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PROBABILISTIC ERROR ANALYSISMODELSFOR NANO-DOMAIN VLS
CIRCUITS

Karthikeyan Lingasubramanian

ABSTRACT

Technology scaling to the nanometer level s has paved the way to realize multi-dimensional
applications in a single product by increasing the density of the electronic devices on inte-
grated chips. Thishas naturally attracted awide variety of industrieslike medicine, communi-
cation, automobile, defense and even house-hold appliance, to use high speed multi-functional
computing machines. Apart from the advantages of these nano-domain computing devices,
their usage in safety-centric applications like implantable biomedical chips and automobile
safety has immensely increased the need for comprehensive error analysis to enhance their
reliability. Moreover, these nano-electronic devices have increased propensity to transient er-
rors due to extremely small device dimensions and low switching energy. The nature of these
transient errors is more probabilistic than deterministic, and so requires probabilistic models
for estimation and analysis. In this dissertation, we present comprehensive analytic studies
of error behavior in nano-level digital logic circuits using probabilistic reliability models. It
comprises the design of exact probabilistic error models, to compute the maximum error over
all possible input space in a circuit-specific manner; to study the behavior of transient errors
in sequentia circuits; and to achieve error mitigation through redundancy techniques. The
model to compute maximum error, also provides the worst-case input vector, which has the
highest probability to generate an erroneous output, for any given logic circuit. The model

for sequential logic that can measure the expected output error probability, given a probabilis-

viii



tic input space, can account for both spatial dependencies and temporal correlations across
the logic, using a time evolving causal network. For comprehensive error reduction in logic
circuits, temporal, spatial and hybrid redundancy models, are implemented. The temporal re-
dundancy model uses the triple temporal redundancy technique that applies redundancy in the
input space, spatial redundancy model uses the cascaded triple modular redundancy technique
that appliesredundancy in the intermediate signal space and the hybrid redundancy techniques
encapsulates both temporal and spatial redundancy schemes. All the above studies are per-
formed on standard benchmark circuits from ISCAS and MCNC suites and the subsequent
experimental results are obtained. These results clearly encompasses the various aspects of
error behavior in nano VLSI circuits and also shows the efficiency and versatility of the prob-

abilistic error models.



CHAPTER 1
INTRODUCTION

Integrated Circuits are used in a wide range of important applications like automobile,
aircraft, medicine, defense, communication and even house-hold appliances. Critical applica-
tions like medicine demand high accuracy and efficiency due to stringent safety requirements,
while applications like automotive, defense demand more robustness due to extreme work-
ing conditions [41, 42, 39]. Also the demand for multi-dimensional applicationsin a single
product has increased the density of the electronic devices on a chip eventually resulting in
reduction of device feature size, pushing the technology to nanometer levels [60, 59]. Com-
plementary Metal Oxide Semiconductor (CMOS) transistors, which are the current generation
electronic devices, have been shrunk to sub-50nm dimensions [59]. This reduction in feature
sizeresultsin variationsin device and process parameters, which in turn leads to transient dy-
namic faultsin digital circuits. In this dissertation, we present an error model that can handle
these transient dynamic faults using probabilistic methods. Using thiserror model, we present
a unique method to calculate maximum errors in digital circuits. Also, based on this error
model, we present a time evolving probabilistic network that can calculate error in sequen-
tial circuits. Finally, we present temporal, spatial and hybrid redundancy techniques, which
incorporates selective redundancy using the base error model, for error mitigation in digital

circuits.



1.1 Motivation

Why use probabilistic models? Nano-domain computing devices are likely to have higher
error rates (both in terms of defect and transient faults) as they operate near the thermal limit
and information processing occurs at extremely small volume [61, 47]. Nano-CMOS, beyond
22nm, is not an exception in this regard as the frequency scales up and voltage and geometry
scales down. The resulting errors, due to uncontrollable variations in device and process pa-
rameterslike temperature and threshold voltage, are highly intractable for deterministic testing
tools used to detect permanent faults. A fresh look at reliability in a technology independent
fashion is both timely and necessary. Given the inherent stochastic nature of the devicesin the
nano-regime, instead of deterministic logic models probabilistic models would be more ap-
propriate. Thisrequires a significant shift in the design and testing paradigm, with reliability
adopting a central role in design of electronic devices.

Why model maximum error? Industries like automotive and health care have tradition-
ally addressed high reliability requirements by employing redundancy, error corrections, and
choice of proper assembly and packaging technology. In addition, rigorous product testing
at extended stress conditions filters out even an entire lot in the presence of a small num-
ber of failures [39]. Another rapidly growing class of electronic chips where reliability is
very critical isimplantable biomedical chips [41, 42]. More interestingly, some of the safety
approaches, such as redundancy and complex packaging, are not readily applicable to im-
plantable biomedical applications because of low voltage and low power operation and small
form factor requirements. Authors in [41] identified that conventional approaches in device
and parasitic modeling, circuit techniques, and manufacturing and test need to improve due
to extreme low power and high reliability requirements, since these constraints pose serious
complexitiesin circuit design through unpredictable design environment. In addition, we be-

lieve our method of calculating maximum probability of error and the proposed maximum



error probability aware design iswell suited for implantable biomedical |C design. While two
design implementation choices can have different average probabilities of failures, the lower
average choice may in fact have higher maximum probability of failure leading to lower yield
in manufacturing and more rejects during chip burn-in and extended screening. Also, when
the input space for acircuit is completely random and equally probable, calculation of average
error will suffice. But, as in some cases, when the input space gets biased, the average error
information will not be comprehensive enough to understand the error behavior in the circuit.
Therefore, using maximum probability of failure asacritical design metric along with average
case would be required in design of safety critical electronic chips.

Why model error in sequential circuits? Most of the real-time applications of electronic
devices, like random access memories, needs them to be sequentia in nature. Sequential cir-
cuits consist of acombinational logic block, set of inputs, set of state bits where the values of
the next state bit is fed back to the present state in the next clock cycle through latches. At
a given time instance tj, the state signals s, are uniquely identified as a function of primary
input signals iy, and state signals ,_, of the previous time instance giving rise to temporal
correlations. Due to this, error occurring in the combinational part of the circuit at one time
instance might propagate towards several consecutive time instances making the device more
vulnerable [54, 51]. The static reliability models used for combinational circuits are not ad-
eguate to model the temporal dependencies between the circuit nodes, at the combinational
part of the sequential circuit, at different timeinstances[52, 53, 54, 51, 55]. In order to handle

this a more dynamic model which can evolve through consecutive time instances is needed.

1.2 Significance

The errors that can occur in nano-domain VLSI circuits can be widely divided into two

categories, hard faults and soft errors. Hard faults refer to any permanent faults that can
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Figure 1.1. Significance of this dissertation

occur in acircuit component due to physical defects like oxide abnormalitiesin the transistor,
electrical defects like shorts and opens, logical defects like stuck-at and delay faults. Soft
errors refer to the failures in circuit components due to external conditions like high energy
neutron interaction or device parameter variations. Out of these categories, soft errors are
the toughest to model due to their transient nature, since the external conditions responsible
for these errors are highly unpredictable at the nanometer levels. So, the reliability models
used to address hard faults cannot be used to model soft errors, since they are completely
deterministic. Therefore, comprehensive probabilistic models, like our model, are well suited
to handle the transient soft errors.

The most prevalent soft errors in nano-domain VLSI circuits are widely categorized into
Single Event Upsets (SEUs) due to external particle interaction, and dynamic errors due to
device and process variabilities. While failures due to SEUs are more localized, in the sense,
they occur in a particular component in the circuit and gets propagated, dynamic errors are
more global, in the sense that, they can occur on multiple components of the circuit at the

sametime. So, the models that address failures due to SEUs are not enough to model dynamic



errors. Our model, presented in this work, targets the dynamic errors by giving provisions to
address error behavior in multiple circuit components at the same time,

Also our model can be considered as a complete and comprehensive model that can accu-
rately calculate both maximum and average errorsin digital circuits. Thisversatility offers a
wider diagnostic application space, which aids the collection of a variety of information sets

that are highly essential for IC testing.

1.3 Contribution

The contributions of this dissertation are as follows,

e A method to calculate maximum output error in digital circuits using a probabilistic

model is presented.

— Given acircuit with a fixed gate error probability €, this error model can provide
the maximum output error probability and the worst-case input vector, which can
be very useful testing parameters. Its also shown that these worst-case input vec-
tors not only depend on the circuit structure but could dynamically change with

€.

— It is shown that the maximum output error probabilities are much larger than av-
erage output error probabilities, for comparatively lower values of individual gate
error probability €, thereby signifying the importance of maximum error as a de-

sign parameter.

— The circuit-specific error bounds for fault-tolerant computation are presented and
it is shown that maximum output errors provide a tighter bound. Also, it isshown
that the error bound for an individual gate placed in a circuit can be dependent on

the circuit structure.



— Through thiswork, an efficient design framework that employsinference in binary
join trees using Shenoy-Shafer algorithm, to perform MAP hypothesis accurately,

isbeing applied for thefirst time in the context of digital computing machines.

— The validity of the error model is tested through comparison with circuit simu-
lations using HSpice and the results showed that the highest % difference of the

error model over HSpice isjust 1.23%, signifying its accuracy.

— Thepossibility of efficient error incorporation in thismodel is presented by provid-
ing variable € values to different gates of a circuit, instead of providing the same e
value to all gates. This formation of the error model can help in useful diagnostic

studies like error sensitivity analysis.

e An exact probabilistic error model that can study transient error behavior in sequential

logicis presented.

— This model can accurately calculate the average output error probability in any

given sequential circuit.

— A minimal time evolving probabilistic network, namely, the Temporal Dependency
Model (TDM), that can handle both spatial dependencies between nodesinasingle
time slice and temporal dependencies between nodes in different time dlices, is

presented.

— Itisshown that the increase in output error probabilitiesis more than 2 folds, even
for adight increase in € value, thereby indicating the vulnerability of sequential

circuits to transient errors.

— The crucia study of error propagation across different time instances, in a se-
guential circuit, can be performed using this model. This study is important to

understand error behavior in sequential circuits.
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— It is shown that the number of time slices needed by the model, to converge to a

final average output error value, is completely dependent on the circuit structure.

— The flexibility of the error model is shown by incorporating unequal gate error
probability values, o and €1, to study the effect of 0 — 1 and 1 — O errors on
the output of a circuit. Given a gate output signal, €o represents the probability
of error occurrence when the ideal value of the signal is’0’, and €1 represents the

probability of error occurrence when the ideal value of the signal is’1’.

— The validity of the error model is tested through comparison with circuit simula-
tions using HSpice and the results showed that the highest percentage difference

of the error model over HSpice is only 6.25%, signifying its accuracy.

e Using the probabilistic error model, temporal, spatial and hybrid redundancy techniques

are performed, to achieve error mitigation in digital logic circuits.

— Efficient error reduction is achieved through selective redundancy, which is estab-
lished by applying redundancy only to the most influential input combinations and

the most sensitive nodes.

— Through experimental results, the relative benefits of the temporal, spatial and
hybrid redundancy schemes are presented and hybrid redundancy is shown to be

the best scheme for error mitigation in digital logic circuits.

— Itisshown that increasing the amount of redundancy resultsin better error mitiga-

tionin al the three schemes.

— It is shown that the error mitigation percentage for 15% temporal redundancy, is
more than 10% for all circuits, while for 15% spatial redundancy, it is more than
20% for all circuits and for 15% hybrid redundancy, it is more than 30% for all
circuits, thereby showing the high yield of hybrid redundancy scheme.
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Figure 1.2. Scope of application

— Delay and area penalties in temporal and spatial redundancies respectively are
presented and its is shown that the area penalty is much higher than the delay

penalty.

1.4 Scope of Application

Digital VLSI circuits are widely used in critical and essential applications like automo-
biles, defense, medicine and communication. The need for reliable computation in these
circuits are of the utmost importance due to the nature of its applications. VLSI circuits are
used in the automobile brake system, implantable bio-medical devices like pacemaker, air-
craft control system and multi-functional smart phoneslike iPhone. The scaled computational
devicesin current generation nano-domain VL SI circuits hasimmensely improved its applica-
tion space. The advent of smart phones and implantable bio-medical chips are made possible
primarily by this scaling trend. At the same time VLS| circuits at nano-domain suffer from

various reliability issues that should be addressed during the design process.



In nano-domain digital VLSI circuits, affected by multiple errors, there can be one max-
imum error that can even breakdown the entire device. While primarily all of the current
reliability studies estimate the overall adverse effect by considering the average of al errors,
estimating the worst-case maximum error has proved to be tedious and cumbersome. Our reli-
ability model, presented in this dissertation, can efficiently estimate this worst-case maximum
error and the input vector associated with this error, through intelligent diagnostic studies.

In I C testing, the usage of a probabilistic error model and the information about the worst-
case input vector can help to improve testing techniques like scan chains, burn-in test and
hierarchical testing. Scan chains are widely used in Design for Test (DFT) methodologies
for IC testing. The basic idea is to form a chain of flip-flops that are made scan-able and
the desired test pattern can be serially inserted into the flip-flop chain. The test pattern is
applied to the logic circuits driven by the flip-flop chain after which the logic circuit outputs
can aso be captured into the same or different flip-flop chain for seria shift-out. In such
a setup, including the worst-case input vector in the test patterns can speed up the testing
process, since the most hazardous behavior of the circuit-under-test can be detected with the
worst-case input vector. Burn-in tests are performed to find out devices with inherent defects
or manufacturing defects [44]. These deviceswill go faulty when subjected to high stress. The
|C is subjected to long test time and stress conditions, such as extreme Vdd and temperatures,
during a burn-in test. To aid the burn-in test, a probabilistic error model that can target and
exercise individual device fault modes would help to expedite the failure mechanisms and
to screen for inherent faults in a shorter test time. More specifically, the worst case input
vectors generated according to our method is well suited for application during the burn-
in test. Finally, in hierarchical testing, the entire circuit-under-test is divided into several
internal modules where these modules can be tested individually. Such a hierarchical division
reduces the size of circuit-under-test facilitating rigorous probabilistic error analysis and the

application of worst input vectors to the targeted internal modules.



The reliability model for error estimation in sequential circuits, presented in this disserta-
tion, can be used to perform efficient diagnostic studiesin essential real-time applicationslike
computer memories. In these sequential circuits, for afixed input vector, the intermediate sig-
nals can get stuck at a wrong value due to the presence of error. This could propagate across
several time instances and this behavior can happen to any input vector. Such deterministic
approaches provides inaccurate estimation of the error behavior in sequentia circuits. Our
model, which is a probabilistic reliability model, takes care of this discrepancy by treating
both input and signal space in a probabilistic manner, thereby ensuring efficient diagnostic
studies for reliability.

While the three error mitigation schemes, temporal, spatial and hybrid, presented in this
dissertation, can be used for error optimization in any nano-domain VLSI circuit, the trade-
off studies between them can provide essential application-specific information for circuit
designers. If the application demands lesser area, then more importance should be given
to temporal redundancy than spatial redundancy. If the application has high probability of
error occurrence in the signal space than the input space, then more importance should be
given to spatial redundancy than temporal redundancy. The trade-off studies presented in
this dissertation, can provide information related to the above scenarios, which are crucia for

circuit design.

1.5 Organization

This dissertation is organized as follows,

e Chapter 2 providestherelated research works donein thefield of probabilistic reliability

analysisfor VLSI circuits.

e Chapter 3 provides the fundamental design concepts of the probabilistic error model.

10



Chapter 4 explains, in detail, about the modeling of maximum errors in logic circuits

using a probabilistic error model.

Chapter 5 explains, in detail, about modeling of errors in sequential circuits using a

dynamic time-evolving probabilistic error model.

Chapter 6 explains, in detail, about the temporal, spatial and hybrid redundancy schemes

used for error mitigation in digital logic circuits.

Chapter 7 provides the conclusion and future directions of this work.

11



CHAPTER 2
RELATED WORK

In nanometer level circuits, dueto device scaling, the most prevalent and detrimental errors
are soft errors that are caused mainly by external particle interactions and variationsin device
and process parameters. Whiletheformer resultsinlocalized failureslike Single Event Upsets

(SEUs), the latter leads to more global dynamic errors.

2.1 SEU Modeling

The modeling of devicefailures dueto SEUs are donein different levels of design abstrac-
tion, like device level, circuit level and gate level [62, 69, 70, 71, 73, 85, 74]. Initial work on
external radiation interaction on semiconductors was done as early as 1967 [62], in which the
authors proposed one dimensional drift diffusion modelsto study the radiation effects on semi-
conductor devices used widely in space applications. This work was followed by a number
of significant device level models for memory elements, using numerical ssmulation [63, 64].
In order to handle more complex situations, which are intractable by numerical simulation
models, analytic and empirical models were proposed [67]. The study of external particle
interaction with semiconductor devices, which is more of a multi dimensional phenomenon,
was enhanced through the advent of two dimensional and three dimensional models [65, 66],
which accurately measured the charge particle drift and diffusion mechanisms. At the circuit
level, SEU modeling is done by addressing circuit parameters like supply voltage, threshold

voltage and clock period; and circuit characteristics like electrical masking, logical mask-
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ing and latching window effects. Simulation based models like SEMM [69] and SERA [56]
encapsul ates these circuit aspects to provide soft error rate analysis in digital logic circuits.
While optimization techniques using dual-V dd and gate sizing are used to model SEU [70], its
effects on interconnects are also modeled at the placement level [71], using simulated anneal -
ing. At the gate level, SEU modeling is based primarily on the detection of the probability of
error occurrence at the gate outputs. Logical abstraction tools like binary decision diagrams
are used to perform soft error rate analysisin both combinational [72] and sequential [51] cir-
cuits, while acompletely probabilistic model based on Bayesian networks was used in [85] to
detect SEUsin digital logic circuits. While practical experimentslike injecting SEUs in chips
using laser pulsesto verify fault tolerance [ 74, 75] were performed, popular testing techniques

like built-in self-test mechanism [76] were also used to study soft errors.

2.2 Dynamic Error Modeling

Dynamic errors are transient soft errors caused by the uncontrollable and unpredictable
fluctuations in device and process parameters due to scaling. These global errors can coex-
ist with the local SEUs and static hard faults, and they can happen randomly at any node in
the circuit, making them untraceable. The basic concept of dynamic error modeling is the
assumption that every circuit component will have afinite propensity to be erroneous. Based
on this idea, researchers approached dynamic error modeling problem in three broad cate-
gories, calculation of error bounds, calculation of average error, and error reduction through

redundancy.

2.2.1 Calculation of Error Bounds

The study of reliable computation using unreliable components wasinitiated by Von Neu-

mann [1] who showed that erroneous components with some small error probability can pro-
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vide reliable outputs and this is possible only when the error probability of each component
islessthan 1/6. In this heuristic study, Neumann represented the logic gates as automatons
which are governed by logic functions. It was stated that the probability of error in the au-
tomaton and its output cannot exceed 1/2, since the system will become irrelevant at that
bound. Keeping this as the basic upper bound for the probability of error in the output, the
error probability of the automaton was studied through amgjority organ, in which three copies
of the same automaton were created and the majority of the three outputs was considered true.
This arrangement was proven to reduce the error probability of the base system, and through
this it was shown that the error probability of the automaton cannot be > 1/6, since at this
upper bound the system becomes unsustainable.

Thiswork was later enhanced by Pippenger [3] who realized Von Neumann’s model using
formulasfor boolean functions. Here the digital logic components are realized using functions
whose number of arguments relate to the number of inputs in the component. Through this
arrangement, it was shown that for a function controlled by k-arguments, the error probability
of each component should be less than (k — 1)/2k to achieve reliable computation. Through
this, an interesting result was shown for 3-input components, whose error probability bound
for reliable computation was 1/3, which is greater than the Von Neumann bound of 1/6,
thereby creating curiosity. Thiswork waslater extended by using networksinstead of formulas
to redlize the reliability model [4]. In [5], Haek and Weller used the concept of formulas to
show that for 3-input gates the error probability should be less than 1/6, thereby reiterating
Von Neumann’s bound. Later thiswork was extended for k-input gates[6] where k was chosen
to be odd. The authors claimed that since k+ 1 input gates can simulate k input gates, their
model can be easily used to compute bounds for gates with even number of inputs. For a
specific even case, Evans and Pippenger [7] showed that the maximum tolerable noise level

for 2-input NAND gate should be lessthan (3 — /7)/4 = 0.08856- - -.
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Later this result was reiterated by Gao et a. [8] for 2-input NAND gate, along with other
results for k-input NAND gate and mgjority gate, using bifurcation analysis that involves
repeated iterations on a function relating to the specific computational component. The prob-
ability of the output line of aNAND gate, given by Z, was associated with the probabilities of

theinput lines X and Y using the equation,
Z=(1-¢)(1-XY)+eXY = (1—g)(2e—1)XY (2.1)

where ¢ is the probability of error in the NAND gate. In order to study the error behavior, a
network of NAND gates, where the output of each gate is connected to the input of at least
one other gate, was created and the inputs X and Y are considered to be equally probable to

beat logic’1’. The corresponding equation for this network was written as,

Xit1=(1—¢)+ (- 1% (22)

The initial value Xo was arbitrarily chosen and an iterative process was performed to obtain
consequent X; values. After the solution has converged, values from the last few iterations
are plotted against the corresponding € values to obtain the bi-modal graph for bifurcation
analysis. Thisbi-modal graph clearly showed that reliable computing using erroneous 2-input
NAND gatesis not possible when its error probability € = 0.08856- - -.

Whilethere exist studies of circuit-specific boundsfor circuit characteristics like switching
activity [9], the study of circuit-specific error bounds would be highly informative and useful

for designing high-end computing machines.
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2.2.2 Calculation of Average Error

Many researchers are currently focusing on computing the average error from a circuit
and also on the expected error to conduct reliability-redundancy trade-off studies. In [45], a
Probabilistic Transfer Matrix (PTM) based model for reliability studieswas proposed. In this
method each circuit signal is represented using random variables and the functionality of each
erroneous gate is represented in a matrix form using the PTMs (Fig. 2.1.(a)). Each gate in
the underlying digital circuit was represented by an individual PTM. To calculate the error
probability of the circuit, a PTM for the entire circuit isformed by multiplying the individual
gate PTMs. If gates g1 and gz are connected in series, under the condition that when g; gets

an input g'1 it resultsin g, giving an output gg’, the combined PTM can be written as

p(ag]g) = Y. p(g5]i)p(ilgh) (2.3)
alj

If gates g1 and g, are connected in paralel, under the condition that when g; gets an input g'1
it resultsin output g9 and when g, gets an input g}, it resultsin output g3, the combined PTM

can be written as

p(g5|dh) = (5|5 p(af|g}) (2.4)

Thisis an exact method but it is computationally expensive.

An approximate method based on Probabilistic Gate Model (PGM) is discussed by Han
et a. in [15]. Here the PGMs are formed using the sum of product equations governing the
functionality between an input and an output. For any gate, with an output Z; and with error

probability €, its PGM can be written as,

Zi=E(l-¢)+(1-E)e (2.5)
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Figure 2.1. (a) Probabilistic transfer matrix for erroneous NAND gate with error probability
e [45] (b) Markov random field [47]

where E; is the sum of product equation. For a 2-input AND gate with inputs 11 and 112,

E = I112. So the corresponding Z; can be written as,

Zi = (l112)(1—¢) + (1 - (lal2))e (2.6)

All the gatesin the circuit were represented with individual PGMs and the overall reliability of
the circuit was calculated by multiplying the individual gate reliabilities, which were assumed
to beindependent. Thisapproximate model was proved to be faster than the exact PTM model.

A Markov Random Field (MRF) based probabilistic model for reliability studieswas pro-
posed in [47], which concentrated more on hard errors than soft errors. Here, the circuit
signals were represented as random variablesin a Markov random network, where every node
is dependent only with the directly connected nodesthat are called its neighbors (Fig. 2.1.(b)).

Given a set of random variablesT" = {Xj, - - -, Xy} forming a Markov network, the probability
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of any random variable, X;, in the Markov network was described using Gibbs distribution as
follows,

P(Xi‘{r—xi}) — %e—%Zceq)Uc(X) (2.7)

where Z isanormalizing constant that bounds the probability valueto [0,1], KT isthe thermal
energy, c is cligue in the set of cligues ¢ associated with X; and U is the clique energy. A
typical clique in the circuit representation of Markov network will comprise of the nodes
representing the inputs and output of a gate. In this sense, every gate will have its own clique
and clique energy. The logic gates were represented using their sum of products term and the
clique energy for each gate was derived. For an inverter with input X and output x1, the clique

energy was derived as follows,

U = —((1—x0)x1+Xo(1—x1)) (2.8)
= —(X1—XoX1+Xo — XoX1)

= 2XoX1—Xo— X1

The negative sign in the clique energy signified the design condition that clique energies of
valid states should be lower than those of invalid states. The corresponding Gibbs distribution
was given as,

1
P(XO; Xl) = ze_kLT(ZXOXl_XO_Xl) (2.9)

The probability of output x; = 1 was calculated by marginalizing P(xo, 1) over all possible

values of Xg.

2 e—%T(2XoX1—Xo—X1) (2.10)
X={0,1}

X1 (1-x9)
ext 4@ kT

2(1+e%)

N[~
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Likewise, the probability distribution of every signal inthecircuit was represented using Gibbs
distribution. Corresponding probability distributionsfor the primary outputs of the circuit was
determined by propagating the marginalized distributions across various cliques using belief
propagation algorithm. Since these distributions were associated with thermal energy kT,
comprehensive reliability studies on nanoarchitectures working under critical thermal limits,
were performed by altering the KT values and examining the signal probability distributions.
Although, thiswork provided some much needed insight on thermal behavior of nano-domain
circuits, it was performed on error free devicesinstead of erroneous ones.

Another work on reliability studies using probabilistic model checking was proposed
in [58]. This method employed discrete-time Markov Chains for probabilistic model check-
ing. In another significant work [99], the average output error in digital circuits was calculated

using a probabilistic reliability model that employed Bayesian Networks.

2.2.3 Error Reduction Through Redundancy

The term "redundancy’ means the usage of multiple redundant copies of the same erro-
neous component in order to test or improve its reliability. Von Neumann, in his legendary
work, was one of the first to propose one such methodology called multiplexing and he used
it to study the reliability of NAND logic [1]. This model was created by taking multiple
copies of the same erroneous NAND gate and supplying them input signals randomly from
various bundles of input lines. This setup ensures effective duplication of all possible signals
at the outputs. To obtain better error tolerance, two more NAND multiplexing setups are cas-
caded with the previous one. While the first NAND multiplexing setup called the “ Executive
Unit” performed the logic computation, the following two units called the “ Restorative Unit”
restored the correct computation values. (Fig. 2.2.)

VVon Neumann also introduced the widely used redundancy technique called Triple Mod-

ular Redundancy (TMR) [1]. In TMR, three copies of the same erroneous logic component
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Figure 2.2. NAND multiplexing scheme introduced by Von Neumann [1]

was created and the correct value was determined by performing the majority voting out of the
three outputs. Giventhreedifferent signals X, Y and Z, the mgority voting could be performed
using the function, XY +YZ + XZ. Using this, Von Neumann showed significant reductionin
the probability of error occurrence in logic devices. As an extension of TMR, amore general
model called N-Modular Redundancy (NMR) [2] was proposed, where N is chosen to be odd
to facilitate majority voting. If TMR was used to choose the majority of 2 out of 3 inputs,
NMR was used to choose the majority of n+ 1 out of 2n+ 1 inputs. Also, given an erroneous

system with error probability €, the reliability R through performing TMR was given by,
R(TMR) = &3+ 3e%(1—¢) (2.12)
and the corresponding reliability through performing NMR was given by,

2 7'.”!(1—8) € (2.12)
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where N = 2n+ 1. These base modelsfor hardware redundancy were later applied in essential
applications like fault-tolerant microprocessor design [10], and also paved the way to avariety
of techniques for software, data and time redundancies. Apart from being used in the circuit
level, they were also used in different levels of design abstractionslikein[73], where Selective
TMR (STMR) was used in FPGA'’s to minimize error behavior due to SEUs.

From theinitial works of Von Neumann, the study of fault-tolerant computation expanded
its barriersinto fields like nano-computing architectures. An expansion of the TMR technique
called Cascaded Triple Modular Redundancy (CTMR) [11] was used for reliability studies of
nanochips using single-electron devices and quantum cellular automata gates. While TMR
is referred to as single level redundancy technique, CTMR is referred to as multilevel re-
dundancy technique, where outputs from three different TMR units were supplied to another
majority gate to perform multiple levels of voting in order to obtain better error reduction. A
generalized CTMR technique, called Cascaded General Modular Redundancy (CGMR) was
also proposed in thiswork [11].

In [12], the reliability of reconfigurable architectures was obtained using NAND multi-
plexing technique. The processors in the architecture were implemented with NAND multi-
plexing system with a redundancy factor of 3. In the design, redundant spare circuitries were
also developed to enhance error correction and minimize error detection. In [13], majority
multiplexing was used to achieve fault-tolerant designs for nanoarchitectures. They further
enhanced the majority multiplexing model for small input error probabilities, by removing the
restorative stage, since effective restoration is possible without that stage. A recent compar-
ative study of some of these methods [14], indicates that a 1000-fold redundancy would be

required for a device error (or failure) rate of 0.01%.

INote that this does not mean 1 out of 100 devices will fail, it indicates the devices will generate erroneous
output 1 out of 100 times.
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Reliability models for dynamic errors in VLSI circuits

Reliability models for dynamic errors in Reliability models for dynamic errors in
combinational circuits sequential circuits
| | —This work
Error bounds Average error Maximum error Redundancy

—\on Neumann [1] — Krishnaswamy et al. [45] [—This work |~ Von Neumann [1]

— Pippenger [3] — Hanetal. [15] — Mathur et al. [2]

— Feder [4] [— Bahar et al. [47] [— Depledge [10]

— Hajek et al. [5] — Norman et al. [58] — Spagocci et al. [11]

L Evans et al. [6, 7] — Rejimon et al. [99] — Han et al. [12]

- Gao et al. [8] — Roy et al. [13]

L~ Marculescu et al. [9] —This work

Figure 2.3. Some of therelated workson reliability modelsfor dynamic errorsin VLSI circuits

2.3 Redation to State-of-the-Art

Thiswork concentrates on the following,

e Modeling dynamic errors, which are global, as opposed to localized SEUs. This is

done using a probabilistic error model, where efficient error incorporation in multiple

nodes is possible. Also in this model, the error injection and probability of error for

each gate can be modified easily. Moreover, both fixed and variable gate errors can be

accommodated in asingle circuit without affecting computational complexity.

e Estimation of maximum error as opposed to average error, since for higher design

levelsit isimportant to account for maximum error behavior, especialy if this behavior

isfar worse than the average case behavior. Thisestimation is performed as adiagnostic

study in our error model, using the Maximum a posteriori (MAP) hypothesis, where the
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output nodes are forced to be erroneous and the information is propagated towards the
input nodes to estimate the possible input configuration, that can provide a maximum

error in the output.

Estimation of output error in sequential circuits as opposed to combinational circuits,
since the transient errors that occurs in a particular time frame, of a sequential circuit,
will propagate to consecutive time frames thereby making the device more vulnera-
ble. This estimation is performed using a minimal time evolving probabilistic network,
namely, the Temporal Dependency Model (TDM), that can handle both spatial depen-
dencies between nodesin asingle time slice and temporal dependencies between nodes

in different time dlices.

Designing temporal, spatial and hybrid redundancy schemes, using our probabilistic
error model, to achieve error mitigation. We perform temporal redundancy using Triple
Tempora Redundancy (TTR) technique and spatial redundancy using CTMR technique.
Also efficient error reduction is achieved through selective redundancy, by applying

redundancy only to the most influential input combinationsand the most sensitive nodes.
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CHAPTER 3
DESIGN FUNDAMENTALS

3.1 Probabilistic Representation of Digital Circuits

A digital circuit is basically a network of digital signals connected together through gates
whose functionalities are based on boolean logic. This network can be represented accurately
using a graphical model, where the nodes represent the digital signals and the edges represent
the boolean logic functionality of the gates. Also these edges should be unidirectional, since
information flow in digital circuitsis unidirectional from input to output. In order to assist ef-
ficient diagnostic studies on digital circuits, their graphical representation can be modeled as
probabilistic graphical models where each node is arandom variable with two possible states,
"logic 0’ and’logic 1’ or smply 'O and’1’. To represent the digital functionalities, each ran-
dom variable should be associated with a probability distribution function (pdf). Consider the
examplein Fig 3.1., where adigital circuit and its probabilistic graphical model are given. As
discussed, each node from N1 to N8 isarandom variable whose value will be either 0" or *1’.
In a network representing any digital circuit, the nodes corresponding to the primary inputs
(i.e,N1, N2, N3inour example) will always be completely independent and every other child
node will be dependent on at least one parent node. This kind of interdependency between
nodes gives rise to conditiona probability distribution, and so the pdf’s are represented as
Conditional Probabilistic Tables (CPTs). Fig 3.1. provides the CPTs for al the nodes. Since
N1, N2, N3 are primary inputs, their pdf’s can be controlled by the user. The child node N4
is dependent on its parent nodes N1 and N2 through AND logic, and the corresponding CPT
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Figure 3.1. Representation of adigital circuit as a probabilistic graph
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should reflect this functionality. This can be achieved by providing the pdf as follows,

(

0 if N1=1and N2=1
P(N4 = 0|N1,N2) =

1 otherwise

(3.1)

1 if N1=1and N2=1
P(N4 = 1|N1,N2) =

0 otherwise

\

Similarly the CPTsfor N5 should obey NOT logic, N6 should obey OR logic, N7 should obey
NOR logic, and N8 should obey NAND logic.

Oncethe graph model for adigital circuit isready, the next obvious question iswhether the
model captures all the interdependencies between the nodes. For example, in the probabilistic
graph givenin Fig 3.1., the node N7 is directly dependent on nodes N4, N5 and indirectly de-
pendent on nodesN1, N2. Also, node N8 isdirectly dependent on nodes N5, N6 and indirectly
dependent on nodes N2, N3. If we add edges representing these indirect dependencies, then
the resulting probabilistic graph will be as seen in Fig 3.2.(a). But are these edges necessary?
In the given digital circuit, it can be seen that the relation of the signal N7 towards the signals
N1, N2 istaken care by the signals N4, N5, i.e. any changein signalsN1, N2 will be captured
by their direct output signals N4, N5 and the same changes will be translated to signal N7
through N4 and N5. So, in the corresponding probabilistic graph model, we can comfortably
say that node N7 is independent of nodes N1, N2 given nodes N4, N5. In a similar fashion,
we can also say that node N8 is independent of nodes N2, N3 given nodes N5, N6. In other
words, we can say that all the indirect dependencies are taken care by the direct dependencies.
As aresult al the extra edges representing indirect dependencies can be removed from the
probabilistic graph model given in Fig 3.2.(a) resulting in Fig 3.2.(b), which is similar to the

initial model given in Fig 3.1. This representation is the absolute minimal, in the sense that
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Figure 3.2. Minimal representation of the probabilistic graph

removing even one edge will collapse the i nterdependenci es between the nodes and eventually
results in an incomplete representation of the given digital circuit.

The probabilistic graph model can be represented mathematically as the conditional fac-
toring of a joint probability distribution. Any probability function P(y1,y»,---,yn) can be

written as,

P(y1,---,yN) = P(YN|YN-1,YN-2,"",Y1)
P(YN—1]YN—2,YN-3," ", Y1)

- Ply1) (32)

where y1,Y»,---,yn are random variables. This expression holds for any ordering of these

random variables. For the example probabilistic graph model in Fig 3.1., this probability
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function can be written as,

P(nl,---,n8) = P(n8|n7,n6,n5,n4,n3,n2,nl)
P(n7|n6,n5,n4,n3,n2,nl)
P(n6|n5, n4,n3,n2,nl)
P(n5|n4,n3,n2,nl)
P(n4|n3,n2,n1)

P(n3)P(n2)P(n1) (3.3)

where nl, - -- n8 are the random variables represented by the nodes N1, - - -, N8 respectively.
But this equation does not perfectly represent the structure of the corresponding probabilistic
graph model. As discussed earlier, in the minimal representation of the probabilistic graph
model, every child node is connected only to its parent nodes. So Egn. 3.2 can be restructured

as follows,

P(y1,---,yn) = [ TP(WIPa(%)) (3.4)

where Pa(Y,) are the parents of the node Yy, representing its direct causes. For the example
probabilistic graph model in Fig 3.1., thisrestructured joint probability function can be written

as,

P(nl,---,n8) = P(n8|n6,n5)P(n7|n5,n4)
P(n6|n3,n2)P(n5/n2)

P(n4|n2,n1)P(n3)P(n2)P(nl) (3.5
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3.2 ModdingError in Digital Circuits

Any unexpected change in the logic state of the digital signals givesriseto error in digital
circuits. In order to understand and study these errors, we need a model that can detect these
unexpected changes. One such way of doing that is to compare the erroneous circuit with its
ideal error-free counterpart. Consider the circuit in Fig 3.3.(a), where each signal other than
the primary input signals can be erroneous through the faulty gates. Note that we assume that
primary input signals are error-free. In order to create the error detection model, two copies of
the circuit is created, where one copy represents the circuit in its normal erroneous form and
the other copy represents the circuit in itsideal form. When the primary outputs of these two
copies are compared, any error occurrence will become evident through the possible presence
of dissimilar logic states. The appropriate logic gate to do this operation is the XOR gate,
which producesa’l’ initsoutput whenitsinputshave dissimilar logic statesand providesa’ O’
inits output when itsinputs have similar logic states. Fig 3.3.(b) illustratesthe error detection
model for digital circuits based on the above mentioned concept. N4€ N5, ... N8° are the
erroneous signals and N4,N5, --- /N8 are the ideal signals. Signal C1 gives the comparison
between the erroneous and ideal primary outputs N7 and N7¢; signal C2 givesthe comparison
between the erroneous and ideal primary outputs N8 and N8€. It should be noted that the
ideal error-free portion and the comparator portion are fictitious and used only for studying
the given circuit.

The corresponding probabilistic graph model for error detection can be created as shown
in Fig 3.3.(d). Lets say that each gate in the digital circuit has € % chance of being faulty. €

can be termed as the gate error probability. This can be accommodated in the corresponding
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Circuit model used to detect error in the erroneous digital circuit
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probabilistic graph model by changing the CPTs as follows,

(

P(N42 = 0|N1,N2) =

P(N48 = 1|N1,N2) =

\

€

1-¢

€

if N1=1 and N2=1

otherwise

if N1=1 and N2=1

otherwise

(3.6)

where N4€ is the erroneous output signal of afaulty AND gate as shown in Fig 3.3.(a). Ac-

cordingly, the corresponding CPTs for rest of the erroneous nodes are provided in Fig 3.4.
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CHAPTER 4
MAXIMUM ERROR MODELING

In this chapter, we present a probabilistic model to study the maximum output error over
al possible input space for a given logic circuit. We present a method to find out the worst-
case input vector, i.e., the input vector that has the highest probability to give an error at the
output. Inthefirst step of our model, we convert the circuit into a corresponding edge-minimal
probabilistic network that represents the basic logic function of the circuit by handling the
interdependencies between the signals using random variables of interest in a composite joint
probability distribution function P(y1,Y2, - -,yn). Each node in this network correspondsto a
random variable representing a signal in the digital circuit, and each edge corresponds to the
logic governing the connected signals. The individual probability distribution for each node
is given using conditional probability tables.

From this probabilistic network we obtain our probabilistic error model that consists of
three blocks, (i) ideal error freelogic, (ii) error prone logic where every gate has a gate error
probability € i.e., each gate can go wrong individually by a probabilistic factor € and (iii) a
detection unit that uses comparatorsto compare the error free and erroneous outputs. The error
pronelogic representsthe real time circuit under test, whereasthe ideal logic and the detection
unit are fictitious elements used to study the circuit. Both theideal logic and error prone logic
would be fed by the primary inputs |. We denote all the internal nodes, both in the error free
and erroneous portions, by X and the comparator outputs as O. The comparators are based on
XOR logic and hence astate “1” would signify error at the output. An evidence set o iscreated

by evidencing one or more of the variablesin the comparator set O to state “1” (P(O; = 1) =
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1). Then performing MAP hypothesis on the probabilistic error model provides the worst-
case input vector imap Which gives maxy; P(i, 0). The maximum output error probability can
be obtained from P(O; = 1) after instantiating the input nodes of probabilistic error model with
imap and inferencing. The process is repeated for increasing € values and finally the € value
that makes at least one of the output signals completely random (P(O; = 0) = 0.5,P(O; =
1) = 0.5) istaken as the error bound for the given circuit.

It is obviousthat we can arrive at MAP estimate by enumerating all possible input instan-
tiations and compute the maximum P(i, 0) by any probabilistic computing tool. The attractive
feature of thisMAP agorithm lies on eliminating a significant part of the input search-subtree
based on an easily available upper-bound of P(i,0) by using probabilistic traversal of abinary
Join tree with Shenoy-Shafer algorithm [23, 24]. The actual computation is divided into two
theoretical components. First, we convert the circuit structure into a binary Join tree and em-
ploy Shenoy-Shafer algorithm, which is a two-pass probabilistic message-passing algorithm,
to obtain multitude of upper bounds of P(i,0) with partial input instantiations. Next, we con-
struct a Binary tree of the input vector space where each path from the root node to the |eaf
node represents an input vector. At every node, we traverse the search treeif the upper bound,
obtained by Shenoy-Shafer inference on the binary join tree, is greater than the maximum
probability already achieved; otherwise we prune the entire sub-tree. Experimental results
on a few standard benchmark show that the worst-case errors significantly deviate from the
average ones and also provides tighter bounds for the ones that use homogeneous gate-type

(c17 with NAND-only). Salient features and deliverables are itemized below:

e We have proposed a method to calculate maximum output error using a probabilistic
model. Through experimental results, we show the importance of modeling maximum

output error. (Fig. 4.10.)
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e Givenacircuit with afixed gate error probability €, our model can provide the maximum
output error probability and the wor st-case input vector, which can be very useful testing

parameters.

e \We present the circuit-specific error bounds for fault-tolerant computation and we show

that maximum output errors provide atighter bound.

e We have used an efficient design framework that employs inference in binary join trees

using Shenoy-Shafer algorithm to perform MAP hypothesis accurately.

e \We give a probabilistic error model, where efficient error incorporation is possible, for
useful reliability studies. Using our model the error injection and probability of error
for each gate can be modified easily. Moreover, we can accommodate both fixed and

variable gate errorsin asingle circuit without affecting computational complexity.

We would like the readers to note that we will be representing a set of variables by bold
capital letters, set of instantiations by bold small letters, any single variable by capital |etters.

Also probability of the event Y; = y; will be denoted simply by P(y;) or by P(Y; = ;).

4.1 Maximum a Posteriori (MAP) Estimate

Let us define the random variables in our probabilistic error model as Y =1 UX UO,

composed of the three digoint subsets |, X and O where

e ly,---,Ix €l arethe set of k primary inputs.

e Xy, -+, Xm € X arethe minternal logic signals for both the erroneous (every gate has a

failure probability €) and error-free ideal logic el ements.

e O, --,0p € O arethe n comparator outputs, each one signifying the error in one of the

primary outputs of the logic block.
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Figure 4.1. (a) Digital logic circuit (b) Error model (c) Probabilistic error model

e N = k-+ m+ nisthetotal number of network random variables.

Any primary output node can be forced to be erroneous by fixing the corresponding com-
parator output tologic” 1", that is providing an evidenceo = {P(O; = 1) = 1} to acomparator
output O;. Given some evidence o, the objective of the Maximum a posteriori estimate isto
find a complete instantiation iy ap of the variablesin | that givesthe following joint probabil -
iy,

MAP(imap,0) = rr\L?xP(i,o) (4.1

The probability MAP(ivap,0) is termed as the MAP probability and the variables in | are
termed as MAP variables and the instantiation imap Which gives the maximum P(i,0) is
termed as the MAP instantiation.

For example, consider Fig 4.1. In the probabilistic model shown in Fig 4.1.(c), we have
{11,12,13} € 1; {X1,X2,X3,X4,X5,X6} € X; {O1} € O. X3istheideal error-free primary
output node and X6 isthe corresponding error-prone primary output node. Giving an evidence
0= {P(O1=1) =1} to Ol indicates that X6 has produced an erroneous output. The MAP

hypothesis uses this information and finds the input instantiation, i vap, that would give the
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maximum P(i,0). Thisindicates that imap isthe most probable input instantiation that would
give an error in the error-prone primary output signal X6. In thiscase, imap = {11 =10,12 =
0,13 = 0}. Thismeansthat the input instantiation {I1 = 0,12 = 0,13 = 0} will most probably
provide awrong output, X6 = 1 (since the correct output is X6 = 0).

We arrive at the exact Maximum a posteriori (MAP) estimate using the algorithms by Park
and Darwiche [29] [30Q]. It is obvious that we could arrive at MAP estimate by enumerating
all possible input instantiations and compute the maximum output error. To make it more
efficient, our MAP estimates rely on eliminating some part of the input search-subtree based
on an easily available upper-bound of MAP probability by using a probabilistic traversal of a
binary Join tree using Shenoy-Shafer algorithm [23, 24]. The actual computation is divided

into two theoretical components.

e First, we convert the circuit structure into a binary Join tree and employ Shenoy-Shafer
algorithm, which is a two-pass probabilistic message-passing algorithm, to obtain mul-
titude of upper bounds of MAP probability with partial input instantiations (discussed
in Section. 4.1.1). The reader familiar with Shenoy-Shafer algorithm can skip the above
section. To our knowledge, Shenoy-Shafer algorithm is not commonly used in VLS
context, so we elaborate most steps of join tree creation, two-passjoin tree traversal and

computation of upper bounds with partial input instantiations.

e Next, we construct a Binary tree of the input vector space where each path from the root
node to the leaf node represents an input vector. At every node, we traverse the search
tree if the upper bound, obtained by Shenoy-Shafer inference on the binary join tree, is
greater than the maximum probability already achieved; otherwise we prune the entire
sub-tree. The depth-first traversal in the binary input instantiation tree is discussed in

Section. 4.1.2 where we detail the search process, pruning and heuristics used for better
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Figure 4.2. Search tree where depth first branch and bound search performed

pruning. Note that the pruning is key to the significantly improved efficiency of the
MAP estimates.

4.1.1 Calculation of MAP Upper Bounds Using Shenoy-Shafer Algorithm

To clearly understand the various MAP probabilities that are calculated during MAP hy-
pothesis, let us see the binary search tree formed using the MAP variables. A complete search
through the MAP variables can be illustrated as shown in Fig. 4.2. which gives the corre-
sponding search tree for the probabilistic error model given in Fig. 4.1.(c). In this search
tree, the root node N will have an empty instantiation; every intermediate node N“E:: will be
associated with a subset |ier Of MAP variables | and the corresponding partial instantiation
linter; @nd every leaf node Nli will be associated with the entire set | and the corresponding
complete instantiation i. Also each node will have v children where v is the number of values
or states that can be assigned to each variable I;. Since we are dealing with digital signals,
every node in the search tree will have two children. Since the MAP variables represent the
primary input signals of the given digital circuit, one path from the root to the leaf node of this
search tree gives one input vector choice. In Fig. 4.2., at node N?ﬂ“ 20 linter = {11,12} and
liner = {11 =10,12=1}. The basic idea of the search processis to find the MAP probability
MAP(i,0) by finding the upper bounds of the intermediate MAP probabilities MAP(inter, O).
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MAP hypothesis can be categorized into two portions. The first portion involves finding
intermediate upper bounds of MAP probability, MAP(iiner,0), and the second portion in-
volvesimproving these bounds to arrive at the exact MAP solution, MAP(imap,0). These two
portions are intertwined and performed aternatively to effectively improve on the intermedi-
ate MAP upper bounds. These upper bounds and final solution are calculated by performing
inference on the probabilistic error model using Shenoy-Shafer agorithm [23, 24].

Shenoy-Shafer algorithm is based on local computation mechanism. The probability dis-
tributions of the locally connected variables are propagated to get the joint probability distri-
bution of the entire network from which any individual or joint probability distributions can
be calculated. The Shenoy-shafer algorithm involves the following crucial information and

calculations.

e Valuations: The valuationsare functions based on the prior probabilities of the variables
in the network. A valuation for a variable Y; can be given as ¢y, = P(Y;,Pa(Y;)) where
Pa(Y;) are the parents of Y;. For variables without parents, the valuations can be given

as ¢y, = P(Y;). These valuations can be derived from the CPTs as shown in Table 4.1.

e Combination: Combination isa pointwise multiplication mechanism conducted to com-
bine the information provided by the operand functions. A combination of two given
functions f, and fy can be written as 5 p = fa® fp, where a and b are set of variables.

Table 4.2. provides an example.

e Marginalization: Given afunction f5 b, Wwhere a and b are set of variables, marginaliz-

mar (b)

ing over b provides afunction of a and that can be given as fa = f

. This process
provides the marginals of asingle variable or a set of variables. Generally the process
can be done by summing or maximizing or minimizing over the marginalizing variables
inb. Normally the summation operator is used to cal culate the probability distributions.

In MAP hypothesis both summation and maximization operators are invol ved.
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Table 4.1. Valuations of the variables derived from corresponding CPTs

CPT Valuation
Error-free AND
X1 11 12| déx1
0O 0 0|1
Error-free AND O 0 1,1
P(X1=111,12) | P(I2=0)=1| P(12=1)=1 0O 1 0|1
P(11=0)=1 0 0 0O 1 1,0
P(l11=1)=1 0 1 1 0 0] O
1 0 1|0
1 1 0] O
1 1 1|1
Error-prone AND
X4 11 12| dxa
0O 0O 0] 1e
Error-prone AND 0O 0O 1)1
P(X4=1|11,12) | P(I2=0)=1| P(12=1)=1 0O 1 0] 1e
P(I1=0)=1 € € 0 1 1| ¢
P(l1l=1)=1 € 1-e 1 0 0] ¢
1 0 1] ¢
1 1 0] ¢
1 1 1] 1e
Input Ilnpqu)t
P(I1=0) | 05 5 0';
P(11=1) | 05 105
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Table 4.2. Combination

Xy z| fy="Ffhyofy,
0O 0O Ix1
X y| fy y z|fy, 0 01 1x0
0 0|1 0 01 0 10 1x0
0 1,1 0 1,0 011 1x0
1 0|1 1 0|0 1 00 Ix1
1 1|0 11,0 1 01 1x0
1 10 0x0
1 11 0x0
/ 11 2 \/ValuationNetwork Eliminating O1 Eliminating X1 \
{ M ]
o i S
G jod g 7]
i @ 5 (b0 V@
i§ H mar(X1)
o1l )
(¢01)mar(01)
e @ Eliminating X2 Eliminating 12
() ()
(gm0 ({{(og)mrt©V
' S I
@ Pyp) M) Pyp) 200
K / K ®¢|2)mar(l2) /

(b)

Figure 4.3. Illustration of the fusion algorithm
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The computational scheme of the Shenoy-Shafer algorithm is based on fusion algorithm
proposed by Shenoy in [25]. Given a probabilistic network, like our probabilistic error model

in Fig. 4.3.(a), the fusion method can be explained as follows,

e The valuations provided are associated with the corresponding variables forming a val-
uation network as shownin Fig. 4.3.(b). In our example, the valuationsare ¢ 1 for {11},

¢|2 for {| 2}, (]))(1 for {X:L7 I l, I 2}, ¢x2 for {XZ, I 1, I 2}, ¢01 for {Ol,Xl,XZ}.

e A variableY; € Y for which the probability distribution has to be found out is selected.

In our example let us say we select | 1.

e Choose an arbitrary variable elimination order. For the example network let us choose
the order as O1,X1,X2,12. When a variable Y; is eliminated, the functions associated
with that variable f\}w e fJi are combined and the resulting function is marginalized
over ;. It can be represented as, (f§ @+ ® fJi)mar(Yi). Thisfunction is then associated
with the neighborsof Y;. Thisprocessisrepeated until all thevariablesin the elimination

order are removed. Fig. 4.3. illustrates the fusion process.

— Eliminating O1 yields the function (¢o1 )™ (°V) associated to neighbors X1, X2.

— Eliminating X1 yieldsthefunction ((do1)™ OV @ o1 )™ (X1 associated to neigh-

bors X2,11,12.

— Eliminating X2 yields the function (((¢01)™ OV @ ¢x1)™ XV @ ¢xo) ™ (*X2) as-

sociated to neighbors11,12.

— Eliminating 12 yields the function ((((¢o1)™ (Y @ ox1)™ XV @ ¢xp)™ %2 &

o12)™ (12) associated to neighbor 1.

— According to atheorem presented in [24], combining the functions associated with

|1 yields the probability distribution of 11. ¢11® ((((001)™ OV @ ¢x1)™ XV
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bx2) ™D @ 61 (12) — (611 ® d01 ® dx1 ® b ® br2) ™ (OLXLX212) = Propa.
bility distribution of 11 [24]. Note that the function ¢;1 ® do1 ® dx1 ® dx2 @ d12

represents the joint probability of the entire probabilistic error model.

e The above processis repeated for all the other variablesindividually.

To perform efficient computation, an additional undirected network called join tree is
formed from the original probabilistic network. The nodes of the join tree contains clusters of
nodes from the original probabilistic network. Theinformation of locally connected variables,
provided through valuations, is propagated in the join tree by message passing mechanism.
To increase the computational efficiency of the Shenoy-Shafer algorithm, a specia kind of
join tree named binary join tree is used. In abinary join tree, every node is connected to no
more than three neighbors. In this framework only two functions are combined at an instance,
thereby reducing the computational complexity. We will first explain the method to construct
a binary join tree, as proposed by Shenoy in [24], and then we will explain the inference
scheme using message passing mechanism.

The binary join tree is constructed using the fusion algorithm. The construction of binary

join tree can be explained as follows,

e To begin with we have,

— A = A setthat contains al the variables from the original probabilistic network.
In our example, A = {11,12,X1,X2,01}.

— I'= A set that contains the subsets of variables, that should be present in the
binary join tree. i.e., the subsets that denote the valuations and the subsets whose
probability distributions are needed to be calculated. In our example, let us say
that we need to calculate the individual probability distributions of all the vari-
ables. Then we have, T' = {{11}, {12}, {X1,11,12}, {X2,1,12}, {O1,X1,X2},
{X1}, {X2}, {O1}}.



A ={01,X1,X2,12,11}
T = {I113,012},{X1,11,12},{X2,11,12},{01,X1,X2},{X1},{X2},{01}}
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Figure 4.4. Partial illustration of binary join tree construction method for the first chosen
variable

— N = A set that contains the nodes of the binary join tree and it isinitially null.
— E = A set that contains the edges of the binary join tree and it isinitially null.

— We also need an order in which we can choose the variables to form the binary join
tree. In our example, since the goal isto find out the probability distribution of 11,
this order should reflect the variable elimination order (01,X1,X2,12,11) used in

fusion agorithm .
e 1 while|T'|>1do
2. ChooseavariableY € A

3 Iv={vielYey}

e

while |T'y| > 1do
5: Choosey; € T'y and y; € T'y such that ||yi Uvi|| < |[ymUn|| for al ym,yn € Ty

6: Yk ="YiUYj
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Figure 4.5. Complete illustration of binary join tree construction method
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7 N =N u{n}u{yuin}
8: E=Eu{{vw} {vin}
9 Iy =Ty — {7i,7j}

10: I'y =Ty U{w}

11:  end while

12:  if |A| > 1then

13: Take y; wherey; =Ty

14: Yi=%—{Y}

15: N =N U{n}u{y}

16: E=BEu{{v.vj}}

17: r=Tu{y}

18: end if

190 T'=T—{yeTrYev}

20 A=A—-{Y}

21: end while

e Thefinal structurewill have someduplicate clusters. Two neighboring duplicate clusters
can be merged into one, if the merged node does not end up having more than three

neighbors. After merging the duplicate nodes we get the binary join tree.

Fig. 4.4. and Fig. 4.5. illustrate the binary join tree construction method for the proba-
bilistic error model in Fig. 4.3.(4). Fig. 4.4. explains a portion of the construction method for
the first chosen variable, here it isO1. Fig. 4.5. illustrates the entire method. Note that, even
though the binary join tree is constructed with a specific variable elimination order for finding
out the probability distribution of 11, it can be used to find out the probability distributions of

other variables too.
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Inference in a binary join tree is performed using message passing mechanism. Initialy
all the valuations are associated to the appropriate clusters. In our example, at Fig. 4.6., the

valuations are associated to these following clusters,
e (1 associated to cluster C11
e ()2 associated to cluster C10
e (x1 associated to cluster C6
e (x2 associated to cluster C7
e 001 associated to cluster C2

A message passed from cluster b, containing avariable set B, to cluster ¢, containing avariable

set C can be given as,

Mpc = (¢b H Maﬁb)mr(B\C) (4.2)
a#c

where ¢y, is the valuation associated with cluster b. If cluster b is not associated with any
valuation, then this function is omitted from the equation. The message from cluster b can
be sent to cluster c only after cluster b receives messages from all its neighbors other than c.
The resulting function is marginalized over the variables in cluster b that are not in cluster
c. To calculate the probability distribution of a variable Y;, the cluster having that variable
aoneis taken as root and the messages are passed towards this root. Probability of Y;, P(Y;),
is calculated at the root. In our example, at Fig. 4.6.(a), to find the probability distribution
of 11, the cluster C11 is chosen as the root. The messages from all the leaf clusters are
sent towards C11 and finally the probability distribution of 11 can be calculated as, P(11) =
Mco_,c11 ® 011. Also note that the order of the marginalizing variablesis O1,X1,X2,12 which
exactly reflects the elimination order used to construct the binary join tree. Aswe mentioned

before, thisbinary join tree can be used to calculate probability distributions of other variables
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also. In our example, at Fig. 4.6.(b), to find out the probability distribution of O1, cluster C1
is chosen as root and the messages from the leaf clusters are passed towards C1 and finally
the probability distribution of O1 can be calculated as, P(O1) = M¢2_,c1. Notethat the order
of the marginalizing variables changesto 11,12,X1,X2. We can also calculate joint probability
distributions of the set of variables that forms a cluster in the binary join tree. In our example,
thejoint probability P(I1,12) can be calculated by assigning cluster C9 asroot. Inthisfashion,
the probability distributions of any individual variable or a set of variables can be calculated
by choosing appropriate root cluster and sending the messages towards this root. During
these operations some of the calculations are not modified and so performing them again will
prove inefficient. Using the binary join tree structure these cal cul ations can be stored thereby
eliminating the redundant recalculation. In the binary join tree, between any two clusters b
and c, both the messages My,_.. and M_.}, are stored. Fig. 4.6.(c) illustrates this phenomenon
using our example.

If an evidence set e is provided, then the additional valuations {ey|Y; € e} provided by
the evidences has to be associated with the appropriate clusters. A valuation ey, for avariable
Y; can be associated with a cluster having Y; aone. In our example, if the variable O1 is
evidenced, then the corresponding valuation ep; can be associated with cluster C1. While
finding the probability distribution of a variable Y;, the inference mechanism (as explained
before) with an evidence set e will give the probability P(Y;,e) instead of P(Y;). From P(Y;,e),
P(e) is calculated as, P(e) = Yy P(Y;,e). Calculation of the probability of evidence P(e) is
crucial for MAP calculation.

The MAP probabilitiesMAP(iinter, 0) are calculated by performing inference on the binary
join tree with evidences ijner and 0. Let us say that we have an evidence set e = {ijnter, 0},
then MAP(iiter,0) = P(€). For agiven partia instantiation ijner, MAP(ijnter, 0) is calculated
by maximizing over the MAP variables which are not evidenced. This calculation can be done

by modifying the message passing scheme to accommodate maximization over unevidenced
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MAP variables. So for MAP calculation, the marginalization operation involves both max-
imization and summation functions. The maximization is performed over the unevidenced
MAP variablesin | and the summation is performed over all the other variablesin X and O.

For MAP, a message passed from cluster b to cluster c is calculated as,

Y pefBic {XpuOp}e{B\C} a#c ;

wherelp C I\ linter, Xp € X, Op € O and {Ip, Xp, Op} € B.
Here the most important aspect is that the maximization and summation operators in

Eqgn. 4.3 are non-commuitative.

(2 maxPl(y)  [max 3 Pl(y) (4.4)

So during message passing in the binary join tree, the valid order of the marginalizing vari-
ables or the valid variable elimination order should have the summation variables in X and
O before the maximization variablesin |. A message pass through an invalid variable elimi-
nation order can result in a bad upper bound that is stuck at alocal maxima and it eventually
results in the elimination of some probable instantiations of the MAP variables | during the
search process. But an invalid elimination order can provide us an initial upper bound of the
MAP probability to start with. The closer the invalid variable elimination order to the valid
one, the tighter will be the upper bound. In the binary join tree, any cluster can be chosen as
root to get thisinitial upper bound. For example, in Fig. 4.6.(b) choosing cluster C1 as root
resultsin an invalid variable elimination order (11, 12, X1, X2) and message pass towards this
root can give the initial upper bound. Also it is essential to use a valid variable elimination
order during the construction of the binary join tree so that there is at |east one path that can

provide a good upper bound.
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Probability Root Cluster
MAP({},0) c2
MAP({11=0},0), C31
MAP({11=1},0)
MAP({11=0,12=0},0), C30
MAP({11=0,12=1},0)
MAP({11=0,12=0,13=0},0), C28
c10 MAP({11=0,12=0,13=1},0)

Figure 4.7. Binary join tree for the probabilistic error model in Fig. 4.1.(c)

51



Fig. 4.7. gives the corresponding binary join tree, for the probabilistic error model given
in Fig. 4.1.(c), constructed with a valid variable elimination order (O1, X3, X6, X1, X2, X4,
X5, 13,12, 11). In thismodel, there are three MAP variables 11, 12, 3. The MAP hypothesis
on thismodel resultsiniyap = {11=0,12=0,13=0}.

Theinitial upper bound MAP({},0) is calculated by choosing cluster C2 as root and pass-
ing messages towards C2. As specified earlier this upper bound can be calculated with any
cluster as root. With C2 as root, an upper bound will most certainly be obtained since the
variable elimination order (13, 12, 11, X4, X5, X1, X2, X3, X6) isan invalid one. But since
the maximization variables are at the very beginning of the order, having C2 asroot will yield
a looser upper bound. Instead, if C16 is chosen as root, the elimination order (O1, X3, X6,
X1, 13, X4, X5, 12, 11) will be closer to avalid order. So a much tighter upper bound can be
achieved. To calculate an intermediate upper bound MAP(ijnter, 0), the MAP variable |; newly
added to form ijer IS recognized and the cluster having the variable I; alone is selected as
root. By doing this a valid elimination order and proper upper bound can be achieved. For
example, to calculate the intermediate upper bound MAP({11 = 0}, 0) where the instantiation
{I1= 0} isnewly added to the initially empty set ijqer, a vaid elimination order should have
the maximization variables 12,13 at the end. To achieve this, cluster C31 is chosen as root

thereby yielding avalid elimination order (O1, X3, X6, X1, X2, X4, X5, 13, 12).

4.1.2 Calculation of the Exact MAP Solution
The calculation of the exact MAP solution MAP(ipmap,0) can be explained as follows,
e To start with we have the following,

— linter — Subset of MAP variables|. Initially empty.
— linter — partial instantiation set of MAP variables ljnter. Initially empty.
— lg,,lg, — partia instantiation sets used to storeijnter. Initially empty.
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Choose I3 NO

o ”\
{11-0}
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}
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; _ A 19— 12 Ignored
MAP (iy,4p0) = MAP({11=0,12=0,13=0},0)
iiner = {4{11=0,12=0,13=0}} = ipyap

Figure 4.8. Search process for MAP computation

— imap — MAP instantiation. At first, imap = linit, Where iyt is calculated by se-
guentially initializing the MAP variables to a particular instantiation and perform-
ing local taboo search around the neighbors of that instantiation [30].

— MAP(imap,0) — MAP probability. Initially MAP(imap,0) = MAP(iinit,0) calcu-
lated by inferencing the probabilistic error model.

— V(lj) — number of values or states that can be assigned to a variable I;. Since we

are dealing with digital signals, v(l;) = 2 for al i.

e 1. Caculate MAP(ijnter,0). /*Thisisthe initial upper bound of MAP probability.*/
2. if MAP(iinter,0) > MAP(imap, 0) then
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3 MAP(imap,0) = MAP(iirger , 0)
4. else

5. MAP(imap,0) = MAP(imap, 0)
6. imap = imaP

7. end if

8. while|l| > 0do

9O

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

Choose avariablel; € 1.
linter = linter U {li}.
whilev(l;) > 0do
Choose avalueiy; of I
id, = linter U{li =iy, }-
Calculate MAP(iq,,0) from binary join tree.
if MAP(ig,,0) > MAP(imap,0) then
MAP(imap,0) = MAP(ig,,0)
ig, =g
else
MAP(ipmap,0) = MAP(imap, 0)
end if
v(li)=v(lj) -1
end while
linter = g,
if [iinter| = O then
goto line 29
end if

I =1—{li}

28: end while



2

©

if [iiner| = O then
30:  imaP = imaP
31 ese

320 iMAP = linter

33 end if

The pruning of the search processis handled in lines 11-23. After choosing a MAP vari-
able [;, the partial instantiation set iiner is Updated by adding the best instantiation I; = iy,
thereby ignoring the other instantiationsof I;. Thiscan beseeninFig. 4.8. whichillustratesthe
search process for MAP computation using the probabilistic error model givenin Fig. 4.1.(c)

as example.

4.1.3 Calculating the Maximum Output Error Probability

According to our error model, the MAP variables represent the primary input signals of
the underlying digital logic circuit. So after MAP hypothesis, we will have the input vector
which has the highest probability to give an error on the output. The random variables | that
represent the primary input signals are then instantiated with iyap and inferenced. So the
evidence set for thisinference calculation will be e = {imap}. The output error probability is
obtained by observing the probability distributions of the comparator logic variables O. After
inference, the probability distribution P(O;j,e) will be obtained. From this P(O;|e) can be

obtained as, P(Qjle) = P(Pc(ge) = zg(&ié)’e). Finally the maximum output error probability is

given by, max; P(O; = 1Je).

4.1.4 Computational Complexity of MAP Estimate

The time complexity of MAP depends on that of the depth first branch and bound search

on the input instantiation search tree and also on that of inference in binary join tree. The

55



former depends on the number of MAP variables and the number of states assigned to each
variable. In our case each variable is assigned two states and so the time complexity can
be given as O(2) where k is the number of MAP variables. This is the worst case time
complexity assuming that the search tree is not pruned. If the search tree is pruned, then the
time complexity will be < O(2X).

Thetime complexity of inferencein the binary join tree depends on the number of cliquesq
and the size Z of the biggest clique. It can be represented as g.24 and the worst case time com-
plexity can be given as O(2%). In any given probabilistic model with N variables, representing
ajoint probability P(xy,---Xn ), the corresponding join tree will have Z < N aways[27]. Also
depending on the underlying circuit structure, the join tree of the corresponding probabilistic
error model can have Z << N or Z close to N, which in turn determines the time complexity.

Since for every pass in the search tree inference has to be performed in the join tree to get
the upper bound of MAP probability, the worst case time complexity for MAP can be given
as O(2"+Z). The space complexity of MAP depends on the number of MAP variables for the
search tree and on the number of variables N in the probabilistic error model and the size of

the largest clique. It can be given by 2K+ N.2Z.

4.2 Experimental Results

The experimentsare performed on | SCAS85 and MCNC benchmark circuits. The comput-
ing device used isa Sun server with 8 CPUswhere each CPU consistsof 1.5GHz UltraSPARC
IV processor with at least 32GB of RAM.

4.2.1 Experimental Procedure for Calculating Maximum Output Error Probability

Our main goal isto provide the maximum output error probabilitiesfor different gate error

probabilitiese. To get the maximum output error probabilities every output signal of acircuit
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Take the probabilistic model for a
given digital logic circuit

) Provide evidence P(o, = 0) = 0 and P(o, = 1) = 1 to out put o,
wherer=1,...,n

l

Perform MAP hypothesis

!

Obtain the input instantiation i and instantiate the input variables
in the probabilistic model with i and perform inference.

|

Obtain the output probability P(o,) = max P(o; = 1) where i = 1,...,n.
i

No

@ain the probability P(0) = max P(o, = 1) where r = 1)
r

Figure 4.9. Flow chart describing the experimental setup and process

hasto be examined through M AP estimation, which is performed through algorithms provided
in [31]. The experimental procedure isillustrated as a flow chart in Fig. 4.9. The steps are as

follows,

e First, an evidence has to be provided to one of the comparator output signal variables
in set O such that P(O; = 0) = 0 and P(O; = 1) = 1. Recall that these variables have a
probability distribution based on XOR logic and so giving evidence like thisis similar

to forcing the output to be wrong.

e The comparator outputs are evidenced individually and the corresponding input instan-

tiationsi are obtained by performing MAP.

e Then the primary input variables in the probabilistic error model are instantiated with

each instantiation i and inferenced to get the output probabilities.
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Table 4.3. Worst-case input vectors from MAP

Circuits | No. of | Input vector Gate error
Inputs probability €

cl7 5 01111 0.005-0.2
max _flat 8 00010011 0.005 - 0.025

11101000 0.03-0.05
11110001 0.055-0.2
voter 12 | 000100110110 | 0.01-0.19
111011100010 0.2

e P(O; =1) isnoted from all the comparator outputs for each i and the maximum value

gives the maximum output error probability.

e Theentire operation is repeated for different e values.

4.2.2 Worst-case | nput Vectors

Table 4.3. gives the worst-case input vectors got from MAP i.e, the input vectors that

gives maximum output error probability. The notable results are as follows,

e Inmax_flat and voter the worst-case input vectors from MAP changes with €, whilein

c17 it does not change.

e In the range {0.005-0.2} for €, max_flat has three different worst-case input vectors

while voter has two.

e |Itimpliesthat these worst-case input vectors not only depend on the circuit structure but
could dynamically change with €. This could be of concern for designers as the worst-
case inputs might change after gate error probabilities reduce due to error mitigation
schemes. Hence, explicit MAP computation would be necessary to judge the maximum

error probabilities and worst-case vectors after every redundancy schemes are applied.
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4.2.3 Circuit-Specific Error Bounds for Fault-Tolerant Computation

The error bound for a circuit can be obtained by calculating the gate error probability €
that drives the output error probability of at least one output to a hard bound beyond which
the output does not depend on the input signals or the circuit structure. When the output error
probability reaches 0.5(50%), it essentially means that the output signal behaves as a non-
functional random number generator for at least one input vector and so 0.5 can be treated as
ahard bound.

Fig. 4.10. givesthe error boundsfor various benchmark circuits. It also showsthe compar-
ison between maximum and average output error probabilities with reference to the changein
gate error probability €. These graphs are obtained by performing the experiment for different
€ values ranging from 0.005 to 0.1. The average error probabilities are obtained from our

previous work by Rejimon et a. [86]. The notable results are as follows,

e Thecl7 circuit consists of 6 NAND gates. The error bound for each NAND gatein c17
ise = 0.1055, which isgreater than the conventional error bound for NAND gate, which
is0.08856 [7, 8]. The error bound of the same NAND gate in voter circuit (contains
10 NAND gates, 16 NOT gates, 8 NOR gates, 15 OR gates and 10 AND gates) is
€ = 0.0292, which is lesser than the conventional error bound. This indicates that the
error bound for an individual NAND gate placed in a circuit can be dependent on the

circuit structure. The same can be true for all other logics.

e The maximum output error probabilities are much larger than average output error prob-
abilities, thereby reaching the hard bound for comparatively lower values of &, mak-
ing them a very crucia design parameter to achieve tighter error bounds. Only for
alu4 and malu4, the average output error probability reaches the hard bound within

€ =0.1(e = 0.095for alu4,e = 0.08for malud), while the maximum output error prob-
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Table 4.4. Run times for MAP computation

. No. of | No. of .
Circuit Inputs | Gates Time
cl7 5 6 0.047s
max_flat 8 29 0.110s
voter 12 59 0.641s
pc 27 103 | 225.297s
count 35 144 36.610s
au4 14 63 58.626s
malud 14 92 588.702s

abilities for these circuits reach the hard bound for far lesser gate error probabilities

(e =0.0255for alud,e = 0.0235for mal u4).

e Whilethe error boundsfor all the circuits, except c17, are less than 0.08(8%), the error
boundsfor circuitslike voter, al u4 and mal u4 are even less than 0.03(3%) making them

highly vulnerable to errors.

Table 4.4. tabulates the run time for MAP computation. The run time does not change
significantly for different € values and so we provide only one run time which corresponds
to all € values. Thisis expected as MAP complexity (discussed in Sec. 4.1.4) is determined
by number of inputs, and number of variablesin the largest clique which in turn depends on
the circuit complexity. It hasto be noted that, even though pc has less number of inputs than

count, it takes much more time to perform MAP estimate due to its complex circuit structure.

4.2.4 Validation Using HSpice Simulator

Using external voltage sources error can beinduced in any signal and it can be modeled us-
ing HSpice [43]. In our HSpice model we have induced error, using external voltage sources,
in every gate’'s output. Consider signal O+ isthe original error free output signal and the sig-

nal Oy is the error prone output signal and E is the piecewise linear (PWL) voltage source
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Table 4.5. Comparison between maximum error probabilities achieved from the proposed
model and the HSpice simulator at € = 0.05

Circuit | Model | HSpice | % diff over HSpice
cl7 0.312 | 0.315 0.95
max_flat | 0.457 | 0.460 0.65
voter | 0.573 | 0.570 0.53
pc 0.533 | 0.536 0.56
count | 0.492 | 0.486 1.23
aud 0.517 | 0.523 1.15
malu4 | 0.587 | 0.594 1.18

that induces error. The basic ideaisthat the signal Oy, is dependent on the signal O+ and the
voltage E. Any change of voltage in E will be reflected in Op. If E = Ov, then Op = O¢, and
if E=Vdd (supply voltage), then O, # Of, thereby inducing error. The data points for the
PWL voltage source E are provided by computations on a finite automata which models the
underlying error prone circuit where individual gates have a gate error probability e.

Note that, for an input vector of the given circuit, a single simulation run in HSpice is
not enough to validate the results from our probabilistic model. Also the circuit has to be
simulated for each and every possible input vectorsto find out the worst-case one. For agiven
circuit, the HSpice ssmulations are conducted for all possible input vectors, where for each
vector thecircuit issimulated for 1 million runsand the comparator nodes are sampled. From
this data the maximum output error probability and the corresponding worst-case input vector
are obtained.

Table 4.5. gives the comparison between maximum error probabilities achieved from the

proposed model and the HSpice simulator at € = 0.05. The notable results are as follows,

e The smulation results from HSpice amost exactly coincides with those of our error

model for all circuits.

e The highest % difference of our error model over HSpiceisjust 1.23%.
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Figure 4.11. Output error probabilitiesfor the entire input vector space with gate error proba-
bility e = 0.05 for c17

Fig. 4.11. givesthe output error probabilities for the entire input vector space of c17 with

gate error probability € = 0.05. The notable results are as follows,

e It can beclearly seen that the results from both the probabilistic error model and HSpice

simulations show that 01111 gives the maximum output error probability.

Fig. 4.12.(a) and (b) give the output error probabilities, obtained from the probabilistic
error model and HSpice respectively, for max_flat with gate error probability € = 0.05. In
order to show that max_flat haslarge number of input vectors capable of generating maximum
output error, we plot output error probabilities > ((1) + (o)), where pis the mean of output

error probabilities and ¢ is the standard deviation. The notable results are as follows,

e It isclearly evident from Fig. 4.12.(a) that max_flat has a considerably large amount
of input vectors capable of generating output error thereby making it error sensitive.

Equivalent HSpice results from Fig. 4.12.(b) confirms this aspect.
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e Itisclearly evident that the results from probabilistic error model and HSpice show the

same worst-case input vector, 11101000, that is obtained through MAP hypothesis.

425 Resultswith Multiplee

Apart from incorporating a single gate error probability € in all gates of the given circuit,
our model also supportsto incorporate different € valuesfor different gatesin the given circuit.
Ideally these € values has to come from the device variabilities and manufacturing defects.
Each gate in acircuit will have an € value selected in random from a fixed range, say 0.005 -
0.05.

We have presented theresult in Fig. 4.13. for max_flat. Here we compare the average and
maximum output error probability and run time with €=0.005, €=0.05 and variable € ranging

from 0.005 - 0.05. The notable results are as follows,

e It can be seen that the output error probabilities for variable € are closer to those for
€=0.05 than for ¢=0.005 implicating that the outputs are affected more by the erroneous
gates with €=0.05.
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e Therun time for al the three cases are amost equal, thereby indicating the efficiency

of our model.

4.3 Discussion

We have proposed a probabilistic model that computes the exact maximum output error
probabilitiesfor alogic circuit and mapped this problem as maximum a posteriori hypothesis
of the underlying joint probability distribution function of the network. We have demonstrated
our model with standard ISCAS and MCNC benchmarks and provided the maximum output
error probability and the corresponding worst-case input vector. We have also studied the
circuit-specific error bounds for fault-tolerant computing. The results clearly show that the
error bounds are highly dependent on circuit structure and computation of maximum output

error is essential to attain atighter bound.
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CHAPTER S5
MODELING ERROR IN SEQUENTIAL CIRCUITS

Sequential circuits consist of a combinational logic block, set of inputs, set of state bits
where the values of the next state bit is fed back to the present state in the next clock cycle
through latches. At a given time instance tj, the state signals s;, are uniquely identified as a
function of primary input signalsi, and state signals s, , of the previous time instance giving
riseto temporal correlations. Dueto this, error occurring at one timeinstance might propagate
towards several consecutive time instances making it more vulnerable.

In this chapter, we present a time evolving probabilistic model (Temporal Dependency
Model TDM) that can handle the temporal effects of random variables. We form the TDM
model (Fig. 5.1.(d)) by unrolling the basic probabilistic model into sufficiently large number
of time dices and connecting the present state node of each time slice PS; to the next state
node of the previoustime slice NS, _; thereby maintaining the temporal correlations.

To form the error model we have used the concept of miter circuits where two copies
of the same circuit, one representing the ideal circuit and the other representing the erroneous
circuit, are compared. For agiven circuit, an ideal TDM model and an erroneous TDM model,
where each gate is error-prone by a factor €, are created. The ideal and erroneous primary
output nodes, Oy and Of respectively, at each time slice t; are connected to an XOR logic
based comparator node C;, thereby forming a time evolving miter model. The output error
probability is calculated by inferencing the error model and obtaining the probability of state
"1" at the comparator nodes, P(C;, = 1), at each time slicet; iteratively by adding time slices

until the results converge. The number of time dlices needed for a given sequential circuit is

67



(b)

Figure 5.1. (a) Digital logic circuit (b) Corresponding probabilistic model (c) DAG represen-
tation which is not minimal (d) TDM model

related to the temporal dependence of output error which in turn is governed by the temporal
correlations in the circuit. Our results show that different sequential circuits exhibit different
degree of temporal dependence and the required amount of time dlicesis less than 10 for all

the circuits, which is similar to the observations presented in [49].

51 Sequential Logic Model

We model the sequential circuitsinto atime evolved probabilistic network, named as tem-
pora dependency model (TDM), which handles temporal dependencies. In this section we

provide the details on the modeling of a sequential logic into a TDM model.
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511 TDM Model

Let us consider the sequential circuit shown in Fig. 5.1.(a) where the present state node is
represented as PS, the next state node is represented as NS, the primary input is represented
as |, the primary output is represented as O and the internal nodes are represented as X1 and
X2.

The equivalent probabilistic model shown in Fig. 5.1.(c) can be represented by Gy, =
(W, Et). The nodes of the probabilistic model, V, are the union of all the nodes for each

timedlice.

V= LnJVn (5-1)
i=1

where n is the number of time slices. In our exampleVy, = {PS;,NS;, It;, Oy, X1, X2 }. The
edges, E, of the probabilistic model are not just the union of the edges in a single time dlice,

E:., but also includes the edges between time dices, that is, temporal edges, E;, It hasto be

7ti+l'
noted that the copies of the same variable X; in al time slices follow a markov property such
that the following two sets {Xit,,- -+, Xiy_, } and {Xit_,,---, X, } areindependent given X; ;.
For example, in Fig. 5.1.(c), X1, and X1, are independent of each other given X1;,. So the

temporal edges can be defined as

Eti fiyn — {(Xi-,tﬂxi-,ti-&-l)’Xi-,ti S Vtivxi,ti+1 € Vti+1} (5-2)

where X, isany nodeintime slicet; and X, , isthereplicaof the same node in the adjacent

timedicetj.1 asshownin Fig. 5.1.(c). Thus, the complete set of edgesE is

n
E=E,U U(Eti + Eti—lﬁi) (5.3)
i=2

In the probabilistic model (Fig. 5.1.(c)), apart from the dependencies from one time dlice,

we also have the dependencies over two copies of the same variable X; across adjacent time
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dices. But it is evident that X; and X;y_, are independent of each other given the present
state node PSj ;. For example the nodes X1y, and X1y, from Fig. 5.1.(c), are independent
of each other given the present state node PS;¢,; so even if we remove the temporal edges
connecting these nodes at consecutive time slices the underlying structure will still be intact.
The same can be told for X1, and X1g,.

So in the probabilistic model all the temporal edges except those connecting the present
state and next state nodes of adjacent slices (bold lines in Fig. 5.1.(c)) can be removed to
achieve aminimal representation as shown in Fig. 5.1.(d), which istermed asthe TDM model.

In our example, the necessary temporal edges can be given as,

Eti>ti+l = {(NSH Psi+1)|NSi S \/ti7 PSHl = \/tiJrl} (54)

5.2 Error Modd

From the TDM model of a given sequentia circuit, an error model is designed where the

erroneous behavior of the circuit is compared with the ideal error-free behavior of the circuit.

5.2.1 Structure

The error model contains three sections, (i) error-free logic where the gates are ided, (ii)
error-pronelogic where each gate goes wrong independently by an error probability € and (iii)
XOR based comparator logic that compare between the error-free and error-prone primary
outputs. At first two copies of the TDM model, of the given sequential circuit, are created
where one copy represents the error-free behavior of the circuit while the other represents
erroneous behavior of the circuit. Fig. 5.2. illustrates the error model for the sequential circuit
giveninFig. 5.1.(a). The Error-free block includes nodes representing theideal combinational
part of al the time slices. The Error-prone block includes nodes representing the erroneous

combinational part of al the time slices. At each time dlice ty an XOR logic based node
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@ Error-free block \ .‘/ -
% Error-prone block :

i ¢ Comparator block

Figure 5.2. Error model obtained from TDM model with 3rd order temporal dependence
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G, is added to compare between the error-free and error-prone primary outputs Oy, and Oﬁ(
respectively. These additional nodes are included in the Comparator block. Note that at every
time glice tx both error-free and error-prone logic has to be fed from the same primary input
node Iy, and at the first time slice t; both error-free and error-prone logic has to connect to
the same present state (PS) node PS,. Also the present state nodes, PS, and P, for all
time slicesty are error-free, since we assume ideal latches. The comparator nodes C;, and the
primary input nodes Iy, for all time slicest, are also assumed to be error-free.

Any given probability function P(x1, X, ---,Xn) can be written as !

P(x1, -, xn) = [[P(x|Pa(Xy)) (5.5)

\Y

where Pa(Xy) are the parents of the variable X, representing its direct causes. This factoring
of thejoint probability function can be denoted as a graph with links directed from the random
variable representing the inputs of a gate to the random variable representing the output. Our
error model is one such graph structure where the probabilities P(x,|Pa(Xy) are provided by
Conditional Probability Tables (CPTs) as shownin Table 5.1. It gives the CPTs for the nodes
Oy, whose parents are X1y, and X2, and Of whose parents are X1¢ and X2f from Fig. 5.2.
The nodes are governed by NAND logic.

The CPTs represent the underlying logic function of each gate. In this setup it is easier
to incorporate the individual gate error probability € by just changing the probabilitiesin the
CPT. For example Table. 5.1. gives the CPTs for error-free G, and error-prone Oﬁ(. In error-
prone CPT we just have to replace the probability valuesO by € and 1 by 1 — €. Thisindicates
that thereis (e x 100)% chance for the signal to go to state ”1” when it has to go to state ”0”

and (e x 100)% chance for the signal to go to state "0” when it hasto go to state " 1”.

Probability of the event X; = x; will be denoted simply by P(x;) or by P(X; = X;).
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Table 5.1. Conditional probabilistic tables for error-free and error-prone NAND logic

Error-free NAND
P(X1y,) | P(X2,) | P(C,=0) | P(Oy, =1)
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0
Error-prone NAND
P(X1f) | P(X25) | P(Of =0) | P(Of =1)
0 0 € l-¢e
0 1 € l-¢e
1 0 € l-¢e
1 1 1-¢ €

Table 5.2. Conditional probabilistic table for error-prone NAND logic having variable gate
error probabilities, eg and €1

Error-prone NAND
P(X1{) | P(X2) | P(Of =0) | P(Of =1)
0 0 €1 1-¢4
0 1 €1 1-81
1 0 €1 1-¢1
1 1 1-¢g €0

Also, in our model we can provide unequal gate error probabilities for any variable X¢ at
any time slice ty, such that if P(X, = 0) = 1, then P(X{ = 0) = 1—¢g and P(X{ = 1) = eo;
if P(Xtx = 1) = 1, then P(X{ = 0) = &1 and P(X{ = 1) = 1—¢;. The corresponding CPT of
this implementation for an error-prone NAND logic isgivenin Table. 5.2. g is basically the
error probability of logic ”0” and €1 isthe error probability of logic ”1” at the output of a gate.
Increasing o indicates that the circuit has more 0 — 1 errors, whereas increasing €1 indicates
that the circuit has more 1 — 0 errors. With thisimplementation, we can use our error model

to study the effect of these errors in the output of the circuit.
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5.2.2 Inference Scheme

The inference scheme basically calculates the joint probability distribution P(x1, - -,XN)
efficiently by propagating the probability distributions P(xy|Pa(Xy) of locally connected vari-
ables and thereby calculates the updated individual probability distributions of all random
variables. The inference or propagation of belief on the probabilistic error model is done us-
ing the Hugin architecture [26, 27] which is an exact method. The inference on our model
can be performed by forming clusters of nodes (cliques) which are directly dependent on each
other and performing computations on those clusters, thereby enabling local computing. The
network that isformed using these cliquesis called join tree, where information can be propa-
gated between cliques using message passing mechanism. Since extensiveliteratureis already
available, we will not be explaining the inference scheme in detail. Interested readers please
refer to [26, 27].

In order to obtain a join tree, a moral graph is created from the error model, by adding
undirected links between the parents of each common child node, and it is triangulated, to
ensure that there are no cycles with more than three nodes, to obtain a chordal graph. Then
the cliques are formed from the chordal graph and they are linked accordingly to form the
join tree. Each adjacent cliques will have one or more common variables which are termed
as separators. The following steps will explain the formation of join tree using an example

circuit given in Fig. 5.3.(a) and its equivalent probabilistic model givenin Fig. 5.3.(b).

e A moral graph, as shown in Fig. 5.3.(c), is formed from the original probabilistic net-
work by adding undirected links between the parents of each common child node.
— Additional links (Fig. 5.3.(c)): G1- G2, G3- G4

— These additional links helps to form complete subgraphs of each parent-child set.
The nodes in each subgraph can form a clique and thereby enable local compu-

tation. But this graphical form does not produce the minimal join tree because
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some of the independencies represented by the probabilistic network are lost due
to its undirected nature. The dependency structure is however preserved. This
non-minimal representation will eventually lead to high computational needs, even

when it does not sacrifice accuracy.

e To get a more minimal representation of the join tree which can capture the condi-
tional independencies, a chordal graph is formed. It is obtained by triangulating the
moral graph. Triangulation is the process of breaking al cyclesin the graph to make a
composition of cycles over just three nodes by adding additional links. To control the
computational demands, the goal is to form a chordal graph with the minimum number

of additiona links.

— Additional links (Fig. 5.3.(c)): No additional links since there are no cycles with

more than three nodes.

e The cliques are formed from the chordal graph and they are linked accordingly to form
the join tree (Fig. 5.3.(d)). Each adjacent cliques will have one or more common vari-
ables which are termed as separators. In Fig. 5.3.(d), between cliques C1 and C2, the
variables {G3,G4} form the separator set S1. Also, any two cliques sharing a set of
common variables will have these common variables present in all the cliques that lie
in the connecting path between these two cliques