QPSK QPSK
MP channel model Veh. A Out.-to-in. A Out.-to-in. A

Pulse shape
Rectang. Raised cos. Raised cos.

(α=0.3) (α=0.3)
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Figure 6.6 SER performance of the OFDMA system under the influence of NB interference
(AWGN channel).
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Figure 6.7 SER performance of the OFDMA system under the influence of CDMA inter-
ference (AWGN channel).
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proposed method approaches to the without cancellation curve. This is reasonable because

when the interference is too weak relative to the desired signal, interference cancellation is

not expected to yield a high gain. It is worth to note that while there is a considerable gain

difference between the first two iterations, the extra gain yielded by the third iteration is

not that significant.

Fig. 6.6 also shows the theoretical performance curve that is obtained by using the GA

for the co-channel interference. It is observed that the GA yields quite accurate values up

until 0 dB SINR, after where it yields optimistic SERs. Another performance curve that

is displayed in Fig. 6.6 belongs to the maximum likelihood receiver, whose SER is as low

as the “No CCI” case at low SINR values. The ML receiver is superior to the iterative

canceler everywhere except around 0 dB SINR.

In case of CDMA interference, the gains obtained for the OFDMA system, which are

displayed in Fig. 6.7, are considerably larger than the previous case. The reason for this

performance difference is the involvement of the PN sequence, which introduces additional

signal separability. The fact that the CDMA signal power is spread over a wider frequency

band (compared to the NB signal) makes the OFDMA signal more accurately detectable.

Once the cancellation process starts with a reliable estimate for the OFDMA signal, the

following iterations become more successful, as well.

The NB system performance improvement enabled by the proposed method is shown in

Fig. 6.8. For SINR values smaller than 0 dB, the gain with respect to no CCI cancellation

can be as high as 18 dB. For SINR greater than 0 dB, there is still a gain around 3 dB.

Fig. 6.8 also shows the ML receiver performance. ML receiver is superior to the iterative

canceler in general. However, at around 0 dB SINR, it yields apparently higher SER than

the iterative canceler.

The improvement of the CDMA performance is again more significant as it can be seen

in Fig. 6.9. The SER values are much closer to the no CCI curve at low SINR values, and

there is a 10 dB gain even at rather high SINR.
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Figure 6.8 SER performance of the NB system under the influence of OFDMA interference
(AWGN channel).
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Figure 6.9 SER performance of the CDMA system under the influence of OFDMA inter-
ference (AWGN channel).
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6.6.3 Multipath Channel Results

In MP simulation results in Figs. 6.10-6.13, the margin between without cancellation and

no CCI curves is not as wide as in the AWGN case. Nevertheless, the proposed algorithm

is still able to provide considerable gains. For the OFDMA system interfered by the NB

signal (see Fig. 6.10), the gain is above 15 dB up until 0 dB SINR, after which it decreases

towards 5 dB again. When the interferer is CDMA (see Fig. 6.11), on the other hand, the

gains are considerably higher, and the performance curve approaches the no CCI case.

Improvement of the NB performance is shown in Fig. 6.12. The gain obtained for

SINR smaller than 0 dB is more than 12 dB. Approaching 0 dB SINR, this gain becomes

smaller, but even at 10 dB SINR there is still a gain of approximately 5 dB. Impact of NB

channel estimation error on the performance of iterative cancellation is also demonstrated

in Fig. 6.12. The variance of the Gaussian noise added to each channel tap estimate is set

as a certain ratio of the power of that tap. The two ratios examined are 5% and 10%. It

is observed that the cancellation gain decreases with increasing channel estimation error.

Still, it can be stated that channel estimation errors, which are likely to occur under CCI

effect, do not have a very strong influence at error levels as large as 5%.

The CDMA performance improvement (see Fig. 6.13) is more critical. The performance

is almost as good as no CCI case up until 0 dB SINR, after where it starts to decrease. The

difference between the NB and CDMA curves’ behavior is again due to the use of a PN

sequence.

6.6.4 Effect of Overlapping Bandwidth

The width of the OB has a considerable effect on the cancellation performance of the

proposed iterative method. This effect is investigated in terms of SER values of the OFDMA

system in Fig. 6.14, where the overlapping bandwidths are expressed as their ratio to the

OFDMA signal bandwidth. The performance curves that are obtained for various overlap

percentages clearly indicate that increasing overlap leads to a more successful cancellation.

This is because, for a given SINR value, the energy of the NB signal changes linearly
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Figure 6.10 SER performance of the OFDMA system under the influence of NB interference
(MP channel).
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Figure 6.11 SER performance of the OFDMA system under the influence of CDMA inter-
ference (MP channel).
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Figure 6.12 SER performance of the NB system under the influence of OFDMA interference
(MP channel).
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Figure 6.13 SER performance of the CDMA system under the influence of OFDMA inter-
ference (MP channel).
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Figure 6.14 OFDMA system’s SER performance under the influence of NB interference for
various overlapping bandwidths (AWGN channel).

depending on its bandwidth, i.e. the NB signal in a widest overlap scenario is the strongest

one. Increased NB signal energy leads to a more successful demodulation of the NB symbols,

which in turn boosts the overall performance of the algorithm.

6.7 Concluding Remarks

In this chapter, an iterative CCI canceler is proposed that mitigates the NB interference

in multicarrier spectrum as well as the effect of MC signal on NB symbols. Application

scenarios are provided where the proposed canceler might be very attractive such as the

coexistence of CDMA and OFDMA based systems during the migration from 3G to 4G

wireless technologies. It is shown that processing the whole MC band rather than only the

overlapping band is more advantageous in spite of the increased complexity. Moreover, it

is numerically demonstrated that the proposed method is significantly less complex com-

pared to joint demodulation. In the simulations, fundamental gains are obtained for both

co-channel signals in terms of SER performance validating the claimed efficiency of the
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proposed method. Also, the effect of NB channel estimation errors on the available gains is

quantified. Finally, it is found that larger gains are possible when the overlap between the

NB and MC signals is larger.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, next generation orthogonal frequency division multiple access (OFDMA)

based co-channel systems are considered. For various scenarios, where two systems’ signals

might be co-channel on purpose or in an unintentional manner, baseband receiver algorithms

are developed that aim at avoiding and cancelling co-channel interference. Co-channel sys-

tems in which 4G femtocells are involved are considered as a case study in most of the

algorithms proposed. Certain parts of the work presented in this dissertation appeared

in or are submitted to internationally recognized publications [5–13]. In the remainder of

this section, first, the specific contributions of each chapter are summarized and then the

possible future work is discussed.

7.1 List of Specific Contributions

• Analysis of the opportunity detection performance in UL OFDMA with timing mis-

alignments

We analyzed the opportunity detection performances of energy detection and ESPRIT

(estimation of signal parameters by rotational invariance techniques) algorithms in

the presence of timing misalignments in uplink OFDMA. For the energy detector,

the statistics of subcarrier power are derived considering timing misalignments, and

they are verified through computer simulations. Using these statistics, which take

inter-carrier-interference (ICI) effects into account, receiver operating characteristics

(ROCs) of the energy detector receiver are obtained. It is shown that energy detection
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has a considerably better performance than ESPRIT, especially when the subcarrier

assignment changes frequently.

• Estimation the optimum UL-OFDMA synchronization point that minimizes the ICI

A closed form expression is obtained for the optimum UL-OFDMA synchronization

point that minimizes the interference on the cognitive radio. It is shown that it may

be at a later point than the arrival time of the earliest primary user’s signal.

• Development of a co-channel framework for the coexistence of OFDMA based macro-

cell and femtocells

A co-channel framework is developed, which is based on utilizing the resource blocks

of macrocell-associated mobile stations (mMSs) that are far away to a femtocell base

station (fBS), therefore avoiding strong interference that may occur between a fem-

tocell and close-by mMSs. An avoidance method that jointly utilizes the spectrum

sensing results as well as scheduling information obtained from the macrocell base

station (mBS) is introduced.

• Semi-blind user separation

We proposed semi-blind user separation algorithm, which estimates the carrier fre-

quency offsets and time delays of each block by exploiting the cross-correlations over

pilot subcarriers. A two-dimensional clustering method is then employed to group the

estimates, where each group belongs to a different user.

• Reception of MIMO-OFDMA signals using a single receiver

A maximum likelihood estimation based method is devised, which takes MIMO re-

ceivers one step further and introduces reception of MIMO signals with a single re-

ceiver. The proposed method relaxes the hardware requirement while demanding

higher digital signal processing power.

• Iterative Interference Cancellation for Co-Channel Multicarrier and Narrowband Sys-

tems
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We proposed an efficient CCI cancellation method that may be utilized for improved

coexistence of NB and multicarrier technologies. The method treats both co-channel

signals as desired signals and enhances them in an iterative manner. In every iteration,

the signals are demodulated, regenerated, and subtracted from the received signal

successively in order to obtain a better estimate of the other co-channel signal.

7.2 Final Comments and Future Work

Co-channel systems are a promising approach to increasing wireless systems’ capacity

without requiring increased bandwidth. In this work, we considered the coexistence of next

generation wireless systems and proposed a number of algorithms that target handling the

potential co-channel interference that will occur. We believe that the algorithms that we

developed, for which we did patent applications, as well, might be of considerable importance

for the designers of wireless systems in the near future.

An important related research problem that we did not try to find a solution for in this

dissertation is the co-channel interference that occurs in the coexistence of two OFDMA

systems with the same parameters. Assuming that the signals of these systems overlap in

all domains that can be readily imagined such as time, frequency, code, space, and power

domains, there is need for some means that will provide signal separability. This might be

a new domain or a computationally very demanding digital signal processing technique. In

depth research for an element that will lead to signal separability in this kind of a co-channel

scenario can lead to another PhD dissertation.
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Appendix A

When BPSK modulation is used, based on (2.18)-(2.26), the mean of
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can be

evaluated as follows
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On the other hand, again based on (2.18)-(2.26) (note that (2.19), (2.20) are zero-variance

RVs), the variance of
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can be evaluated as
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where
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Similar analysis can be applied to higher-order modulation schemes that have symmetric

constellation points with respect to the origin, namely the QPSK, 16-QAM, and 64-QAM,

where the constellations are respectively given by

M(QPSK) =
{ [(2ρ− 1) + (2κ− 1)j]

√
Esc,i√

2
,

ρ = 0, 1; κ = 0, 1
}

, (A.8)
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{ [(2ρ− 3) + (2κ− 3)j]
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M(64−QAM) =
{ [(2ρ− 7) + (2κ− 7)j]

√
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}
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Then, using (2.18)-(2.26), it can easily be derived that the mean and the variance of
∣∣∣Y (m)

i (k)
∣∣∣
2

are identical with (A.1) and (A.3) for all the above three constellations of higher-
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order modulation schemes. Hence, the impact of ICI is independent of the modulation order

for constellations that are symmetric with respect to the origin1.

1Note that the statistics will change in case different modulation types are used for two consecutive
symbols, where one of them is at the end of a certain block and the following symbol is at the beginning of
the following block.
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P (m)(k) = Esc,i

L−1∑

l=0

∣∣α(m)
i (l)

∣∣2
[∣∣∣Sd,i,l(k)

∣∣∣
2
+

∣∣∣I1,i,l(k)
∣∣∣
2
+

∣∣∣I2,i,l(k)
∣∣∣
2

+ 2Re
{

S∗d,i,l(k)I1,i,l(k) + S∗d,i,l(k)I2,i,l(k) + I∗1,i,l(k)I2,i,l(k)
}]

+ |W (k)|2 + 2Re
{

W ∗(k)
√

Esc,i

L−1∑

l=0

α
(m)
i (l)

{
Sd,i,l(k) + I1,i,l(k) + I2,i,l(k)

}}

+ 2Esc,i

L−2∑

l1=0

L−1∑

l2=l1+1

α
(m)
i (l1)α

(m)
i (l2)

[
(
Sd,i,l1(k) + I1,i,l1(k) + I2,i,l1(k)

)(
Sd,i,l2(k) + I1,i,l2(k) + I2,i,l2(k)

)
]

︸ ︷︷ ︸
Cl1,l2

. (B.67)

In a multipath channel, despite some analogies with with the multiuser channel, the

statistics of (2.17) will be different than in an AWGN channel. We may re-write (2.17) in

a multipath channel as

P (m)(k) =
∣∣∣Y (m)(k)

∣∣∣
2

=
∣∣∣Y (m)

i (k) + W (k)
∣∣∣
2

=
∣∣∣∣
√

Esc,i

L−1∑

l=0

α
(m)
i (l)

{
Sd,i,l(k) + I1,i,l(k) + I2,i,l(k)

}
+ W (k)

∣∣∣∣
2

, (B.1)

where a single-user scenario is considered for analytical tractability. After some manipu-

lation, (B.1) can be written as in (B.67), where other than the last set of terms involving

Cl1,l2 , the earlier terms are analogous to the first three terms in (2.17) for the multiuser

AWGN channel scenario (i.e., the different MPCs in the multipath channel may be consid-

ered as multiuser signals with different delays and attenuations), and their statistics have

already been captured through equations (2.18)-(2.30). However, as opposed to the mul-

tiuser AWGN channel scenario analogy, the Cl1,l2 term will be non-zero in the multipath

channel, since the MPCs corresponding to the same user will be using the same SAS as well
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as the same modulated symbols (as opposed to the last term in (2.17)). The term Cl1,l2 can

be expanded for the multipath channel as

(
Sd,i,l1(k) + I1,i,l1(k) + I2,i,l1(k)

)(
Sd,i,l2(k) + I1,i,l2(k) + I2,i,l2(k)

)

= Sd,i,l1(k)Sd,i,l2(k) + Sd,i,l1(k)I1,i,l2(k)

+ Sd,i,l1(k)I2,i,l2(k) + I1,i,l1(k)Sd,i,l2(k) + I1,i,l1(k)I1,i,l2(k)

+ I1,i,l1(k)I2,i,l2(k) + I2,i,l1(k)Sd,i,l2(k) + I2,i,l1(k)I1,i,l2(k)

+ I2,i,l1(k)I2,i,l2(k) . (B.3)

In (B.3), only the Sd,i,l1(k)Sd,i,l2(k), I1,i,l1(k)I1,i,l2(k), and I2,i,l1(k)I2,i,l2(k) terms have a

non-zero mean. For example, the first term is equal to

Sd,i,l1(k)Sd,i,l2(k) =
[
X

(m)
i (k)

]2
K1,i,l1(k)K1,i,l2(k)e

−j2πk(Dl1,i+Dl2,i)

N . (B.4)

If Dl1,i and Dl2,i are considered as known, (B.4) becomes a deterministic variable1. Similarly,

it may be shown that the other two terms have non-zero means, and it is also straightforward

to derive that (B.3) has a non-zero variance. In summary, since the Cl1,l2 terms are non-zero

in a multipath channel, there is not a one-to-one analogy between single-user multipath and

multi-user AWGN channels, and the former scenario (considering exactly same delays and

fading coefficients as in a multiuser AWGN channel) results in worse spectrum opportunities

due to larger ICI.

1If Dl1,i and Dl2,i are considered as random variables that may take any value, on the other hand, the
mean of (B.4) would be equal to zero. However, these two variables usually have small values compared to
N , and therefore, (B.3) still has a non-negligible mean.
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