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Abstract 
 

Automatic Text summarization is one of the most important problems in the area 

of text mining and information retrieval. The importance of automatic text 

summarization comes from its ability to provide the most significant information from 

a large text by reducing the size of textual documents. Multi document summarization 

focus in extracting the most significant information from a collection of textual 

documents. Most summarization techniques require the data to be centralized, which 

may not be feasible in many cases due to computational and storage limitations. The 

huge increasing of data emerging by the progress of technology and the various 

sources of makes automatic text summarization of large scale of data a challenging 

task.  

We propose an approach for automatic text summarization of large scale Arabic 

multiple documents using Genetic algorithm based on open source MapReduce model, 

MapReduce is a powerful parallel programming model. We make our approach 

insuring scalability, speed and accuracy in summary generation and try to eliminating 

redundancy for sentences and increasing the readability and cohesion factors between 

the sentences of summaries. We evaluate the proposed method using several automatic 

summarization quality measures in terms of Recall, Precision, F-measure. In addition 

to that we evaluate the parallel computation environment in terms of speed up, 

efficiency and scalability. 

The experiments resulted in high precision and recall scores. This indicates that 

the system successfully identifies the most important sentences. In addition to that, the 

proposed approach provides up to 10x speedup score, which is faster than executing 

the same code on single machine. Therefore, it can deal with large-scale datasets 

successfully. Finally, the efficiency score of the proposed approach indicates that the 

largest data set utilize the available resources up 62% which is a satisfying result taking 

into account the available data set sizes. 

 

Keywords: Text Summarization, Parallel Genetic Algorithm, MapReduce, Hadoop 

  



II 

 

 الملخص

 

تعتبر عملية التلخيص التلقائي للنصوص من أهم المهام المتعلقة بمجال التنقيب عن البيانات واسترجاع 

المعلومات. تكمن أهمية التلخيص التلقائي للنصوص بأنها قادرة على استخراج أكثر المعلومات أهمية من مجموعة 

لمتعددة فهو يركز على استخراج أهم المعلومات كبيرة من المستندات النصية. أما مجال تلخيص المستندات ا

الموجودة في مجموعة من المستندات النصية المتعددة. أغلب تقنيات تلخيص النصوص تتطلب أن تكون البيانات 

المطلوب تلخيصها موجودة في مكان مركزي واحد، لكن في عدة حالات من الصعب تحقيق هذا الشرط بسبب 

وهذا بسبب التطور الكبير في مجال تكنولوجيا المعلومات والبيانات الكبيرة التي  محدودية التخزين والمعالجة.

عملية التلخيص التلقائي للنصوص المتعددة كبيرة الحجم عملية تحدي  تنتجت من خلال أنشطة البشر. لذلك أصبح

 وذلك بسبب الزيادة المطردة والمتواصلة لأنشطة البشر والمصادر المختلفة للبيانات.

عمل التلخيص التلقائي للنصوص العربية المتعددة وكبيرة الحجم باستخدام الخوارزمية ل طريقةا باقتراح قمن

استخراج الجمل حقق الدقة في ت الطريقة ههذ .عبارة عن نموذج للبرمجة المتوازية وهو MapReduceالجينية و

م إضافة المزيد من البيانات النصية للتوسع في حال ت ابلةفي عملية التلخيص وقالمهمة من النصوص والسرعة 

 دقةباستخدام عدة قياسات مشهورة مثل ال ةالمقترح الطريقةتقييم  تمت عمليةوالموارد اللازمة للعمليات الحسابية. 

(Precision)التذكر ، (Recall)سرعة عملية التلخيص ، (Speedup) كفاءة استخدام الموارد المستخدمة في ،

 .(Scalability) ، قابلية النظام للتعامل مع الزيادة في البيانات النصية والموارد(Efficiency) المعالجة

أن النظام  يشير الىوجود مؤشر جيد بالنسبة للدقة والتذكر، وهذا  الطريقةلقد أظهرت النتائج بعد تطبيق 

ائج المتعلقة بسرعة النت أظهرتقام باستخراج الجمل المهمة من هذا العدد الكبير من النصوص. بالإضافة لذلك 

مرات عند استخدام مجموعة من الأجهزة عنه عند استخدام  10عملية التلخيص أن النظام المقترح كان أسرع 

جهاز واحد. أخيرا تبين بعد عملية التلخيص أن النظام المقترح قام باستغلال الموارد المتاحة بكفاءة تصل الى 

 بعين الاعتبار حجم البيانات المتوفرة.عند الأخذ  ماالى حدا  جيدة% وهي نتيجة 62
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Chapter 1  

Introduction 

1.1 Background and Context 

With the huge increase of digital data due to the intensive human activities, the 

area of text mining and information retrieval become more interesting. The importance 

of automatic text summarization stems from its ability to provide the significant 

information from a large text by reducing the size of textual documents. It can be used 

in many real life applications in many sectors especially in minimizing reading time 

of articles and providing the most important information about some events. Luhn 

(Luhn, 1958) was the first to talk about automatic summarization based on selection 

of significant sentences from a document using term frequency measures. 

In general, automatic text summarization process can be divided by many factors: 

- By its nature: Extraction or Abstraction. 

- By document count: Single Document or Multi-document. 

- By language: Single language or Multi-lingual. 

Extraction based summarization approach is commonly used in most text 

summarization techniques (Aliguliyev, 2009) which extract some parts from a 

document to produce a summary without any modification. While abstraction methods 

use complex language techniques to analyze and reform the document content using 

different words to produce a summary. Single language summarization is used to 

generate a summary from a single document while multilingual summarization makes 

summary from multiple documents from multiple languages (Giannakopoulos, 2013). 

In single document summarization, the information from single document is 

gathered using various ways to get the most important information from the sentences 

of the document (Luhn, 1958), (El-Shishtawy & El-Ghannam, 2012). Multi document 

summarization focuses on extracting the most significant information from a 

collection of textual documents. It deals with many issues related to multi documents; 

like the presence of redundant sentences and decreasing the readability and text 

cohesion factors on the produced summary. 
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It deals with analyzing and understanding a collection of documents for searching 

the silence and important hidden information to compact the text to generate a 

minimized summary to help the user to understand the important parts of information 

in a large document collection without the need to read whole documents. Multi 

document summarization can be used in many fields like news articles, blogs, web 

pages, tweets, books, reports and archives. One of the most early works in the area of 

multi document summarization is carried out by NLP group at Columbia university 

(McKeown & Radev, 1995). They released a system called SUMMONS. 

Recently there have been many models for automatic summarization of multiple 

documents like sentence extraction approaches (Goldstein, Mittal, Carbonell, & 

Kantrowitz, 2000), feature extraction approaches (Aristoteles, Ridha, & Julio, 2012), 

clustering approaches (Waheeb & Husni, 2014), graph based approaches (Erkan & 

Radev, 2004), Genetic algorithm approaches (Nandhini & Balasundaram, 2013). One 

problem with these approaches is that the required time to summarize multiple 

documents is raised incredibly, this makes most the current systems unable to deal 

with the increase of data sizes. 

Genetic algorithm  is a popular method used in summarization (Golberg, 1989), 

(Holland, 1975). In addition to that, Genetic algorithm is based on the principles of 

evolution, heuristic search and natural selection to find optimized and novel solution 

to hard problems. Genetic algorithm selects the best part of the problem to provide the 

best solution using simple logic and basic operations such as initialization, selection, 

crossover, mutation that discussed on details in Section 2.3. Although Genetic 

algorithm is suitable for searching problems (Whitley, 1994) , it suffers from the high 

computation and memory resources that are needed if the size of the individuals of the 

problem solution is increased. 

As mentioned above, the huge increase of data emerging from the progress of 

technology and the various sources makes automatic text summarization of very large 

scale of data a challenging task. In order to deal with this issue, many technologies 

emerge in the area of parallel processing. MapReduce (Dean & Ghemawat, 2008) is 

one of the state of the art models for processing large scale data. The model deals with 

parallel and distributed systems, it provides mechanisms for parallelization, fault-

tolerance, locality optimization, and load balancing. MapReduce uses divide-and-
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conquer principle using two main methods, the first method is Map and is used to 

convert the data into key/value pairs as intermediate values, the second method is 

Reduce and is used to combine the generated intermediate data from Map function to 

produce the results. 

To perform automatic text summarization of multiple Arabic documents for large- 

scale data, Genetic algorithm can be implemented in parallel fashion (Saha, 2014). 

There are many models to implement Genetic algorithm over MapReduce. One of 

them is Simple Genetic Algorithm (SGAs) which is similar to running on a local 

machine. The second is using Island approach (Whitley, Rana, & Heckendorn, 1999), 

where the data is distributed on the machines of the cluster and evaluation is done 

locally and individuals can be migrated between islands in certain time. 

One major difference of multi document summarization to single document 

summarization is the complexity of choosing the best sentences to construct a 

summary in the presence of redundancy. Many researches use similarity measures to 

reduce the redundancy in the summary (Momtaz & Amreen, 2012). 

In this research, we build an approach that combine Genetic algorithm with 

MapReduce model to perform automatic text summarization for Arabic multiple 

documents. MapReduce is used to speed up the summarization process and provide 

the required scalability while maintaining quality of the summarization process.  

1.2 Statement of the Problem 

Automatic text summarization for large-scale Arabic text collected from 

multiple sources and partitioned to several locations represents a serious challenge and 

therefore requires a new approach to perform the summarization process in a 

distributed fashion that preserve the quality of the summarization while maintaining 

computation speedup and scalability. 

The problem is how to use Genetic algorithm to perform Automatic Arabic text 

summarization for large-scale multiple documents over MapReduce parallel model 

that is accurate in terms of resulting summaries, time efficient and computation 

scalable. 
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1.3 Objectives 

1.3.1 Main objectives 

 

To design an approach based on Genetic algorithm for automatic text 

summarization of text with multiple documents and multiple domains while insuring 

scalability, speedup and maintaining accuracy. Arabic large-scale data sets. Genetic 

algorithm evaluates and selects the best sentences that make a summary. MapReduce 

model automatically processes large data in parallel and distributed fashion. The big 

data volumes in applications make automatic text summarization a challenging task.  

1.3.2 Specific Objectives 

 

- Gathering and processing Arabic text corpus collected from many sources from 

the Internet like news, blogs, tweets, books and convert them into readable text 

format for analysis. The corpus size should be from 2 to 4 gigabytes. 

- Extracting important common features from data like sentence length, sentence 

position and many important features. This will affect the mechanism of sentence 

selection for Genetic algorithm. 

- Design and implement Genetic algorithm over MapReduce model to speed up the 

evaluation and selection of sentences to produce a readable and cohesive summary 

with minimum redundancy. 

- Perform a set of summarization experiments on Genetic algorithm MapReduce 

implementation and collect results to be used in the evaluation process. 

- Evaluate the approach based on the collected results for summary quality, speedup, 

efficiency and scalability. 

1.4 Significance 

With the increasing size, dimensionality and distribution of data, the approach 

improves automatic text summarization performance in terms of speedup, scalability 

and quality. The use of Genetic algorithm improves the summarization readability and 

cohesion. Using parallelization techniques such as MapReduce facilities and speed the 

process of summarization and handle large data sets efficiently. The research using 
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Genetic algorithm and MapReduce to enhance Arabic language text summarization 

and facilitates the research in this important area. 

1.5 Scope and Limitations 

1- The research is concerned with performing automatic text summarization for 

multiple Arabic text documents by implementing Genetic algorithm over 

MapReduce model. 

2- The summarization is based on a Genetic algorithm that uses a fitness function 

that finds the group of sentences having the maximum evaluation in terms of 

readability and cohesion with minimum redundancy. 

3- The source data are stored in separate files in text formats. 

4- The text documents used in the experiments are assumed to be already 

categorized to the chosen domains. 

5- Extraction summarization type be the only summarization to be used to make 

summarization the other kind such as abstraction is excluded. 

6- The summarization is concerned with Arabic language only.  

7- No post processing is needed for the produced summaries. 

8- Fixed summary length is used rather than compression ratio from the original 

corpus. 

9- Because the large size of data, three specialists will be manually evaluating a 

random sample from the produced summaries for measuring the summaries 

quality. 

10- We evaluate the quality of the produced summarization through precision, recall 

and f-measure, which are well known and agreed upon measures. 

11- We use 1, 2, 4, 8, 12 and 16 nodes to measure the effects on the speedup, 

efficiency and the scalability of proposed approach. 

1.6 Methodology 

To achieve the research objectives and carry out automatic text summarization 

for large scale Arabic text using Genetic algorithm and MapReduce, the research 

methodology consists of the following phases: 
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Phase 1: Data Gathering 

To make automatic text summarization for large scale data, we need to collect a 

large data corpus as the main input of the system. There are many sources for Arabic 

documents like online news, online books and many other online sources. For this 

purpose, we will collect data from online newspaper websites, the collected data 

should be stored on the storage of MapReduce framework, Hadoop Distributed File 

System (HDFS) in text format. 

Phase 2: Data Pre-processing 

Data pre-processing is an important step to make automatic text summarization. 

It involves preparing the text for future processing. We will carry out many processing 

steps for the input text such as: 

1- Text cleaning 

2- Sentence tokenization 

3- Arabic stop word removing 

4- Arabic root stemming 

5- Arabic word normalization 

6- Remove diacritics 

7- Part of speed tagging (POS) 

Phase 3: Feature Extraction 

The multi document summarizer is based on Genetic algorithm and requires 

ranking every possible solution based on the fitness function. The features are 

collected from the text directly and are considered as the basic measurements of the 

fitness function of every summary, the used features are likely to consist of the 

following features: 

1- Sentence position 

2- Sentence length 

3- Noun occurrences 

4- Verb occurrences 

5- Readability measures 

6- Cohesion measures 

7- Term frequency  
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Phase 4: Designing the Genetic Algorithm as MapReduce 

The proposed approach will be composed of several steps starting with dividing 

the data into separate individuals and evaluating them to select the best individuals for 

evolving using the main Genetic algorithm operators’ crossover. This will insure the 

iterative nature of Genetic algorithm over MapReduce as described in the following 

steps: 

1- Create initial population: The Genetic algorithm has an iterative nature and we will make 

every iteration as MapReduce job, at the first iteration we should create the initial 

population which contains the whole data divided into chromosomes or individuals. Every 

individual has a fixes length of random sentences and considered as a possible summary. 

The fitness of the created individuals is calculated using the aggregation of the features 

selected from all the sentences of each individual. 

2- Iterative Genetic algorithm as MapReduce: Genetic algorithm will be implemented over 

Hadoop MapReduce framework using simple Genetic algorithm which simulates the 

sequential Genetic algorithm. Every Genetic algorithm iteration is encapsulated in a single 

MapReduce job. We should run from 3 to 5 iterations and if there is improvement on the 

fitness of individuals we can start new iterations. 

3- Evolving Genetic algorithm: we can evolve the fitness of Genetic algorithm individuals 

through the selection and crossover operations. At the end of each iteration we will find 

the best individual and store them for the next iteration and so on, and store back the fail 

individuals to have another chance. 

4- Sorting Individual Sentences: after termination the Genetic algorithm, we get the 

individual with maximum fitness and sort its sentences using appropriate sorting 

mechanism. We can use the chronological ordering, which sort the sentences based on the 

sentence date. 

Phase 5: Performing Experiments and Evaluating the Results 

 At the final phase, we will evaluate the approach for quality of generated 

summaries measures such as precession, recall and F-measure. In addition to that, the 

performance of the parallel computing environment will be evaluated in terms of speed 

up, efficiency and scalability. 
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1.7 Thesis Organization 

The thesis is organized as follows: Chapter 2 discusses theoretical and technical 

foundations with topics related to the research area. Chapter 3 states the works related 

to the research. Chapter 4 presents the design of the parallel summarization approach 

using Genetic algorithm. Chapter 5 presents the implementation of the approach and 

the experiments. Chapter 6 presents the evaluation of the proposed approach. Finally, 

Chapter 7 presents the conclusion and future work. 

  



9 

 

Chapter 2  

Theoretical and Technical Foundation 

To perform the automatic text summarization of large-scale text multiple Arabic 

documents using Genetic algorithm and MapReduce, we should provide some basic 

concepts and many techniques. 

2.1 Text Summarization 

In general, text summarization is the process of providing short information and 

reduced version of online text resources such as newspapers, books and human 

activities, which contain important overview of the current events. Summarizing the 

text can help in understanding a large text containing many important events in a short 

time without the need to read the entire text. 

There are two forms of text summarization based on the summarization nature, 

abstraction and extraction. Abstraction summarization use computer program for in-

depth understand and analyze the text and provide new description which may contains 

new words which do not exist in the original text. While extraction type of text 

summarization, analyze the text and extract the main important and readable parts from 

the original text to construct a summary with the main concepts. 

2.1.1 Summarization Methods 

There are many methods for automatic text summarization. The first method is 

proposed by (Luhn, 1958), which depends on the selection of significant sentences 

from a document using term frequency measures. Another important method is using 

text-clustering method to group related terms into groups, and rank them based on 

various features. Many researches use graph methods to make text. The summary is a 

subgraph of the main graph containing less redundancy and high weighted sentences. 

Often, text summarization methods depend on analyzing text and extracting some 

important features from it, which present the main important information. These 

features can include similarity with title, term scoring, sentence position and sentence 

length. A popular method uses Genetic algorithm as global search mechanism to 

improve the selection criteria of the sentences of summary. Genetic algorithm is 
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presented in more details in Section 2.3 and using Genetic algorithm in text 

summarization is presented in Section 3.1. 

2.1.2 Summarization Challenges 

The huge increase of online human activates have produced large amount of 

data. Traditional single and multiple text summarization methods are designed to 

process small amounts of data, therefore using single machine can be appropriate. 

Nevertheless, when talking about large-scale data it cannot deal with it efficiently 

because of the long processing time and large storage needed to make summarization. 

Arabic language has a complicated structure and hard morphological analysis, 

therefore making automatic text summarization for Arabic text is a hard task. In 

Chapter 3 we present various approaches to text summarization which varies 

depending on extraction methods, the kind of summarization, the amount of data and 

the applicability of parallelization. 

2.2 Arabic Natural Language Processing 

Natural Language Processing (NLP) is a part of artificial intelligence that 

involved in developing techniques, theories and software for analysing, understanding 

and interpreting the natural languages of human (Chowdhury, 2003). 

Arabic language is one of the most spoken languages in the world especially in 

Arab world and some countries in Africa speak it natively. Therefore, as natural 

language, Arabic has many important features which make it highly structured and 

derivational language. Arabic content and online users increase rapidly due to the high 

availability of online resources that provide Arabic content like Wikipedia, news 

agencies and knowledge provide. Many studies emphasize that Arabic becomes a 

popular and online Arabic reached more than 375 million speakers (Stat, 2015).  

Although, the Arabic content does not exceed 5.2% of the international content 

(Stat, 2015), it is increased rapidly and this percentage is due to the improve in the near 

future. This presence of the Arabic content need suitable approaches for analysis, 

understanding and interpreting Arabic content using modern NLP techniques. 

Intensive research in the area of NLP for English language has been done and 

there is a need for improving NLP techniques for Arabic Language. The concept 
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Arabic Natural Language Processing ANLP is concerned with developing theories, 

tools and techniques for analysing and understanding Arabic language. Many of ANLP 

component may defer from its English equivalent because Arabic has a complex 

linguistic structure (Farghaly & Shaalan, 2009a). 

In general there are two types of Arabic language (Najeeb, Abdelkader, & Al-

Zghoul, 2014) , the first is Classical Arabic (CA) or Qur’anic Arabic. The ancient Arab 

used classical Arabic widely and it is highly complex, accurate, imaginative and 

sophisticated. On the other hand, Modern Classical Arabic (MSA) is the global spoken 

language in all areas of Arabic usage, like online web sites, television programs and 

newspaper. Arabic language is consisting of 28 letter and written from right to left and 

unlike English it uses the Verb-Subject-Object style in writing sentences. Arabic letters 

do not have capitalization and some letters have several forming writing based on its 

position in the word. 

ANLP have various components that can be applied to Arabic text, like, 

Stemmer, Stop Word Removal, Named Entity Recognition, Speech Recognition, Part 

of Speech Tagging, Machine Translation, Word Sense Disambiguation, 

Morphological Analysis, Question Answering, Text Generation and many other 

components. In our research, we will list some of the techniques we use in Text 

Summarization. 

2.2.1 Stop Word Removing 

We can define stop word removal task as removing some words from text before 

applying NLP. This can be carried out by using manual constructed list. It is a language 

dependent task because every language has its own word list. By default stop words is 

commonly used in any language and it is very important, however, it presents a 

problem in text processing field (Silva & Ribeiro, 2003). We must remove these words 

because they have no impact to make text important and make text non-informative.  

For Arabic many researches propose a list of words to be removed from text, 

some of them have built a list of 1000 Arabic words manually (Al-Shalabi, Kanaan, 

Jaam, Hasnah, & Hilat, 2004). 
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2.2.2 Stemming 

Stemming methods are used to remove some letters from a word and return the 

word into its roots. As described in Table (2.1), it deals with three types of affixes; the 

first is prefix and it is placed before the stem of the word like un-use. The second is 

infix, which exists between the stem letters. The third is suffix and it added at the end 

of the stem like playing.  

Table (2.1): Arabic Word Parts Example. 

Word Prefix Infix Suffix stem 

ا ت، ي يتعامل ن، و   عمل 

 

There are two main methods for stemming. The first is root stemming which 

removes the three types of affix: Prefix, Infix and Suffix to return the word into its root 

form as shown in Table (2.2). The root stemmer may change the structure of a word 

and can make some issues for text processing because many words with different 

meanings may belong to the same word stem.  

Table (2.2): Root Stemmer Example. 

 

 عمل

 عملوا

 يعملون

 عاملون

 

The second is light stemming, which is an improved approach of root stemming, 

therefore, it only removes the prefix and the suffix from the word and the infix remains. 

Many researches prefer light stemming (Al-Maimani, Naamany, & Bakar, 2011). On 

the other hand, light stemming may affect the semantic similarity between sentences 

because similarity is based on typical word matching. 

2.2.3 Part of Speech Tagging (POS): 

Natural language usually consists of group of words and every word builds the 

structure of a sentence or paragraph and belongs grammatically to a category of 

speech. POS is the process of marking every word of a text to a group of language 

such as noun, verb, and adjective as shown in Table (2.3).  
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In general, there are two main categories of POS; the first is rule-based and 

stochastic taggers. One of the early POS was developed by (Brill, 1992) from English 

and (Zanoli & Pianta, 2009) for Italian language using rule-based method that 

automatically learns rules. For Arabic, khoja (Khoja, 2001), (Mohamed & Kübler, 

2011) proposes a POS for Arabic text using predefined tag sets consisting of three 

main sets and this enables to  derive more than 35 sub tags. POS is a complex task for 

Arabic language because Arabic have a complex morphological structure. Therefore, 

before tagging a word, many processing of the text must be done such as normalization 

and stemming.  

Table (2.3): Part Of Speech Example. 

POS DT NN VB NNS JJ 

Description Determiner Singular 

noun 

Verb, base 

form 

Plural noun Adjective 

Word The worker fix vehicles lonely 

2.2.4 Text Readability 

There are many important features to make text summarization popular, 

summary text must be readable easily. Readability means how the text can be easily 

understandable by more people. There are many formulas for computing the difficulty 

of English text like Gunning Fog Index FOG (Gunning, 1969), SMOG (Mc Laughlin, 

1969), Flesch–Kincaid (Kincaid, Fishburne Jr, Rogers, & Chissom, 1975). Theses 

readability measures use some properties gathered from text like, average sentence 

length, average word length and average number of syllables in text.  

For Arabic language, few work is done for estimating readability of text. One of 

the early works for Arabic language readability measures is by (Al-Dawsari, 2004). 

They use formula with five readability features, which include average word length, 

average sentence length, word frequency, percentage of nominal clauses and 

percentage of definite nouns. Another approach is proposed by (Mat Daud, Hassan, & 

Abdul Aziz, 2013) and uses a corpus of Arabic words, every word is assigned with a 

rank. For computing the readability using the formula: Readability= (summation of 

sentence words rank)/number of sentence words.  
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A state of the art approach, proposed by (El-Haj & Rayson, 2016) calculates the 

Arabic text readability with and without diacritics. It is considered as a modified 

version of the famous measure like Flesch and Fog metrics. The method is used to 

count the short, long and stress syllables in Arabic, which is required for measuring 

how easy is the Arabic text. By analyzing a large Arabic text corpus, they found the 

average word length to be five words and the average syllables count is four. This 

result is used in the equation of readability score of Arabic text. The method assigns 

higher score to the sentences containing word with small syllables and with simple 

words to this make it easy and readable sentences. We use readability measures in 

assign weight to the sentences for improve sentence selection in Section 4.2. 

2.2.5 Text Cohesion 

Another important measure of text quality is text cohesion. It helps readers to 

make sense of what they read and what writers want to convey. It is grammatically or 

lexically linking text sentences. It makes the information in the text organized and 

connected well and share related information. In general, lexical text cohesion is 

achieved by many metrics (Todirascu et al., 2013) generated from the text like average 

similarity, which use similarity measures like cosine similarity to find the similarity 

between sentences. Another important metric is word overlap, which measures the 

number of common words in two consecutive sentences. The cosine similarity of two 

sentences in our proposed approach is described in details in Section 4.2.6. 

2.3 Genetic Algorithm 

Genetic algorithm is heuristic search method which has an iterative nature and 

is created based on the principles derived from the Darwinian theory that simulate the 

evolutionary rules and natural selection (Golberg, 1989). In general, Genetic algorithm 

uses the fitness function that makes the solution individuals evolve independently 

based on the survival of the fittest concept. Genetic algorithm uses the principle of 

divide and conquer for eliminating the search space and deals with every individual 

separately. This require dividing a big problem into smaller and potential solutions 

especially for large computational issues. Genetic algorithm can evolve the proposed 

solutions using some genetic operations and randomly changes some features from the 

population based on the strength of each solution. 
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Figure (2.1): Genetic Algorithm Architecture. 

Usually, the search space of a large problem is divided into smaller units that 

can easily be processed individually to decrease the needed computation and the 

required memory and storage. The abstract model for Genetic algorithm is shown in 

Figure (2.1). 

2.3.1 Genetic Algorithm Operation 

Genetic algorithm operation used to guide an algorithm through many 

procedures to find the best solution from a collection of potential solutions. The 

operations of Genetic algorithm as shown in Figure (2.1) are described in details as the 

following:  

2.3.1.1 Population Initialization 

This step is used to define the search space of the problem by dividing the 

solution space into single elements called individual or genome or chromosome. Every 

individual can be considered a possible solution. There are many representations of 

the individual like binary representation where the search individuals are represented 

by an array of zero or one. This method is not preferred for large amount of data 

because it needs large commutation and memory resources. Another approach is using 

value representation, where every position in the individual is using a single value. 
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2.3.1.2 Evaluation 

After create the search space, we need to evaluate every individual to know its 

fitness or strength. This step is done by using the fitness function f(x) by assigning a 

value that represents the importance or fitness of every individual to select the best 

individuals to evolving and mating. 

2.3.1.3 Selection 

The process of selecting the best chromosomes to evolve by the next operations 

crossover and mutating for generating new offspring. The selection is a crucial step 

according to Darwinian Theory (it says that good parents produce a good generation). 

There are many approaches for selection. The first method is Roulette Wheel Selection 

or fitness proportionate selection (Bäck, 1996). It uses a probability factor to determine 

the probability of an individual for selecting next level by using the equation to 

compute the Pi  (probability of individual i) 𝑃𝑖 =
𝑓𝑖

∑ 𝑓𝑗𝑁
𝑗=1

 where fi is the fitness of 

individual i and N is number of individuals in the population.  

This method increases the probability of strong chromosomes be evolved and 

can exclude the weak chromosomes from the evolving process. Many researches claim 

it is not fair method for selection. The second method is Tournament selection (Miller 

& Goldberg, 1995); it is used to run many tournaments between few selected 

individuals from the population. The winner individuals among all tournaments is 

selected to the next level. We can control the compression by adjusting the size of 

every tournament. 

The third method is Rank Selection (Sivanandam & Deepa, 2007), where a rank 

is assigned to every individual after sorting from the worst to the best. The worst is 

ranked as 1, the second is ranked as 2, the best is ranked as N  rank (where N the 

number of individuals. This method enables the weak individual to enhance itself and 

produce an improved offspring.  

The last method is Elitism (Shukla, Pandey & Mehrotra, 2015) method, it is 

based on the fact when evolving the population by crossover or mutating; we may have 

a chance to lose the good chromosomes and may produce a weak offspring. This 

method copies the whole content of the best individuals to the next generation after 
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sorting them in descending order. Then we can use a classical method to complete the 

selection process. 

2.3.1.4 Crossover 

The Darwinian Theory is based on genes as basic units of evolution. The 

crossover operation is used to let any two chromosomes to be parents and produce new 

children. A child holds some of the characteristics of the original parents (Vekaria & 

Clack, 1998). The crossover operation takes two chromosomes as parents and 

reproduce new chromosomes as children of the reproduction process. There are many 

forms of crossover, one of the famous forms is single point crossover where a random 

point is selected for two parents and swap the rest of parents’ data after the point as 

shown in Table (2.4).  

Table (2.4): One point crossover example. 

Parents, point = 3 New Offspring 

A B C  D E F G H K L M D E F G H  

K L M  N O P Q R A B C N O P Q R 

 

The second type is two-point crossover, where two points in the parents are 

placed on every parent at the same point and the data between the two points are 

swapped to produce a new pair of chromosomes as shown in Table (2.5). 

Table (2.5): Two point crossover 

Parents, points  3,6 New Offspring 

A B C D E F G H A B C N O P G H 

K L M N O P Q R K L M D E F Q R 

 

The third type is uniform crossover where the swap is placed on the gene level 

rather than partition level like single and two-point crossover. The uniform crossover 

is done by selecting random genes from one parent and swap them with their 

corresponding genes on the other parent and so on.  

Uniform crossover use the mixing ratio, which is the ratio of the gene that must 

be transfer from one parent to the other. As example, if we use 0.4 as ratio that mean 
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40% of one parent are swapped with 40% from the second parent as shown in Table 

(2.6). 

Table (2.6): Uniform crossover. 

Ratio 40% New Offspring 

A B  C D E F G H K L A B O P E F S H K U 

M N O P Q R S T V U M N C D Q R G T V L 

2.3.1.5 Mutation 

Rather than swapping genes between two parents like crossover, mutation 

changes one or more gene values in a chromosome to arbitrary value(s).  The mutation 

is one of the evolution methods of Genetic algorithm that uses probability of mutation 

factor to control the chromosome form and can change it entirely to a new form. If we 

use very small probability of mutation, the new offspring will be very similar to their 

parents and this cause to slow or stop the evolution. If we use large probability of 

mutation, the generated chromosomes will have new characteristics, which differ from 

their parents and can affect the fitness of the chromosome. An example of mutation 

and mutation probability factor shown in Table (2.7) 

Table (2.7): Probability of mutation example. 

Pm 30% New Offspring 

A B  C D E F G H K L A B O D E F S H K U 

2.3.1.6 Stopping criteria 

Due to the iterative nature of Genetic algorithm, it needs a mechanism for 

stopping the evolution process. In general, there are no standard techniques for 

stopping the iterative process. There are two appropriate stopping criteria; the first is 

time based stopping criteria (Poli, Langdon, McPhee, & Koza, 2008), where the 

Genetic algorithm stops after a fixed number of iteration or specified period regardless 

the result of evolution produced acceptable fitness. The second is based on the overall 

fitness of individuals (Bhandari, Murthy, & Pal, 2012). It is used when the average 

fitness does not have significant improvement after a number of generations. 

Although Genetic algorithm makes revolution in optimization algorithms, it 

suffers from some potential problems. Genetic algorithm uses evolution of individuals 
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but there is no guarantee to find the optimum solution. Another serious issue is the 

heavy computation needed for optimization problems making Genetic algorithm 

unsuitable for large-scale data sets. However, the nature makes Genetic algorithm it 

easily implementable in a parallel fashion. 

2.3.2 Parallel Genetic Algorithm Approaches 

The popularity of Genetic algorithm led researchers to develop an adaptive 

version for use in parallel environments. The main obstacle in Genetic algorithm is its 

heavy computation for computing and evaluating the fitness function of individuals. 

Therefore, we can use parallel systems to spread the time consuming process to several 

machines. Parallel environments use divide and conquer to divide the tasks over 

machines that are connected to a network using simple logic. 

In general, there are two famous approaches for parallel Genetic algorithm. The 

first is fine-grain parallel Genetic algorithm. It is like sequential Genetic algorithm 

where the whole individuals are divided to all machines to make evaluation of every 

chromosome and the results are returned to the master machine.  The second type is 

coarse-grain Genetic algorithm; every machine has its own population and implements 

Genetic algorithm operation lonely. This method is also called distributed or island 

approach, where every machine act as island and individuals can be migrated between 

these islands (Munawar, Wahib, Munetomo, & Akama, 2008).  

Proposed researches focused on using MapReduce (Dean & Ghemawat, 2008) 

for parallel Genetic algorithm to solve such types of problems for large-scale data sets. 

Fine-grain Genetic algorithm uses a separate MapReduce job for every iteration. Every 

node is responsible for making basic Genetic algorithm operations and evaluation to 

store the best individuals to global file on distributed file system such as HDFS as 

explained in Section 2.5. This will divide the overhead of evaluation computation a 

cross the cluster nodes. 

2.4 MapReduce Model 

MapReduce (Dean & Ghemawat, 2008) is a programming model created by 

Google foundation in 2004. It is used for processing large-scale data using a cluster of 

commodity hardware. The paradigm uses the principle of divide and conquer to 

process the data in parallel fashion using two main methods, Map and Reduce. Map 
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method process the primary data record and produce key/values. Reduce method is 

used, then, to make user defined operations to the values that share the same key. 

Although there are many approaches for processing large-scale data like Apache 

Spark (Meng, et el., 2013), the popularity of MapReduce is gained because of its 

simplicity and abstraction. It can deal with structured or unstructured data and allow 

programmers to write their own code using many programming APIs. In addition to 

that, MapReduce provides high scalability, high fault tolerance, high availability and 

efficient load balancing mechanism. 

 

Figure (2.2): MapReduce execution overview (Dean & Ghemawat, 2008). 

MapReduce run programs automatically a parallelized fashion and run on a large 

commodity cluster of machines. The system handles all the details of partitioning the 

data and scheduling the execution of the use program between the machines. 

Therefore, enabling programmers to focus on the program logic and let the details of 

parallelization of the system and decrease the lines of code. MapReduce model has 

many features such as: 

1- Scalability 

2- Availability 

3- More Flexibility 

4- Fault Tolerance 

5- Rack awareness  

6- Simple programming model 
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2.4.1 MapReduce job workflow 

As shown in Figure (2.2), MapReduce executes a job as follow: 

- Divide the data file into small chuck and send them to Map task on every 

machine on the cluster. 

- The Map process the data, generate intermediate key to every record, and send 

them to the main thread.  

- Intermediate key/value records sorted by key. Moreover, send the values that 

have the same key to the same reducer. 

- The reducer applied to the key/value records and do the required operations. 

Finally, after reduce complete on all machines the control returns back the main 

program to end execution and save results on HDFS.  

2.5 Hadoop as MapReduce Realization 

Hadoop (White, 2012) is an open source realization of MapReduce. Written in 

Java and incorporate open source distributed storage, such as Hadoop Distributed File 

System (HDFS). 

2.5.1 Hadoop Architecture 

Based on the model of MapReduce, Hadoop has the following parts: 

- Masternode: is the manager of all Hadoop services and nodes. It is control the 

execution of user jobs and responsible for make the communication between the 

workers in the cluster.  

- Slavenode: is responsible for serving the commands from the master node by 

making read and write commands from the file system’s clients along with perform 

block creation, deletion, and replication upon instruction from the Master. 

- Namenode:  is the part of Hadoop that manage and coordinate the files metadata 

like files directories and folders structure. Moreover, Namenode server make a log 

for every operations and transactions of stored file. In addition, it is make 

commands for creation of file chuck replications if a server goes failure. Namenode 

server is a crucial part of Hadoop; therefore, there is only one Namenode server. 

- Datanode: is the physical store of Hadoop files block. The Datanode stores the 

entire file and if the file size larger than the default 128 Mb, its partition the file 
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into smaller parts and replicate it on the other machines in the cluster. Add that it 

is notify the Namenode to any change on files or folders to store its metadata. 

- Job Tracker: is the interface of job execution between users and the MapReduce 

model. When a user starts a MapReduce job, Jobtracker place it in a queue of 

pending jobs and executes them on a first-in/first-out basis and then manages the 

assignment of map and reduce tasks to the task trackers. 

- Task Tracker: is a slave to the Job Tracker, it manages to run the tasks received 

from the Job Tracker and make reports on job execution to Job Tracker. 

- YARN (Yet another Resource Negotiator): is the next generation of Hadoop's 

compute platform (Vavilapalli et al., 2013). It is managing all the resources of 

Hadoop. It communicates with the client, tracks resources on the cluster, and 

orchestrates work by assigning tasks to Node Managers, which allows a new 

concept for big data analytic applications such as interactive SQL, real-time 

streaming.   

2.5.2 HDFS  

 

Hadoop Distributed File System (HDFS) is a distributed file system designed to 

store and access large scale and store structures or unstructured data (Borthakur, 2008) 

and use commodity hardware run its services. HDFS use the hosted operating system 

file system to storing large data by partitioning it to small chucks as block. By default, 

the block size is 128Mb and this make it deal better with large file than small file 

(Gunarathne, 2015). As shown in Figure (2.3), every block replicated on all other 

cluster machines to ensure reliability and fault tolerance, therefore the high availability 

if any machine goes down. 

Like the Master/Slave architecture, HDFS consists of two main components as 

shown in Section 2.5.1 Hadoop Architecture). The first is Namenode server and 

Datanode server. The Namenode responsible for storing the Meta data of the structure 

of distributed file system. Wherefore, only one Namenode server for single cluster and 

no physical data blocks stored on Namenode server. On the other side, Datanode is 

responsible for creating, deleting, and replication of large files using the operating 

system file system. Datanode also receive instruction from Namenode server to serve 

uses requests. 
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Figure (2.3): HDFS Architecture (Gunarathne, 2015). 

In general, HDFS use the normal hierarchical structure for creating files and 

directories like traditional file systems using traditional Linux file commands for 

managing files, which make it easy to use.  

2.6 Data Mining for Large Data Sets 

As mentioned, MapReduce gets its popularity in solving problems for large-

scale data using simple logic and commodity hardware. Data mining is an important 

field in information science, however the growth of information due to internet era 

make mining large data set a challenging task. This require using new approaches for 

processing such data using different logic. Many researches turn to use MapReduce 

model due to its simplicity and robustness. 

Data mining usually deals with heterogeneous or unstructured data to extract 

useful knowledge from massive datasets. This fact makes MapReduce a suitable 

solution for large-scale data mining applications. MapReduce facilitates the way for 

reading, processing and storing data which make MapReduce have the required 

flexibility for many data mining tasks. Many researches use MapReduce for solving 

data mining problems. (Zhao, Ma, & He, 2009) use MapReduce to implement a fast 

clustering algorithm K-mean and resulting in high speed up and to scalable result. 

Another approach proposed by (Kang & Faloutsos, 2013) for mining social media 
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networks using graph algorithm which is difficult to be implemented by a single 

machine. 

2.7 Summary 

In this Chapter, we provide an overview of the technical and theoretical 

foundations related to the research problem. We introduce text summarization and its 

related issues for Arabic language. In addition to that, we introduce important notions 

in the area of Arabic natural language processing and some useful tasks for making 

summarisation of Arabic text. Genetic algorithm and its operations are also described 

and the need of Genetic algorithm for intensive computation for large-scale data. 

Finally, we introduce the MapReduce model and its realization, Hadoop, with 

important features for simplifying complex computations. 
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Chapter 3  

Related Works 

Many research for automatic text summarization focus on transforming large 

text documents into small summary. For English language, there are numerous amount 

of text summarization research for multi document as well as single documents. 

However, little effort is exerted for Arabic language text summarization in general. 

The main reason is that the Arabic language has a rich morphology and is highly 

derivational and the lack of tool for making NLP for Arabic language. 

We review a number of works in text summarization for Arabic and English 

language. First we present works that employ Genetic algorithm in text summarization 

using different approaches. In addition to that, many methods use clustering and graph 

based approaches for making summarization of text. Finally, we present many works 

use MapReduce model for solving common data mining tasks.  

3.1 Text Summarization Using Genetic Algorithm 

One of the earlier models that integrate summarization and Genetic algorithm is 

proposed by (Y.-X. He, Liu, Ji, Yang, & Teng, 2006). They propose a model for 

multiple documents summarization using Genetic algorithm for Chinese concept 

lexicon and corpus, the objective of their proposed work is to maximize the coverage 

of topics and minimize the redundancy of contents. They use semantic analysis and 

statistical techniques for improving the Cross-document Structure Theory (CST) by 

representing the documents and elements and their relationships as a network and 

improving the quality of the result by applying Genetic algorithm. 

In (Qazvinian, Hassanabadi, & Halavati, 2008), a model is proposed for making 

automatic text summarization that is based on a fitness function that evaluate and 

produces summary based on three factors: Readability factor, Cohesion factor, and 

Topic-Relation factor. The important sentence is extracted using weighted features and 

using some coefficients to let the user control factor to select his favourite feature but 

their method need to improve the cohesion of their extracted summaries using various 

techniques. 

Another utilization of automatic text summarization is to help people having 

problems like reading difficulties (Nandhini & Balasundaram, 2013). The objective is 
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to generate single document summary that makes a balance between F-measure, 

readability, and cohesion using Genetic algorithm. To find the best combination of 

sentences, they use important weighted features to make summary with high 

informative score and good cohesion. Their method provides good results but suffers 

from high computation when the summarizing large documents. 

Many approaches for text summarization is language independent, which are 

based on statistical methods that are based on features extracted from a text. In (Litvak, 

Last, & Friedman, 2010) an approach is used for making single document text 

summarization based on a linear combination for a list of features. They use a trainable 

Genetic algorithm to select the best sentences to make summary of a document. They 

use the summarization evaluation ROUGE (Lin, 2005) recall as the fitness function to 

weight the sentences of the summary. Their method does not use similarity methods 

to handle the redundancy and is inefficient for large text documents. 

Genetic algorithm is also used for multi document summarization. (Bossard & 

Rodrigues, 2010) propose a method for multi document summarization using Genetic 

algorithm that is based on clustering methods. The centre of the cluster is created based 

on the highest ranked terms based on term frequency method TF-IDF. Sentences are 

evaluated based on their similarity to the cluster centre. Sentence redundancy is 

detected at early stage at sentence selection step. Their system does not use linguistics 

methods for sentence selection that can improve the quality of summaries. In addition, 

the approach cannot deal with large documents due to Genetic algorithm high 

computation. 

3.2 Text Summarization Using Feature Extraction 

In the field of automatic text summarization, extracting sentences from text using 

features is a common method. It is based on the importance of text parts like sentences, 

word and phrases using some statistical methods. These methods are dealing with 

assigning a score for every extracted unit and ranking the overall system by 

aggregating all of these features. There are many types of feature extraction methods. 

One of the first methods is significant sentences matures (Luhn, 1958) which score 

sentences based on important words. Another important method is sentence position 

(Baxendale, 1958), they depend on a study that found 80% of the important part of a 
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paragraph is the first sentence. Another approach proposed by (Harold P Edmundson, 

1969) shows that the automatic summarization of text can be done by extracting text 

components with high frequency content like important  words (cue words), title and 

heading words and positions of  sentences. In our approach, we use some of these 

features in the Genetic algorithm evaluation mechanism like sentence position and 

sentence length. 

Due to the complexity and lack of sophisticated tools, Arabic language, little 

automatic text summarization researches are carried out. Using feature-extracting 

approach. (Hewahi & Kwaik, 2012) propose a model for making text summarization 

for single Arabic text documents using features list extracted from the Arabic text. 

Their system uses linear combination of features for ranking sentences and selecting 

the top rank as selected summary. Semantic similarity is used to measure the similarity 

between sentences and sentences with title. Moreover, they use some important 

features like named entity and place to improve the summary.  

These features may show that a sentence has important information and will give 

better results. They compare their system with Sakhr Arabic online summarization 

system and show that their system overcome it. This system is not sufficient for 

processing large amount of data and it does not use modern NLP tools to identify the 

important sentences.  

3.3 Text Summarization Using Clustering 

Using fast statistical computation, a model proposed by (Goldstein et al., 2000) 

is based on Maximal Marginal Relevance (MMR). They use this method to summarize 

multi document based on input keyword (user query) by computing the similarity using 

cosine similarity between the input query and the input text and partially generated 

summary and the current chosen sentence. The MMR gives a weight to the sentence 

based on relevance and redundancy with the selected sentences in the summary. Their 

model gives good results but it does not involve any linguistic techniques and cannot 

deal with large amount of data. 

MEAD model (Radev, Jing, Styś, & Tam, 2004) is multi document text 

summarization that is based on clustering the sentences of group of documents based 

on a shared event by choosing a centroid of each cluster and relate a sentence to the 
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closest centroid by ranking. The centroid is consisting of group of words that exist in 

all documents in a cluster. They use weighted features like centroid value, positional 

value, and first-sentence overlap to select which sentence is included in the summary. 

To detect redundancy of sentences, a negative value is added to the score of a sentence 

that overlap with a sentence that has a higher score. Although MEAD system is a 

sophisticated summarization approach, it ignores many important features such as 

readability and does not designed to use with large data. 

A state of the art model proposed by (Nagwani, 2015) makes summarization of 

large scale single text documents using MapReduce model. It is based on semantic 

clustering topic modelling using Latent Dirichlet Allocation (LDA). They use 

clustering to group the similar documents using k-mean clustering algorithm then 

apply LDA to extract the topic related to each document in the cluster. They use 

MapReduce to achieve scalability and speed up the processing time. To evaluate their 

model, they use ROUGE-1 (Lin, 2004) and pyramid scores. They achieve good 

scalability due to their results and they successfully make their system scale to make 

summarization to handle these types of text documents. Nevertheless, summarization 

of single document is not complicated like multiple documents. Consequently, the 

approach we proposed will use many methods to make multiple document 

summarizations for large-scale text documents. 

Another approach of multiple Arabic documents summarization is proposed by 

(El-Ghannam & El-Shishtawy, 2014). It ranks document sentences based on key 

phrases. They build a cluster of key phrases from the documents, rank these key 

phrases, and give a score to every key phrase. They evaluate every sentence in the 

cluster of document sentences based on the score of key phrases that exist in that 

sentence to choose one sentence that represents an important topic. Their work 

emphasize that key phrases can improve the summarization. 

There are several work to make summarization for Arabic documents. (Waheeb 

& Husni, 2014) propose an approach to makes automatic summarization of Arabic 

multiple documents using clustering approaches. They use k-mean clustering 

algorithm to cluster the sentences of pre-classified Arabic documents. They focus on 

increasing the quality of produced summaries by eliminating the redundant 

information and noisy data by using similarity measures and language processing 
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tools. They use recall and precision metrics to evaluate the clustering performance and 

this leads to high weight sentences, which improve the recall and precision. The result 

of their approach support our ideas to make text summarization for large-scale 

documents based on weight of sentences. 

A model proposed by (Froud, Lachkar, & Ouatik, 2013) depends on Latent 

Semantic Analysis to make text summarization for single Arabic document. Their 

method solves the problem of noisy data to make term clustering more accurate. Rather 

than clustering the sentences of the document, they cluster the important terms. They 

extract the important sentences based on the relative weighted important terms. They 

do not use semantic similarity measures to improve the clustering of documents 

therefore affecting the selection mechanism of related sentences. However, they do not 

deal with multi document that make summarization a hard task due to diversity of 

topic. 

Several text summarization approaches focus on using scoring sentences that are 

based on common features. Shortcoming of this is that many features do not have the 

large impact on the overall score. A modern method for Arabic language proposed by 

(Oufaida, Nouali, & Blache, 2014) make single and multiple summaries for Arabic 

text using Minimum Redundancy Maximum Relevance (mRMR). It is used to get the 

features that select a group of features that represent the whole list of features. 

Hierarchical clustering method used to group the sentences into related clusters. This 

step is important before scoring sentences using mRMR. To detect redundancy, they 

add a score to every sentence that detect if a sentence share information with other 

sentences to decrease the ranking. Based on their results, their system use minimum 

language analysis methods lead to enough speed but the overall result gives low 

ROUGE (Lin, 2005) scores especially in multi document summarization.  

3.4 Text Summarization Using Graph Approach  

Graph approach is gaining more popularity for making automatic text 

summarization due to its simplicity and speed. It is constructed from a directed graph 

containing vertices and edges G = (V , E). In the area of text summarization, we can 

represent a document as a graph by transforming sentences into vertices or nodes and 

the relationship between them as edges. 
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A model proposed by (John & Wilscy, 2015) for making automatic text 

summarization for single and multiple documents using Vertex Cover algorithm. They 

use sentences as the vertices and the similarity between the sentences as edge weights 

between their corresponding vertices. They use cosine similarity and Normalized 

Google Distance to measure the similarity between sentences. In addition, they use 

Term Frequency (TF) and Inverse Sentence Frequency (ISF) to weight and evaluate 

the important words. For correctly finding ideal summary, they select subset of the 

graph containing the high weighted sentences that cover the important concepts and 

taking into consideration the redundancy problem in the generated summary. Result 

of graph systems overcome many systems that use clustering, but they do not work 

well for large documents because the graph size increases and consequently 

computation time increased. 

(Zhang, Sun, & Zhou, 2005) propose a graph  model for performing 

summarization for multiple documents, that combine the surface features with the 

content features using Hub/Authority framework. They use first sentence, cue phrase 

and sentences length features to identify important sentences. They use clustering 

approaches to identify the sub topics for a collection of documents. To build a graph, 

feature words and cue phrase are used as the vertex of Hub and sentences regarded as 

the vertex of authority. An edge is placed between an authority sentence and hub word 

if that sentence contains a word in the hub. This is step important to make the 

relationships between edges and its related authorities. Final summary generation is 

done by ranking sentences of every sub topic and order sentences based on its rank. 

TextRank (Thakkar, Dharaskar, & Chandak, 2010) is an important method to 

make automatic text summarization. Its uses a graph of sentences to find the best path 

starting with the first sentence and ending with the last sentence. This method builds a 

graph consisting of sentences as nodes and there is an edge for connecting any two 

sentences. They use cosine similarity to find the edge strength and give a weight of 

every sentence in the graph. The summary constructed by selecting a group sentences 

occurs on the shortest path between the first and the last sentence of a document. This 

method selects the sentences that are related to other sentences, therefore decrease the 

sudden shift of information and maintain the flow of information of the summary. 
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3.5 MapReduce in Data Mining 

Data mining is an important field in computer science, the increase of data 

requires using new models and algorithms to process large data amount especially for 

cloud environments. MapReduce is an attractable option for using data mining for 

large data sets. Many recent researches are carried out by applying MapReduce model 

for many data mining tasks like classification (Wu et al., 2009) (Q. He, Zhuang, Li, & 

Shi, 2010) (Rao & Yarowsky, 2009) (Paniagua, Flores, & Srirama, 2012). Another 

important task is clustering. (Hans, Mahajan, & Omkar, 2015) (Ene, Im, & Moseley, 

2011), (Ferreira Cordeiro et al., 2011) and (Zhao et al., 2009) proposed clustering 

models based on MapReduce and show that MapReduce can be effectively used for 

these type of problems and give good results in terms of speed up and scalability. This 

encourage improving the quality of the data mining application for the big data 

environment. 

3.6 Genetic Algorithm over MapReduce 

MapReduce is popular for processing large-scale datasets while Genetic 

algorithm is sufficient for problems dealing with searching and optimization 

techniques. One of the main problems of Genetic algorithm is the evaluation of the 

individuals of the search space. The time increase incredibly when the number of 

variables increases. There are many works that use Genetic algorithm in large-scale 

data. (Saha, 2014), (Geronimo, Ferrucci, Murolo, & Sarro, 2012), (Verma, Llora, 

Goldberg, & Campbell, 2009) and (Jin, Vecchiola, & Buyya, 2008) implement Genetic 

algorithm in many fashions. Simple Genetic algorithm is the basic and it is very similar 

to the classical Genetic algorithm. One approach is the Island approach, where the data 

is divided into separate islands and a node processes every island with the possibility 

of migrating individuals from one island to another. The results they achieve show that 

Genetic algorithm can be scaled by using MapReduce to give acceptable speed-up and 

scalability.  

In the above works of automatic text summarization, we notice that the 

approaches they propose have some advantages and limitations. The main limitation 

is that they do not have the ability of processing large text documents. Therefore, a 
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new model for performing automatic text summarization on large-scale documents is 

required. MapReduce will be used to speed-up the Genetic algorithm processing time. 

3.7 Summary 

In this Chapter, we provided various works related to our research problem. 

These identify many techniques for text summarization like clustering, feature 

extraction, Genetic algorithm, and graph approaches. We show drawbacks of these 

approaches of text summarization especially for large size datasets. We show that 

MapReduce has advantages for data mining applications like clustering, classification 

and summarization.  
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Chapter 4  

Multi Document Summarization System Design  

To carry out automatic text summarization for large-scale Arabic text using 

Genetic algorithm, the proposed approach is divided into several phases. Starting with 

the pre-processing phase and concluded with evaluation phase. The system 

architecture is illustrated in Figure (4.1). The proposed approach consists of four main 

components.  

 

Figure (4.1): Multi Document Summarization architecture. 

The first component is preprocessing component make some operations for the 

text like cleaning and stemming and POS to prepare the text for feature extraction 
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phase. The second component is feature extraction component used to extract many 

features from the text which essential for computing the fitness of the every individual 

in Genetic algorithm phase. The third component is Genetic algorithm, which have an 

iterative nature, represents the core operations and use MapReduce model to speed up 

the computation and ensure high scalability. In addition to that, this component used 

to compute the cohesion of every individual and remove redundant sentences from 

every individual. Finally, the sorting component, which sort the sentences of the 

winner individual and present the final summary. 

4.1 Text Pre-processing 

Text preprocessing is an important process that is taken into account before any 

text processing. It affects the result of the text processing applications because it 

removes many noisy data and important to prepare the text for processing. We 

preformed the following preprocessing steps in the proposed approach as illustrated in 

Figure (4.2). 

 

Figure (4.2): Text Pre-Processing 

4.1.1 Text Cleaning 

Text cleaning is an important process, which precedes any data mining 

application. It is used to prepare the data for further processing. The collected text is 

from several Arabic Palestinian newspapers. It contains more than 830 thousand news 

items and about 70 different categories. This requires normalizing the number of 

categories into few categories. Another issue is removing formatting where news 

editors use some online rich text editors to format the news and add some features like 

quotes and hashtags, which are stored as special codes in the database. 
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Therefore, the news is stored as a mix of normal Arabic text, HTML tags and 

some special code for formatting the news text for the web. The first step is removing 

HTML tags, the special formatting codes and the hash tags. Since the news are 

collected from many websites, text cleaning becomes a difficult process due to the 

diversity of special formatting codes. Also we remove non Arabic words and the 

punctuations from the text. 

4.1.2 Sentence Tokenization 

Usually in morphological analysis, many NLP techniques starts with the 

tokenization process to divide a streaming of text into words, phrases or sentences. For 

Arabic multi document summarization, we need tokenization to break every news item 

into a collection of sentences using some common delimiters like dot, question mark, 

exclamation mark and new line. These marks determine the border of every sentence 

and consider the words near to it as new sentence. However, advanced morphology 

focus on special boundary that is not considered here such as abbreviations like Dr. 

Mr. and real number like 15.015, which make the tokenization process more complex. 

This requires some attention when processing such cases because they are not 

marked as sentence boundaries and require some attention. The final output of this 

process is stored as list of sentences for every news item. We should do this step 

because we need to extract some text features from all sentences as explained in 

Section 4.2 like sentence position and sentence length, which depends on all sentences 

of single news item.  

4.1.3 Arabic Stop Word Removing 

Stop words is a commonly used word in any language used to connect part of 

speech and we need to ignore them when weighting sentences to save text-processing 

time and focus on the important terms. Therefore, we need to apply similarity measures 

like cosine similarity. The stop word has no impact on the importance of a text because 

it is repeated many times. Stop word is language dependent and is constructed 

manually using stop word list. 

4.1.4 Arabic Root Stemming 

As described in Section 2.1.2, stemming is the process of removing some 

different affixes in any place of a word to return it to its root.  We can use root stemmer 
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to get the root of any word or light stemming to remove the prefixed and suffixes only. 

In multi document summarization, we use root stemmer because we need to know the 

basic information of a news and return many word styles that belong to a single root. 

This is required in the term weighting process in Section 4.2.9, for similarity measures, 

which used in detecting similar sentences in redundancy removing process and for text 

cohesion measures based on common words roots.    

4.1.5 Arabic Word Normalization 

Arabic have a complex morphological structure; the letters can be written in 

many forms. Before performing any processing to the text, we need to uniform the 

similar letters into one form. For example, the letter Alef can be written in more than 

four forms and the Yaa Letter in three forms as explained in Table (4.1) and all these 

forms belong to one form. 

Table (4.1): Arabic Words Normalization 

Letter Forms 

 ا    أ    إ    آ ا

 ى    ئ    ي ى

 

4.1.6 Remove Diacritics 

Diacritics are used to make the Arabic text reading easier, therefore, usually 

beginners use it to spell and understand the text correctly as explained in Table (4.2). 

In text processing, we need to remove these diacritics because they do not provide any 

importance to the text. 

Table (4.2): Arabic diacritics. 

Arabic common diacritics 

 ءٌ ءُ ءً ءَ ءٍ ءِ ءْ ء
4.1.7 Part of Speech Tagging (POS) 

In the POS task, we identifying the types of Arabic words as explained in Section 

2.1. POS helps us to know the important part, which provide important information. 

We mark every word to the appropriate category in terms of noun, verb, adjective and 
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many other types. This step is required for identifying the number of each category in 

every sentence to use it in sentence weighting and in the feature extracting process.  

4.2 Feature Extraction 

Feature extraction methods are widely used in text summarization applications. 

The first summarization proposed by (Luhn, 1958) uses the occurrences of important 

word feature in a text to build a summary. We use the extracted features from a 

collection of documents to assign a value for every sentence in the big corpus. Genetic 

algorithm uses the fitness function to rank and determines the strength of every 

individual in the population. Our approach is dealing with extracting some importance 

features from the Arabic text to use it for computing the fitness function of 

chromosomes.  

 

Figure (4.3): Feature Extraction 

Most of these features are computed only one time after text pre-processing 

phase. This is because it is time-consuming process; therefore, it is computed only 

once and the same features is used at every Genetic algorithm iteration. The text 

cohesion feature is computed every iteration because the summary content is changed 
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during the crossover and mutation operation. The feature extraction phase of the 

proposed approach is illustrated in Figure (4.3). 

4.2.1 Sentence Position 

Usually, the first sentences and the last sentences contain information more than 

the other sentences (H. P. Edmundson, 1969). We can compute the sentence position 

weight in the document using the following formula: 

 𝑆𝑝 =
𝑁−𝑖+1

𝑁
                             Equation 5.1 

where N is the number of sentences in a document and i is the position of 

sentence. 

4.2.2 Sentence Length 

The purpose of summarization is to provide the most important information from 

a collection of documents. Therefore, we should take into account the length of a 

sentence the very short sentence does not contain enough information. so we do not 

consider it as important (Al-Hashemi, 2010). On the other hand, a very long sentence 

makes the reader unable to understand and integrate the context from the content. We 

can find the sentence length feature from the equation (Suanmali, Salim, & Binwahlan, 

2010): 

 
#(𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑖)

#(𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒)
               Equation 5.2 

Sentence position and sentence length features should be computed together 

after cleaning the news item because they are depending on the whole news item.  

4.2.3 Noun Occurrences 

Using part of speech tagging POS, the number of noun words can be calculated. 

Many studies shows that the presence of nouns make the text more readable and this 

is because sentences contain more noun words which may have important information 

(Feng, Elhadad, & Huenerfauth, 2009). Another study proposed by (Bouras, Tsogkas, 

2008) shows that using noun in text summarization can improve the precision scores. 

4.2.4 Verb Occurrences 

In most languages, the verb is an important part of a sentence, which express 

about using some action and make readers know about occurring events in the text. 

Sentences contain verbs may include and cover some events and shows that these 
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sentences describe an important event. This step is required in the feature extraction 

phase and is done by counting the number of words, which tagged as verb words in 

every sentence by using part of speech tagging POS. 

4.2.5 Readability Measures 

As shown in Section 2.2.5, the readability test is used to score text in terms of 

how the text is easy to read. An important feature of the summary should contain easy 

sentences that can be read from different readers from different ages. Using Osman 

readability measure (El-Haj & Rayson, 2016), the readability of each sentence in the 

corpus is measured such that it can be used in the sentence scoring for the summary 

generation. This will ensure that the individual, which consisted of a group of 

sentences and have a high readability score is more easy to read from those have low 

score. 

4.2.6 Cohesion Measures 

Multi document summarization creates a summary from multiple sources, 

therefore the summary may contain sentences from deferent topics. As shown in 

Section 2.2.6, text cohesion measures show how these sentences are connected and 

related to each other. In our proposed approach, the Genetic algorithm fitness function 

measures the text cohesion feature of all individuals at every iteration. This improve 

the quality of the summary and gives high score to the summary, which contains 

similar sentences. In general, there are many approaches to measure the cohesion of a 

text. An approach proposed by (Nandhini & Balasundaram, 2013) uses cosine 

similarity to measure the cohesion of a summary.  

In order to measure the cohesion of our multi document summarization 

approach, we depend on the root stemming of each sentence to build a similarity matrix 

and compute the average similarity of each sentence as the text cohesion of the 

potential summary. Every entry of the similarity matrix defines the cosine similarity 

of the stemmed sentence words for all sentences. We consider the similarity of the 

same sentence in the column and row to be equal to zero rather than one because 

sentences with cosine similarity are identical. The cohesion of the individuals of 

Genetic algorithm population is computed using the following equation: 

𝑠𝑖𝑚(𝑠𝑒𝑛1, 𝑠𝑒𝑛2) =  
∑ 𝐴𝑖 𝐵𝑖𝑛

𝑖=1

√∑ 𝐴𝑖 𝑛
𝑖=1 .√∑ 𝐵𝑖 𝑛

𝑖=1

                 Equation 5.3   
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Where A, B is the vector of word of the stemmed of sentence A and the words of 

stemmed of sentence B (Sidorov, Gelbukh, Gomez-Adorno, and Pinto, 2014). We 

should notice that the text cohesion feature is computed at every iteration of Genetic 

algorithm. This is because the content of individuals may change during the crossover 

operation as explained in Section 4.3. 

4.2.7 Term Weighting 

The purpose of multi document summarization is to select the most important 

information from a collection of documents. Therefore, we must select the sentences 

that contain important information using the most frequent term. There are many 

methods to know the important words in a text document. Term Frequency & Inverse 

Document Frequency TF-IDF is one of the early methods to rank terms of documents. 

It is a statistic method used to know how a term exists in a document and across 

multiple documents. The first part is Term Frequency (TF), which reflect the number 

of times a term T occurs in a document D. The Inverse Document Frequency (IDF) 

represents how many times a term T occurs in all documents of a text corpus (Salton 

& Buckley, 1988). 

Our approach, partitions all sentences into groups of possible summaries and 

every summary consisted of fixed number of sentences. Every summary represents a 

single document and therefore, the IDF measure is not efficient because it measures 

the frequency of a term in groups of documents while our approach based on a single 

summary, which represents a single document. We only choose the TF measure by 

performing single MapReduce job to count the terms of the whole population. We give 

a weight for each sentence in the population as the aggregate occurrence of each term 

in the sentence. Next in Section 4.3, we present how Genetic algorithm can be designed 

on MapReduce model. 

4.3 Designing Genetic Algorithm as MapReduce 

In order to make multi document summarization using Genetic algorithm over 

MapReduce model to speed up the summarization. The proposed approach performs 

the following. Firstly, the sentences are stored after tokenization with their features, 

which are extracted in Section 2.2 in the following format: sentenceID, sentenceText, 

sentenceStems, List<sentenceFeatures>. This process eliminates the computation time 
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needed for calculating the sentence features in every Genetic algorithm iteration. The 

iterative Genetic algorithm summarization starts with dividing the data into separate 

individuals and evaluate them to select the best individuals for evolving using 

crossover operator. This insures the iterative nature of Genetic algorithm over 

MapReduce as described in details in next sections. 

4.3.1 Creating Individuals 

Genetic algorithm is implemented over Hadoop, a MapReduce programming 

model. Firstly, we need to define the data structure of Genetic algorithm. Gene is the 

smallest part of Genetic algorithm. It stores single part of information of the 

chromosome (individual). The chromosome is a collection of genes, which holds 

larger amount of characteristics. In the case of automatic document summarization of 

multiple Arabic documents, the sentence is the smallest part of information; therefore, 

gene is a single sentence. To make a summary we need a collection of sentences and 

thus the chromosome consists of a collection (array) of sentences selected randomly 

from different source documents. 

To summarize the first step, we need to shuffle and randomly arrange the 

sentences stored on the HDFS into a new file containing all shuffled individuals. For 

traditional summarization applications, the compression ratio concept controls the size 

of the resulting summary. In our case, the output summary is large. Our proposed 

approach uses a fixed length individual by splitting the whole dataset into typical 

length. Every chromosome has a form consisted of sentence id, sentence text, sentence 

stems and sentence features. The new data are stored into a new file on HDFS where 

every line is a single chromosome. 

4.3.2 Ranking Individuals  

This step involves in computing the fitness function of the individuals generated 

from the previous step. The fitness function value is computed using linear 

combination of the pre-computed feature except cohesion feature. Firstly, cohesion 

feature value is used to determine how much the sentences of the individuals belong 

to each other using similarity measure, like cosine similarity measure. After this step, 

every individual is stored with its fitness function value. In addition to that, we need 
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to remove the weak sentences by conducting a tournament to make the evolution of 

only strong individuals.  

The previous steps are performed in parallel fashion to speed evaluating the 

individuals, which is time consuming operation in Genetic algorithm. Therefore, this 

step prepares the iterative nature of Genetic algorithm and the next steps are involving 

improving the fitness and evolving the individuals via crossover.   

At the end of each iteration we find the best individuals and store them for the 

next iteration and so on, we will stop the execution when no major change occurs in 

the fitness of the individual. The final schema of individual consists of individual 

sentences with their features and the fitness function value of the chromosome in the 

current iteration. This step is important to minimize the computation overhead for 

computing the fitness before evolving the individuals in the next step. 

4.3.3 Iterative Simple Genetic Algorithm 

As shown in Section 2.3, Genetic algorithm has many forms for parallel 

environments, one of the simplest form select-recombination (Goldberg, 1989), which 

can be transformed into parallel execution with minimal set of operations (Verma et 

al., 2009). The basic idea behind this approach is to select good individuals from the 

population and evaluate them to produce new generation and repeat the operation until 

meeting some convergence criteria. 

Initially, individuals are stored into HDFS with their features and fitness. The 

evolving process of Genetic algorithm is performed in iterative nature using single 

MapReduce job for every iteration. This step is dealing with evolution using the 

crossover operation and comparing the final fitness of every iteration with the fitness 

of the previous iteration. This is required to decide whether to start a new iteration or 

terminate the iterative Genetic algorithm.  

4.3.4 Evolving Individuals 

Genetic algorithm is used to improve the fitness of the new generations by 

choosing a strong parent to mate them. The process of creating new individuals uses 

two main Genetic operation crossover and mutation. However, in data intensive 

systems the mutation operation becomes more difficult. The main reason is the nature 

of the summarization process required to replace a gene that contains a single sentence 
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with a gene having a new sentence randomly. This requires searching in HDFS large 

file and selecting a random sentence, which does not exist in the individual and do the 

same for all individuals. This step increases the resource consumption incredibly 

therefore; we may neglect the mutation operation without the need of it is improving 

the individual fitness.   

Due to its simplicity, the crossover operation can easily be implemented in 

parallel in data-intensive systems. In its simplest form crossover is used to swap a fixed 

number of genes from any two individuals. This process is performed at every 

MapReduce iteration to generate an improved new individual. Section 5.2.3 shows the 

details of implementing the iterative nature of Genetic algorithm using MapReduce, 

conducting tournament and how to deal with redundant sentences in the individuals 

during the uniformed crossover operation. 

4.3.5 Stop Iterative MapReduce 

After every iteration, we should monitor the maximum. The concept of select-

recombine Genetic algorithm as shown in Section 4.3.3 uses the iteration to be from 3 

to 5 times. Initially, we make 3 to 5 Genetic algorithm iterations and after that we 

monitor the maximum fitness, if it is greater than the fitness of the previous iteration, 

we start a new iteration. If it is less than the fitness of the previous iteration, we 

terminate the MapReduce and use the previous individual as the ideal summary with 

the individual that have the maximum fitness. Section 5.2.4 present the implementation 

of stopping the iterative Genetic algorithm.  

4.4 Sorting Summary Sentences 

After terminating MapReduce iterations, we have the individual with maximum 

fitness, which contain a collection of sentences. The last step is used to sort sentences 

in chronological form. Multi document summarization select sentences from multiple 

documents, therefore, we should order the generated summary sentences such a way 

the user can be easily understand the events. The sort process itself does not guarantee 

to improve the generated summary quality but improves the overall user 

comprehension and readability of a summary (Barzilay & Elhadad, 2002).  

There are many strategies to sort sentences for multi document summarization 

the first is majority ordering, which order the sentences according to is order at the 
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original text. The second is chronological ordering, which order the sentences of the 

summary according to it is publish date. Another strategy used in feature extracting 

system used to order sentences based on its rank (Sripada, Kasturi, & Parai, 2005). 

They put the high ranked sentence in the first and so on. In the proposed approach, we 

sort the sentences according to published data in ascending order to produce the final 

summary output. 

4.5 Summary 

In this chapter, we presented an approach for making text summarization for 

large-scale multi Arabic documents using Genetic algorithm and MapReduce. We use 

MapReduce model for parallelizing the execution of Genetic algorithm. We performed 

many text pre-processing tasks, which is required for computing important features for 

evaluating the Genetic algorithm individuals in parallel. In the next chapter, we show 

the detail of implementing the proposed approach on Hadoop, MapReduce system, 

more information about the set of experiments and the setup of system environment.  
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Chapter 5  

Implementation and Experiments 

At this point, we have designed the system for performing automatic text 

summarization for multiple Arabic documents using parallel execution of Genetic 

algorithm. In this chapter, we show the details of implementing the system using 

specific tools and software. The dataset is collected from many different online 

databases that run on MySQL and this requires transforming the news items into 

simple text format. This step prepares the text for processing using MapReduce that 

may affect the quality of the text and the final summary output. The datasets are stored 

in MySQL table contain a collection of news of deferent categories. The first step we 

need to extract the data to the HDSF and process it. In addition, we show how Genetic 

algorithm can be implemented as iterative MapReduce jobs. Finally, we present the 

environment setting of the proposed approach, the corpus details and sets of 

experiments. 

5.1 Data Pre-Processing 

Before starting the pre-processing phase, we need to store the news items in a 

single file on HDFS. This is an essential process because HDFS use the concept of 

blocks for storing the data. Each HDFS block uses the default 128 MB size. If the file 

is size larger than the default size, the file system breaks the file into chunks and 

replicates them on different nodes. In our case, we deal with text files in few kilobytes, 

this enables the system to reserve a space of 128 MB for every news file, which is not 

efficient for disk space management, and requires a Map phase for each file.  

We suggest an efficient mechanism to overcome the above limitation. We store 

all news belonging to a category in a single file on HDFS. This enables the file system 

to deal with a maximum of 10 categories, which can be represented as single HDFS 

file and make the file system divide it into the available nodes. This enables the Map 

phase deal locally with the input file parts available on the machine that runs it. This 

decreases the execution time and the network overhead to read data from other nodes. 

A MapReduce job is used to read the content of every category file in parallel. 

When starting a new job for reading the content, there are two basic methods. The first 

is Map, which invoked by the master program driver for reading a single line of the 
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input file every time it is called. Hadoop has many features for enhancing and ensuring 

the accurate and effective reading of data from distributed parts across the cluster 

nodes. This decreases the network overhead by selecting the nearest node and using 

local data chunks for a Map rather than reading it from another node. 

5.1.1 Text Cleaning 

Most data mining tasks starts by preparing data for processing. In the web area, 

the data always contain many irregular or many variants due to reasons like human 

mistakes or use of special text formatting. This may include HTML tags, special 

formatting tags and hash tags, which makes text readable, and make web site 

navigation easy. The process of text cleaning presented in Section 4.1.1 and consisted 

of remove special tags and characters, remove non-Arabic words, remove diacritics 

and normalize Arabic characters. 

5.1.2 Tokenization 

Multi document summarization for large-scale data starts with breaking a single 

news item into a set of sentences for building the summary. The tokenization process 

is explained in Section 4.1.2 and during this process, we should extract some two 

features from the text like sentence position and sentence length. These features must 

be computed in context of the news items because its computation depends on the other 

sentences of this particular news item. A type of tokenization is word tokenization, 

where the sentence is divided into a set of words for the stemming process. The 

stemming is important for weighting sentences to know how a sentence contains 

frequently used terms. Therefore, it is performed during the tokenization for one time 

only rather that doing it every time in the sentences ranking process. 

This should increase the pre-processing task execution time but on the other hand 

decrease evaluation and the evolving operation in Genetic algorithm, which is the most 

time consuming.  

5.1.3 Term Frequency 

The proposed approach uses term frequency for ranking the sentences to build a 

summary. The term frequency counts the number of times a term t occurs in a 

document d. Another important term is the IDF, which find how many times the term 

t, occurs in a collection of documents. Nevertheless, in our large-scale environment, 
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the IDF factor is not sufficient since the text stored in a single file. Therefore, we only 

use the term frequency feature to weight the word of every sentence as shown in 

Algorithm (5.1).  

Algorithm (5.1): Term Frequency count. 

Map (key, value), Reduce (word, sum) 

1: class Mapper 

2:  method Map(doc a in pathOfFile) 

3:   for all terms in sentence s ∈ doc a  do 

4:                                   if ( term t is not stop word) 

5:            Emit(term t, count 1); 

6:                                  end if 

7:                                 End for 

8:  End class Mapper 

 

1: class Reducer 

2:  method Reduce(term t, counts [c1, c2, . . .]) 

3:  sum ← 0 

4:  for all count c ∈ counts [c1, c2, . . .]  do 

5:   sum ← sum + c 

6:   Emit(term t, count sum) 

 

To do that, we need a single MapReduce job to count the occurrence of every 

word in the corpus. This step is required for computing the weight of every sentence 

in the feature extraction step as shown in the next section. We should deal with stop 

words at this moment because they may occur more than any other words. Stop words 

used in any language to connect the different part of text; therefore, we should remove 

it from the term weighting process. The output of this step is every stemmed word with 

number of its occurs. 

5.1.4 Features Extraction 

In the previous step, some features are extracted that require the whole news text 

in order to find text position and text length. As explain in Section 4.2 the remaining 

features can computed based on the sentence text without taking into account the other 

sentences except text cohesion feature. Like text pre-processing, feature extraction is 

a time consuming process, therefore we compute it one time only and reuse the features 
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in every iteration of the parallel Genetic algorithm. We should notice that the process 

of feature extraction takes the longest time of phases this due to using POS and using 

the sentence readability measure for a numerous number of sentences. 

In our Arabic multi document summarization for large-scale data, the number of 

sentences exceeded 6.5 million sentences, in order to be processed and summarized, 

require using a cluster of machines. In this phase, we extract the noun count per 

sentence feature, the verb per sentence feature and the sentence readability feature. 

Another important feature is weighting every sentence as the aggregate of every stems 

occurs from the file in the previous step. This is very important because it gives the 

sentences that contain very frequent terms a higher score than the sentences that 

contain low frequent terms. 

Algorithm (5.2): Text Pre-processing and Feature Extraction. 

Map (key, value) 

Input: path of HDFS contains .txt files  

Output : <sentenceID, sentenceText, SentenceStems, 
sentenceFeatures(sentenceLenght, sentencePosition)>. 

1. while pathArray.hasNext do 

2.  file = pathArray.fetchCurrentFile 

3.    sentences = file.splitToSentences.toArray 

4.    For i=0 to sentences.length do 

5.              sentence = sentenceClean(sentences[i]); 

6.        sentenceStems = rootStem(sentence); 

7.      sentenceFeatures = extractFeatures(sentence); 

8.        sentenceFeatures = sentenceFeatures+ senPosition(sentences); 

9.        sentenceFeatures = sentenceFeatures+ senLenght(sentences); 

10.       sentenceFeatures = sentenceFeatures+ weightSentence(sentence);           

11.      sentenceID = generateUniqueSequenseID; 

12. Write<sentenceID, sentence, SentenceStems, sentenceFeatures>; 

13. End For; 

14. End while; 

15. End; 

 

The text pre-processing implementation step is performed using a Map phase 

only because there is no aggregation of the values based on a common key. However, 

this phase represents the core of a sentence ranking mechanism to determine the strong 

individuals for implementing Genetic algorithm based on the fitness function which 

based on the features of each sentence. 
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Algorithm (5.2) shows the text cleaning, tokenization and feature extraction 

implementation. It explained how sentence position and text length computed 

depending on the news item sentences. The algorithm shows extracting the main 

features and weight every sentence according to the number of occurs of every stem 

at the sentence. The output of Algorithm (5.2) is considered the final output for the 

text pre-processing and feature extraction phases, which prepare the text for the 

parallel Genetic algorithm Based on MapReduce as shown in Section 5.2. 

5.1.5 Text Shuffling 

Now, we get a group of files, every files contains the sentences belonging to a 

single category stored together with its stems and features. There is an important step 

before passing text to Genetic algorithm first step: population initialization. We need 

to reorder the sentences of every category randomly because the pre-processing step 

stores the sentences of every news item in a sequential order. This ensures that every 

individual contains sentences from many different news to achieve the diversity of 

multi document summarization, which means that the summary covers most of the 

topics of the original text. 

In MapReduce, the key is used to group the values that have the same key to 

send them to the same Reducer. We can exploit that to redirect every sentence to a 

random Reducer to store them randomly. We generate a random ID for every sentence 

to ensure that we distribute them to a random Reducer. The Reduce phase invoked 

after all the Map tasks finished to store the sentences randomly. 

Algorithm (5.3): Text Shuffling. 

Map (key, value), Reduce (word, sum) 

1: class Mapper 

2:  method Map(doc a in pathOfFile) 

3:   for lines ∈ doc a  do 

4:                                   UUID = generateRandID(line.sentence); 

5:            Emit(UUID , line); 

6:                                 End for 

7:  End class Mapper 

1: class Reducer 

2:  method Reduce(line) 

3:   write(line); 
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Algorithm (5.3) explain the process of text shuffling which crucial for creating 

individuals as explained in Section 5.2.1. It read a line through the Map method and 

generate random ID number to send this line to random Reducer. This step makes the 

Reduce receive unordered sentences to make every individual consisted of sentence 

from different news items to achieve the diversity option in the summary. 

At this stage, the text is prepared by cleaning it and segmenting it into a group 

of sentences and get the stem of every sentence. In addition, we calculate all the 

required features, which is the basic operation for evaluating our individual’s fitness 

function. The next section considered as the core of parallel Genetic algorithm to make 

text summarization for large-scale text. It shows how individuals processed, evaluated 

and evolved used iterative MapReduce jobs. 

5.2 Parallel Genetic Algorithm 

We can Genetic algorithm over MapReduce model to exploit the powerful of 

parallel computing. The high computation needed by Genetic algorithm especially for 

finding the fitness of large-scale individuals, makes using MapReduce more 

demanding. This should divide the high processing time across a cluster of machines 

that processes parts of text files separately. 

5.2.1 Creating Individuals 

Often, Genetic algorithms start with creating the initial search space of the 

potential solution or in other words the search space. The traditional proposed multi 

document summarization uses the compression ration concept, which controls the 

percentage of the produced summary to the original data. However, in large-scale data 

this may not be time and space efficient because the size of the resulting text summary 

is considering large. Another type of compression is uses a fixed length of the 

summary regardless of the original text size. Therefore, this is suitable for large-scale 

text summarization.  

In the proposed approach, we prefer to use a fixed summary length in order to simplify 

the adaptation of Genetic algorithm in MapReduce model. As mentioned in Section 

5.1.5 randomly rearrange sentences enables the summary to cover most of the topics 

of the original text as possible much as. The next step is to sequentially create the 
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individuals or chromosomes, which is a basic data structure of Genetic algorithm as 

explained in Algorithm (5.4) using single Map job only. 

Algorithm (5.4): Create Individuals. 

Map (key, value) 

1:  class Mapper 

2: summaryLength; 

3: individual; 

4: processed ← 0; 

5:      method Map{ 

6:         while (processed < summaryLength) { 

7:      individual ← individual+ currentLine; 

8:             processed++; 

9:        } 

10:   write individual; 

11:        reset(individual); 

11:    } 

13:  End class Mapper 

 

As show in Algorithm (5.4), it reads a single sentence which represented by a 

single line at one time. The desired summary (individual) length of individual used as 

parameter, and loop until processing number of lines equal to the required individual 

length. Finally save the current individual to start creating new individual. Every single 

individual is considered as a possible solution in the search space for Genetic algorithm 

and initially resulting individuals should have a fixed length to perform the evolving 

process of individuals efficiently. When all sentences are distributed to individuals, all 

the individuals are stored in a single file on HDFS to make it easy for the next 

processing phases.  

5.2.2 Scoring Individuals 

Genetic algorithm depends on the principle of survival of the fitness, which 

means that the strong individual can still survived and produce strong children. To use 

the principles of Genetic algorithm in automatic text summarization, we rank the 

individuals based on the output of Section 5.1 to know the best individual or other 

words the best summary. As mentioned before finding the fitness of every individual 

consumes most time in Genetic algorithm, therefore, we implement this task in 
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MapReduce in order to divide the computation across a cluster of machines and 

therefore, reduce the overall needed time. 

Individuals consist of a group of sentences. Every sentence is stored with its 

extracted features (Section 4.2 and Section 5.1) and these are the basic measurements 

of the fitness of every individual. We can make an optimization for automatic text 

summarization, which decreases the computing time of the fitness of every individual 

in every iteration by storing the aggregate of all features with every sentence. 

We mention in Section 5.1 that the content of individual may change during the 

evolving task in crossover operation. Therefore, we find the text cohesion feature of 

individuals in every iteration. We perform scoring individuals in a Map task only by 

reading an individual that represents a single line in an HDFS file based on the format 

shown in Table (5.1).  

Algorithm (5.5): Scoring Individuals. 

Map (key, value) 

1:     class Mapper 

2:     Fitness ← 0; 

3:    individual; 

4:     method Map { 

5:           individual ← parseIndividual(currentLine); 

6:           textCohesion = calculateCohesion(individual);  

8:          individual.updateFitness(Fitness); 

9:          Emit(key, individual); 

10:     } 

11:   End Class Map 

 

Table (5.1): Individual Format. 

Individual1 Sentence1>feature1, feature2, …<,Sentence2 >feature1, feature2, …<, … 

Individual2 Sentence2>feature1, feature2, …<,Sentence2 >feature1, feature2, …<, … 

 

Every line represents a potential summary, therefore we should rank every 

individual based on its features and this is performed in Algorithm (5.5). The algorithm 

is parsing on line every time and compute the text cohesion feature. It updates the new 

fitness of the individuals to use it in the iterative MapReduce job, which presented in 
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Section 5.2.3. The process of scoring individuals is performed once using single 

MapReduce job and output one file for every category. 

Table (5.2): Individual Final Format. 

Individual1 Sentence1>featuresSum<, Sentence2> featuresSum <, … 

Individual2 Sentence1>featuresSum<, Sentence2> featuresSum <, … 

 

The final format of every individual stores the aggregate sum of all features as 

the format in shown in Table (5.2). We separate the cohesion features from other 

features because they are computed at every iteration due to the change in individual 

sentences during the crossover operation. This above is performed done using a single 

Map operation only once to find the fitness of every individual in parallel. The 

evolving of population requires using iterative nature of Genetic algorithm using 

several MapReduce jobs. 

5.2.3 Evolving Population  

The evolving of Genetic algorithm population encapsulated using MapReduce 

is done in iterative nature. At every iteration, many operations are used to generate 

new set of individuals from the current individuals. Survival of the fittest is the main 

principle in Genetic algorithm to pass characteristics of the strong individuals to the 

new generation using genetic operations. Every iteration uses Map phase and Reduce 

phase to read individuals from the HDFS and evaluate them in parallel to decide 

starting new iteration or stop Genetic algorithm.  

Algorithm (5.6): Map Phase of Each Iteration of GA. 

Map (key, value) 

1: Class Mapper 

2: Method Map{ 

3:      individual ← parseIndividual(line); 

4:      emit(key, individual);       

5: } 

6: End Class Mapper 
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At every iteration, a tournament is conducted between fixed numbers of 

individual to select the fittest individuals to perform uniform crossover operation. At 

the first iteration, the Map method simply reads the current line from the HDFS and 

sends it to the Reducer as shown in Algorithm (5.6). The main Genetic algorithm 

operations are performed using selection and crossover at the Reduce phase of every 

iteration. 

As explained in Algorithm (5.7), the Reducer performs the core operations of 

Genetic algorithm. The tournament selection is performed using a predefined number 

of selection pool to specify how many individuals participated in a single tournament. 

Only one individual survives and is passed to the crossover, therefore the failed 

individuals are stored back to the HDFS to have another chance at another tournament. 

In addition to that, the new individual’s fitness is calculated at the end of Reduce phase 

before storing the individuals to use them at the next iteration if it is conducted. 

There are many important issues solved in method CrossoverAndSelection at 

every Reduce phase for all iterations. The first is handling the redundancy. In data 

mining tasks, we can represent any document as a vector of terms to know the degree 

of similarity of each term to the other terms in the document. Cosine similarity is a 

popular method the measure the similarity of any two vectors. We can use a similarity 

matrix constructed from all sentences of every individual to find the similarity of each 

sentence to other sentences and remove the sentence with lowest fitness. 

Every matrix entry stores the cosine similarity value for the similarity of a 

sentence from a column and a sentence from a row. In the method 

CrossoverAndSelection that implemented in Algorithm (5.7), we can consider a 

sentence as redundant if its similarity with other sentences is greater than a threshold 

using the cosine similarity equation which presented in Section 4.2.6. 

In multi document summarization the redundancy is a common issue, therefore, 

we can replace the duplicated sentence with another sentence from the corpus. 

Nevertheless, dealing with redundancy for large-scale data makes it a critical issue. 

We cannot select a sentence every time we find a redundant sentence in an individual. 

This requires searching in a file containing more than a million of lines and this 

increase the time of execution. We propose removing the duplicated sentence that have 

the least fitness from the individual this minimize the execution time, network 
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overhead and do not affect the overall fitness of the individual. At every iteration, we 

should find the text cohesion and the new fitness of all individuals after the crossover 

operation due to the change in the content of the individual during the crossover. 

Algorithm (5.7): Reduce Phase of Each Iteration of GA. 

Reduce (key, values) 

1: Class Reducer 

2: textCohesion ← 0;  

3: maxIndividual; 

4: tournamentSize; 

5: processedInd ← 0; 

6: tournamentArray; 

7: Method Reduce{ 

8:      While (values.hasNext){ 

9:            individual ← parseIndividual(values.next); 

10:            If processedInd < tournamentSize 

11:                  textCohesion ← calcTextCohesion(individual); 

12:                  individual.updateFitness(); 

13:                 if individual.fitness() > MaxIndividual.fitness() 

14:                       maxIndividual ← individual;     

15:                end if; 

16:                  tournamentArray.add(individual); 

17:           else 

18:                 CrossoverAndSelection(tournamentArray);                

19:          End if ; 

20:          processedInd ← processedInd + 1; 

21:         if(tournamentArray.size() == tournamentSize ) 

22:               tournamentArray.clear(); 

23:         end if; 

24:      } 

25:     writeMaxIndividual(individual); 

26:      writeNotWinIndividuals(); 

27: } 

 

At every iteration, we should find the individuals with maximum fitness to 

monitor the evolution of the population. Every Reducer should save the individuals 

with maximum fitness to a separate file from other individuals from a file on HDFS 

where all Reducers of this iteration do the same. This makes a decision when to start 

new iteration or stop the iterations as shown in the next section. Algorithm (5.7) shows 
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how the Reducer reads all lines from the Map and how conduct a tournament between 

fixed numbers of individuals. In addition to that the process of saving the max fitness 

individual to separate file and write the failed individuals at the end of the algorithm 

back to give them another chance. 

5.2.4 Stopping Genetic Algorithm 

As shown in Section 2.3.1, there are many criteria for stopping Genetic algorithm 

iterations. Our proposed approach is concerned with improving the text cohesion score 

and the readability score of the generated summaries to maximize the quality.  

The used Genetic algorithm makes 3 to 5 iteration initially and let stop the 

iteration to the user based on the result. The proposed approach makes 3 to 5 iterations 

and monitor the maximum fitness at the end of every iteration. If it is more than 10% 

of the previous iteration, we start a new iteration. This means that the fitness of the 

individuals improves incrementally and there is a chance to get improved fitness at the 

next iteration. 

It is worth mentioning as explained in Algorithm (5.8), that this step controls the 

flow of Genetic algorithm iteration and decides to start a new iteration or not. 

Therefore, we should accurately monitor how the individuals’ fitness changes during 

MapReduce iterations. In order to make infinite iterations if the individual 

improvements not reach the desired ratio (10%), we add a constraint that makes only 

specific number of MapReduce jobs iterations. This performs a fixed number of 

MapReduce iterations if the job reaches them; the iterative MapReduce is terminated 

even if the desired ratio is not reached. 

Algorithm (5.8): Genetic Algorithm Stop Criteria. 

Algorithm 5.8: Stopping Genetic Algorithm Iterations 

1: Class StopGenetic 

4:      previousFitness ← read max Individual fitness of previous iteration;  

2:      currentFitness ← read max Individual fitness of current iteration; 

3:      if (currentFitness > previousFitness + previousFitness * 10% or MaxIterations) 

4:            startNewIteration; 

5:      else 

6:            stopIteration; 

7:    end if; end class StopGenetic; 
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5.3 Experiments  

To implement the approach for multi document summarization for large-scale 

Arabic documents, we use Java programming language with various libraries to 

making text pre-processing and features extraction more easy. Another important 

reason for choosing Java is that Hadoop (which open source MapReduce realization) 

is implemented and provides Application Programming Interface (API) using Java. In 

this section, we talk about the tools and libraries used in the proposed approach. The 

environment setup and the set of experiments conducted to realize and test the 

proposed approach.  

5.3.1 Tools and Environment Setup 

There are many frameworks and tools used in processing and executing the 

proposed approach especially in text pre-processing and features extracting phases. 

This section describes briefly the configuration and the software used for the 

experiment. 

5.3.1.1 AraNLP Library 

AraNLP (Althobaiti, Kruschwitz, & Poesio, 2014) is a free Java library 

containing tools for processing Arabic text. AraNLP groups many useful tasks in one 

toolkit, which makes it easy to integrate with existing programs or text processing 

packages. In general, AraNLP toolkit contains sentence tokenization, root and light 

Arabic text stemming, Arabic part of speech tagger (POS), word segmenter, 

normalizer, and a punctuation and diacritic remover. 

5.3.1.2 Osman Readability Measure 

As described in Section 2.2.5, our proposed approach uses a readability for 

scoring Arabic sentences. We use a state-of-the-art Java based library Osman (El-Haj 

& Rayson, 2016) for giving a numeric values to each sentence in the corpus that 

measures how this sentence is easy to read. This library can be used for scoring any 

form of Arabic text with diacritic or plain text. 

5.3.1.3 Hadoop Cluster 

In order to process large amount of data, there are many approaches and 

frameworks. Hadoop is a MapReduce model realization for processing large amount 
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of data using a cluster of commodity hardware. We build a cluster of 17 machines that 

run based on Ubuntu 15.4 and a 2.6.0 Hadoop version that is running with 2 GB of 

Ram and 2 Core Intel Xeon(R) CPU at 3.10GHz. There is a master machine which 

acts as name node as described in Section 2.5. The other 16 machines act as data nodes 

and the cluster is connected using high-speed local switch for guarantee the high speed 

of communication between machines. 

By default, HDFS replicates every file up to three replicas on different locations 

and every block size is 128 MB, which means that every chuck will reserve a constant 

size. This help Mapper to read the part of data locally rather than read from another 

machine. 

5.3.2 Corpus 

The proposed text summarization approach works with for large scale multiple 

Arabic documents, therefore, we have gathered data from many online newspapers. 

We have selected news from five famous Palestinian websites. These sites include 

Palestine Today, Paltimes, Sama News, Safa News and Alresala News. The 

information of each website in terms of the number of news items and the size of these 

items in MB are listed in Table (5.3). 

The text is stored for web pages; therefore, they contain HTML tags to format 

the data, which require more processing time and effort due to the diversity of tags and 

the use of some customized tags in each webpage. 

Table (5.3): Corpus Details. 

Website Number of News Items Size in MB 

Paltoday 219948 644 

Samanews 207249 711 

Safanew 165116 410 

Alresala 131583 329 

Paltimes 109990 262 

Total 833886 2356 

 

The previous table describes the original dataset before any modification or pre-

processing being applied. Nevertheless, our approach uses the sentence as the basic 
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unit in the summary. Therefore, we need to split every news item into a set of sentences 

and clean it from HTML tags by applying text pre-processing techniques and extract 

the features of every sentence for further use. Table (5.4) shows every category after 

pre-processing and extracting the features of every sentence of the corpus and 

categorizing every news item to a single category. We conduct many MapReduce jobs 

to apply the proposed approach on the data sets in Table (5.3) and measuring the 

change of individual fitness during every iteration of Genetic algorithm Section 4.3.  

Table (5.4) shows that the number of news items is decreased after the pre-

processing step because many news sentences are removed due to poor readability 

score, very long sentence, very short sentence or duplicate sentences. The removed 

sentences may affect the quality of the produced summary. 

Table (5.4): Category Details. 

Category No. of News Items No. of Sentences Size in MB 

Reports 241572 1968791 1648.64 MB 

Politics 149044 1181291 744 MB 

Local 129738 903702 683 MB 

International 94972 804224 546 MB 

Sport 33626 205894 140 MB 

Culture 12587 99637 72.7 MB 

Economy 7698 52645 37.5 MB 

Technology 6415 44374 30.9 MB 

Health 5534 45359 30.9 MB 

Total 681186 5305917 3933.64 MB 
  

5.3.3 Partitioning Individuals 

The summarization starts with creating the potential individuals. As mentioned 

in Section 4.3, every individual consists of a group of sentences chosen randomly from 

each category. The compression ratio is a common concept in automatic text 

summarization models, it is a value that represent the generated summary of the 

original document/s size. Nevertheless, in our approach, the data volumes are large 

and consequently the summary size is large if we follow the mean of the traditional 

compression ratio.  
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Table (5.5): Category Individuals Size. 

Category Individual Size (in sentence) No. of Individuals 

Reports 600 3281 

Politics 600 1968 

Local 500 1807 

International 500 1608 

Sport 500 411 

Culture 400 249 

Economy 400 131 

Technology 300 147 

Health 300 151 

We decide to overcome this option and make every individual have a specific 

size and all individuals initially should have the same size, which required for 

crossover operation. Creating individuals is performed after the process of shuffling 

the category sentences as explained in Section 5.1.5. The details of creating individuals 

shown in Table (5.5).  

Table (5.6): Creating Individual Execution Time. 

Dataset Size Execution Time in second 

Reports 1648.64 MB 841 

Politics 744 MB 484 

Local 683 MB 447 

International 546 MB 282 

Sport 140 MB 47 

Culture 72.7 MB 34 

Economy 37.5 MB 19 

Technology 30.9 MB 16 

Health 30.9 MB 16 

The process of creating individuals starts with ordering the sentences in random 

fashion, sequentially select group sentences with the individual size, and give unique 

identity number to this group as individual. Table (5.6) shows the execution time of 



61 

 

breaking the news items of each category into a collection of individuals. Every 

category individuals are stored into a separate file on HDFS to be passed later to 

MapReduce based Genetic algorithm iterations applied to the created individuals. 

5.3.4 Parallel Genetic Algorithm 

The output of partitioning individuals creates a HDFS file for every dataset 

where every line in the file contains a single individual. The process of parallel Genetic 

algorithm contains the core operations of Genetic algorithm as MapReduce model 

realized by Hadoop. MapReduce starts a job by reading the input file and distributes 

its content across cluster nodes. HDFS divides the input file and sends all file chunks 

to the nodes. This makes the Mapper of every node read from the local copy rather 

than read from other nodes to utilize the network bandwidth and decrease the required 

network overhead.  

In general, MapReduce prefer using small number of large files rather than using 

large number of small files. We decide to eliminate small datasets from execution by 

using MapReduce job and make the summarization for files sizes of 300 MB and 

beyond. 

Table (5.7): Summarization Execution Time. 

Dataset  
Execution Time In Seconds 

1 node 2 nodes 4 nodes 8 nodes 12 nodes 16 nodes 

Reports 1463 1219 947 621 328 148 

Politics 868 723 640 470 273 121 

Local 750 641 597 430 261 119 

International 523 486 355 294 249 117 

 

At every iteration, the Mapper reads one line from HDFS and send it to the 

Reducer. The Reducer reads individuals in pairs to run the crossover operation in 

parallel and compute the new fitness of the individual after the crossover.  The 

execution time of MapReduce iterations for all iterations is described in Table (5.7) 

and is illustrated on Figure (5.1).  

The results in Table (5.7) show that as the size of category increased, the 

execution of the proposed approach become better that is execution of small size 
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categories, this is because of MapReduce prefer processing small number of large files 

rather that processing large number of small files. We should notice that the results in 

Table (5.7) considered as the basic input for measuring the speedup, efficiency and 

scalability in Section 6.2, Section 6.3 and Section 6.4. 

Each iteration produces two HDFS files, the first contains the whole individuals 

stored with the fitness and the second is a file contains the individuals with maximum 

fitness of every Reducer. At the end of every iteration, the file contains the maximum 

individuals compared with the output of the previous iteration and decides starting new 

iteration or no based on the improvement ration of maximum fitness of each iteration 

as explained in Section 5.2.4.  

The output of every iteration considered as the input of the next MapReduce 

iteration. Finally, if the MapReduce iterations stop successfully, we read an individual 

from the small file from the output of the last iteration that contains the individuals 

that have the maximum fitness as the output summary. As described in Section 4.4, 

the sentences of the summary are ordered in chronological order based on the publish 

date of the original news. 

 

Figure (5.1): Summarization Execution Time. 

We should notice that the results in Table (5.7) considers as the basic for 

computing the speed up score for the proposed approach for text summarization as 

explained later in Section 6.2. 
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5.4 Summary 

In this Chapter, we described the details of the implementation of our proposed 

approach for making automatic text summarization of large-scale multi Arabic 

documents using MapReduce and Genetic algorithm. We give short description about 

the collected data and its characteristics and the NLP tools used in the implementation. 

In addition to that, we presented the environments of Hadoop cluster and the nodes, 

which runs MapReduce model. Finally, we presented the set of experiments of the 

proposed approach. 
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Chapter 6  

Evaluation 

In this chapter, we present an evaluation for the proposed summarization 

approach that consists of measuring the quality of the generated summaries in terms 

of precision and recall and measuring the parallel computation speedup, efficiency and 

scalability. 

6.1 Summarization Quality 

There are an important measure from measuring the quality of document 

summarization, Recall-Oriented Understudy for Gisting Evaluation  (ROUGE) 

proposed by (Lin, 2005). ROUGE uses peer review or human summary to compare 

the system-generated summary with the human summary using several sub measures 

like (ROUGE-N, ROUGE-L, and ROUGE-W). One disadvantages with ROUGE is it 

inability to deal with large summarization approach, it suitable for small datasets 

where human effort is involved in the summary of the original text and comparing it 

to the system summary. 

Since the proposed multi-document summarization approach deals with large-

scale Arabic text documents, ROUGE measure would be ineffective and time 

consuming due to the need to perform manual summarization of the whole data by a 

human. Therefore, using the ROUGE measurement in our proposed approach is a 

challenging task.  

Additional important measures for measuring the quality of document 

summarization are based on precision, recall and F-measure (Gong & Liu, 2001). 

Precision is the fraction of retrieved documents that are relevant to the query. 

Precision (P)=
|system−human choice overlap|

|sentences chosen by system|
        Equation 6.1 

While recall is the fraction of the documents that are relevant to the query that 

successfully retrieved (Nenkova, 2006). 

Recall (R)= 
|system−human choice overlap|

|sentences chosen by human|
         Equation 6.2 

 



65 

 

F-measure = 
2∗𝑃∗𝑅

𝑃∗𝑅
              Equation 6.3 

Therefore, we propose selecting small and random samples of the produced 

summaries and then preform manual summarization for them. This procedure follows: 

select random and small samples from the system-generated summaries, fetch the 

original text of news items of these summaries sample sets and preform the traditional 

precision, and recall measurements to assess the quality of the summary. The same 

samples are provided to a three human experts in managing news website to make 

summary of sample consisted of 10 news items for each data set which mean 40 news 

item in aggregate. The human experts asked to select the most important sentences 

from the sample original news items, which can represent the whole sentences 

regardless the number of chosen sentences.  

The results of the three human expert summarization are shown in Tables (6.1), 

(6.2), and (6.3) respectively.  

Table (6.1): System Results vs. Human Expert 1 Results 

 International Local Politics Reports 

System Summary  12 11 13 10 

Expert 1 Summary 26 24 26 23 

Correct sentences 4 5 3 4 

Precision 0.33 0.45 0.23 0.4 

Recall  0.15 0.21 0.12 0.17 

F-measure 0.21 0.29 0.16 0.24 

 

Table (6.2): System Results vs. Human Expert 2 Results 

 International Local Politics Reports 

System Summary 12 11 13 10 

Expert 2 Summary 28 30 34 33 

Correct sentences 6 7 10 7 

Precision 0.5 0.64 0.77 0.7 

Recall 0.21 0.23 0.29 0.21 

F-measure 0.3 0.34 0.42 0.32 
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Table (6.3): System Results vs. Human Expert 3 Results 

 International Local Politics Reports 

System Summary 12 11 13 10 

Expert 3 Summary 25 27 28 23 

Correct sentences 9 7 8 6 

Precision 0.75 0.64 0.62 0.6 

Recall 0.36 0.26 0.29 0.26 

F-measure 0.49 0.37 0.4 0.36 

 

In document summarization approaches, the precision score represents the 

correct summarized sentences from a collection of sentences. The results show that 

there is variance in the specialists’ summarization. The first human expert results show 

that low score for precision, recall and f-measure. The results of the second and the 

third experts were very similar to each other. The main reason of this variance in the 

results is that the human experts summarized the news items based on their vision of 

the importance of each sentences in the news item. 

 

Figure (6.1): Summarization Quality Based On the Selected Sample Text. 

Figure (6.1) shows the results of summarizing the datasets for the three human 

summaries of all datasets. The results show highest precision scores: local data set by 

expert 1, the politics data set by expert 2. While international data set, get the highest 
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score by expert 3. The figure also shows the lowest precision score especially in 

summarizing the politics data set by human expert 1. Figure (6.2) illustrates the 

average of the precision, recall and f-measure for the four datasets using the three 

human experts. The results show that the local data set has the maximum precision 

score while the reports dataset has the lowest recall score. 

 

Figure (6.2): Evaluation Metrics Average. 

6.2 Speedup 

Speedup is an important measure for the performance of parallel computations. 

Speedup (S) is the ratio of required taken time to solve a problem using single 

processing (ts) to the required time to solve the same problem using several parallel 

(tp) computers (Grama, 2003). Measuring the speedup metric is important in our 

research; firstly, should run the same MapReduce jobs on different node start from 2 

nodes to 16 nodes of our cluster as described in Section 5.3 and compare the results to 

the ideal speedup. The speedup measured using the following equation:  

Sn= ts/tp             Equation 6.4 

where ts (time of serial) is the time of execution the multi document summarizer 

on one node, while tp (time of parallel) is the time of execution the same program 

using parallel computers. 

The results in Table (6.4) show that the speedup of the summarization for the 

datasets is not close enough to the ideal speedup when using less than 12 computer 
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nodes. On the other hand, when we use 16 nodes, the speedup gets more close to the 

ideal speedup. There are many reasons that prevent reaching a speedup close enough 

to the ideal speedup. In parallel computations systems, there are a lot of time lost 

during executing programs in parallel fashion like communication time, idle and waste 

computation.  

Table (6.4): Summarization Speedup. 

Dataset  
Speedup (S) 

2 nodes 4 nodes 8 nodes 12 nodes 16 nodes 

Reports 1.200164 1.544879 2.355878 4.460366 9.885135135 

Politics 1.200553 1.35625 1.846809 3.179487 7.173553719 

Local 1.170047 1.256281 1.744186 2.873563 6.302521008 

International 1.076132 1.473239 1.778912 2.100402 4.47008547 

 

In addition to that, MapReduce runs Map and Reduce jobs in parallel but, Reduce 

method should wait all Map methods on all nodes to complete in order for it to start 

and therefore can increase the overall execution time. Another important reason is that 

MapReduce trends to process large input files rather than process small files.  

 

Figure (6.3): Summarization Speedup. 

In our case, the size of the largest dataset is about 1.2 GB, which is considered 

small for ideal processing by MapReduce, which prefer large amount of data to exploit 
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its advantages. The results Figure (6.3) show that using small datasets, which have size 

less than 1 GB, not result in high speedup score. While Reports dataset get more 

improvement in the speedup score when using 8, 12 and 16 nodes respectively because 

it is the largest data set with size more than 1.2 GB. However, the other data sets size 

is less than 1 GB therefore they did not result in high speedup score like the Reports 

data set.  

The results illustrated in Figure (6.3) are show that using more dataset size and 

more processing nodes make our summarizer approach more efficient and the speedup 

getting more linearly when adding more resources to the cluster nodes. 

6.3 Efficiency 

In parallel systems, there are many available resources available for solving 

computation problems. Efficiency is measure how the available resources in parallel 

system is utilized (Grama, 2003). Efficiency can be computed as the speed up of the 

parallel system to the number of processing units. In general, the value of efficiency is 

between zero and one, therefore the best efficient and ideal parallel system have value 

one and the worse have zero. We can compute the efficiency using the following 

equation: 

E = S / P              Equation 6.5  
where S is the speed up of the system and P is number of processing units. 

Table (6.5): Cluster Efficiency 

Dataset 
Efficiency (E) 

2 nodes 4 nodes 8 nodes 12 nodes 16 nodes 

Reports 0.6 0.386 0.294 0.372 0.618 

Politics 0.6 0.339 0.231 0.265 0.448 

Local 0.585 0.314 0.218 0.239 0.394 

International 0.538 0.368 0.222 0.175 0.279 

 

For our proposed approach, we can find the efficiency from speed up values in 

Table (6.4) where the processing units is the number of cluster nodes and the speed up 

is the corresponding speed up for category and cluster nodes as shown in Table (6.5). 
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Figure (6.4) shows that the efficiency of the proposed system increased for 

summarizing the reports dataset. The main reason is MapReduce model require larger 

data sets sizes which not exists in our data sets. The reports data set size is about 1.2 

GB therefore it gets the highest efficiency among other data sets when using 16 nodes 

in the cluster. In addition to that, when using 2 nodes all data sets efficiency is around 

%62. Nevertheless, when using more resources, the efficiency is decreased which 

mean the resources is not utilized. The main reason of low efficiency score is the data 

sets except reports data sets size not large enough for MapReduce and it should not 

processed using more than two nodes. 

 

Figure (6.4): Cluster Efficiency. 

6.4 Scalability  

Scalability is evaluated rather than computed. A parallel system is said to be 

scalable when the efficiency can be kept constant as the number of processing units 

increased, provided that the problem size is increased (Grama, 2003). We can conclude 

that the proposed system is scalable, where the efficiency is kept (near to) constant 
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while adding more nodes (up to 16 in the experiment) to the MapReduce cluster and 

at the same time increasing the size of data set.  

6.5 Summary 

In this Chapter, we presented the evaluation of the parallel Genetic algorithm 

using MapReduce model. The main result is that the system can correctly select the 

most important sentences from the datasets to construct the readable summary. The 

quality of the summaries is presented in terms of precision, recall and f-measure 

scores. The approach results into acceptable speedup and efficiency scores. We show 

that increasing the datasets size can improve the speedup and efficiency scores 

significantly.  
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Chapter 7  

Conclusion and Future Work 

7.1 Conclusion 

In this research, we built a new approach for making automatic text 

summarization for large-scale multi Arabic documents using Genetic algorithm and 

MapReduce model. We choose Genetic algorithm technique because its ability to 

automatically evolve to the potential summaries during its iterations. However, 

Genetic algorithm suffers from major a problem, the high computation requirement. 

We used MapReduce model for the automatic distribution of a Genetic algorithm-

based summarization computation across a set of machines connected together.  

Our proposed approach guarantees acceptable quality of produced summaries, 

speedup score for using Genetic algorithm, efficient computation usage and provide 

high scalability. Therefore, it is adaptable to make summarization of any desired text 

documents sizes if there are enough resources for MapReduce. 

We evaluated the proposed approach using the traditional text summarization 

metrics, which are precision and recall. The results show that the precision score 

indicated that the approach successfully identified most of the correct summary 

sentences similar to the human specialists’ summaries. In addition to that, the proposed 

approach provides up to 10x speedup score, which is faster than executing the same 

code on single machine. Therefore, it can deal with large-scale datasets successfully. 

Finally, the efficiency score of the proposed approach indicates that the largest data 

set utilize the available resources up 62% which is a satisfying result taking into 

account the available data set sizes. 

It is worth noting that we tackle some obstacles during this research. One 

obstacle is the lack of large organized Arabic text corpus. This make collecting these 

resources from online newspaper resources a challenging task. In addition, in Arabic 

NLP area there are no accurate tools for processing Arabic text such as accurate 

sentence tokenizers, automatic cue-words identifiers, accurate named entity 

recognizers and absence of a complete Arabic WordNet equivalent, which is required 

for semantic similarity for intelligent detection of redundant sentences. 
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7.2 Future Work 

Various future efforts may improve the proposed approach. One such effort is to 

add more features to the list of used features like identifying the named entity in the 

text, identifying cue-words, which can be used for giving strong meaning for the text 

like the words: “emphasize”, “incidentally”, “for example” and many other cue words. 

Additional feature is using semantic similarity measures for accurately detecting the 

redundant sentences and the degree of similarity between words. These features are 

likely to increase the score of the sentences so these sentences are likely to be included 

in the summary, and therefore, the quality of produced summary will be improved 

significantly.  

Finally, increasing the size, domain-diversity and sources of the dataset while 

performing the experiments on a larger MapReduce cluster would increase the speedup 

score, respectively the efficiency and scalability of the proposed approach and 

therefore measure the adaptability of text summarization on cloud computing. We test 

our proposed approach for making text summarization for other domains and other 

text resources like books and social network blogs and tweets.  
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