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Comparison of Routing and Network Coding in Group Communications 

 

Yangyang Xu 

ABSTRACT 

 

  In traditional communication networks, information is delivered as a sequence of 

packets from source to destination by routing through intermediate nodes which only 

store and forward those packets. Recent research shows that routing alone is not 

sufficient to achieve the maximum information transmission rate across a communication 

network [1]. Network coding is a currently researched topic in information theory that 

allows the nodes to generate output data by encoding their received data. Thus, nodes 

may mix the input packets together and send them out as fewer packets. Potential 

throughput benefit is the initial motivation of the research in network coding. 

  Group communications refers to many-to-many communication sessions where 

multiple sources multicast independent data to the same group of receivers. Researchers 

always treat group communications as a simple problem by adding a super source which 

is connected to all the sources with unbounded capacity links. However, it cannot control 

the fairness between different sources in this method. Additionally, the method may be 

incorrect in some scenarios. In this research, we will present an example to illustrate that 

and analyze the reason for that. 
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  The maximum multicast throughput problem using routing only is NP-complete. 

Wu et al. introduced a greedy tree-packing algorithm based on Prim’s algorithm as an 

alternate sub-optimal solution [2] . This algorithm is modified in this work for group 

communications problem with routing in undirected networks. The throughput benefit for 

network coding has been shown in directed networks. However, in undirected networks, 

researchers have only investigated the multiple unicast sessions problem and one 

multicast session problem. In most cases, network coding does not seem to yield any 

throughput benefit [3] [4]. Li et al. introduced a c-flow algorithm using linear 

programming to find the maximum throughput for one multicast session using network 

coding [3] . We adapted this algorithm for group communications with network coding in 

undirected networks to overcome the disadvantage of the traditional method. Both 

algorithms were simulated using MATLAB and their results were compared. Further, it is 

demonstrated that network coding does not have constant throughput benefit in 

undirected networks.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Communication network is a directed graph model for the distribution of data 

from source to destination via intermediate nodes. Routing is the process of selecting 

paths in a network along which to send network traffic (voice/video/data packets). The 

network session is considered to be unicast when sending data from one source to one 

destination while it is termed multicast when sending data from one source to multiple 

destinations. 

The desired goal in any network is to fully utilize its capacity. Communication 

networks today share the same fundamental principle of operation. Independent data 

streams may share network resources, but the information itself is separate. Routing, data 

storage, error control, and generally all network functions are based on this assumption. 

In the traditional communication networks, the intermediate nodes only copy and forward 

packets using the routing mechanism. Optimization problem for routing has been widely 

researched with graph theory. Generic augmenting path algorithm is one of the basic 

algorithms used in unicast communications [5]. Several other algorithms were developed 

to minimize the computation complexity. For multicast communications, Steiner tree 

algorithm is the state-of-the-art for achieving optimal throughput. However, it is NP-hard.  
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Several sub-optimal algorithms have been developed to get the maximum throughput and 

the best ratio to the optimal throughput is 1/1.55 [6]. 

  Ahlswede et al. showed that achieving multicast capacity of a network requires 

network coding which allows intermediate nodes to generate output data by combining 

the received data [1] . The output flow at a given node is obtained as linear combination 

of its input flows when we use linear network coding. Linear network coding is sufficient 

to guarantee the multicast throughput to be the same as the maximum throughput from 

the source to each individual destination in unicast session. 

  The initial expected benefit from network coding is the throughput benefit which 

has been shown in directed networks. However, from various studies reported in the past 

eight years, there is no throughput benefit in most of the scenarios in undirected 

networks.  

  Li et al. showed that the network coding does not have any throughput advantage 

for one multicast session in 1,000 randomly generated undirected networks (the number 

of links are less than 35) [3] . They claimed that “the fundamental benefit of network 

coding is not higher optimal throughput, but to facilitate significantly more efficient 

computation and implementation of strategies to achieve such optimal throughput.” 

Dougherty et al. concluded that there was no multiple unicast undirected network for 

which the coding capacity was larger than the routing capacity [4]. However, group 

communications problem in undirected networks has not been studied. 
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1.2 Motivation and Goals 

  The traditional method of solving the group communications has disadvantages. 

Also, there is nothing in the current literature on comparison of network coding and 

routing for group communications in undirected networks. So, the primary goals of this 

thesis research are as follows:  

   Present the disadvantages of traditional method for group communications and 

analyze the reason for it.  

 Develop algorithms to get the maximum throughput for group communications in 

undirected networks. 

 Compare network coding and routing for group communications in undirected 

networks. 

 

1.3 Outline of the Thesis 

  In this thesis, the basic idea of unicast is first introduced in Chapter 2. The max-

flow min-cut theorem which is one of the most important theorems for network 

optimization problem is then presented. Max-flow min-cut theorem is also the foundation 

of the new subgradient algorithm for network coding in group communications which 

will be discussed later. The generic augmenting path algorithm which is the basic 

algorithm for calculating the maximum flow in one unicast session with routing only 

(intermediate nodes only copy and forward packets) is presented as well.  

  Then, the multicast capacity problem is introduced in Chapter 3. Steiner tree is the 

optimal solution for one multicast session problem. However, it is NP-hard. So, Prim’s 

algorithm and greedy algorithm designed by Wu for one multicast session problem is 
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discussed [2]. Then, the proposed greedy algorithm for group communications is 

presented. It is based on modification to Wu’s algorithm by making sure that all sources 

can have the same fairness which other algorithms cannot guarantee. 

  In Chapter 4, the real world Internet Protocol (IP) multicast with its advantages 

and disadvantages comparing to IP unicast is introduced. The current widely used IP 

multicast protocols IGMP v1/v2/v3 for hosts to join and leave the multicast group and 

PIM SM/DM for routing scheme are discussed. The simulation results for those protocols 

are compared to routing and network coding algorithms that are proposed in this thesis. 

  In Chapter 5, the network coding theory is introduced. Then, the linear network 

coding and practical random network coding which can be the coding scheme for the 

subgradient algorithm are discussed. The subgradient algorithm for one multicast session 

in undirected network designed by Li et al. [3] is then introduced. The proposed 

algorithm for group communications in undirected networks using network coding is 

presented. It is based on modification to Li’s subgradient algorithm by making sure that 

all sources can have the same fairness. 

  The simulation results of our greedy algorithm with routing and our subgradient 

algorithm with network coding for group communications in undirected networks are 

presented in Chapter 6. The results show that in most of the time, network coding does 

not have obvious throughput benefit for group communications in undirected networks.  
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CHAPTER 2  

UNICAST CAPACITY 

 

2.1 Network Introduction 

  Network is a directed graph model for the distribution of goods, data, or 

merchandise, etc., from their production centers, to their destination. Each directed edge 

has a limited capacity which is the maximum number of data that can be transmitted 

through that channel per time period. The diagram indicates the capacity as a positive 

number associated with each edge. The actual number of data called the flow on that 

edge. It is a non-negative number less than or equal to the capacity. Data cannot 

accumulate at any node; therefore the total in flow at each node must equal to the out 

flow at that node. The problem is to find the distribution of data that maximizes the net 

flow from s to t. 

  This can be modeled mathematically as follows. When the edges of a graph have 

a direction, the graph is called a directed graph or digraph. A network N is a directed 

graph with two special nodes s and t; s is called the source and t is called the destination. 

All other nodes in set I are called intermediate vertices. The edges of a directed graph are 

ordered pairs (u,v) of vertices, which we denote by . Each edge  has a positive 

capacity which we denoted by . 

  If f is a real valued function defined on the edge set E, and if , we denote 

. When , we define , . If 
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the function f() satisfies the following conditions, we define it as the flow of the network. 

   Capacity constraint, , ; 

   Conservation condition, ,  

  In general, there may be in edges as well as out edges at s. The net flow from s to 

t will then be the out flow at the source minus the in flow. This is called the value of the 

flow, . Any flow f that has maximum value for the network N 

is called a max-flow of N. This problem was first formulated and solved by Ford and 

Fulkerson [6], [17]. 

 

Figure 2.1 A Simple Network Topology 

  Since , if , this sum equals VAL(f). On the other hand, 

 is the total out flow at . Consider an out edge  at v. Its flow  

contributes to . It also contributes to . If , then  will appear twice 

in the sum, once for  and once for , and will therefore cancel. If , then 

 will appear in the summation as part of , but will not be canceled by . 

A similar argument holds if  and . Therefore 
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 Eq. 2.1 

  This says that the value of the flow can be measured across any edge cut , 

such that  and . [7]  

  In Chapter 2, the maximum flow problem is considered subject to the following 

assumptions. 

   Assumption 2.1: The network is directed. 

   Assumption 2.2: The network does not contain a directed path from node s to 

node t composed only of infinite capacity edges. 

   Assumption 2.3: The network is delay-less and error-free. 

 

2.2 Cuts 

  Let N be a network with a single source s and a single destination t. A cut in N is a 

set of edges of the form . An s-t cut is an cut with  and .  

  The capacity of a cut is the sum of the capacities of its edges. We denote the 

capacity of cut K by cap K. Thus, . 

  The s-t cut whose capacity is the minimum among all s-t cuts is a minimum cut. 

   Theorem 2.1: Let  be a s-t cut and flow f. Then . If 

, then f is a max-flow and K is a min-cut. (Max-Flow Min-Cut 

Theorem). 

  As shown in Figure 2.2, the cut is the min-cut with node 1 as the source and node 

4 as the destination.  As a result, the maximum throughput from node 1 to node 4 will be 

4+4 = 8 units/sec. 
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Figure 2.2 Min-Cut (Node 1 is the Source and Node 4 is the Destination) 

 

2.3 Generic Augmenting Path Algorithm 

  Let us discuss one of the most intuitive algorithms for solving maximum flow 

problem, the augmenting path algorithm. 

  A directed path from the source to the sink in the residual network is referred as 

an augmenting path. We define the residual capacity of an augmenting path as the 

minimum residual capacity of any edge in the path. By definition, the capacity  of an 

augmenting path is always positive. Consequently, whenever the network contains an 

augmenting path, we can send additional flow from the source to the destination. The 

generic augmenting path algorithm is essentially based on this simple observation. The 

algorithm proceeds by identifying augmenting paths and augmenting flows on these paths 

until the network contains no such path. The following is the description of the generic 

augmenting path algorithm. 
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Begin 

  f := 0; 

  While G(f) contains a directed path from node s to node t do 

  Begin 

   Identify an augmenting path P from node s to node t; 

    

   Augment  units of flow along P and update G(f); 

  End 

End 

Algorithm 

2.1 

  The maximum flow problem given in Figure 2.3(a) illustrates the algorithm. 

Suppose that the algorithm selects the path s-2-3-t for augmentation. The residual 

capacity of this path is . This augmentation 

reduces the residual capacity of edge (2, 3) to zero (thus we delete it from the residual 

network) and increases the residual capacity of edge (3, 2) to 4 (so we add this edge to 

the residual network). The augmentation also decreases the residual capacity of edge (s, 

2) from 8 to 4, edge (3, t) from 10 to 6 and increases the residual capacity of edge (2, s) 

from 0 to 4, edge (t, 3) from 0 to 4. Figure 2.3(b) shows the residual network after the 

first augmentation. In the second iteration, suppose that the algorithm selects the path s-6-

5-t. The residual capacity of this path is . Augmenting 4 units of 

flow along this path makes the residual network shown in Figure 2.3(c). In the third 

iteration, the algorithm augments 4 units of flow along the path 1-6-5-t. Now the residual 

network contains no augmenting path, so the algorithm terminates.  
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         (a)            (b) 

 

(c) 

Figure 2.3 Illustrating the Generic Augmenting Path Algorithm. 

(a) Residual Network for the Zero Flow; (b) Network after 

Augmenting Four Units along the Path s-2-3-t; (c) Network after 

Augmenting Four Unit along the Path s-6-5-t 

  In implementing any version of the generic augmenting path algorithm, we have 

the option of working directly on the original network with the flows  or maintaining 

the residual network G(f) and keeping track of the residual capacities  and when the 

algorithm terminates recovering the actual flow variable . To see how we can use 
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either alternative, it is helpful to understand the relationship between edge flows in the 

original network and residual capacities in the residual network. 

  The concept of an augmenting path in the original network is considered next. An 

augmenting path in the original network G is a path P (not necessarily directed) from the 

source to the destination with  on every forward edge (i, j) and  on every 

backward edge (i, j). It is easy to show that the original network G contains an 

augmenting path with respect to a flow f if and only if the residual network G(f) contains 

a directed path from the source to the destination. 

  Assuming we update the residual capacities at some point in the algorithm. What 

is the effect on the edge flows  by  units on edge (i, j) in the residual network 

corresponds to (1) an increase in  by  units in the original network, or (2) a decrease 

in  by  units in the original network, or (3) a convex combination of (1) and (2). We 

use the example given in Figure 2.4(a) and the corresponding residual network in Figure 

2.4(b) to illustrate these possibilities. Augmenting four units of flow on the path s-6-2-3-t 

in the network produces the residual network in Figure 2.4(c) with the corresponding 

edge flows shown in Figure 2.4(d). Comparing the solution in Figure 2.4(d) with that in 

figure 2.4(a), we find that the flow augmentation increases the flow on edge (1, 2), (2, 4), 

(3, 5), (5, 6) and decreases the flow on edge (3, 4). Finally, suppose that we are given 

values for the residual capacities. How should we determine the flow ? Observe that 

since , many combinations of  and  correspond to the same value 

of . We can determine one such choice as follows. To highlight this choice, we rewrite  
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 as . Now, if  and ; otherwise, we 

set  and . 

  

(a) (b) 

  

   (c)      (d) 

Figure 2.4 The Effect of Augmentation on Flow Decomposition. 

(a) Original Network with a Flow f; (b) Residual Network for flow f; 

(c) Residual Network after Augmenting Four Units along the Path s-6-

2-3-t; (d) Flow in the Original Network after the Augmentation 
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  (a)             (b) 

Figure 2.5 Flow Decomposition of the Solution in (a) Figure 2.4(a) 

and (b) Figure 2.4(d) 

 

  (c)                       (d) 

Figure 2.6 The Effect of Augmentation on Flow Decomposition. 

(a) The Two Augmentations P1-P2-P3 and Q1-Q2-Q3; (b) Net Effect of 

These Augmentations 

  To obtain better insight concerning the augmenting path algorithm, we illustrate 

the effect of an augmentation on the flow decomposition on the preceding example. 

Figure 2.4(a) gives the decomposition of the initial flow and Figure 2.4(d) gives the 

decomposition of the flow after we have augmented four units of flow on the path s-6-2-
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3-t. Although we augmented 4 units of flow along the path s-6-2-3-t, the flow 

decomposition contains no such path.   

  The path s-2-6-5-t defining the flow in Figure 2.4(a) contains four segments: the 

path up to node 2, edge (2, 6) and edge (6, 5) as a forward edge, and the path up to node t. 

We can view this path as an augmentation on the zero flow. Similarly, the path s-6-2-3-t 

contains four segments: the path up to node 6, edge (6, 2) as a backward edge, edge (2, 3) 

as a forward edge and the path down to node t. We can view the augmentation on the 

path s-2-3-t as linking the initial segment of the path s-2-6-5-t with the last segment of the 

augmentation s-6-2-3-t, linking the last segment of the path s-2-6-5-t with the initial 

segment of the augmentation s-6-2-3-t, and canceling the flow on edge (2, 6), which then 

drops from both the path s-2-6-5-t and the augmentation s-6-2-3-t. In general, we can 

view each augmentation as “pasting together” segments of the current flow 

decomposition to obtain a new flow decomposition [5].  

   Property 2.1 A flow f is a maximum flow if and only if the residual network 

G(f) contains no augmenting path. 

  Augmenting path algorithm and max-flow min-cut theorem are solutions for max 

flow problem with single source and single destination. They are the fundamental of the 

subgradient algorithm for network coding in Chapter 5. The following is the pseudo code 

of the algorithm we used for the max-flow min-cut problem. 
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Begin  

f := 0 (flow 0 on all edges) 

    opt := false  

     While not opt do 

     Construct the residual graph G(f) 

     Find a directed path P from S to T in G(f) 

                           If such an augmenting path P exists 

                  Then update flow f along P 

     Else set opt := true; and S := the set of vertices in G(f)  reachable             

from S  

    End while 

   Return f as the max flow, and ( S , V-S ) as the min-cut 

   End [8] 

Algorithm 

2.2 
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CHAPTER 3 

MULTICAST CAPACITY 

 

  The single multicast session from a source to a set of destinations is first 

considered. It can be theoretically shown that achieving optimal throughput via multiple 

multicast trees is equivalent to the problem of Steiner tree packing, which seeks to find 

the maximum number of pair wise edge disjoint Steiner trees, in each of which the 

multicast group remains connected. An intuitive explanation to such equivalence is that, 

each unit throughput corresponds to a unit information flow being transmitted along a 

tree that connects every node in the group. The maximum number of trees we can find 

corresponds to the optimal throughput for the session. Unfortunately, Steiner tree packing 

problem has been shown to be NP-complete. Several sub-optimal algorithms have been 

developed to get the maximum throughput and the best ratio to the optimal throughput is 

1/1.55 [6]. 

  While we consider multiple multicast sessions, the problem gets more 

complicated. Each multicast session in isolation and independently may cause congestion 

on some links and reduce network utilization. Any participant can be a multicast source. 

As a result, a multicast distribution routing graph that connects multicast members is 

shared by them. The choice of a multicast routing graph has several significant impacts 

both on the protocol performance and network utilization. In multicast packing problem, 

the choice of routing graph is more important since network resources need to be shared. 



17 

There are two proposals for multicast routing backbone: tree based and ring based. A 

comparison of the optimal multicast tree and ring topology reports that closing the cycle 

may require as many as 25% more links. Thus, we focus on the packing of multicast 

trees. 

  The underlying problem for the optimum shared tree is the Steiner tree problem 

which is NP-hard as we introduced before. One approach is based on finding a median or 

core node and building a shortest path tree rooted at the core (e.g., Core-Based Trees 

(CBT) and Protocol Independent Multicast (PIM)). There are many variants of CBT 

approach depending on the definition of the “core”. Furthermore, results provide a 

comparison basis between a single shared tree and multiple source specific trees. [9] 

 

3.1 Group Communications 

  Group communication refers to many-to-many communication sessions where 

multiple sources multicast independent data to the same group of receivers. The 

algorithm for group communications with routing is proposed here. First, the maximum-

rate spanning trees are found based on Prim’s algorithm. Then, those edges to non-

destination nodes are pruned. This idea is demonstrated in [2] . We will include 

additional steps in to solve the group communications problem. Every multicast session 

can have the same priority and share the network resources fairly. 

 

3.2 Prim’s Algorithm 

  Prim’s algorithm finds a minimum (or maximum) spanning tree for a connected 

weighted graph. It finds a subset of the edges that forms a tree that includes every vertex, 
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where total weight of all the edges in the tree is minimized (or maximized). The 

algorithm continuously increases the size of a tree starting with a single vertex until it 

spans all the vertices. 

 

Input:   A connected weighted graph with vertices V and edges E; 

Initialize:  Vnew = {x}, where x is a node from V, Enew = {}; 

Repeat   until Vnew = V 

Choose edge (u, v) from E with minimal (maximal) weight 

such that u is in Vnew and v is not as shown in Figure 3; 

   Add v to Vnew, add (u,v) to Enew ; 

Output:  Vnew and Enew describe the minimal (maximal) spanning tree. [2] 

Algorithm 

3.1 

   

 

Figure 3.1 Prim’s Algorithm 
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(a)                        (b) 

   

(c)     (d) 

 

(e)  

Figure 3.2 Example of the Prim’s Algorithm 
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  Figure 3.2 shows an example of the Prim’s algorithm to find a maximum capacity 

spanning tree from the source node 1 to all other nodes in the network. First, as shown in 

Figure 3.2(a), the algorithm compares two links 12 and 16 from the reached node 1 

to unreached nodes. Link 16 with the larger capacity has been chosen. Then, node 6 

becomes a reached node. As shown in Figure 3.2(b), the algorithm compares the links 

12, 62 and 65 from reached node 1 and 6 to unreached nodes. Link 65 with the 

largest capacity has been chosen. Then, node 5 becomes a reached node. The algorithm 

keeps running in the same way until all nodes become reached nodes. 

 

3.3 Algorithm for Group Communications 

  Based on the Prim’s algorithm, our greedy algorithm for the group 

communications is as following. 

Step 1:  Every source node generates its own maximum bandwidth tree with Prim’s 

algorithm.  Prune the branches to the non-destination nodes; 

Step 2:  Every tree decreases the bandwidth of the links by ; 

Step 3: If the bandwidth of every links are greater than zero, go to step 1; 

             If the bandwidth of at least one link is less than 0, undo step 2. Go to step 4; 

Step 4:  If  is greater than w,  and i = i+1. go to step 1; 

  Else, stop; 

Step 5:  Paste all the trees that every node has generated together.  

Algorithm 

3.2 

  Here,  is the bandwidth reduction step size, i is the times that step 4 has 

been run, the initial i = 0. m > 1 is the step size reduction factor, and  is the  
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stop threshold. The result will be better but the calculation will be more complex if  

decreases, m increases or w decreases. 

  First of all, in order to get a fair result for each multicast session in group 

communications, every session run each step of the algorithm at the same time. We first 

let each source find a maximum capacity spanning tree by Prim’s algorithm. Then, each 

spanning tree prunes those links to non-destination nodes. So, after the step 1, each 

session has a tree can cover from the source to all the destinations. Then, each tree 

decreases the capacity of the links it has by a same number . After this step (step 2), 

each session has reserved a same number of capacity of the network, which means each 

session can transmit the same number of data with the reserved capacity of the network. 

Then, the algorithm reruns step 1 and step 2 until any of the remained bandwidth is less 

than zero. In step 4, if the stepsize  is greater than the stop threshold w, we cut the 

stepsize to  and rerun the step 1 and step 2. This is because if the stepsize is 

too large, there will be too much waste of the capacity which will never be reserved and 

used by the group communications. If the stepsize  is less than the stop threshold w, the 

whole algorithm stops. After the whole algorithm stops, every session has its own 

distribution trees and all the sessions have the same maximum distribution rates. 
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(a)           (b) 

  

(c)                     (d)    

Figure 3.3 Example of our Algorithm for Group Communications 

Figure 3.3 shows an example of our algorithm for group communications. Figure 

3.3(a) shows the topology of the network. We suppose all links are bidirectional here. So, 

we divide them into two links with opposite directions. In Figure 3.3(b), both sessions 

(session 1 with the source s1 and destinations d1 and d2, and session 2 with the source s2 

and destinations d1 and d2) generate their own maximum capacity spanning trees with 

Prim’s algorithm. In Figure 3.3(c), the algorithm prunes the un-useful leaves of the trees. 

So, after the step 1, session 1 has its distribution tree s1d1s2d2 and session 2 has 
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its distribution tree s2d1 and s2d2 as shown in Figure 3.3(c). Then, each tree 

reserves the same amount of capacity of the network which is 0.5 here in the example. 

Figure 3.3(d) shows the remained capacity of the network after step 2. So, with the 

reserved capacity, the group communications can guarantee 0.5 units/sec throughput for 

both sessions from source 1 and source 2 to all the destinations. For every round of the 

step 1 and step 2, the algorithm reserves some capacity from the network. After the 

algorithm stop, each session can combine the trees with the reserved capacity together 

and get a routing scheme. This routing scheme can guarantee each session has the same 

throughput. 
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CHAPTER 4  

MULTICAST ROUTING PROTOCOLS 

 

  Internet Protocol (IP) network can transmit many types of data such as document 

files, audio and video within devices. However, when the data is sent via unicast, the 

source has to give each destination a copy which makes the whole network very 

inefficient.  For example, when the manager wants to send his speech to the whole 

company, he has to send out one data flow for each employee. Obviously, this will cost a 

huge amount of the network resources including valuable Wide Area Network (WAN) 

capacity. 

  By using IP multicast technology, we can send data to a group of destinations 

through a very efficient way. Data flow is sent out from the source and tries to reach as 

far as possible in the network. Devices only copy the data when it has to send the data out 

through more than one interface in order to help the data reach all its destinations. 

 

4.1 Comparison between Multicast and Unicast 

  When using unicast, the source needs to send out many copies of the data, each 

copy for each destination as shown in Figure 4.1. 
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Figure 4.1 Example of Unicast 

  When using multicast, the source sends out data through one data flow as shown 

in Figure 4.2. 

 

Figure 4.2 Example of Multicast 

4.1.1 Multicast’s Advantages 

   Increase the efficiency: Because the multicast does not transmit several flows for 

each session, the network capacity has been used more efficiently.  

   Optimize the performance: Multicasts avoids data flow redundancy. Data needs to 

be forwarded and proceeded becomes less. 

   Support Distributed Application: When the topology increases, distributed 

applications becomes hard for unicast because it’s lack of scalability. Multicast 

has made a lot of new applications available such as Webcasting, Web TV, 
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distance learning, telemedicine, Web radio, real-time videoconferencing, and 

other bandwidth- and time-critical information services. 

4.1.2 Multicast’s Disadvantage 

  Most of the multicast applications use UDP. Comparing to unicast with TCP, it 

has several disadvantages. 

   UDP may cause multicast group loss. So, multicast application has to count the 

unreliable factor into consideration. 

   UDP does not have congestion control function. So, if UDP becomes more and 

more popular on network, the network will become more congest and the whole 

performance of the network will drop. 

   When the network topology changes, there is possibility that redundant multicast 

group will appear. 

   There is potential security risk because the unwanted listener may find a way to 

join the multicast group. 

  So, when designing the multicast application, we have to take these disadvantages 

into consideration. 

 

4.2 Multicast Models 

  Any-Source Multicast (ASM), Source-Filtered Multicast (SFM), and Source-

Specific Multicast (SSM) are three multicast models based on how the receivers treat the 

multicast sources. 
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4.2.1 ASM Model 

  In the ASM model, any sender can be a multicast source and send information to 

a multicast group. Receivers can join a multicast group which is identified by the group 

IP address and obtain multicast information being sent to the group address. In this 

model, receivers can join or leave the multicast group at any time without regarding the 

sources. 

4.2.2 SFM Model 

  Not all multicast sources are valid in the SFM model. The upper layer software 

checks the source address of received multicast packets and makes decision to permit or 

deny the traffic from specific sources. Therefore, the receivers can only receive the data 

from part of the sources because some sources may be filtered. 

4.2.3 SSM Model 

  In the practical life, users may be interested in the multicast data from only some 

specific multicast sources. The receivers can specify their interested multicast sources in 

the SSM model. 

 

4.3 IGMP 

  IGMP is the current widely used protocol for hosts to join or leave a specific 

multicast group. Routers know that which multicast group’s data should be forwarded to 

the hosts based on the IGMP request it received from the hosts. There are three versions 

of IGMP. 
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4.3.1 IGMPv1 

  IGMPv1 is defined in RFC 1112 (Host Extensions for IP Multicasting).   

 

Figure 4.3 Example of IGMPv1 

  Assume that Host B and Host C are expected to receive multicast data to multicast 

group G1 with its group IP address. Host A is expected to receive multicast data to 

multicast group G2, as shown in Figure 4.3. The following shows how the hosts join the 

multicast groups and how the IGMP querier (Router B in Figure 4.3) maintains the 

multicast group memberships:  

   The hosts send unsolicited IGMP reports to their interested multicast groups’ 

addresses without having to wait for the IGMP queries from the IGMP querier.  
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   The IGMP querier periodically multicasts IGMP queries (with the destination 

address of 224.0.0.1) to all hosts and routers on the local subnet.  

   Upon receiving a query message, Host B or Host C (the delay timer of whichever 

expires first) announces its membership to G1 by sending an IGMP report to the 

G1 multicast group address.  

   At the same time, Host A sends a report to the multicast group address of G2.  

   The IGMP routers learn the memberships of G1 and G2 attached to the local 

subnet through the above query/report process. The multicast routing protocol like 

PIM generates (*, G1) and (*, G2) multicast forwarding entries on the router 

where * represents any multicast source. 

   When the multicast data addressed to G1 or G2 reaches the IGMP router, the 

router forwards the data to local subnets according to the multicast forwarding 

entries (*, G1) and (*, G2). 

  IGMPv1 does not support Leave Group message for hosts to leave the multicast 

group. Hosts stop sending IGMPv1 report to the IGMP router whenever it wants to leave 

the multicast group. So, the IGMP router will delete the multicast forwarding entries for 

one multicast group only after a period of time without receiving any IGMPv1 report 

from hosts regarding that multicast group.  

4.3.2 IGMPv2 

  Compared with IGMPv1, IGMPv2 has introduced a querier election mechanism 

and a Leave Group mechanism.  
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4.3.2.1 Querier Election Mechanism  

  In IGMPv1, the Desinated Router (DR) elected by the Layer 3 multicast routing 

protocol (such as PIM) serves as the querier among multiple routers on the same subnet.  

  In IGMPv2, an independent querier election mechanism is introduced. The 

querier election process is as follows:  

   Initially, every IGMPv2 router assumes itself as the querier and sends IGMP 

general query messages to all hosts and routers on the local subnet (the 

destination address is 224.0.0.1).  

   Every IGMPv2 router compares the source IP address of the query message with 

its own interface address upon receiving a general query. After comparison, the 

router with the lowest IP address wins the querier election and all other IGMPv2 

routers become non-queriers.  

   All the non-queriers start a timer, known as “other querier present timer”. If a 

router receives an IGMP query from the querier before the timer expires, it resets 

this timer; otherwise, it assumes the querier to have timed out and initiates a new 

querier election process.  

4.3.2.2 “Leave Group” Mechanism  

  In IGMPv1, when a host leaves a multicast group, it does not send any 

notification to the multicast router. The multicast router relies on timeout of the host 

responding time to know whether a group no longer has members. This makes the leave 

group latency larger.  
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  In IGMPv2, on the other hand, when a host leaves a multicast group:  

   A Leave Group message (often referred to as leave message) is sent by the host to 

all routers (the destination address is 224.0.0.2) on the local subnet.  

   Upon receiving the leave message, the querier sends a configurable number of 

group-specific queries to the group being left. The destination address field and 

group address field of the message are both filled with the address of the multicast 

group being queried.  

   One of the remaining members, if any on the subnet, of the group being queried 

should send a membership report within the maximum response time set in the 

query messages.  

   If the querier receives a membership report for the group within the maximum 

response time, it will maintain the memberships of the group; otherwise, the 

querier will assume that no hosts on the subnet are still interested in multicast 

traffic to that group and will stop maintaining the memberships of the group.  
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4.3.3 IGMPv3 

 

Figure 4.4 Example of IGMPv3 

  Built upon and being compatible with IGMPv1 and IGMPv2, IGMPv3 provides 

hosts with enhanced control capabilities and provides enhancements of query and report 

messages.  

  IGMPv3 Enhances control capability of hosts. IGMPv3 has introduced source 

filtering modes (Include and Exclude), so that a host not only can join a designated 

multicast group but also can specify to receive or reject multicast data from a designated 

multicast source. When a host joins a multicast group:  

    If it needs to receive multicast data from specific sources like S1, S2, …, it sends 

a report with the Filter-Mode denoted as “Include Sources” (S1, S2, ……).  

    If it needs to reject multicast data from specific sources like S1, S2, …, it sends a 

report with the Filter-Mode denoted as  “Exclude Sources” (S1, S2, ……).  

  As shown in Figure 4.4, the network comprises two multicast sources, Source 1 
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(S1) and Source 2 (S2), both of which can send multicast data to multicast group G. Host 

B is interested only in the multicast data that Source 1 sends to G but not in the data from 

Source 2.  

  In the case of IGMPv1 or IGMPv2, Host B cannot select multicast sources when 

it joins multicast group G. Therefore, multicast streams from both Source 1 and Source 2 

will flow to Host B whether it needs them or not.  

  When IGMPv3 is running between the hosts and routers, Host B can explicitly 

express its interest in the multicast data Source 1 sends to multicast group G (denoted as 

(S1, G)), rather than the multicast data Source 2 sends to multicast group G (denoted as 

(S2, G)). Thus, only multicast data from Source 1 will be delivered to Host B [10]. 

  Currently, IGMPv2 is the most widely used protocol for hosts to joining the 

multicast group. 

 

4.4 PIM Overview 

  Protocol Independent Multicast (PIM) provides IP multicast forwarding by 

leveraging static routes or unicast routing tables generated by any unicast routing 

protocol, such as routing information protocol (RIP), open shortest path first (OSPF), 

intermediate system to intermediate system (IS-IS), or border gateway protocol (BGP). 

Independent of the unicast routing protocols running on the device, multicast routing can 

be implemented as long as the corresponding multicast routing entries are created through 

unicast routes. PIM uses the Reverse Path Forwarding (RPF) mechanism to implement 

multicast forwarding.  
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  Based on the implementation mechanism, PIM falls into two modes:  

   Protocol Independent Multicast–Dense Mode (PIM-DM); 

   Protocol Independent Multicast–Sparse Mode (PIM-SM). 

4.4.1 PIM-DM 

  PIM-DM is a type of dense mode multicast protocol. It uses the “push mode” for 

multicast forwarding, and is suitable for small size networks with densely distributed 

multicast members. 

   PIM-DM assumes that at least one multicast group member exists on each subnet 

of a network, and therefore multicast data is flooded to all nodes on the network. Then, 

branches without multicast forwarding are pruned from the forwarding tree, leaving only 

those branches that contain receivers. This “flood and prune” process takes place 

periodically, that is, pruned branches resume multicast forwarding when the pruned state 

times out and then data is re-flooded down these branches, and then are pruned again.  

   When a new receiver on a previously pruned branch joins a multicast group, to 

reduce the join latency, PIM-DM uses a graft mechanism to resume data forwarding to 

that branch.  

  Generally speaking, the multicast forwarding path is a source tree, namely a 

forwarding tree with the multicast source as its “root” and multicast group members as its 

“leaves”. The tree is also called Shortest Path Tree (SPT).  

  PIM-DM uses the “flood and prune” principle to build SPTs for multicast data 

distribution. Although an SPT has the shortest path, it is built with a low efficiency. 

Therefore the PIM-DM mode is not suitable for large and medium size networks.  

 



35 

4.4.2 PIM-SM 

  PIM-SM is a type of sparse mode multicast protocol. It uses the “pull mode” for 

multicast forwarding, and is suitable for large and medium size networks with sparsely 

and widely distributed multicast group members.  

  PIM-SM assumes that no hosts need to receive multicast data. In the PIM-SM 

mode, routers must specifically request a particular multicast stream before the data is 

forwarded to them. The core task for PIM-SM to implement multicast forwarding is to 

build and maintain Rendezvous Point Trees (RPTs). An RPT is rooted at a router in the 

PIM domain as the common node, or Rendezvous Point (RP), through which the 

multicast data travels along the RPT and reaches the receivers. 

  When a receiver is interested in the multicast data addressed to a specific 

multicast group, the router connected to this receiver sends a join message to the RP 

corresponding to that multicast group. The path along which the message goes hop by 

hop to the RP forms a branch of the RPT.  

  When a multicast source sends multicast streams to a multicast group, the source-

side Designated Router (DR) first registers the multicast source with the RP by sending 

register messages to the RP by unicast until it receives a register-stop message from the 

RP. The arrival of a register message at the RP triggers the establishment of an SPT. 

Then, the multicast source sends subsequent multicast packets along the SPT to the RP. 

Upon reaching the RP, the multicast packet is duplicated and delivered to the receivers 

along the RPT [10]. 
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4.5 Simulation of Current Multicast Protocols 

  The current multicast protocols were simulated using QualNet [16] version 4.5 

with a randomly generated 30 nodes wired network topology. Link capacities are 

randomly picked between 10 Mbps and 20 Mbps. All link delays have been set to 0. Input 

and output buffer for all nodes is 16 Kbytes which is default. Packet size has been set to 

1518 bytes/packet because in general larger packet size can get larger throughput in 

practice. Multicast with PIM DM and IGMPv2 has been enabled in all nodes as well as 

the whole environment. The unicast routing protocol is RIP which is good for small 

network that we simulated here. All destination nodes join the multicast group from 0 s to 

30 s of the simulation. The data in group communications starts transmit from 10 s to 30 s 

to make sure that all multicast groups have been set up before the data transmission. 

  As packet size has been set up, the interval time between each packet was 

modified to adjust the throughput with binary search to get the maximum throughput for 

group communications. No packet loss is allowed and throughput for each source and 

each destination must be the same. 
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Figure 4.5 Network Topology for the Simulation of  

Current IP Multicast Protocols 

  Figure 4.5 shows the topology of the network. As the simulated protocol does not 

have the function to adjust the capacity in undirected networks, we set bidirectional links 

for all connected nodes. 

  The maximum throughput from source 5 and 15 to destinations 1 and 2 is 8.1 

Mbps; the maximum throughput from source 5 and 15 to all other 28 nodes as 

destinations is 4.8 Mbps; the maximum throughput from source 1, 2, 3, 4 and 5 to 

destinations 6 and 7 is 2.7 Mbps; the maximum throughput from source 1, 2, 3, 4 and 5 to 

all other 25 nodes as destinations is 2.5 Mbps; the maximum throughput from source 1 to 

10 to destinations 11 and 12 is 2.2 Mbps; the maximum throughput from 1 to 10 to all  
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other 20 nodes as destinations is 1.4 Mbps. (All source and destination numbers 

mentioned here are the node numbers in the network topology). 

  The simulation result will be compared with routing and network coding 

algorithms’ simulation results later in Chapter 6. 
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CHAPTER 5 

NETWORK CODING 

 

  Network coding is a recent topic in information theory that allows the nodes to 

generate output data by encoding its received data. Thus, nodes may mix the input 

packets together and send them out as fewer packets.  

                               

Figure 5.1 Multicast with Routing 

  Figure 5.1 shows the multicast routing mechanism. We assume the network is a 

delay-free and error-free network. S is the source while Y and Z are the sinks. All the 

links are with unit capacity. As shown in the graph, each sink could receive 3 units in 2 

seconds. So, the maximum throughput for this multicast application is 1.5 units/sec here 

by using routing. The bound here is the cut TY, WX and UZ is shared by two 

sinks. So, the maximum throughput is 3/2 which is 1.5 units/sec. 
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Figure 5.2 Multicast with Network Coding 

  Figure 5.2 shows the multicast with network coding mechanism. The network 

condition and the application requirement are both the same as Figure 5.1. While we 

allow node W encode its two input packets into one packet, the throughput becomes to 2 

units/sec here. Node Y can receive two independent packets b1 and 21 bb  at the same 

time. Y can decode these two independent packets to get both 1b  and 2b . Also, Z can get 

both 1b and 2b  by independent packets 21 bb  and 2b . The bound here is the minimum 

min-cut for each sink which decide how many independent packets a sink could receive. 

 

5.1 Linear Network Coding 

  The output flow at a given node is obtained as linear combination of its input 

flows when we use linear network coding [11]. Linear network coding is sufficient to 

guarantee the multicast throughput as the same as the maximum throughput from the 

source to each individual destination in unicast session. When the packets to be combined 

have different sizes, the shorter ones are padded with trailing 0s. Assume that each packet 

consists of L bits. We can interpret s consecutive bits of a packet as a symbol over the 

finite field , with each packet consisting of a vector of L/s symbols. With linear 
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network coding, outgoing packets are linear combinations of the original packets, where 

addition and multiplication are performed over the finite field  

 

Figure 5.3 Network Coding [12] 

  Following are the two equations for intermediate nodes to encode the packets. 

 Eq. 5.1 

 Eq. 5.2 

is the local encoding vector. Each intermediate node has its own local 

encoding vector which can be both assigned by an algorithm or random generated. The 

intermediate node uses its local encoding vector to combine the input data together and 

send them out. Following two equations are global view of the linear network coding 

 Eq. 5.3 

 Eq. 5.4 

 Eq. 5.5 
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where  is the global encoding vector. The global encoding vector is calculated by 

local encoding vectors. With the global encoding vector, the destination nodes can 

decode the received packets to those symbols from the source. Following are the 

equations for decoding. 

 Eq. 5.6 

 Eq. 5.7 

  Each destination node t can recover the source symbols  as long as the 

matrix , formed by the global encoding vectors, has full rank n. 

 

5.2 Practical Random Network Coding 

  There are several ways to generate the local encoding vector. In practice, 

distributed algorithm is preferred because it may be difficult to get global knowledge of 

the whole network. So, practical random network coding has been introduced by Chou 

[13]. 

  When using practical random network coding, intermediate nodes select the linear 

coefficients in a finite field of opportune size in a random way. The encoding vector is 

included within the encoded packet. Nodes store within their buffers the received packets. 

This allows asynchronous packets arrivals and departures with arbitrarily varying rates, 

delay and loss. Simulation results indicate that even for small field sizes (for example, s = 

8) the probability of selecting linearly dependent combinations becomes negligible.  
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When a node receives a packet, it decides whether to store the packet or discard it. If the 

new packet increases the current rank of the matrix, it is an innovative packet. If it does 

not increase the rank of the matrix, it means that the packet contains redundant 

information and it is not needed for decoding the original source packets. Hence, non-

innovative packets are dropped. 

  Generally, we hope to invert Gt  by collecting n or more packets. However, we can 

use the early decoding mechanism which is recommended here. Nodes perform Gaussian 

elimination after receiving each packet. Every node detects and discards non-innovative 

packets. Gt tends to be lower triangular, so it is typically possible to decode x1,…,xk with 

fewer more than k packets. This can make much shorter decoding delay than block 

decoding. 

  It has been shown that, in a directed network with network coding scheme, a 

multicast rate is feasible if and only if it is feasible for a unicast from the sender to each 

receiver [1]. Thus, there is an explicit max-flow min-cut capacity bound for the single-

source multicast network coding problem. Also, the research work proves that linear 

coding usually suffices in achieving this maximum rate [11] . There exist directed graphs 

where the throughput gains of network coding for multicasting can be very significant. 

However, in undirected graphs the throughput gain is at most a factor of two [3] . 

Experimental results over the network graphs of six Internet service provides showed a 

small throughput gain in this case [9]. 

  Li et al. introduced a c-flow algorithm using linear programming to find the 

maximum throughput for one multicast session in undirected networks using network 

coding [3] . Then, they introduced a sub-gradient algorithm with less complexity and 
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distributed implementation. They also gave the c-flow algorithm for multiple multicast 

sessions which they called m-flow algorithm. However, the m-flow algorithm cannot 

guarantee the same throughput for each source in group communications and it does not 

allow inter-session coding. Li et al. showed that, the throughput advantage with network 

coding is always 1.0 for one multicast session in 1,000 randomly generated undirected 

networks (the number of links are less than 35). They claimed that “the fundamental 

benefit of network coding is not higher optimal throughput, but to facilitate significantly 

more efficient computation and implementation of strategies to achieve such optimal 

throughput.” 

 

5.3 Subgradient Algorithm 

Step 1: Choose initial orientation (e.g., balanced orientation) 

Step 2: Repeat 

   Compute S  Ti max-flow, for all i 

   Refine orientation: 

    Increase bandwidth share for saturated links 

    Decrease bandwidth share for under-utilized links 

  Until convergence 

  As a result, optimal orientation obtained 

Step 3: Compute S  Ti max-flow, for all i 

  As a result, optimal multicast rate and routing strategy obtained 

Step 4: Randomized code assignment 

  As a result, complete transmission strategy obtained [2]. 

Algorithm 

5.1 
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  Primal variables in the orientation c are updated in two steps. First, we compute a 

new orientation vector c’ as follows: 

][][][' kykkcc
 Eq. 5.8 

where  is a prescribed sequence of step sizes. A simple sequence is )/(][ cbkak , 

for some positive constants a, b and c. )(uvy  is valued to 1 when the link uv  is the min-

cut or 0 when the link uv  is not the min-cut. 

 Eq. 5.9 

where )()(')(')(' uvCvucuvcuv .  

  We can get the final )(uvc  after it converges. 

  During each iteration of orientation refinement, the algorithm computes the max-

flow/min-cut from the sender to each receiver, and increases the capacity shared for more 

saturated links, while decreases the capacity shared for under-utilized links. 

 

5.4 Algorithm for Network Coding in Group Communications 

  Group communication refers to many-to-many communication sessions where 

multiple sources multicast independent data to the same group of receivers. Researchers 

always treat group communication as a simple problem by adding a super source which is 

connected to all the sources with unbounded capacity links. However, it is not able to 

control the fairness between different sources in this method. Take the following network 

as an example. 
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Figure 5.4 Group Communications with Network Coding 

  In the Figure 5.4, T and U are the sources while Y and Z are the sinks. If we add a 

super source S and connect it to T and U with unbounded capacity link, we can get the 

maximum multicast throughput from S to Y and Z with network coding is 5 units/sec 

based on the max-flow min-cut bound. This result comes from the cut TY and XY or 

the cut UZ and XZ. However, the maximum sending rate for the source T is only 1 

units/sec because of the cut TW and Y X and the maximum sending rate for the 

source U is 4 units/sec because of the cut UW and ZX. The two independent sources 

are not fair here.  

  In the example of Figure 5.4, the network is a directed network. If we extend the 

discussion to undirected networks, we can find that different sources may compete on the 

link capacity. As a result, we cannot treat group communications as a simple one 

multicast session problem by just adding a super source. 
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  Now, let’s take a look at another example to show that the method of adding only 

a super source and considering the group communication with network coding as a single 

session multicast problem is even incorrect.  

 

Figure 5.5 Six Nodes Bi-directional Network 

  In the network shown in Figure 5.5, node 1 and 3 are the sources while node 2, 4 

and 5 are the sinks. The minimum min-cut from the super source to the three destinations 

is cut 1 which means the maximum sending rate of the super source is 19. The minimum 

min-cut from the source node 1 to the three destinations is cut 2 which means the 

maximum sending rate of the source node 1 is 8. The minimum min-cut from the source 

node 3 to the three destinations is cut 3 which means the maximum sending rate of the 

source node 3 is 8. The interesting thing is that 19 is larger the 8+8. As we know, the 

max-flow min-cut theory shows that the sink node 4 will never be able to receive more 

than 8 independent units per second from the source node 1 because of the cut 2 

whenever we use network coding or not. The same thing happens from the source node 3 
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to the sinks node 2 and 5 because of the cut 3. As a result, in the original network 

(without the super source), the source 1 and source 3 will never be able to send out 

information with a total sending rate that is larger than 16. So, the result we get from the 

method that adding a super source is incorrect.  

  We need additional steps to design this new subgradient algorithm 

Step 1: Choose initial orientation (e.g., balanced orientation) 

Step 2: Put the super source S in and connect it to all sources with unbounded 

capacity links 

Step 3: Repeat 

   Compute Si  Tj max-flow, for all i and j 

   Find the minimum max-flow fsingle for all sources to all sinks 

   Compute STj max-flow for all j 

   Find the minimum max-flow fsuper for S to all sinks 

   Refine orientation: 

    Increase bandwidth share for saturated links 

    Decrease bandwidth share for under-utilized links 

  Until convergence 

  As a result, optimal orientation obtained 

Step 4: Compute S  Tj max-flow fsuper, for all j. Compare this with n times the 

minimum max-flow for all sources and sinks fsingle and choose the less one. 

  As a result, optimal multicast rate and routing strategy obtained 

Step 5: Randomized code assignment 

  As a result, complete transmission strategy obtained 

Algorithm 

5.2 
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  Primal variables in the orientation c are updated in two steps. First, we compute a 

new orientation vector c’ as follows: 

][][][' kykkcc  
Eq. 5.10 

  If  fsuper <= n*fsingle 

1)(uvy when uv belongs to the min-cut of the super source 

  If  fsuper > n*fsingle 

1)(uvy when uv belongs to the min-cut for fsingle 

  Where  is a prescribed sequence of step sizes and i indicates the ith source. A 

simple sequence is )/(][ cbkak , for some positive constants a, b and c. 
if  is the 

maximum flow for the source i. 

 Eq. 5.11 

  Where )()(')(')(' uvCvucuvcuv .  

  We can get the final )(uvc  after it converges. 

  When there are n independent sources in the network, the main concern is trying 

to maximize the capacity from the super source to the destinations. However, when the 

maximum flow for the super source comes more than n times the maximum flow for any 

single sources, we have to balance the capacity for those sources. During each iteration of 

orientation refinement, the algorithm computes the max-flow/min-cut from each sender 

(include the super source) to each receiver. After that, it increases the capacity shared for 

more saturated links, while decreases the capacity shared for under-utilized links. This 

method will maximize the capacity from the sources to the sinks and make different 
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sources as fair as possible. After getting the final )(uvc , if the fsuper is less than n times 

fsingle, we can run the well designed random coding scheme by treating this as a one 

session multicast from the super source to all the receivers while each sources sends the 

information with rate fsuper/n. If the fsuper is larger than n times fsingle, we use the same 

random coding scheme while each source can only sends the information with rate 

fsingle. 
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CHAPTER 6 

SIMULATION AND COMPARISON OF RESULTS 

 

  The main differences between the subgradient algorithm for network coding and 

the greedy algorithm for routing in group communications are as follows. 

   The algorithm for routing tries to help each session (transmission from each 

source) reserve some capacity from the network in each iteration until there is no 

more available capacity. There is unused capacity in the network. However, it 

requires more computation. So, we can modify the parameter of the algorithm 

based on the network scenario. 

   The algorithm for network coding is based on the idea that network coding can 

guarantee each session (transmission from each source) reaching the throughput 

obtained by max-flow min-cut algorithm to each destination. So, the algorithm 

assigns the half and half capacity on each direction of every link in the network 

initially. Then, different sessions compete for the capacity of the network until it 

converges. 

  The main contribution of these algorithms is that they can both guarantee each 

sessions having the same throughput. 

  Figure 6.1 shows the network topology for simulation. The topology is randomly 

generated by the network simulation tool QualNet version 4.5. Thirty nodes are randomly 

connected through links with random integer capacities between 10 and 20 units/sec. 
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Figure 6.1 Simulation Network Topology 

  Both of the algorithms were simulated in MATLAB with the following network 

parameters 

 Routing: initial stepsize 0.1, bound 0.1; 

 Network coding: k <= 1000, stepsize 1000/ (50+k), k is the iteration number. 
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(a) 

 

(b) 

 

(c) 

Figure 6.2 Simulation Results of the Comparison of Network 

Coding and Routing. (a) Group Communication with 2 Sources;  

(b) Group Communications with 5 Sources; (c) Group 

Communications with 10 Sources 
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  Figure 6.2 (a) shows the result of group communications with 2 sources which are 

node 5 and node 15 here. Figure 6.2 (b) shows the result of group communications with 5 

sources which are node 1, node 2, node 3, node 4 and node 5 here. Figure 6.2 (c) shows 

the result of group communications with 10 sources which are node 1, node 2, node 3, 

node 4, node 5, node 6, node 7, node 8, node 9 and node 10 here. 

  As shown in Figure 6.2, network coding does have obvious throughput advantage 

sometimes, but not always. We changed the topology, the source nodes as well as the 

destination nodes for the simulation and results were always similar. At most of the time, 

network coding does not have obvious throughput advantage which is the same as one 

multicast session communications simulated by Li et al. [2].  

  The following results are for comparison with current IP multicat protocols. 

 

Figure 6.3 Maximum Throughputs from Source Node 5 and 15 
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Figure 6.4 Maximum Throughputs from Source Node 1, 2, 3, 4 and 5 

 

Figure 6.5 Maximum Throughputs from Source Node 1 to Node 10 
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  So, our simulation showed a throughput comparison between network coding and 

routing for group communications in undirected networks. Current multicast protocols 

are much more scalable and easier to deploy in real network. However, the throughput 

with those protocols will be much less than the algorithms we simulated here. Figure 6.3 

to Figure 6.5 show that both algorithms being introduced here (one for routing only and 

one for network coding) have huge throughput benefit to current IP multicast protocols. 

Also, although we can set up QOS policy in routers and switches, current protocols 

cannot optimize the network to make different sessions as fair as possible. Trade-off is 

always there in engineering problems. Researchers are doing huge effort on network 

coding and hope that network coding can support the maximum throughput with routing 

and becomes easier to deploy. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

7.1 Summary 

  The traditional method to solve the group communications problem is putting a 

super source with unlimited bandwidth to all sources. In this thesis, it is shown that this 

method cannot guarantee the fairness within different sources for routing. Also, the 

method can be incorrect in certain scenarios. Two algorithms are presented in this thesis, 

one for routing and one for network coding to guarantee that each source has the same 

fairness and get the sub-optimal throughput for group communications in undirected 

networks. All current widely used routing protocols are topology-based. The throughputs 

using both these algorithms (one for routing only and one for network coding) are much 

better than current widely used IP multicast protocols. Between the two proposed 

algorithms, the algorithm for network coding can have throughput benefit in some 

scenarios but not always. Here, we show that network coding does not have constant 

throughput benefit in undirected networks in group communications scenario with the 

consideration of fairness within different sources. 

 

7.2 Recommendations for Future Research 

  Both our algorithms are not distributed algorisms. So, it is hard to deploy them 

into large networks. Also, they will not work well if there are link failures or topology 
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changes in the network. Further research is necessary to improve the scalability and 

robustness of these algorithms. Cluster-based algorithms might be a good approach. 

  We only simulated these algorithms in one randomly generated thirty nodes 

network scenario. Simulation in large network is necessary for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

 

 

 

 

REFERENCES 

 

[1] R. Ahlswede, N. Cai, S. Li, and R. W. Yeung, "Network Information Flow," 

IEEE Trans. on Information Theory,  vol. 46,  pp. 1204-1216, 2000 

[2] Y. Wu, P. A. Chou, and K. Jain, "A Comparison of Network Coding and Tree 

Packing," in Information Theory, ISIT 2004 Proceedings, pp. 143-149, 2004 

[3] Z. Li, B. Li, D. Jiang, and L. C. Lau, "On Achieving Optimal Throughput with 

Network Coding," in Proceedings IEEE INFOCOM 2005, vol. 3, pp. 2184-2194, 2005 

[4] R. Dougherty, Chris Freiling, and Kenneth Zeger, "Unachievability of Network 

Coding Capacity," IEEE Trans. on Information Theory, vol. 52, pp. 2365-2372, June 

2006 

[5] J. B. Orlin, T. L. Magnanti, and R. K. Ahuja, "Network Flows: Theory, 

Algorithms, and Applications," 1993 

[6] G. Robins, and A. Zelikovsky, "Improved Steiner Tree Approximation in 

Graphs," in Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete 

Algorithms,  pp. 770-779, 2000 

[7] U. S. R. Murty, and J. A. Bondy, "Graph Theory with Applications," 1976 

[8]   A. Mirzaian, http://www.cse.yorku.ca/~aaw/Wang/MaxFlowMinCutAlg.html 

[9]  S. Chen, O. Gunluk, and B. Yener, “The Multicast Packing Problem,” IEEE/ACM 

Trans. Networking, pp. 311-318, June 2000 

[10] Hangzhou H3C Technologies Co., Limited, Document Team, www.h3c.com 

[11] S. Li, R. W. Yeung, and N. Cai, "Linear Network Coding," IEEE Trans. on 

Information Theory, vol. 49, pp. 371-381, 2003 

[12] E. Fasolo, Slides from www.cs.virginia.edu/~yw5s/Network%20coding.ppt 

[13] P.A. Chou, T. Wu, and K. Jain, "Practical Network Coding," the 51
st
 Allerton 

Conf. Communication, Control and Computing, Oct. 2003 

http://www.cse.yorku.ca/~aaw/Wang/MaxFlowMinCutAlg.html
http://www.h3c.com/


60 

[14] R. Koetter, and M. Medard, "An Agebraic Approach to Network Coding," 

IEEE/ACM Tran. on Networking, vol. 11, pp. 782-795, Nov. 2003 

[15]  N. J.A. Harvey, R. Kleinberg, and A.R. Lehman, “On the Capacity of Information 

Networks,” IEEE Trans. Information Theory, pp. 2345-2364, June 2006 

[16] Scalable Network Technologies, Inc., http://www.scalable-networks.com/ 

[17] L. R. Ford, and D. R. Fulkerson, “Maximal Flow through a Network”, Canadian 

Journal of Mathematics 8, pp. 399-404, 1956 

 

http://www.scalable-networks.com/

	University of South Florida
	Scholar Commons
	2009

	Comparison of routing and network coding in group communications
	Yangyang Xu
	Scholar Commons Citation


	FINAL111111111111
	FIINALLLLL2

