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PROBABILISTIC ERROR ANALYSIS MODELS FOR NANO-DOMAIN VLSI
CIRCUITS

Karthikeyan Lingasubramanian

ABSTRACT

Technology scaling to the nanometer levels has paved the way to realize multi-dimensional

applications in a single product by increasing the density of the electronic devices on inte-

grated chips. This has naturally attracted a wide variety of industries like medicine, communi-

cation, automobile, defense and even house-hold appliance, to use high speed multi-functional

computing machines. Apart from the advantages of these nano-domain computing devices,

their usage in safety-centric applications like implantable biomedical chips and automobile

safety has immensely increased the need for comprehensive error analysis to enhance their

reliability. Moreover, these nano-electronic devices have increased propensity to transient er-

rors due to extremely small device dimensions and low switching energy. The nature of these

transient errors is more probabilistic than deterministic, and so requires probabilistic models

for estimation and analysis. In this dissertation, we present comprehensive analytic studies

of error behavior in nano-level digital logic circuits using probabilistic reliability models. It

comprises the design of exact probabilistic error models, to compute the maximum error over

all possible input space in a circuit-specific manner; to study the behavior of transient errors

in sequential circuits; and to achieve error mitigation through redundancy techniques. The

model to compute maximum error, also provides the worst-case input vector, which has the

highest probability to generate an erroneous output, for any given logic circuit. The model

for sequential logic that can measure the expected output error probability, given a probabilis-
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tic input space, can account for both spatial dependencies and temporal correlations across

the logic, using a time evolving causal network. For comprehensive error reduction in logic

circuits, temporal, spatial and hybrid redundancy models, are implemented. The temporal re-

dundancy model uses the triple temporal redundancy technique that applies redundancy in the

input space, spatial redundancy model uses the cascaded triple modular redundancy technique

that applies redundancy in the intermediate signal space and the hybrid redundancy techniques

encapsulates both temporal and spatial redundancy schemes. All the above studies are per-

formed on standard benchmark circuits from ISCAS and MCNC suites and the subsequent

experimental results are obtained. These results clearly encompasses the various aspects of

error behavior in nano VLSI circuits and also shows the efficiency and versatility of the prob-

abilistic error models.
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CHAPTER 1

INTRODUCTION

Integrated Circuits are used in a wide range of important applications like automobile,

aircraft, medicine, defense, communication and even house-hold appliances. Critical applica-

tions like medicine demand high accuracy and efficiency due to stringent safety requirements,

while applications like automotive, defense demand more robustness due to extreme work-

ing conditions [41, 42, 39]. Also the demand for multi-dimensional applications in a single

product has increased the density of the electronic devices on a chip eventually resulting in

reduction of device feature size, pushing the technology to nanometer levels [60, 59]. Com-

plementary Metal Oxide Semiconductor (CMOS) transistors, which are the current generation

electronic devices, have been shrunk to sub-50nm dimensions [59]. This reduction in feature

size results in variations in device and process parameters, which in turn leads to transient dy-

namic faults in digital circuits. In this dissertation, we present an error model that can handle

these transient dynamic faults using probabilistic methods. Using this error model, we present

a unique method to calculate maximum errors in digital circuits. Also, based on this error

model, we present a time evolving probabilistic network that can calculate error in sequen-

tial circuits. Finally, we present temporal, spatial and hybrid redundancy techniques, which

incorporates selective redundancy using the base error model, for error mitigation in digital

circuits.
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1.1 Motivation

Why use probabilistic models? Nano-domain computing devices are likely to have higher

error rates (both in terms of defect and transient faults) as they operate near the thermal limit

and information processing occurs at extremely small volume [61, 47]. Nano-CMOS, beyond

22nm, is not an exception in this regard as the frequency scales up and voltage and geometry

scales down. The resulting errors, due to uncontrollable variations in device and process pa-

rameters like temperature and threshold voltage, are highly intractable for deterministic testing

tools used to detect permanent faults. A fresh look at reliability in a technology independent

fashion is both timely and necessary. Given the inherent stochastic nature of the devices in the

nano-regime, instead of deterministic logic models probabilistic models would be more ap-

propriate. This requires a significant shift in the design and testing paradigm, with reliability

adopting a central role in design of electronic devices.

Why model maximum error? Industries like automotive and health care have tradition-

ally addressed high reliability requirements by employing redundancy, error corrections, and

choice of proper assembly and packaging technology. In addition, rigorous product testing

at extended stress conditions filters out even an entire lot in the presence of a small num-

ber of failures [39]. Another rapidly growing class of electronic chips where reliability is

very critical is implantable biomedical chips [41, 42]. More interestingly, some of the safety

approaches, such as redundancy and complex packaging, are not readily applicable to im-

plantable biomedical applications because of low voltage and low power operation and small

form factor requirements. Authors in [41] identified that conventional approaches in device

and parasitic modeling, circuit techniques, and manufacturing and test need to improve due

to extreme low power and high reliability requirements, since these constraints pose serious

complexities in circuit design through unpredictable design environment. In addition, we be-

lieve our method of calculating maximum probability of error and the proposed maximum
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error probability aware design is well suited for implantable biomedical IC design. While two

design implementation choices can have different average probabilities of failures, the lower

average choice may in fact have higher maximum probability of failure leading to lower yield

in manufacturing and more rejects during chip burn-in and extended screening. Also, when

the input space for a circuit is completely random and equally probable, calculation of average

error will suffice. But, as in some cases, when the input space gets biased, the average error

information will not be comprehensive enough to understand the error behavior in the circuit.

Therefore, using maximum probability of failure as a critical design metric along with average

case would be required in design of safety critical electronic chips.

Why model error in sequential circuits? Most of the real-time applications of electronic

devices, like random access memories, needs them to be sequential in nature. Sequential cir-

cuits consist of a combinational logic block, set of inputs, set of state bits where the values of

the next state bit is fed back to the present state in the next clock cycle through latches. At

a given time instance ti, the state signals sti are uniquely identified as a function of primary

input signals iti and state signals sti−1 of the previous time instance giving rise to temporal

correlations. Due to this, error occurring in the combinational part of the circuit at one time

instance might propagate towards several consecutive time instances making the device more

vulnerable [54, 51]. The static reliability models used for combinational circuits are not ad-

equate to model the temporal dependencies between the circuit nodes, at the combinational

part of the sequential circuit, at different time instances [52, 53, 54, 51, 55]. In order to handle

this a more dynamic model which can evolve through consecutive time instances is needed.

1.2 Significance

The errors that can occur in nano-domain VLSI circuits can be widely divided into two

categories, hard faults and soft errors. Hard faults refer to any permanent faults that can

3
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Figure 1.1. Significance of this dissertation

occur in a circuit component due to physical defects like oxide abnormalities in the transistor,

electrical defects like shorts and opens, logical defects like stuck-at and delay faults. Soft

errors refer to the failures in circuit components due to external conditions like high energy

neutron interaction or device parameter variations. Out of these categories, soft errors are

the toughest to model due to their transient nature, since the external conditions responsible

for these errors are highly unpredictable at the nanometer levels. So, the reliability models

used to address hard faults cannot be used to model soft errors, since they are completely

deterministic. Therefore, comprehensive probabilistic models, like our model, are well suited

to handle the transient soft errors.

The most prevalent soft errors in nano-domain VLSI circuits are widely categorized into

Single Event Upsets (SEUs) due to external particle interaction, and dynamic errors due to

device and process variabilities. While failures due to SEUs are more localized, in the sense,

they occur in a particular component in the circuit and gets propagated, dynamic errors are

more global, in the sense that, they can occur on multiple components of the circuit at the

same time. So, the models that address failures due to SEUs are not enough to model dynamic
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errors. Our model, presented in this work, targets the dynamic errors by giving provisions to

address error behavior in multiple circuit components at the same time.

Also our model can be considered as a complete and comprehensive model that can accu-

rately calculate both maximum and average errors in digital circuits. This versatility offers a

wider diagnostic application space, which aids the collection of a variety of information sets

that are highly essential for IC testing.

1.3 Contribution

The contributions of this dissertation are as follows,

• A method to calculate maximum output error in digital circuits using a probabilistic

model is presented.

– Given a circuit with a fixed gate error probability ε, this error model can provide

the maximum output error probability and the worst-case input vector, which can

be very useful testing parameters. Its also shown that these worst-case input vec-

tors not only depend on the circuit structure but could dynamically change with

ε.

– It is shown that the maximum output error probabilities are much larger than av-

erage output error probabilities, for comparatively lower values of individual gate

error probability ε, thereby signifying the importance of maximum error as a de-

sign parameter.

– The circuit-specific error bounds for fault-tolerant computation are presented and

it is shown that maximum output errors provide a tighter bound. Also, it is shown

that the error bound for an individual gate placed in a circuit can be dependent on

the circuit structure.
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– Through this work, an efficient design framework that employs inference in binary

join trees using Shenoy-Shafer algorithm, to perform MAP hypothesis accurately,

is being applied for the first time in the context of digital computing machines.

– The validity of the error model is tested through comparison with circuit simu-

lations using HSpice and the results showed that the highest % difference of the

error model over HSpice is just 1.23%, signifying its accuracy.

– The possibility of efficient error incorporation in this model is presented by provid-

ing variable ε values to different gates of a circuit, instead of providing the same ε

value to all gates. This formation of the error model can help in useful diagnostic

studies like error sensitivity analysis.

• An exact probabilistic error model that can study transient error behavior in sequential

logic is presented.

– This model can accurately calculate the average output error probability in any

given sequential circuit.

– A minimal time evolving probabilistic network, namely, the Temporal Dependency

Model (TDM), that can handle both spatial dependencies between nodes in a single

time slice and temporal dependencies between nodes in different time slices, is

presented.

– It is shown that the increase in output error probabilities is more than 2 folds, even

for a slight increase in ε value, thereby indicating the vulnerability of sequential

circuits to transient errors.

– The crucial study of error propagation across different time instances, in a se-

quential circuit, can be performed using this model. This study is important to

understand error behavior in sequential circuits.
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– It is shown that the number of time slices needed by the model, to converge to a

final average output error value, is completely dependent on the circuit structure.

– The flexibility of the error model is shown by incorporating unequal gate error

probability values, ε0 and ε1, to study the effect of 0 → 1 and 1 → 0 errors on

the output of a circuit. Given a gate output signal, ε0 represents the probability

of error occurrence when the ideal value of the signal is ’0’, and ε1 represents the

probability of error occurrence when the ideal value of the signal is ’1’.

– The validity of the error model is tested through comparison with circuit simula-

tions using HSpice and the results showed that the highest percentage difference

of the error model over HSpice is only 6.25%, signifying its accuracy.

• Using the probabilistic error model, temporal, spatial and hybrid redundancy techniques

are performed, to achieve error mitigation in digital logic circuits.

– Efficient error reduction is achieved through selective redundancy, which is estab-

lished by applying redundancy only to the most influential input combinations and

the most sensitive nodes.

– Through experimental results, the relative benefits of the temporal, spatial and

hybrid redundancy schemes are presented and hybrid redundancy is shown to be

the best scheme for error mitigation in digital logic circuits.

– It is shown that increasing the amount of redundancy results in better error mitiga-

tion in all the three schemes.

– It is shown that the error mitigation percentage for 15% temporal redundancy, is

more than 10% for all circuits, while for 15% spatial redundancy, it is more than

20% for all circuits and for 15% hybrid redundancy, it is more than 30% for all

circuits, thereby showing the high yield of hybrid redundancy scheme.
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– Delay and area penalties in temporal and spatial redundancies respectively are

presented and its is shown that the area penalty is much higher than the delay

penalty.

1.4 Scope of Application

Digital VLSI circuits are widely used in critical and essential applications like automo-

biles, defense, medicine and communication. The need for reliable computation in these

circuits are of the utmost importance due to the nature of its applications. VLSI circuits are

used in the automobile brake system, implantable bio-medical devices like pacemaker, air-

craft control system and multi-functional smart phones like iPhone. The scaled computational

devices in current generation nano-domain VLSI circuits has immensely improved its applica-

tion space. The advent of smart phones and implantable bio-medical chips are made possible

primarily by this scaling trend. At the same time VLSI circuits at nano-domain suffer from

various reliability issues that should be addressed during the design process.
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In nano-domain digital VLSI circuits, affected by multiple errors, there can be one max-

imum error that can even breakdown the entire device. While primarily all of the current

reliability studies estimate the overall adverse effect by considering the average of all errors,

estimating the worst-case maximum error has proved to be tedious and cumbersome. Our reli-

ability model, presented in this dissertation, can efficiently estimate this worst-case maximum

error and the input vector associated with this error, through intelligent diagnostic studies.

In IC testing, the usage of a probabilistic error model and the information about the worst-

case input vector can help to improve testing techniques like scan chains, burn-in test and

hierarchical testing. Scan chains are widely used in Design for Test (DFT) methodologies

for IC testing. The basic idea is to form a chain of flip-flops that are made scan-able and

the desired test pattern can be serially inserted into the flip-flop chain. The test pattern is

applied to the logic circuits driven by the flip-flop chain after which the logic circuit outputs

can also be captured into the same or different flip-flop chain for serial shift-out. In such

a setup, including the worst-case input vector in the test patterns can speed up the testing

process, since the most hazardous behavior of the circuit-under-test can be detected with the

worst-case input vector. Burn-in tests are performed to find out devices with inherent defects

or manufacturing defects [44]. These devices will go faulty when subjected to high stress. The

IC is subjected to long test time and stress conditions, such as extreme Vdd and temperatures,

during a burn-in test. To aid the burn-in test, a probabilistic error model that can target and

exercise individual device fault modes would help to expedite the failure mechanisms and

to screen for inherent faults in a shorter test time. More specifically, the worst case input

vectors generated according to our method is well suited for application during the burn-

in test. Finally, in hierarchical testing, the entire circuit-under-test is divided into several

internal modules where these modules can be tested individually. Such a hierarchical division

reduces the size of circuit-under-test facilitating rigorous probabilistic error analysis and the

application of worst input vectors to the targeted internal modules.
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The reliability model for error estimation in sequential circuits, presented in this disserta-

tion, can be used to perform efficient diagnostic studies in essential real-time applications like

computer memories. In these sequential circuits, for a fixed input vector, the intermediate sig-

nals can get stuck at a wrong value due to the presence of error. This could propagate across

several time instances and this behavior can happen to any input vector. Such deterministic

approaches provides inaccurate estimation of the error behavior in sequential circuits. Our

model, which is a probabilistic reliability model, takes care of this discrepancy by treating

both input and signal space in a probabilistic manner, thereby ensuring efficient diagnostic

studies for reliability.

While the three error mitigation schemes, temporal, spatial and hybrid, presented in this

dissertation, can be used for error optimization in any nano-domain VLSI circuit, the trade-

off studies between them can provide essential application-specific information for circuit

designers. If the application demands lesser area, then more importance should be given

to temporal redundancy than spatial redundancy. If the application has high probability of

error occurrence in the signal space than the input space, then more importance should be

given to spatial redundancy than temporal redundancy. The trade-off studies presented in

this dissertation, can provide information related to the above scenarios, which are crucial for

circuit design.

1.5 Organization

This dissertation is organized as follows,

• Chapter 2 provides the related research works done in the field of probabilistic reliability

analysis for VLSI circuits.

• Chapter 3 provides the fundamental design concepts of the probabilistic error model.
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• Chapter 4 explains, in detail, about the modeling of maximum errors in logic circuits

using a probabilistic error model.

• Chapter 5 explains, in detail, about modeling of errors in sequential circuits using a

dynamic time-evolving probabilistic error model.

• Chapter 6 explains, in detail, about the temporal, spatial and hybrid redundancy schemes

used for error mitigation in digital logic circuits.

• Chapter 7 provides the conclusion and future directions of this work.
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CHAPTER 2

RELATED WORK

In nanometer level circuits, due to device scaling, the most prevalent and detrimental errors

are soft errors that are caused mainly by external particle interactions and variations in device

and process parameters. While the former results in localized failures like Single Event Upsets

(SEUs), the latter leads to more global dynamic errors.

2.1 SEU Modeling

The modeling of device failures due to SEUs are done in different levels of design abstrac-

tion, like device level, circuit level and gate level [62, 69, 70, 71, 73, 85, 74]. Initial work on

external radiation interaction on semiconductors was done as early as 1967 [62], in which the

authors proposed one dimensional drift diffusion models to study the radiation effects on semi-

conductor devices used widely in space applications. This work was followed by a number

of significant device level models for memory elements, using numerical simulation [63, 64].

In order to handle more complex situations, which are intractable by numerical simulation

models, analytic and empirical models were proposed [67]. The study of external particle

interaction with semiconductor devices, which is more of a multi dimensional phenomenon,

was enhanced through the advent of two dimensional and three dimensional models [65, 66],

which accurately measured the charge particle drift and diffusion mechanisms. At the circuit

level, SEU modeling is done by addressing circuit parameters like supply voltage, threshold

voltage and clock period; and circuit characteristics like electrical masking, logical mask-
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ing and latching window effects. Simulation based models like SEMM [69] and SERA [56]

encapsulates these circuit aspects to provide soft error rate analysis in digital logic circuits.

While optimization techniques using dual-Vdd and gate sizing are used to model SEU [70], its

effects on interconnects are also modeled at the placement level [71], using simulated anneal-

ing. At the gate level, SEU modeling is based primarily on the detection of the probability of

error occurrence at the gate outputs. Logical abstraction tools like binary decision diagrams

are used to perform soft error rate analysis in both combinational [72] and sequential [51] cir-

cuits, while a completely probabilistic model based on Bayesian networks was used in [85] to

detect SEUs in digital logic circuits. While practical experiments like injecting SEUs in chips

using laser pulses to verify fault tolerance [74, 75] were performed, popular testing techniques

like built-in self-test mechanism [76] were also used to study soft errors.

2.2 Dynamic Error Modeling

Dynamic errors are transient soft errors caused by the uncontrollable and unpredictable

fluctuations in device and process parameters due to scaling. These global errors can coex-

ist with the local SEUs and static hard faults, and they can happen randomly at any node in

the circuit, making them untraceable. The basic concept of dynamic error modeling is the

assumption that every circuit component will have a finite propensity to be erroneous. Based

on this idea, researchers approached dynamic error modeling problem in three broad cate-

gories, calculation of error bounds, calculation of average error, and error reduction through

redundancy.

2.2.1 Calculation of Error Bounds

The study of reliable computation using unreliable components was initiated by Von Neu-

mann [1] who showed that erroneous components with some small error probability can pro-
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vide reliable outputs and this is possible only when the error probability of each component

is less than 1/6. In this heuristic study, Neumann represented the logic gates as automatons

which are governed by logic functions. It was stated that the probability of error in the au-

tomaton and its output cannot exceed 1/2, since the system will become irrelevant at that

bound. Keeping this as the basic upper bound for the probability of error in the output, the

error probability of the automaton was studied through a majority organ, in which three copies

of the same automaton were created and the majority of the three outputs was considered true.

This arrangement was proven to reduce the error probability of the base system, and through

this it was shown that the error probability of the automaton cannot be ≥ 1/6, since at this

upper bound the system becomes unsustainable.

This work was later enhanced by Pippenger [3] who realized Von Neumann’s model using

formulas for boolean functions. Here the digital logic components are realized using functions

whose number of arguments relate to the number of inputs in the component. Through this

arrangement, it was shown that for a function controlled by k-arguments, the error probability

of each component should be less than (k−1)/2k to achieve reliable computation. Through

this, an interesting result was shown for 3-input components, whose error probability bound

for reliable computation was 1/3, which is greater than the Von Neumann bound of 1/6,

thereby creating curiosity. This work was later extended by using networks instead of formulas

to realize the reliability model [4]. In [5], Hajek and Weller used the concept of formulas to

show that for 3-input gates the error probability should be less than 1/6, thereby reiterating

Von Neumann’s bound. Later this work was extended for k-input gates [6] where k was chosen

to be odd. The authors claimed that since k+ 1 input gates can simulate k input gates, their

model can be easily used to compute bounds for gates with even number of inputs. For a

specific even case, Evans and Pippenger [7] showed that the maximum tolerable noise level

for 2-input NAND gate should be less than (3−√
7)/4 = 0.08856 · · ·.
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Later this result was reiterated by Gao et al. [8] for 2-input NAND gate, along with other

results for k-input NAND gate and majority gate, using bifurcation analysis that involves

repeated iterations on a function relating to the specific computational component. The prob-

ability of the output line of a NAND gate, given by Z, was associated with the probabilities of

the input lines X and Y using the equation,

Z = (1− ε)(1−XY)+ εXY = (1− ε)(2ε−1)XY (2.1)

where ε is the probability of error in the NAND gate. In order to study the error behavior, a

network of NAND gates, where the output of each gate is connected to the input of at least

one other gate, was created and the inputs X and Y are considered to be equally probable to

be at logic ’1’. The corresponding equation for this network was written as,

Xi+1 = (1− ε)+(2ε−1)X2
i (2.2)

The initial value X0 was arbitrarily chosen and an iterative process was performed to obtain

consequent Xi values. After the solution has converged, values from the last few iterations

are plotted against the corresponding ε values to obtain the bi-modal graph for bifurcation

analysis. This bi-modal graph clearly showed that reliable computing using erroneous 2-input

NAND gates is not possible when its error probability ε = 0.08856 · · ·.
While there exist studies of circuit-specific bounds for circuit characteristics like switching

activity [9], the study of circuit-specific error bounds would be highly informative and useful

for designing high-end computing machines.
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2.2.2 Calculation of Average Error

Many researchers are currently focusing on computing the average error from a circuit

and also on the expected error to conduct reliability-redundancy trade-off studies. In [45], a

Probabilistic Transfer Matrix (PTM) based model for reliability studies was proposed. In this

method each circuit signal is represented using random variables and the functionality of each

erroneous gate is represented in a matrix form using the PTMs (Fig. 2.1.(a)). Each gate in

the underlying digital circuit was represented by an individual PTM. To calculate the error

probability of the circuit, a PTM for the entire circuit is formed by multiplying the individual

gate PTMs. If gates g1 and g2 are connected in series, under the condition that when g1 gets

an input gI
1 it results in g2 giving an output gO

2 , the combined PTM can be written as

p(gO
2 |gI

1) = ∑
all j

p(gO
2 | j)p( j|gI

1) (2.3)

If gates g1 and g2 are connected in parallel, under the condition that when g1 gets an input gI
1

it results in output gO
1 and when g2 gets an input gI

2 it results in output gO
2 , the combined PTM

can be written as

p(gO
2 |gI

1) = p(gO
2 |gI

2)p(g
O
1 |gI

1) (2.4)

This is an exact method but it is computationally expensive.

An approximate method based on Probabilistic Gate Model (PGM) is discussed by Han

et al. in [15]. Here the PGMs are formed using the sum of product equations governing the

functionality between an input and an output. For any gate, with an output Zi and with error

probability ε, its PGM can be written as,

Zi = Ei(1− ε)+(1−Ei)ε (2.5)
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Figure 2.1. (a) Probabilistic transfer matrix for erroneous NAND gate with error probability
ε [45] (b) Markov random field [47]

where Ei is the sum of product equation. For a 2-input AND gate with inputs I1 and I12,

Ei = I1I2. So the corresponding Zi can be written as,

Zi = (I1I2)(1− ε)+(1− (I1I2))ε (2.6)

All the gates in the circuit were represented with individual PGMs and the overall reliability of

the circuit was calculated by multiplying the individual gate reliabilities, which were assumed

to be independent. This approximate model was proved to be faster than the exact PTM model.

A Markov Random Field (MRF) based probabilistic model for reliability studies was pro-

posed in [47], which concentrated more on hard errors than soft errors. Here, the circuit

signals were represented as random variables in a Markov random network, where every node

is dependent only with the directly connected nodes that are called its neighbors (Fig. 2.1.(b)).

Given a set of random variables Γ = {X1, · · · ,Xn} forming a Markov network, the probability
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of any random variable, Xi, in the Markov network was described using Gibbs distribution as

follows,

P(Xi|{Γ−Xi}) = 1
Z

e−
1

kT ∑c∈φUc(X) (2.7)

where Z is a normalizing constant that bounds the probability value to [0,1], kT is the thermal

energy, c is clique in the set of cliques φ associated with Xi and Uc is the clique energy. A

typical clique in the circuit representation of Markov network will comprise of the nodes

representing the inputs and output of a gate. In this sense, every gate will have its own clique

and clique energy. The logic gates were represented using their sum of products term and the

clique energy for each gate was derived. For an inverter with input x0 and output x1, the clique

energy was derived as follows,

U = −((1− x0)x1+ x0(1− x1)) (2.8)

= −(x1 − x0x1+ x0 − x0x1)

= 2x0x1− x0 − x1

The negative sign in the clique energy signified the design condition that clique energies of

valid states should be lower than those of invalid states. The corresponding Gibbs distribution

was given as,

P(x0,x1) =
1
Z

e−
1

kT (2x0x1−x0−x1) (2.9)

The probability of output x1 = 1 was calculated by marginalizing P(x0,x1) over all possible

values of x0.

P(x1) =
1
Z ∑

x0={0,1}
e−

1
kT (2x0x1−x0−x1) (2.10)

=
e

x1
kT + e

(1−x1)
kT

2(1+ e
1

kT )
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Likewise, the probability distribution of every signal in the circuit was represented using Gibbs

distribution. Corresponding probability distributions for the primary outputs of the circuit was

determined by propagating the marginalized distributions across various cliques using belief

propagation algorithm. Since these distributions were associated with thermal energy kT ,

comprehensive reliability studies on nanoarchitectures working under critical thermal limits,

were performed by altering the kT values and examining the signal probability distributions.

Although, this work provided some much needed insight on thermal behavior of nano-domain

circuits, it was performed on error free devices instead of erroneous ones.

Another work on reliability studies using probabilistic model checking was proposed

in [58]. This method employed discrete-time Markov Chains for probabilistic model check-

ing. In another significant work [99], the average output error in digital circuits was calculated

using a probabilistic reliability model that employed Bayesian Networks.

2.2.3 Error Reduction Through Redundancy

The term ’redundancy’ means the usage of multiple redundant copies of the same erro-

neous component in order to test or improve its reliability. Von Neumann, in his legendary

work, was one of the first to propose one such methodology called multiplexing and he used

it to study the reliability of NAND logic [1]. This model was created by taking multiple

copies of the same erroneous NAND gate and supplying them input signals randomly from

various bundles of input lines. This setup ensures effective duplication of all possible signals

at the outputs. To obtain better error tolerance, two more NAND multiplexing setups are cas-

caded with the previous one. While the first NAND multiplexing setup called the “Executive

Unit” performed the logic computation, the following two units called the “Restorative Unit”

restored the correct computation values. (Fig. 2.2.)

Von Neumann also introduced the widely used redundancy technique called Triple Mod-

ular Redundancy (TMR) [1]. In TMR, three copies of the same erroneous logic component
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Figure 2.2. NAND multiplexing scheme introduced by Von Neumann [1]

was created and the correct value was determined by performing the majority voting out of the

three outputs. Given three different signals X , Y and Z, the majority voting could be performed

using the function, XY +YZ+XZ. Using this, Von Neumann showed significant reduction in

the probability of error occurrence in logic devices. As an extension of TMR, a more general

model called N-Modular Redundancy (NMR) [2] was proposed, where N is chosen to be odd

to facilitate majority voting. If TMR was used to choose the majority of 2 out of 3 inputs,

NMR was used to choose the majority of n+1 out of 2n+1 inputs. Also, given an erroneous

system with error probability ε, the reliability R through performing TMR was given by,

R(TMR) = ε3+3ε2(1− ε) (2.11)

and the corresponding reliability through performing NMR was given by,

R(NMR) =
n

∑
i=0

N!
(N − i)!i!

(1− ε)iεN−i (2.12)
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where N = 2n+1. These base models for hardware redundancy were later applied in essential

applications like fault-tolerant microprocessor design [10], and also paved the way to a variety

of techniques for software, data and time redundancies. Apart from being used in the circuit

level, they were also used in different levels of design abstractions like in [73], where Selective

TMR (STMR) was used in FPGA’s to minimize error behavior due to SEUs.

From the initial works of Von Neumann, the study of fault-tolerant computation expanded

its barriers into fields like nano-computing architectures. An expansion of the TMR technique

called Cascaded Triple Modular Redundancy (CTMR) [11] was used for reliability studies of

nanochips using single-electron devices and quantum cellular automata gates. While TMR

is referred to as single level redundancy technique, CTMR is referred to as multilevel re-

dundancy technique, where outputs from three different TMR units were supplied to another

majority gate to perform multiple levels of voting in order to obtain better error reduction. A

generalized CTMR technique, called Cascaded General Modular Redundancy (CGMR) was

also proposed in this work [11].

In [12], the reliability of reconfigurable architectures was obtained using NAND multi-

plexing technique. The processors in the architecture were implemented with NAND multi-

plexing system with a redundancy factor of 3. In the design, redundant spare circuitries were

also developed to enhance error correction and minimize error detection. In [13], majority

multiplexing was used to achieve fault-tolerant designs for nanoarchitectures. They further

enhanced the majority multiplexing model for small input error probabilities, by removing the

restorative stage, since effective restoration is possible without that stage. A recent compar-

ative study of some of these methods [14], indicates that a 1000-fold redundancy would be

required for a device error (or failure) rate of 0.011.

1Note that this does not mean 1 out of 100 devices will fail, it indicates the devices will generate erroneous
output 1 out of 100 times.
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Figure 2.3. Some of the related works on reliability models for dynamic errors in VLSI circuits

2.3 Relation to State-of-the-Art

This work concentrates on the following,

• Modeling dynamic errors, which are global, as opposed to localized SEUs. This is

done using a probabilistic error model, where efficient error incorporation in multiple

nodes is possible. Also in this model, the error injection and probability of error for

each gate can be modified easily. Moreover, both fixed and variable gate errors can be

accommodated in a single circuit without affecting computational complexity.

• Estimation of maximum error as opposed to average error, since for higher design

levels it is important to account for maximum error behavior, especially if this behavior

is far worse than the average case behavior. This estimation is performed as a diagnostic

study in our error model, using the Maximum a posteriori (MAP) hypothesis, where the

22



output nodes are forced to be erroneous and the information is propagated towards the

input nodes to estimate the possible input configuration, that can provide a maximum

error in the output.

• Estimation of output error in sequential circuits as opposed to combinational circuits,

since the transient errors that occurs in a particular time frame, of a sequential circuit,

will propagate to consecutive time frames thereby making the device more vulnera-

ble. This estimation is performed using a minimal time evolving probabilistic network,

namely, the Temporal Dependency Model (TDM), that can handle both spatial depen-

dencies between nodes in a single time slice and temporal dependencies between nodes

in different time slices.

• Designing temporal, spatial and hybrid redundancy schemes, using our probabilistic

error model, to achieve error mitigation. We perform temporal redundancy using Triple

Temporal Redundancy (TTR) technique and spatial redundancy using CTMR technique.

Also efficient error reduction is achieved through selective redundancy, by applying

redundancy only to the most influential input combinations and the most sensitive nodes.
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CHAPTER 3

DESIGN FUNDAMENTALS

3.1 Probabilistic Representation of Digital Circuits

A digital circuit is basically a network of digital signals connected together through gates

whose functionalities are based on boolean logic. This network can be represented accurately

using a graphical model, where the nodes represent the digital signals and the edges represent

the boolean logic functionality of the gates. Also these edges should be unidirectional, since

information flow in digital circuits is unidirectional from input to output. In order to assist ef-

ficient diagnostic studies on digital circuits, their graphical representation can be modeled as

probabilistic graphical models where each node is a random variable with two possible states,

’logic 0’ and ’logic 1’ or simply ’0’ and ’1’. To represent the digital functionalities, each ran-

dom variable should be associated with a probability distribution function (pdf). Consider the

example in Fig 3.1., where a digital circuit and its probabilistic graphical model are given. As

discussed, each node from N1 to N8 is a random variable whose value will be either ’0’ or ’1’.

In a network representing any digital circuit, the nodes corresponding to the primary inputs

(i.e.,N1, N2, N3 in our example) will always be completely independent and every other child

node will be dependent on at least one parent node. This kind of interdependency between

nodes gives rise to conditional probability distribution, and so the pdf’s are represented as

Conditional Probabilistic Tables (CPTs). Fig 3.1. provides the CPTs for all the nodes. Since

N1, N2, N3 are primary inputs, their pdf’s can be controlled by the user. The child node N4

is dependent on its parent nodes N1 and N2 through AND logic, and the corresponding CPT
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Figure 3.1. Representation of a digital circuit as a probabilistic graph
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should reflect this functionality. This can be achieved by providing the pdf as follows,

P(N4 = 0|N1,N2) =

⎧⎪⎨
⎪⎩

0 if N1=1 and N2=1

1 otherwise

P(N4 = 1|N1,N2) =

⎧⎪⎨
⎪⎩

1 if N1=1 and N2=1

0 otherwise

(3.1)

Similarly the CPTs for N5 should obey NOT logic, N6 should obey OR logic, N7 should obey

NOR logic, and N8 should obey NAND logic.

Once the graph model for a digital circuit is ready, the next obvious question is whether the

model captures all the interdependencies between the nodes. For example, in the probabilistic

graph given in Fig 3.1., the node N7 is directly dependent on nodes N4, N5 and indirectly de-

pendent on nodes N1, N2. Also, node N8 is directly dependent on nodes N5, N6 and indirectly

dependent on nodes N2, N3. If we add edges representing these indirect dependencies, then

the resulting probabilistic graph will be as seen in Fig 3.2.(a). But are these edges necessary?

In the given digital circuit, it can be seen that the relation of the signal N7 towards the signals

N1, N2 is taken care by the signals N4, N5, i.e. any change in signals N1, N2 will be captured

by their direct output signals N4, N5 and the same changes will be translated to signal N7

through N4 and N5. So, in the corresponding probabilistic graph model, we can comfortably

say that node N7 is independent of nodes N1, N2 given nodes N4, N5. In a similar fashion,

we can also say that node N8 is independent of nodes N2, N3 given nodes N5, N6. In other

words, we can say that all the indirect dependencies are taken care by the direct dependencies.

As a result all the extra edges representing indirect dependencies can be removed from the

probabilistic graph model given in Fig 3.2.(a) resulting in Fig 3.2.(b), which is similar to the

initial model given in Fig 3.1. This representation is the absolute minimal, in the sense that
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Figure 3.2. Minimal representation of the probabilistic graph

removing even one edge will collapse the interdependencies between the nodes and eventually

results in an incomplete representation of the given digital circuit.

The probabilistic graph model can be represented mathematically as the conditional fac-

toring of a joint probability distribution. Any probability function P(y1,y2, · · · ,yN) can be

written as,

P(y1, · · · ,yN) = P(yN|yN−1,yN−2, · · · ,y1)

P(yN−1|yN−2,yN−3, · · · ,y1)

· · ·P(y1) (3.2)

where y1,y2, · · · ,yN are random variables. This expression holds for any ordering of these

random variables. For the example probabilistic graph model in Fig 3.1., this probability
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function can be written as,

P(n1, · · · ,n8) = P(n8|n7,n6,n5,n4,n3,n2,n1)

P(n7|n6,n5,n4,n3,n2,n1)

P(n6|n5,n4,n3,n2,n1)

P(n5|n4,n3,n2,n1)

P(n4|n3,n2,n1)

P(n3)P(n2)P(n1) (3.3)

where n1, · · · ,n8 are the random variables represented by the nodes N1, · · · ,N8 respectively.

But this equation does not perfectly represent the structure of the corresponding probabilistic

graph model. As discussed earlier, in the minimal representation of the probabilistic graph

model, every child node is connected only to its parent nodes. So Eqn. 3.2 can be restructured

as follows,

P(y1, · · · ,yN) = ∏
v

P(yv|Pa(Yv)) (3.4)

where Pa(Yv) are the parents of the node Yv, representing its direct causes. For the example

probabilistic graph model in Fig 3.1., this restructured joint probability function can be written

as,

P(n1, · · · ,n8) = P(n8|n6,n5)P(n7|n5,n4)

P(n6|n3,n2)P(n5|n2)

P(n4|n2,n1)P(n3)P(n2)P(n1) (3.5)
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3.2 Modeling Error in Digital Circuits

Any unexpected change in the logic state of the digital signals gives rise to error in digital

circuits. In order to understand and study these errors, we need a model that can detect these

unexpected changes. One such way of doing that is to compare the erroneous circuit with its

ideal error-free counterpart. Consider the circuit in Fig 3.3.(a), where each signal other than

the primary input signals can be erroneous through the faulty gates. Note that we assume that

primary input signals are error-free. In order to create the error detection model, two copies of

the circuit is created, where one copy represents the circuit in its normal erroneous form and

the other copy represents the circuit in its ideal form. When the primary outputs of these two

copies are compared, any error occurrence will become evident through the possible presence

of dissimilar logic states. The appropriate logic gate to do this operation is the XOR gate,

which produces a ’1’ in its output when its inputs have dissimilar logic states and provides a ’0’

in its output when its inputs have similar logic states. Fig 3.3.(b) illustrates the error detection

model for digital circuits based on the above mentioned concept. N4e,N5e, · · · ,N8e are the

erroneous signals and N4,N5, · · · ,N8 are the ideal signals. Signal C1 gives the comparison

between the erroneous and ideal primary outputs N7 and N7e; signal C2 gives the comparison

between the erroneous and ideal primary outputs N8 and N8e. It should be noted that the

ideal error-free portion and the comparator portion are fictitious and used only for studying

the given circuit.

The corresponding probabilistic graph model for error detection can be created as shown

in Fig 3.3.(d). Lets say that each gate in the digital circuit has ε % chance of being faulty. ε

can be termed as the gate error probability. This can be accommodated in the corresponding
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probabilistic graph model by changing the CPTs as follows,

P(N4e = 0|N1,N2) =

⎧⎪⎨
⎪⎩

ε if N1=1 and N2=1

1− ε otherwise

P(N4e = 1|N1,N2) =

⎧⎪⎨
⎪⎩

1− ε if N1=1 and N2=1

ε otherwise

(3.6)

where N4e is the erroneous output signal of a faulty AND gate as shown in Fig 3.3.(a). Ac-

cordingly, the corresponding CPTs for rest of the erroneous nodes are provided in Fig 3.4.
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CHAPTER 4

MAXIMUM ERROR MODELING

In this chapter, we present a probabilistic model to study the maximum output error over

all possible input space for a given logic circuit. We present a method to find out the worst-

case input vector, i.e., the input vector that has the highest probability to give an error at the

output. In the first step of our model, we convert the circuit into a corresponding edge-minimal

probabilistic network that represents the basic logic function of the circuit by handling the

interdependencies between the signals using random variables of interest in a composite joint

probability distribution function P(y1,y2, · · · ,yN). Each node in this network corresponds to a

random variable representing a signal in the digital circuit, and each edge corresponds to the

logic governing the connected signals. The individual probability distribution for each node

is given using conditional probability tables.

From this probabilistic network we obtain our probabilistic error model that consists of

three blocks, (i) ideal error free logic, (ii) error prone logic where every gate has a gate error

probability ε i.e., each gate can go wrong individually by a probabilistic factor ε and (iii) a

detection unit that uses comparators to compare the error free and erroneous outputs. The error

prone logic represents the real time circuit under test, whereas the ideal logic and the detection

unit are fictitious elements used to study the circuit. Both the ideal logic and error prone logic

would be fed by the primary inputs I. We denote all the internal nodes, both in the error free

and erroneous portions, by X and the comparator outputs as O. The comparators are based on

XOR logic and hence a state “1” would signify error at the output. An evidence set o is created

by evidencing one or more of the variables in the comparator set O to state “1” (P(Oi = 1) =
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1). Then performing MAP hypothesis on the probabilistic error model provides the worst-

case input vector iMAP which gives max∀i P(i,o). The maximum output error probability can

be obtained from P(Oi = 1) after instantiating the input nodes of probabilistic error model with

iMAP and inferencing. The process is repeated for increasing ε values and finally the ε value

that makes at least one of the output signals completely random (P(Oi = 0) = 0.5,P(Oi =

1) = 0.5) is taken as the error bound for the given circuit.

It is obvious that we can arrive at MAP estimate by enumerating all possible input instan-

tiations and compute the maximum P(i,o) by any probabilistic computing tool. The attractive

feature of this MAP algorithm lies on eliminating a significant part of the input search-subtree

based on an easily available upper-bound of P(i,o) by using probabilistic traversal of a binary

Join tree with Shenoy-Shafer algorithm [23, 24]. The actual computation is divided into two

theoretical components. First, we convert the circuit structure into a binary Join tree and em-

ploy Shenoy-Shafer algorithm, which is a two-pass probabilistic message-passing algorithm,

to obtain multitude of upper bounds of P(i,o) with partial input instantiations. Next, we con-

struct a Binary tree of the input vector space where each path from the root node to the leaf

node represents an input vector. At every node, we traverse the search tree if the upper bound,

obtained by Shenoy-Shafer inference on the binary join tree, is greater than the maximum

probability already achieved; otherwise we prune the entire sub-tree. Experimental results

on a few standard benchmark show that the worst-case errors significantly deviate from the

average ones and also provides tighter bounds for the ones that use homogeneous gate-type

(c17 with NAND-only). Salient features and deliverables are itemized below:

• We have proposed a method to calculate maximum output error using a probabilistic

model. Through experimental results, we show the importance of modeling maximum

output error. (Fig. 4.10.)
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• Given a circuit with a fixed gate error probability ε, our model can provide the maximum

output error probability and the worst-case input vector, which can be very useful testing

parameters.

• We present the circuit-specific error bounds for fault-tolerant computation and we show

that maximum output errors provide a tighter bound.

• We have used an efficient design framework that employs inference in binary join trees

using Shenoy-Shafer algorithm to perform MAP hypothesis accurately.

• We give a probabilistic error model, where efficient error incorporation is possible, for

useful reliability studies. Using our model the error injection and probability of error

for each gate can be modified easily. Moreover, we can accommodate both fixed and

variable gate errors in a single circuit without affecting computational complexity.

We would like the readers to note that we will be representing a set of variables by bold

capital letters, set of instantiations by bold small letters, any single variable by capital letters.

Also probability of the event Yi = yi will be denoted simply by P(yi) or by P(Yi = yi).

4.1 Maximum a Posteriori (MAP) Estimate

Let us define the random variables in our probabilistic error model as Y = I∪X∪O,

composed of the three disjoint subsets I, X and O where

• I1, · · · , Ik ∈ I are the set of k primary inputs.

• X1, · · · ,Xm ∈ X are the m internal logic signals for both the erroneous (every gate has a

failure probability ε) and error-free ideal logic elements.

• O1, · · · ,On ∈ O are the n comparator outputs, each one signifying the error in one of the

primary outputs of the logic block.
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X1 X2

X3
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(a)

Block 1 Error-free logic Block 2 Error-prone logic Block 3 Comparator logic

Figure 4.1. (a) Digital logic circuit (b) Error model (c) Probabilistic error model

• N = k+m+n is the total number of network random variables.

Any primary output node can be forced to be erroneous by fixing the corresponding com-

parator output to logic ”1”, that is providing an evidence o= {P(Oi = 1)= 1} to a comparator

output Oi. Given some evidence o, the objective of the Maximum a posteriori estimate is to

find a complete instantiation iMAP of the variables in I that gives the following joint probabil-

ity,

MAP(iMAP,o) = max
∀i

P(i,o) (4.1)

The probability MAP(iMAP,o) is termed as the MAP probability and the variables in I are

termed as MAP variables and the instantiation iMAP which gives the maximum P(i,o) is

termed as the MAP instantiation.

For example, consider Fig 4.1. In the probabilistic model shown in Fig 4.1.(c), we have

{I1, I2, I3} ∈ I; {X1,X2,X3,X4,X5,X6}∈ X; {O1} ∈ O. X3 is the ideal error-free primary

output node and X6 is the corresponding error-prone primary output node. Giving an evidence

o = {P(O1 = 1) = 1} to O1 indicates that X6 has produced an erroneous output. The MAP

hypothesis uses this information and finds the input instantiation, iMAP, that would give the
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maximum P(i,o). This indicates that iMAP is the most probable input instantiation that would

give an error in the error-prone primary output signal X6. In this case, iMAP = {I1 = 0, I2 =

0, I3= 0}. This means that the input instantiation {I1 = 0, I2 = 0, I3= 0} will most probably

provide a wrong output, X6 = 1 (since the correct output is X6 = 0).

We arrive at the exact Maximum a posteriori (MAP) estimate using the algorithms by Park

and Darwiche [29] [30]. It is obvious that we could arrive at MAP estimate by enumerating

all possible input instantiations and compute the maximum output error. To make it more

efficient, our MAP estimates rely on eliminating some part of the input search-subtree based

on an easily available upper-bound of MAP probability by using a probabilistic traversal of a

binary Join tree using Shenoy-Shafer algorithm [23, 24]. The actual computation is divided

into two theoretical components.

• First, we convert the circuit structure into a binary Join tree and employ Shenoy-Shafer

algorithm, which is a two-pass probabilistic message-passing algorithm, to obtain mul-

titude of upper bounds of MAP probability with partial input instantiations (discussed

in Section. 4.1.1). The reader familiar with Shenoy-Shafer algorithm can skip the above

section. To our knowledge, Shenoy-Shafer algorithm is not commonly used in VLSI

context, so we elaborate most steps of join tree creation, two-pass join tree traversal and

computation of upper bounds with partial input instantiations.

• Next, we construct a Binary tree of the input vector space where each path from the root

node to the leaf node represents an input vector. At every node, we traverse the search

tree if the upper bound, obtained by Shenoy-Shafer inference on the binary join tree, is

greater than the maximum probability already achieved; otherwise we prune the entire

sub-tree. The depth-first traversal in the binary input instantiation tree is discussed in

Section. 4.1.2 where we detail the search process, pruning and heuristics used for better
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Figure 4.2. Search tree where depth first branch and bound search performed

pruning. Note that the pruning is key to the significantly improved efficiency of the

MAP estimates.

4.1.1 Calculation of MAP Upper Bounds Using Shenoy-Shafer Algorithm

To clearly understand the various MAP probabilities that are calculated during MAP hy-

pothesis, let us see the binary search tree formed using the MAP variables. A complete search

through the MAP variables can be illustrated as shown in Fig. 4.2. which gives the corre-

sponding search tree for the probabilistic error model given in Fig. 4.1.(c). In this search

tree, the root node N will have an empty instantiation; every intermediate node N iinter
Iinter

will be

associated with a subset Iinter of MAP variables I and the corresponding partial instantiation

iinter; and every leaf node Ni
I will be associated with the entire set I and the corresponding

complete instantiation i. Also each node will have v children where v is the number of values

or states that can be assigned to each variable Ii. Since we are dealing with digital signals,

every node in the search tree will have two children. Since the MAP variables represent the

primary input signals of the given digital circuit, one path from the root to the leaf node of this

search tree gives one input vector choice. In Fig. 4.2., at node N01
{I1,I2}, Iinter = {I1, I2} and

iinter = {I1 = 0, I2 = 1}. The basic idea of the search process is to find the MAP probability

MAP(i,o) by finding the upper bounds of the intermediate MAP probabilities MAP(i inter,o).
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MAP hypothesis can be categorized into two portions. The first portion involves finding

intermediate upper bounds of MAP probability, MAP(iinter,o), and the second portion in-

volves improving these bounds to arrive at the exact MAP solution, MAP(iMAP,o). These two

portions are intertwined and performed alternatively to effectively improve on the intermedi-

ate MAP upper bounds. These upper bounds and final solution are calculated by performing

inference on the probabilistic error model using Shenoy-Shafer algorithm [23, 24].

Shenoy-Shafer algorithm is based on local computation mechanism. The probability dis-

tributions of the locally connected variables are propagated to get the joint probability distri-

bution of the entire network from which any individual or joint probability distributions can

be calculated. The Shenoy-shafer algorithm involves the following crucial information and

calculations.

• Valuations: The valuations are functions based on the prior probabilities of the variables

in the network. A valuation for a variable Yi can be given as φYi = P(Yi,Pa(Yi)) where

Pa(Yi) are the parents of Yi. For variables without parents, the valuations can be given

as φYi = P(Yi). These valuations can be derived from the CPTs as shown in Table 4.1.

• Combination: Combination is a pointwise multiplication mechanism conducted to com-

bine the information provided by the operand functions. A combination of two given

functions fa and fb can be written as fa∪b = fa⊗ fb, where a and b are set of variables.

Table 4.2. provides an example.

• Marginalization: Given a function fa∪b, where a and b are set of variables, marginaliz-

ing over b provides a function of a and that can be given as fa = f mar(b)
a∪b . This process

provides the marginals of a single variable or a set of variables. Generally the process

can be done by summing or maximizing or minimizing over the marginalizing variables

in b. Normally the summation operator is used to calculate the probability distributions.

In MAP hypothesis both summation and maximization operators are involved.
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Table 4.1. Valuations of the variables derived from corresponding CPTs

CPT Valuation

Error-free AND
P(X1 = 1|I1, I2) P(I2 = 0) = 1 P(I2 = 1) = 1
P(I1 = 0) = 1 0 0
P(I1 = 1) = 1 0 1

Error-free AND
X1 I1 I2 φX1

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Error-prone AND
P(X4 = 1|I1, I2) P(I2 = 0) = 1 P(I2 = 1) = 1
P(I1 = 0) = 1 ε ε
P(I1 = 1) = 1 ε 1-ε

Error-prone AND
X4 I1 I2 φX4

0 0 0 1-ε
0 0 1 1-ε
0 1 0 1-ε
0 1 1 ε
1 0 0 ε
1 0 1 ε
1 1 0 ε
1 1 1 1-ε

Input
P(I1 = 0) 0.5
P(I1 = 1) 0.5

Input
I1 φI1

0 0.5
1 0.5
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Table 4.2. Combination

x y fxy

0 0 1
0 1 1
1 0 1
1 1 0

y z fyz

0 0 1
0 1 0
1 0 0
1 1 0

x y z fxyz = fxy ⊗ fyz

0 0 0 1x1
0 0 1 1x0
0 1 0 1x0
0 1 1 1x0
1 0 0 1x1
1 0 1 1x0
1 1 0 0x0
1 1 1 0x0
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Figure 4.3. Illustration of the fusion algorithm
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The computational scheme of the Shenoy-Shafer algorithm is based on fusion algorithm

proposed by Shenoy in [25]. Given a probabilistic network, like our probabilistic error model

in Fig. 4.3.(a), the fusion method can be explained as follows,

• The valuations provided are associated with the corresponding variables forming a val-

uation network as shown in Fig. 4.3.(b). In our example, the valuations are φI1 for {I1},

φI2 for {I2}, φX1 for {X1, I1, I2}, φX2 for {X2, I1, I2}, φO1 for {O1,X1,X2}.

• A variable Yi ∈ Y for which the probability distribution has to be found out is selected.

In our example let us say we select I1.

• Choose an arbitrary variable elimination order. For the example network let us choose

the order as O1,X1,X2,I2. When a variable Yi is eliminated, the functions associated

with that variable f 1
Yi
, · · · f j

Yi
are combined and the resulting function is marginalized

over Yi. It can be represented as, ( f 1
Yi
⊗·· ·⊗ f j

Yi
)mar(Yi). This function is then associated

with the neighbors of Yi. This process is repeated until all the variables in the elimination

order are removed. Fig. 4.3. illustrates the fusion process.

– Eliminating O1 yields the function (φO1)
mar(O1) associated to neighbors X1,X2.

– Eliminating X1 yields the function ((φO1)
mar(O1)⊗φX1)

mar(X1) associated to neigh-

bors X2, I1, I2.

– Eliminating X2 yields the function (((φO1)
mar(O1)⊗φX1)

mar(X1)⊗φX2)
mar(X2) as-

sociated to neighbors I1, I2.

– Eliminating I2 yields the function ((((φO1)
mar(O1)⊗ φX1)

mar(X1)⊗ φX2)
mar(X2)⊗

φI2)
mar(I2) associated to neighbor I1.

– According to a theorem presented in [24], combining the functions associated with

I1 yields the probability distribution of I1. φI1 ⊗ ((((φO1)
mar(O1)⊗φX1)

mar(X1)⊗
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φX2)
mar(X2)⊗φI2)

mar(I2) = (φI1 ⊗φO1 ⊗φX1 ⊗φX2 ⊗φI2)
mar(O1,X1,X2,I2) = Proba-

bility distribution of I1 [24]. Note that the function φI1 ⊗ φO1 ⊗ φX1 ⊗ φX2 ⊗ φI2

represents the joint probability of the entire probabilistic error model.

• The above process is repeated for all the other variables individually.

To perform efficient computation, an additional undirected network called join tree is

formed from the original probabilistic network. The nodes of the join tree contains clusters of

nodes from the original probabilistic network. The information of locally connected variables,

provided through valuations, is propagated in the join tree by message passing mechanism.

To increase the computational efficiency of the Shenoy-Shafer algorithm, a special kind of

join tree named binary join tree is used. In a binary join tree, every node is connected to no

more than three neighbors. In this framework only two functions are combined at an instance,

thereby reducing the computational complexity. We will first explain the method to construct

a binary join tree, as proposed by Shenoy in [24], and then we will explain the inference

scheme using message passing mechanism.

The binary join tree is constructed using the fusion algorithm. The construction of binary

join tree can be explained as follows,

• To begin with we have,

– Λ =⇒ A set that contains all the variables from the original probabilistic network.

In our example, Λ = {I1, I2,X1,X2,O1}.

– Γ =⇒ A set that contains the subsets of variables, that should be present in the

binary join tree. i.e., the subsets that denote the valuations and the subsets whose

probability distributions are needed to be calculated. In our example, let us say

that we need to calculate the individual probability distributions of all the vari-

ables. Then we have, Γ = {{I1}, {I2}, {X1,I1,I2}, {X2,I1,I2}, {O1,X1,X2},

{X1}, {X2}, {O1}}.
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Figure 4.4. Partial illustration of binary join tree construction method for the first chosen
variable

– N =⇒ A set that contains the nodes of the binary join tree and it is initially null.

– E =⇒ A set that contains the edges of the binary join tree and it is initially null.

– We also need an order in which we can choose the variables to form the binary join

tree. In our example, since the goal is to find out the probability distribution of I1,

this order should reflect the variable elimination order (O1,X1,X2,I2,I1) used in

fusion algorithm .

• 1: while |Γ|> 1 do

2: Choose a variable Y ∈ Λ

3: ΓY = {γi ∈ Γ|Y ∈ γi}
4: while |ΓY |> 1 do

5: Choose γi ∈ ΓY and γ j ∈ ΓY such that ||γi∪ γ j|| ≤ ||γm∪ γn|| for all γm,γn ∈ ΓY

6: γk = γi∪ γ j
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Figure 4.5. Complete illustration of binary join tree construction method
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7: N = N ∪{γi}∪{γ j}∪{γk}
8: E = E ∪{{γi,γk},{γ j,γk}}
9: ΓY = ΓY −{γi,γ j}

10: ΓY = ΓY ∪{γk}
11: end while

12: if |Λ|> 1 then

13: Take γi where γi = ΓY

14: γ j = γi −{Y}
15: N = N ∪{γi}∪{γ j}
16: E = E ∪{{γi,γ j}}
17: Γ = Γ∪{γ j}
18: end if

19: Γ = Γ−{γi ∈ Γ|Y ∈ γi}
20: Λ = Λ−{Y}
21: end while

• The final structure will have some duplicate clusters. Two neighboring duplicate clusters

can be merged into one, if the merged node does not end up having more than three

neighbors. After merging the duplicate nodes we get the binary join tree.

Fig. 4.4. and Fig. 4.5. illustrate the binary join tree construction method for the proba-

bilistic error model in Fig. 4.3.(a). Fig. 4.4. explains a portion of the construction method for

the first chosen variable, here it is O1. Fig. 4.5. illustrates the entire method. Note that, even

though the binary join tree is constructed with a specific variable elimination order for finding

out the probability distribution of I1, it can be used to find out the probability distributions of

other variables too.
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Figure 4.6. (a) Message passing with cluster C11 as root (b) Message passing with cluster C1
as root (c) Message storage mechanism
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Inference in a binary join tree is performed using message passing mechanism. Initially

all the valuations are associated to the appropriate clusters. In our example, at Fig. 4.6., the

valuations are associated to these following clusters,

• φI1 associated to cluster C11

• φI2 associated to cluster C10

• φX1 associated to cluster C6

• φX2 associated to cluster C7

• φO1 associated to cluster C2

A message passed from cluster b, containing a variable set B, to cluster c, containing a variable

set C can be given as,

Mb→c = (φb ∏
a�=c

Ma→b)
mar(B\C) (4.2)

where φb is the valuation associated with cluster b. If cluster b is not associated with any

valuation, then this function is omitted from the equation. The message from cluster b can

be sent to cluster c only after cluster b receives messages from all its neighbors other than c.

The resulting function is marginalized over the variables in cluster b that are not in cluster

c. To calculate the probability distribution of a variable Yi, the cluster having that variable

alone is taken as root and the messages are passed towards this root. Probability of Yi, P(Yi),

is calculated at the root. In our example, at Fig. 4.6.(a), to find the probability distribution

of I1, the cluster C11 is chosen as the root. The messages from all the leaf clusters are

sent towards C11 and finally the probability distribution of I1 can be calculated as, P(I1) =

MC9→C11⊗φI1. Also note that the order of the marginalizing variables is O1,X1,X2,I2 which

exactly reflects the elimination order used to construct the binary join tree. As we mentioned

before, this binary join tree can be used to calculate probability distributions of other variables
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also. In our example, at Fig. 4.6.(b), to find out the probability distribution of O1, cluster C1

is chosen as root and the messages from the leaf clusters are passed towards C1 and finally

the probability distribution of O1 can be calculated as, P(O1) = MC2→C1. Note that the order

of the marginalizing variables changes to I1,I2,X1,X2. We can also calculate joint probability

distributions of the set of variables that forms a cluster in the binary join tree. In our example,

the joint probability P(I1, I2) can be calculated by assigning cluster C9 as root. In this fashion,

the probability distributions of any individual variable or a set of variables can be calculated

by choosing appropriate root cluster and sending the messages towards this root. During

these operations some of the calculations are not modified and so performing them again will

prove inefficient. Using the binary join tree structure these calculations can be stored thereby

eliminating the redundant recalculation. In the binary join tree, between any two clusters b

and c, both the messages Mb→c and Mc→b are stored. Fig. 4.6.(c) illustrates this phenomenon

using our example.

If an evidence set e is provided, then the additional valuations {eYi |Yi ∈ e} provided by

the evidences has to be associated with the appropriate clusters. A valuation eYi for a variable

Yi can be associated with a cluster having Yi alone. In our example, if the variable O1 is

evidenced, then the corresponding valuation eO1 can be associated with cluster C1. While

finding the probability distribution of a variable Yi, the inference mechanism (as explained

before) with an evidence set e will give the probability P(Yi,e) instead of P(Yi). From P(Yi,e),

P(e) is calculated as, P(e) = ∑Yi
P(Yi,e). Calculation of the probability of evidence P(e) is

crucial for MAP calculation.

The MAP probabilities MAP(iinter,o) are calculated by performing inference on the binary

join tree with evidences iinter and o. Let us say that we have an evidence set e = {iinter,o},

then MAP(iinter,o) = P(e). For a given partial instantiation iinter, MAP(iinter,o) is calculated

by maximizing over the MAP variables which are not evidenced. This calculation can be done

by modifying the message passing scheme to accommodate maximization over unevidenced
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MAP variables. So for MAP calculation, the marginalization operation involves both max-

imization and summation functions. The maximization is performed over the unevidenced

MAP variables in I and the summation is performed over all the other variables in X and O.

For MAP, a message passed from cluster b to cluster c is calculated as,

Mb→c = max
{Ib}∈{B\C} ∑

{Xb∪Ob}∈{B\C}
φb ∏

a�=c

Ma→b (4.3)

where Ib ⊆ I\ Iinter, Xb ⊆ X, Ob ⊆ O and {Ib,Xb,Ob} ∈ B.

Here the most important aspect is that the maximization and summation operators in

Eqn. 4.3 are non-commutative.

[∑
X

max
I

P](y)≥ [max
I

∑
X

P](y) (4.4)

So during message passing in the binary join tree, the valid order of the marginalizing vari-

ables or the valid variable elimination order should have the summation variables in X and

O before the maximization variables in I. A message pass through an invalid variable elimi-

nation order can result in a bad upper bound that is stuck at a local maxima and it eventually

results in the elimination of some probable instantiations of the MAP variables I during the

search process. But an invalid elimination order can provide us an initial upper bound of the

MAP probability to start with. The closer the invalid variable elimination order to the valid

one, the tighter will be the upper bound. In the binary join tree, any cluster can be chosen as

root to get this initial upper bound. For example, in Fig. 4.6.(b) choosing cluster C1 as root

results in an invalid variable elimination order (I1, I2, X1, X2) and message pass towards this

root can give the initial upper bound. Also it is essential to use a valid variable elimination

order during the construction of the binary join tree so that there is at least one path that can

provide a good upper bound.
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Figure 4.7. Binary join tree for the probabilistic error model in Fig. 4.1.(c)
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Fig. 4.7. gives the corresponding binary join tree, for the probabilistic error model given

in Fig. 4.1.(c), constructed with a valid variable elimination order (O1, X3, X6, X1, X2, X4,

X5, I3, I2, I1). In this model, there are three MAP variables I1, I2, I3. The MAP hypothesis

on this model results in iMAP = {I1 = 0, I2 = 0, I3 = 0}.

The initial upper bound MAP({},o) is calculated by choosing cluster C2 as root and pass-

ing messages towards C2. As specified earlier this upper bound can be calculated with any

cluster as root. With C2 as root, an upper bound will most certainly be obtained since the

variable elimination order (I3, I2, I1, X4, X5, X1, X2, X3, X6) is an invalid one. But since

the maximization variables are at the very beginning of the order, having C2 as root will yield

a looser upper bound. Instead, if C16 is chosen as root, the elimination order (O1, X3, X6,

X1, I3, X4, X5, I2, I1) will be closer to a valid order. So a much tighter upper bound can be

achieved. To calculate an intermediate upper bound MAP(iinter,o), the MAP variable Ii newly

added to form iinter is recognized and the cluster having the variable Ii alone is selected as

root. By doing this a valid elimination order and proper upper bound can be achieved. For

example, to calculate the intermediate upper bound MAP({I1= 0},o) where the instantiation

{I1 = 0} is newly added to the initially empty set iinter, a valid elimination order should have

the maximization variables I2,I3 at the end. To achieve this, cluster C31 is chosen as root

thereby yielding a valid elimination order (O1, X3, X6, X1, X2, X4, X5, I3, I2).

4.1.2 Calculation of the Exact MAP Solution

The calculation of the exact MAP solution MAP(iMAP,o) can be explained as follows,

• To start with we have the following,

– Iinter → subset of MAP variables I. Initially empty.

– iinter → partial instantiation set of MAP variables Iinter. Initially empty.

– id1 , id2 → partial instantiation sets used to store iinter. Initially empty.
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Figure 4.8. Search process for MAP computation

– iMAP → MAP instantiation. At first, iMAP = iinit , where iinit is calculated by se-

quentially initializing the MAP variables to a particular instantiation and perform-

ing local taboo search around the neighbors of that instantiation [30].

– MAP(iMAP,o)→ MAP probability. Initially MAP(iMAP,o) = MAP(iinit ,o) calcu-

lated by inferencing the probabilistic error model.

– v(Ii)→ number of values or states that can be assigned to a variable Ii. Since we

are dealing with digital signals, v(Ii) = 2 for all i.

• 1: Calculate MAP(iinter,o). /*This is the initial upper bound of MAP probability.*/

2: if MAP(iinter,o)≥ MAP(iMAP,o) then
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3: MAP(iMAP,o) = MAP(iinter,o)

4: else

5: MAP(iMAP,o) = MAP(iMAP,o)

6: iMAP = iMAP

7: end if

8: while |I|> 0 do

9: Choose a variable Ii ∈ I.

10: Iinter = Iinter ∪{Ii}.

11: while v(Ii)> 0 do

12: Choose a value iv(Ii) of Ii

13: id1 = iinter ∪{Ii = iv(Ii)}.

14: Calculate MAP(id1,o) from binary join tree.

15: if MAP(id1,o)≥ MAP(iMAP,o) then

16: MAP(iMAP,o) = MAP(id1,o)

17: id2 = id1

18: else

19: MAP(iMAP,o) = MAP(iMAP,o)

20: end if

21: v(Ii) = v(Ii)−1

22: end while

23: iinter = id2

24: if |iinter|= 0 then

25: goto line 29

26: end if

27: I = I−{Ii}
28: end while
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29: if |iinter|= 0 then

30: iMAP = iMAP

31: else

32: iMAP = iinter

33: end if

The pruning of the search process is handled in lines 11-23. After choosing a MAP vari-

able Ii, the partial instantiation set iinter is updated by adding the best instantiation Ii = iv(Ii)

thereby ignoring the other instantiations of Ii. This can be seen in Fig. 4.8. which illustrates the

search process for MAP computation using the probabilistic error model given in Fig. 4.1.(c)

as example.

4.1.3 Calculating the Maximum Output Error Probability

According to our error model, the MAP variables represent the primary input signals of

the underlying digital logic circuit. So after MAP hypothesis, we will have the input vector

which has the highest probability to give an error on the output. The random variables I that

represent the primary input signals are then instantiated with iMAP and inferenced. So the

evidence set for this inference calculation will be e = {iMAP}. The output error probability is

obtained by observing the probability distributions of the comparator logic variables O. After

inference, the probability distribution P(Oi,e) will be obtained. From this P(Oi|e) can be

obtained as, P(Oi|e) = P(Oi,e)
P(e) =

P(Oi,e)
∑Oi

P(Oi,e)
. Finally the maximum output error probability is

given by, maxi P(Oi = 1|e).

4.1.4 Computational Complexity of MAP Estimate

The time complexity of MAP depends on that of the depth first branch and bound search

on the input instantiation search tree and also on that of inference in binary join tree. The
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former depends on the number of MAP variables and the number of states assigned to each

variable. In our case each variable is assigned two states and so the time complexity can

be given as O(2k) where k is the number of MAP variables. This is the worst case time

complexity assuming that the search tree is not pruned. If the search tree is pruned, then the

time complexity will be < O(2k).

The time complexity of inference in the binary join tree depends on the number of cliques q

and the size Z of the biggest clique. It can be represented as q.2Z and the worst case time com-

plexity can be given as O(2Z). In any given probabilistic model with N variables, representing

a joint probability P(x1, · · ·xN), the corresponding join tree will have Z < N always [27]. Also

depending on the underlying circuit structure, the join tree of the corresponding probabilistic

error model can have Z << N or Z close to N, which in turn determines the time complexity.

Since for every pass in the search tree inference has to be performed in the join tree to get

the upper bound of MAP probability, the worst case time complexity for MAP can be given

as O(2k+Z). The space complexity of MAP depends on the number of MAP variables for the

search tree and on the number of variables N in the probabilistic error model and the size of

the largest clique. It can be given by 2k +N.2Z.

4.2 Experimental Results

The experiments are performed on ISCAS85 and MCNC benchmark circuits. The comput-

ing device used is a Sun server with 8 CPUs where each CPU consists of 1.5GHz UltraSPARC

IV processor with at least 32GB of RAM.

4.2.1 Experimental Procedure for Calculating Maximum Output Error Probability

Our main goal is to provide the maximum output error probabilities for different gate error

probabilities ε. To get the maximum output error probabilities every output signal of a circuit
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i

Obtain the input instantiation i and instantiate the input variables 
in the probabilistic model with i and perform inference.

Is
r = n

Obtain the probability P(o) = max P(or = 1) where r = 1,…,n.
r

No
Yes

Figure 4.9. Flow chart describing the experimental setup and process

has to be examined through MAP estimation, which is performed through algorithms provided

in [31]. The experimental procedure is illustrated as a flow chart in Fig. 4.9. The steps are as

follows,

• First, an evidence has to be provided to one of the comparator output signal variables

in set O such that P(Oi = 0) = 0 and P(Oi = 1) = 1. Recall that these variables have a

probability distribution based on XOR logic and so giving evidence like this is similar

to forcing the output to be wrong.

• The comparator outputs are evidenced individually and the corresponding input instan-

tiations i are obtained by performing MAP.

• Then the primary input variables in the probabilistic error model are instantiated with

each instantiation i and inferenced to get the output probabilities.
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Table 4.3. Worst-case input vectors from MAP

Circuits No. of Input vector Gate error
Inputs probability ε

c17 5 01111 0.005 - 0.2
max flat 8 00010011 0.005 - 0.025

11101000 0.03 - 0.05
11110001 0.055 - 0.2

voter 12 000100110110 0.01 - 0.19
111011100010 0.2

• P(Oi = 1) is noted from all the comparator outputs for each i and the maximum value

gives the maximum output error probability.

• The entire operation is repeated for different ε values.

4.2.2 Worst-case Input Vectors

Table 4.3. gives the worst-case input vectors got from MAP i.e., the input vectors that

gives maximum output error probability. The notable results are as follows,

• In max f lat and voter the worst-case input vectors from MAP changes with ε, while in

c17 it does not change.

• In the range {0.005-0.2} for ε, max f lat has three different worst-case input vectors

while voter has two.

• It implies that these worst-case input vectors not only depend on the circuit structure but

could dynamically change with ε. This could be of concern for designers as the worst-

case inputs might change after gate error probabilities reduce due to error mitigation

schemes. Hence, explicit MAP computation would be necessary to judge the maximum

error probabilities and worst-case vectors after every redundancy schemes are applied.
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4.2.3 Circuit-Specific Error Bounds for Fault-Tolerant Computation

The error bound for a circuit can be obtained by calculating the gate error probability ε

that drives the output error probability of at least one output to a hard bound beyond which

the output does not depend on the input signals or the circuit structure. When the output error

probability reaches 0.5(50%), it essentially means that the output signal behaves as a non-

functional random number generator for at least one input vector and so 0.5 can be treated as

a hard bound.

Fig. 4.10. gives the error bounds for various benchmark circuits. It also shows the compar-

ison between maximum and average output error probabilities with reference to the change in

gate error probability ε. These graphs are obtained by performing the experiment for different

ε values ranging from 0.005 to 0.1. The average error probabilities are obtained from our

previous work by Rejimon et al. [86]. The notable results are as follows,

• The c17 circuit consists of 6 NAND gates. The error bound for each NAND gate in c17

is ε= 0.1055, which is greater than the conventional error bound for NAND gate, which

is 0.08856 [7, 8]. The error bound of the same NAND gate in voter circuit (contains

10 NAND gates, 16 NOT gates, 8 NOR gates, 15 OR gates and 10 AND gates) is

ε = 0.0292, which is lesser than the conventional error bound. This indicates that the

error bound for an individual NAND gate placed in a circuit can be dependent on the

circuit structure. The same can be true for all other logics.

• The maximum output error probabilities are much larger than average output error prob-

abilities, thereby reaching the hard bound for comparatively lower values of ε, mak-

ing them a very crucial design parameter to achieve tighter error bounds. Only for

alu4 and malu4, the average output error probability reaches the hard bound within

ε = 0.1(ε= 0.095 f or alu4,ε= 0.08 f or malu4), while the maximum output error prob-
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Figure 4.10. Circuit-specific error bound along with comparison between maximum and aver-
age output error probabilities for (a) c17, (b) max f lat, (c) voter, (d) pc, (e) count, (f) alu4,
(g) malu4
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Table 4.4. Run times for MAP computation

Circuit
No. of No. of

Time
Inputs Gates

c17 5 6 0.047s
max flat 8 29 0.110s

voter 12 59 0.641s
pc 27 103 225.297s

count 35 144 36.610s
alu4 14 63 58.626s

malu4 14 92 588.702s

abilities for these circuits reach the hard bound for far lesser gate error probabilities

(ε = 0.0255 f or alu4,ε = 0.0235 f or malu4).

• While the error bounds for all the circuits, except c17, are less than 0.08(8%), the error

bounds for circuits like voter, alu4 and malu4 are even less than 0.03(3%)making them

highly vulnerable to errors.

Table 4.4. tabulates the run time for MAP computation. The run time does not change

significantly for different ε values and so we provide only one run time which corresponds

to all ε values. This is expected as MAP complexity (discussed in Sec. 4.1.4) is determined

by number of inputs, and number of variables in the largest clique which in turn depends on

the circuit complexity. It has to be noted that, even though pc has less number of inputs than

count, it takes much more time to perform MAP estimate due to its complex circuit structure.

4.2.4 Validation Using HSpice Simulator

Using external voltage sources error can be induced in any signal and it can be modeled us-

ing HSpice [43]. In our HSpice model we have induced error, using external voltage sources,

in every gate’s output. Consider signal O f is the original error free output signal and the sig-

nal Op is the error prone output signal and E is the piecewise linear (PWL) voltage source
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Table 4.5. Comparison between maximum error probabilities achieved from the proposed
model and the HSpice simulator at ε = 0.05

Circuit Model HSpice % diff over HSpice
c17 0.312 0.315 0.95

max flat 0.457 0.460 0.65
voter 0.573 0.570 0.53
pc 0.533 0.536 0.56

count 0.492 0.486 1.23
alu4 0.517 0.523 1.15

malu4 0.587 0.594 1.18

that induces error. The basic idea is that the signal Op is dependent on the signal O f and the

voltage E. Any change of voltage in E will be reflected in Op. If E = 0v, then Op = Of , and

if E = Vdd (supply voltage), then Op �= Of , thereby inducing error. The data points for the

PWL voltage source E are provided by computations on a finite automata which models the

underlying error prone circuit where individual gates have a gate error probability ε.

Note that, for an input vector of the given circuit, a single simulation run in HSpice is

not enough to validate the results from our probabilistic model. Also the circuit has to be

simulated for each and every possible input vectors to find out the worst-case one. For a given

circuit, the HSpice simulations are conducted for all possible input vectors, where for each

vector the circuit is simulated for 1 million runs and the comparator nodes are sampled. From

this data the maximum output error probability and the corresponding worst-case input vector

are obtained.

Table 4.5. gives the comparison between maximum error probabilities achieved from the

proposed model and the HSpice simulator at ε = 0.05. The notable results are as follows,

• The simulation results from HSpice almost exactly coincides with those of our error

model for all circuits.

• The highest % difference of our error model over HSpice is just 1.23%.
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Figure 4.11. Output error probabilities for the entire input vector space with gate error proba-
bility ε = 0.05 for c17

Fig. 4.11. gives the output error probabilities for the entire input vector space of c17 with

gate error probability ε = 0.05. The notable results are as follows,

• It can be clearly seen that the results from both the probabilistic error model and HSpice

simulations show that 01111 gives the maximum output error probability.

Fig. 4.12.(a) and (b) give the output error probabilities, obtained from the probabilistic

error model and HSpice respectively, for max f lat with gate error probability ε = 0.05. In

order to show that max f lat has large number of input vectors capable of generating maximum

output error, we plot output error probabilities ≥ ((µ)+ (σ)), where µ is the mean of output

error probabilities and σ is the standard deviation. The notable results are as follows,

• It is clearly evident from Fig. 4.12.(a) that max f lat has a considerably large amount

of input vectors capable of generating output error thereby making it error sensitive.

Equivalent HSpice results from Fig. 4.12.(b) confirms this aspect.
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(a)

(b)

Figure 4.12. (a) Output error probabilities≥ (µ+σ), calculated from probabilistic error model,
with gate error probability ε = 0.05 for max f lat (b) Corresponding HSpice calculations
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Figure 4.13. Comparison between the average and maximum output error probability and run
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• It is clearly evident that the results from probabilistic error model and HSpice show the

same worst-case input vector, 11101000, that is obtained through MAP hypothesis.

4.2.5 Results with Multiple ε

Apart from incorporating a single gate error probability ε in all gates of the given circuit,

our model also supports to incorporate different ε values for different gates in the given circuit.

Ideally these ε values has to come from the device variabilities and manufacturing defects.

Each gate in a circuit will have an ε value selected in random from a fixed range, say 0.005 -

0.05.

We have presented the result in Fig. 4.13. for max f lat. Here we compare the average and

maximum output error probability and run time with ε=0.005, ε=0.05 and variable ε ranging

from 0.005 - 0.05. The notable results are as follows,

• It can be seen that the output error probabilities for variable ε are closer to those for

ε=0.05 than for ε=0.005 implicating that the outputs are affected more by the erroneous

gates with ε=0.05.
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• The run time for all the three cases are almost equal, thereby indicating the efficiency

of our model.

4.3 Discussion

We have proposed a probabilistic model that computes the exact maximum output error

probabilities for a logic circuit and mapped this problem as maximum a posteriori hypothesis

of the underlying joint probability distribution function of the network. We have demonstrated

our model with standard ISCAS and MCNC benchmarks and provided the maximum output

error probability and the corresponding worst-case input vector. We have also studied the

circuit-specific error bounds for fault-tolerant computing. The results clearly show that the

error bounds are highly dependent on circuit structure and computation of maximum output

error is essential to attain a tighter bound.
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CHAPTER 5

MODELING ERROR IN SEQUENTIAL CIRCUITS

Sequential circuits consist of a combinational logic block, set of inputs, set of state bits

where the values of the next state bit is fed back to the present state in the next clock cycle

through latches. At a given time instance ti, the state signals sti are uniquely identified as a

function of primary input signals iti and state signals sti−1 of the previous time instance giving

rise to temporal correlations. Due to this, error occurring at one time instance might propagate

towards several consecutive time instances making it more vulnerable.

In this chapter, we present a time evolving probabilistic model (Temporal Dependency

Model TDM) that can handle the temporal effects of random variables. We form the TDM

model (Fig. 5.1.(d)) by unrolling the basic probabilistic model into sufficiently large number

of time slices and connecting the present state node of each time slice PSti to the next state

node of the previous time slice NSti−1 thereby maintaining the temporal correlations.

To form the error model we have used the concept of miter circuits where two copies

of the same circuit, one representing the ideal circuit and the other representing the erroneous

circuit, are compared. For a given circuit, an ideal TDM model and an erroneous TDM model,

where each gate is error-prone by a factor ε, are created. The ideal and erroneous primary

output nodes, Oti and Oe
ti respectively, at each time slice ti are connected to an XOR logic

based comparator node Cti thereby forming a time evolving miter model. The output error

probability is calculated by inferencing the error model and obtaining the probability of state

”1” at the comparator nodes, P(Cti = 1), at each time slice ti iteratively by adding time slices

until the results converge. The number of time slices needed for a given sequential circuit is
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Figure 5.1. (a) Digital logic circuit (b) Corresponding probabilistic model (c) DAG represen-
tation which is not minimal (d) TDM model

related to the temporal dependence of output error which in turn is governed by the temporal

correlations in the circuit. Our results show that different sequential circuits exhibit different

degree of temporal dependence and the required amount of time slices is less than 10 for all

the circuits, which is similar to the observations presented in [49].

5.1 Sequential Logic Model

We model the sequential circuits into a time evolved probabilistic network, named as tem-

poral dependency model (TDM), which handles temporal dependencies. In this section we

provide the details on the modeling of a sequential logic into a TDM model.
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5.1.1 TDM Model

Let us consider the sequential circuit shown in Fig. 5.1.(a) where the present state node is

represented as PS, the next state node is represented as NS, the primary input is represented

as I, the primary output is represented as O and the internal nodes are represented as X1 and

X2.

The equivalent probabilistic model shown in Fig. 5.1.(c) can be represented by Gti =

(Vti,Eti). The nodes of the probabilistic model, V , are the union of all the nodes for each

time slice.

V =
n⋃

i=1

Vti (5.1)

where n is the number of time slices. In our example Vti = {PSti,NSti , Iti,Oti,X1ti,X2ti}. The

edges, E, of the probabilistic model are not just the union of the edges in a single time slice,

Eti , but also includes the edges between time slices, that is, temporal edges, Eti,ti+1. It has to be

noted that the copies of the same variable Xi in all time slices follow a markov property such

that the following two sets {Xi,t1, · · · ,Xi,ti−1} and {Xi,ti+1, · · · ,Xi,ti+k} are independent given Xi,ti.

For example, in Fig. 5.1.(c), X1t1 and X1t3 are independent of each other given X1t2. So the

temporal edges can be defined as

Eti,ti+1 = {(Xi,ti,Xi,ti+1)|Xi,ti ∈Vti ,Xi,ti+1 ∈Vti+1} (5.2)

where Xi,ti is any node in time slice ti and Xi,ti+1 is the replica of the same node in the adjacent

time slice ti+1 as shown in Fig. 5.1.(c). Thus, the complete set of edges E is

E = Et1 ∪
n⋃

i=2

(Eti +Eti−1,ti) (5.3)

In the probabilistic model (Fig. 5.1.(c)), apart from the dependencies from one time slice,

we also have the dependencies over two copies of the same variable Xj across adjacent time
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slices. But it is evident that X j,ti and Xj,ti−1 are independent of each other given the present

state node PS j,ti . For example the nodes X1t1 and X1t2, from Fig. 5.1.(c), are independent

of each other given the present state node PS j,t2; so even if we remove the temporal edges

connecting these nodes at consecutive time slices the underlying structure will still be intact.

The same can be told for X1t2 and X1t3.

So in the probabilistic model all the temporal edges except those connecting the present

state and next state nodes of adjacent slices (bold lines in Fig. 5.1.(c)) can be removed to

achieve a minimal representation as shown in Fig. 5.1.(d), which is termed as the TDM model.

In our example, the necessary temporal edges can be given as,

Eti,ti+1 = {(NSti,PSti+1)|NSti ∈Vti,PSti+1 ∈Vti+1} (5.4)

5.2 Error Model

From the TDM model of a given sequential circuit, an error model is designed where the

erroneous behavior of the circuit is compared with the ideal error-free behavior of the circuit.

5.2.1 Structure

The error model contains three sections, (i) error-free logic where the gates are ideal, (ii)

error-prone logic where each gate goes wrong independently by an error probability ε and (iii)

XOR based comparator logic that compare between the error-free and error-prone primary

outputs. At first two copies of the TDM model, of the given sequential circuit, are created

where one copy represents the error-free behavior of the circuit while the other represents

erroneous behavior of the circuit. Fig. 5.2. illustrates the error model for the sequential circuit

given in Fig. 5.1.(a). The Error-free block includes nodes representing the ideal combinational

part of all the time slices. The Error-prone block includes nodes representing the erroneous

combinational part of all the time slices. At each time slice tk an XOR logic based node

70



Error-free block
Error-prone block
Comparator block

e
tX
1

1 e
tX
1

2

e
tNS
1

e
tO
1

e
tX
2

1 e
tX
2

2

e
tNS
2

e
tO
2

e
tX
3

1 e
tX
3

2

e
tNS
3

e
tO
3

1
1tX

1
2tX

1t
NS

1t
O

2
1tX

2
2tX

2t
NS

2t
O

3
1tX

3
2tX

3t
NS

3t
O

1t
PS

2t
PS

3t
PS

e
tPS
2

e
tPS
3

1t
I

1t
C

2t
C

3t
C

2t
I

3t
I

Figure 5.2. Error model obtained from TDM model with 3rd order temporal dependence
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Ctk is added to compare between the error-free and error-prone primary outputs Otk and Oe
tk

respectively. These additional nodes are included in the Comparator block. Note that at every

time slice tk both error-free and error-prone logic has to be fed from the same primary input

node Itk and at the first time slice t1 both error-free and error-prone logic has to connect to

the same present state (PS) node PSt1. Also the present state nodes, PStk and PSe
tk , for all

time slices tk are error-free, since we assume ideal latches. The comparator nodes Ctk and the

primary input nodes Itk for all time slices tk are also assumed to be error-free.

Any given probability function P(x1,x2, · · · ,xN) can be written as 1

P(x1, · · · ,xN) = ∏
v

P(xv|Pa(Xv)) (5.5)

where Pa(Xv) are the parents of the variable Xv, representing its direct causes. This factoring

of the joint probability function can be denoted as a graph with links directed from the random

variable representing the inputs of a gate to the random variable representing the output. Our

error model is one such graph structure where the probabilities P(xv|Pa(Xv) are provided by

Conditional Probability Tables (CPTs) as shown in Table 5.1. It gives the CPTs for the nodes

Otk whose parents are X1tk and X2tk , and Oe
tk whose parents are X1e

tk and X2e
tk from Fig. 5.2.

The nodes are governed by NAND logic.

The CPTs represent the underlying logic function of each gate. In this setup it is easier

to incorporate the individual gate error probability ε by just changing the probabilities in the

CPT. For example Table. 5.1. gives the CPTs for error-free Otk and error-prone Oe
tk . In error-

prone CPT we just have to replace the probability values 0 by ε and 1 by 1−ε. This indicates

that there is (ε×100)% chance for the signal to go to state ”1” when it has to go to state ”0”

and (ε×100)% chance for the signal to go to state ”0” when it has to go to state ”1”.

1Probability of the event Xi = xi will be denoted simply by P(xi) or by P(Xi = xi).
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Table 5.1. Conditional probabilistic tables for error-free and error-prone NAND logic

Error-free NAND
P(X1tk) P(X2tk) P(Otk = 0) P(Otk = 1)

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Error-prone NAND
P(X1e

tk) P(X2e
tk) P(Oe

tk = 0) P(Oe
tk = 1)

0 0 ε 1-ε
0 1 ε 1-ε
1 0 ε 1-ε
1 1 1-ε ε

Table 5.2. Conditional probabilistic table for error-prone NAND logic having variable gate
error probabilities, ε0 and ε1

Error-prone NAND
P(X1e

tk) P(X2e
tk) P(Oe

tk = 0) P(Oe
tk = 1)

0 0 ε1 1-ε1

0 1 ε1 1-ε1

1 0 ε1 1-ε1

1 1 1-ε0 ε0

Also, in our model we can provide unequal gate error probabilities for any variable X e
tk at

any time slice tk, such that if P(Xtk = 0) = 1, then P(Xe
tk = 0) = 1− ε0 and P(Xe

tk = 1) = ε0;

if P(Xtk = 1) = 1, then P(Xe
tk = 0) = ε1 and P(Xe

tk = 1) = 1− ε1. The corresponding CPT of

this implementation for an error-prone NAND logic is given in Table. 5.2. ε0 is basically the

error probability of logic ”0” and ε1 is the error probability of logic ”1” at the output of a gate.

Increasing ε0 indicates that the circuit has more 0 → 1 errors, whereas increasing ε1 indicates

that the circuit has more 1 → 0 errors. With this implementation, we can use our error model

to study the effect of these errors in the output of the circuit.
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5.2.2 Inference Scheme

The inference scheme basically calculates the joint probability distribution P(x1, · · · ,xN)

efficiently by propagating the probability distributions P(xv|Pa(Xv) of locally connected vari-

ables and thereby calculates the updated individual probability distributions of all random

variables. The inference or propagation of belief on the probabilistic error model is done us-

ing the Hugin architecture [26, 27] which is an exact method. The inference on our model

can be performed by forming clusters of nodes (cliques) which are directly dependent on each

other and performing computations on those clusters, thereby enabling local computing. The

network that is formed using these cliques is called join tree, where information can be propa-

gated between cliques using message passing mechanism. Since extensive literature is already

available, we will not be explaining the inference scheme in detail. Interested readers please

refer to [26, 27].

In order to obtain a join tree, a moral graph is created from the error model, by adding

undirected links between the parents of each common child node, and it is triangulated, to

ensure that there are no cycles with more than three nodes, to obtain a chordal graph. Then

the cliques are formed from the chordal graph and they are linked accordingly to form the

join tree. Each adjacent cliques will have one or more common variables which are termed

as separators. The following steps will explain the formation of join tree using an example

circuit given in Fig. 5.3.(a) and its equivalent probabilistic model given in Fig. 5.3.(b).

• A moral graph, as shown in Fig. 5.3.(c), is formed from the original probabilistic net-

work by adding undirected links between the parents of each common child node.

– Additional links (Fig. 5.3.(c)): G1 - G2, G3 - G4

– These additional links helps to form complete subgraphs of each parent-child set.

The nodes in each subgraph can form a clique and thereby enable local compu-

tation. But this graphical form does not produce the minimal join tree because
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some of the independencies represented by the probabilistic network are lost due

to its undirected nature. The dependency structure is however preserved. This

non-minimal representation will eventually lead to high computational needs, even

when it does not sacrifice accuracy.

• To get a more minimal representation of the join tree which can capture the condi-

tional independencies, a chordal graph is formed. It is obtained by triangulating the

moral graph. Triangulation is the process of breaking all cycles in the graph to make a

composition of cycles over just three nodes by adding additional links. To control the

computational demands, the goal is to form a chordal graph with the minimum number

of additional links.

– Additional links (Fig. 5.3.(c)): No additional links since there are no cycles with

more than three nodes.

• The cliques are formed from the chordal graph and they are linked accordingly to form

the join tree (Fig. 5.3.(d)). Each adjacent cliques will have one or more common vari-

ables which are termed as separators. In Fig. 5.3.(d), between cliques C1 and C2, the

variables {G3,G4} form the separator set S1. Also, any two cliques sharing a set of

common variables will have these common variables present in all the cliques that lie

in the connecting path between these two cliques. In Fig. 5.3.(d), the cliques C1 and

C4 share the common variable {G3} and the only clique, C2, in their path also contains

{G3}.

To perform local computation, each clique Ci is associated with probability potentials φCi

and each separator S j is associated with probability potentials φS j . Also from here on, the set

of variables of any clique Ci or separator S j will be represented in bold letters as Ci or Sj. The

inference is performed as follows,
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Figure 5.3. (a) Digital logic circuit (b) Corresponding probabilistic model (c) Moral graph ob-
tained by adding undirected links between parents of common child nodes (d) Corresponding
join tree obtained

• Initialization: Initially all the entries in the clique potentials and separator set poten-

tials are assigned the value 1. In the join tree the variables of the given probabilistic

network are divided in separate cliques. Each clique will have its own joint probability

governed by its variables. But eventually we need to realize the joint probability of the

entire network as given in Eqn. 3.2. To achieve this, for each variable Yv, a particular

clique Ci which contains Yv along with its parents Pa(Yv) is selected and the conditional

probability potential of Yv from its CPT is multiplied to the clique potential φCi

φCi = φCiP(yv|Pa(Yv)) (5.6)

– Example: (Fig. 5.3.(d))

φC3 = φC3P(G3|G1,G2) (5.7)

• Message passing: After initialization the clique potentials are not consistent with their

separator potentials. So the joint probability given in Eqn. 3.2 is not perfectly realized.

To achieve this consistency message passing is performed. At first the marginal prob-
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ability of the separator variables has to be computed from the probability potential of

clique Cp and then it is used to scale the probability potential of clique Cq.

– Marginalization:

φupdated
Sr

= ∑
Cp\Sr

φCp (5.8)

– Scaling:

φCq = φCq

φupdated
Sr

φSr

(5.9)

– Example: (Fig. 5.3.(d)) Message passing from C2 to C1

φupdated
S1 = ∑

G5
φC2 (5.10)

φC1 = φC1
φupdated

S1

φS1
(5.11)

– The transmission of this scaling factor is the primary necessity for updating and

message passing. Eventually the joint probability of the entire network can be

represented as,

P(y1, · · · ,yN) =
∏i φCi

∏ j φS j
(5.12)

– Message passing in a join tree has to be done in both directions, from root to leaf

termed as outward pass and from leaf to root termed as inward pass. An inward

pass followed by an outward pass will completely update all the cliques in the join

tree.

• Individual probability distribution calculation: Then the individual probability distribu-

tion for each variable can be calculated by choosing a clique Ci containing the variable

Yv and marginalizing its potential φCi over all the other variables Ci\Yv. This probability
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distribution P(yv) is given as,

P(yv) = ∑
Ci\Yv

φCi (5.13)

– Example: (Fig. 5.3.(d))

P(G6) = ∑
G3

φC4 (5.14)

5.2.3 Output Error Probability

The output error probability of a given sequential circuit can be obtained by calculating the

probability, P(Ctn = 1) of the comparator node Ctn at the final time slice tn by inferencing the

corresponding error model. Each sequential circuit based on its underlying structure will need

different amount of time slices. During inference if at any time instance a random variable

representing a signal in the error-prone logic picks up a wrong value, this value will propagate

for a considerable amount of time before the signal gets back to its original value. This pattern

will keep on repeating through several samples. Due to this phenomenon the random variable

takes some time to converge at one particular probability distribution. So for each sequential

circuit we have to iteratively calculate the output error probability by increasing the time slices

and stop when the output error probabilities of consecutive time slices converge. This is the

reason for having comparator nodes at every time slice. The number of time slices needed by

a sequential circuit is purely dependent on the underlying functionality and circuit structure.

5.3 Experimental Results

The output error probabilities for various sequential circuits are calculated using our ex-

perimental setup. We have performed our experiments on standard MCNC and ISCAS bench-

mark circuits. We have used HUGIN tool [50] to perform inference on the error model and

we validate these results with equivalent HSpice simulation.
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Figure 5.4. Flowchart for experimental procedure

5.3.1 Experimental Procedure

Fig. 5.4. gives the experimental procedure undertaken to obtain the output error probabil-

ities. At first for a given ε value the probabilistic error model is obtained. The primary input

nodes Itk for all the time slices tk and the present state nodes PSt1 for the first time slice t1

are set to be equally probable to have state ”0” or state ”1”. The model is then inferenced

and the output error probability is obtained by noting the probability of state ”1” at the com-

parator node, P(Ctk = 1) at every time slice tk. This inference is an exact one and it also

handles reconvergence and spatio-temporal dependencies. P(Ctn = 1) of the final time slice tn

and P(Ctn−1 = 1) of the previous time slice tn−1 are checked for convergence. If they do not

converge the time slices at both error-free and error-prone blocks are increased by 1 and the

procedure is repeated. Thus the circuits are inferenced with different number of time slices
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Table 5.3. Output error probabilities at ε = 0.001,0.003,0.005,0.01

Circuits ε = 0.001 ε = 0.003 ε = 0.005 ε = 0.01
train11 0.0055 0.0161 0.0265 0.0511

lion 0.0060 0.0177 0.0288 0.0545
lion9 0.0069 0.0200 0.0326 0.0614
bbara 0.0074 0.0213 0.0341 0.0621
bbtas 0.0072 0.0211 0.0344 0.0653
s27 0.0075 0.0220 0.0357 0.0676
mc 0.0084 0.0246 0.0399 0.0747

iteratively and stopped when the output error probability values converge at consecutive time

slices.

5.3.2 Output Error Probabilities

Table 5.3. gives the output error probabilities for gate error probabilities, ε = 0.001, 0.003,

0.005, 0.01. For a slight increase in ε value from 0.001 to 0.003, there is at least 2.87 fold

increase in the corresponding output error probabilities. Also, for a considerably low influx

of error at the gates for ε = 0.005(0.5%), the output error probability of most of the circuits

exceed 3% with mc producing the highest output error probability of 3.99% which is almost 8

fold higher than the individual gate error probability. The same can be seen for ε = 0.01(1%),

where the output error probability of most of the circuits exceed 6%.

5.3.3 Number of Time Slices

Fig. 5.5. shows the number of time slices needed by bbara and bbtas for ε = 0−0.006. It

can be seen that the circuits needed less number of time slices for small ε values and then the

needed number of time slices gradually increases along with ε value. For bbtas, the needed

number of time slices gets set to 5 at ε = 0.0013 while bbtas takes up more time slices and
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Figure 5.5. Number of time slices needed by bbara and bbtas for ε = 0−0.006

finally gets set at 9 for ε = 0.005. The number of time slices needed is completely dependent

on the circuit structure. The following studies will shed more light on this aspect.

5.3.4 Output Error Propagation Across Time Slices

Fig. 5.6.(a) & (b) gives the transition of output error probability across time slices for

ε = 0.01. Here we show two sets of results that shows the difference in the transition of output

error across time slices. Fig. 5.6.(a) shows the output error transition for bbara, s27 and

mc, where the output error increases gradually across time slices and finally gets converged.

Whereas in Fig. 5.6.(b), which shows the output error transition for lion, lion9 and bbtas, the

output error reaches a maximum value and then gradually gets back to a steady value. This

behavior can be attributed to the relation between the present state nodes and the primary input

nodes which have random unbiased state distribution. If the present state nodes are closely

connected to the input nodes resulting in having an unbiased state distribution, the output error

will not be significant. With a biased state distribution in the present state nodes, the output
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Figure 5.6. (a) Transition of output error probability across time slices for bbara, s27 and mc
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error becomes more significant and reaches a maximum value in the early time slices as shown

in Fig. 5.6.(b).

Fig. 5.7.(a) & (b) gives the transition of error-free (O) and error-prone (Oe) output proba-

bilities across time slices for ε = 0.01. The results in Fig. 5.7.(a) show that, for some circuits,

the temporal dependence of the erroneous output conforms with that of the ideal error-free

output. Whereas in circuits like bbara this is not the case as shown in Fig. 5.7.(b). Due to this,

the output error probability in bbara takes more time to converge.

5.3.5 Output Error Probabilities for ε0 �= ε1

In our model we can provide unequal gate error probability values, ε0 and ε1, to study the

effect of 0 → 1 and 1 → 0 errors on the output of a circuit. Fig. 5.8. gives the output error

probabilities for (ε0 = 0.01, ε1 = 0.02) and (ε0 = 0.02, ε1 = 0.01). It can be clearly seen that

when ε0 > ε1 the output error probabilities are higher for all circuits. This indicates that a

0 → 1 error can make the outputs more erroneous and signals that stay at logic ”0” more often

can be vulnerable to this effect. This might be favorable in CMOS technology, since the 0→ 1
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Table 5.4. Output error probabilities at ε = 0.001,0.003,0.005,0.01 compared with HSpice
simulation results

ε = 0.001 ε = 0.003
Circuits Error model HSpice % Error model HSpice %

diff diff
train11 0.0055 0.0057 3.51 0.0161 0.0159 1.26

lion 0.0060 0.0063 4.76 0.0177 0.0171 3.51
lion9 0.0069 0.0066 4.55 0.0200 0.0208 3.85
bbara 0.0074 0.0070 5.71 0.0213 0.0208 2.40
bbtas 0.0072 0.0069 4.35 0.0211 0.0203 3.94
s27 0.0075 0.0080 6.25 0.0220 0.0217 1.38
mc 0.0084 0.0088 4.55 0.0246 0.0250 1.60

ε = 0.005 ε = 0.01
Circuits Error model HSpice % Error model HSpice %

diff diff
train11 0.0265 0.0263 0.76 0.0511 0.0497 2.82

lion 0.0288 0.0277 3.97 0.0545 0.0522 4.41
lion9 0.0326 0.0339 3.83 0.0614 0.0607 1.15
bbara 0.0341 0.0345 1.16 0.0621 0.0595 4.37
bbtas 0.0344 0.0354 2.82 0.0653 0.0671 2.68
s27 0.0357 0.0345 3.48 0.0676 0.0638 5.96
mc 0.0399 0.0391 2.05 0.0747 0.0733 1.91

bit flip is much harder than 1→ 0 bit flip due to the less error proneness of pMOS as compared

to nMOS since holes are tougher to be dislodged by external particle bombardments. It can

also signify that circuits with series pMOS connections can be less error prone as compared

to circuits with parallel pMOS connections.

5.3.6 Validation Using HSpice Simulation

We validate our results by comparing them with HSpice simulation results. Even though,

our error model can be used for any technology, the lack of benchmark circuits in any of

the other emerging technologies has forced us to compare our model with simulations using

45nm CMOS technology. Using external voltage sources error can be induced in any signal
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and it can be modeled using HSpice [43]. In our HSpice model we have induced error, using

external voltage sources, in every gate’s output. Consider signal O f is the original error free

output signal and the signal Op is the error prone output signal and E is the piecewise linear

(PWL) voltage source that induces error. The basic idea is that the signal Op is dependent

on the signal O f and the voltage E. Any change of voltage in E will be reflected in Op. If

E = 0v, then Op = Of , and if E = Vdd(supply voltage), then Op �= Of , thereby inducing

error. The data points for the PWL voltage source E are provided by computations on a

finite automata which incorporates the individual gate error probability ε. The width of every

error pulse is fixed to 1ns. The results are obtained by running the circuits for 5 million

random input vectors and sampling the comparator outputs. Table 5.4. gives the comparison

between the output error probabilities obtained from inference in the error model and Hspice

simulation for different circuits with gate error probability ε = 0.001,0.003,0.005,0.01. The

% difference is calculated as, ((Error model - Hspice) / Hspice) x 100. The highest relative

difference between the inference results and HSpice results is just 6.25% and on an average

the relative difference is only 4.43%.

5.4 Discussion

We have proposed a compact probabilistic model that can handle error in sequential logic

and we have presented experimental results on ISCAS and MCNC benchmark circuits. We

have observed that for low gate error probabilities like ε = 0.005(0.5%), the output error

probabilities are at least 5 fold higher and at most 8 fold higher. Also, our observations

showed that the degree of temporal dependence differs for various sequential circuits. Another

interesting observation indicated that 0 → 1 errors affects the circuit output more than 1 → 0

errors. We have also validated our model using HSpice simulation results and the average %

difference is only 4.43%.
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CHAPTER 6

REDUNDANCY SCHEMES FOR ERROR MITIGATION

Reliable computing using unreliable circuit elements can be accomplished using the con-

cept of redundancy. As the name suggests, the basic idea of ’redundancy’ is based on ana-

lyzing any given erroneous circuit through multiple redundant components or processes. The

outputs from these redundant components or processes are subjected to a voting scheme where

the majority value of the signal under consideration is chosen to be its ultimate error-free

value. In this chapter, the following unique redundancy schemes are discussed.

• Temporal redundancy scheme - the redundancy is applied in the input space by provid-

ing multiple instances of the same input combinations, which are highly probable to

create an error in the output.

• Spatial redundancy scheme - the redundancy is applied in the intermediate signal space

by providing multiple copies of the same gates, whose output signals are erroneous.

• Hybrid redundancy scheme - the redundancy is applied in both input space and inter-

mediate signal space, in order to achieve comprehensive error reduction in the given

erroneous circuit.
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6.1 Temporal Redundancy Scheme Using Triple Temporal Redundancy (TTR) Tech-
nique

Triple Temporal Redundancy (TTR) is an error reduction technique, where specific input

combinations are applied three times and from the resulting simulation outputs the majority

value is accepted as the correct one. Performing this technique on the entire input space will

result a large amount of unwanted calculations leading to high simulation time. In order to

make it more efficient, the technique has to be applied only on a subset of the input space,

where each input combination has a high chance of giving a wrong output compared to those

in the rest of the input space. So as a preliminary step for this redundancy technique, the

above mentioned subset on the input space should be determined. This can be achieved by

using the model that calculates the maximum output error and the corresponding worst-case

input combination, explained in Chapter 4.

6.1.1 Determination of the Set of Worst-Case Input Combinations for Selective Redun-
dancy in TTR

As discussed in Chapter 4, the model that calculates maximum output error probability,

determines a single worst-case input combination which has the highest probability to provide

an error in the output. In order to get a set of worst-case input combinations, the search process

explained in Section 4.1.2 can be extended as follows (Fig. 6.1.),

• After obtaining the most probable worst-case input combination, iMAP, the correspond-

ing MAP probability, MAP(iMAP,o), is noted.

• The number of input combinations needed for TTR is decided and a lower bound of

MAP(i,o), called LB MAP, with reference to MAP(iMAP,o), is chosen in order to col-

lect the set of worst-case input combinations. This lower bound can be adjusted based

on the amount of input combinations needed for TTR.
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Figure 6.1. Determination of the set of worst-case input combinations by backtracking through
the search tree used for MAP computation given in Fig. 4.8.

• The search process for the rest of the worst-case input combinations apart from iMAP,

starts from the node N iMAP
I and backtracks through the depth-first branch and bound

search tree, collecting all the input combinations which have MAP(i,o) above the cho-

sen lower bound. This search process is stopped once the target number of worst-case

input combinations for TTR is reached.

• Finally, the resulting set of worst-case input combinations are placed in a library which

can be used as a reference while performing TTR.
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Note that the search process for MAP computation is conducted in a binary tree, where the

root node N and the intermediate nodes N iinter
Iinter

are connected to only two child nodes. In the

process for determining the set of worst-case input combinations, the basic idea is that every

input combination i in the vicinity of iMAP should be checked for the possibility of being a

worst-case one by comparing the corresponding joint probability MAP(i,o) with the lower

bound LB MAP. Also, note that whenever an intermediate node, with two unvisited child

nodes, is encountered, the search path goes through the ’0’ edge first and then to the ’1’ edge.

In the example given in Fig. 6.1., the backtracking starts from node N{I1=0,I2=0,I3=0}
{I1,I2,I3} and

goes to the intermediate node N{I1=0,I2=0}
{I1,I2} and evaluates the node N{I1=0,I2=0,I3=1}

{I1,I2,I3} to check

whether the corresponding condition MAP({I1 = 0, I2 = 0, I3 = 1},o) > LB MAP is true.

Since it is not true, the input combination {I1 = 0, I2 = 0, I3 = 1} is not categorized as a

worst-case input combination. Then the backtracking search goes one level above to node

N{I1=0}
{I1} and gets to its unvisited child node N{I1=0,I2=1}

{I1,I2} , which has two unvisited child nodes.

The child node along the ’0’ edge, N{I1=0,I2=1,I3=0}
{I1,I2,I3} , is visited first and the corresponding joint

probability, MAP({I1= 0, I2= 1, I3= 0},o), is checked for the condition MAP({I1= 0, I2=

1, I3 = 0},o) > LB MAP. Since it is true, the input combination {I1 = 0, I2 = 0, I3 = 1} is

considered as a worst-one and added to the library. Since the target of 2 worst-case input

combinations for TTR is reached, the search is stopped.

6.1.2 Experimental Setup for TTR

In order to achieve efficient computation, the unnecessary simulation runs are avoided by

incorporating selective redundancy in TTR. This is performed through the following steps,

• Performing TTR only on the worst-case input combinations instead of running it on the

entire input space.

• Deciding on the third run of TTR based on the first two runs.
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Figure 6.2. Experimental setup for TTR incorporating selective redundancy

Fig. 6.2. illustrates the experimental setup for TTR. The description of the various segments

are as follows,

• Erroneous Circuit:- This is the circuit under consideration, where each gate has a gate

error probability ε.

• Ideal Circuit:- The fictitious ideal counterpart of the erroneous circuit, under considera-

tion, used to study the erroneous primary output signals.

• Comparators:- XOR gates used to compare between the erroneous primary output sig-

nals and their ideal counterparts, in order to detect the occurrence of output error.
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• Library of worst-case input combinations:- Collection of input combinations, which

have high probability of inducing error in the circuit output as compared to the rest of

the input space.

• Random Input Generator:- This segment produces random digital input signals which

are applied to the primary inputs of both the erroneous circuit and its ideal counterpart.

• Decision Block:- This segment decides on the necessity of performing TTR and the

necessity of the third run. It gets the needed information from the library of worst-

case input combinations, the random input generator and the majority value calculator.

It also sends the decision information to the random input generator and the majority

value calculator.

• TTR f lag:- A boolean flag that triggers the necessity of performing TTR.

– T TR f lag = 1, implies TTR needed.

– T TR f lag = 0, implies TTR not needed.

• Run f lag:- A boolean flag that triggers the necessity of performing the third run.

– Run f lag = 1, implies third run is needed.

– Run f lag = 0, implies third run is not needed.

• Majority Value Calculator:- This segment compares the output values from the TTR

runs and determines the majority value of the primary output signals.

• Run Identifier:- Compares the output values from the first two TTR runs and sends the

information to the decision block.
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The procedure to perform TTR is as follows,

• An input combination generated from the random input generator is provided to both

the erroneous circuit and the ideal circuit. The same input combination is also sent to

the decision block.

• The generated input combination is compared with the set of worst-case input combina-

tions. If it conforms with any of the worst-case input combination, then TTR f lag = 1,

else TTR f lag = 0.

• TTR flag is checked for its status.

– If TTR f lag = 1, then the same input combination is applied again and the value

is compared with that of the previous run. Then Run flag is triggered.

– If TTR f lag = 0, then the next input combination is applied. Run flag is not

triggered.

• Run flag is checked for its status.

– If Run f lag = 1, then the input combination is applied for the third time. The

majority value from the three runs is determined.

– If Run f lag = 0, then the input combination is not applied for the third time. The

value from the second run is decided as the majority value.

• Then the majority value of the erroneous output signal and the ideal output signal are

fed to an XOR comparator.

• The output error probabilities are calculated from the comparator outputs.

Note that the decision block can run in parallel with the circuit and so when the inputs are

not from the library, there is no penalty for the library search. Also note that if it is decided
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that TTR is needed, then the XOR comparators wait for the majority values to be determined

before comparing the erroneous and ideal signals, thereby avoiding the occurrence of unnec-

essary samples in their output signals. Also in the example given in Fig. 6.2., if TTR is not

performed, then N7m = N7e, N8m = N8e. If TTR is performed, then N7m = majority of N7e

from the TTR runs, N8m = majority of N8e from the TTR runs.

6.2 Spatial Redundancy Scheme Using Cascaded Triple Modular Redundancy (CTMR)
Technique

In triple modular redundancy, three copies of the any erroneous gate are created and from

their outputs the majority value is accepted as the correct one. Lets say that the three copies

of the erroneous digital signal are represented as A, B and C. Then the majority value out of

A, B, C can be determined by implementing the boolean function AB+BC+AC. The most

important aspect to note here is that the error probability of any erroneous gate will reduce

when subjected to triple modular redundancy through the majority gate. An even better error

probability can be achieved using CTMR, where two cascading levels of triple modular re-

dundancy is applied by replicating the erroneous gate nine times and producing three majority

outputs which in turn are supplied to another majority gate to get a final value. Fig. 6.3. illus-

trates the CTMR technique used to perform spatial redundancy. The signal N8e whose initial

error probability is ε, when subjected under CTMR, attains a better error probability εs < ε.

To achieve efficient spatial redundancy, instead of applying CTMR to all gates in the circuit,

only some selective gates can be chosen. To determine these gates, a sensitivity analysis can

be performed on the corresponding probabilistic error model of the circuit.
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Figure 6.3. Spatial redundancy scheme using CTMR technique incorporating majority logic

6.2.1 Sensitivity Analysis for Selective Redundancy in CTMR

To determine the sensitivity of an erroneous node, that node is perturbed so that it will

have a different gate error probability εs, which can be similar to the one obtained by per-

forming CTMR on that particular node, while providing gate error probability ε for all other

nodes. The output error probabilities for this setup is calculated as, Pεs(Oi). Then the output

error probabilities, Pε(Oi), are obtained with gate error probability ε fixed in all the erroneous

nodes. The difference between the output error probabilities, Pεs(Oi) and Pε(Oi), determines

the node’s degree of influence or sensitivity. Nodes are ranked on the basis of the decreasing

order of the degree of influence and the top ranked nodes are selected as the sensitive nodes.

6.3 Hybrid Redundancy

Hybrid redundancy scheme is the blend of temporal redundancy and spatial redundancy.

As shown in Fig. 6.4., hybrid redundancy can be visualized as performing temporal redun-
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Figure 6.4. Hybrid redundancy scheme using CTMR and TTR techniques

dancy on an erroneous circuit whose error behavior is optimized by spatial redundancy. The

spatial redundancy on the error model is first performed and then the modified structure is used

to perform temporal redundancy. This procedure can be interpreted as performing temporal

redundancy on a circuit whose sensitive gates will have a gate error probability εs compared to

the less-sensitive nodes with gate error probability ε, where εs < ε. This redundancy scheme

will have the relative merits of both temporal and spatial redundancy schemes.

6.4 Experimental Results

The experiments are performed using 8 million random input vectors and the probability

of state ”1” at the comparator outputs, P(Ci = 1), are observed. For circuits with more than

one primary output, the output error is observed as maxi P(Ci = 1). The results are presented

as percentage improvements in mitigation of output error with redundancy over the output
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Figure 6.5. Percentage mitigation of output error achieved through 5% and 15% temporal
redundancy with ε=0.001

error values without redundancy. Also results for two varying amounts of redundancy (5%

and 15%) are presented, where the variation in temporal redundancy is achieved by varying

the number of worst-case input combinations while performing TTR and varying the num-

ber of perturbed nodes while performing CTMR. All the results presented in this section are

for gate error probability ε=0.001. Circuits from the ISCAS85 benchmark suite are used as

test benches and the experiments are performed in a Pentium IV, 2.00 GHz, Windows XP

computer.

6.4.1 Error Mitigation Through Temporal Redundancy

Fig. 6.5. gives the percentage mitigation of output error achieved through 5% and 15%

temporal redundancy with ε=0.001. The important observations are listed as follows,
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• For all the circuits, the error mitigation percentage for 15% temporal redundancy, is

more than 10%. For 5% temporal redundancy, c17 and voter show significant error

mitigation as compared to other circuits.

• For some circuits like c17 and max f lat, the error mitigation percentage is even beyond

20% when 15% of temporal redundancy is applied.

• For all circuits, the results clearly show the improvement in error mitigation when the

amount of redundancy is increased. The improvement is more than 13% in circuits like

c17 and max f lat, while for other circuits it is more than 6%.

6.4.2 Error Mitigation Through Spatial Redundancy

Fig. 6.6. gives the percentage mitigation of output error achieved through 5% and 15%

spatial redundancy with ε=0.001. The important observations are listed as follows,

• Significant error mitigation is achieved for all circuits with 15% spatial redundancy. The

error mitigation percentage is above 20% for all the circuits for 15% spatial redundancy,

with voter achieving almost 50% error mitigation, c17 achieving 36% error mitigation

and max f lat, malu4 achieving around 30% error mitigation.

• For 5% spatial redundancy, the error mitigation percentage is more than 10% for circuits

like c17, max f lat, voter and alu4, while it is closer to 10% for the other circuits.

• The results clearly show significant improvement in percentage of error mitigation,

when spatial redundancy is increased from 5% to 15%. While the improvement is as

high as 33% for voter, for all the circuits except decoder, the improvement is more than

15%.
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Figure 6.6. Percentage mitigation of output error achieved through 5% and 15% spatial redun-
dancy with ε=0.001

6.4.3 Error Mitigation Through Hybrid Redundancy

Fig. 6.7. gives the percentage mitigation of output error achieved through 5% and 15%

hybrid redundancy with ε=0.001. 5% hybrid redundancy is achieved using the combination

of 5% temporal and 5% spatial redundancies, while 15% hybrid redundancy is achieved using

the combination of 15% temporal and 15% spatial redundancies. The important observations

are listed as follows,

• Significant error mitigation is achieved for all circuits with 15% hybrid redundancy.

The error mitigation percentage is above 30% for all the circuits, with voter achiev-

ing as high as 60% error mitigation, c17 achieving 51% error mitigation and max f lat

achieving around 47% error mitigation.

• Even for 5% hybrid redundancy, the error mitigation percentage is as high as 35% for

voter, while it is more than 20% for the circuits like c17 and max f lat.
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Figure 6.7. Percentage mitigation of output error achieved through 5% and 15% hybrid redun-
dancy with ε=0.001

• The improvement in error mitigation, by increasing the amount of hybrid redundancy

from 5% to 15%, is highly significant in all the circuit. While the improvement is above

24% in circuits like c17, max f lat, voter and malu4, it is around 20% for the circuits

decoder and alu4.

6.4.4 Comparison Between the Redundancy Schemes

Fig. 6.8. gives the comparison between the redundancy schemes for 5% and 15% redun-

dancy with ε=0.001. The important observations are listed as follows,

• As expected, hybrid redundancy provides better error mitigation as compared to tempo-

ral and spatial redundancies. The other notable result is that spatial redundancy provides

better error mitigation as compared to temporal redundancy.
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Figure 6.8. Comparison between the redundancy schemes for (a) 5% and (b) 15% redundancy
with ε=0.001

• For 5% redundancy case, the improvement in error mitigation using hybrid scheme as

compared to temporal scheme is above 10% for circuits c17, max f lat, and above 18%

for voter. Even the least improvement is around 7% for decoder, while the improvement

in other circuits is around 9%.

• For 5% redundancy case, the improvement in error mitigation using hybrid scheme as

compared to spatial scheme is above 10% for only voter, while the improvement in c17

is around 8%. The improvement in rest of the circuits is less than 7%.

• For 15% redundancy case, the improvement in error mitigation using hybrid scheme as

compared to temporal scheme is above 20% for all circuits except decoder, with voter

showing the highest improvement of about 43%. Even the least improvement is around

18% for decoder.

• For 15% redundancy case, the improvement in error mitigation using hybrid scheme as

compared to spatial scheme is above 10% for all the circuits except alu4 and malu4.

The highest improvement, shown by max f lat, is around 16%, while the improvement

shown by alu4 and malu4 is above 8%.
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Figure 6.9. Percentage mitigation of output error achieved through hybrid redundancy with
different combinations of spatial and temporal redundancies while ε=0.001

6.4.5 Error Mitigation Through Hybrid Redundancy with Different Combinations of
Spatial and Temporal Redundancies

Fig. 6.9. gives the percentage mitigation of output error achieved through hybrid redun-

dancy with different combinations of spatial and temporal redundancies while ε=0.001. The

combinations include, 5% spatial and 5% temporal, 15% spatial and 5% temporal, 5% spatial

and 15% temporal, 15% spatial and 15% temporal. The important observations are listed as

follows,

• As expected, the combination of 15% spatial and 15% temporal redundancies yield the

best error mitigation, while the combination of 5% spatial and 5% temporal redundan-

cies yield the worst error mitigation.

• Comparing the combination 15% spatial and 5% temporal with the combination 5%

spatial and 15% temporal, which is exactly the opposite, it is evident that providing

more spatial redundancy is beneficial for error mitigation. The difference between the
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Figure 6.10. (a) Delay penalty in temporal redundancy (b) Area penalty in spatial redundancy

percentage mitigation of output error between these combinations is as high as 18% for

voter, and more than 10% for c17 and malu4. While the difference is around 8% for

alu4, it is as low as 4% for max f lat and decoder.

6.4.6 Delay and Area Penalties

Fig. 6.10. gives the delay penalty due to multiple runs with the same input vector in tem-

poral redundancy, and the area penalty due to multiple copies of the same gate in spatial

redundancy. The important observations are as follows,

• Area penalty is much larger than delay penalty. While the delay penalty is just 1.1

times the delay without redundancy for 5% temporal redundancy and 1.3 times the

delay without redundancy for 15% temporal redundancy, the area penalty is 2.2 times

the area without redundancy for 5% spatial redundancy and 4.6 times the area without

redundancy for 15% spatial redundancy.

• This is obvious since the delay penalty is due to just 2 additional runs, while area penalty

is due to 24 additional gates.
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6.5 Discussion

We have performed temporal, spatial and hybrid redundancy, using our probabilistic error

model, to achieve error mitigation in digital logic circuits. The percentage of error mitigation

achieved using all the three types of redundancies are shown through experimental results.

On an average, for 15% redundancy, 16% error mitigation was achieved with temporal redun-

dancy, 32% error mitigation was achieved with spatial redundancy and 44% error mitigation

was achieved with temporal redundancy. We have also provided a comprehensive study of

the relative merits of these redundancy schemes, indicating the effectiveness of the hybrid

redundancy, that encapsulates both temporal and spatial redundancy techniques.
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CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, we have presented reliability models for nano VLSI circuits using

probabilistic graphs and have accomplished the following,

• We have calculated the maximum error occurring in digital logic circuits and the cor-

responding worst-case input combination, through maximum a posteriori hypothesis,

using an efficient Shenoy-Shafer algorithm. Through the results we have shown the

importance of handling maximum error behavior for achieving fault tolerant comput-

ing machines. We have also studied the circuit-specific error bounds for fault-tolerant

computing and the results clearly show that the error bounds are highly dependent on

circuit structure and computation of maximum output error is essential to attain a tighter

bound.

• We have calculated the average output error in sequential digital logic circuits and stud-

ied the transient error behavior across different time instances, using a dynamic time-

evolving probabilistic error model. Through the results, we have shown the vulnerabil-

ity of sequential circuits to transient errors and the dependence of error behavior to the

circuit structure.

• We have performed temporal, spatial and hybrid redundancy, using our probabilistic er-

ror model, to achieve error mitigation in digital logic circuits. We have shown significant

error reduction using all the three techniques and we also have provided a comprehen-

sive study of the relative merits of these redundancy schemes, indicating the effective-
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ness of the hybrid redundancy, that encapsulates both temporal and spatial redundancy

techniques.

Some possible future directions of this work are as follows,

• This work can be further enhanced by obtaining real time gate error probability, ε, values

from device physics and fabrication processes. Also using this model to solve reliability

issues in real-time test benches like circuits used in automobiles and biomedical chips

can further enlarge the scope and effectiveness of the model.

• To handle large circuits, stochastic heuristic algorithms to detect both average and max-

imum error can be proposed. This work can serve as a baseline exact estimate to judge

the efficacy of the various stochastic heuristic algorithms that will be essential for cir-

cuits of higher dimensions.

• The error model to detect error in sequential circuits can be further enhanced by explor-

ing error masking effects, like the latching window masking effect, that can arise in an

erroneous latch connected in the feedback path.

• The error models can be enhanced by addressing design aspects like timing violations

leading to delay faults.

• Since our model can be more versatile, apart from addressing global erroneous behavior,

we should also address specific reliability issues like signal integrity, by modeling the

gate error probability values for each gate based on this specific reliability issue.
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[2] F. P. Mathur and A. Avižienis, “Reliability Analysis and Architecture of a Hybrid-
Redundant Digital System: Generalized Triple Modular Redundancy with Self-Repair”,
AFIPS Joint Computer Conferences, pages 375–383, 1970.

[3] N. Pippenger, “Reliable Computation by Formulas in the Presence of Noise”, IEEE
Trans on Information Theory, vol. 34(2), pages 194–197, 1988.

[4] T. Feder, “Reliable Computation by Networks in the Presence of Noise”, IEEE Trans on
Information Theory, vol. 35(3), pages 569–571, 1989.

[5] B. Hajek and T. Weller, “On the Maximum Tolerable Noise for Reliable Computation
by Formulas”, IEEE Trans on Information Theory, vol. 37(2), pages 388–391, 1991.

[6] W. Evans and L. J. Schulman, “On the Maximum Tolerable Noise of k-input Gates for
Reliable Computation by Formulas”, IEEE Trans on Information Theory, vol. 49(11),
pages 3094–3098, 2003.

[7] W. Evans and N. Pippenger, “On the Maximum Tolerable Noise for Reliable Computa-
tion by Formulas”, IEEE Transactions on Information Theory, vol. 44(3), pages 1299–
1305, 1998.

[8] J. B. Gao, Y. Qi and J. A. B. Fortes, “Bifurcations and Fundamental Error Bounds for
Fault-Tolerant Computations”, IEEE Transactions on Nanotechnology, vol. 4(4), pages
395–402, 2005.

[9] D. Marculescu, R. Marculescu and M. Pedram, “Theoretical Bounds for Switching Ac-
tivity Analysis in Finite-State Machines”, IEEE Transactions on VLSI Systems, vol. 8(3),
pages 335–339, 2000.

[10] P. G. Depledge, “Fault-Tolerant Computer Systems”, IEE Proc. A, vol. 128(4), pages
257–272, 1981.

106



[11] S. Spagocci and T. Fountain, “Fault Rates in Nanochip Devices”, in Electrochemical
Society, pages 354–368, 1999.

[12] J. Han and P. Jonker, “A Defect- and Fault-Tolerant Architecture for Nanocomputers”,
Nanotechnology, vol. 14, pages 224–230, 2003.

[13] S. Roy and V. Beiu, “Majority Multiplexing-Economical Redundant Fault-tolerant De-
signs for Nano Architectures”, IEEE Transactions on Nanotechnology, vol. 4(4), pages
441–451, 2005.

[14] K. Nikolic, A. Sadek, and M. Forshaw, “Fault-Tolerant Techniques for Nanocomputers,”
Nanotechnology, vol. 13, pages 357–362, 2002.

[15] J. Han, E. Taylor, J. Gao and J. A. B. Fortes, ‘”Reliability Modeling of Nanoelectronic
Circuits”, IEEE Conference on Nanotechnology, 2005.

[16] J. B. Gao, Yan Qi and J.A.B. Fortes, “Markov Chains and Probabilistic Computation -
A General Framework for Multiplexed Nanoelectronic Systems”, IEEE Transactions on
Nanotechnology, vol. 4(2), pages 395–402, 2005.

[17] E. Taylor, J. Han and J. A. B. Fortes, “Towards Accurate and Efficient Reliability Model-
ing of Nanoelectronic Circuits”, IEEE Conference on Nanotechnology, pages 395–398,
2006.

[18] M. O. Simsir, S. Cadambi, F. Ivancic, M. Roetteler and N. K. Jha, “Fault-Tolerant Com-
puting Using a Hybrid Nano-CMOS Architecture”, International Conference on VLSI
Design, pages 435–440, 2008.

[19] C. Chen and Y. Mao, “A Statistical Reliability Model for Single-Electron Threshold
Logic”, IEEE Transactions on Electron Devices, vol. 55, pages 1547–1553, 2008.

[20] A. Abdollahi, “Probabilistic Decision Diagrams for Exact Probabilistic Analysis”,
IEEE/ACM International Conference on Computer-Aided Design, pages 266–272, 2007.

[21] M. R. Choudhury and K. Mohanram, “Accurate and Scalable Reliability Analysis of
Logic Circuits”, Design, Automation, and Test in Europe (DATE) conference, pages
1454–1459, 2007.

[22] S. Lazarova-Molnar, V. Beiu and W. Ibrahim, “A Strategy for Reliability Assessment
of Future Nano-Circuits”, WSEAS International Conference on Circuits, pages 60–65,
2007.

[23] P. P. Shenoy and G. Shafer, “Propagating Belief Functions with Local Computations”,
IEEE Expert, vol. 1(3), pages 43–52, 1986.

[24] P. P. Shenoy, “Binary Join Trees for Computing Marginals in the Shenoy-Shafer Archi-
tecture”, International Journal of Approximate Reasoning, pages 239–263, 1997.

107



[25] P. P. Shenoy, “Valuation-Based Systems: A Framework for Managing Uncertainty in
Expert Systems”, Fuzzy Logic for the Management of Uncertainty, pages 83–104, 1992.

[26] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Network of Plausible Infer-
ence”, Morgan Kaufmann Publishers, Inc., 1988.

[27] F. V. Jensen, S. Lauritzen and K. Olesen, “Bayesian Updating in Recursive Graphical
Models by Local Computation”, Computational Statistics Quarterly, pages 269-282,
1990.

[28] R. G. Cowell, A. P. David, S. L. Lauritzen and D. J. Spiegelhalter, “Probabilistic Net-
works and Expert Systems,” Springer-Verlag New York, Inc., 1999.

[29] J. D. Park and A. Darwiche, “Solving MAP Exactly using Systematic Search”, Confer-
ence on Uncertainty in Artificial Intelligence, 2003.

[30] J. D. Park and A. Darwiche, “Approximating MAP using Local Search”, Conference on
Uncertainty in Artificial Intelligence, pages 403–410, 2001.

[31] Sensitivity Analysis, Modeling, Inference and More (SAMIAM),
http://reasoning.cs.ucla.edu/samiam/, Automated Reasoning Group, University of
California, Los Angeles.

[32] J. P. Roth, “Diagnosis of Automata Failures: A Calculus and a Method”, IBM Journal of
Research and Development, vol. 10(4), pages 278–291, 1966.

[33] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic
Circuits”, IEEE Transactions on Computers, vol. C-30(3), pages 215–222, 1981.

[34] H. Fujiwara and T. Shimono, “On The Acceleration of Test Generation Algorithms”,
IEEE Transactions on Computers, vol. C-32(12), pages 1137–1144, 1983.

[35] V. D. Agrawal, S. C. Seth and C. C. Chuang, “Probabilistically Guided Test Generation”,
IEEE International Symposium on Circuits and Systems, pages 687–690, 1985.

[36] J. Savir, G. S. Ditlow and P. H. Bardell, “Random Pattern Testability”, IEEE Transac-
tions on Computers, vol. C-33(1), pages 79–90, 1984.

[37] C. Seth, L. Pan and V. D. Agrawal, “PREDICT - Probabilistic Estimation of Digital
Circuit Testability”, IEEE International Symposium on Fault-Tolerant Computing, pages
220–225, 1985.

[38] S. T. Chakradhar, M. L. Bushnell and V. D. Agrawal, “Automatic Test Generation us-
ing Neural Networks”, IEEE International Conference on Computer-Aided Design, vol.
7(10), pages 416–419, 1988.

108



[39] M. Mason, “FPGA Reliability in Space-Flight and Automotive Applications”, FPGA
and Programmable Logic Journal, 2005.

[40] E. Zanoni and P. Pavan, “Improving the Reliability and Safety of Automotive Electron-
ics”, IEEE Micro, vol. 13(1), pages 30–48, 1993.

[41] P. Gerrish, E. Herrmann, L. Tyler and K. Walsh, “Challenges and Constraints in Design-
ing Implantable Medical ICs”, IEEE Transactions on Device and Materials Reliability,
vol. 5(3), pages 435–444, 2005.

[42] L. Stotts, “Introduction to Implantable Biomedical IC Design”, IEEE Circuits and De-
vices Magazine, pages 12–18, 1999.

[43] S. Cheemalavagu, P. Korkmaz, K. V. Palem, B. E. S. Akgul and L. N. Chakrapani, “A
Probabilistic CMOS Switch and its Realization by Exploiting Noise”, IFIP International
Conference on Very Large Scale Integration, 2005.

[44] Military Standard (MIL-STD-883), “Test Methods and Procedures for Microelectron-
ics”, 1996.

[45] S. Krishnaswamy, G. S. Viamontes, I. L. Markov, and J. P. Hayes, “Accurate Reliability
Evaluation and Enhancement via Probabilistic Transfer Matrices”, Design Automation
and Test in Europe (DATE) Conference, pages 282–287, 2005.

[46] J. Han, J. B. Gao, P. Jonker, Y. Qi and J. A. B. Fortes, “Toward Hardware-Redundant
Fault-Tolerant Logic for Nanoelectronics”, IEEE Transactions on Design and Test of
Computers, vol. 22(4), pages 328–339, 2005.

[47] R. I. Bahar, J. Mundy, and J. Chan, “A Probabilistic Based Design Methodology for
Nanoscale Computation”, International Conference on Computer Aided Design (IC-
CAD), pages 480–486, 2003.

[48] D. Bhaduri and S. K. Shukla, “NANOPRISM: A Tool for Evaluating Granularity vs.
Reliability Trade-offs in Nano Architectures”, Great Lakes Symposium on VLSI, pages
109–112, 2004.

[49] L. P. Yuan, C. C. Teng and S. M. Kang, “Statistical Estimation of Average Power Dis-
sipation in Sequential Circuits,” Design Automation Conference (DAC), pages 377–382,
1997.

[50] HUGIN Inference Tool, http://www.hugin.com/, HUGIN EXPERT A/S, Aalborg, Den-
mark.

[51] N. M. Zivanov and D. Marculescu, “Soft Error Rate Analysis for Sequential Circuits”,
Design Automation and Test in Europe (DATE) Conference, pages 1–6, 2007.

109



[52] J. J. Shedletsky and E. J. McCluskey, “The Error Latency of a Fault in a Sequential
Digital Circuit”, IEEE Transactions on Computers, vol. C-25(6), pages 655–659, 1976.

[53] S. Y. Huang, K. T. Cheng, K. C. Chen and J. Y. Lu, “Fault-Simulation Based Design
Error Diagnosis for Sequential Circuits”, Design Automation Conference (DAC), pages
632–637, 1998.

[54] H. Asadi and M. B. Tahoori, “Soft Error Modeling and Protection for Sequential Ele-
ments”, IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems,
pages 463–471, 2005.

[55] R. Baumann, “Soft Errors in Advanced Computer Systems”, IEEE Design and Test of
Computers, vol. 22(3), pages 258–266, 2005.

[56] M. Zhang and N. R. Shanbag, “A Soft Error Rate Analysis (SERA) Methodology”, In-
ternational Conference on Computer Aided Design (ICCAD), pages 111–118, 2004.

[57] S. Winograd and J. D. Cowan, “Reliable Computation in the Presence of Noise”, The
MIT Press, 1963.

[58] G. Norman, D. Parker, M. Kwiatkowska and S. K. Shukla, “Evaluating the Reliability of
Defect-Tolerant Architectures for Nanotechnology with Probabilistic Model Checking”,
International Conference on VLSI Design, pages 907–912, 2004.

[59] International Technology Roadmap for Semiconductors (ITRS),
http://www.itrs.net/Links/2005ITRS/ERD2005.pdf, 2005.

[60] G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics, vol.
38(8), 1965.

[61] L. B. Kish, “End of Moore’s Law: Thermal (Noise) Death of Integration in Micro and
Nano Electronics”, Physics Letters A, vol. 305(3–4), pages 144–149, 2002.

[62] C. W. Gwyn, D. L. Scharfetter and J. L. Wirth, “The Analysis of Radiation Effects
in Semiconductor Junction Devices”, IEEE Transactions on Nuclear Science, vol. NS-
14(6), pages 153–169, 1967.

[63] D. C. DAvanzo, M. Vanzi and R. W. Dutton, “One-Dimensional Semiconductor Device
Analysis, Tech. Rep. no. G-201-5, Stanford Electronics Laboratories, Stanford Univer-
sity, 1979.

[64] S. Selberherr, W. Fichtner and H. W. Potzl, “MINIMOS - A Program Package to Facili-
tate MOS Device Design and Analysis”, NASECODE I, pages 275–279, 1979.

[65] P. E. Cottrell and E. M. Buturla, “Two-Dimensional Static and Transient Simulation of
Mobile Carrier Transport in a Semiconductor, NASECODE I, pages 31–64, 1979.

110



[66] E. M. Buturla, P. E. Cottrell, B. M. Grossman, K. A. Salsburg, M. B. Lawlor and C. T.
McMullen, “Three-Dimensional Finite Element Simulation of Semiconductor Devices”,
IEEE Int. Solid State Circuits Conf. Dig. Tech. Papers, pages 76–77, 1980.

[67] M. R. Pinto, C. S. Rafferty and R. W. Dutton, “PISCES-II: Poisson and Continuity Equa-
tion Solver”, Stanford Electronics Laboratories, 1984.

[68] P. E. Dodd, “Device Simulation of Charge Collection and Single-Event Upset”, IEEE
Transactions on Nuclear Science, vol. 43(2), pages 561–575, 1996.

[69] G. R. Srinivasan, H. K. Tang and P. C. Murley, “Parameter-Free, Predictive Modeling
of Single Event Upsets due to Protons, Neutrons and Pions in Terrestrial Cosmic Rays”,
IEEE Transactions on Nuclear Science, vol. 41(6), pages 2063–2070, 1994.

[70] M. R. Choudhury, Q. Zhou and K. Mohanram, “Design Optimization for Single-Event
Upset Robustness using Simultaneous Dual-VDD and Sizing Techniques”, International
Conference on Computer Aided Design (ICCAD), pages 204–209, 2006.

[71] K. Bhattacharya and N. Ranganathan, “A New Placement Algorithm for Reduction of
Soft Errors in Macro Cell based Design of Nanometer Circuits”, IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 91–96, 2009.

[72] N. Miskov-Zivanov and D. Marculescu, “MARS-C: Modeling and Reduction of Soft
Errors in Combinational Circuits”, Design Automation Conference (DAC), pages 767–
772, 2006.

[73] P. K. Samudrala, J. Ramos and S. Katkoori, “Selective Triple Modular Redundancy
(STMR) Based Single-Event-Upset (SEU) Tolerant Synthesis for FPGAs”, IEEE Trans-
actions on Nuclear Science, vol. 51(5), pages 2957–2969, 2004.

[74] W. A. Moreno, J. R. Samson Jr. and F. J. Falquez, “Laser Injection of Soft Faults for
the Validation of Dependability Design”, Journal of Universal Computer Science, vol.
5(10), pages 712–729, 1999.

[75] Paris D. Wiley, “Fault Tolerant Design Verification Through The Use of Laser Fault
Injection”, Masters Thesis, Department of Electrical Engineering, University of South
Florida, 2004.

[76] A. Sanyal, S. M. Alam and S. Kundu, “A Built-In Self-Test Scheme for Soft Error Rate
Characterization”, IEEE International On-Line Testing Symposium, pages 65–70, 2008.

[77] S. Bhanja and N. Ranganathan, “Switching Activity Estimation of VLSI Circuits using
Bayesian Networks”, IEEE Transactions on VLSI Systems, pages 558–567, 2003.

[78] S. Bhanja and N. Ranganathan, “Cascaded Bayesian Inferencing for Switching Activity
Estimation with Correlated Inputs”, IEEE Transaction on VLSI Systems, vol. 12(12),
pages 1360–1370, 2004.

111



[79] S. Bhanja and N. Ranganathan, “Modeling Switching Activity Using Cascaded Bayesian
Networks for Correlated Input Streams ”, International Conference on Computer Design
(ICCD), pages 388–390, 2002.

[80] S. Bhanja and N. Ranganathan, “Accurate Switching Activity Estimation of Large Cir-
cuits using Multiple Bayesian Networks”, 15th Intl. Conference of VLSI Design and 7th
ASP-Design and Automation Conference, pages 187–192, 2002.

[81] S. Bhanja and N. Ranganathan, “Dependency Preserving Probabilistic Modeling of
Switching Activity using Bayesian Networks”, IEEE/ACM Design Automation Confer-
ence (DAC), pages 209–214, 2001.

[82] S. Bhanja and S. Sarkar, “Probabilistic Modeling of QCA Circuits using Bayesian Net-
works”, IEEE Transactions on Nanotechnology, vol. 5(6), pages 657–670, 2006.

[83] S. Bhanja and S. Sarkar, “Switching Error Modes of QCA Circuits”, IEEE Conference
on Nanotechnology, vol. 1, pages 383–386, 2006.

[84] S. Bhanja and S. Sarkar, “Graphical Probabilistic Inference for Ground State and Near-
Ground State Computing in QCA Circuits”, IEEE Conference on Nanotechnology, pages
290–293, 2005.

[85] T. Rejimon and S. Bhanja, “A Timing-Aware Probabilistic Model for Single-Event-Upset
Analysis”, IEEE Transactions on VLSI Systems, vol. 14(10), pages 1130–1139, 2006.

[86] T. Rejimon and S. Bhanja, “Probabilistic Error Model for Unreliable Nano-logic Gates”,
IEEE Conference on Nanotechnology, pages 717–722, 2006.

[87] T. Rejimon and S. Bhanja, “Time and Space Efficient Method for Accurate Computation
of Error Detection Probabilities”, IEE Computers and Digital Techniques, vol. 152(5),
pages 679–685, 2005.

[88] T. Rejimon and S. Bhanja, “A Stimulus-Free Probabilistic Model for Single-Event-Upset
Sensitivity”, IEEE Intl. Conference on VLSI Design, 2006.

[89] T. Rejimon, L. Hoffmann and S. Bhanja, “A Probabilistic Model for Single-Event-
Upset”, 12th NASA Symposium on VLSI, 2005.

[90] T. Rejimon and S. Bhanja, “An Accurate Probabilistic Model for Error Detection”, 18th
International Conference in VLSI Design, pages 717–722, 2005.

[91] T. Rejimon and S. Bhanja, “Scalable Probabilistic Computing Models using Bayesian
Networks”, IEEE Midwest Symposium on Circuits and Systems, pages 712–715, 2005.

[92] S. Ramani and S. Bhanja, “Anytime Probabilistic Switching Model using Bayesian Net-
works,” International Symposium on Low Power Electronic Design, pages 86–89, 2004.

112



[93] N. Ramalingam and S. Bhanja, “Causal Probabilistic Input Dependency Learning for
Switching Model in VLSI Circuits”, ACM Great Lake Symposium on VLSI, pages 112–
115, 2005.

[94] S. Srivastava and S. Bhanja, “Hierarchical Probabilistic Macromodeling for QCA Cir-
cuits”, IEEE Transactions on Computers, vol. 56(2), pages 174–190, 2007.

[95] S. Srivastava and S. Bhanja, “Bayesian Macromodeling for Circuit Level QCA Design”,
IEEE Conference on Nanotechnology, pages 31–34, 2006.

[96] S. Srivastava and S. Bhanja, “Hierarchical Bayesian Macromodeling for QCA Circuits”,
12th NASA Symposium on VLSI, 2005.

[97] S. Bhanja and S. Srivastava, “Bayesian Modeling of Quantum-dot Cellular Automata
Circuits”, NSTI, Nanotechnology Conference, 2005.

[98] S. Bhanja, K. Lingasubramanian and N. Ranganathan, “A Stimulus-Free Graphical Prob-
abilistic Switching Model for Sequential Circuits using Dynamic Bayesian Networks”,
ACM Transactions on Design Automation of Electronic Systems, vol. 11(3), pages 773–
796, 2006.

[99] T. Rejimon, K. Lingasubramanian and S. Bhanja, “Probabilistic Error Model for Nano-
Domain Logic Circuits”, IEEE Transactions on VLSI, vol. 17(1), pages 55–65, 2008.

[100] K. Lingasubramanian and S.Bhanja, “Probabilistic Maximum Error Modeling for Un-
reliable Logic Circuits”, ACM Great Lake Symposium on VLSI, pages 223–226, 2007.

[101] K. Lingasubramanian and S. Bhanja, “Probabilistic Error Modeling for Sequential
Logic”, IEEE International Conference on Nanotechnology, pages 616–620, 2007.

[102] K. Lingasubramanian and S. Bhanja, “An Error Model to Study the Behavior of Tran-
sient Errors in Sequential Circuits”, IEEE International Conference on VLSI Design,
pages 485–490, 2009.

[103] A. Shareef, K. Lingasubramanian and S. Bhanja, “Selective Redundancy: Evaluation
of Temporal Reliability Enhancement Scheme for Nanoelectronic Circuits”, IEEE Con-
ference on Nanotechnology, pages 895–898, 2008.

[104] S. Bhanja, K. Lingasubramanian and N. Ranganathan, “Estimation of Switching Ac-
tivity in Sequential Circuits Using Dynamic Bayesian Networks”, 18th International
Conference in VLSI Design, pages 586–591, 2005.

113



ABOUT THE AUTHOR

Karthikeyan Lingasubramanian received the B.E. degree in electronics and communi-

cation engineering from Kumaraguru College of Technology, India, in 2001. He received

his M.S. degree in electrical engineering from University of South Florida, Tampa, USA, in

2004, where he is currently pursuing the Ph.D. degree in electrical engineering. His research

interests include design automation and testing, comprehensive nano-domain probabilistic and

statistical models for estimation and optimization of error and power.


	University of South Florida
	Scholar Commons
	2010

	Probabilistic error analysis models for nano-domain VLSI circuits
	Karthikeyan Lingasubramanian
	Scholar Commons Citation


	Doctoral_Title_page
	Probabilistic Error Analysis Models for Nano-Domain VLSI Circuits
	A dissertation submitted in partial fulfillment
	Keywords: Reliability, Worst-case input, Sequential circuits, Redundancy models

	Karthikeyan_Lingasubramanian_Dissertation_Final
	Dissertation_test


