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ABSTRACT 

 

CdTe solar cells in the superstrate configuration have achieved record efficiencies 

of 16% but those in the substrate configuration have reached efficiencies of only 7.8%. A 

major reason for the lower efficiency of substrate CdTe solar cells is the poor back 

contact. In this work, CdTe solar cells of the substrate configuration have been fabricated 

on flexible metallic substrates. For this type of devices, impurity diffusion out of 

stainless-steel substrates due to high temperature processing can be a cause for poor cell 

performance. It is necessary to investigate ways of improving the back contact by trying 

to mitigate the above factors. In this work, Nitrogen has been incorporated in 

Molybdenum by RF magnetron sputtering. Nitrogen incorporation has helped achieve a 

2% increase in efficiency for the best cell and an improvement of 1.5% on an average. 
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CHAPTER 1: 

INTRODUCTION 

Energy Consumption and Renewable Sources of Energy 

With the ever increasing demand for energy, exploiting natural resources for 

energy production and consumption has come to be of paramount importance. A major 

portion of today‘s energy demands are met by fossil fuels, which account for about 85% 

of the current world energy consumption, with nuclear energy supplying about 5% and 

renewable energy catering to about 10% of today‘s energy needs, Figure 1.1 [1]. If we 

continue consuming fossil fuels at the rate we do currently, we would be exhausted of oil 

in less than 45.7 years, natural gas in about 62.8 years and coal in 119 years [2]; and 

these figures are without considering the yearly increase in consumption. 

Combustion of fossil fuels poses a threat to the climate on earth due to the 

emission of CO2 and other harmful gases and due to oil leaks, such as the BP leak in the 

Gulf of Mexico (2010). Carbon sequestration has helped mitigate CO2 release to the 

atmosphere but poses a challenge of finding huge secure storage spaces: storing the 25 

billion tons of CO2 produced annually would require 12,000 km
3 

[3]. 
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Figure 1.1 World energy consumption by type of energy source in year 2008 [1] 

The current world energy consumption is 13 TW and is expected to reach a 

whopping 30 TW by 2050 [3]. It is hence imperative to replace fossil fuels and other non-

renewable hazardous energy sources with renewable and clean sources of energy. Tidal, 

geothermal, hydroelectric and wind energy together can account for only a small 

percentage of the total energy consumption on our planet. Production of nuclear power 

even in the most efficient way feasible: constructing a 1GWe nuclear power plant every 

other day, would cause the uranium resources to be exhausted in 10 years and would 

generate only 2TW when compared to the world consumption of 13TW [3]. ―More 

energy from sunlight (4.3 x 10 
20

 J) strikes the earth in one hour, than all the energy 

consumed on the planet in a year (4.1 x 10 
20

 J)‖, this suggests the huge untapped 

potential for commercial energy production utilizing the sun‘s energy [3]. 
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Solar Cell Generations and Limits to Efficiency 

Solar cells are a direct means to convert sunlight to electrical energy. Solar cell 

production has been increasing at a steady rate every year: production has been 

increasing by a factor of 20% from 2005- 2008, Figure 1.2 [4]. 

 

Figure 1.2 World photovoltaic production from 1990 to 2008 [4] 

Covering 0.16 % of the earth‘s surface with 10 % efficient solar cells would produce 

20TW of power [3]. In spite of having the potential to produce huge amounts of energy 

when used in a large scale, solar cells have not been able to replace fossil fuels as a 

primary source for commercial energy production because of the high costs involved in 

their production and deployment. To compete with fossil and nuclear energy the current 

cost per watt of grid solar power needs to be reduced by a factor of 50 [5]. To reduce the 

cost of photovoltaics and in a quest to find better performing materials, various 
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photovoltaic technologies have been investigated; they are classified into three 

generations based on the type of materials and junctions used. 

The First generation of solar cells consists of single – junction silicon wafer based 

solar cells. Silicon wafer based solar cells exhibited high efficiencies, but involved high 

costs for the production of silicon wafers from quartzite and in running the processing 

machinery. Slicing the silicon ingot produced circular wafers which resulted in wastage 

of wafer area; and produced thicker wafers than were essential for solar cell 

manufacturing. Encapsulation for wafer cells too was expensive.  Alternative forms of 

producing silicon for solar cells were investigated to avoid the huge costs involved in 

manufacturing silicon wafers. These produced multi-crystalline silicon with slightly 

lower performance. A process to produce ingots with a square cross-section was 

developed to make square silicon wafers instead of the circular wafers used 

conventionally. Other processes such as the edge-defined film-fed growth and the 

dendritic web process were developed to form sheets of silicon wafers directly to avoid 

the ingot method and the slicing steps it entails. First generation cells have achieved 

efficiencies of about 24% so far with around 3.5 $/W cost, Figure1.3, Figure 1.4. [6] 

Thin film solar cells constitute the second generation of solar cells. Thin film 

based technologies such as Cadmium Telluride (CdTe), Copper Indium Gallium Selenide 

(CIGS), Gallium Arsenide (GaAs), amorphous silicon and semi-crystalline silicon 

overcome the huge costs involved in silicon wafer processing and can process larger unit 

areas (about 100 times) when compared to wafer-based technology [6]. The cost per watt 

for second generation solar cells varies from 3.5 – 0.5 $/W and efficiencies of about 20% 

have been achieved so far, Figure 1.3, Figure 1.4. 
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Figure 1.3 Efficiencies and costs for the three solar cell generations [7] 

Third Generation photovoltaics  encompass a wide range of emerging 

technologies to provide improved efficiencies and reduced costs compared to first and 

second generations. These cells use thin film deposition techniques like second 

generation cells and employ nontoxic materials. They target high efficiencies of the order 

of 20 – 60 % and thereby reduce the dollar per watt significantly to around 0.5 – 0.1 $/W, 

Figure 1.3 [7]. Third generation photovoltaics consist of a wide range of cells: tandem or 

multi junction cells that have semiconductors of increasing band gap with the 

semiconductor of the highest band gap on top to enable collection of a wide range of 

solar spectrum; intermediate-level cells that have energy levels within the bandgap that 

contribute to photon absorption; multiple-electron hole pair cells that generated multiple 

electron –hole pairs per incident photon; hot carrier cells which are based on reduced 



6 

lattice interactions so that the carriers have the maximum time to get collected with high 

energies resulting in higher voltages at the output; die-sensitized cells and organic cells. 

So far efficiencies of about 11.1% have been demonstrated, Figure 1.4 [7], [8], [9]. 

 

Figure 1.4 Best research-cell efficiencies [9] 

Solar cells have an upper bound, called the thermodynamic limit, to the maximum 

efficiency they can achieve, Figure 1.3. This is because, when light is incident on a solar 

cell only the photons with energy greater than the band gap are absorbed, the rest are 

converted to heat. Moreover, even though all the absorbed photons generate electron-hole 

pairs only a part of them are collected at the output. More about this will be discussed in 

section III. The maximum theoretical efficiency that can be obtained by a single-junction 

solar cell is specified by the Shockley-Queisser limit to be 31 % under one sun conditions 
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and about 41% under 50,000 suns concentration; 50,000 suns indicates concentrating 

sunlight using lenses so that the intensity is equal to that of 50,000 suns [10]. Multiple 

junction cells capture a larger spectrum of the incident light and can reach higher 

efficiencies. Figure 1.5 lists theoretical efficiency limits for different solar cell 

configurations and the corresponding best efficiencies achieved so far. The table suggests 

that there is scope for improving the performance of existing cells and demonstrates the 

huge improvements in efficiencies that emerging technologies are capable of. 

 

Figure 1.5 Theoretical PV efficiency vs. experimental PV performance [10] 

Solar Cell Operation 

When light shines on a p-n junction, photons with energy greater than the band 

gap Eg of the semiconductor are absorbed. The following relation provides the conversion 

factor of wavelength to photon energy [11]. 
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  (1.1) 

Every material has an upper limit to wavelength, that corresponds to the band gap 

Eg beyond which it does not absorb photons. 

 When photons are absorbed by the semiconductor, photons of energy greater than 

the band gap Eg are absorbed and electron hole pairs are created throughout the device. 

Not all of these carriers are collected in the external circuit; only those carriers that are in 

the depletion region or within a diffusion length of the depletion region are collected, the 

rest are lost due to recombination, Figure 1.6. 

 

Figure 1.6 Working of a p-n junction solar cell 

The following equation gives the ideal I–V characteristics of a solar cell 

  (1.2) 

 

     

 

Ē 
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Where, 

 Is is the diode saturation current under reverse bias, 

 IL is the current due to excited carriers generated by solar radiation, Figure 1.7 

 

Figure 1.7 Equivalent circuit of an ideal solar cell [11] 

I-V characteristics for an ideal solar cell are shown in Figure 1.8. 

The open circuit voltage, Voc and the short circuit current, Isc are important 

parameters in evaluating the performance of a solar cell. Voc is the voltage that appears 

across the terminals of a solar cell when they are not connected by a load. Isc is the 

current that flows across a load of zero resistance. The voltage drop V across the load 

resistance RL forward biases the diode and limits the total current across the load, the 

current IL due to illumination is reduced by a factor of Isc*(e 
qV/kT

 -1) (Figure 1.7), hence 

the maximum current obtained, Im is always less than the short circuit current Isc and the 

maximum voltage that can be collected, Vm is always less than the open circuit voltage 

Voc. 

V 
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Figure 1.8 I-V characteristics of an ideal solar cell [11] 

The efficiency for a solar cell is given by 

  (1.3) 

 

Where, The product (Voc * Isc * FF) is the maximum power generated by the solar cell in 

Watts, 

E is the spectral irradiance in W/m
2
 and 

A is the surface area of the solar cell. 

V m 

I m 

Voc 

I sc 
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Solar Spectrum for Terrestrial Applications 

The solar spectral irradiance curves in Figure 1.9 represent the solar spectra at 

various positions with respect to the earth. The air mass zero (AM0) condition represents 

the solar spectrum outside the earth‘s atmosphere and is considered for space 

applications. AM1 corresponds to the solar spectrum at the earth‘s surface when the sun 

is directly above or at its highest intensity with respect to that region of the earth‘s 

surface. Air mass 1.5 (AM1.5), that is sun at 45
o
 above the horizon is considered a good 

average for terrestrial applications and the amount of solar power incident on the earth 

under these conditions is about 844 W/m
2 
[11]. 

 

Figure 1.9 Solar spectra for AM 1.5, AM0 and 5800K black body [12]. 
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Purpose and Content of This Thesis 

The purpose of this Thesis was to investigate the effects of Molybdenum Nitride 

layers in the back contact structure of CdTe solar cells on cell performance. 

The subsequent chapters are classified as follows: Chapter 2 discussed Metal –

Semiconductor contacts in general, Chapter 3 discusses superstrate and substrate 

configuration solar cells, and Chapter 4 is a literature survey of back contacts to 

superstrate and substrate CdTe solar cells. Chapter 5 deals with the structure and 

properties of Molybdenum Nitride and Chapter 6 discusses characterization methods and 

experimental procedures involved in this study. Chapter 7 discusses the effects of 

Molybdenum Nitride in the back contact structure of CdTe solar cells to cell 

performance. Chapter 8 gives the conclusion from the current work and suggests future 

work that can be done to further support the explanation given here. Also suggestions for 

further improvement of CdTe solar cells based on Molybdenum Nitride back contacts are 

made. 
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CHAPTER 2: 

METAL SEMICONDUCTOR CONTACTS 

The Schottky – Mott Theory 

Formation of reliable and stable ohmic contacts to semiconductors is very 

important to ensure efficient current collection. Contacts to semiconductors can either be 

rectifying or ohmic depending on the characteristics of the metal. Metal –Semiconductor 

contacts as explained by the Schottky-Mott Theory will be discussed in this section. The 

Schottky-Mott theory is based on a few assumptions; (1) There is no intermediate layer 

between the metal and the semi-conductor such as an insulating layer of oxide. (2) No 

change in the metal – semiconductor boundary after contact (3) No surface charges. [13], 

[14] 

The semiconductor work function, ΦS is given by the sum of the semiconductor 

electron affinity, χs and the energy difference between the conduction band of the 

semiconductor,  and the semiconductor Fermi level, EF [12], [15]. 

 (2.1) 
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The electron affinity of the semiconductor χs which is the energy difference 

between the vacuum level and the conduction band of the semiconductor (χs = E0 - EF) is 

constant for a given semiconductor and (EC - EF) decreases with increasing doping 

density in the semiconductor. The work function ΦM is constant for a given metal [12], 

[15]. 

Contacts to an N-type Semiconductor 

N-type semiconductors form ohmic contacts when contacted with metals of work 

function lower than that of the semiconductor (ΦM < ΦS) and rectifying contacts to metals 

of work function higher than the semiconductor work function (ΦM > ΦS). The barrier 

height for an N-type semiconductor in contact with a metal is given by 

  (2.2) 

     

Figure 2.1 shows the band diagrams before and after contact of a metal and an n-type 

semiconductor 

Contacts to a P-type Semiconductor 

 P-type semiconductors form rectifying contacts to metals of work function 

lower than that of the semiconductor (ΦM < ΦS) with the barrier height given by 

  (2.3)   
 
 
and ohmic contacts to metals of work function higher than the semiconductor work 

function (ΦM > ΦS) [12], [15]. Figure 2.2 shows the band diagrams before and after 

contact of a metal and a p-type semiconductor. 
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Figure 2.1 Energy band diagrams of metal and N-type semiconductor contacts when (1) 

The metal work function is less than the semiconductor work function, (ΦM < ΦS) (a) 

before contact and (b) after contact, ohmic or accumulation type contact. (2) The metal 

work function is greater than the semiconductor work function, (ΦM > ΦS) (a) before 

contact and (b) after contact, rectifying or depleting type contact. [12], [15] 
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Figure 2.2 Energy band diagrams of metal and P-type semiconductor contacts when (1) 

The metal work function is less than the semiconductor work function, (ΦM < ΦS) (a) 

before contact and (b) after contact, rectifying or depletion type contact. (2) The metal 

work function is greater than the semiconductor work function, (ΦM > ΦS) (a) before 

contact and (b) after contact, ohmic or rectifying type contact. [12], [15] 

The Bardeen Model 

According to the Schottky-Mott Theory, ohmic contacts can be formed by 

choosing the metal with the appropriate work function. But, it has been found 

experimentally that the Schottky barrier height is less sensitive or even independent of 

the metal work function in some cases [16], [14], [13]. John Bardeen attributed this to 

surface states on the semi-conductor surface and explained the weak dependence of the 

barrier height to the metal work function [14]. 
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Surface states exist on the free surface of a semiconductor because the periodic 

structure of the crystal lattice is terminated at the surface.  These surface states have 

energies inside the band gap for some semiconductors which causes the Fermi level to be 

pinned. A double layer or dipole is formed that consists of electrons in surface states and 

a space charge in the semiconductor of opposite sign due to transfer of electrons from the 

region in the bulk immediate to the surface into surface states. When the density of 

surface states is very high (>10
13

 cm
3
), the work function at the free surface of a 

semiconductor is determined entirely by the surface and is independent of the Fermi level 

in the semiconductor. This semiconductor when contacted to a metal gives a potential rise 

in the semiconductor that is equal to that on the free semiconductor surface and the 

amount by which the potential is raised at the semiconductor surface is practically 

independent of the metal work function. [14], [13], [17] 

Ohmic Metal-Semiconductor Contacts 

Ohmic or pseudo-ohmic metal-semiconductor contacts can be formed by (1) 

Heavily doping the semi-conductor adjacent to the metal (2) Using an interface layer with 

a work-function suitable to the semiconductor that ensures a low barrier height (3) 

Adding recombination centers to the semiconductor adjacent to the contact (4) Changing 

the Fermi level pinning at the metal-semiconductor interface. [18] 

Doping the Semiconductor 

The current flow between a lightly doped semiconductor and a metal is by 

thermionic emission. This is illustrated in Figure 2.3 for a metal and an n-type 

semiconductor. In this mechanism of current flow, the majority carriers, which are 
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electrons in this case, need to be thermally excited over the barrier. Not many electrons 

have sufficient energy to overcome this barrier at low kT values and conduction is 

minimal. Doping the semiconductor adjacent to the metal to high concentrations results 

in a very narrow depletion width and carriers can tunnel through the barrier. This 

mechanism known as field emission is the dominant mechanism for low kT values or for 

normal operation conditions. [15] 

 

Figure 2.3 Carrier flow based on increasing dopant concentration for a depleting n-type 

metal-semiconductor contact: (a) Thermionic emission for low doping concentrations (b) 

Thermionic and Field emission for moderate doping concentrations (c) Field emission for 

high doping concentrations [15] 

Intermediate Layers 

As explained by the Schottky-Mott theory in section I, to form ohmic contacts, n-

type semiconductors need to be contacted to low work function metals and p-type 

semiconductors should be contacted to high work function metals. There exist many low 

work function metals, but metals with high enough work functions to make ohmic 

contacts to some semiconductors and compound semiconductors like CdTe do not exist. 

In such cases an intermediate layer of high work function can be employed between the 

semiconductor and the metal to form a non-rectifying contact. 
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An intermediate layer can also be a layer that can be doped to higher doping 

concentrations when compared to the actual semiconductor which is to be contacted, like 

ZnTe which can be doped to high acceptor concentrations when compared to p-type 

CdTe [18]. 

Adding Recombination Centers 

Ohmic contacts are defined as regions with high carrier recombination rates. 

Semiconductor regions that are highly damaged will have high recombination rates in the 

form of multistep tunneling. In order to generate high recombination centers, the junction 

is hit by a short, intense electrical discharge. Though this process generates defects and 

recombination in the form of multistep tunneling, it also lowers the carrier density. But 

damaging semiconductors this way is not desirable because of the random nature and 

irreproducibility involved in the process. Moreover, this approach does not work for the 

material of interest here i.e CdTe. [15], [18] 

Modifying the Fermi Level Pinning at the Metal-Semiconductor Interface 

As explained in section II, the schottky barrier height is independent of the work 

function in many cases because of Fermi level pinning. The Fermi level tends to be 

pinned because of a high density of surface states (>10
13

 cm
3
) as discussed in Chapter 2, 

section II,   Modifying the Fermi level pinning at the metal-semiconductor interface can 

help achieve ohmic contacts [18]. Various surface treatment methods have been 

investigated to modify the CdTe surface such as cleaving, mechanical polishing, 

chemical etching and sputter etching [19]. 
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CHAPTER 3: 

THIN FILM CADMIUM TELLURIDE SOLAR CELLS 

Cadmium Telluride Solar Cells 

Cadmium Telluride with a direct band gap of 1.45 eV and a high absorption 

coefficient greater than 10
-5

cm
-1 

is very suitable for solar absorption. Cadmium Telluride 

(CdTe) solar cells being economical have the potential for commercial production. CdTe 

is inherently p-type at sufficiently high temperatures and this makes it easier to use in 

solar cells [20]. These cells have been predicted to reach efficiencies of the order of 30% 

under one sun and about 35% under 1000 suns condition for terrestrial applications, 

Figure 3.1 [21].  

Solar cells with CdTe as the absorber and CdS as the window layer have been 

conventionally fabricated on glass and are referred to as the superstrate configuration 

solar cells. 

Superstrate CdTe Solar Cells 

A basic superstrate CdTe solar cell configuration is shown in Figure 3.2. It 

consists of a transparent conducting oxide, such as (Indium Tin Oxide) ITO deposited on 

glass and an n-type CdS layer deposited on top of the TCO layer. The CdS layer reduces 

the surface recombination rate of carriers and having a band gap of 2.42 eV acts as a 

window for photons that are absorbed in the CdTe absorber with a band gap of 1.45 eV. 
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P-type CdTe is deposited on top of the CdS layer and is treated with CdCl2 annealing for 

activating the cells [20]. CdCl2 treatment enhances grain growth, reduces interface state 

density and causes an increased CdS diffusion into CdTe resulting in improved an 

response in the UV region [22]. This is usually followed by a Br: CH3OH etch or a 

NP(Nitrogen Phosphorus) etch which makes the CdTe surface Tellurium (Te) rich 

resulting in high hole densities hence forming a good ohmic contact to metals [23]. A 

metal like molybdenum that can withstand high temperatures (Molybdenum has a 

melting point of 2623
o
C) and is chemically stable is deposited for current collection 

across an external load. 

 

 

Figure 3.1 Predicted efficiency versus band gap for thin film solar cells [21] 
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Figure 3.2 Basic superstrate CdTe solar cell configuration 

Substrate CdTe Solar Cells on Flexible Substrates 

CdTe solar cells have been made on flexible polymer substrates both in substrate 

(polymer/Back contact/Interface Layer/CdTe/CdS/ITO) and superstrate configuration 

(polymer/ITO/CdS/CdTe/Interface Layer/Back contact) [24]. CdTe solar cells on metallic 

flexible substrates like molybdenum and stainless steel foil too have been developed. 

The present work focuses on CdTe solar cells on stainless steel foil substrates. 

Stainless steel not being transparent (unlike glass), the metal contact is deposited first. An 

interlayer may be deposited followed by p-type CdTe / n-type CdS. This is followed by 

CdCl2 treatment and ITO sputtering for the front contact. A typical substrate CdTe solar 

cell on stainless steel substrates is shown in Figure 3.3. This configuration of CdTe solar 

cells on metallic substrates is referred to as the substrate configuration. Substrate CdTe 

solar cells involve flipping the layers in the superstrate cell which entails many 

challenges, not encountered in superstrate cells. 
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Figure 3.3 Basic substrate CdTe solar cell structure 

Challenges in Substrate CdTe Solar Cells 

Even thought the record efficiency for superstrate CdTe cells is 16.7 %, the 

reported record for substrate solar cells on flexible metal foil substrates is only 7.8 % 

[25]. A major reason for lower efficiency for substrate CdTe solar cells is the poor back 

contact [24]. Substrate CdTe Flexible substrates also have a disadvantage of having a 

narrower choice of materials when compared to superstrate solar cells; because they 

require materials with matching thermal expansion coefficients. It is also difficult to get a 

uniform completely covered CdS film on top of the rough CdTe surface in the case of 

substrate cells [24]. 

Some drawbacks with back contacts in substrate cells which are not present in 

superstrate cells are (1) The absence of a tellurium rich layer formed by Br: CH3OH etch 

that helps in the formation of a good ohmic contact. (2) The back contact to CdTe is 

affected by subsequent CdCl2 treatment [24]. (3) The deposition of subsequent layers 

involves high temperatures causing impurity diffusion out of the stainless steel substrate. 
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CHAPTER 4: 

BACK CONTACTS TO CADMIUM TELLURIDE SOLAR CELLS 

History of Back Contacts to Cadmium Telluride Solar Cells 

Cadmium Telluride (CdTe) has a high electron affinity of 4.5eV and a band gap 

of 1.5eV, resulting in a high work function for p-type CdTe [26]. Because of the lack of 

metals with work functions high enough to form ohmic contacts to p-type CdTe, contacts 

to p-type CdTe are rectifying. Moreover, the presence of a high density of surface states 

on CdTe might cause the metal/CdTe interface to be pinned resulting in a non-rectifying 

contact even with a high work function metal [19], [26], [14]. It is hence necessary to 

modify the CdTe region or surface before contacting it to a metal. The CdTe surface is 

typically etched with a NP (HNO3, H3PO4), K2Cr2O7 + H2SO4 or Br2/CH3OH to form a 

p+ Tellurium rich surface. A number of different approaches with various materials have 

been investigated to achieve ohmic contacts to p-type cadmium telluride for CdTe solar 

cells. 

Metal Contacts to P-type CdTe 

Various metals have been deposited directly on etched p-type CdTe as contacts to 

CdTe solar cells. Metals with high work functions or metals that can be used as acceptors 

to dope CdTe p+ are typically used. Conventional back contacts to CdTe employ Cu/Mo 
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[27], Cu/Au [28], [29] or Cu/graphite [30]. Chou et al. studied Au/Cu contacts to CdTe 

solar cells and have observed Cu diffusion into CdTe and substitutional acceptor doping 

of Cd sites [31]. Degradation of cell performance was observed when excess Cu was 

used; due to the diffusion of Cu through CdTe and formation of recombination centers 

and shunt paths [31]. To overcome the degradation of cell performance due to Cu 

diffusion to the CdTe/CdS junction, Sb/Au has been employed as a back contact [32]. Ni-

P contacts with subsequent annealing causing P diffusion into CdTe have been employed 

to form a p+ region between the metal and CdTe; a contact resistivity of 0.1-0.08 Ωcm
2
 

was achieved [33]. Ni2P mixed with graphite paste was used as a back contact, and it was 

observed that annealing leaves the CdTe bulk essentially unaffected modifying only the 

surface in contact with the metal. Ni2P has hence been shown to be stable unlike Cu 

which diffuses over time [34]. 

P+ Doping of CdTe 

CdTe can form ohmic contacts to metals by directly doping the CdTe region 

highly p+. The carrier density and conductivity in CdTe depends to a large extent on 

defects in CdTe. CdTe can be n-type or p-type depending on the type of vacancies or 

defects present. CdTe is p-type at low cadmium pressures due to excess tellurium that 

results in Cd vacancies and Te interstitials; and is n-type at high cadmium pressures due 

to excess cadmium because of Te vacancies and Cd interstitials. This behavior has also 

been observed for CdTe with Cu and Au impurities. [23] 

CdTe being a II-VI compound, can be doped with acceptor impurities of group I 

and V. Single-crystal p-type CdTe can be easily doped to acceptor levels greater than 
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10
17

 cm
-3

 with P, V, Li, Na.
 
[35],

 
[36], [37], [38], [39], [40], [36] but the maximum 

achievable acceptor doping in CdTe is limited due to self-compensation [41]. Thin film 

deposition processes used for manufacturing CdTe solar cells result in the formation of 

polycrystalline films which are more difficult to dope, moreover the resistivity for 

polycrystalline material is higher compared to single crystal material due to grain 

boundary or surface scattering effects. [42].  

Chu et al. have tried varying the acceptor density of CdTe by changing the Te/Cd 

ratio and by doping p-type CdTe with Arsenic, Phosphorus or Oxygen; they have been 

able to achieve acceptor concentrations in the range of 0.2*10
16

 cm
-3

 – 1*10
16 

cm
-3 

[43]. 

H. Zhao et al. have been able to introduce antimony and oxygen impurities to about 10
16

 

cm
-3

 [44]. 

Interlayers between CdTe and the Metal Contact 

Because of the difficulties involved in doping polycrystalline CdTe to high 

acceptor concentrations and because of the lack of availability of metals with high 

enough work functions to form ohmic contacts to p-type CdTe (which has a work 

function of around 5.9 eV), interlayers are used to form good ohmic contacts between 

metal and p-type CdTe. 

HgTe and HgCdTe have been used as buffer layers for CdTe solar cells. HgTe is a 

semi-metal and has a work function of 5.9 eV close to that of CdTe (5.9 - 6 eV). [45], 

[46] 
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M. Florez et al utilized a Cu2Te interlayer to reduce the amount of Cu segregation 

at the CdS/CdTe interface due to diffusion and were able to form low resistance contacts 

with contact resistivity of 0.16 Ωcm
2
 to CdTe with the help of a CuxTe interlayer formed 

by etching the CdTe films in Sulphochromic (100ml, 20% K2Cr2O7 + 50 ml conc. 

H2SO4) followed by dipping in CuCl2 and then contacting with Cu [47]. J. H. Yun et al. 

deposited a Cu2Te layer directly on CdTe and were able to achieve a minimum series 

resistance of 0.5 Ωcm
2
 due to formation of hexagonal phases of Cu2Te by annealing 

above 200
o
C forming a good lattice match to CdTe [48]. 

Stable CdTe solar cells with Sb and Sb2Te3 interlayers and molybdenum 

metallization have been used to substitute Cu containing back contacts which degrade 

solar cell performance over time due to the diffusion of Cu causing the cell to be shorted 

[49]. 

Conductivity from CdTe to the back contact is through holes and it is necessary to 

form a minimum barrier to the flow of holes, by achieving a zero valance band offset 

[50], [51], [52]. Contacting CdTe to metals directly forms large schottky barriers, 

obstructing the flow of holes. ZnTe serves a dual purpose in that it can be doped with Sb 

doping of up to 10
18

 cm
3 

facilitating tunneling when contacted to a metal and achieving a 

very small valence band offset of 0.05 eV with CdTe. [50], [51], [52] 

T. Tang et al. studied Cu-doped ZnTe films as an intermediate layer between 

CdTe and the metal contact. CdTe is difficult to dope to high acceptor concentrations. 

ZnTe has a small valence band discontinuity with CdTe and can be doped degenerately 

with Cu. ZnTe doped with Cu has been used with Au, Ni and Co as metal contacts. It has 
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been observed that introduction of the ZnTe layer significantly reduced the series 

resistance of the CdTe/CdS solar cells from 1.8 to 0.1 Ωcm
2
 [53]. T. A. Gessert et al 

manufactured solar cells with ZnTe: Cu / Ti back contacts [54]. 

History of Back Contacts to Substrate Cadmium Telluride Solar Cells 

As mentioned in Chapter 3, back contacts to CdTe solar cells on metallic 

substrates in the substrate configuration face various challenges not encountered by 

superstrate cells. Back contacts that have been used conventionally for superstrate solar 

cells cannot be employed as back contacts to substrate cells because of mismatch in the 

thermal expansion coefficients to CdTe and/or the metallic substrate or degradation of the 

back contact caused by CdCl2 annealing. CdTe solar cells have been developed in the 

substrate configuration on polymer foil with efficiencies of 7.3% [24].  V. P. Singh et al 

have tried using HgTe and ZnTe as interlayers but without much success [55]. 

Molybdenum was employed as the back contact followed by a Cu/Te interlayer on 

Molybdenum substrates and it was observed that CdCl2 annealing and O2 annealing 

improved cell Voc; a highest cell efficiency of 5.3% was reported [55]. Matulionis et al. 

have been able to achieve efficiencies of 7.8% with N2 doped ZnTe as an interlayer 

between molybdenum and CdTe [25]. Enrique et al employed Mo back contacts with 

Au/Pd as an interlayer on molybdenum substrates because of the matching thermal 

expansion coefficient of molybdenum (4.8*10
-6

/K) with CdTe (5×10
−6

/K) and have 

achieved efficiencies of 3.5% [56]. 
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CHAPTER 5: 

MOLYBDENUM NITRIDE 

Transition Metal Nitrides 

Transition metal nitrides exhibit high hardness, high melting points and good 

chemical and physical stability and have been used as surface coatings, catalysts and high 

temperature ceramics. Nitrides of the d-block transition metals are close-packed 

compounds. Nitrogen having a much smaller atomic size compared to transition metals, 

occupies the octahedral interstitial sites between the metal atoms of transition metal 

nitrides [57], [58]. Most binary transition metal nitrides exist in the cubic NaCl structure 

and the hexagonal WC structure [57]. 

Crystal Structure of Molybdenum Nitride   

The phase diagram of the Molybdenum – Nitrogen (Mo –N) system is shown in 

Figure 5.1. The Mo –N system exists in the following phases 

(i) α phase: In this phase Molybdenum (Mo) has very little nitrogen from 0 to 1.08 at. %. 

Molybdenum exists in the body centered cubic lattice system in α phase. The nitrogen 

atomic concentration in α-Mo is very low below 1000
o
C and reaches the maximum 

concentration of 1.08 at. % at the eutectic temperature of 1860
o
C where the solidus and 

liquidus lines intersect. [59] 
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Figure 5.1 Molybdenum – nitrogen phase diagram [60] 

 (ii) β phase: Molybdenum and nitrogen crystallize at low temperatures to form β-Mo2N. 

β-Mo2N crystals are face centered tetragonal with an ordered array of nitrogen atoms and 

nitrogen concentrations of 28.7 to 35 at.%. The lattice constants for the β-Mo2N unit cell 

are a = b ≠ c. β-Mo2N has a I41/amd structure as shown in Figure 5.2 and is considered ―a 

tetragonal modification of the cubic γ-Mo2N phase‖ with the lattice constant ‗c‘ doubled 

[61], [59], [62], [63]. 
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Figure 5.2 Crystal structure of β-Mo2N [64] 

(iii) γ phase: γ-Mo2N contains nitrogen atomic concentrations of 27 – 35 at. % and is 

formed at high temperatures as a face-centered cubic lattice with a defective B1 structure 

(Figure 5.3), with half of the nitrogen sublattice positions vacant [65], [61]. There also 

exists a B1-MoN phase, which is formed by increasing the nitrogen concentration and by 

filling up the vacant sites in the nitrogen atom sublattice in the defective B1 γ-Mo2N 

structure [66]. But the B1-MoN is not shown in the phase diagram because it is 

thermodynamically unstable and the thermodynamically stable hexagonal δ-MoN is 

formed instead [66], [67]. 
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Figure 5.3 Crystal structure of γ Mo2N [64] 

(4) δ phase: δ-MoN is formed at 50 at. % nitrogen and has a hexagonal structure 

and belongs to the P63mmc space group, Figure 5.4. [59]. Some weak extra lines in the 

X-ray diffraction pattern indicate the presence of a superlattice [68]. 

 

Figure 5.4 Crystal structure of δ-MoN [69]  

Structural and Mechanical Properties of Molybdenum Nitride 

Sputtering of Molybdenum targets in the presence of Ar and N2 gases, leads to the 

formation of γ-Mo2N for lower nitrogen concentrations and hexagonal δ-MoN at higher 

nitrogen concentrations [66], [70]. Properties of Mo-N films and the variation of these 

properties with the phase of Mo-N will be explained. 
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The hardness of molybdenum nitride films, MoNy changes with the nitrogen 

stoichiometry ‗y‘ and with the phase of Mo-N. The hardness of molybdenum nitride films 

decreases with increasing ‗y‘ in the presence of fcc γ-Mo2N [70]. This trend in hardness 

is related to the strength of the Mo-N bond. Initially, for low nitrogen concentrations, 

electrons in the low-lying bonding bands corresponding to the 4d sublevel in Mo (with 

electron configuration [Kr] 5s
1
 4d

5
) and the 2p sublevel in N (with electron configuration 

1s
2
2s

2
2p

3
) hybridize strongly to form a Mo-N covalent bond, resulting in high hardness. 

With increasing nitrogen concentration, the low-lying bonding bands are all occupied by 

electrons and the additional electrons occupy the higher–lying antibonding bands. This 

causes the covalent bond to be broken creating a weaker ionic bond; hence the hardness 

decreases. [67] With the appearance of the hexagonal δ-MoN the hardness increases 

because of a higher cohesive energy. 

The δ-MoN phase has a higher bulk modulus compared to γ-Mo2N. E. Soignard et 

al. have reported a bulk modulus of 345 GPa for δ-MoN and 301 GPa for γ-Mo2N [71]. 

The higher bulk modulus in the case of δ-MoN is in turn due to the higher cohesive 

energy for δ-MoN. 

Higher hardness is generally observed in films with high compressive stress 

where as softer materials exhibit tensile stress. P. Hones et al. have determined the 

residual stress in Mo-N films and have found that γ-MoN films exhibit tensile stress with 

1.6 ± 0.4 GPa, B1 MoN0.8 films show a tensile stress of 2.05 ± 0.1 GPa and δ-MoN films 

show a compressive stress of -3.3 ± 0.2 GPa. [70] 
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The δ-MoN films are densely packed and highly ordered films and stable 

compared to the other phases of Mo-N [70], [71], [72]. 
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CHAPTER 6: 

CHARACTERIZATION METHODS AND EXPERIMENTAL PROCEDURE 

Four-point Probe 

The four-point probe measurement technique was used to determine the resistivity 

of the thin films investigated in this work.  

The experimental setup for the four-point probe is shown in Figure 6.1. A DC 

voltage is applied between probes 1 and 4 and the ammeter connected between probes 1 

and 4 measures the current ‗I‘ across the device. Due to the voltage drop across wire 

resistances Rw1 and Rw4, the four-point probe uses a different set of probes to measure 

current and voltage. The high impedance of the voltmeter ensures negligible current flow 

across wire resistances Rw2 and Rw3 and hence an accurate voltage ‗V‘ is recorded [15]. 

The four-point probe by Signatone Corporation employed in this case had probes 

equally spaced at 1mm. A DC voltage of 1V was applied between probes 1, 4 using a 

‗6825A Bipolar Power Supply / Amplifier by Hewlett Packard‘ set to a range of 2.4V and 

the current I and voltage V were measured using two ‗8010A Digital Multimeters by 

Fluke‘ across probes 1, 4 and 2, 3 respectively. The multimeters for measuring current 

and voltage were set to read a maximum current of 20mA and a maximum voltage of 

200mV respectively. The films measured using the four-point probe, were less than 1μm 
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thick. For probes that are equally spaced at a distance s, and for a film thickness t ≤ s/2, 

which is true in our case, the sheet resistance is given by [15] 

  (6.1) 

 

Hence the sheet resistance Rs was calculated from the voltage ‗V‘ and ‗I‘ that were 

measured. The thickness t of the films was measured using a ‗Veeco-DekTak 6M Surface 

Profiler‘. The resistivity ρ of Molybdenum (Mo) and Molybdenum Nitride (Mo-N) 

deposited were obtained by using the following relation, 

  (6.2) 

 
 

 

Figure 6.1 Four-point probe [15] 

X-Ray Diffraction Spectroscopy (XRD) 

X-rays are electromagnetic radiation with short wavelengths in the range of 0.01 – 

10 nm comparable to atomic spacing. X-ray Diffraction is a non-destructive technique for 

determining the chemical composition, crystallographic structure and physical properties 
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of materials and thin films. The properties of the material or thin film are determined by 

the X-rays that are diffracted by the crystal lattice. 

When X-rays with wavelength λ are incident at an angle θ onto a crystalline solid 

with crystal planes spaced at a distance d, these X-rays are scattered by the crystal lattice 

and X-rays that constructively interfere are recorded by an X-ray detector [73]. The path 

difference between rays diffracted constructively from adjacent crystal planes is 2dsinθ, 

as shown in Figure 6.5. The condition for constructive interference as given by Bragg is 

  (6.3) 

Where n is an integer. 

 

Figure 6.2 Bragg diffraction from adjacent crystal planes 

For the present work, a PANalytical X‘Pert Pro MRD (Materials Research 

Diffractometer) with a Cu Kα X-ray source using the 2θ procedure was used to obtain the 

X-Ray Diffraction spectra of the Mo and Mo-N films to determine the chemical 

composition. 
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Energy Dispersive X-ray Spectroscopy (EDS) Analysis 

Energy Dispersive X-ray Spectroscopy (EDS) is a technique used for determining 

the chemical composition of materials. It is based on the principle that each element, 

having a unique atomic structure generates a unique spectrum of X-rays when bombarded 

with an electron beam. 

When an electron beam is bombarded onto a sample, X-rays are generated due to: 

(1) Deceleration of electrons in the coulombic field of the atom core. (2) Ejection of 

electrons from the inner atomic shells (3) Electrons in higher energy levels dropping to 

the vacancies created by ejected electrons [15].  

Characteristic X-rays generated by electron transitions from higher energy levels 

are detected by a detector. X-rays that are generated due to electron transition from the L 

to the K shell are called Kα X-rays. Similarly, Kβ X-rays are generated due to M to K 

transitions. These shells apart from the K shell are further subdivided; for example 

transitions from L1 to K generate Kα1 X-rays, Figure 6.6 [15]. 

A Hitachi S-800 Scanning Electron Microscope was employed for this work to 

obtain the Energy Dispersive X-ray spectroscopy of the Mo and Mo-N films to determine 

the chemical composition of the films. 
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Figure 6.3 X-ray emission recorded for EDS [15] 

Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy is used for obtaining a magnified image of a 

sample. It is based on the principle that electron wavelengths being much lower than 

wavelengths of visible light can form high resolution images [15]. A focused electron 

beam incident on a sample causes ejection of (1) loosely bound secondary electrons with 

energies below 50eV (2) Intermediate energy auger electrons and (3) back scattered 

electrons with energy equivalent to the incident beam. The SEM image is formed by 

detecting the secondary and/or back scattered electrons.  A Hitachi S-800 Scanning 

Electron Microscope with a 2nm resolution and 300,000X magnification was employed 

to obtain images of Mo and Mo-N films for this work. 

RF Magnetron Sputtering 

A schematic of the RF magnetron sputtering process is shown in Figure 6.2. The 

RF power supplied to the sputtering gun is inductively coupled to the plasma through a 
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matching network which is tuned by varying the series and shunt capacitances. The RF 

power charges the cathode negative and positive alternatively. 

An inert sputtering gas such as Ar is used if the material to be deposited is the 

same as the target material. In cases where oxides, nitrides or other compounds of 

materials are to be formed, a reactive gas is used along with the inert gas. For example to 

form molybdenum nitride, nitrogen is used along with inert Ar gas. This process of 

forming a desired compound by reaction of target material and sputtering gas is called 

reactive sputtering. 

 The physics of plasma formation is as follows: The magnetrons in the 

cathode create a magnetic field directly above the target surface to trap free electrons 

preventing them from striking the substrate and increasing the rate of reaction [74]. When 

electrons trapped in the magnetic field of the magnetron encounter Ar atoms, they knock 

off outer shell electrons from Ar atoms. The Ar+ ions are accelerated towards the 

negatively charged target and knock off molybdenum material which is deposited onto 

the substrate. In this process additional free electrons are created and are trapped in the 

magnetic field of the magnetron. Other electrons get back to the outer shell of Ar+ ions 

and the energy difference between the free electron and the bound electron is released by 

the Ar atom as a photon which causes the plasma to glow. This process takes place 

continuously. This medium of continuous energy exchange consisting of free electrons, 

neutral Ar atoms, Ar+ ions and target atoms is called plasma. [74] 

A 3‖ TORUS® Magnetron Sputtering Cathode with a 3‖ Molybdenum target of 

99.995% purity both from Kurt J. Lesker were used for the sputtering source. An ‗RFX-
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600 RF Power Generator‘ was used for the RF source along with an ‗ATX-600 Matching 

Network and Controller‘ from Advanced Energy Industries Inc. The flow of sputtering 

gases was controlled using needle valves. 

 

Figure 6.4 Schematic of magnetron sputtering [74] 
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Experimental Procedure 

Sample Preparation 

The SS430 stainless steel samples were ultrasonically cleaned for 45 min in 

acetone followed by 45 min in methanol and 45 min in de-ionized water to remove 

impurities on the stainless steel. Prior to deposition, the samples were again rinsed for 20 

min in methanol followed by 20 min in de-ionized water to ensure an impurity free 

surface. 

The Vacuum System 

 The schematic of a typical vacuum system is shown in Figure 6.5. It consists of a 

mechanical pump to pump the chamber to the low vacuum range of about 20mTorr and a 

Turbo pump to pump down to the high vacuum range of 4 – 11 μTorr base pressure. 

 

Figure 6.5 Vacuum system schematic 
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Spectral Response Measurement 

The spectral response (SR) of a solar cell is the number of carriers collected per 

incident photon at each wavelength. A schematic of the experimental setup for the 

spectral response measurement is shown in Figure 6.5. A Cornerstone
TM 

260 ¼ m 

Monochromator is used to filter wavelengths from an Oriel Instruments Lamp (Model 

No. 74100). In this case wavelength from 400-900 nm which is the range of absorption 

for CdTe solar cells is filtered. The monochromatic light is then incident on the solar cell 

and the current output from the cell is measured by a Keithley 617 Programmable 

Electrometer controlled by LabView. A reference cell (Silicon in this case) is measured 

first to determine the spectral output from the monochromator, which is followed by the 

measurement on the CdTe solar cell. The Electrometer gives the current density output 

for each wavelength. 

The Quantum Efficiency (Q.E) at each wavelength is known for the silicon 

reference cell. The current density for the silicon reference and CdTe solar cells for each 

wavelength is obtained from the above setup. The Q.E for the CdTe solar cell is then 

obtained for each wavelength as follows: 

 

 (6.4) 
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Figure 6.6 Schematic of the spectral response measurement setup [75] 

   

J-V Measurement 

AM 1.5 light from a solar simulator is shined on the solar cell of interest and a 

Keithley 2410 Source Meter that is controlled by LabView measures the voltage (V) and 

current density (J) across the solar cell and is used to obtain the J-V plot for the solar cell. 
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CHAPTER 7: 

MOLYBDENUM NITRIDE FILMS AND SOLAR CELLS 

Molybdenum and Molybdenum Nitride Thin Films by RF Magnetron Sputtering 

Molybdenum (Mo) and molybdenum nitride (Mo-N) thin films were prepared in a 

ultra-high purity (UHP) Argon (Ar) and UHP Ar + N2 ambient respectively by RF 

magnetron sputtering of a 99.995% pure Mo target. The Mo target was placed at a 

distance of 8cm from the substrate and the substrate was kept at RT. Though the substrate 

was not heated intentionally, it might have reached temperatures of about 50 – 100
o
C 

during deposition. The chamber was pumped to a base pressure of 4-11μTorr and initial 

settings of 25W and 15mTorr were used to strike plasma. 

Thin Film Characterization 

Rate of Deposition and Resistivity for Molybdenum Nitride Thin Films 

Both Mo and Mo-N films were studied to determine the variation of deposition 

rate and resistivity with deposition conditions. Mo films were deposited at 250W and 

9mTorr Ar. Mo-N films were deposited at two conditions: (1) 250W with a total Ar+N2 

pressure of 7mTorr and (2) 300W with a total Ar+N2 pressure of 12mTorr. The 

deposition rate for Mo-N was found to be lower than the rate observed for Mo films 

under similar conditions of power and pressure. The deposition rate for Mo-N films 
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deposited at 250 and 300W for increasing N2/Ar ratio is plotted in Figure 7.1. It can be 

seen that the rate increases with increasing RF power and that the rate decreases with 

increasing N2 concentration in the sputtering gas. The sheet resistance and thickness of 

Mo and Mo-N films deposited at varying N2/Ar ratio were measured using the 4-point 

probe and a DekTak thickness profilometer respectively; and the resistivity was 

calculated. The resistivity values of Mo-N films for different ratios of Ar and N2 

sputtering gases, deposited at 250 and 300W are shown in Table 7.1 and Table 7.2 

respectively. 

 

Figure 7.1 Rate of deposition for Mo-N with increasing N2/Ar ratio 

 

 

 



 

47 

Table 7.1: Resistivity of Mo-N films deposited at 250W with increasing N2/Ar ratio 

Ar Pressure N2 Pressure Resistivity (Ω-cm) 

6mT 1mT 2.45 x 10
-4

 

5mT 2mT 1.08 x 10
-3

 

4mT 3mT 1.00 x 10
-3

 

3mT 4mT 1.50 x 10
-3

 

 

Table 7.2: Resistivity of Mo-N films deposited at 300W with increasing N2: Ar ratio 

Ar Pressure N2 Pressure Resistivity (Ω-cm) 

11mT 1mT 7 x 10 
-4

 

9mT 3mT 2.1 x 10 
-3

 

6mT 6mT 9 x 10 
-3

 

3mT 9mT 6.3 x 10 
-3

 

 

Plain Mo films deposited at 250W power and 9mT of Ar pressure have a 

resistivity of 6.2 x 10
-5

 Ω-cm. Mo-N films deposited at 250W demonstrate as higher 

resistivity compared to Mo films. This might be attributed to the increased scattering of 
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electrons due to nitrogen present in the octahedral interstitial sites between the metal 

atoms as mentioned in Chapter 5, Section I; resulting in a lower mobility compared to 

that in the pure metal [57], [58]. 

A plot of the resistivity of Mo-N films deposited at 250 and 300W for different Ar 

and N2 concentrations is given in Figure 7.2. The deposition rate and resistivity of Mo-N 

films increases with RF power for 300W compared to 250W. The resistivity of Mo-N 

films deposited at 300W increases with N2 partial pressure up to a N2/Ar ratio of 1.0, 

which might be attributed to the increase in nitrogen concentration in the Mo-N films as 

verified by Energy Dispersive X-ray Spectroscopy (EDS) measurements to be presented 

in this section. The resistivity of Mo-N films decreases with increase in N2/Ar ratio 

greater than 1.0. 

The trend in resistivity may also be attributed to the change in phase of Mo-N 

[76]. With very low N2 partial pressures, XRD analysis indicates the presence of cubic 

Mo3N2. When the N2 partial pressure is increased, the Mo5N6 phase is observed and for 

N2/Ar ratio of 1.0, the hexagonal δ-MoN is observed. Increasing the N2 partial pressure 

further causes a decrease in intensity and broadening of the MoN peak. The change of 

Mo-N phase with N2 concentration is shown in the XRD spectra on pages 47 and 48. It 

can be deduced that the resistivity of Mo-N films is highest for films which are composed 

predominantly of δ-MoN. 
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Figure 7.2 Resistivity of Mo-N with increasing N2/Ar ratio 

X-Ray Diffraction Spectroscopy (XRD) Analysis 

X-Ray diffraction (XRD) spectroscopy was performed on the Mo-N films to 

identify the microstructure, phase and composition of the films.  

The XRD graphs of a Mo film deposited at 250W and Mo-N films deposited at 

300W along with the percentage of N2 in the sputtering gas are shown in Figure 7.3. The 

Mo-N films change in phase with different ratio of Argon and Nitrogen partial pressures, 

with the Mo2N phase of molybdenum nitride being present for all Nitrogen 

concentrations. The Mo2N and MoN phases are identified as β-Mo2N and δ-MoN from 

the crystal structure and lattice constants reported in the literature [64], [68], [72]. For 

very low nitrogen concentrations of 9.09% in the sputtering gas, cubic Mo3N2 is formed 

and transforms to hexagonal Mo5N6 for 25% N2. Increasing the N2 concentration to 50%, 
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results in a strong hexagonal δ-MoN peak. For higher N2 concentrations, Mo-N films 

show reduced peak intensity with a wider peak width. Most of the Mo-N peaks obtained 

from the films deposited by us did not align perfectly with the peaks from PDF files. The 

error corresponding to the dominant peaks is given as ‗2θ error‘ in Table 7.3. 

 (7.1) 

The lattice parameters and crystal orientation of the different phases of 

molybdenum nitride obtained from the PDF files that correspond to these peaks are 

shown in Table 6.4 for the dominant peaks observed around 2θ of 36 and 43
o
. 

XRD graphs of Mo-N films deposited at 250W are shown in Figure 7.4 along 

with the concentration of N2 in the sputtering gas in each case. At 57.14 % N2 in the 

sputtering gas, the films appear to become amorphous or tending to be nano-crystalline. 

The intensity of the Mo2N peaks decreases with increasing N2 concentration. The 

transformation in phase of Mo-N with increasing N2 concentration is similar to that 

observed for Mo-N films deposited at 300W. However, the intensity of the MoN peak 

reduces drastically with increase in N2 concentration from 42.9 to 57.14%. 

Bull et al. have determined that the nitrogen and molybdenum sites are fully 

occupied for the highly ordered δ-MoN phase with lattice parameters of a = 5.73659 Å 

and c = 5.61884 Å [72]. The XRD peaks corresponding to the δ-MoN phase observed in 

Figures 7.3 and 7.4 have lattice constants of a =5.74 Å and c = 5.622 Å, which are very 

close to those reported by Bull et al., which suggest the formation of a highly ordered δ-

MoN phase. 
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 Table 7.3 Crystal parameters of various phases of Molybdenum Nitride 

Phase Crystal structure Lattice parameters 

(Å) 

Orientation 2θ error 

(Degrees) 

Mo3N2 Cubic a = 4.165 (111) -0.0030 

β Mo2N Tetragonal a = 4.2, 

c = 8.0 

(200) -0.0046,   

-0.0056 

Mo5N6 Hexagonal a = 4.893, 

c = 11.06 

(110) -0.0057, 

-0.0001 

δ MoN Hexagonal a = 5.74, 

c = 5.622 

(200) -0.0030 

   

Energy Dispersive X-ray Spectroscopy (EDS) Analysis 

The composition of Mo and Mo-N films deposited for varying N2/Ar ratios were 

determined using EDS at electron beam energy of 5kV. The Kα energy of Nitrogen is 

0.392 keV and 0.523 keV for Oxygen. Mo has a Kα energy of 17.443 keV and an Lα1 

energy of 2.293 keV. The results of the analysis are shown in Table 7.4 and Figure 7.5. 
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Table 7.4 Composition of films determined by EDS 

Film Ar partial 

pressure 

(mTorr) 

N2 partial 

pressure 

(mTorr) 

Mo at. % N at. %  O at. %  

Mo 9 0 91.21 0.00 8.79 

Mo-N 9 3 86.06 9.53 4.41 

Mo-N 6 6 60.37 34.34 5.29 

Mo-N 3 9 60.25 35.86 3.9 

 

 

Figure 7.5 Variation of atomic percentage of Mo, N and O by EDS 
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It can be inferred from Table 7.4 that the atomic percentage (at. %) of nitrogen in 

the Mo-N films increases with increasing N2 partial pressure in the sputtering gas. 

However, beyond 50% N2 in the Ar+N2 gas, the nitrogen at. % appears to saturate and 

increases by less than 5% for 75% N2. The Oxygen atomic percentage in the films 

doesn‘t seem to follow any trend. It appears that Mo films tend to have a higher oxygen 

concentration when compared to Mo-N films.  

Scanning Electron Microscopy (SEM) Analysis 

SEM images of Mo film deposited at 250W and Mo-N films deposited at 300W 

are shown in Figure 7.6 (a) – (d). No grain structure is observed in the Mo film. The Mo-

N film deposited with 25% N2 in the sputtering gas has a grain size of about 50nm as 

seen in Figure 7.6 (b). At N2 concentrations of 50%, no grain structure is observed at 

130K magnification. The Mo-N film deposited at 50% N2 appears to have a surface 

morphology similar to the STM images of δ-MoN by R. Sanjinés et al [77]. Films with 

75% N2 concentration have spherical grains with size of about 50nm randomly scattered 

over the film. 
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Figure 7.6 SEM images of Mo and Mo-N films (a) Mo film at 150K magnification 

 

(b) Mo-N film deposited at 9mTorr Ar + 3mTorr N2 at 50K magnification 
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(c) Mo-N film deposited at 6mTorr Ar + 6mTorr N2 at 130K magnification 

 

(d) Mo-N film deposited at 3mTorr Ar + 9mTorr N2 at 10K magnification 

Solar Cells with Molybdenum Nitride Back Contacts 

In this section, solar cells contacted with molybdenum only as the back contact 

metal and solar cells involving Mo-N in the back contact structure will be compared and 

the performance of these cells will be discussed. 
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J-V measurements with and without Molybdenum Nitride Back Contacts 

Solar cells employing Mo-N in the back contact structure were made on stainless 

steel (SS) substrates of SS430 alloy, in the following configurations:  

SS/Mo/Mo-N/CdTe/CdS/TC, 

SS/Mo-N/Mo/Mo-N/CdTe/CdS/TC, 

SS/Mo/Mo-N/Mo/CdTe/CdS/TC 

TC in the above configurations denotes Transparent Contact which was ITO 

based demonstrating a sheet resistance of about 8-10 Ω/□. All the Mo layers used in 

CdTe solar cells were deposited at 250W and 9mTorr of Ar pressure and all Mo-N layers 

were deposited at 300W with the total pressure of (Ar+N2) kept constant at 12mTorr. 

A comparison of J-V curves for the standard ‗SS/Mo/CdTe/CdS/TC‘ structure and 

the ‗SS/Mo/Mo-N/CdTe/CdS/TC‘ structure with Mo-N deposited at 6mTorr Ar + 6mTorr 

N2 is shown in Figure 7.7 with a comparison of cell parameters given in Table 7.5. The 

use of the Mo-N layer appears to cause an increase in the FF and the Voc of the cells and 

a small decrease in the Jsc, Table 7.5. The improved performance of solar cells with 

Mo/Mo-N as the back contact compared to those with only Mo as the back contact is 

expected to be because of the Mo grain boundaries being stuffed by nitrogen and 

reducing diffusion along grain boundaries accompanied by a reduction in grain size 

thereby acting as better barriers [78], [79]. Mo-N has been previously proved to be a 
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good diffusion barrier by many authors against diffusion of Al, Cu and Au in Si [80], 

[81], [82], [83], [79]. 

 

Figure 7.7 J-V curves for solar cells with Mo versus Mo/MoN for the back contact 

Table 7.5 Comparison of performance of solar cells with Mo and MoN back contacts 

Structure N2 

partial 

pressure 

Ar 

partial 

pressure 

Voc 

(mV) 

FF 

(%) 

Jsc (mA/m
2
) 

SS/Mo/MoN/CdTe/CdS/TC 0mT 9mT 600 46 19.04 

SS/Mo/CdTe/CdS/TC 6mT 6mT 400 42 19.46 
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Solar cells with the structure ‗SS/Mo/Mo-N/CdTe/CdS/TC‘ have been fabricated 

with Mo-N layers deposited at different ratios of N2/Ar partial pressures. A comparison 

of the J-V curves for these solar cells is shown in Figure 7.7. The efficiencies obtained 

for cells with 9mTorr Ar + 3mTorr N2, 6mTorr Ar + 6mTorr N2, 3mTorr Ar + 9mTorr N2 

are 4.26%, 4.91% and 3.45% respectively. The Voc, FF and efficiency for different N2/Ar 

ratios are shown in Table 7.6. All Mo-N based cells show a better performance when 

compared to Mo based cells. Of the Mo-N based cells, the cells with 6mTorr Ar + 

6mTorr N2 Mo-N films show a better performance compared to cells with Mo-N films 

deposited at other Ar and N2 compositions. This can be attributed to the presence of δ-

MoN. Highly dense, stable and ordered films act as good barriers because of reduced 

diffusion through defects, vacancies or reaction with adjoining layers [84]. Hence, the 

presence of the densely packed, highly ordered and thermodynamically stable δ-MoN in 

the Mo-N film deposited at 50% N2 could be the reason for it to act as a  better barrier to 

diffusion of impurities from the stainless steel substrates due to subsequent high 

temperature processing [71], [72]. It has also been shown that the total energy of δ-MoN 

is lower than cubic Mo-N, causing it to be more stable [85]. The Mo-N films deposited at 

75%N2 have a lower intensity δ-MoN peak compared to those deposited at 25%, which 

might be the reason for poorer performance. It has been shown that nano-crystalline or 

amorphous layers act as better diffusion barriers with no grain boundaries for impurities 

to diffuse along [86], [87], [88], [89]. The Mo-N layer deposited at 6mTorr Ar + 6mTorr 

N2 might be performing better because of having a nano-crystalline structure which might 

not have been observable in the SEM images; but this has to be verified by high 

resolution transmission electron microscopy (HRTEM). 
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Figure 7.8 J-V curves for solar cells with varying N2 and Ar pressures 

Table 7.6 Solar cell characteristics for varying N2 concentration for cells with 

‗SS/Mo/Mo-N/CdTe/CdS/TC‘ configuration 

N2 partial 

pressure 

Ar partial 

pressure 

Voc (mV) FF (%) Jsc (mA/m
2
) 

3mT 9mT 550 43 18.01 

6mT 6mT 540 51 17.83 

9mT 3mT 530 37 17.61 
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Solar cells have also been made for possible improvements in performance in the 

following configurations:  

SS/Mo-N/Mo/Mo-N/CdTe/CdS/TC, 

SS/Mo/Mo-N/Mo/CdTe/CdS/TC 

All solar cells manufactured with the above configuration employed Mo-N layers 

with 6mT Ar + 6mT N2 in the sputtering gas. J-V plots for cells with these configurations 

are shown in Figure 7.8 with cell parameters given in Table 7.7. The solar cells with the 

Mo-N/Mo/Mo-N back contact structure show better performance compared to cells with 

Mo/Mo-N/Mo. 

Comparing the various cells made with different configurations of Mo-N shows 

that the Mo/Mo-N back contact structure performs better. 
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Figure 7.9 J-V measurements of solar cells with Mo-N/Mo/Mo-N and Mo/Mo-N/Mo 

stack used as back contacts. 

Table 7.7 Solar cell characteristics for cells with the stack as back contact 

Structure Voc 

(mV) 

FF 

(%) 

Jsc 

(mA/m
2
) 

SS/Mo/MoN/Mo/CdTe/CdS/TC 440 43 19.83 

SS/MoN/Mo/MoN/CdTe/CdS/TC 500 47 19.42 
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Spectral Response Measurements of CdTe Solar Cells with Molybdenum Nitride in the 

Back Contact Structure. 

A plot of the spectral response (SR) for cells employing Mo and Mo/Mo-N for the 

back contact structure, with the Mo-N film deposited at 50% N2 is shown in Figure 7.9. 

There is no observable difference in the Quantum Efficiency (Q.E) plot of the two cells.  

 

Figure 7.10 SR curves of solar cells with Mo and Mo/Mo-N used as back contacts. 

Solar Cell Efficiency 

The efficiencies for solar cells with different back contact structures have been 

calculated, and the cells involving Mo-N in the back contact structure exhibited higher 

efficiencies compared to cells employing only Mo for the back contact. The Mo/Mo-N 

back contacted cells recorded an efficiency of 5.26%, which is the highest obtained in the 
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present work, when compared to 3.27 % for cells employing only Mo in the back contact 

keeping all other factors the same. Mo-N back contacted cells exhibited an efficiency of 

4.75 % on an average. 

Work Function of Mo-N 

The work function of MoN is reported in the literature to be between 4.7 - 5.33eV 

and that for Mo is 4.64eV [90], [91], [92]. The work function of CdTe is around 5.95eV. 

The Mo-N layer does not seem to show any noticeable improvement in the reduction of 

the back contact barrier height from the I-V curves [26]. 

 Nitrogen Incorporation into CdTe 

Nitrogen incorporation into CdTe would lead to p+ doping of CdTe near the metal 

contact. The high decomposition temperature of Mo-N (Mo2N decomposes at 790
o
C) 

[93], [94]. The highest temperatures employed for depositing the layers in CdTe solar 

cells after the back contact in the present case are around 460
o
C. Hence, the chances of 

Mo-N decomposing and causing nitrogen to be incorporated into CdTe are very unlikely. 

 



 

66 

 

 

CHAPTER 8: 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

CdTe solar cells with Molybdenum Nitride in the back contact structure 

consistently demonstrated better performance when compared to cells with only 

Molybdenum as the back contacts. It is possible that the improved performance of Mo-N 

based cells is due to the diffusion barrier property of the Mo-N layer due to stuffing of 

Mo grain boundaries by nitrogen accompanied by a decrease in grain size, reducing the 

chances of diffusion along grain boundaries [78], [79]. The performance of CdTe solar 

cells is found to be the best for Mo-N films deposited at 6mTorr Ar + 6mTorr N2 (50% 

N2). This can be attributed to the presence of the densely packed, highly ordered, 

thermodynamically stable δ-MoN, since highly ordered, dense and stable films act as 

better barriers because of low defects, vacancies and low reactivity [71], [72], [84]. The 

higher stability of δ-MoN has been attributed to its low total energy [85]. Hence it is 

expected that the Mo-N layer acts as a diffusion barrier to Fe and Cr impurities from the 

stainless steel substrate. 

The improvement of cell performance due to the higher work function of MoN 

(4.7-5.33 eV) compared to Mo (4.64 eV) is considered unlikely because of no noticeable 
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improvement in the I-V curve. The chances of nitrogen incorporation into CdTe resulting 

in p-doped CdTe are less because of highest processing temperatures of about 650
o
C and 

due to high decomposition temperatures of Mo-N [94]. 

Future Work 

The use of Mo-N in the back contact structure has improved CdTe solar cell 

efficiency. This has been attributed to Mo-N acting as a diffusion barrier. The following 

work is suggested to support the above claim. 

 SIMS measurements of Mo and Mo-N back contacted solar cells would 

give an indication of the extent of diffusion of Fe and Cr in these cells. 

 High resolution Transmission Electron Microscopy (HRTEM) imaging 

might help observe microstructures that might not have been observed in 

the SEM images. 

The following are suggested to increase the understanding of Mo-N back contacts 

in CdTe solar cells. 

 Mo-N films deposited at 3mT Ar + 4mT N2 at 250W appear to tend to be 

amorphous and it might be interesting to employ this layer as a barrier. 

 Increasing the thickness of the Mo-N layer in cells with Mo-N/Mo back 

contact structure might be helpful. 
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 Annealing of Mo-N layers or deposition of Mo-N layers in the 

SS/Mo/Mo-N/CdTe/CdS/TC structure might result in better cell 

performance and should be studied. 
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