

Automatic Arabic Text Summarization for Large

Scale Multiple Documents Using Genetic

Algorithm and MapReduce

التلخيص التلقائي للنصوص العربية المتعددة كبيرة الحجم

MapReduce باستخدام الخوارزمية الجينية و

Sulaiman Nasrallah Al Breem

Supervised by

Dr. Rebhi S. Baraka

Associate professor of Computer Science

A thesis submitted in partial fulfilment

of the requirements for the degree of

Master of Information Technology

October/2016

 زةــغ – ةــلاميــــــة الإســـــــــامعـالج

 شئون البحث العلمي والدراسات العليا

 تكنولوجيا المعلوماتة ليــــــك

 تكنولوجيا المعلومات ماجستير

The Islamic University–Gaza

Research and Postgraduate Affairs

Faculty of Information Technology

Master of Information Technology

 إقــــــــــــــرار

 تحمل العنوان: أنا الموقع أدناه مقدم الرسالة التي

Automatic Arabic Text Summarization for Large Scale

Multiple Documents Using Genetic Algorithm and

MapReduce

التلخيص التلقائي للنصوص العربية المتعددة كبيرة الحجم باستخدام الخوارزمية
MapReduce الجينية و

ما هو نتاج جهدي الخاص، باستثناء ما تمت الإشارة إليه حيثما ورد، وأن أقر بأن ما اشتملت عليه هذه الرسالة إن

لنيل درجة أو لقب علمي أو بحثي لدى أي مؤسسة الاخرين هذه الرسالة ككل أو أي جزء منها لم يقدم من قبل

 تعليمية أو بحثية أخرى.

Declaration

I understand the nature of plagiarism, and I am aware of the University’s policy on

this.

The work provided in this thesis, unless otherwise referenced, is the researcher's own

work, and has not been submitted by others elsewhere for any other degree or

qualification.

 :Student's name سليمان نصر الله البريم اسم الطالب:

 :Signature التوقيع:

 25/10/2016 التاريخ:
Date:

I

Abstract

Automatic Text summarization is one of the most important problems in the area

of text mining and information retrieval. The importance of automatic text

summarization comes from its ability to provide the most significant information from

a large text by reducing the size of textual documents. Multi document summarization

focus in extracting the most significant information from a collection of textual

documents. Most summarization techniques require the data to be centralized, which

may not be feasible in many cases due to computational and storage limitations. The

huge increasing of data emerging by the progress of technology and the various

sources of makes automatic text summarization of large scale of data a challenging

task.

We propose an approach for automatic text summarization of large scale Arabic

multiple documents using Genetic algorithm based on open source MapReduce model,

MapReduce is a powerful parallel programming model. We make our approach

insuring scalability, speed and accuracy in summary generation and try to eliminating

redundancy for sentences and increasing the readability and cohesion factors between

the sentences of summaries. We evaluate the proposed method using several automatic

summarization quality measures in terms of Recall, Precision, F-measure. In addition

to that we evaluate the parallel computation environment in terms of speed up,

efficiency and scalability.

The experiments resulted in high precision and recall scores. This indicates that

the system successfully identifies the most important sentences. In addition to that, the

proposed approach provides up to 10x speedup score, which is faster than executing

the same code on single machine. Therefore, it can deal with large-scale datasets

successfully. Finally, the efficiency score of the proposed approach indicates that the

largest data set utilize the available resources up 62% which is a satisfying result taking

into account the available data set sizes.

Keywords: Text Summarization, Parallel Genetic Algorithm, MapReduce, Hadoop

II

 الملخص

تعتبر عملية التلخيص التلقائي للنصوص من أهم المهام المتعلقة بمجال التنقيب عن البيانات واسترجاع

المعلومات. تكمن أهمية التلخيص التلقائي للنصوص بأنها قادرة على استخراج أكثر المعلومات أهمية من مجموعة

لمتعددة فهو يركز على استخراج أهم المعلومات كبيرة من المستندات النصية. أما مجال تلخيص المستندات ا

الموجودة في مجموعة من المستندات النصية المتعددة. أغلب تقنيات تلخيص النصوص تتطلب أن تكون البيانات

المطلوب تلخيصها موجودة في مكان مركزي واحد، لكن في عدة حالات من الصعب تحقيق هذا الشرط بسبب

وهذا بسبب التطور الكبير في مجال تكنولوجيا المعلومات والبيانات الكبيرة التي محدودية التخزين والمعالجة.

عملية التلخيص التلقائي للنصوص المتعددة كبيرة الحجم عملية تحدي تنتجت من خلال أنشطة البشر. لذلك أصبح

 وذلك بسبب الزيادة المطردة والمتواصلة لأنشطة البشر والمصادر المختلفة للبيانات.

عمل التلخيص التلقائي للنصوص العربية المتعددة وكبيرة الحجم باستخدام الخوارزمية ل طريقةا باقتراح قمن

استخراج الجمل حقق الدقة في ت الطريقة ههذ .عبارة عن نموذج للبرمجة المتوازية وهو MapReduceالجينية و

م إضافة المزيد من البيانات النصية للتوسع في حال ت ابلةفي عملية التلخيص وقالمهمة من النصوص والسرعة

 دقةباستخدام عدة قياسات مشهورة مثل ال ةالمقترح الطريقةتقييم تمت عمليةوالموارد اللازمة للعمليات الحسابية.

(Precision)التذكر ، (Recall)سرعة عملية التلخيص ، (Speedup) كفاءة استخدام الموارد المستخدمة في ،

 .(Scalability) ، قابلية النظام للتعامل مع الزيادة في البيانات النصية والموارد(Efficiency) المعالجة

أن النظام يشير الىوجود مؤشر جيد بالنسبة للدقة والتذكر، وهذا الطريقةلقد أظهرت النتائج بعد تطبيق

ائج المتعلقة بسرعة النت أظهرتقام باستخراج الجمل المهمة من هذا العدد الكبير من النصوص. بالإضافة لذلك

مرات عند استخدام مجموعة من الأجهزة عنه عند استخدام 10عملية التلخيص أن النظام المقترح كان أسرع

جهاز واحد. أخيرا تبين بعد عملية التلخيص أن النظام المقترح قام باستغلال الموارد المتاحة بكفاءة تصل الى

 بعين الاعتبار حجم البيانات المتوفرة.عند الأخذ ماالى حدا جيدة% وهي نتيجة 62

III

َٰنِ الرهحِيمِ ِ الرهحْم بسِْمِ اللَّه

ِ زدِْنِِ عِلمًْا و قلُ رهب

IV

Dedication

To My Great Mother, Father, the reason of what I

become today,

To my dear wife,

To my beloved Sister,

To My beloved brothers,

To My Best Friends,

This work is dedicated

V

Acknowledgment

Firstly, I am grateful to Allah for the good health that were necessary

to complete this work.

I would like to thank my thesis supervisor, Dr. Rebhi Baraka Dean

of the Faculty of Information Technology at the Islamic University of

Gaza, who allowed this thesis to be my own work and steered me in the

right direction.

I would also like to acknowledge the academic staff of Faculty of

Information Technology at The Islamic University of Gaza for sharing

their expertise and knowledge during my study.

Finally, I must express my very profound gratitude to my parents, my

wife, my sister, my brothers and my friends for providing me with

unfailing support and continuous encouragement throughout my years of

study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them. Thank you.

Sulaiman N. Al Breem

VI

Table of Contents

Declaration .. II

Abstract .. I

 II .. الملخص

Dedication ... IV

Acknowledgment .. V

Table of Contents ... VI

List of Tables .. X

List of Figures ... XI

List of Algorithms ... XII

List of Abbreviations .. XIII

Chapter 1 Introduction .. 1

1.1 Background and Context ... 1

1.2 Statement of the Problem .. 3

1.3 Objectives ... 4

1.3.1 Main objectives .. 4

1.3.2 Specific Objectives .. 4

1.4 Significance .. 4

1.5 Scope and Limitations .. 5

1.6 Methodology ... 5

Phase 1: Data Gathering ... 6

Phase 2: Data Pre-processing.. 6

Phase 3: Feature Extraction .. 6

Phase 4: Designing the Genetic Algorithm as MapReduce 7

Phase 5: Performing Experiments and Evaluating the Results 7

1.7 Thesis Organization .. 8

Chapter 2 Theoretical and Technical Foundation ... 9

2.1 Text Summarization .. 9

2.1.1 Summarization Methods .. 9

2.1.2 Summarization Challenges .. 10

2.2 Arabic Natural Language Processing ... 10

2.2.1 Stop Word Removing .. 11

VII

2.2.2 Stemming ... 12

2.2.3 Part of Speech Tagging (POS):.. 12

2.2.4 Text Readability ... 13

2.2.5 Text Cohesion .. 14

2.3 Genetic Algorithm .. 14

2.3.1 Genetic Algorithm Operation .. 15

2.3.2 Parallel Genetic Algorithm Approaches .. 19

2.4 MapReduce Model .. 19

2.4.1 MapReduce job workflow ... 21

2.5 Hadoop as MapReduce Realization .. 21

2.5.1 Hadoop Architecture .. 21

2.5.2 HDFS ... 22

2.6 Data Mining for Large Data Sets .. 23

2.7 Summary ... 24

Chapter 3 Related Works... 25

3.1 Text Summarization Using Genetic Algorithm .. 25

3.2 Text Summarization Using Feature Extraction .. 26

3.3 Text Summarization Using Clustering ... 27

3.4 Text Summarization Using Graph Approach ... 29

3.5 MapReduce in Data Mining .. 31

3.6 Genetic Algorithm over MapReduce .. 31

3.7 Summary ... 32

Chapter 4 Multi Document Summarization System Design 33

4.1 Text Pre-processing .. 34

4.1.1 Text Cleaning ... 34

4.1.2 Sentence Tokenization ... 35

4.1.3 Arabic Stop Word Removing .. 35

4.1.4 Arabic Root Stemming .. 35

4.1.5 Arabic Word Normalization .. 36

4.1.6 Remove Diacritics ... 36

4.1.7 Part of Speech Tagging (POS) ... 36

4.2 Feature Extraction ... 37

VIII

4.2.1 Sentence Position ... 38

4.2.2 Sentence Length ... 38

4.2.3 Noun Occurrences ... 38

4.2.4 Verb Occurrences .. 38

4.2.5 Readability Measures ... 39

4.2.6 Cohesion Measures .. 39

4.2.7 Term Weighting ... 40

4.3 Designing Genetic Algorithm as MapReduce .. 40

4.3.1 Creating Individuals ... 41

4.3.2 Ranking Individuals ... 41

4.3.3 Iterative Simple Genetic Algorithm ... 42

4.3.4 Evolving Individuals .. 42

4.3.5 Stop Iterative MapReduce ... 43

4.4 Sorting Summary Sentences ... 43

4.5 Summary ... 44

Chapter 5 Implementation and Experiments ... 45

5.1 Data Pre-Processing .. 45

5.1.1 Text Cleaning ... 46

5.1.2 Tokenization .. 46

5.1.3 Term Frequency ... 46

5.1.4 Features Extraction .. 47

5.1.5 Text Shuffling .. 49

5.2 Parallel Genetic Algorithm ... 50

5.2.1 Creating Individuals ... 50

5.2.2 Scoring Individuals .. 51

5.2.3 Evolving Population .. 53

5.2.4 Stopping Genetic Algorithm .. 56

5.3 Experiments .. 57

5.3.1 Tools and Environment Setup ... 57

5.3.2 Corpus .. 58

5.3.3 Partitioning Individuals ... 59

5.3.4 Parallel Genetic Algorithm .. 61

IX

5.4 Summary ... 63

Chapter 6 Evaluation .. 64

6.1 Summarization Quality ... 64

6.2 Speedup ... 67

6.3 Efficiency .. 69

6.4 Scalability ... 70

6.5 Summary ... 71

Chapter 7 Conclusion and Future Work .. 72

7.1 Conclusion .. 72

7.2 Future Work .. 73

References .. 74

X

List of Tables

Table (2.1): Arabic Word Parts Example. .. 12

Table (2.2): Root Stemmer Example. ... 12

Table (2.3): Part Of Speech Example. .. 13

Table (2.4): One point crossover example. ... 17

Table (2.5): Two point crossover ... 17

Table (2.6): Uniform crossover. ... 18

Table (2.7): Probability of mutation example. ... 18

Table (4.1): Arabic Words Normalization .. 36

Table (4.2): Arabic diacritics. ... 36

Table (5.1): Individual Format. .. 52

Table (5.2): Individual Final Format. ... 53

Table (5.3): Corpus Details... 58

Table (5.4): Category Details. .. 59

Table (5.5): Category Individuals Size. .. 60

Table (5.6): Creating Individual Execution Time... 60

Table (5.7): Summarization Execution Time. .. 61

Table (6.1): System Results vs. Human Expert 1 Results .. 65

Table (6.2): System Results vs. Human Expert 2 Results .. 65

Table (6.3): System Results vs. Human Expert 3 Results .. 66

Table (6.4): Summarization Speedup. .. 68

Table (6.5): Cluster Efficiency ... 69

XI

List of Figures

Figure (2.1): Genetic Algorithm Architecture. ... 15

Figure (2.2): MapReduce execution overview (Dean & Ghemawat, 2008). 20

Figure (2.3): HDFS Architecture (Gunarathne, 2015).. 23

Figure (4.1): Multi Document Summarization architecture. 33

Figure (4.2): Text Pre-Processing ... 34

Figure (4.3): Feature Extraction ... 37

Figure (5.1): Summarization Execution Time. ... 62

Figure (6.1): Summarization Quality Based On the Selected Sample Text. 66

Figure (6.2): Evaluation Metrics Average. ... 67

Figure (6.3): Summarization Speedup. ... 68

Figure (6.4): Cluster Efficiency. ... 70

XII

List of Algorithms

Algorithm (5.1): Term Frequency count. ... 47

Algorithm (5.2): Text Pre-processing and Feature Extraction. 48

Algorithm (5.3): Text Shuffling. .. 49

Algorithm (5.4): Create Individuals. .. 51

Algorithm (5.5): Scoring Individuals. .. 52

Algorithm (5.6): Map Phase of Each Iteration of GA. ... 53

Algorithm (5.7): Reduce Phase of Each Iteration of GA.. 55

Algorithm (5.8): Genetic Algorithm Stop Criteria. .. 56

XIII

List of Abbreviations

ANLP Arabic Natural Language Processing

API Application Programming Interface

CA Classical Arabic

HDFS Hadoop Distributed File System

HTML Hyper Text Mark-up Language

IDF Inverse Document Frequency

MCA Modern Classical Arabic

NER Named Entity Recognition

NLP Natural Language Processing

POS Part Of Speech Tagger

ROUGE Recall-oriented understudy for gisting evaluation

TF Term Frequency

TS Execution Time of Single processor

TP Execution Time of Parallel processors

1

Chapter 1

Introduction

1.1 Background and Context

With the huge increase of digital data due to the intensive human activities, the

area of text mining and information retrieval become more interesting. The importance

of automatic text summarization stems from its ability to provide the significant

information from a large text by reducing the size of textual documents. It can be used

in many real life applications in many sectors especially in minimizing reading time

of articles and providing the most important information about some events. Luhn

(Luhn, 1958) was the first to talk about automatic summarization based on selection

of significant sentences from a document using term frequency measures.

In general, automatic text summarization process can be divided by many factors:

- By its nature: Extraction or Abstraction.

- By document count: Single Document or Multi-document.

- By language: Single language or Multi-lingual.

Extraction based summarization approach is commonly used in most text

summarization techniques (Aliguliyev, 2009) which extract some parts from a

document to produce a summary without any modification. While abstraction methods

use complex language techniques to analyze and reform the document content using

different words to produce a summary. Single language summarization is used to

generate a summary from a single document while multilingual summarization makes

summary from multiple documents from multiple languages (Giannakopoulos, 2013).

In single document summarization, the information from single document is

gathered using various ways to get the most important information from the sentences

of the document (Luhn, 1958), (El-Shishtawy & El-Ghannam, 2012). Multi document

summarization focuses on extracting the most significant information from a

collection of textual documents. It deals with many issues related to multi documents;

like the presence of redundant sentences and decreasing the readability and text

cohesion factors on the produced summary.

2

It deals with analyzing and understanding a collection of documents for searching

the silence and important hidden information to compact the text to generate a

minimized summary to help the user to understand the important parts of information

in a large document collection without the need to read whole documents. Multi

document summarization can be used in many fields like news articles, blogs, web

pages, tweets, books, reports and archives. One of the most early works in the area of

multi document summarization is carried out by NLP group at Columbia university

(McKeown & Radev, 1995). They released a system called SUMMONS.

Recently there have been many models for automatic summarization of multiple

documents like sentence extraction approaches (Goldstein, Mittal, Carbonell, &

Kantrowitz, 2000), feature extraction approaches (Aristoteles, Ridha, & Julio, 2012),

clustering approaches (Waheeb & Husni, 2014), graph based approaches (Erkan &

Radev, 2004), Genetic algorithm approaches (Nandhini & Balasundaram, 2013). One

problem with these approaches is that the required time to summarize multiple

documents is raised incredibly, this makes most the current systems unable to deal

with the increase of data sizes.

Genetic algorithm is a popular method used in summarization (Golberg, 1989),

(Holland, 1975). In addition to that, Genetic algorithm is based on the principles of

evolution, heuristic search and natural selection to find optimized and novel solution

to hard problems. Genetic algorithm selects the best part of the problem to provide the

best solution using simple logic and basic operations such as initialization, selection,

crossover, mutation that discussed on details in Section 2.3. Although Genetic

algorithm is suitable for searching problems (Whitley, 1994) , it suffers from the high

computation and memory resources that are needed if the size of the individuals of the

problem solution is increased.

As mentioned above, the huge increase of data emerging from the progress of

technology and the various sources makes automatic text summarization of very large

scale of data a challenging task. In order to deal with this issue, many technologies

emerge in the area of parallel processing. MapReduce (Dean & Ghemawat, 2008) is

one of the state of the art models for processing large scale data. The model deals with

parallel and distributed systems, it provides mechanisms for parallelization, fault-

tolerance, locality optimization, and load balancing. MapReduce uses divide-and-

3

conquer principle using two main methods, the first method is Map and is used to

convert the data into key/value pairs as intermediate values, the second method is

Reduce and is used to combine the generated intermediate data from Map function to

produce the results.

To perform automatic text summarization of multiple Arabic documents for large-

scale data, Genetic algorithm can be implemented in parallel fashion (Saha, 2014).

There are many models to implement Genetic algorithm over MapReduce. One of

them is Simple Genetic Algorithm (SGAs) which is similar to running on a local

machine. The second is using Island approach (Whitley, Rana, & Heckendorn, 1999),

where the data is distributed on the machines of the cluster and evaluation is done

locally and individuals can be migrated between islands in certain time.

One major difference of multi document summarization to single document

summarization is the complexity of choosing the best sentences to construct a

summary in the presence of redundancy. Many researches use similarity measures to

reduce the redundancy in the summary (Momtaz & Amreen, 2012).

In this research, we build an approach that combine Genetic algorithm with

MapReduce model to perform automatic text summarization for Arabic multiple

documents. MapReduce is used to speed up the summarization process and provide

the required scalability while maintaining quality of the summarization process.

1.2 Statement of the Problem

Automatic text summarization for large-scale Arabic text collected from

multiple sources and partitioned to several locations represents a serious challenge and

therefore requires a new approach to perform the summarization process in a

distributed fashion that preserve the quality of the summarization while maintaining

computation speedup and scalability.

The problem is how to use Genetic algorithm to perform Automatic Arabic text

summarization for large-scale multiple documents over MapReduce parallel model

that is accurate in terms of resulting summaries, time efficient and computation

scalable.

4

1.3 Objectives

1.3.1 Main objectives

To design an approach based on Genetic algorithm for automatic text

summarization of text with multiple documents and multiple domains while insuring

scalability, speedup and maintaining accuracy. Arabic large-scale data sets. Genetic

algorithm evaluates and selects the best sentences that make a summary. MapReduce

model automatically processes large data in parallel and distributed fashion. The big

data volumes in applications make automatic text summarization a challenging task.

1.3.2 Specific Objectives

- Gathering and processing Arabic text corpus collected from many sources from

the Internet like news, blogs, tweets, books and convert them into readable text

format for analysis. The corpus size should be from 2 to 4 gigabytes.

- Extracting important common features from data like sentence length, sentence

position and many important features. This will affect the mechanism of sentence

selection for Genetic algorithm.

- Design and implement Genetic algorithm over MapReduce model to speed up the

evaluation and selection of sentences to produce a readable and cohesive summary

with minimum redundancy.

- Perform a set of summarization experiments on Genetic algorithm MapReduce

implementation and collect results to be used in the evaluation process.

- Evaluate the approach based on the collected results for summary quality, speedup,

efficiency and scalability.

1.4 Significance

With the increasing size, dimensionality and distribution of data, the approach

improves automatic text summarization performance in terms of speedup, scalability

and quality. The use of Genetic algorithm improves the summarization readability and

cohesion. Using parallelization techniques such as MapReduce facilities and speed the

process of summarization and handle large data sets efficiently. The research using

5

Genetic algorithm and MapReduce to enhance Arabic language text summarization

and facilitates the research in this important area.

1.5 Scope and Limitations

1- The research is concerned with performing automatic text summarization for

multiple Arabic text documents by implementing Genetic algorithm over

MapReduce model.

2- The summarization is based on a Genetic algorithm that uses a fitness function

that finds the group of sentences having the maximum evaluation in terms of

readability and cohesion with minimum redundancy.

3- The source data are stored in separate files in text formats.

4- The text documents used in the experiments are assumed to be already

categorized to the chosen domains.

5- Extraction summarization type be the only summarization to be used to make

summarization the other kind such as abstraction is excluded.

6- The summarization is concerned with Arabic language only.

7- No post processing is needed for the produced summaries.

8- Fixed summary length is used rather than compression ratio from the original

corpus.

9- Because the large size of data, three specialists will be manually evaluating a

random sample from the produced summaries for measuring the summaries

quality.

10- We evaluate the quality of the produced summarization through precision, recall

and f-measure, which are well known and agreed upon measures.

11- We use 1, 2, 4, 8, 12 and 16 nodes to measure the effects on the speedup,

efficiency and the scalability of proposed approach.

1.6 Methodology

To achieve the research objectives and carry out automatic text summarization

for large scale Arabic text using Genetic algorithm and MapReduce, the research

methodology consists of the following phases:

6

Phase 1: Data Gathering

To make automatic text summarization for large scale data, we need to collect a

large data corpus as the main input of the system. There are many sources for Arabic

documents like online news, online books and many other online sources. For this

purpose, we will collect data from online newspaper websites, the collected data

should be stored on the storage of MapReduce framework, Hadoop Distributed File

System (HDFS) in text format.

Phase 2: Data Pre-processing

Data pre-processing is an important step to make automatic text summarization.

It involves preparing the text for future processing. We will carry out many processing

steps for the input text such as:

1- Text cleaning

2- Sentence tokenization

3- Arabic stop word removing

4- Arabic root stemming

5- Arabic word normalization

6- Remove diacritics

7- Part of speed tagging (POS)

Phase 3: Feature Extraction

The multi document summarizer is based on Genetic algorithm and requires

ranking every possible solution based on the fitness function. The features are

collected from the text directly and are considered as the basic measurements of the

fitness function of every summary, the used features are likely to consist of the

following features:

1- Sentence position

2- Sentence length

3- Noun occurrences

4- Verb occurrences

5- Readability measures

6- Cohesion measures

7- Term frequency

7

Phase 4: Designing the Genetic Algorithm as MapReduce

The proposed approach will be composed of several steps starting with dividing

the data into separate individuals and evaluating them to select the best individuals for

evolving using the main Genetic algorithm operators’ crossover. This will insure the

iterative nature of Genetic algorithm over MapReduce as described in the following

steps:

1- Create initial population: The Genetic algorithm has an iterative nature and we will make

every iteration as MapReduce job, at the first iteration we should create the initial

population which contains the whole data divided into chromosomes or individuals. Every

individual has a fixes length of random sentences and considered as a possible summary.

The fitness of the created individuals is calculated using the aggregation of the features

selected from all the sentences of each individual.

2- Iterative Genetic algorithm as MapReduce: Genetic algorithm will be implemented over

Hadoop MapReduce framework using simple Genetic algorithm which simulates the

sequential Genetic algorithm. Every Genetic algorithm iteration is encapsulated in a single

MapReduce job. We should run from 3 to 5 iterations and if there is improvement on the

fitness of individuals we can start new iterations.

3- Evolving Genetic algorithm: we can evolve the fitness of Genetic algorithm individuals

through the selection and crossover operations. At the end of each iteration we will find

the best individual and store them for the next iteration and so on, and store back the fail

individuals to have another chance.

4- Sorting Individual Sentences: after termination the Genetic algorithm, we get the

individual with maximum fitness and sort its sentences using appropriate sorting

mechanism. We can use the chronological ordering, which sort the sentences based on the

sentence date.

Phase 5: Performing Experiments and Evaluating the Results

 At the final phase, we will evaluate the approach for quality of generated

summaries measures such as precession, recall and F-measure. In addition to that, the

performance of the parallel computing environment will be evaluated in terms of speed

up, efficiency and scalability.

8

1.7 Thesis Organization

The thesis is organized as follows: Chapter 2 discusses theoretical and technical

foundations with topics related to the research area. Chapter 3 states the works related

to the research. Chapter 4 presents the design of the parallel summarization approach

using Genetic algorithm. Chapter 5 presents the implementation of the approach and

the experiments. Chapter 6 presents the evaluation of the proposed approach. Finally,

Chapter 7 presents the conclusion and future work.

9

Chapter 2

Theoretical and Technical Foundation

To perform the automatic text summarization of large-scale text multiple Arabic

documents using Genetic algorithm and MapReduce, we should provide some basic

concepts and many techniques.

2.1 Text Summarization

In general, text summarization is the process of providing short information and

reduced version of online text resources such as newspapers, books and human

activities, which contain important overview of the current events. Summarizing the

text can help in understanding a large text containing many important events in a short

time without the need to read the entire text.

There are two forms of text summarization based on the summarization nature,

abstraction and extraction. Abstraction summarization use computer program for in-

depth understand and analyze the text and provide new description which may contains

new words which do not exist in the original text. While extraction type of text

summarization, analyze the text and extract the main important and readable parts from

the original text to construct a summary with the main concepts.

2.1.1 Summarization Methods

There are many methods for automatic text summarization. The first method is

proposed by (Luhn, 1958), which depends on the selection of significant sentences

from a document using term frequency measures. Another important method is using

text-clustering method to group related terms into groups, and rank them based on

various features. Many researches use graph methods to make text. The summary is a

subgraph of the main graph containing less redundancy and high weighted sentences.

Often, text summarization methods depend on analyzing text and extracting some

important features from it, which present the main important information. These

features can include similarity with title, term scoring, sentence position and sentence

length. A popular method uses Genetic algorithm as global search mechanism to

improve the selection criteria of the sentences of summary. Genetic algorithm is

10

presented in more details in Section 2.3 and using Genetic algorithm in text

summarization is presented in Section 3.1.

2.1.2 Summarization Challenges

The huge increase of online human activates have produced large amount of

data. Traditional single and multiple text summarization methods are designed to

process small amounts of data, therefore using single machine can be appropriate.

Nevertheless, when talking about large-scale data it cannot deal with it efficiently

because of the long processing time and large storage needed to make summarization.

Arabic language has a complicated structure and hard morphological analysis,

therefore making automatic text summarization for Arabic text is a hard task. In

Chapter 3 we present various approaches to text summarization which varies

depending on extraction methods, the kind of summarization, the amount of data and

the applicability of parallelization.

2.2 Arabic Natural Language Processing

Natural Language Processing (NLP) is a part of artificial intelligence that

involved in developing techniques, theories and software for analysing, understanding

and interpreting the natural languages of human (Chowdhury, 2003).

Arabic language is one of the most spoken languages in the world especially in

Arab world and some countries in Africa speak it natively. Therefore, as natural

language, Arabic has many important features which make it highly structured and

derivational language. Arabic content and online users increase rapidly due to the high

availability of online resources that provide Arabic content like Wikipedia, news

agencies and knowledge provide. Many studies emphasize that Arabic becomes a

popular and online Arabic reached more than 375 million speakers (Stat, 2015).

Although, the Arabic content does not exceed 5.2% of the international content

(Stat, 2015), it is increased rapidly and this percentage is due to the improve in the near

future. This presence of the Arabic content need suitable approaches for analysis,

understanding and interpreting Arabic content using modern NLP techniques.

Intensive research in the area of NLP for English language has been done and

there is a need for improving NLP techniques for Arabic Language. The concept

11

Arabic Natural Language Processing ANLP is concerned with developing theories,

tools and techniques for analysing and understanding Arabic language. Many of ANLP

component may defer from its English equivalent because Arabic has a complex

linguistic structure (Farghaly & Shaalan, 2009a).

In general there are two types of Arabic language (Najeeb, Abdelkader, & Al-

Zghoul, 2014) , the first is Classical Arabic (CA) or Qur’anic Arabic. The ancient Arab

used classical Arabic widely and it is highly complex, accurate, imaginative and

sophisticated. On the other hand, Modern Classical Arabic (MSA) is the global spoken

language in all areas of Arabic usage, like online web sites, television programs and

newspaper. Arabic language is consisting of 28 letter and written from right to left and

unlike English it uses the Verb-Subject-Object style in writing sentences. Arabic letters

do not have capitalization and some letters have several forming writing based on its

position in the word.

ANLP have various components that can be applied to Arabic text, like,

Stemmer, Stop Word Removal, Named Entity Recognition, Speech Recognition, Part

of Speech Tagging, Machine Translation, Word Sense Disambiguation,

Morphological Analysis, Question Answering, Text Generation and many other

components. In our research, we will list some of the techniques we use in Text

Summarization.

2.2.1 Stop Word Removing

We can define stop word removal task as removing some words from text before

applying NLP. This can be carried out by using manual constructed list. It is a language

dependent task because every language has its own word list. By default stop words is

commonly used in any language and it is very important, however, it presents a

problem in text processing field (Silva & Ribeiro, 2003). We must remove these words

because they have no impact to make text important and make text non-informative.

For Arabic many researches propose a list of words to be removed from text,

some of them have built a list of 1000 Arabic words manually (Al-Shalabi, Kanaan,

Jaam, Hasnah, & Hilat, 2004).

12

2.2.2 Stemming

Stemming methods are used to remove some letters from a word and return the

word into its roots. As described in Table (2.1), it deals with three types of affixes; the

first is prefix and it is placed before the stem of the word like un-use. The second is

infix, which exists between the stem letters. The third is suffix and it added at the end

of the stem like playing.

Table (2.1): Arabic Word Parts Example.

Word Prefix Infix Suffix stem

ا ت، ي يتعامل ن، و عمل

There are two main methods for stemming. The first is root stemming which

removes the three types of affix: Prefix, Infix and Suffix to return the word into its root

form as shown in Table (2.2). The root stemmer may change the structure of a word

and can make some issues for text processing because many words with different

meanings may belong to the same word stem.

Table (2.2): Root Stemmer Example.

 عمل

 عملوا

 يعملون

 عاملون

The second is light stemming, which is an improved approach of root stemming,

therefore, it only removes the prefix and the suffix from the word and the infix remains.

Many researches prefer light stemming (Al-Maimani, Naamany, & Bakar, 2011). On

the other hand, light stemming may affect the semantic similarity between sentences

because similarity is based on typical word matching.

2.2.3 Part of Speech Tagging (POS):

Natural language usually consists of group of words and every word builds the

structure of a sentence or paragraph and belongs grammatically to a category of

speech. POS is the process of marking every word of a text to a group of language

such as noun, verb, and adjective as shown in Table (2.3).

13

In general, there are two main categories of POS; the first is rule-based and

stochastic taggers. One of the early POS was developed by (Brill, 1992) from English

and (Zanoli & Pianta, 2009) for Italian language using rule-based method that

automatically learns rules. For Arabic, khoja (Khoja, 2001), (Mohamed & Kübler,

2011) proposes a POS for Arabic text using predefined tag sets consisting of three

main sets and this enables to derive more than 35 sub tags. POS is a complex task for

Arabic language because Arabic have a complex morphological structure. Therefore,

before tagging a word, many processing of the text must be done such as normalization

and stemming.

Table (2.3): Part Of Speech Example.

POS DT NN VB NNS JJ

Description Determiner Singular

noun

Verb, base

form

Plural noun Adjective

Word The worker fix vehicles lonely

2.2.4 Text Readability

There are many important features to make text summarization popular,

summary text must be readable easily. Readability means how the text can be easily

understandable by more people. There are many formulas for computing the difficulty

of English text like Gunning Fog Index FOG (Gunning, 1969), SMOG (Mc Laughlin,

1969), Flesch–Kincaid (Kincaid, Fishburne Jr, Rogers, & Chissom, 1975). Theses

readability measures use some properties gathered from text like, average sentence

length, average word length and average number of syllables in text.

For Arabic language, few work is done for estimating readability of text. One of

the early works for Arabic language readability measures is by (Al-Dawsari, 2004).

They use formula with five readability features, which include average word length,

average sentence length, word frequency, percentage of nominal clauses and

percentage of definite nouns. Another approach is proposed by (Mat Daud, Hassan, &

Abdul Aziz, 2013) and uses a corpus of Arabic words, every word is assigned with a

rank. For computing the readability using the formula: Readability= (summation of

sentence words rank)/number of sentence words.

14

A state of the art approach, proposed by (El-Haj & Rayson, 2016) calculates the

Arabic text readability with and without diacritics. It is considered as a modified

version of the famous measure like Flesch and Fog metrics. The method is used to

count the short, long and stress syllables in Arabic, which is required for measuring

how easy is the Arabic text. By analyzing a large Arabic text corpus, they found the

average word length to be five words and the average syllables count is four. This

result is used in the equation of readability score of Arabic text. The method assigns

higher score to the sentences containing word with small syllables and with simple

words to this make it easy and readable sentences. We use readability measures in

assign weight to the sentences for improve sentence selection in Section 4.2.

2.2.5 Text Cohesion

Another important measure of text quality is text cohesion. It helps readers to

make sense of what they read and what writers want to convey. It is grammatically or

lexically linking text sentences. It makes the information in the text organized and

connected well and share related information. In general, lexical text cohesion is

achieved by many metrics (Todirascu et al., 2013) generated from the text like average

similarity, which use similarity measures like cosine similarity to find the similarity

between sentences. Another important metric is word overlap, which measures the

number of common words in two consecutive sentences. The cosine similarity of two

sentences in our proposed approach is described in details in Section 4.2.6.

2.3 Genetic Algorithm

Genetic algorithm is heuristic search method which has an iterative nature and

is created based on the principles derived from the Darwinian theory that simulate the

evolutionary rules and natural selection (Golberg, 1989). In general, Genetic algorithm

uses the fitness function that makes the solution individuals evolve independently

based on the survival of the fittest concept. Genetic algorithm uses the principle of

divide and conquer for eliminating the search space and deals with every individual

separately. This require dividing a big problem into smaller and potential solutions

especially for large computational issues. Genetic algorithm can evolve the proposed

solutions using some genetic operations and randomly changes some features from the

population based on the strength of each solution.

15

Figure (2.1): Genetic Algorithm Architecture.

Usually, the search space of a large problem is divided into smaller units that

can easily be processed individually to decrease the needed computation and the

required memory and storage. The abstract model for Genetic algorithm is shown in

Figure (2.1).

2.3.1 Genetic Algorithm Operation

Genetic algorithm operation used to guide an algorithm through many

procedures to find the best solution from a collection of potential solutions. The

operations of Genetic algorithm as shown in Figure (2.1) are described in details as the

following:

2.3.1.1 Population Initialization

This step is used to define the search space of the problem by dividing the

solution space into single elements called individual or genome or chromosome. Every

individual can be considered a possible solution. There are many representations of

the individual like binary representation where the search individuals are represented

by an array of zero or one. This method is not preferred for large amount of data

because it needs large commutation and memory resources. Another approach is using

value representation, where every position in the individual is using a single value.

16

2.3.1.2 Evaluation

After create the search space, we need to evaluate every individual to know its

fitness or strength. This step is done by using the fitness function f(x) by assigning a

value that represents the importance or fitness of every individual to select the best

individuals to evolving and mating.

2.3.1.3 Selection

The process of selecting the best chromosomes to evolve by the next operations

crossover and mutating for generating new offspring. The selection is a crucial step

according to Darwinian Theory (it says that good parents produce a good generation).

There are many approaches for selection. The first method is Roulette Wheel Selection

or fitness proportionate selection (Bäck, 1996). It uses a probability factor to determine

the probability of an individual for selecting next level by using the equation to

compute the Pi (probability of individual i) 𝑃𝑖 =
𝑓𝑖

∑ 𝑓𝑗𝑁
𝑗=1

 where fi is the fitness of

individual i and N is number of individuals in the population.

This method increases the probability of strong chromosomes be evolved and

can exclude the weak chromosomes from the evolving process. Many researches claim

it is not fair method for selection. The second method is Tournament selection (Miller

& Goldberg, 1995); it is used to run many tournaments between few selected

individuals from the population. The winner individuals among all tournaments is

selected to the next level. We can control the compression by adjusting the size of

every tournament.

The third method is Rank Selection (Sivanandam & Deepa, 2007), where a rank

is assigned to every individual after sorting from the worst to the best. The worst is

ranked as 1, the second is ranked as 2, the best is ranked as N rank (where N the

number of individuals. This method enables the weak individual to enhance itself and

produce an improved offspring.

The last method is Elitism (Shukla, Pandey & Mehrotra, 2015) method, it is

based on the fact when evolving the population by crossover or mutating; we may have

a chance to lose the good chromosomes and may produce a weak offspring. This

method copies the whole content of the best individuals to the next generation after

17

sorting them in descending order. Then we can use a classical method to complete the

selection process.

2.3.1.4 Crossover

The Darwinian Theory is based on genes as basic units of evolution. The

crossover operation is used to let any two chromosomes to be parents and produce new

children. A child holds some of the characteristics of the original parents (Vekaria &

Clack, 1998). The crossover operation takes two chromosomes as parents and

reproduce new chromosomes as children of the reproduction process. There are many

forms of crossover, one of the famous forms is single point crossover where a random

point is selected for two parents and swap the rest of parents’ data after the point as

shown in Table (2.4).

Table (2.4): One point crossover example.

Parents, point = 3 New Offspring

A B C D E F G H K L M D E F G H

K L M N O P Q R A B C N O P Q R

The second type is two-point crossover, where two points in the parents are

placed on every parent at the same point and the data between the two points are

swapped to produce a new pair of chromosomes as shown in Table (2.5).

Table (2.5): Two point crossover

Parents, points 3,6 New Offspring

A B C D E F G H A B C N O P G H

K L M N O P Q R K L M D E F Q R

The third type is uniform crossover where the swap is placed on the gene level

rather than partition level like single and two-point crossover. The uniform crossover

is done by selecting random genes from one parent and swap them with their

corresponding genes on the other parent and so on.

Uniform crossover use the mixing ratio, which is the ratio of the gene that must

be transfer from one parent to the other. As example, if we use 0.4 as ratio that mean

18

40% of one parent are swapped with 40% from the second parent as shown in Table

(2.6).

Table (2.6): Uniform crossover.

Ratio 40% New Offspring

A B C D E F G H K L A B O P E F S H K U

M N O P Q R S T V U M N C D Q R G T V L

2.3.1.5 Mutation

Rather than swapping genes between two parents like crossover, mutation

changes one or more gene values in a chromosome to arbitrary value(s). The mutation

is one of the evolution methods of Genetic algorithm that uses probability of mutation

factor to control the chromosome form and can change it entirely to a new form. If we

use very small probability of mutation, the new offspring will be very similar to their

parents and this cause to slow or stop the evolution. If we use large probability of

mutation, the generated chromosomes will have new characteristics, which differ from

their parents and can affect the fitness of the chromosome. An example of mutation

and mutation probability factor shown in Table (2.7)

Table (2.7): Probability of mutation example.

Pm 30% New Offspring

A B C D E F G H K L A B O D E F S H K U

2.3.1.6 Stopping criteria

Due to the iterative nature of Genetic algorithm, it needs a mechanism for

stopping the evolution process. In general, there are no standard techniques for

stopping the iterative process. There are two appropriate stopping criteria; the first is

time based stopping criteria (Poli, Langdon, McPhee, & Koza, 2008), where the

Genetic algorithm stops after a fixed number of iteration or specified period regardless

the result of evolution produced acceptable fitness. The second is based on the overall

fitness of individuals (Bhandari, Murthy, & Pal, 2012). It is used when the average

fitness does not have significant improvement after a number of generations.

Although Genetic algorithm makes revolution in optimization algorithms, it

suffers from some potential problems. Genetic algorithm uses evolution of individuals

19

but there is no guarantee to find the optimum solution. Another serious issue is the

heavy computation needed for optimization problems making Genetic algorithm

unsuitable for large-scale data sets. However, the nature makes Genetic algorithm it

easily implementable in a parallel fashion.

2.3.2 Parallel Genetic Algorithm Approaches

The popularity of Genetic algorithm led researchers to develop an adaptive

version for use in parallel environments. The main obstacle in Genetic algorithm is its

heavy computation for computing and evaluating the fitness function of individuals.

Therefore, we can use parallel systems to spread the time consuming process to several

machines. Parallel environments use divide and conquer to divide the tasks over

machines that are connected to a network using simple logic.

In general, there are two famous approaches for parallel Genetic algorithm. The

first is fine-grain parallel Genetic algorithm. It is like sequential Genetic algorithm

where the whole individuals are divided to all machines to make evaluation of every

chromosome and the results are returned to the master machine. The second type is

coarse-grain Genetic algorithm; every machine has its own population and implements

Genetic algorithm operation lonely. This method is also called distributed or island

approach, where every machine act as island and individuals can be migrated between

these islands (Munawar, Wahib, Munetomo, & Akama, 2008).

Proposed researches focused on using MapReduce (Dean & Ghemawat, 2008)

for parallel Genetic algorithm to solve such types of problems for large-scale data sets.

Fine-grain Genetic algorithm uses a separate MapReduce job for every iteration. Every

node is responsible for making basic Genetic algorithm operations and evaluation to

store the best individuals to global file on distributed file system such as HDFS as

explained in Section 2.5. This will divide the overhead of evaluation computation a

cross the cluster nodes.

2.4 MapReduce Model

MapReduce (Dean & Ghemawat, 2008) is a programming model created by

Google foundation in 2004. It is used for processing large-scale data using a cluster of

commodity hardware. The paradigm uses the principle of divide and conquer to

process the data in parallel fashion using two main methods, Map and Reduce. Map

20

method process the primary data record and produce key/values. Reduce method is

used, then, to make user defined operations to the values that share the same key.

Although there are many approaches for processing large-scale data like Apache

Spark (Meng, et el., 2013), the popularity of MapReduce is gained because of its

simplicity and abstraction. It can deal with structured or unstructured data and allow

programmers to write their own code using many programming APIs. In addition to

that, MapReduce provides high scalability, high fault tolerance, high availability and

efficient load balancing mechanism.

Figure (2.2): MapReduce execution overview (Dean & Ghemawat, 2008).

MapReduce run programs automatically a parallelized fashion and run on a large

commodity cluster of machines. The system handles all the details of partitioning the

data and scheduling the execution of the use program between the machines.

Therefore, enabling programmers to focus on the program logic and let the details of

parallelization of the system and decrease the lines of code. MapReduce model has

many features such as:

1- Scalability

2- Availability

3- More Flexibility

4- Fault Tolerance

5- Rack awareness

6- Simple programming model

21

2.4.1 MapReduce job workflow

As shown in Figure (2.2), MapReduce executes a job as follow:

- Divide the data file into small chuck and send them to Map task on every

machine on the cluster.

- The Map process the data, generate intermediate key to every record, and send

them to the main thread.

- Intermediate key/value records sorted by key. Moreover, send the values that

have the same key to the same reducer.

- The reducer applied to the key/value records and do the required operations.

Finally, after reduce complete on all machines the control returns back the main

program to end execution and save results on HDFS.

2.5 Hadoop as MapReduce Realization

Hadoop (White, 2012) is an open source realization of MapReduce. Written in

Java and incorporate open source distributed storage, such as Hadoop Distributed File

System (HDFS).

2.5.1 Hadoop Architecture

Based on the model of MapReduce, Hadoop has the following parts:

- Masternode: is the manager of all Hadoop services and nodes. It is control the

execution of user jobs and responsible for make the communication between the

workers in the cluster.

- Slavenode: is responsible for serving the commands from the master node by

making read and write commands from the file system’s clients along with perform

block creation, deletion, and replication upon instruction from the Master.

- Namenode: is the part of Hadoop that manage and coordinate the files metadata

like files directories and folders structure. Moreover, Namenode server make a log

for every operations and transactions of stored file. In addition, it is make

commands for creation of file chuck replications if a server goes failure. Namenode

server is a crucial part of Hadoop; therefore, there is only one Namenode server.

- Datanode: is the physical store of Hadoop files block. The Datanode stores the

entire file and if the file size larger than the default 128 Mb, its partition the file

22

into smaller parts and replicate it on the other machines in the cluster. Add that it

is notify the Namenode to any change on files or folders to store its metadata.

- Job Tracker: is the interface of job execution between users and the MapReduce

model. When a user starts a MapReduce job, Jobtracker place it in a queue of

pending jobs and executes them on a first-in/first-out basis and then manages the

assignment of map and reduce tasks to the task trackers.

- Task Tracker: is a slave to the Job Tracker, it manages to run the tasks received

from the Job Tracker and make reports on job execution to Job Tracker.

- YARN (Yet another Resource Negotiator): is the next generation of Hadoop's

compute platform (Vavilapalli et al., 2013). It is managing all the resources of

Hadoop. It communicates with the client, tracks resources on the cluster, and

orchestrates work by assigning tasks to Node Managers, which allows a new

concept for big data analytic applications such as interactive SQL, real-time

streaming.

2.5.2 HDFS

Hadoop Distributed File System (HDFS) is a distributed file system designed to

store and access large scale and store structures or unstructured data (Borthakur, 2008)

and use commodity hardware run its services. HDFS use the hosted operating system

file system to storing large data by partitioning it to small chucks as block. By default,

the block size is 128Mb and this make it deal better with large file than small file

(Gunarathne, 2015). As shown in Figure (2.3), every block replicated on all other

cluster machines to ensure reliability and fault tolerance, therefore the high availability

if any machine goes down.

Like the Master/Slave architecture, HDFS consists of two main components as

shown in Section 2.5.1 Hadoop Architecture). The first is Namenode server and

Datanode server. The Namenode responsible for storing the Meta data of the structure

of distributed file system. Wherefore, only one Namenode server for single cluster and

no physical data blocks stored on Namenode server. On the other side, Datanode is

responsible for creating, deleting, and replication of large files using the operating

system file system. Datanode also receive instruction from Namenode server to serve

uses requests.

23

Figure (2.3): HDFS Architecture (Gunarathne, 2015).

In general, HDFS use the normal hierarchical structure for creating files and

directories like traditional file systems using traditional Linux file commands for

managing files, which make it easy to use.

2.6 Data Mining for Large Data Sets

As mentioned, MapReduce gets its popularity in solving problems for large-

scale data using simple logic and commodity hardware. Data mining is an important

field in information science, however the growth of information due to internet era

make mining large data set a challenging task. This require using new approaches for

processing such data using different logic. Many researches turn to use MapReduce

model due to its simplicity and robustness.

Data mining usually deals with heterogeneous or unstructured data to extract

useful knowledge from massive datasets. This fact makes MapReduce a suitable

solution for large-scale data mining applications. MapReduce facilitates the way for

reading, processing and storing data which make MapReduce have the required

flexibility for many data mining tasks. Many researches use MapReduce for solving

data mining problems. (Zhao, Ma, & He, 2009) use MapReduce to implement a fast

clustering algorithm K-mean and resulting in high speed up and to scalable result.

Another approach proposed by (Kang & Faloutsos, 2013) for mining social media

24

networks using graph algorithm which is difficult to be implemented by a single

machine.

2.7 Summary

In this Chapter, we provide an overview of the technical and theoretical

foundations related to the research problem. We introduce text summarization and its

related issues for Arabic language. In addition to that, we introduce important notions

in the area of Arabic natural language processing and some useful tasks for making

summarisation of Arabic text. Genetic algorithm and its operations are also described

and the need of Genetic algorithm for intensive computation for large-scale data.

Finally, we introduce the MapReduce model and its realization, Hadoop, with

important features for simplifying complex computations.

25

Chapter 3

Related Works

Many research for automatic text summarization focus on transforming large

text documents into small summary. For English language, there are numerous amount

of text summarization research for multi document as well as single documents.

However, little effort is exerted for Arabic language text summarization in general.

The main reason is that the Arabic language has a rich morphology and is highly

derivational and the lack of tool for making NLP for Arabic language.

We review a number of works in text summarization for Arabic and English

language. First we present works that employ Genetic algorithm in text summarization

using different approaches. In addition to that, many methods use clustering and graph

based approaches for making summarization of text. Finally, we present many works

use MapReduce model for solving common data mining tasks.

3.1 Text Summarization Using Genetic Algorithm

One of the earlier models that integrate summarization and Genetic algorithm is

proposed by (Y.-X. He, Liu, Ji, Yang, & Teng, 2006). They propose a model for

multiple documents summarization using Genetic algorithm for Chinese concept

lexicon and corpus, the objective of their proposed work is to maximize the coverage

of topics and minimize the redundancy of contents. They use semantic analysis and

statistical techniques for improving the Cross-document Structure Theory (CST) by

representing the documents and elements and their relationships as a network and

improving the quality of the result by applying Genetic algorithm.

In (Qazvinian, Hassanabadi, & Halavati, 2008), a model is proposed for making

automatic text summarization that is based on a fitness function that evaluate and

produces summary based on three factors: Readability factor, Cohesion factor, and

Topic-Relation factor. The important sentence is extracted using weighted features and

using some coefficients to let the user control factor to select his favourite feature but

their method need to improve the cohesion of their extracted summaries using various

techniques.

Another utilization of automatic text summarization is to help people having

problems like reading difficulties (Nandhini & Balasundaram, 2013). The objective is

26

to generate single document summary that makes a balance between F-measure,

readability, and cohesion using Genetic algorithm. To find the best combination of

sentences, they use important weighted features to make summary with high

informative score and good cohesion. Their method provides good results but suffers

from high computation when the summarizing large documents.

Many approaches for text summarization is language independent, which are

based on statistical methods that are based on features extracted from a text. In (Litvak,

Last, & Friedman, 2010) an approach is used for making single document text

summarization based on a linear combination for a list of features. They use a trainable

Genetic algorithm to select the best sentences to make summary of a document. They

use the summarization evaluation ROUGE (Lin, 2005) recall as the fitness function to

weight the sentences of the summary. Their method does not use similarity methods

to handle the redundancy and is inefficient for large text documents.

Genetic algorithm is also used for multi document summarization. (Bossard &

Rodrigues, 2010) propose a method for multi document summarization using Genetic

algorithm that is based on clustering methods. The centre of the cluster is created based

on the highest ranked terms based on term frequency method TF-IDF. Sentences are

evaluated based on their similarity to the cluster centre. Sentence redundancy is

detected at early stage at sentence selection step. Their system does not use linguistics

methods for sentence selection that can improve the quality of summaries. In addition,

the approach cannot deal with large documents due to Genetic algorithm high

computation.

3.2 Text Summarization Using Feature Extraction

In the field of automatic text summarization, extracting sentences from text using

features is a common method. It is based on the importance of text parts like sentences,

word and phrases using some statistical methods. These methods are dealing with

assigning a score for every extracted unit and ranking the overall system by

aggregating all of these features. There are many types of feature extraction methods.

One of the first methods is significant sentences matures (Luhn, 1958) which score

sentences based on important words. Another important method is sentence position

(Baxendale, 1958), they depend on a study that found 80% of the important part of a

27

paragraph is the first sentence. Another approach proposed by (Harold P Edmundson,

1969) shows that the automatic summarization of text can be done by extracting text

components with high frequency content like important words (cue words), title and

heading words and positions of sentences. In our approach, we use some of these

features in the Genetic algorithm evaluation mechanism like sentence position and

sentence length.

Due to the complexity and lack of sophisticated tools, Arabic language, little

automatic text summarization researches are carried out. Using feature-extracting

approach. (Hewahi & Kwaik, 2012) propose a model for making text summarization

for single Arabic text documents using features list extracted from the Arabic text.

Their system uses linear combination of features for ranking sentences and selecting

the top rank as selected summary. Semantic similarity is used to measure the similarity

between sentences and sentences with title. Moreover, they use some important

features like named entity and place to improve the summary.

These features may show that a sentence has important information and will give

better results. They compare their system with Sakhr Arabic online summarization

system and show that their system overcome it. This system is not sufficient for

processing large amount of data and it does not use modern NLP tools to identify the

important sentences.

3.3 Text Summarization Using Clustering

Using fast statistical computation, a model proposed by (Goldstein et al., 2000)

is based on Maximal Marginal Relevance (MMR). They use this method to summarize

multi document based on input keyword (user query) by computing the similarity using

cosine similarity between the input query and the input text and partially generated

summary and the current chosen sentence. The MMR gives a weight to the sentence

based on relevance and redundancy with the selected sentences in the summary. Their

model gives good results but it does not involve any linguistic techniques and cannot

deal with large amount of data.

MEAD model (Radev, Jing, Styś, & Tam, 2004) is multi document text

summarization that is based on clustering the sentences of group of documents based

on a shared event by choosing a centroid of each cluster and relate a sentence to the

28

closest centroid by ranking. The centroid is consisting of group of words that exist in

all documents in a cluster. They use weighted features like centroid value, positional

value, and first-sentence overlap to select which sentence is included in the summary.

To detect redundancy of sentences, a negative value is added to the score of a sentence

that overlap with a sentence that has a higher score. Although MEAD system is a

sophisticated summarization approach, it ignores many important features such as

readability and does not designed to use with large data.

A state of the art model proposed by (Nagwani, 2015) makes summarization of

large scale single text documents using MapReduce model. It is based on semantic

clustering topic modelling using Latent Dirichlet Allocation (LDA). They use

clustering to group the similar documents using k-mean clustering algorithm then

apply LDA to extract the topic related to each document in the cluster. They use

MapReduce to achieve scalability and speed up the processing time. To evaluate their

model, they use ROUGE-1 (Lin, 2004) and pyramid scores. They achieve good

scalability due to their results and they successfully make their system scale to make

summarization to handle these types of text documents. Nevertheless, summarization

of single document is not complicated like multiple documents. Consequently, the

approach we proposed will use many methods to make multiple document

summarizations for large-scale text documents.

Another approach of multiple Arabic documents summarization is proposed by

(El-Ghannam & El-Shishtawy, 2014). It ranks document sentences based on key

phrases. They build a cluster of key phrases from the documents, rank these key

phrases, and give a score to every key phrase. They evaluate every sentence in the

cluster of document sentences based on the score of key phrases that exist in that

sentence to choose one sentence that represents an important topic. Their work

emphasize that key phrases can improve the summarization.

There are several work to make summarization for Arabic documents. (Waheeb

& Husni, 2014) propose an approach to makes automatic summarization of Arabic

multiple documents using clustering approaches. They use k-mean clustering

algorithm to cluster the sentences of pre-classified Arabic documents. They focus on

increasing the quality of produced summaries by eliminating the redundant

information and noisy data by using similarity measures and language processing

29

tools. They use recall and precision metrics to evaluate the clustering performance and

this leads to high weight sentences, which improve the recall and precision. The result

of their approach support our ideas to make text summarization for large-scale

documents based on weight of sentences.

A model proposed by (Froud, Lachkar, & Ouatik, 2013) depends on Latent

Semantic Analysis to make text summarization for single Arabic document. Their

method solves the problem of noisy data to make term clustering more accurate. Rather

than clustering the sentences of the document, they cluster the important terms. They

extract the important sentences based on the relative weighted important terms. They

do not use semantic similarity measures to improve the clustering of documents

therefore affecting the selection mechanism of related sentences. However, they do not

deal with multi document that make summarization a hard task due to diversity of

topic.

Several text summarization approaches focus on using scoring sentences that are

based on common features. Shortcoming of this is that many features do not have the

large impact on the overall score. A modern method for Arabic language proposed by

(Oufaida, Nouali, & Blache, 2014) make single and multiple summaries for Arabic

text using Minimum Redundancy Maximum Relevance (mRMR). It is used to get the

features that select a group of features that represent the whole list of features.

Hierarchical clustering method used to group the sentences into related clusters. This

step is important before scoring sentences using mRMR. To detect redundancy, they

add a score to every sentence that detect if a sentence share information with other

sentences to decrease the ranking. Based on their results, their system use minimum

language analysis methods lead to enough speed but the overall result gives low

ROUGE (Lin, 2005) scores especially in multi document summarization.

3.4 Text Summarization Using Graph Approach

Graph approach is gaining more popularity for making automatic text

summarization due to its simplicity and speed. It is constructed from a directed graph

containing vertices and edges G = (V , E). In the area of text summarization, we can

represent a document as a graph by transforming sentences into vertices or nodes and

the relationship between them as edges.

30

A model proposed by (John & Wilscy, 2015) for making automatic text

summarization for single and multiple documents using Vertex Cover algorithm. They

use sentences as the vertices and the similarity between the sentences as edge weights

between their corresponding vertices. They use cosine similarity and Normalized

Google Distance to measure the similarity between sentences. In addition, they use

Term Frequency (TF) and Inverse Sentence Frequency (ISF) to weight and evaluate

the important words. For correctly finding ideal summary, they select subset of the

graph containing the high weighted sentences that cover the important concepts and

taking into consideration the redundancy problem in the generated summary. Result

of graph systems overcome many systems that use clustering, but they do not work

well for large documents because the graph size increases and consequently

computation time increased.

(Zhang, Sun, & Zhou, 2005) propose a graph model for performing

summarization for multiple documents, that combine the surface features with the

content features using Hub/Authority framework. They use first sentence, cue phrase

and sentences length features to identify important sentences. They use clustering

approaches to identify the sub topics for a collection of documents. To build a graph,

feature words and cue phrase are used as the vertex of Hub and sentences regarded as

the vertex of authority. An edge is placed between an authority sentence and hub word

if that sentence contains a word in the hub. This is step important to make the

relationships between edges and its related authorities. Final summary generation is

done by ranking sentences of every sub topic and order sentences based on its rank.

TextRank (Thakkar, Dharaskar, & Chandak, 2010) is an important method to

make automatic text summarization. Its uses a graph of sentences to find the best path

starting with the first sentence and ending with the last sentence. This method builds a

graph consisting of sentences as nodes and there is an edge for connecting any two

sentences. They use cosine similarity to find the edge strength and give a weight of

every sentence in the graph. The summary constructed by selecting a group sentences

occurs on the shortest path between the first and the last sentence of a document. This

method selects the sentences that are related to other sentences, therefore decrease the

sudden shift of information and maintain the flow of information of the summary.

31

3.5 MapReduce in Data Mining

Data mining is an important field in computer science, the increase of data

requires using new models and algorithms to process large data amount especially for

cloud environments. MapReduce is an attractable option for using data mining for

large data sets. Many recent researches are carried out by applying MapReduce model

for many data mining tasks like classification (Wu et al., 2009) (Q. He, Zhuang, Li, &

Shi, 2010) (Rao & Yarowsky, 2009) (Paniagua, Flores, & Srirama, 2012). Another

important task is clustering. (Hans, Mahajan, & Omkar, 2015) (Ene, Im, & Moseley,

2011), (Ferreira Cordeiro et al., 2011) and (Zhao et al., 2009) proposed clustering

models based on MapReduce and show that MapReduce can be effectively used for

these type of problems and give good results in terms of speed up and scalability. This

encourage improving the quality of the data mining application for the big data

environment.

3.6 Genetic Algorithm over MapReduce

MapReduce is popular for processing large-scale datasets while Genetic

algorithm is sufficient for problems dealing with searching and optimization

techniques. One of the main problems of Genetic algorithm is the evaluation of the

individuals of the search space. The time increase incredibly when the number of

variables increases. There are many works that use Genetic algorithm in large-scale

data. (Saha, 2014), (Geronimo, Ferrucci, Murolo, & Sarro, 2012), (Verma, Llora,

Goldberg, & Campbell, 2009) and (Jin, Vecchiola, & Buyya, 2008) implement Genetic

algorithm in many fashions. Simple Genetic algorithm is the basic and it is very similar

to the classical Genetic algorithm. One approach is the Island approach, where the data

is divided into separate islands and a node processes every island with the possibility

of migrating individuals from one island to another. The results they achieve show that

Genetic algorithm can be scaled by using MapReduce to give acceptable speed-up and

scalability.

In the above works of automatic text summarization, we notice that the

approaches they propose have some advantages and limitations. The main limitation

is that they do not have the ability of processing large text documents. Therefore, a

32

new model for performing automatic text summarization on large-scale documents is

required. MapReduce will be used to speed-up the Genetic algorithm processing time.

3.7 Summary

In this Chapter, we provided various works related to our research problem.

These identify many techniques for text summarization like clustering, feature

extraction, Genetic algorithm, and graph approaches. We show drawbacks of these

approaches of text summarization especially for large size datasets. We show that

MapReduce has advantages for data mining applications like clustering, classification

and summarization.

33

Chapter 4

Multi Document Summarization System Design

To carry out automatic text summarization for large-scale Arabic text using

Genetic algorithm, the proposed approach is divided into several phases. Starting with

the pre-processing phase and concluded with evaluation phase. The system

architecture is illustrated in Figure (4.1). The proposed approach consists of four main

components.

Figure (4.1): Multi Document Summarization architecture.

The first component is preprocessing component make some operations for the

text like cleaning and stemming and POS to prepare the text for feature extraction

34

phase. The second component is feature extraction component used to extract many

features from the text which essential for computing the fitness of the every individual

in Genetic algorithm phase. The third component is Genetic algorithm, which have an

iterative nature, represents the core operations and use MapReduce model to speed up

the computation and ensure high scalability. In addition to that, this component used

to compute the cohesion of every individual and remove redundant sentences from

every individual. Finally, the sorting component, which sort the sentences of the

winner individual and present the final summary.

4.1 Text Pre-processing

Text preprocessing is an important process that is taken into account before any

text processing. It affects the result of the text processing applications because it

removes many noisy data and important to prepare the text for processing. We

preformed the following preprocessing steps in the proposed approach as illustrated in

Figure (4.2).

Figure (4.2): Text Pre-Processing

4.1.1 Text Cleaning

Text cleaning is an important process, which precedes any data mining

application. It is used to prepare the data for further processing. The collected text is

from several Arabic Palestinian newspapers. It contains more than 830 thousand news

items and about 70 different categories. This requires normalizing the number of

categories into few categories. Another issue is removing formatting where news

editors use some online rich text editors to format the news and add some features like

quotes and hashtags, which are stored as special codes in the database.

35

Therefore, the news is stored as a mix of normal Arabic text, HTML tags and

some special code for formatting the news text for the web. The first step is removing

HTML tags, the special formatting codes and the hash tags. Since the news are

collected from many websites, text cleaning becomes a difficult process due to the

diversity of special formatting codes. Also we remove non Arabic words and the

punctuations from the text.

4.1.2 Sentence Tokenization

Usually in morphological analysis, many NLP techniques starts with the

tokenization process to divide a streaming of text into words, phrases or sentences. For

Arabic multi document summarization, we need tokenization to break every news item

into a collection of sentences using some common delimiters like dot, question mark,

exclamation mark and new line. These marks determine the border of every sentence

and consider the words near to it as new sentence. However, advanced morphology

focus on special boundary that is not considered here such as abbreviations like Dr.

Mr. and real number like 15.015, which make the tokenization process more complex.

This requires some attention when processing such cases because they are not

marked as sentence boundaries and require some attention. The final output of this

process is stored as list of sentences for every news item. We should do this step

because we need to extract some text features from all sentences as explained in

Section 4.2 like sentence position and sentence length, which depends on all sentences

of single news item.

4.1.3 Arabic Stop Word Removing

Stop words is a commonly used word in any language used to connect part of

speech and we need to ignore them when weighting sentences to save text-processing

time and focus on the important terms. Therefore, we need to apply similarity measures

like cosine similarity. The stop word has no impact on the importance of a text because

it is repeated many times. Stop word is language dependent and is constructed

manually using stop word list.

4.1.4 Arabic Root Stemming

As described in Section 2.1.2, stemming is the process of removing some

different affixes in any place of a word to return it to its root. We can use root stemmer

36

to get the root of any word or light stemming to remove the prefixed and suffixes only.

In multi document summarization, we use root stemmer because we need to know the

basic information of a news and return many word styles that belong to a single root.

This is required in the term weighting process in Section 4.2.9, for similarity measures,

which used in detecting similar sentences in redundancy removing process and for text

cohesion measures based on common words roots.

4.1.5 Arabic Word Normalization

Arabic have a complex morphological structure; the letters can be written in

many forms. Before performing any processing to the text, we need to uniform the

similar letters into one form. For example, the letter Alef can be written in more than

four forms and the Yaa Letter in three forms as explained in Table (4.1) and all these

forms belong to one form.

Table (4.1): Arabic Words Normalization

Letter Forms

 ا أ إ آ ا

 ى ئ ي ى

4.1.6 Remove Diacritics

Diacritics are used to make the Arabic text reading easier, therefore, usually

beginners use it to spell and understand the text correctly as explained in Table (4.2).

In text processing, we need to remove these diacritics because they do not provide any

importance to the text.

Table (4.2): Arabic diacritics.

Arabic common diacritics

 ءٌ ءُ ءً ءَ ءٍ ءِ ءْ ء
4.1.7 Part of Speech Tagging (POS)

In the POS task, we identifying the types of Arabic words as explained in Section

2.1. POS helps us to know the important part, which provide important information.

We mark every word to the appropriate category in terms of noun, verb, adjective and

37

many other types. This step is required for identifying the number of each category in

every sentence to use it in sentence weighting and in the feature extracting process.

4.2 Feature Extraction

Feature extraction methods are widely used in text summarization applications.

The first summarization proposed by (Luhn, 1958) uses the occurrences of important

word feature in a text to build a summary. We use the extracted features from a

collection of documents to assign a value for every sentence in the big corpus. Genetic

algorithm uses the fitness function to rank and determines the strength of every

individual in the population. Our approach is dealing with extracting some importance

features from the Arabic text to use it for computing the fitness function of

chromosomes.

Figure (4.3): Feature Extraction

Most of these features are computed only one time after text pre-processing

phase. This is because it is time-consuming process; therefore, it is computed only

once and the same features is used at every Genetic algorithm iteration. The text

cohesion feature is computed every iteration because the summary content is changed

38

during the crossover and mutation operation. The feature extraction phase of the

proposed approach is illustrated in Figure (4.3).

4.2.1 Sentence Position

Usually, the first sentences and the last sentences contain information more than

the other sentences (H. P. Edmundson, 1969). We can compute the sentence position

weight in the document using the following formula:

 𝑆𝑝 =
𝑁−𝑖+1

𝑁
 Equation 5.1

where N is the number of sentences in a document and i is the position of

sentence.

4.2.2 Sentence Length

The purpose of summarization is to provide the most important information from

a collection of documents. Therefore, we should take into account the length of a

sentence the very short sentence does not contain enough information. so we do not

consider it as important (Al-Hashemi, 2010). On the other hand, a very long sentence

makes the reader unable to understand and integrate the context from the content. We

can find the sentence length feature from the equation (Suanmali, Salim, & Binwahlan,

2010):

#(𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑖)

#(𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒)
 Equation 5.2

Sentence position and sentence length features should be computed together

after cleaning the news item because they are depending on the whole news item.

4.2.3 Noun Occurrences

Using part of speech tagging POS, the number of noun words can be calculated.

Many studies shows that the presence of nouns make the text more readable and this

is because sentences contain more noun words which may have important information

(Feng, Elhadad, & Huenerfauth, 2009). Another study proposed by (Bouras, Tsogkas,

2008) shows that using noun in text summarization can improve the precision scores.

4.2.4 Verb Occurrences

In most languages, the verb is an important part of a sentence, which express

about using some action and make readers know about occurring events in the text.

Sentences contain verbs may include and cover some events and shows that these

39

sentences describe an important event. This step is required in the feature extraction

phase and is done by counting the number of words, which tagged as verb words in

every sentence by using part of speech tagging POS.

4.2.5 Readability Measures

As shown in Section 2.2.5, the readability test is used to score text in terms of

how the text is easy to read. An important feature of the summary should contain easy

sentences that can be read from different readers from different ages. Using Osman

readability measure (El-Haj & Rayson, 2016), the readability of each sentence in the

corpus is measured such that it can be used in the sentence scoring for the summary

generation. This will ensure that the individual, which consisted of a group of

sentences and have a high readability score is more easy to read from those have low

score.

4.2.6 Cohesion Measures

Multi document summarization creates a summary from multiple sources,

therefore the summary may contain sentences from deferent topics. As shown in

Section 2.2.6, text cohesion measures show how these sentences are connected and

related to each other. In our proposed approach, the Genetic algorithm fitness function

measures the text cohesion feature of all individuals at every iteration. This improve

the quality of the summary and gives high score to the summary, which contains

similar sentences. In general, there are many approaches to measure the cohesion of a

text. An approach proposed by (Nandhini & Balasundaram, 2013) uses cosine

similarity to measure the cohesion of a summary.

In order to measure the cohesion of our multi document summarization

approach, we depend on the root stemming of each sentence to build a similarity matrix

and compute the average similarity of each sentence as the text cohesion of the

potential summary. Every entry of the similarity matrix defines the cosine similarity

of the stemmed sentence words for all sentences. We consider the similarity of the

same sentence in the column and row to be equal to zero rather than one because

sentences with cosine similarity are identical. The cohesion of the individuals of

Genetic algorithm population is computed using the following equation:

𝑠𝑖𝑚(𝑠𝑒𝑛1, 𝑠𝑒𝑛2) =
∑ 𝐴𝑖 𝐵𝑖𝑛

𝑖=1

√∑ 𝐴𝑖 𝑛
𝑖=1 .√∑ 𝐵𝑖 𝑛

𝑖=1

 Equation 5.3

40

Where A, B is the vector of word of the stemmed of sentence A and the words of

stemmed of sentence B (Sidorov, Gelbukh, Gomez-Adorno, and Pinto, 2014). We

should notice that the text cohesion feature is computed at every iteration of Genetic

algorithm. This is because the content of individuals may change during the crossover

operation as explained in Section 4.3.

4.2.7 Term Weighting

The purpose of multi document summarization is to select the most important

information from a collection of documents. Therefore, we must select the sentences

that contain important information using the most frequent term. There are many

methods to know the important words in a text document. Term Frequency & Inverse

Document Frequency TF-IDF is one of the early methods to rank terms of documents.

It is a statistic method used to know how a term exists in a document and across

multiple documents. The first part is Term Frequency (TF), which reflect the number

of times a term T occurs in a document D. The Inverse Document Frequency (IDF)

represents how many times a term T occurs in all documents of a text corpus (Salton

& Buckley, 1988).

Our approach, partitions all sentences into groups of possible summaries and

every summary consisted of fixed number of sentences. Every summary represents a

single document and therefore, the IDF measure is not efficient because it measures

the frequency of a term in groups of documents while our approach based on a single

summary, which represents a single document. We only choose the TF measure by

performing single MapReduce job to count the terms of the whole population. We give

a weight for each sentence in the population as the aggregate occurrence of each term

in the sentence. Next in Section 4.3, we present how Genetic algorithm can be designed

on MapReduce model.

4.3 Designing Genetic Algorithm as MapReduce

In order to make multi document summarization using Genetic algorithm over

MapReduce model to speed up the summarization. The proposed approach performs

the following. Firstly, the sentences are stored after tokenization with their features,

which are extracted in Section 2.2 in the following format: sentenceID, sentenceText,

sentenceStems, List<sentenceFeatures>. This process eliminates the computation time

41

needed for calculating the sentence features in every Genetic algorithm iteration. The

iterative Genetic algorithm summarization starts with dividing the data into separate

individuals and evaluate them to select the best individuals for evolving using

crossover operator. This insures the iterative nature of Genetic algorithm over

MapReduce as described in details in next sections.

4.3.1 Creating Individuals

Genetic algorithm is implemented over Hadoop, a MapReduce programming

model. Firstly, we need to define the data structure of Genetic algorithm. Gene is the

smallest part of Genetic algorithm. It stores single part of information of the

chromosome (individual). The chromosome is a collection of genes, which holds

larger amount of characteristics. In the case of automatic document summarization of

multiple Arabic documents, the sentence is the smallest part of information; therefore,

gene is a single sentence. To make a summary we need a collection of sentences and

thus the chromosome consists of a collection (array) of sentences selected randomly

from different source documents.

To summarize the first step, we need to shuffle and randomly arrange the

sentences stored on the HDFS into a new file containing all shuffled individuals. For

traditional summarization applications, the compression ratio concept controls the size

of the resulting summary. In our case, the output summary is large. Our proposed

approach uses a fixed length individual by splitting the whole dataset into typical

length. Every chromosome has a form consisted of sentence id, sentence text, sentence

stems and sentence features. The new data are stored into a new file on HDFS where

every line is a single chromosome.

4.3.2 Ranking Individuals

This step involves in computing the fitness function of the individuals generated

from the previous step. The fitness function value is computed using linear

combination of the pre-computed feature except cohesion feature. Firstly, cohesion

feature value is used to determine how much the sentences of the individuals belong

to each other using similarity measure, like cosine similarity measure. After this step,

every individual is stored with its fitness function value. In addition to that, we need

42

to remove the weak sentences by conducting a tournament to make the evolution of

only strong individuals.

The previous steps are performed in parallel fashion to speed evaluating the

individuals, which is time consuming operation in Genetic algorithm. Therefore, this

step prepares the iterative nature of Genetic algorithm and the next steps are involving

improving the fitness and evolving the individuals via crossover.

At the end of each iteration we find the best individuals and store them for the

next iteration and so on, we will stop the execution when no major change occurs in

the fitness of the individual. The final schema of individual consists of individual

sentences with their features and the fitness function value of the chromosome in the

current iteration. This step is important to minimize the computation overhead for

computing the fitness before evolving the individuals in the next step.

4.3.3 Iterative Simple Genetic Algorithm

As shown in Section 2.3, Genetic algorithm has many forms for parallel

environments, one of the simplest form select-recombination (Goldberg, 1989), which

can be transformed into parallel execution with minimal set of operations (Verma et

al., 2009). The basic idea behind this approach is to select good individuals from the

population and evaluate them to produce new generation and repeat the operation until

meeting some convergence criteria.

Initially, individuals are stored into HDFS with their features and fitness. The

evolving process of Genetic algorithm is performed in iterative nature using single

MapReduce job for every iteration. This step is dealing with evolution using the

crossover operation and comparing the final fitness of every iteration with the fitness

of the previous iteration. This is required to decide whether to start a new iteration or

terminate the iterative Genetic algorithm.

4.3.4 Evolving Individuals

Genetic algorithm is used to improve the fitness of the new generations by

choosing a strong parent to mate them. The process of creating new individuals uses

two main Genetic operation crossover and mutation. However, in data intensive

systems the mutation operation becomes more difficult. The main reason is the nature

of the summarization process required to replace a gene that contains a single sentence

43

with a gene having a new sentence randomly. This requires searching in HDFS large

file and selecting a random sentence, which does not exist in the individual and do the

same for all individuals. This step increases the resource consumption incredibly

therefore; we may neglect the mutation operation without the need of it is improving

the individual fitness.

Due to its simplicity, the crossover operation can easily be implemented in

parallel in data-intensive systems. In its simplest form crossover is used to swap a fixed

number of genes from any two individuals. This process is performed at every

MapReduce iteration to generate an improved new individual. Section 5.2.3 shows the

details of implementing the iterative nature of Genetic algorithm using MapReduce,

conducting tournament and how to deal with redundant sentences in the individuals

during the uniformed crossover operation.

4.3.5 Stop Iterative MapReduce

After every iteration, we should monitor the maximum. The concept of select-

recombine Genetic algorithm as shown in Section 4.3.3 uses the iteration to be from 3

to 5 times. Initially, we make 3 to 5 Genetic algorithm iterations and after that we

monitor the maximum fitness, if it is greater than the fitness of the previous iteration,

we start a new iteration. If it is less than the fitness of the previous iteration, we

terminate the MapReduce and use the previous individual as the ideal summary with

the individual that have the maximum fitness. Section 5.2.4 present the implementation

of stopping the iterative Genetic algorithm.

4.4 Sorting Summary Sentences

After terminating MapReduce iterations, we have the individual with maximum

fitness, which contain a collection of sentences. The last step is used to sort sentences

in chronological form. Multi document summarization select sentences from multiple

documents, therefore, we should order the generated summary sentences such a way

the user can be easily understand the events. The sort process itself does not guarantee

to improve the generated summary quality but improves the overall user

comprehension and readability of a summary (Barzilay & Elhadad, 2002).

There are many strategies to sort sentences for multi document summarization

the first is majority ordering, which order the sentences according to is order at the

44

original text. The second is chronological ordering, which order the sentences of the

summary according to it is publish date. Another strategy used in feature extracting

system used to order sentences based on its rank (Sripada, Kasturi, & Parai, 2005).

They put the high ranked sentence in the first and so on. In the proposed approach, we

sort the sentences according to published data in ascending order to produce the final

summary output.

4.5 Summary

In this chapter, we presented an approach for making text summarization for

large-scale multi Arabic documents using Genetic algorithm and MapReduce. We use

MapReduce model for parallelizing the execution of Genetic algorithm. We performed

many text pre-processing tasks, which is required for computing important features for

evaluating the Genetic algorithm individuals in parallel. In the next chapter, we show

the detail of implementing the proposed approach on Hadoop, MapReduce system,

more information about the set of experiments and the setup of system environment.

45

Chapter 5

Implementation and Experiments

At this point, we have designed the system for performing automatic text

summarization for multiple Arabic documents using parallel execution of Genetic

algorithm. In this chapter, we show the details of implementing the system using

specific tools and software. The dataset is collected from many different online

databases that run on MySQL and this requires transforming the news items into

simple text format. This step prepares the text for processing using MapReduce that

may affect the quality of the text and the final summary output. The datasets are stored

in MySQL table contain a collection of news of deferent categories. The first step we

need to extract the data to the HDSF and process it. In addition, we show how Genetic

algorithm can be implemented as iterative MapReduce jobs. Finally, we present the

environment setting of the proposed approach, the corpus details and sets of

experiments.

5.1 Data Pre-Processing

Before starting the pre-processing phase, we need to store the news items in a

single file on HDFS. This is an essential process because HDFS use the concept of

blocks for storing the data. Each HDFS block uses the default 128 MB size. If the file

is size larger than the default size, the file system breaks the file into chunks and

replicates them on different nodes. In our case, we deal with text files in few kilobytes,

this enables the system to reserve a space of 128 MB for every news file, which is not

efficient for disk space management, and requires a Map phase for each file.

We suggest an efficient mechanism to overcome the above limitation. We store

all news belonging to a category in a single file on HDFS. This enables the file system

to deal with a maximum of 10 categories, which can be represented as single HDFS

file and make the file system divide it into the available nodes. This enables the Map

phase deal locally with the input file parts available on the machine that runs it. This

decreases the execution time and the network overhead to read data from other nodes.

A MapReduce job is used to read the content of every category file in parallel.

When starting a new job for reading the content, there are two basic methods. The first

is Map, which invoked by the master program driver for reading a single line of the

46

input file every time it is called. Hadoop has many features for enhancing and ensuring

the accurate and effective reading of data from distributed parts across the cluster

nodes. This decreases the network overhead by selecting the nearest node and using

local data chunks for a Map rather than reading it from another node.

5.1.1 Text Cleaning

Most data mining tasks starts by preparing data for processing. In the web area,

the data always contain many irregular or many variants due to reasons like human

mistakes or use of special text formatting. This may include HTML tags, special

formatting tags and hash tags, which makes text readable, and make web site

navigation easy. The process of text cleaning presented in Section 4.1.1 and consisted

of remove special tags and characters, remove non-Arabic words, remove diacritics

and normalize Arabic characters.

5.1.2 Tokenization

Multi document summarization for large-scale data starts with breaking a single

news item into a set of sentences for building the summary. The tokenization process

is explained in Section 4.1.2 and during this process, we should extract some two

features from the text like sentence position and sentence length. These features must

be computed in context of the news items because its computation depends on the other

sentences of this particular news item. A type of tokenization is word tokenization,

where the sentence is divided into a set of words for the stemming process. The

stemming is important for weighting sentences to know how a sentence contains

frequently used terms. Therefore, it is performed during the tokenization for one time

only rather that doing it every time in the sentences ranking process.

This should increase the pre-processing task execution time but on the other hand

decrease evaluation and the evolving operation in Genetic algorithm, which is the most

time consuming.

5.1.3 Term Frequency

The proposed approach uses term frequency for ranking the sentences to build a

summary. The term frequency counts the number of times a term t occurs in a

document d. Another important term is the IDF, which find how many times the term

t, occurs in a collection of documents. Nevertheless, in our large-scale environment,

47

the IDF factor is not sufficient since the text stored in a single file. Therefore, we only

use the term frequency feature to weight the word of every sentence as shown in

Algorithm (5.1).

Algorithm (5.1): Term Frequency count.

Map (key, value), Reduce (word, sum)

1: class Mapper

2: method Map(doc a in pathOfFile)

3: for all terms in sentence s ∈ doc a do

4: if (term t is not stop word)

5: Emit(term t, count 1);

6: end if

7: End for

8: End class Mapper

1: class Reducer

2: method Reduce(term t, counts [c1, c2, . . .])

3: sum ← 0

4: for all count c ∈ counts [c1, c2, . . .] do

5: sum ← sum + c

6: Emit(term t, count sum)

To do that, we need a single MapReduce job to count the occurrence of every

word in the corpus. This step is required for computing the weight of every sentence

in the feature extraction step as shown in the next section. We should deal with stop

words at this moment because they may occur more than any other words. Stop words

used in any language to connect the different part of text; therefore, we should remove

it from the term weighting process. The output of this step is every stemmed word with

number of its occurs.

5.1.4 Features Extraction

In the previous step, some features are extracted that require the whole news text

in order to find text position and text length. As explain in Section 4.2 the remaining

features can computed based on the sentence text without taking into account the other

sentences except text cohesion feature. Like text pre-processing, feature extraction is

a time consuming process, therefore we compute it one time only and reuse the features

48

in every iteration of the parallel Genetic algorithm. We should notice that the process

of feature extraction takes the longest time of phases this due to using POS and using

the sentence readability measure for a numerous number of sentences.

In our Arabic multi document summarization for large-scale data, the number of

sentences exceeded 6.5 million sentences, in order to be processed and summarized,

require using a cluster of machines. In this phase, we extract the noun count per

sentence feature, the verb per sentence feature and the sentence readability feature.

Another important feature is weighting every sentence as the aggregate of every stems

occurs from the file in the previous step. This is very important because it gives the

sentences that contain very frequent terms a higher score than the sentences that

contain low frequent terms.

Algorithm (5.2): Text Pre-processing and Feature Extraction.

Map (key, value)

Input: path of HDFS contains .txt files

Output : <sentenceID, sentenceText, SentenceStems,
sentenceFeatures(sentenceLenght, sentencePosition)>.

1. while pathArray.hasNext do

2. file = pathArray.fetchCurrentFile

3. sentences = file.splitToSentences.toArray

4. For i=0 to sentences.length do

5. sentence = sentenceClean(sentences[i]);

6. sentenceStems = rootStem(sentence);

7. sentenceFeatures = extractFeatures(sentence);

8. sentenceFeatures = sentenceFeatures+ senPosition(sentences);

9. sentenceFeatures = sentenceFeatures+ senLenght(sentences);

10. sentenceFeatures = sentenceFeatures+ weightSentence(sentence);

11. sentenceID = generateUniqueSequenseID;

12. Write<sentenceID, sentence, SentenceStems, sentenceFeatures>;

13. End For;

14. End while;

15. End;

The text pre-processing implementation step is performed using a Map phase

only because there is no aggregation of the values based on a common key. However,

this phase represents the core of a sentence ranking mechanism to determine the strong

individuals for implementing Genetic algorithm based on the fitness function which

based on the features of each sentence.

49

Algorithm (5.2) shows the text cleaning, tokenization and feature extraction

implementation. It explained how sentence position and text length computed

depending on the news item sentences. The algorithm shows extracting the main

features and weight every sentence according to the number of occurs of every stem

at the sentence. The output of Algorithm (5.2) is considered the final output for the

text pre-processing and feature extraction phases, which prepare the text for the

parallel Genetic algorithm Based on MapReduce as shown in Section 5.2.

5.1.5 Text Shuffling

Now, we get a group of files, every files contains the sentences belonging to a

single category stored together with its stems and features. There is an important step

before passing text to Genetic algorithm first step: population initialization. We need

to reorder the sentences of every category randomly because the pre-processing step

stores the sentences of every news item in a sequential order. This ensures that every

individual contains sentences from many different news to achieve the diversity of

multi document summarization, which means that the summary covers most of the

topics of the original text.

In MapReduce, the key is used to group the values that have the same key to

send them to the same Reducer. We can exploit that to redirect every sentence to a

random Reducer to store them randomly. We generate a random ID for every sentence

to ensure that we distribute them to a random Reducer. The Reduce phase invoked

after all the Map tasks finished to store the sentences randomly.

Algorithm (5.3): Text Shuffling.

Map (key, value), Reduce (word, sum)

1: class Mapper

2: method Map(doc a in pathOfFile)

3: for lines ∈ doc a do

4: UUID = generateRandID(line.sentence);

5: Emit(UUID , line);

6: End for

7: End class Mapper

1: class Reducer

2: method Reduce(line)

3: write(line);

50

Algorithm (5.3) explain the process of text shuffling which crucial for creating

individuals as explained in Section 5.2.1. It read a line through the Map method and

generate random ID number to send this line to random Reducer. This step makes the

Reduce receive unordered sentences to make every individual consisted of sentence

from different news items to achieve the diversity option in the summary.

At this stage, the text is prepared by cleaning it and segmenting it into a group

of sentences and get the stem of every sentence. In addition, we calculate all the

required features, which is the basic operation for evaluating our individual’s fitness

function. The next section considered as the core of parallel Genetic algorithm to make

text summarization for large-scale text. It shows how individuals processed, evaluated

and evolved used iterative MapReduce jobs.

5.2 Parallel Genetic Algorithm

We can Genetic algorithm over MapReduce model to exploit the powerful of

parallel computing. The high computation needed by Genetic algorithm especially for

finding the fitness of large-scale individuals, makes using MapReduce more

demanding. This should divide the high processing time across a cluster of machines

that processes parts of text files separately.

5.2.1 Creating Individuals

Often, Genetic algorithms start with creating the initial search space of the

potential solution or in other words the search space. The traditional proposed multi

document summarization uses the compression ration concept, which controls the

percentage of the produced summary to the original data. However, in large-scale data

this may not be time and space efficient because the size of the resulting text summary

is considering large. Another type of compression is uses a fixed length of the

summary regardless of the original text size. Therefore, this is suitable for large-scale

text summarization.

In the proposed approach, we prefer to use a fixed summary length in order to simplify

the adaptation of Genetic algorithm in MapReduce model. As mentioned in Section

5.1.5 randomly rearrange sentences enables the summary to cover most of the topics

of the original text as possible much as. The next step is to sequentially create the

51

individuals or chromosomes, which is a basic data structure of Genetic algorithm as

explained in Algorithm (5.4) using single Map job only.

Algorithm (5.4): Create Individuals.

Map (key, value)

1: class Mapper

2: summaryLength;

3: individual;

4: processed ← 0;

5: method Map{

6: while (processed < summaryLength) {

7: individual ← individual+ currentLine;

8: processed++;

9: }

10: write individual;

11: reset(individual);

11: }

13: End class Mapper

As show in Algorithm (5.4), it reads a single sentence which represented by a

single line at one time. The desired summary (individual) length of individual used as

parameter, and loop until processing number of lines equal to the required individual

length. Finally save the current individual to start creating new individual. Every single

individual is considered as a possible solution in the search space for Genetic algorithm

and initially resulting individuals should have a fixed length to perform the evolving

process of individuals efficiently. When all sentences are distributed to individuals, all

the individuals are stored in a single file on HDFS to make it easy for the next

processing phases.

5.2.2 Scoring Individuals

Genetic algorithm depends on the principle of survival of the fitness, which

means that the strong individual can still survived and produce strong children. To use

the principles of Genetic algorithm in automatic text summarization, we rank the

individuals based on the output of Section 5.1 to know the best individual or other

words the best summary. As mentioned before finding the fitness of every individual

consumes most time in Genetic algorithm, therefore, we implement this task in

52

MapReduce in order to divide the computation across a cluster of machines and

therefore, reduce the overall needed time.

Individuals consist of a group of sentences. Every sentence is stored with its

extracted features (Section 4.2 and Section 5.1) and these are the basic measurements

of the fitness of every individual. We can make an optimization for automatic text

summarization, which decreases the computing time of the fitness of every individual

in every iteration by storing the aggregate of all features with every sentence.

We mention in Section 5.1 that the content of individual may change during the

evolving task in crossover operation. Therefore, we find the text cohesion feature of

individuals in every iteration. We perform scoring individuals in a Map task only by

reading an individual that represents a single line in an HDFS file based on the format

shown in Table (5.1).

Algorithm (5.5): Scoring Individuals.

Map (key, value)

1: class Mapper

2: Fitness ← 0;

3: individual;

4: method Map {

5: individual ← parseIndividual(currentLine);

6: textCohesion = calculateCohesion(individual);

8: individual.updateFitness(Fitness);

9: Emit(key, individual);

10: }

11: End Class Map

Table (5.1): Individual Format.

Individual1 Sentence1>feature1, feature2, …<,Sentence2 >feature1, feature2, …<, …

Individual2 Sentence2>feature1, feature2, …<,Sentence2 >feature1, feature2, …<, …

Every line represents a potential summary, therefore we should rank every

individual based on its features and this is performed in Algorithm (5.5). The algorithm

is parsing on line every time and compute the text cohesion feature. It updates the new

fitness of the individuals to use it in the iterative MapReduce job, which presented in

53

Section 5.2.3. The process of scoring individuals is performed once using single

MapReduce job and output one file for every category.

Table (5.2): Individual Final Format.

Individual1 Sentence1>featuresSum<, Sentence2> featuresSum <, …

Individual2 Sentence1>featuresSum<, Sentence2> featuresSum <, …

The final format of every individual stores the aggregate sum of all features as

the format in shown in Table (5.2). We separate the cohesion features from other

features because they are computed at every iteration due to the change in individual

sentences during the crossover operation. This above is performed done using a single

Map operation only once to find the fitness of every individual in parallel. The

evolving of population requires using iterative nature of Genetic algorithm using

several MapReduce jobs.

5.2.3 Evolving Population

The evolving of Genetic algorithm population encapsulated using MapReduce

is done in iterative nature. At every iteration, many operations are used to generate

new set of individuals from the current individuals. Survival of the fittest is the main

principle in Genetic algorithm to pass characteristics of the strong individuals to the

new generation using genetic operations. Every iteration uses Map phase and Reduce

phase to read individuals from the HDFS and evaluate them in parallel to decide

starting new iteration or stop Genetic algorithm.

Algorithm (5.6): Map Phase of Each Iteration of GA.

Map (key, value)

1: Class Mapper

2: Method Map{

3: individual ← parseIndividual(line);

4: emit(key, individual);

5: }

6: End Class Mapper

54

At every iteration, a tournament is conducted between fixed numbers of

individual to select the fittest individuals to perform uniform crossover operation. At

the first iteration, the Map method simply reads the current line from the HDFS and

sends it to the Reducer as shown in Algorithm (5.6). The main Genetic algorithm

operations are performed using selection and crossover at the Reduce phase of every

iteration.

As explained in Algorithm (5.7), the Reducer performs the core operations of

Genetic algorithm. The tournament selection is performed using a predefined number

of selection pool to specify how many individuals participated in a single tournament.

Only one individual survives and is passed to the crossover, therefore the failed

individuals are stored back to the HDFS to have another chance at another tournament.

In addition to that, the new individual’s fitness is calculated at the end of Reduce phase

before storing the individuals to use them at the next iteration if it is conducted.

There are many important issues solved in method CrossoverAndSelection at

every Reduce phase for all iterations. The first is handling the redundancy. In data

mining tasks, we can represent any document as a vector of terms to know the degree

of similarity of each term to the other terms in the document. Cosine similarity is a

popular method the measure the similarity of any two vectors. We can use a similarity

matrix constructed from all sentences of every individual to find the similarity of each

sentence to other sentences and remove the sentence with lowest fitness.

Every matrix entry stores the cosine similarity value for the similarity of a

sentence from a column and a sentence from a row. In the method

CrossoverAndSelection that implemented in Algorithm (5.7), we can consider a

sentence as redundant if its similarity with other sentences is greater than a threshold

using the cosine similarity equation which presented in Section 4.2.6.

In multi document summarization the redundancy is a common issue, therefore,

we can replace the duplicated sentence with another sentence from the corpus.

Nevertheless, dealing with redundancy for large-scale data makes it a critical issue.

We cannot select a sentence every time we find a redundant sentence in an individual.

This requires searching in a file containing more than a million of lines and this

increase the time of execution. We propose removing the duplicated sentence that have

the least fitness from the individual this minimize the execution time, network

55

overhead and do not affect the overall fitness of the individual. At every iteration, we

should find the text cohesion and the new fitness of all individuals after the crossover

operation due to the change in the content of the individual during the crossover.

Algorithm (5.7): Reduce Phase of Each Iteration of GA.

Reduce (key, values)

1: Class Reducer

2: textCohesion ← 0;

3: maxIndividual;

4: tournamentSize;

5: processedInd ← 0;

6: tournamentArray;

7: Method Reduce{

8: While (values.hasNext){

9: individual ← parseIndividual(values.next);

10: If processedInd < tournamentSize

11: textCohesion ← calcTextCohesion(individual);

12: individual.updateFitness();

13: if individual.fitness() > MaxIndividual.fitness()

14: maxIndividual ← individual;

15: end if;

16: tournamentArray.add(individual);

17: else

18: CrossoverAndSelection(tournamentArray);

19: End if ;

20: processedInd ← processedInd + 1;

21: if(tournamentArray.size() == tournamentSize)

22: tournamentArray.clear();

23: end if;

24: }

25: writeMaxIndividual(individual);

26: writeNotWinIndividuals();

27: }

At every iteration, we should find the individuals with maximum fitness to

monitor the evolution of the population. Every Reducer should save the individuals

with maximum fitness to a separate file from other individuals from a file on HDFS

where all Reducers of this iteration do the same. This makes a decision when to start

new iteration or stop the iterations as shown in the next section. Algorithm (5.7) shows

56

how the Reducer reads all lines from the Map and how conduct a tournament between

fixed numbers of individuals. In addition to that the process of saving the max fitness

individual to separate file and write the failed individuals at the end of the algorithm

back to give them another chance.

5.2.4 Stopping Genetic Algorithm

As shown in Section 2.3.1, there are many criteria for stopping Genetic algorithm

iterations. Our proposed approach is concerned with improving the text cohesion score

and the readability score of the generated summaries to maximize the quality.

The used Genetic algorithm makes 3 to 5 iteration initially and let stop the

iteration to the user based on the result. The proposed approach makes 3 to 5 iterations

and monitor the maximum fitness at the end of every iteration. If it is more than 10%

of the previous iteration, we start a new iteration. This means that the fitness of the

individuals improves incrementally and there is a chance to get improved fitness at the

next iteration.

It is worth mentioning as explained in Algorithm (5.8), that this step controls the

flow of Genetic algorithm iteration and decides to start a new iteration or not.

Therefore, we should accurately monitor how the individuals’ fitness changes during

MapReduce iterations. In order to make infinite iterations if the individual

improvements not reach the desired ratio (10%), we add a constraint that makes only

specific number of MapReduce jobs iterations. This performs a fixed number of

MapReduce iterations if the job reaches them; the iterative MapReduce is terminated

even if the desired ratio is not reached.

Algorithm (5.8): Genetic Algorithm Stop Criteria.

Algorithm 5.8: Stopping Genetic Algorithm Iterations

1: Class StopGenetic

4: previousFitness ← read max Individual fitness of previous iteration;

2: currentFitness ← read max Individual fitness of current iteration;

3: if (currentFitness > previousFitness + previousFitness * 10% or MaxIterations)

4: startNewIteration;

5: else

6: stopIteration;

7: end if; end class StopGenetic;

57

5.3 Experiments

To implement the approach for multi document summarization for large-scale

Arabic documents, we use Java programming language with various libraries to

making text pre-processing and features extraction more easy. Another important

reason for choosing Java is that Hadoop (which open source MapReduce realization)

is implemented and provides Application Programming Interface (API) using Java. In

this section, we talk about the tools and libraries used in the proposed approach. The

environment setup and the set of experiments conducted to realize and test the

proposed approach.

5.3.1 Tools and Environment Setup

There are many frameworks and tools used in processing and executing the

proposed approach especially in text pre-processing and features extracting phases.

This section describes briefly the configuration and the software used for the

experiment.

5.3.1.1 AraNLP Library

AraNLP (Althobaiti, Kruschwitz, & Poesio, 2014) is a free Java library

containing tools for processing Arabic text. AraNLP groups many useful tasks in one

toolkit, which makes it easy to integrate with existing programs or text processing

packages. In general, AraNLP toolkit contains sentence tokenization, root and light

Arabic text stemming, Arabic part of speech tagger (POS), word segmenter,

normalizer, and a punctuation and diacritic remover.

5.3.1.2 Osman Readability Measure

As described in Section 2.2.5, our proposed approach uses a readability for

scoring Arabic sentences. We use a state-of-the-art Java based library Osman (El-Haj

& Rayson, 2016) for giving a numeric values to each sentence in the corpus that

measures how this sentence is easy to read. This library can be used for scoring any

form of Arabic text with diacritic or plain text.

5.3.1.3 Hadoop Cluster

In order to process large amount of data, there are many approaches and

frameworks. Hadoop is a MapReduce model realization for processing large amount

58

of data using a cluster of commodity hardware. We build a cluster of 17 machines that

run based on Ubuntu 15.4 and a 2.6.0 Hadoop version that is running with 2 GB of

Ram and 2 Core Intel Xeon(R) CPU at 3.10GHz. There is a master machine which

acts as name node as described in Section 2.5. The other 16 machines act as data nodes

and the cluster is connected using high-speed local switch for guarantee the high speed

of communication between machines.

By default, HDFS replicates every file up to three replicas on different locations

and every block size is 128 MB, which means that every chuck will reserve a constant

size. This help Mapper to read the part of data locally rather than read from another

machine.

5.3.2 Corpus

The proposed text summarization approach works with for large scale multiple

Arabic documents, therefore, we have gathered data from many online newspapers.

We have selected news from five famous Palestinian websites. These sites include

Palestine Today, Paltimes, Sama News, Safa News and Alresala News. The

information of each website in terms of the number of news items and the size of these

items in MB are listed in Table (5.3).

The text is stored for web pages; therefore, they contain HTML tags to format

the data, which require more processing time and effort due to the diversity of tags and

the use of some customized tags in each webpage.

Table (5.3): Corpus Details.

Website Number of News Items Size in MB

Paltoday 219948 644

Samanews 207249 711

Safanew 165116 410

Alresala 131583 329

Paltimes 109990 262

Total 833886 2356

The previous table describes the original dataset before any modification or pre-

processing being applied. Nevertheless, our approach uses the sentence as the basic

59

unit in the summary. Therefore, we need to split every news item into a set of sentences

and clean it from HTML tags by applying text pre-processing techniques and extract

the features of every sentence for further use. Table (5.4) shows every category after

pre-processing and extracting the features of every sentence of the corpus and

categorizing every news item to a single category. We conduct many MapReduce jobs

to apply the proposed approach on the data sets in Table (5.3) and measuring the

change of individual fitness during every iteration of Genetic algorithm Section 4.3.

Table (5.4) shows that the number of news items is decreased after the pre-

processing step because many news sentences are removed due to poor readability

score, very long sentence, very short sentence or duplicate sentences. The removed

sentences may affect the quality of the produced summary.

Table (5.4): Category Details.

Category No. of News Items No. of Sentences Size in MB

Reports 241572 1968791 1648.64 MB

Politics 149044 1181291 744 MB

Local 129738 903702 683 MB

International 94972 804224 546 MB

Sport 33626 205894 140 MB

Culture 12587 99637 72.7 MB

Economy 7698 52645 37.5 MB

Technology 6415 44374 30.9 MB

Health 5534 45359 30.9 MB

Total 681186 5305917 3933.64 MB

5.3.3 Partitioning Individuals

The summarization starts with creating the potential individuals. As mentioned

in Section 4.3, every individual consists of a group of sentences chosen randomly from

each category. The compression ratio is a common concept in automatic text

summarization models, it is a value that represent the generated summary of the

original document/s size. Nevertheless, in our approach, the data volumes are large

and consequently the summary size is large if we follow the mean of the traditional

compression ratio.

60

Table (5.5): Category Individuals Size.

Category Individual Size (in sentence) No. of Individuals

Reports 600 3281

Politics 600 1968

Local 500 1807

International 500 1608

Sport 500 411

Culture 400 249

Economy 400 131

Technology 300 147

Health 300 151

We decide to overcome this option and make every individual have a specific

size and all individuals initially should have the same size, which required for

crossover operation. Creating individuals is performed after the process of shuffling

the category sentences as explained in Section 5.1.5. The details of creating individuals

shown in Table (5.5).

Table (5.6): Creating Individual Execution Time.

Dataset Size Execution Time in second

Reports 1648.64 MB 841

Politics 744 MB 484

Local 683 MB 447

International 546 MB 282

Sport 140 MB 47

Culture 72.7 MB 34

Economy 37.5 MB 19

Technology 30.9 MB 16

Health 30.9 MB 16

The process of creating individuals starts with ordering the sentences in random

fashion, sequentially select group sentences with the individual size, and give unique

identity number to this group as individual. Table (5.6) shows the execution time of

61

breaking the news items of each category into a collection of individuals. Every

category individuals are stored into a separate file on HDFS to be passed later to

MapReduce based Genetic algorithm iterations applied to the created individuals.

5.3.4 Parallel Genetic Algorithm

The output of partitioning individuals creates a HDFS file for every dataset

where every line in the file contains a single individual. The process of parallel Genetic

algorithm contains the core operations of Genetic algorithm as MapReduce model

realized by Hadoop. MapReduce starts a job by reading the input file and distributes

its content across cluster nodes. HDFS divides the input file and sends all file chunks

to the nodes. This makes the Mapper of every node read from the local copy rather

than read from other nodes to utilize the network bandwidth and decrease the required

network overhead.

In general, MapReduce prefer using small number of large files rather than using

large number of small files. We decide to eliminate small datasets from execution by

using MapReduce job and make the summarization for files sizes of 300 MB and

beyond.

Table (5.7): Summarization Execution Time.

Dataset
Execution Time In Seconds

1 node 2 nodes 4 nodes 8 nodes 12 nodes 16 nodes

Reports 1463 1219 947 621 328 148

Politics 868 723 640 470 273 121

Local 750 641 597 430 261 119

International 523 486 355 294 249 117

At every iteration, the Mapper reads one line from HDFS and send it to the

Reducer. The Reducer reads individuals in pairs to run the crossover operation in

parallel and compute the new fitness of the individual after the crossover. The

execution time of MapReduce iterations for all iterations is described in Table (5.7)

and is illustrated on Figure (5.1).

The results in Table (5.7) show that as the size of category increased, the

execution of the proposed approach become better that is execution of small size

62

categories, this is because of MapReduce prefer processing small number of large files

rather that processing large number of small files. We should notice that the results in

Table (5.7) considered as the basic input for measuring the speedup, efficiency and

scalability in Section 6.2, Section 6.3 and Section 6.4.

Each iteration produces two HDFS files, the first contains the whole individuals

stored with the fitness and the second is a file contains the individuals with maximum

fitness of every Reducer. At the end of every iteration, the file contains the maximum

individuals compared with the output of the previous iteration and decides starting new

iteration or no based on the improvement ration of maximum fitness of each iteration

as explained in Section 5.2.4.

The output of every iteration considered as the input of the next MapReduce

iteration. Finally, if the MapReduce iterations stop successfully, we read an individual

from the small file from the output of the last iteration that contains the individuals

that have the maximum fitness as the output summary. As described in Section 4.4,

the sentences of the summary are ordered in chronological order based on the publish

date of the original news.

Figure (5.1): Summarization Execution Time.

We should notice that the results in Table (5.7) considers as the basic for

computing the speed up score for the proposed approach for text summarization as

explained later in Section 6.2.

TI
M

E
IN

 S
EC

O
N

D
S

EXCUTION TIME

63

5.4 Summary

In this Chapter, we described the details of the implementation of our proposed

approach for making automatic text summarization of large-scale multi Arabic

documents using MapReduce and Genetic algorithm. We give short description about

the collected data and its characteristics and the NLP tools used in the implementation.

In addition to that, we presented the environments of Hadoop cluster and the nodes,

which runs MapReduce model. Finally, we presented the set of experiments of the

proposed approach.

64

Chapter 6

Evaluation

In this chapter, we present an evaluation for the proposed summarization

approach that consists of measuring the quality of the generated summaries in terms

of precision and recall and measuring the parallel computation speedup, efficiency and

scalability.

6.1 Summarization Quality

There are an important measure from measuring the quality of document

summarization, Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

proposed by (Lin, 2005). ROUGE uses peer review or human summary to compare

the system-generated summary with the human summary using several sub measures

like (ROUGE-N, ROUGE-L, and ROUGE-W). One disadvantages with ROUGE is it

inability to deal with large summarization approach, it suitable for small datasets

where human effort is involved in the summary of the original text and comparing it

to the system summary.

Since the proposed multi-document summarization approach deals with large-

scale Arabic text documents, ROUGE measure would be ineffective and time

consuming due to the need to perform manual summarization of the whole data by a

human. Therefore, using the ROUGE measurement in our proposed approach is a

challenging task.

Additional important measures for measuring the quality of document

summarization are based on precision, recall and F-measure (Gong & Liu, 2001).

Precision is the fraction of retrieved documents that are relevant to the query.

Precision (P)=
|system−human choice overlap|

|sentences chosen by system|
 Equation 6.1

While recall is the fraction of the documents that are relevant to the query that

successfully retrieved (Nenkova, 2006).

Recall (R)=
|system−human choice overlap|

|sentences chosen by human|
 Equation 6.2

65

F-measure =
2∗𝑃∗𝑅

𝑃∗𝑅
 Equation 6.3

Therefore, we propose selecting small and random samples of the produced

summaries and then preform manual summarization for them. This procedure follows:

select random and small samples from the system-generated summaries, fetch the

original text of news items of these summaries sample sets and preform the traditional

precision, and recall measurements to assess the quality of the summary. The same

samples are provided to a three human experts in managing news website to make

summary of sample consisted of 10 news items for each data set which mean 40 news

item in aggregate. The human experts asked to select the most important sentences

from the sample original news items, which can represent the whole sentences

regardless the number of chosen sentences.

The results of the three human expert summarization are shown in Tables (6.1),

(6.2), and (6.3) respectively.

Table (6.1): System Results vs. Human Expert 1 Results

 International Local Politics Reports

System Summary 12 11 13 10

Expert 1 Summary 26 24 26 23

Correct sentences 4 5 3 4

Precision 0.33 0.45 0.23 0.4

Recall 0.15 0.21 0.12 0.17

F-measure 0.21 0.29 0.16 0.24

Table (6.2): System Results vs. Human Expert 2 Results

 International Local Politics Reports

System Summary 12 11 13 10

Expert 2 Summary 28 30 34 33

Correct sentences 6 7 10 7

Precision 0.5 0.64 0.77 0.7

Recall 0.21 0.23 0.29 0.21

F-measure 0.3 0.34 0.42 0.32

66

Table (6.3): System Results vs. Human Expert 3 Results

 International Local Politics Reports

System Summary 12 11 13 10

Expert 3 Summary 25 27 28 23

Correct sentences 9 7 8 6

Precision 0.75 0.64 0.62 0.6

Recall 0.36 0.26 0.29 0.26

F-measure 0.49 0.37 0.4 0.36

In document summarization approaches, the precision score represents the

correct summarized sentences from a collection of sentences. The results show that

there is variance in the specialists’ summarization. The first human expert results show

that low score for precision, recall and f-measure. The results of the second and the

third experts were very similar to each other. The main reason of this variance in the

results is that the human experts summarized the news items based on their vision of

the importance of each sentences in the news item.

Figure (6.1): Summarization Quality Based On the Selected Sample Text.

Figure (6.1) shows the results of summarizing the datasets for the three human

summaries of all datasets. The results show highest precision scores: local data set by

expert 1, the politics data set by expert 2. While international data set, get the highest

67

score by expert 3. The figure also shows the lowest precision score especially in

summarizing the politics data set by human expert 1. Figure (6.2) illustrates the

average of the precision, recall and f-measure for the four datasets using the three

human experts. The results show that the local data set has the maximum precision

score while the reports dataset has the lowest recall score.

Figure (6.2): Evaluation Metrics Average.

6.2 Speedup

Speedup is an important measure for the performance of parallel computations.

Speedup (S) is the ratio of required taken time to solve a problem using single

processing (ts) to the required time to solve the same problem using several parallel

(tp) computers (Grama, 2003). Measuring the speedup metric is important in our

research; firstly, should run the same MapReduce jobs on different node start from 2

nodes to 16 nodes of our cluster as described in Section 5.3 and compare the results to

the ideal speedup. The speedup measured using the following equation:

Sn= ts/tp Equation 6.4

where ts (time of serial) is the time of execution the multi document summarizer

on one node, while tp (time of parallel) is the time of execution the same program

using parallel computers.

The results in Table (6.4) show that the speedup of the summarization for the

datasets is not close enough to the ideal speedup when using less than 12 computer

68

nodes. On the other hand, when we use 16 nodes, the speedup gets more close to the

ideal speedup. There are many reasons that prevent reaching a speedup close enough

to the ideal speedup. In parallel computations systems, there are a lot of time lost

during executing programs in parallel fashion like communication time, idle and waste

computation.

Table (6.4): Summarization Speedup.

Dataset
Speedup (S)

2 nodes 4 nodes 8 nodes 12 nodes 16 nodes

Reports 1.200164 1.544879 2.355878 4.460366 9.885135135

Politics 1.200553 1.35625 1.846809 3.179487 7.173553719

Local 1.170047 1.256281 1.744186 2.873563 6.302521008

International 1.076132 1.473239 1.778912 2.100402 4.47008547

In addition to that, MapReduce runs Map and Reduce jobs in parallel but, Reduce

method should wait all Map methods on all nodes to complete in order for it to start

and therefore can increase the overall execution time. Another important reason is that

MapReduce trends to process large input files rather than process small files.

Figure (6.3): Summarization Speedup.

In our case, the size of the largest dataset is about 1.2 GB, which is considered

small for ideal processing by MapReduce, which prefer large amount of data to exploit

SP
EE

D
 U

P

69

its advantages. The results Figure (6.3) show that using small datasets, which have size

less than 1 GB, not result in high speedup score. While Reports dataset get more

improvement in the speedup score when using 8, 12 and 16 nodes respectively because

it is the largest data set with size more than 1.2 GB. However, the other data sets size

is less than 1 GB therefore they did not result in high speedup score like the Reports

data set.

The results illustrated in Figure (6.3) are show that using more dataset size and

more processing nodes make our summarizer approach more efficient and the speedup

getting more linearly when adding more resources to the cluster nodes.

6.3 Efficiency

In parallel systems, there are many available resources available for solving

computation problems. Efficiency is measure how the available resources in parallel

system is utilized (Grama, 2003). Efficiency can be computed as the speed up of the

parallel system to the number of processing units. In general, the value of efficiency is

between zero and one, therefore the best efficient and ideal parallel system have value

one and the worse have zero. We can compute the efficiency using the following

equation:

E = S / P Equation 6.5
where S is the speed up of the system and P is number of processing units.

Table (6.5): Cluster Efficiency

Dataset
Efficiency (E)

2 nodes 4 nodes 8 nodes 12 nodes 16 nodes

Reports 0.6 0.386 0.294 0.372 0.618

Politics 0.6 0.339 0.231 0.265 0.448

Local 0.585 0.314 0.218 0.239 0.394

International 0.538 0.368 0.222 0.175 0.279

For our proposed approach, we can find the efficiency from speed up values in

Table (6.4) where the processing units is the number of cluster nodes and the speed up

is the corresponding speed up for category and cluster nodes as shown in Table (6.5).

70

Figure (6.4) shows that the efficiency of the proposed system increased for

summarizing the reports dataset. The main reason is MapReduce model require larger

data sets sizes which not exists in our data sets. The reports data set size is about 1.2

GB therefore it gets the highest efficiency among other data sets when using 16 nodes

in the cluster. In addition to that, when using 2 nodes all data sets efficiency is around

%62. Nevertheless, when using more resources, the efficiency is decreased which

mean the resources is not utilized. The main reason of low efficiency score is the data

sets except reports data sets size not large enough for MapReduce and it should not

processed using more than two nodes.

Figure (6.4): Cluster Efficiency.

6.4 Scalability

Scalability is evaluated rather than computed. A parallel system is said to be

scalable when the efficiency can be kept constant as the number of processing units

increased, provided that the problem size is increased (Grama, 2003). We can conclude

that the proposed system is scalable, where the efficiency is kept (near to) constant

SC
O

R
E

NUMBER OF NODES

EFFICIENCY

71

while adding more nodes (up to 16 in the experiment) to the MapReduce cluster and

at the same time increasing the size of data set.

6.5 Summary

In this Chapter, we presented the evaluation of the parallel Genetic algorithm

using MapReduce model. The main result is that the system can correctly select the

most important sentences from the datasets to construct the readable summary. The

quality of the summaries is presented in terms of precision, recall and f-measure

scores. The approach results into acceptable speedup and efficiency scores. We show

that increasing the datasets size can improve the speedup and efficiency scores

significantly.

72

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this research, we built a new approach for making automatic text

summarization for large-scale multi Arabic documents using Genetic algorithm and

MapReduce model. We choose Genetic algorithm technique because its ability to

automatically evolve to the potential summaries during its iterations. However,

Genetic algorithm suffers from major a problem, the high computation requirement.

We used MapReduce model for the automatic distribution of a Genetic algorithm-

based summarization computation across a set of machines connected together.

Our proposed approach guarantees acceptable quality of produced summaries,

speedup score for using Genetic algorithm, efficient computation usage and provide

high scalability. Therefore, it is adaptable to make summarization of any desired text

documents sizes if there are enough resources for MapReduce.

We evaluated the proposed approach using the traditional text summarization

metrics, which are precision and recall. The results show that the precision score

indicated that the approach successfully identified most of the correct summary

sentences similar to the human specialists’ summaries. In addition to that, the proposed

approach provides up to 10x speedup score, which is faster than executing the same

code on single machine. Therefore, it can deal with large-scale datasets successfully.

Finally, the efficiency score of the proposed approach indicates that the largest data

set utilize the available resources up 62% which is a satisfying result taking into

account the available data set sizes.

It is worth noting that we tackle some obstacles during this research. One

obstacle is the lack of large organized Arabic text corpus. This make collecting these

resources from online newspaper resources a challenging task. In addition, in Arabic

NLP area there are no accurate tools for processing Arabic text such as accurate

sentence tokenizers, automatic cue-words identifiers, accurate named entity

recognizers and absence of a complete Arabic WordNet equivalent, which is required

for semantic similarity for intelligent detection of redundant sentences.

73

7.2 Future Work

Various future efforts may improve the proposed approach. One such effort is to

add more features to the list of used features like identifying the named entity in the

text, identifying cue-words, which can be used for giving strong meaning for the text

like the words: “emphasize”, “incidentally”, “for example” and many other cue words.

Additional feature is using semantic similarity measures for accurately detecting the

redundant sentences and the degree of similarity between words. These features are

likely to increase the score of the sentences so these sentences are likely to be included

in the summary, and therefore, the quality of produced summary will be improved

significantly.

Finally, increasing the size, domain-diversity and sources of the dataset while

performing the experiments on a larger MapReduce cluster would increase the speedup

score, respectively the efficiency and scalability of the proposed approach and

therefore measure the adaptability of text summarization on cloud computing. We test

our proposed approach for making text summarization for other domains and other

text resources like books and social network blogs and tweets.

74

References

Abdallah, S., Shaalan, K., & Shoaib, M. (2012, March 11-17). Integrating rule-based

system with classification for Arabic named entity recognition. Paper presented at

the 13th International Conference on Computational Linguistics and Intelligent

Text Processing, New Delhi, India.

Al-Barhamtoshy, H., & Al-Jideebi, W. (2009, December). Designing and

Implementing Arabic WordNet Semantic-Based. Paper presented at the the 9th

Conference on Language Engineering.

Al-Dawsari, M. (2004). The assessment of readability books content (boys-girls) of the

first grade of intermediate school according to readability standards (Technical

Report). Sultan Qaboos University, Muscat.

Al-Hashemi, R. (2010). Text Summarization Extraction System (TSES) Using

Extracted Keywords. International Arab Journal of e -Technology, 1(4), 164-168.

Al-Maimani, M. R., Naamany, A. A., & Bakar, A. Z. A. (2011, February 19-22).

Arabic information retrieval: techniques, tools and challenges. Paper presented at

the GCC Conference and Exhibition (GCC) IEEE, Dubai, United Arab Emirates.

Al-Shalabi, R., Kanaan, G., Jaam, J. M., Hasnah, A., & Hilat, E. (2004, April 19-23).

Stop-word removal algorithm for Arabic language. Paper presented at the

Proceedings of 1st International Conference on Information & Communication

Technologies, Syrian.

Althobaiti, M., Kruschwitz, U., & Poesio, M. (2014, May 26-31). AraNLP: A Java-

based library for the processing of Arabic text. Paper presented at the proceedings

of the 8th International Conference on Language Resources and Evaluation,

Rekjavik, Iceland.

Aliguliyev, R. M. (2009). A new sentence similarity measure and sentence based

extractive technique for automatic text summarization. Expert Systems with

Applications Journal, 36(4), 7764-7772.

Aristoteles, H. Y., Ridha, A., & Julio, A. (2012). Text Feature Weighting for

Summarization of Documents in Bahasa Indonesia Using Genetic Algoritm.

International Journal of Science Issues. 9(3), 1694-0814.

Bäck, T. (1996). Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms. (1st ed.). New York: Oxford

university Press.

Barzilay, R., & Elhadad, N. (2002). Inferring strategies for sentence ordering in

multidocument news summarization. Journal of Artificial Intelligence Research,

17(1), 35-55.

Baxendale, P. B. (1958). Machine-made index for technical literature: an experiment.

IBM Journal of research and development, 2(4), 354-361.

75

Bhandari, D., Murthy, C., & Pal, S. K. (2012). Variance as a stopping criterion for

genetic algorithms with elitist model. Journal of Fundamenta Informaticae,

120(2), 145-164.

Borthakur, D. (2008, April). HDFS architecture guide. Retrieved June 6, 2016, from:

Hadoop apache project http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

Bossard, A., & Rodrigues, C. (2010, October). Combining a Multi-document

Summarization System with a Genetic Algorithm. Paper presented at the

International Workshop on Combinations of Intelligent Methods and Applications,

France.

Bouras, C., & Tsogkas, V. (2008, September). Improving text summarization using

noun retrieval techniques. Paper presented at the International Conference on

Knowledge-Based and Intelligent Information and Engineering System, Berlin,

Germany.

Brill, E. (1992). A simple rule-based part of speech tagger. Paper presented at the

Proceedings of the 3rd workshop on Speech and Natural Language, pp. 112-116.

Association for Computational Linguistics, Trento, Italy.

Chowdhury, G. G. (2003). Natural language processing. Annual review of

information science and technology, 37(1), 51-89.

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large

clusters. Journal of Communications of the ACM, 51(1), 107-113.

Edmundson, H. P. (1969). New methods in automatic extracting. Journal of the ACM

(JACM), 16(2), 264-285.

El-Ghannam, F., & El-Shishtawy, T. (2014). Multi-Topic Multi-Document

Summarizer. International Journal of Computer Science & Information

Technology (IJCSIT), 5(6), 77-90.

El-Haj, M., & Rayson, P. E. (2016, Mar 08). OSMAN–A Novel Arabic Readability

Metric. Paper presented at the Language Resources and Evaluation Conference,

Slovenia.

El-Shishtawy, T., & El-Ghannam, F. (2012, May 14-16). Keyphrase based Arabic

summarizer (KPAS). Paper presented at 8th International Conference on

Informatics and Systems, Egypt.

Mohamed, E., & Kübler, S. (2011). Part of speech tagging for Arabic. Natural

Language Engineering Journal, 18(4), 521-548.

Ene, A., Im, S., & Moseley, B. (2011). Fast clustering using MapReduce. Paper

presented at the Proceedings of the 17th ACM SIGKDD international conference

on Knowledge discovery and data mining. San Diego.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

76

Erkan, G., & Radev, D. R. (2004). LexRank: Graph-based lexical centrality as salience

in text summarization. Journal of Artificial Intelligence Research, 22(1) 457-479.

Farghaly, A., & Shaalan, K. (2009a). Arabic natural language processing: Challenges

and solutions. ACM Transactions on Asian Language Information Processing

(TALIP) Journal, 8(4), 14.

Feng, L., Elhadad, N., & Huenerfauth, M. (2009, 30 March – 3 April). Cognitively

motivated features for readability assessment. Paper presented at the Proceedings

of the 12th Conference of the European Chapter of the Association for

Computational Linguistics, Athens.

Ferreira Cordeiro, R. L., Traina Junior, C., Machado Traina, A. J., López, J., Kang, U.,

& Faloutsos, C. (2011, August 21–24). Clustering very large multi-dimensional

datasets with mapreduce. Paper presented at the Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining, San

Diego, USA.

Froud, H., Lachkar, A., & Ouatik, S. A. (2013). Arabic text summarization based on

latent semantic analysis to enhance Arabic documents clustering. IJDKP

International Journal of Data Mining & Knowledge Management Process, 3(1),

79-95.

Geronimo, L. D., Ferrucci, F., Murolo, A., & Sarro, F. (2012, April 17-21). A parallel

genetic algorithm based on hadoop mapreduce for the automatic generation of

junit test suites. Paper presented at the IEEE 5th International Conference on

Software Testing, Verification and Validation, Downtown Montreal, Canada.

Giannakopoulos, G. (2013, August 9). Multi-document multilingual summarization

and evaluation tracks in ACL 2013 multiling workshop. Paper presented at

proceedings of the MultiLing 2013 Workshop on Multilingual Multidocument

Summarization, Sofia, Bulgaria.

Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine

learning. (1st ed). USA: Addison-Wesley Reading Menlo Park.

Goldstein, J., Mittal, V., Carbonell, J., & Kantrowitz, M. (2000). Multi-document

summarization by sentence extraction. Paper presented at the Proceedings of the

2000 NAACL-ANLP Workshop on Automatic summarization, Stroudsburg, USA.

Gong, Y., & Liu, X. (2001, September 09 - 12). Generic text summarization using

relevance measure and latent semantic analysis. paper presented at

the proceedings of the 24th annual international ACM conference on Research and

development in information retrieval. New Orleans, USA.

Grama, A. (2003). Introduction to parallel computing. (2nd ed). USA: Pearson

Education.

77

Gunarathne, T. (2015). Hadoop MapReduce v2 cookbook: Explore the Hadoop

MapReduce v2 ecosystem to gain insights from very large datasets. (2nd ed). USA:

Packt Publishing.

Gunning, R. (1969). The fog index after twenty years. Journal of Business

Communication, 6(2), 3-13.

Hans, N., Mahajan, S., & Omkar, S. (2015). Big Data Clustering Using Genetic

Algorithm On Hadoop Mapreduce. International Journal Of Scientific and

Technology Research, 4(04), 58-62.

He, Q., Zhuang, F., Li, J., & Shi, Z. (2010, October 15-17). Parallel implementation

of classification algorithms based on MapReduce. Paper presented at the 5th

International Conference on Rough Sets and Knowledge Technology, Beijing,

China.

He, Y.-X., Liu, D.-X., Ji, D.-H., Yang, H., & Teng, C. (2006, August 13-16). Msbga:

A multi-document summarization system based on genetic algorithm. Paper

presented at the International Conference on Machine Learning and Cybernetics,

China.

Hewahi, N. M., & Kwaik, K. A. (2012). Automatic Arabic Text Summarization

System AATSS Based on Semantic Features Extraction. International Journal of

Technology Diffusion, 3(2), 12-27.

Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory

analysis with applications to biology, control, and artificial intelligence. USA:

University of Michigan Press.

Jin, C., Vecchiola, C., & Buyya, R. (2008, December 7-12). Mrpga: an extension of

mapreduce for parallelizing genetic algorithms. Paper presented at the IEEE 4th

International Conference on EScience, Indiana, USA.

John, A., & Wilscy, M. (2015, December 3-5). Vertex Cover Algorithm Based Multi-

document Summarization Using Information Content of Sentences. Paper

presented at the International Conference on Information and Communication

Technologies (ICICT), Kochi, India.

Kang, U., & Faloutsos, C. (2013, December). Big graph mining: algorithms and

discoveries. ACM SIGKDD Explorations Newsletter, 14(2), pp. 29-36.

Khoja, S. (2001, June). APT: Arabic part-of-speech tagger. Paper presented at the

Proceedings of the Student Workshop at NAACL.

Kincaid, J. P., Fishburne Jr, R. P., Rogers, R. L., & Chissom, B. S. (1975). Derivation

of new readability formulas (automated readability index, fog count and flesch

reading ease formula) for navy enlisted personnel. Institute for Simulation and

Training, University of Central Florida.

78

Lin, C. (2004, July). Rouge: A package for automatic evaluation of summaries. In Text

summarization branches out: Proceedings of the ACL-04 workshop, Barcelona,

Spain.

Litvak, M., Last, M., & Friedman, M. (2010, July 11-16). A new approach to

improving multilingual summarization using a genetic algorithm. Paper presented

at the Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics, Uppsala, Sweden.

Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of

research and development, 2(2), 159-165.

Mat Daud, N., Hassan, H., & Abdul Aziz, N. (2013). A Corpus-Based Readability

Formula for Estimate of Arabic Texts Reading Difficulty. World Applied Sciences

Journal, 21(2), 168-173.

Mc Laughlin, G. H. (1969). SMOG grading-a new readability formula. Journal of

reading, 12(8), 639-646.

McKeown, K., & Radev, D. R. (1995, July 9-13). Generating summaries of multiple

news articles. Paper presented at the Proceedings of the 18th international ACM

SIGIR conference on Research and development in information retrieval,

Washington, USA.

Meng, X., Bradley, J., Yuvaz, B., Sparks, E., Venkataraman, S., Liu, D., et el. (2016).

Mllib: Machine learning in apache spark. Journal of Machine Learning

Research, 17(34), 1-7.
Miller, B. L., & Goldberg, D. E. (1995). Genetic algorithms, tournament selection, and

the effects of noise. Complex Systems Journal, 9(3), 193-212.

Momtaz, A., & Amreen, S. (2012). Detecting document similarity in large document

collecting using MapReduce and the Hadoop framework. BRAC University.

Munawar, A., Wahib, M., Munetomo, M., & Akama, K. (2008, September 25-27). A

survey: Genetic algorithms and the fast evolving world of parallel computing.

Paper presented at the 10th IEEE International Conference on High Performance

Computing and Communications, Dalian, China.

Nagwani, N. (2015). Summarizing large text collection using topic modeling and

clustering based on MapReduce framework. Journal of Big Data, 2(1), 1-18.

Najeeb, M. M., Abdelkader, A. A., & Al-Zghoul, M. B. (2014). Arabic Natural

Language Processing Laboratory serving Islamic Sciences. International Journal

of Advanced Computer Science and Applications IJACSA, 5(3), 114-117.

Nandhini, K., & Balasundaram, S. R. (2013). Use of genetic algorithm for cohesive

summary extraction to assist reading difficulties. Applied Computational

Intelligence and Soft Computing Journal, 2013(8), 1-11.

79

Nenkova, A. (2006, September 17-21). Summarization evaluation for text and speech:

issues and approaches. Paper presented at the 9th International Conference on

Spoken Language Processing, Pittsburgh, USA.

Oufaida, H., Nouali, O., & Blache, P. (2014). Minimum redundancy and maximum

relevance for single and multi-document Arabic text summarization. Journal of

King Saud University-Computer and Information Sciences, 26(4), 450-461.

Paniagua, C., Flores, H., & Srirama, S. N. (2012, August 26-29). Mobile Sensor Data

Classification for Human Activity Recognition using MapReduce on Cloud. Paper

presented at 10th International Conference on Mobile Web Information Systems,

Paphos, Cyprus.

Poli, R., Langdon, W. B., McPhee, N. F., & Koza, J. R. (2008). A field guide to genetic

programming. UK: Lulu Enterprises.

Qazvinian, V., Hassanabadi, L. S., & Halavati, R. (2008). Summarising text with a

genetic algorithm-based sentence extraction. International Journal of Knowledge

Management Studies, 2(4), 426-444.

Radev, D. R., Jing, H., Styś, M., & Tam, D. (2004). Centroid-based summarization of

multiple documents. Information Processing & Management Journal, 40(6), 919-

938.

Rao, D., & Yarowsky, D. (2009, August 7). Ranking and semi-supervised

classification on large scale graphs using map-reduce. Paper presented at the

Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language

Processing, Suntec, Singapore.

Saha, S. (2014). Parallelization of Genetic Algorithms using MapReduce. European

Journal of Applied Social Sciences Research (EJASSR), 2(1), 20-35.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text

retrieval. Information Processing & Management Journal, 24(5), 513-523.

Shaalan, K. (2014). A survey of arabic named entity recognition and classification.

Computational Linguistics Journal, 40(2), 469-510.

 Shukla, A., Pandey, H. M., & Mehrotra, D. (2015, February 25-27). Comparative

review of selection techniques in genetic algorithm. Paper presented at the

International Conference on Futuristic Trends on Computational Analysis and

Knowledge Management, New Delhi, India.

Sidorov, G., Gelbukh, A., Gómez-Adorno, H., & Pinto, D. (2014). Soft similarity and

soft cosine measure: Similarity of features in vector space model. Computación y

Sistemas Journal, 18(3), 491-504.

Silva, C., & Ribeiro, B. (2003, July 20-24). The importance of stop word removal on

recall values in text categorization. Paper presented at the Proceedings of the

International Joint Conference on Neural Networks, Oregon, Portland.

80

Sivanandam, S., & Deepa, S. (2007). Introduction to genetic algorithms. (2008 Ed).

Springer Science & Business Media.

Sripada, S., Kasturi, V. G., & Parai, G. K. (2005). Multi-document extraction based

Summarization. Final Project. Stanford University.

Stat, I. W. (2015). Arabic Speaking Internet Users and Population Statistics.

Retrieved August 29, 2016, from http://www.internetworldstats.com/stats19.htm

Suanmali, L., Salim, N., & Binwahlan, M. S. (2010). SRL-GSM: A Hybrid Approach

on Semantic Role Labeling and General Statistical Method for Text

Summarization. Journal of Applied Science, 10(3), 166-173.

Thakkar, K. S., Dharaskar, R. V., & Chandak, M. (2010, November 19-21). Graph-

based algorithms for text summarization. Paper presented at the 3rd International

Conference on Emerging Trends in Engineering and Technology, Goa, India.

Todirascu, A., François, T., Gala, N., Fairon, C., Ligozat, A.-L., & Bernhard, D. (2013,

October 15-16). Coherence and cohesion for the assessment of text readability.

Paper presented at the 10th International Workshop on Natural Language

Processing and Cognitive Science, Marseille, France.

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., . .

. Baldeschwieler, E. (2013, October 1-3). Apache Hadoop YARN: yet another

resource negotiator. Paper presented at the Proceedings of the 4th annual

Symposium on Cloud Computing, Santa Clara, California.

Vekaria, K., & Clack, C. (1998). Selective crossover in genetic algorithms: an

empirical study. In Parallel Problem Solving from Nature (pp. 433-444).

Netherlands: Springer-Verlag.

Verma, A., Llora, X., Goldberg, D. E., & Campbell, R. H. (2009, 30 November- 2

December). Scaling genetic algorithms using mapreduce. Paper presented at the

9th International Conference on Intelligent Systems Design and Applications, Pisa,

Italy.

Waheeb, S. A., & Husni, H. (2014). Multi-Document Arabic Summarization Using

Text Clustering to Reduce Redundancy. International Journal of Advances in

Science and Technology (IJAST), 2(1), 194-199.

White, T. (2012). Hadoop: The definitive guide. (3rd ed). USA: O'Reilly Media, Inc.

Whitley, D. (1994). A Genetic algorithm tutorial. Statistics and Computing Journal,

4(2), 65-85.

Whitley, D., Rana, S., & Heckendorn, R. B. (1999). The island model genetic

algorithm: On separability, population size and convergence. Journal of

Computing and Information Technology, 7(1), 33-48.

Wu, G., Li, H., Hu, X., Bi, Y., Zhang, J., & Wu, X. (2009, August 21-22). MReC4. 5:

C4. 5 ensemble classification with MapReduce. Paper presented at the 4th

ChinaGrid Annual Conference, Yangtai, China.

http://www.internetworldstats.com/stats19.htm

81

Zanoli, R., & Pianta, E. (2009, December 12) A multistage PoS-tagger. Paper

presented at 11th Conference of the Italian Association for Artificial Intelligence

EVALITA, Reggio Emilia, Italy.
Zhang, J., Sun, L., & Zhou, Q. (2005, 30 October- 1 November). A cue-based hub-

authority approach for multi-document text summarization. Paper presented at the

Proceedings of International Conference on Natural Language Processing and

Knowledge Engineering, Wuhan, China.

Zhao, W., Ma, H., & He, Q. (2009, December 1-4). Parallel k-means clustering based

on mapreduce. Paper presented at the IEEE 1st International Conference on Cloud

Computing, Beijing, China.

	Declaration
	Abstract
	الملخص
	Dedication
	Acknowledgment
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations
	Chapter 1 Introduction
	1.1 Background and Context
	1.2 Statement of the Problem
	1.3 Objectives
	1.3.1 Main objectives
	1.3.2 Specific Objectives

	1.4 Significance
	1.5 Scope and Limitations
	1.6 Methodology
	Phase 1: Data Gathering
	Phase 2: Data Pre-processing
	Phase 3: Feature Extraction
	Phase 4: Designing the Genetic Algorithm as MapReduce
	Phase 5: Performing Experiments and Evaluating the Results

	1.7 Thesis Organization

	Chapter 2 Theoretical and Technical Foundation
	2.1 Text Summarization
	2.1.1 Summarization Methods
	2.1.2 Summarization Challenges

	2.2 Arabic Natural Language Processing
	2.2.1 Stop Word Removing
	2.2.2 Stemming
	2.2.3 Part of Speech Tagging (POS):
	2.2.4 Text Readability
	2.2.5 Text Cohesion

	2.3 Genetic Algorithm
	2.3.1 Genetic Algorithm Operation
	2.3.1.1 Population Initialization
	2.3.1.2 Evaluation
	2.3.1.3 Selection
	2.3.1.4 Crossover
	2.3.1.5 Mutation
	2.3.1.6 Stopping criteria

	2.3.2 Parallel Genetic Algorithm Approaches

	2.4 MapReduce Model
	2.4.1 MapReduce job workflow

	2.5 Hadoop as MapReduce Realization
	2.5.1 Hadoop Architecture
	2.5.2 HDFS

	2.6 Data Mining for Large Data Sets
	2.7 Summary

	Chapter 3 Related Works
	3.1 Text Summarization Using Genetic Algorithm
	3.2 Text Summarization Using Feature Extraction
	3.3 Text Summarization Using Clustering
	3.4 Text Summarization Using Graph Approach
	3.5 MapReduce in Data Mining
	3.6 Genetic Algorithm over MapReduce
	3.7 Summary

	Chapter 4 Multi Document Summarization System Design
	4.1 Text Pre-processing
	4.1.1 Text Cleaning
	4.1.2 Sentence Tokenization
	4.1.3 Arabic Stop Word Removing
	4.1.4 Arabic Root Stemming
	4.1.5 Arabic Word Normalization
	4.1.6 Remove Diacritics
	4.1.7 Part of Speech Tagging (POS)

	4.2 Feature Extraction
	4.2.1 Sentence Position
	4.2.2 Sentence Length
	4.2.3 Noun Occurrences
	4.2.4 Verb Occurrences
	4.2.5 Readability Measures
	4.2.6 Cohesion Measures
	4.2.7 Term Weighting

	4.3 Designing Genetic Algorithm as MapReduce
	4.3.1 Creating Individuals
	4.3.2 Ranking Individuals
	4.3.3 Iterative Simple Genetic Algorithm
	4.3.4 Evolving Individuals
	4.3.5 Stop Iterative MapReduce

	4.4 Sorting Summary Sentences
	4.5 Summary

	Chapter 5 Implementation and Experiments
	5.1 Data Pre-Processing
	5.1.1 Text Cleaning
	5.1.2 Tokenization
	5.1.3 Term Frequency
	5.1.4 Features Extraction
	5.1.5 Text Shuffling

	5.2 Parallel Genetic Algorithm
	5.2.1 Creating Individuals
	5.2.2 Scoring Individuals
	5.2.3 Evolving Population
	5.2.4 Stopping Genetic Algorithm

	5.3 Experiments
	5.3.1 Tools and Environment Setup
	5.3.1.1 AraNLP Library
	5.3.1.2 Osman Readability Measure
	5.3.1.3 Hadoop Cluster

	5.3.2 Corpus
	5.3.3 Partitioning Individuals
	5.3.4 Parallel Genetic Algorithm

	5.4 Summary

	Chapter 6 Evaluation
	6.1 Summarization Quality
	6.2 Speedup
	6.3 Efficiency
	6.4 Scalability
	6.5 Summary

	Chapter 7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	References

