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ABSTRACT 

 

Brain Computer Interface (BCI) is a direct communication channel between brain and 

computer. It allows the users to control the environment without the need to control 

muscle activity [1-2]. P300-Speller is a well known and widely used BCI system that was 

developed by Farwell and Donchin in 1988 [3]. The accuracy level of the P300-BCI 

Speller as measured by the percent of communicated characters correctly identified by 

the system depends on the ability to detect the P300 event related potential (ERP) 

component among the ongoing electroencephalography (EEG) signal. Different 

techniques have been tested to reduce the number of trials needed to be averaged together 

to allow the reliable detection of the P300 response. Some of them have achieved high 

accuracies in multiple-trial P300 response detection. However the accuracy of single trial 

P300 response detection still needs to be improved. In this research, two single trial P300 

response classification methods were designed. One is based on independent component 

analysis (ICA) with blind tracking and the other is based on variance analysis.  The 

purpose of both methods is to detect a chosen character in real-time in the P300-BCI 

speller. The experimental results demonstrate that the proposed methods dramatically 

reduce the signal processing time, improve the data communication rate, and achieve 

overall accuracy of 79.1% for ICA based method and 84.8% for variance analysis based 

method in single trial P300 response classification task. Both methods showed better 
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performance than that of the single trial stepwise linear discriminant analysis (SWLDA), 

which has been considered as the most accurate and practical technique working with 

P300-BCI Speller.    
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CHAPTER 1 

INTRODUCTION 

 

1.1  Overview of Brain Computer Interfaces 

Brain Computer Interface (BCI) is a channel established between the human brain and 

computer or computer controlled electronic devices for communication purpose. It can 

translate people’s intent into meaningful action in the real world solely by processing 

their brain waves. Research on BCIs started in the 1970s at the University of California 

Los Angeles (UCLA) under a grant from the National Science Foundation [4-5]. After 

this research, J. Vidal expressed the brain computer interface in his papers [5] which was 

considered as the first appearance of brain computer interface in scientific literature. The 

BCI systems can be classified into invasive systems [6-36] and non-invasive systems 

devices [37-48] while the invasive systems include fully-invasive and partially-invasive 

systems. Fully-invasive BCIs utilize electrodes that are implanted directly into the grey 

matter of the brain during neurosurgery. They provide the best quality signals for 

measuring the P300 component. However the Fully-invasive BCIs come with high risk of 

brain surgery and the signal may become weaker or even lost due to the scar-tissue build-

up caused by body rejection of foreign materials. Partially-invasive BCI devices are 

implanted inside the skull but rest outside the grey matter. Partially-invasive BCI reduces 

the risk of forming scar-tissue compared to invasive BCIs and produce relatively high 
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quality signals (better than non-invasive systems but inferior to than fully-invasive 

systems). Non-invasive BCI are designed to work on the surface of the scalp without any 

implanted electrodes. They are easy to apply and remove. As a trade-off, non-invasive 

BCIs produce the weakest signals with poor resolution because the electromagnetic 

waves generated by the neurons are dispersed and blurred by the skull. This makes 

determination of the signal generating area of the brain and the actions of individual 

neurons a great challenge. Although the quality of the signals provided by non-invasive 

BCIs are not as good as the signals provided by invasive and partially-invasive BCIs, 

non-invasive BCIs still play a very important role in BCI research because they are safer, 

simpler, more practical, and can be designed as portable with low cost. Therefore, if the 

signal quality problem can be solved by signal processing techniques, the non-invasive 

BCIs will become quite a promising choice for BCI system designing. 

EEG signal is the recording of electrical activity along the scalp produced by the activity 

of neurons within the brain [49]. It can be reliably and easily collected and processed in 

real time. These attributes make the EEG based method best suited for designing a 

practical non-invasive BCI system. Guger et al. [50] conducted an experiment to verify 

that EEG is a useful and reliable signal that can be easily controlled by most people to 

perform a task by using a BCI system constructed on EEG signal analysis. In their 

experiment, ninety nine people were asked to spend 20 to 30 minutes on a two-session 

BCI investigation. The first session consisted of 40 trials conducted without feedback. 

The data collected will be used to set up a subject-specific classifier that can provide the 

subject with feedback.  Then the second session—40 trials in which the subject had to 
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control a horizontal bar on a computer screen—was conducted. The result of this 

experiment shows that 93% of the subjects were able to achieve classification accuracy 

above 60% after two sessions of training which provides evidence that EEG signal is a 

useful candidate for BCI construction.  Researchers have developed several types of EEG 

based BCI systems. These systems rely on the finding that the brain reacts differently to 

different stimuli, based on the level of attention given to the stimulus and the specific 

processing triggered by the stimulus. Some EEG based BCI systems [51-53] require the 

user learn to produce self-regulated, stable EEG signal, such as alpha or mu rhythm. This 

learning process may take several weeks, and since there are only two states (on and off) 

available, it is less effective when performing multiple choices tasks.  

The P300-Speller [3] developed by Farwell and Donchin in 1988 is another type of EEG 

based BCI system that relies on a brain response known as the P300, whose attributes 

have been studied for over four decades. P300-Speller is a non-invasive BCI without 

requirement of subject’s training. In this research, all the experiments were performed on 

this well known and widely used BCI system.  The P300-Speller and its base scenario — 

Oddball paradigm — are briefly discussed in the following section. 

1.2  Event-Related Potential, Oddball Paradigm and P300-Speller 

Event-related potentials (ERP) are voltage fluctuations that are associated in time with 

some physical and mental occurrences. These potentials can be extracted from the EEG 

signals that were recorded from the human scalp by means of signal processing 

techniques [54].  Task-based ERP component is defined as those aspects of the waveform 

associated with particular antecedent conditions and experimental manipulations. P300 
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response is such an ERP component that is elicited by rare events presented within the 

so-called Oddball Paradigm [55], in which each event in a sequence of events can be 

categorized into one of two categories and correct categorization is necessary to the 

subject’s assigned task. When one of the categories occurs relatively infrequently, 

members of this rare category can elicit a P300. Early observations of the P300 response 

were reported in mid-1960s. In 1964, Chapman and Bragdon [56] found that event 

related potential (ERP) response to visual stimuli differed depending on whether or not 

the stimuli were meaningful. In their experiment, a large ERP peak appeared around 300 

ms following the meaningful stimulus which is termed as P300 response and is shown in 

Figure 1. P300 response is an uncontrollable ERP signal generated by the brain. In mid-

1980s it was used in the lie detection, which was known as “guilty knowledge test” [57]. 

This practice has recently enjoyed increased legal permissibility. In 1988, Farwell and 

Donchin designed a BCI based on P300 responses—P300-Speller as shown in Figures 2-

3. In this BCI system, the user is presented with an oddball paradigm. The rows and 

columns in a matrix of letters and numbers are intensified in a random sequence. The user 

focuses attention on one letter in the matrix. Intensifications of the row and column of the 

attended letter compose a rare event. Intensifications of the other rows and columns 

compose the frequent events. Thus, the intensifications of rows and columns containing 

the attended letter elicit a P300 response, while rows and columns not containing this 

letter do not elicit a P300 response. Therefore, by examining in real-time which row and 

which column elicited a P300 response, the system is capable of detecting the character 

communicated by the user with high accuracy.  The successful use of the P300-BCI 

system does not require any training of the user. However, for optimal use, the algorithm 
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detecting the P300 response needs to be “calibrated” based on the pattern of electrical 

brain activity of a specific user.   

 

Figure 1: P300 response. P300 response is an event related potential which is triggered by 
the infrequent events in an oddball paradigm.  

 

Figure 2: The P300-Speller proposed by Farwell and Donchin. On the screen, the rows 
and columns in the matrix were flashed alternately and the flashing row/column that 
contains the target character will elicit P300 responses [58]. 
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Figure 3: Elements of the user’s screen of P300-Speller. Text to Spell indicates the pre-
defined text. The speller will analyze evoked responses, and will append the selected test 
to Text Result [58]. 

1.3  Current State-of-the-Art of P300-Speller Based BCI System 

In 1990s, there was a significant increase in research area of signal processing and BCI 

system design. A lot of techniques about the EEG signal feature extraction and 

classification for BCI systems have been introduced and thoroughly investigated by 

numerous researchers. Farwell and Donchin have used stepwise linear discriminant 

analysis (SWLDA), peak pick, area and covariance to do the feature extraction and 

classification [3]. Anderson et al. [59] designed a multivariate autoregressive model for 

EEG classification. Devulapalli [60] suggested using principal component analysis (PCA) 

with autoassociative networks to fulfill the task. Samar et al. [61] and many other 
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researchers [62-66] applied wavelet transform for EEG signal classification. Kaper et al. 

[67], Qin et al. [68] and other researchers [69-71] used support vector machine (SVM) as 

the feature extractor and classifier. Jung et al. [72] and Barros et al. [73] suggested using 

independent component analysis (ICA) to remove the artifacts from EEG signal while 

many other researchers [74-79] also used ICA to process and classify the multichannel 

signals. Some other authors suggest using matched filter [80], genetic algorithm (GA) 

[81-82] and other techniques for feature extraction. Generally, these techniques can be 

divided into two categories, linear and non-linear techniques. Krusienski et al. [91] 

compared most of these techniques and concluded that SWLDA is the most accurate and 

practical technique working with P300 Speller. In Chapter 2, several widely used and 

effective methods including SWLDA, SVM, matched filter, Wavelet Transform and ICA 

are discussed. The processing results of single trial SWLDA by using BCI20001 system 

are used as our benchmark in Chapters 3-5. 

1.4  Motivation and Objective 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that 

affects nerve cells in the brain and the spinal cord. The progressive degeneration of motor 

neurons will destroy the patient’s ability of control any voluntary muscles. In later stage,  

1
BCI2000 is a general-purpose system for brain-computer interface (BCI) research. It can also be used for data 

acquisition, stimulus presentation, and brain monitoring applications. BCI2000 development has been sponsored by a 
NIH (NIBIB/NINDS) Bioengineering Research Partnership grant to Jonathan Wolpaw. Current development is 
sponsored by a NIH (NIBIB) R01 grant to Gerwin Schalk. 
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patients who suffer from this disease may become totally paralyzed which means they 

may completely lose the traditional communication ability such as talking, writing or 

gesturing. There are approximately 5,600 people in the U.S. who are diagnosed with ALS 

each year. The incidence of ALS is two per 100,000 people which means the estimated 

Americans who may have this disease at any given time is about 30,000. ALS can strike 

anyone, cases of this disease have been found throughout the world without racial, ethnic 

or socioeconomic boundaries [83]. It is especially for these people’s benefit that 

researchers are eager to design a BCI system to restore their communication ability. As 

mentioned before, a lot of signal processing techniques have been investigated, 

developed and designed for the construction of a reliable BCI system with high accuracy 

and processing speed. It has been shown that some of the techniques can be effectively in 

practical BCI systems, such as P300-Speller, and have been successfully applied to the 

ALS patients. These facts validated the feasibility of using BCI systems to restore the 

communication ability of the patients. In more than 20 years, researchers have made 

tremendous effort in developing new techniques to improve the communication speed 

and accuracy of P300-Speller. However, the communication speed is still at a low level 

(around 5 to 8 characters/min). To improve the performance of P300-Speller based BCI 

system is still a challenging problem that calls for effective solutions. The aim of this 

study is to develop fast and accurate single trial P300 response detection algorithms to 

further optimize the processing speed and accuracy of P300-Speller, thereby providing 

the ALS patients a reliable and high speed communication BCI system. 
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1.5  Contributions of this Dissertation 

In this dissertation, the available techniques working with P300-Speller are investigated. 

A blind tracking based ICA algorithm is proposed for single trial EEG signal 

classification.  This algorithm brought a new idea for applying ICA algorithm on EEG 

signals. By using the blindly generated random starting vector, a piece of random 

information that lies on the starting vector was actually removed from the rest of the 

components and therefore the entire independent component (IC) system will be rotated. 

A small portion of the non-Gaussianity of the rotated IC system may be sacrificed 

because the first vector is not computed according to the maximum non-Gaussianity 

criteria. However, this sacrifice may be beneficial to the construction of a more useful IC 

system since the non-Gaussian assumption for the P300 response and the background 

noises is not 100% valid (P300 repsonse could be the combination of several ICs and not 

completely independent to the background noise). In fact, ICA algorithms decompose a 

mixed signal into independent components without providing any information of 

mapping the ICs to P300 response. The proposed blind tracking based ICA algorithm 

created an opportunity to “modify” the IC system and make the relation of P300 response 

and ICs more clear and useful in the modified IC system. If we say that the traditional 

ICA algorithms provide us a fixed fair solution for the IC set computation, then the 

proposed algorithm provides us a dynamic optimized solution. In this work, the proposed 

algorithm has been applied to five different subjects and achieved an overall 

classification accuracy of 79.1%, which is 34.1% more accurate than the single trial 

SWLDA algorithm. The experimental result validates the effectiveness of the proposed 

blind tracking based ICA algorithm1-5 and suggests a new direction of ICA research.  
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In addition to the blind tracking based ICA algorithm, another algorithm called variance 

analysis based single trial P300 response classification was proposed in this dissertation 

as well. In this algorithm, we mathematically derived a statistical parameter that can be 

used for target and non-target signals classification by analyzing their variances. The 

distribution of the statistical parameter was investigated and the classification rule was set 

up. This algorithm6 is mostly established on statistical analysis and hypothesis testing. 

The processing results showed that this technique achieved an overall classification 

accuracy of 84.8% for five different subjects, which is about 40% more accurate than the 

single trial SWLDA. 

Both of the proposed algorithms introduced new ideas to the research of single trial P300 

response classification by using P300-Speller. They dramatically reduced the processing 

time and increased the classification accuracy. The communication speed has been 

improved from 12.8 characters/ min (SWLDA) to 30.6 characters/min and 20.5 

characters/min for blind. 

 

 

1.[84] K. Li, R. Sankar, Y. Arbel and E. Donchin, “P300 Based Single Trial Independent Component Analysis on EEG 
Signal”, Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience, Lecture Notes in 
Computer Science, Volume 5638/2009, 404-410, 2009. 
 
2.[85] K. Li, R. Sankar, Y. Arbel and E. Donchin, “Single trial independent component analysis for P300 BCI system”, 
2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4035-4038. 
September 2009. 
 
3.[86] K. Li, R. Sankar, Y. Arbel and E. Donchin, “Single trial independent component analysis for the P300 BCI 
system”, Fourth International Meeting, Asilomar, California May 31 - June 4, 2010. 
 
4.[87] K. Li, R. Sankar, Y. Arbel and E. Donchin, “Blind tracking based single trial independent component analysis for 
P300 BCI system”, accepted with minor changes by IEEE Transaction on Neural Systems and Rehabilitation 
Engineering, 2010. 
 

5.[88] K. Li, R. Sankar, Y. Arbel and E. Donchin, “Single trial independent component analysis for the P300 BCI 
system”, submitted to The Journal of Neural Engineering, 2010.  
 
6.[89] K. Li, R. Sankar, Y. Arbel, and E. Donchin, “A new single trial P300 classification method”, submitted to IEEE 
Transaction on Neural Systems and Rehabilitation Engineering, 2010. 
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tracking based ICA algorithm and variance analysis based classification algorithm 

respectively.  

1.6  Dissertation Outline 

In Chapter 2, several widely used EEG signal processing techniques including stepwise 

linear discriminant analysis (SWLDA), support vector machine (SVM), matched filter, 

wavelet transform, and independent component analysis (ICA) are discussed. The 

mathematic derivation of the algorithms and their underline assumptions are presented. 

Generally, this chapter will give the readers a basic idea of the mentioned techniques and 

their advantages/disadvantages. With this background information, the readers can 

understand our proposed algorithms more easily. 

In Chapter 3, the first proposed single trial P300 response classification method—Blind 

Tracking Based ICA is discussed. First, the BCI system and the data acquisition process 

are introduced. Then the experiment data structure is displayed. After that, the concept of 

“blind tracking” is explained, and the underlining assumptions and the steps of the 

proposed algorithm are presented in detail. Finally, the processing results are presented 

and discussed. 

In Chapter 4, the second proposed single trial P300 response classification method—

Variance Analysis Based P300 Response Classification is discussed. First, the BCI 

system and the data acquisition process are introduced. Then the experiment data 

structure is displayed. After that, the underlining assumptions and the steps of the 
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proposed variance analysis algorithm are presented in detail. Finally, the processing 

results of the single trial P300 response classification are presented and discussed. 

In Chapter 5, the processing results of the proposed algorithms are summarized and 

discussed. The feasibility and the performance of the algorithms, and the impact to the 

research area are concluded. The problems and challenging issues that still need to be 

investigated are discussed and possible solutions are proposed.  
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CHAPTER 2 

DESCRIPTION OF AVAILABLE SIGNAL PROCESSING TECHNIQUES FOR 

P300-SPELLER  

 

2.1  Introduction 

P300 response has been observed since mid-1960s [56][90]. It is an event related 

potential (ERP) elicited by infrequent, task-relevant stimuli. P300 response is considered 

to have stable presence, amplitude and timing and be related to a person’s reaction to the 

stimulus but not to the physical attributes of the stimulus. Based on these properties and 

the fact that P300 response is usually elicited in oddball paradigm, Farwell and Donchin 

designed a well known BCI — P300-Speller, which has been proven to be a practical 

and reliable BCI system for several decades. A lot of techniques have been developed to 

work with P300-Speller. In this chapter, several techniques including SWLDA, SVM, 

matched filter, Wavelet, and ICA, will be discussed.  

2.2  Stepwise Linear Discriminant Analysis  

Linear Discriminant Analysis (LDA) is a well known method for dimensionality 

reduction and classification that project high-dimensional data onto a low dimensional 

space where the data achieves maximum class separability. The derived features in LDA 
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are linear combinations of the original features, where the coefficients are from the 

transformation matrix. The optimal projection or transformation in classical LDA is 

obtained by maximizing the ratio of the between-class variance to the within-class 

variance as described in equation (1).  

                                                                                                                     (1) 

Where w is the transformation matrix, Sb and Sw are the between-class variance and 

within-class variance, respectively and t represents the transpose operation. 

Stepwise Linear Discriminant Analysis (SWLDA) combines the LDA with both forward 

and backward regression for feature selection to construct a multiple regression model as 

the classifier with significant features. The combined forward and backward stepwise 

regression starts with no initial model term. The most statistically significant features that 

are described as predictor variables in the classifier are added in the classifier if their p-

value < 0.1.  After adding each new entry to the classifier, a backward regression is 

performed to remove the least significant predictor variables that have p-value>0.15. This 

process is repeated till the classifier includes a predetermined number of terms, or till no 

additional terms satisfy the entry/removal criteria. 

SWLDA has the advantage of automatic feature selection because during the process, 

insignificant features have been completely removed from the classifier. Therefore using 

less training data is less likely to corrupt the classification results. A weak point of 

SWLDA is that the convergence of the feature selection is not guaranteed if the model 

(classifier) is inadequate or if there is no discriminable information contained in the 
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features. This problem can be solved by properly configuring the system before the 

classifier development. 

Krusienski et al. [91] have applied SWLDA with P300-Speller for P300 response 

classification. In their work, the EEG signal was recorded at 240 Hz sampling frequency 

by using a cap embedded with 64 electrodes whose locations are distributed over the 

entire scalp. To identify a character presented in the P300-Speller, the six rows and six 

columns will be intensified in random order for 15 times before the target character 

classification. The 800 ms long EEG segments (192 samples) that follow each 

intensification are extracted and concatenated as the feature vector. Both backward and 

forward regression are applied to the feature vector to remove the insignificant features 

and then the transformation matrix is derived for the significant features used to detect 

the presence or absence of the P300 response in an EEG signal. 

By using SWLDA as the classification method, Krusienski et al. achieved at least 60% 

accuracy for all participants. Three of the five participants performed above 90% 

accuracy with fewer than 15 sequences. This indicates that the classification can be 

performed on a minimal number of sequences without compromising accuracy and can 

increase the communication rate. (According to Donchin et al.’s work [92], the average 

classification accuracy obtained by using SWLDA as the classifier can reach above 90% 

with 8 sequences.) In Krusiensiki et al.’s work, the online analysis and the offline 

analysis are separated by quite a few months, which means after the offline data were 

collected, the five participant were asked to do the online part several months later. 
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Therefore, the classification result also proved the stable and robust nature of EEG signal 

to the P300-Speller. 

2.3  Support Vector Machine 

Support Vector Machine (SVM) is a supervised learning method used for classification 

and regression. Here “supervised” means that for a set of given training data, SVM will 

build up a model that can predict whether a new sample belongs to one category or the 

other.  Actually, what SVM does is to construct a hyperplane or set of hyperplanes in a 

high or infinite dimensional space to separate different categories. Usually a good 

separation can be achieved by finding the separation hyperplane that has the greatest 

distance to the nearest training data points of any class. The idea of SVM, which was 

discussed in detail by Burges [93], is briefly outlined here.  

For the two classes shown in Figure 4, an easy way to perform binary classification is to 

construct a hyperplane described by the weight vector w and the bias term b.  Given a 

training data set of l samples, each sample is denoted as xi and the corresponding class 

labels yi  

                                         , , … , 1,1                                            (2) 

A SVM algorithm needs to find such a hyperplane that separates the two categories and 

maximizes the distances from the hyperplane to any of the nearest data points. 

Meanwhile, the selection of the optimal hyperplane subjects to some constraints that will 

be discussed later. The category label of an incoming data x can be predicted by using 

equation (3) 
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                                                    ·                                                           (3) 

In equation (3) the incoming data vector x was projected on the weight vector w. Since w 

is perpendicular to the separating hyperplane, the sign of this projection would reveal the 

predicted class label. The separating hyperplane can be described by the vector w and 

bias term b, and w can be calculated by using the vectors on the margin (bordered circles 

in Figure 4) only. These necessary vectors are called support vectors. 

We want to choose w and b to maximize the distance between the parallel hyperplanes 

that separate the data. These hyperplanes can be defined by the equations 

                                                            · 1                                                        (4) 

and 

                                                          · 1                                                       (5) 

The distance between these two hyperplanes is . Therefore to maximize this distance, 

we need to minimize . At the same time, we have to prevent data points from falling 

into the margin. Hence the minimization has to subject to the following constraint. 

                                 · 1                                        (6) 

or 

                              · 1                                    (7) 

Equations (6) and (7) can be rewritten as: 
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                                      · 1   1                                         (8) 

where ci is class label for xi.  

Now the optimization problem becomes: 

minimize  subject to (for any 1, … , ) · 1. 

This optimization problem is not easy to solve because it depends on , which 

includes computation of a square root. Fortunately, substitute  by  will not 

change the solution of this problem.  

After substitution the problem is now to minimize   subject to · 1. 

It can be easily solved by using quadratic programming technique [94-95]. 

Employing Lagrange multipliers  to clearly define this constrained problem gives: 

                             , ∑ · 1                        (9) 

The solution to this problem is: 

                                                       ∑                                                        (10) 

In 1995, Cortes and Vapnik [96] proposed a “soft margin” method that allows for 

mislabeled examples. This method can find a hyperplane that separates the data as 

cleanly as possible when there is no such a hyperplane that can correctly split all the data. 

They introduced slack variables, , to measure the degree of misclassification. With the 

slack variables, , the constraint becomes: 
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                                                    · 1                                                (11) 

and the optimization problem is now becoming: 

                                                min , ∑                                             (12) 

subject to (for any 1, … ) · 1 . 

The solution to this optimization problem is: 

                                                          ∑                                                              (13) 

where  denotes the number of resulting support vectors. Substituting (13) into (3) 

yields 

                                                  =∑ ·                                             (14) 

It has been shown [93] that the replacement of the dot product ·  by a positive definite 

symmetric kernel function ,  transforms the given data space into a (usually higher 

dimension) feature space. This leads to the nonlinear discriminant function 

                                                 ∑ ,                                         (15) 

This technique provides more flexible decision boundary in the data space, which may 

increase classification accuracy. In Kaper et al.’s work [67], they chose the Gaussian 

kernel 

                                                        , .                                               (16) 
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The performance of SVM classifier depends on the regularization of parameter C and the 

bandwidth  of the Gaussian kernel. To achieve good classification results, both 

parameters need to be carefully adjusted.  

Kaper et al. used the P300-Speller proposed by Farwell and Donchin in 1988. The EEG 

signals were collected by using a cap embedded with electrodes. 600 ms segments of the 

signals following the intensification of each rows or columns were extracted as the 

experimental data, which are bandpassed (0.5-30 Hz) and normalized to an interval of [-

1, 1] prior to the application of SVM classifier. The SVM classifier was trained by using 

two positive samples and two negative samples. The efficiency of the two parameters, C 

and , were assessed by cross-validation [97]. Now the SVM classifier is ready to be 

applied to incoming signals. Usually, the incoming signal is too noisy to be correctly 

classified by using only one sequence. Therefore, the classification results of several 

sequences have to be combined to give the final decision. They used the value of 

equation (15) as a score and combined sequences by summing the scores from 

corresponding rows/columns from different sequences as in equation (17).  

                                           / ∑ /                                   (17) 

This idea was coming from maximum contrast classifiers (MCC) [98], which suggests 

that the score can be interpreted as density difference. The row/column with the highest 

total score after n trials is chosen as the target row/column with P300 presence. By using 

this method, an accuracy of 84.5% was achieved for P300 classification after five trials 

with the two parameters set as   20.007 and 27.359 [67]. 
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Figure 4: SVMs find the optimal hyperplane (solid line) to separate two classes by 
maximizing the margin γ. It can be described by the vector w and the bias term b. Only 
support vectors (bordered circle) are necessary to calculate w and b. (This Figure was 
quoted from [67]) 

2.4  Matched Filter 

In signal processing, a matched filter is obtained by correlating a known signal, or 

template, with an unknown signal to detect the presence of the template in the unknown 

signal. It is actually the convolution of the unknown signal and the conjugated time-

reverse version of the template. Matched filter is used to maximize the signal to noise 

ratio (SNR) when there are background stochastic noises. This technique is commonly 

used in radar, in which a known signal is sent out, and the reflected signal is examined 
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for common elements of the outgoing signal. It is also used in image processing, for 

example, to improve the SNR for X-ray images. 

The matched filter is the linear filter, h (in equation (18)), that maximizes the output 

SNR. 

                                              ∑                                            (18) 

Let us write the observed signal x as: 

                                                                                                                        (19) 

where s is the desirable signal and v is the background noise. 

Thus the covariance matrix of the noise is given by: 

                                                                                                                  (20) 

By maximizing the SNR, the matched filter can be derived as: 

                                                                                                                      (21) 

where α is an arbitrary number. Normally, the expectation power of the filter output due 

to the noise ( ) is normalized to unity, which means 

                                               | | 1                                              (22) 

Then α can be solved as: 

                                                                                                                     (23) 
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Consequently, the matched filter h is: 

                                                                                                          (24) 

In frequency domain, matched filter can be considered as applying the greatest weighting 

to spectral components that have the greatest signal to noise ratio. This technique is often 

used in signal detection [99]. 

Matched filter is commonly used with other classification techniques to produce the final 

classification result. Serby et al. [80] have combined matched filter with independent 

component analysis to classify the P300 component in the EEG signals collected by using 

P300-Speller. In their work, the EEG data were collected by using the International 10-20 

system Electro-Cap at 250 Hz sampling frequency. Afterwards, the EEG signals were 

low pass filtered with the cut-off frequency set as 6 Hz. Then only 3 signals from 

electrodes CZ, PZ and FZ (locations of these electrodes are shown in Figure 5) were fed to 

the ICA algorithm. The ICA algorithm returned three independent components. One of 

them was considered associated with P300 response and the other two were omitted. 

Then every 500 ms (from 100 ms to 600 ms) long segment posterior to the beginning of 

any intensification in the P300 source was passed to the matched filters that were 

constructed by using the P300 templates of every row/column. The row/column that had 

the highest correlation with the incoming signal was considered as a target signal 

candidate. The final decision was made after several repetitions of the process and a 

predefined threshold was satisfied. With this method, a communication rate of 5.45 

symbols/min with an accuracy of 92.1% was achieved. 
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Figure 5: The international 10-20 system: An internationally recognized method to 
describe and apply the location of scalp electrodes in the context of an EEG test or 
experiment. 

 

2.5  Wavelet Transformation 

Wavelet is a mathematical tool that can be used to extract information from different data. 

Its development goes back to early 20th century, starting with Haar’s work [100].  From 

1975 to early 1990s, there was a burst of wavelet development. A lot of notable 

contributions had been made by many outstanding researchers, such as George Zweig 

[101], Jean Morlet [102-103], Alex Grossmann [103], Yves Meyer [104] and Stephane 

Mallat [105]. 
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Technically, wavelet is a mathematical function used to divide a given function or 

continuous-time signal into different scale components that have been assigned a 

frequency range. A wavelet transform uses the wavelets to represent a function. Wavelet 

transform has advantages over traditional Fourier transform in representing functions that 

have discontinuities and sharp peaks, and for accurately deconstructing and 

reconstructing finite, non-periodic and non-stationary signals. Wavelet transforms are 

classified into continuous wavelet transforms (CWTs) and discrete wavelet transforms 

(DWTs). Both of them are continuous-time transforms and used to represent continuous-

time signals. The difference is that CWTs operate over every possible scale and 

translation whereas DWTs use a predefined subset of scale and translation values. 

In continuous wavelet transforms, a given signal is projected on a continuous family of 

frequency bands. For example the signal can be represented on every frequency band of 

[f, 2f] for all positive frequencies f > 0. The original signal can be reconstructed by a 

suitable integration over all the frequency components. The frequency bands or subspaces 

are scaled versions of a subspace at scale 1. Usually the subspaces are generated by 

shifting a generating function , the mother wavelet. Some of the famous mother 

wavelets are shown in Figures 6-8. 
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Figure 6: Meyer mother wavelet [104] 

 

Figure 7: Morlet mother wavelet [103] 
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Figure 8: Mexican Hat mother wavelet [106] 

The child wavelets of scale or frequency band ,  are generated by the function 

                                                      , √
                                                  (25) 

where a is a positive number that defines the scale and b is a real number that defines the 

shift. 

Then the projection of a function x onto the subspace of scale a has the form 

                                          , · ,                                    (26) 

with wavelet coefficients 

                                   , , , ,                            (27) 
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For discrete wavelet transform, it follows the same idea. However it is computationally 

impossible to analyze a signal x using all the wavelet coefficients. Therefore only a 

discrete subset of the wavelet coefficients is chosen to reconstruct the signal.  

                                        ∑ ∑ , , · ,                                     (28) 

where ,  is the child wavelet function that comes from a tight frame of . 

In fact, CWT is a kind of template matching [107], i.e., a computation of the cross 

covariance between the signal and a predefined waveform, which is shifted in time and 

varied in scale [67]. The local extrema of the wavelet coefficients are the points of the 

best match between the signal and the template in the time-frequency domain. By 

combing the CWT building up on a modified Mexican Hat function and two-sample t-

test, Vladimir Bostanov designed a feature extraction algorithm that works with P300-

Speller. With this feature extraction algorithm, he had achieved 82.6% and 54.4% 

accuracies for two different data sets provided by BCI Competition 2003, respectively.  

2.6  Independent Component Analysis 

Blind source separation (BSS), also known as blind signal separation, is the separation of 

a set of target signals from a set of mixed signals, without the aid of information about 

the source signals or the mixing process. BSS relies on the assumption that the source 

signals do not correlate with each other, i.e. the signals are mutually statistically 

independent or decorrelated. BSS plays a very important role in signal processing and has 

been explored by many researchers. A famous example of the BSS is the “cocktail party” 

problem. If you have been to a cocktail party as shown in Figure 9, you most certainly 
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know how hard it can be to extract an interesting conversation from the noisy background 

signal of the crowd. So the cocktail party problem is the task of hearing a sound of 

interest in this sort of complex auditory setting [108]. The human hearing system can 

segregate the mixing sound and concentrate on the component of interest very well. In 

digital signal processing, an equivalent method that can accomplish this task needs to be 

developed.  Independent Component Analysis (ICA) is one of the BSS methods which 

can decompose a mixed signal into statistically independent components (ICs) by 

maximizing their non-Gaussianity [109]. Typically, ICA applications include separating 

mixing signal, removing artifacts from brain signal recording, finding hidden factors in 

financial time series, and reducing noise in natural images. Figures 10-12 gives an 

illustration of ICA application for signal separation. (Figure 10 shows the original 

signals, Figure 11 shows the mixed signals of the two original signals and Figure 12 

shows the reconstructed signals after the application of ICA algorithm [110].) 

ICA algorithms are established on the assumption that the original signals are mutually 

statistically independent with maximized non-Gaussianity. Without non-Gaussianity the 

estimation of original signal is not possible. Therefore non-Gaussianity is used as a 

leading principle in ICA estimation. Widely used ICA algorithms include infomax, 

FastICA, and JADE. In the following paragraphs, the development of FastICA algorithm 

will be discussed. 
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Figure 9: A typical Manhattan cocktail party. The listener must focus on the conversation 
of interest and neglect all other background noises. (Image from Breakfast at Tiffany’s: 
Paramount Pictures.) [108] 

 

Figure 10: The source signals used as illustration of the ICA separation 
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Figure 11: The observed mixtures of the source signals in Figure 10. 

 

Figure 12: The estimates of the original source signal by using the observed mixing 
signals in Figure 9 only. The original signals were accurately estimated, up to 
multiplicative signs. (Figure 10-12 are quoted from [110]) 
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Before we start the discussion of development of the FastICA algorithm, a whitening 

process is introduced. For any signal x, the whitening process (that is a linear 

transformation of the observed signal) is applied to reduce the parameters to be estimated 

and relive the computation load. The components of the transformed signal  are 

uncorrelated with their variance equal unity (see equation (29)). 

                                                                                                                      (29) 

The whitening transformation is always possible. A popular method is to use the 

eigenvalue decomposition of the covariance matrix, , where E is the 

orthogonal matrix of eigenvectors of  and D is the diagonal matrix of its 

eigenvalues. The whitening transformation is operated by 

                                                                                                                   (30) 

If the observed signal x is distributed by an ICA data model as: 

                                                                                                                            (31) 

where s is the matrix of independent components and A is the activation matrix (s and A 

will be discussed later). Substituting equation (31) into equation (30) gives 

                                                                                                       (32) 

where  is an orthogonal matrix since 

                                                                                (33) 
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Therefore the number of parameters to be estimated is reduced from  (in A) to  

(in ) because  has only  degrees of freedom.  

Now the non-Gaussianity, which is the most important role in the ICA algorithm 

development, will be discussed. First of all, let us investigate the reason why the non-

Gaussianity is so important for ICA algorithm design. From equation (31), it is clear that 

                                                                                                                         (34) 

Suppose there is a linear combination that 

                                                    ∑                                                      (35) 

where w is a vector to be determined. If w were one of the rows of the inverse of A, this 

linear combination would equal one of the independent components. 

Now let us make a change of variable. By setting  

                                                                                                                          (36) 

we have 

                                                                                               (37) 

Thus a is a linear combination of  with weights given by . According to the central 

limit theory which states that a sum of two independent random variables is more 

Gaussian than any of the original variable,  is more Gaussian than any of the  and 

the Gaussianity will be minimized when it in fact equals to one of the . (here  are 
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assumed having identical distributions). In this case, it is obvious that only one of the 

elements  of q is nonzero.  

Therefore a vector w that maximizes the non-Gaussianity of  could be taken 

corresponding to a q which has one nonzero element. This means that 

                                                                                                                      (38) 

equals one of the independent components. Now it is clear that maximizing the non-

Gaussianity of  can help us find the independent components. 

There are various methods to measure the non-Gaussianity. A classic measure is the 

kurtosis which is actually the fourth-order cumulant of a random variable. The kurtosis of 

a random variable x is denoted by kurt(x) and defined as: 

                                             3                                           (39) 

The kurtosis is zero for Gaussian random variables and non-zero for most of the non-

Gaussian random variables. By maximize equation (39) under the constraint that 

1, the independent components can be computed. A weak point of using kurtosis 

to measure the non-Gaussianity is that the kurtosis is highly sensitive to the outliers. 

Therefore, a single value can make kurtosis large. A more robust measure of non-

Gaussianity is the negentropy. In information theory, the entropy H of a discrete random 

variable X is defined as: 

                                        ∑                                   (40) 
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and for continuous random variables and vectors, it is defined as:  

                                                                                          (41) 

To obtain a measure of non-Gaussianity that is zero for Gaussian variables and always 

non-negative, the negentropy J is constructed and defined as: 

                                                                                              (42) 

Negentropy is a statistically well justified measure of non-Gaussianity, however it is 

computationally very difficult. Therefore simpler approximations of the negentropy have 

been developed. 

Classic approximations typically have the form similar to 

                                                                                     (43) 

When the random variable x has zero mean and unit variance (as we have here), 

maximizing this approximation is simply equivalent to maximizing the absolute value of 

the kurtosis, which means this approximation suffers from the same non-robustness 

encountered by kurtosis. Therefore a more sophisticated approximation is developed. 

By using the expectations of general non-quadratic functions to generalize the higher-

order cumulant approximation, the negentropy can be expressed as: 

                                                    (44) 
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where and are positive constants, v is a Gaussian variable of zero mean and unit 

variance. and are non-quadratic functions, is odd and is even. This 

approximation of negentropy is better than the one given in equation (43) when and 

are wisely chosen. Two useful choices of G have been proved to be 

                                                                                                  (45) 

and 

                                                         e                                                      (46) 

where 1 2 is some suitable constant, often taken equal to 1. 

In the case only one non-quadratic function G is used to approximate the negentropy, the 

approximation becomes: 

                                                                                         (47) 

Now let us discuss the fixed-point algorithm. An intuitive way of finding w as a fixed 

point is to make it equal to the gradient of the measure of non-Gaussianity and do the 

iteration with normalization of its norm to unity. 

                                                                                                            (48) 

where ·  is the derivative of a non-quadratic function G. 
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This iteration process does not, however, converge very well. A modified iteration 

process must be found. Since adding a multiplication of w on both side of equation (48) 

will not change the fixed point, we have 

                             1                        (49) 

where α is a constant. And by mathematical derivation, the iteration process finally 

becomes 

                                                                               (50) 

This process will continue running till the w converges to the fixed point. 

The ICA algorithm discussed above is called FastICA which was proposed by Aapo 

Hyvärinen [111] in 1999.  This algorithm converges faster than other available ICA 

algorithms with high reliability and accuracy. Therefore it was employed to perform the 

independent component analysis in our work. 

ICA was first applied to event-related potential (ERP) analysis by Makeig et al. [75] in 

1997. After that, many researchers have employed ICA in their ERP research [73-79]. In 

2003, Neng Xu et al. [112] designed an ICA-based subspace projection method that 

works with P300-Speller. In their work, after the data collection, they used infomax ICA 

algorithm to perform independent component analysis on the collected signal. Then the 

P300 component related ICs are chosen temporally and spatially. Those chosen ICs were 

then projected back on the scalp to obtain the scalp distribution of P300 potential. Finally 

they used the peak and area of the brain wave in the P300 window (from 275 ms to 370 
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ms after the beginning of the intensification) to determine target characters. By using this 

ICA-based subspace projection method, they achieved 100% accuracy of character 

prediction with 8 repeated trials.   

Those techniques mentioned above are all capable of detecting the P300 response and 

predict the target character by analyzing the EEG data provided by P300-Speller. 

Krusienski et al. [113] investigated and compared these techniques. They concluded that 

SWLDA is the most practical and reliable P300 classification method working with 

P300-Speller. However this conclusion was made based on the multiple-trial P300 

classification. SWLDA and other techniques share the same drawback. Although it is not 

a requirement for any of the mentioned algorithms, it is a critical step to achieve high 

classification accuracy by averaging several trials to remove the background noises and 

enhance the magnitude of P300 response before applying the P300 classifier on EEG 

signal. This “averaging” step slows down the communication process of the P300 BCI. 

For single trial P300 classification, without the “averaging” step, SWLDA might not be 

the best candidate.   

It would clearly be advantageous to design a method that would allow reliable detection 

of P300 response in a single trial. To design such a method, not only the “averaging” step 

is a curdle to be passed on the road, the limitations of each of the techniques also need to 

be considered. SWLDA may propagate the error incurred in the feature extraction 

process. SVM needs to select the kernel function and adjust the parameters very carefully 

to obtain a good result. This process is very tedious and time consuming. Wavelet brings 

heavy computation load and needs to select the mother wavelet function wisely for 
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accurate classification. ICA cannot guarantee that the computed IC set will be correctly 

mapped to different features including P300 response. 

After observing the shortcomings of each of the techniques and careful consideration of 

the advantages and disadvantages of these algorithms, we have proposed a blind tracking 

ICA algorithm to perform the single trial P300 classification task. This algorithm 

provides a solution for the feature mapping problem faced by ICA and dramatically 

improved the single trial P300 classification accuracy. In addition, we also proposed a 

simpler and practical P300 classification method—variance analysis based single trial 

P300 classification. Both of the proposed methods will be discussed in details in the 

following chapters. 
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CHAPTER 3 

SINGLE TRIAL P300 CLASSIFICATION METHOD:  BLIND TRACKING 

BASED INDEPENDENT COMPONENT ANALYSIS 

 

As mentioned in the previous chapter, ICA is a blind source separation technique. It can 

decompose a signal into statistically independent components (ICs). Since the ICs are 

related to different features of the signal, the problem is then to map them to the related 

features and determine which ones are related to P300 response. In other words, ICA has 

the ability to reveal the hidden features even if they are buried in the background noise. 

This ability makes it possible to detect P300 via a single trial. However, ICA is not 

guaranteed to find a standard IC set that can be clearly mapped to P300 response and 

other features due to the variations in decomposition. In this chapter, we propose a “blind 

tracking” method to acquire the standard IC set. This “blind tracking” method, working 

with single trial P300 classification of ICA, increased the processing speed and achieved 

high accuracy. 

3.1  P300 Brain Computer Interface System  

The P300-BCI system block diagram with the signal flow is shown in Figure 13. The 

shaded blocks indicate the components required for generating the reference templates 
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during the offline analysis and the solid blocks indicate the components required for 

detection and classification during the online analysis.  

In the offline analysis, data is collected in the same way as online analysis (acquisition 

method is described in the next section). However there is no classification yet during 

this stage. After the data acquisition, the collected data (40 trials) is preprocessed to filter 

out high frequency noises and reduce the number of parameters to be estimated. The 

blind tracking is then performed to search for the standard IC set and standard activation 

matrix (the standard IC set and standard activation matrix are defined in section 3.5). The 

results are stored in the system.  

In the online analysis, the activation matrix of an incoming signal is computed by using 

the stored standard IC set and compared to the stored standard activation matrix. The 

classification is done by using correlation based or discriminant analysis (DA) based 

majority voting scenario. In this work, 40 trials (480 flashes) were classified in the online 

analysis. Details of the sub-blocks in Figure 13 are discussed in the following sections. 

3.2  Experiment Data Acquisition 

Five young adults from the University of South Florida (USF) participated in the 

experiment. Each participant visited the BCI laboratory in the Department of Psychology 

at USF once for 120 minutes. Each participant sat upright in front of a computer monitor, 

which presented a 6x6 visual matrix of letters and numbers. The participant was asked to 

focus attention on a specified letter in the matrix and silently count the number of times 

the target character intensified, until a new character was specified for selection. The 
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EEG signal was recorded using a cap (Electro-Cap) embedded with 16 electrode 

locations distributed over the entire scalp as shown in Figure 14. The EEG signal was 

band pass filtered 0.1–60 Hz and amplified with an amplifier (20,000×), digitized at a 

rate of 160 Hz. A sample of the collected EEG signal is shown in Figure 15.  

 

Figure 13: Diagram of the P300 BCI System 
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Figure 14: Illustration of the data acquisition equipments. 

 

Figure 15:  A sample of the collected EEG signal. 
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3.3  Data Structure 

The rows and columns of the P300-BCI Speller were intensified for 75 ms with 100 ms 

interval between intensifications. Because of the delay of P300 occurrence, the EEG 

signal segments from 175 ms to 350 ms following each intensification were used as our 

experiment segments. 480 segments from each channel including 80 from target flash 

(the intensification of row or column that contains the desired character) and 400 from 

non-target flash (the intensification of row or column that does not contain the desired 

character) were extracted for offline analysis.  

In order to simplify the performance assessment, the participants were asked to spell out 

some given words by using P300-BCI Speller in both offline and online data acquisition 

process in this work. However during the real time “spelling”, the participant can 

arbitrarily choose any character he/she wants other than the specified one.  

Table 1: The EEG data structure in our experiment 

Total number of EEG segments 480×16 Segment Length 175 ms 

Sampling Frequency 160 Hz Number of Samples in 
Each Segment 28 

Intensification Duration 75 ms Interval Time 100 

The details of the sub-blocks are discussed in the following sections. 
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3.4  Preprocessing 

All the extracted EEG signals from the 16 channels (electrodes) were low pass filtered to 

remove the background noise with cut-off frequency set as 10 Hz. Before the independent 

components (ICs) of the EEG signals being computed, the observed vector of EEG 

signals were centered and whitened to obtain uncorrelated components and unit 

variances.  Let us express an EEG signal x as in equation (31), which is                       

, where s is the independent components set and A is the linear transformation 

from s to x. We call it the activation matrix. Then after the preprocessing, the number of 

parameters needs to be estimated in A reduced from n2 to about n(n-1)/2 [109]. 

3.5  Independent Component Analysis 

As described in Chapter 2, independent component analysis (ICA) is a statistical and 

computational technique for revealing hidden factors that underlie sets of random 

variables, measurements, or signals. It is a good solution to the famous “cocktail problem” 

which is a Blind Source Separation (BSS) problem. The following example describes the 

cocktail problem. Two speakers (S1 and S2) speak simultaneously in a room with two 

recorders (R1 and R2) recording their speech at different locations in the room. The 

recorded signals, R1(t) and R2(t), can be expressed as: 
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                                            (51) 

We can solve these equations for S1 and S2 with known values of a11, a12, a21 and a22. 

Unfortunately these weights (a’s) are unknowns and these equations can only be solved 

by ICA under the assumption that S1 and S2 are independent non-Gaussian signals. For 
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the EEG signal, a number of electrodes were put on different locations on the scalp to 

record the signal. So it can be considered as a “cocktail party” problem. Therefore, it is 

reasonable to apply ICA on EEG signal to identify those independent sources and map 

them to P300.  

There are various ICA algorithms, such as Infomax [114], JADE [115] and FastICA 

[111] which can successfully compute the independent components by maximizing the 

non-Gaussianity or negentropy [109] (measurement of non-Gaussianity of the ICs). In 

this work, FastICA is chosen to perform ICA because it converges much faster than other 

algorithms with high reliability. 

3.6  Blind Tracking of Optimal Independent Component Set 

Although ICA can help us find the independent sources of some mixed signals, it is not 

guaranteed that the computed IC set can be clearly mapped to P300 response and other 

features because there are actually many ways to decompose the mixed signals into 

independent components. In our work, it is assumed that P300 related ICs are 

uncorrelated to the hyperplane defined by other ICs and pointed at some unknown 

directions in the multidimensional space. We need to identify those specific ICs pointing 

in an unknown direction from a “blind” beginning. Our scenario is to randomly choose a 

starting vector and compute all the ICs from that starting point. This process was repeated 

50 times and therefore 50 different IC sets and activation matrices were computed as in 

equation (31). For each IC set, the activation status of each IC in each channel was 

described by the coefficients stored in the activation matrix A.  The IC set whose 

activation matrices have the largest difference for target and non-target signals was 
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defined as the standard IC set. This optimal “standard” IC set may not always perfectly 

match the “real” standard IC set hidden in the signal. However, it is better than the other 

49 IC sets. 

In the IC sets computing process, the average of 400 preprocessed 175 ms EEG signals 

from non-target flash is set as the “standard non-target flash” signal, denoted as xnt.    

Similarly, the average of 80 preprocessed EEG signals from target flash is set as the 

“standard target flash” signal, denoted as xt (Figure 16 and17 show the samples of the 

averaged and lowpass filtered EEG signals).  

 

Figure 16: A sample of the averaged target and non-target EEG signal in channel 1. 
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Figure 17: A sample of the averaged and lowpass filtered (cutoff frequency = 10 Hz) 
target and non-target signals. 

 

By applying FastICA with a random starting vector, the independents components vector 

s and the mixing matrix A of xt can be computed and expressed as: 

                                                                 ttt sAx =                                                           (52) 

Here, we assume that the EEG signal from target flash contains more components than 

those from non-target flash. This is reasonable since the EEG signal of target flash is 

constituted of “background noise” and P300 response while the EEG signal of non-target 

flash is constituted of “background noise” only. By substituting st and xnt in equation 

(31), we can solve for Ant that shows the activation status of the ICs underlying in xnt. We 

investigated 50 Ant and At matrices and chose the best pair that most clearly shows the 

differences between target and non-target signals as the reference activation matrices of 

target and non-target signals. Meanwhile we set the associated st as the standard IC set.  
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In the standard IC set, 3 ICs with the largest variation of their coefficients in Ant and At 

are considered related to the P300 response.  Their activation status in different channels 

will be used as the feature for P300 identification. 

3.7  Correlation Method and Majority Vote Scenario 

In this part, we use subject 1 as an example to describe the idea. All discussions are based 

on the processing results for subject 1. In our experiment, for subject 1, 16 ICs were 

computed and 3 of them, IC 2, 4 and 11, were considered having strong relation to P300. 

Their “activation pattern” (the activation status of the 3 ICs in the activation matrices) in 

all the 16 channels of the standard target/non-target flash are investigated and recorded as 

the reference pattern of target/non-target flashes. For an unknown incoming flash, its 

activation matrix is computed and the “activation pattern” of IC 2, 4, and 11 is extracted. 

If it is a target flash, the activation pattern of the P300 related ICs should be more similar 

to the target reference pattern, otherwise the activation pattern should be more like the 

non-target reference pattern. We use Pearson product-moment correlation coefficient ρ as 

the measurement of the similarity.  

                                                               ),( ricorr=ρ                                                       (53) 

where i is a vector that represents the activation status of a chosen IC of an incoming 

signal, r is a vector that represents the activation status of the same IC in the target or 

non-target reference. According to the distribution of the correlation value ρ, we can 

appropriately choose the threshold value t that maximizes the correct target/non-target 

identification rate. We performed 1 and 3 ICs based classification in this work. The 

general classifying criteria can be expressed as: 
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 If                                                            ∑ ,                                                         (54) 

the incoming signal is a target, otherwise it is a non-target, where j = 1 or 3, ρj is the 

correlation value according to the j-th P300 related IC. For 1 IC (IC4) based 

identification, t was set as 0.2 and for 3 ICs (IC2, IC4 and IC11) based identification, t 

was set as 0.5 (All the threshold values were chosen by maximizing the correct 

identification rate. Different subjects may have different threshold values according to 

their individual ρ distribution. Figures 18-20 show the distributions of the correlation 

values of the incoming signal and the target reference) 

 

Figure 18: Top: The correlation value distribution of target signals and the standard target 
reference (Computed by using IC 4 only). Bottom: The correlation value distribution of 
non-target signals with the standard target reference (Computed by using IC 4 only). 
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Figure 19: Top: The correlation value distribution of target signals and the standard target 
reference (Computed by using IC 2 and IC 4). Bottom: The correlation value distribution 
of non-target signals with the standard target reference (Computed by using IC 2 and IC 
4). 

 

Figure 20: Top: The correlation value distribution of target signals and the standard target 
reference (Computed by using IC 2, IC 4 and IC 11). Bottom: The correlation value 
distribution of non-target signals with the standard target reference (Computed by using 
IC 2, IC 4 and IC 11). 
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In addition to directly summing the correlation values from corresponding ICs, we also 

use 3 P300 response related ICs to vote according to the following voting criteria: 

If  , then vote for target; Otherwise vote for non-target. 

If , then vote for target; Otherwise vote for non-target. 

If  , then vote for target; Otherwise vote for non-target. 

where ,  and  are correlation values that correspond to IC2, IC4 and IC11 

respectively. t1=0.3, t2=0.2 and t3=0.34. The majority vote of them determines the label of 

an incoming EEG signal. 

The results of our experiment are shown in Tables 2-5. 

Table 2: Classification results of correlation method by using 1 IC (IC 4) 

Category Correctly Classified Incorrectly 
Classified Total Accuracy Error 

Rate 

Target 21 9 30 70% 30% 

Non-target 19 11 30 63.3% 36.7% 

 

Table 3: Classification results of correlation method by using 3 ICs (IC 2, 4 and 11) 

Category Correctly Classified Incorrectly 
Classified Total Accuracy Error 

Rate 

Target 23 7 30 76.7% 23.3% 

Non-target 21 9 30 70% 30% 
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Table 4: Classification results of discriminant analysis based majority voting (3 ICs) 

Category Correctly Classified Incorrectly 
Classified Total Accuracy Error Rate

Target 23 7 30 76.7% 23.3% 

Non-target 22 8 30 73.3% 26.7% 

 

Table 5: Classification results of correlation based majority voting of 5 subjects (3 ICs) 

Subjects 
Accuracy (%) 

Target Non-target Overall 

Subject 1 76.7 73.3 73.9 

Subject 2 66.7 74.7 73.3 

Subject 3 70 76.7 75.6 

Subject 4 66.7 80.6 78.3 

Subject 5 73.3 79.3 78.3 

Average 70.7 76.9 75.9 

 

3.8  Discriminant Analysis and Majority Vote Scenario 

Although “Blind Tracking” can help us find an optimized standard IC set, the set is most 

likely not the best or optimal set yet. In fact, if the “Blind Tracking” is kept running for a 

great number of times, it is possible to find an IC set that matches the best standard IC set 
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fairly well. However, the tracking and testing process is rather time consuming. It may 

take us days or weeks to calibrate the standard IC set for each individual subject.  To 

avoid this time consuming process, another classification method combining the 

Independent Component Analysis and Discriminant Analysis was designed and 

performed for this single trial classification problem. For each of the 16 ICs computed by 

using ICA algorithm, their activation status in the 16 channels were recorded and stored 

in a matrix. Half of the data stored in these matrices were used as training data for the 

discriminant analysis and the other half were used as testing data. The activation status of 

each IC in the 16 channels was classified into two categories, target and non-target. 

“Target” means the activation status of the specific IC indicates that the incoming signal 

is a target signal. “Non-target” means the activation status of the specific IC indicates that 

the incoming signal is a non-target signal. After the 16 ICs were classified, their 

“majority” vote (the majority number may vary for each individual subject, in this work, 

it was set as 8 for subject 1, 2, 4, 5, and 7 for subject 3) determined whether an incoming 

signal is a target signal. In our experiment, we also choose 3 of the 16 ICs that provided 

the highest classification accuracy to perform the majority voting. The results are 

summarized in the Tables 6-8. 
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Table 6: Classification results of discriminant analysis based majority voting of 5 subjects 
(16 ICs) 

Subjects 
Accuracy (%) 

Target Non-target Overall 

Subject 1 73.3 81.3 80 

Subject 2 66.7 78.6 76.7 

Subject 3 73.3 82.7 81.1 

Subject 4 60 81.3 77.8 

Subject 5 80 80 80 

Average 70.7 80.8 79.1 

 

Table 7: Classification results of discriminant analysis based majority voting of 5 subjects 
(3 ICs) 

Subjects 
Accuracy (%) 

Target Non-target Overall 

Subject 1 73.3 81.3 80 

Subject 2 60 80 76.7 

Subject 3 60 84 81.1 

Subject 4 60 77.3 74.4 

Subject 5 80 81.3 81.1 

Average 66.7 80.8 78.7 
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Table 8: The results comparison of blind tracking based ICA and single trial SWLDA 

 

3.9  Discussion of the Results 

The 1 and 3 ICs based correlation method and 3 ICs based voting scenario were tested by 

180 EEG signals including 150 from non-target flash and 30 from target flash. For 1 IC 

based correlation method, with t = 0.2, we achieved 70% and 63.3% accuracies for target 

and non-target identification, respectively. For 3 ICs based correlation method, with t = 

0.5, these accuracies increased to 76.67% and 70%, respectively. The majority voting 

scenario provided the best identification accuracies of 76.67% and 73.3% for target and 

non-target, respectively. This experiment was repeated for the other four subjects. The 

overall accuracies achieved were 73.3%, 75.6%, 78.3%, and 78.3%, respectively. In our 

research we prefer to reduce the type II error because if we fail to identify a target flash, 

the identification process can be repeated till the target successfully identified. But if a 

signal is falsely identified as “target”, this error will not be realized until the final 

character selection. Considering this, we may reduce the type II error by decreasing the t 

value. However, the tradeoff is that the processing time will increase due to repetition. In 

Performance Metric 
ICA 

(Correlation 
Method) 

ICA 

(Discriminant 
Analysis) 

SWLDA 

Processing Time / 
Character (ms) 1225  1225 2100 

Overall Accuracy (%)  75.9 79.1 45 

Correctly Communicated 
Characters/min 28.2  30.6 12.8 
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this work, the discriminant analysis based voting scenario achieved 80%, 76.7%, 81.1%, 

77.8% and 80% overall accuracies for 5 individual subjects when all 16 ICs were 

involved in the voting. It obtained higher accuracies than that those achieved by 

correlation method based voting. However, there is no significant improvement for target 

identification accuracy. When only 3 ICs were involved in the voting, the overall 

accuracies turned out to be 80%, 76.7%, 81.1, 74.4%, and 81.1%. It did not show 

significant improvement for the overall accuracies by reducing the number of voting ICs. 

Meanwhile the decrease of target classification accuracies for some subjects was 

observed. As mentioned before, in this work we prefer reducing the type II error. 

Therefore, 16 ICs involved voting is more suitable for this classification problem. 

The proposed single trial ICA algorithm for P300 response classification significantly 

reduces the processing time by removing the time consuming step due to “averaging” 

used in other algorithms. Furthermore, this algorithm will stop and start the next “target 

searching” whenever it hits a “target”. Thus the expecting character identifying time is 

given by ε(t) = 7 flashes = 175×7 = 1225 ms. A comparison of the time efficiency and 

accuracy between this method and single trial SWLDA is provided in Table 8.  

Our algorithm achieved an overall average accuracy of 79.1% in 1225 ms while SWLDA 

achieved only 45% overall average accuracy in 2100 ms.  In other words, the P300 based 

single trial ICA algorithm is 171.4% more time efficient than the single trial SWLDA 

with 34.1% more overall average accuracy. Moreover, comparing the data 

communication speed in terms of correctly communicated characters per minute, our 
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method achieved 28.2 characters/min and 30.6 characters/min for correlation and 

discriminant analysis based majority voting while SWLDA achieved 12.8 characters/min. 
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CHAPTER 4 

SINGLE TRIAL P300 CLASSIFICATION METHOD: VARIANCE ANALYSIS 

BASED P300 CLASSIFICATION 

 

In the previous chapter, we discussed the development of a single trial independent 

component analysis (ICA) method with blind tracking of standard IC set to detect a 

chosen character in real-time in the P300-BCI speller that achieved an overall accuracy of 

79.1% [88]. However, it requires the manual selection of the optimal standard IC set. 

This process is very time consuming and makes the algorithm less practical for 

implementation. This motivated us to develop a simpler and practical approach to solving 

the problem. In this work by taking a completely different approach to currently used 

signal processing methods, we propose a simple statistical analysis based method for 

P300 response detection and classification with high accuracy. 

4.1  P300 Brain Computer Interface System  

The block diagram with the signal flow of the proposed BCI system is shown in Figure 

21. The shaded blocks indicate the components required for generating the reference 

templates during the offline analysis and the solid blocks indicate the components 

required for detection and classification during the online analysis.  
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In the offline analysis, after the data acquisition, the collected data is preprocessed to 

filter out high frequency noises and the signal is segmented as target and non-target 

signals. The average of 60 target signals is used as standard target signal and stored in the 

system.  

In the online analysis, the incoming signal is transformed by using the standard target 

signal and the variance of the transformed signal is analyzed for P300 detection.  Details 

of the sub-blocks shown in Figure 21 are discussed in the following sections. 

 

Figure 21: The proposed variance analysis based P300-BCI system 
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4.2  Data Acquisition and Structure 

The data acquisition process and the data structure are the same as that described in 

section 3.2. After the data collection, 360 segments from each channel including 60 from 

target flash (the intensification of row or column that contains the desired character) and 

300 from non-target flash (the intensification of row or column that does not contain the 

desired character) were extracted for offline analysis.  

In order to simplify the performance assessment for this work, the participants were 

asked to spell out some given words by using P300-Speller in both offline and online data 

acquisition process. However during the real time “spelling”, the participant can 

arbitrarily choose any character he/she wants other than the specified one. 

4.3  Preprocessing 

All the extracted EEG signals from the 16 channels (electrodes) were low pass filtered to 

remove the background noise with cut-off frequency set as 10 Hz. 60 target signals were 

segmented, and their average was stored in the system as standard target signal.  

4.4  Variance Analysis 

The standard target signal was used to transform the incoming signal. Then the variance 

of the transformed signal was analyzed to identify the incoming signal as target or non-

target. An observed target signal can be expressed as: 

                                                                                                                     (55) 
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where x  denotes the observed target signal whose variance is σ , x  denotes the real 

target signal whose variance is σ  and n denotes the background noise which is 

considered as random and stable with variance equal to σ . Here the independence of the 

real target signal and the background noise is assumed. Therefore, 

                                                             σ σ σ .                                                    (56) 

If we average k number of the observed target signals and denote the result as  x , then 

the variation of the background noise in  x  decreases to . The average target signal, x  

can be expressed as: 

                                            x ∑ x ∑ x n                                    (57) 

where,  x  is the i-th observed target signal,  x is the i-th real target signals, n  denotes 

the background noise with the i-th observed target signal. (Notice that all n  have the 

same variance, σ .), and k = 60 (the number of target signals) Ideally the target signals 

are all identical. Therefore, the variance of x , denoted by σ , can be written as: 

                                                           σ σ                                                        (58) 

Thereafter, an incoming signal was transformed for the purpose of variance analysis. 

Denoting the incoming signal by , we define the transformation 1 as: 

                                                         T x x                                                     (59) 

and transformation 2 as: 
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                                                         T x x                                                     (60) 

In the event that the incoming signal is a target signal, the variance of T  is given by: 

                                   Var T σ                            (61) 

and the variance of T  is given by: 

                                         Var T                               (62) 

The difference of variances of T  and T , denoted by D is:  

                                                 D Var T Var T σ                                      (63) 

In the event that the incoming signal is a non-target signal, the variance of T  and T  is 

given by: 

                                             Var T Var T                                   (64) 

Therefore, the difference of variances of T  and T  is: 

                                                 D Var T Var T 0                                        (65) 

As indicated by equations (63) and (65), D can be used as a classification measurement 

since it equals σ  for target signal and 0 for non-target signal. In practice, there is rather 

small possibility that D exactly equals σ  and 0 for target and non-target signal, 

respectively. However, the D value of non-target signal can be expected to be 

significantly smaller than that of target signal.  
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Due to this reason, the classification can be refined by setting a threshold α for D with the 

classification rule defined as: 

x Target signal , when D  

and 

x Nontarget signal , when D  

where x denotes the incoming signal. 

4.5  Threshold Value Determination 

The way to choose α wisely should follow the general idea that the choice of α should 

maximize the classification accuracy. Therefore the characteristics of D values were 

investigated. The means and standard deviations of D values for channel 9, 12 and 15 are 

given in Table 9. (These 3 channels were used in this work.) 

Table 9: The mean and standard deviation of D values for channels 9, 12, and 15 

Channel Parameters Target Signal Non-target Signal 

9 
 0.941 -0.153 

 1.470 1.368 

12 
 0.724 -0.068 

 1.128 1.155 

15 
 1.315 -0.045 

 1.030 1.238 
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Note:  indicates the sample mean of D values and  indicates the sample standard 

deviation. All numbers has been normalized by dividing 10 . 

First of all, the D value is assumed to be normally distributed. This assumption was 

verified by running the Kolmogorov-Smirnov test with normal distribution. The null 

hypothesis (the samples are drawn from normal distribution) cannot be rejected under 

0.00001 significant level which indicates it is 99.99999% sure that the D values are 

coming from normal distribution. According to the results of Kolmogorov-Smirnov test, it 

is a robust assumption that D value is normally distributed. Hence the two-sample T-test 

was performed to test whether the D values of target signal and non-target signal are 

coming from distributions with equal means. The null hypothesis (the D values of target 

and non-target signals have equal mean) was rejected under 0.00001 significance level 

which indicates it is 99.99999% sure that the D value of target signal and non-target 

signal are coming from different classes with different means. 

Now let us investigate the probability density functions (PDF) of the D values of target 

and non-target signals. Since the D value is normally distributed, its PDF can be written 

in terms of with the mean µ and the standard deviation σ of the random variable D: 

                                                     f d
√

e
µ

                                                  (66) 

The plot of D value’s PDFs of target and non-target is shown in Figure 22. 
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Figure 22: The PDF of the D values of target and non-target signals 

The bell shape distribution curve to the right in Figure 22 indicates the PDF of target 

signal and the bell shape distribution curve to the left in Figure 22 indicates the PDF of 

non-target signal. α is the point at which the green and red curves intersect. It is easily 

seen for any interval beyond point α, the integral under the green curve is greater than 

that under red one which means if a signal has D > α, it is more probable to be a target 

signal. For the same reason, if a signal has D < α, it is more likely to be a non-target 

signal. Therefore, α is chosen as the optimal threshold value that minimizes the 

probability of incorrect classification and hence maximizes the classification accuracy. 

α value can be determined by solving this equation: 

                                             
√

e
√

e                                         (67) 

where D  and S  are the sample mean and standard deviation of D values of target signal 

respectively and D  and S  are the sample mean of D values of non-target signal respect- 
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ively. Therefore the left hand side is the PDF of the D value of target signal and the right 

hand side is the PDF of the D value of non-target signal. 

4.6   Single and Multi-Channel Classification 

In this work, the single trial target/non-target classification was done by using both single 

and multiple channels. The employed channels have large differences in mean of the D 

values between target and non-target signals and meanwhile have relatively small 

standard deviation in D value. The first employed channel was channel 15. Then two 

channels, channels 15 and 12, were combined to conduct the classification. After that, 

channel 9 was combined with channels 12, and 15 to accomplish the classification task. 

The best accuracy was provided by the combination of channels 15 and 12. 

The threshold of D values, α was set as 0.703, 0.953, and 1.394 for channel 15, the 

combination of channels 12 and 15 and the combination of channels 9, 12, and 15, 

respectively. The results of our experiment are shown in Tables 10-11. The 

accuracy/error rates are the percent of target/non-target flashes correctly/incorrectly 

classified. 
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Table 10: Classification results of single and multi-channel variance analysis based 
classification 

Channel / α 

Accuracy (%) 

Theoretical Value Practical Value 

Target Non-target Target Non-target 

Ch 15 / α=0.703 72.38 75.60 75 78.33 

Chs. 15 and 12 / 
α=0.953 85.88 83.71 88.33 81.67 

Chs. 15, 12 and 9 / 
α=1.394 76.29 78.74 76.67 75 

 

In Table 10, the theoretical accuracy is defined as the area underneath the PDF curve of 

D value from ∞ to α or from α to ∞ for target and non-target signal, respectively. The 

practical accuracy is given by the percentage of correct classification achieved by 

choosing a certain threshold, α, and applying it to the real data. The normality of D value 

distribution has been verified by Kolmogorov-Smirnov test. Therefore, the expectation of 

practical accuracy should converge to the theoretical accuracy in the long run. In our 

experiment, the theoretical accuracies associated with the single trial single channel 

classification employing channel 15 (α = 0.703) were 72.38% and 75.60% for target and 

non-target signals, respectively. Practically, the classification accuracies are 75% and 

78.33% for target and non-target signals, respectively. These accuracies are reasonably 

close to the theoretical values as expected. After single channel classification, the multi-

channel classification was performed. For classification with channels 15 and 12 
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combined (α = 0.953), the practical accuracies increased to 88.33% and 81.67% for target 

and non-target, respectively while the theoretical accuracies increased to 85.88% and 

83.71% for target and non-target signals, respectively. The explanation for the increase in 

accuracy is that the signal in channel 12 strengthens the signal in channel 15 and picks up 

information left out by channel 15. 

However, it should be pointed out that by arbitrarily adding more channels for 

classification may not by itself provide better accuracy. The following experimental 

illustration confirms that conjecture. For classification with channels 15, 12 and 9 

combined (α = 1.394), we achieved practical accuracies of 76.67% and 75% for target 

and non-target classification while the theoretical accuracies were 76.29% and 78.74% 

for target and non-target, respectively. An explanation for the decrease in the 

classification accuracies is that channel 9 brings in less information than “noise” which 

degrades the classification system. This fact implies that the classification accuracy 

depends on the signal to noise ratio from each contributing channel.  

According to our experiment, classification with channels 15 and 12 combined provides 

the best accuracies for both target and non-target classification. The variance analysis 

based single trial P300 classification algorithm significantly reduces the processing time 

by removing the time consuming step due to “averaging” used in other multi-trial 

algorithms. A comparison of the performance between our method and single trial 

SWLDA is provided in Table 11. Our algorithm achieved an overall accuracy of 84.8% 

while SWLDA achieved only 45% overall accuracy.  Moreover, comparing the data 
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communication speed in terms of the correctly communicated characters per minute, our 

method achieved 20.5 characters/min while SWLDA achieved 12.8 characters/min. 

Table 11: Performance comparison of variance analysis based classification and single 
trial SWLDA 

Performance 
Metric 

Variance Analysis Based 
Classification SWLDA 

Overall 
Accuracy (%) 84.8 45 

Correctly 
Communicated 
Characters/min 

20.5 12.8 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

5.1  Conclusion 

The aim of every brain computer interface is to translate simulated brain activity into a 

relevant computer command. The P300-Speller proposed by Farwell and Donchin in 

1988 provided researchers a practical way to accomplish this aim. Thereafter, various 

techniques including the mentioned SWLDA, SVM, matched filter, Wavelet and ICA 

have been developed to work with P300-Spller for the P300 response classification. 

Although it is not a requirement for any of the mentioned algorithms, it is yet a critical 

step to achieve high classification accuracy by averaging several trials to remove the 

background noises and enhance the magnitude of P300 response prior to applying the 

P300 classifier. It would clearly be advantageous to employ a method that would allow 

reliable detection of P300 response in a single trial.  

As early as in 1969, Donchin [116] had suggested the possibility of making meaningful 

comparisons between EEG records obtained with a single presentation of the stimulus 

and the average evoked potential.  From 70s to 90s, researchers have done tremendous 

work in single trial ERP analysis [107]. They discussed the feasibility of single trial ERP 

analysis, investigated the factors that may affect the analysis, suggested possible 
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denoising and classification techniques and conducted various experiments on single trial 

ERP signal analysis. Their work directly or indirectly proved that single trial P300 

classification on P300-Spller is possible, feasible and promising. Recently, some 

researchers [112][117] have applied independent component analysis (ICA) on P300 

classification and achieved high classification accuracy in multi-trial experiments. ICA is 

a blind source separation technique that can decompose a mixing signal into statistically 

independent components. Therefore it is potentially capable of mapping the 

corresponding ICs to P300 response directly. With this feature mapping, the EEG signal 

can also be denoised by discarding the ICs associated with background noise. 

The key problem of ICA based P300 classification is that the IC set computed by any 

available ICA algorithm is not guaranteed with a clear feature and IC mapping. The 

proposed blind tracking based ICA algorithm provided a solution to this problem. With 

this algorithm, an optimal IC set with relatively clear feature and IC mapping can be 

found. The classification results validated the effectiveness of our algorithm. For the 

same subject the overall accuracy was 66.7% with one IC based classification and 73.3% 

with three ICs based classification. The correlation based voting scenario provides an 

overall accuracy of 73.9% while the discriminant analysis based voting scenario provides 

an overall accuracy of 80%. It is clear that the two majority voting scenarios produced 

better classification than the one IC and three ICs based classification. This fact testified 

that the multi-variant analysis of signal provides better distinguishing features than the 

variant analysis of the EEG signal. The classification result of discriminant analysis 

based voting is better than that of the correlation based voting. This improvement may be 

due to the more effective feature combination in discriminant analysis.    
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In the variance analysis based method, a statistical parameter D has been mathematically 

derived for target signal classification. By using this parameter, we achieved an overall 

classification accuracy 84.8% which proved that it is a well defined and useful parameter. 

In this work, the D values based on 3 chosen channels are computed to provide best 

performance. Although we know that multi-channel analysis is better than a single 

channel analysis for EEG signal, the channels need to be carefully selected and 

appropriately combined to increase the signal to noise ratio. Indiscriminately adding more 

channels might decrease the classification accuracy.  

Over the past forty years, P300-based BCI system has been successfully implemented 

using simple signal processing techniques such as signal averaging and LDA. Recently 

more advanced techniques have been used to process the P300 signal and made some 

achievement. However, for a single trial based target signal classification, the 

classification accuracy and processing speed still need to be highly improved for more 

effective communication. In this work, attempts have been made to develop single trial 

P300 classification methods to detect a chosen character in real-time in the P300-BCI 

speller. The results indicate that the proposed methods dramatically reduces the signal 

processing time, improves the data communication rate, and achieves an overall average 

accuracy of 79.1% for blind tracking based ICA algorithm and 84.8% for variance 

analysis base single trial P300 response identification. 

The blind tracking based ICA algorithm provided 34.1% increase in accuracy and 139% 

more effective in communication speed over single trial SWLDA. The variance analysis 

based classification method provided 39.8% increase in accuracy and 60% more effective 
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in communication speed over single trial SWLDA. Therefore, the proposed methods can 

be considered to be promising and reasonable solutions for single trial EEG signal 

classification problem.  

5.2  Recommendations for Future Research 

There is still room for improving the processing speed and accuracy by optimizing the 

algorithm. For example, for blind tracking based ICA, we can weigh the voters or modify 

the voting rule to improve the performance of voting. We can also reduce the number of 

channels for the standard IC set tracking by using our blind approach, thereby, 

significantly reducing the computation load. For variance analysis based classification, 

we can construct a multi-dimensional space by using the D values of different channels as 

the axis and apply Linear Discriminant Analysis (LDA) to accomplish the classification 

task. In our experiment, we made an assumption that the P300 response occurs between 

175 ms and 350 ms following a target flash, which is not true for some subjects because 

in some cases P300 shows up in the 350 ms to 500 ms range. This problem can be solved 

by using appropriate flashing and interval time. Although this work is built up on P300 

response, there might be other signals involved when we do the variance analysis. We 

need to study more cases to test the robustness of these methods. Further optimization of 

our algorithms by involving statistical models to solve the non-stationary problem [118] 

will be researched in our future work. The ultimate goal is to further improve the 

accuracy of the single trial P300 analysis algorithms to make them more suitable for real-

world applications and clinical use. 
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