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Abstract

A miniaturization technique that allows the size of microstrip square open loop

resonators to be reduced by more than 80% is presented and studied. The technique

is based on the loading of the resonator with a series surface mount capacitor. It

is shown that this technique allows the design of microwave bandpass filters with a

wider stopband when compared with conventional designs. It is also proved that the

insertion loss of the miniaturized filter is not degraded, but in fact can be maintained

or even enhanced by the miniaturization process; this is true whenever the quality

factor of the lumped capacitor is higher than the quality factor of the microstrip

resonator. Finally, the feasibility of using the effect of the capacitor loss in the

miniaturized resonator quality factor as a method to measure the effective series

resistance of surface mount capacitors is studied, and recommendations towards its

implementation are presented.
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Chapter 1

Introduction

The miniaturization of electronic components has received a lot of attention in

the last decades due to the rapid development of the telecommunication industry.

Traditional high performance waveguide and dielectric resonator filters are usually

too heavy and bulky for most applications like tower-top mounting in base stations

[1]. This is also the case in satellite applications where payload costs are elevated,

and high performance filters are usually needed. Lately, the accelerated market ex-

pansion of portable devices is pushing the needs for miniaturization to its limits. In

most modern commercial products there is a very limited use for any large, high

performance component. All this is stressed by the fact that most communication

systems implemented nowadays operate below 6 GHz where distributed components

are physically large.

Among all the filter technologies microstrip remains popular due to its ease of in-

tegration and compatibility with planar fabrication processes. Microstrip also favors

miniaturization, it is light, and occupies low volume. Furthermore, electronically

tunable and reconfigurable filters, like the notch filters employed in ultrawideband

applications, can use surface mount varactors that are compatible with microstrip

implementations [2]. The main disadvantage of microstrip resonators is the low qual-

ity factors usually obtained. However, for applications that require negligible insertion

loss (like front ends of satellite receivers), or very narrow relative bandwidths, the ad-
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vent of high temperature superconductors have rendered microstrip resonators with

quality factors above 30,000 [1]. Moreover, the miniaturization levels achievable in

microstrip can compensate for the size of the required cooling system producing over-

all transceivers that are smaller than conventional transceivers that use waveguide or

dielectric resonator filters [1, 3].

The microstrip square open loop resonator is one of the most used structures for

filter applications due to its compact size, of approximately λ/8 by λ/8, and versatility

[4–7]. As a consequence of their popularity a great amount of work related to their

miniaturization has been reported [8–16]. The most common structures are shown in

Figure 1.1, along with the conventional square open loop resonator (Figure 1.1a).

a

aw

(a) (b) (c) (d)

Figure 1.1: Square open loop resonator (SOLR) and some miniaturization techniques.
(a) Conventional SOLR. (b) Folded arms SOLR. (c) Meander line SOLR. (d) Dual
mode SOLR.

The origin of the folded arms square open loop resonator of Figure 1.1b can be

traced back to the miniaturization of hairpin resonators [17]. As in the case of the

meander line resonator of Figure 1.1c, the goal is to maintain a given physical length

while occupying less total area by using the inner part of the resonator. In the case of

the folded arms resonator the size is reduced more than what may be expected due to

the coupling between the arms; the total area reduction is about 45% [17]. The folded

arms can also be made of a lower impedance to increase the capacitance to ground

improving the size reduction [10]. The resonator shown in Figure 1.1d saves real state
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in a different way; it has two independent modes, and the coupling between them can

be modified by the geometry of the inner structure. This dual mode resonator can

then function as two independent resonators providing an immediate size reduction

of 50%.

The method investigated in this research is the general case of loading the square

open loop resonator with a series lumped capacitor as shown in Figure 1.2. This

method has been used in the past with hairpin resonators and varactors to produce

tunable filters [18]. Also, the miniaturization method proposed in [13] uses a structure

that amounts to an interdigital capacitor connected as that shown in Figure 1.2. It is

indeed surprising that in none of these two references a study of the general case of a

lumped capacitor connected in series has been reported, even though such study may

provide valuable insight into the properties, advantages, and limitations of related

miniaturization methods.

a

aw

C

Figure 1.2: Square open loop resonator loaded with series lumped capacitor.

1.1 Thesis Contribution and Overview

The main objective of this thesis is to study the general case of the capacitively

loaded microstrip square open loop resonator and its application to miniature mi-

crowave filter design. Towards this end the main theoretical background is covered

in Chapter 2 where the behavior of the square open loop resonator is reviewed along

with its properties relevant to filter applications such as the coupling between resona-
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tors and its quality factors. In this chapter an error found in the literature regarding

the estimation of the external quality factor of microstrip resonators is unveiled, and

a corrected method is proposed. The chapter concludes with an exposition about the

method used to synthesize microwave filters throughout this investigation.

The main contribution of this work lies in Chapter 3 where the theory and prop-

erties of the capacitively loaded resonators are explored in detail, including their

characteristics as filter elements. Chapter 3 ends with the presentation of an example

filter design that is 80% smaller than a conventional one, a miniaturization factor

that is unattainable with previously reported methods. Moreover, the filter does not

present a degradation in performance, but on the contrary, it has a lower insertion

loss and wider spurious free stop-band.

In Chapter 4 the possibility to use the loaded square open loop resonator to mea-

sure some characteristics of the connected capacitor, like its effective series resistance

and capacitance, is explored. Chapter 5 follows with a summary of conclusions and

recommendations for future work.
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Chapter 2

Theoretical Background

2.1 Introduction

To describe the behavior of narrowband bandpass filters three fundamental ele-

ments are necessary and sufficient [19]:

• Resonators tuned to a synchronous resonant frequency.

• Coupling between the resonators.

• Coupling from the first and last resonator to the external circuitry.

The resonators used in this investigation are microstrip square open loop resonators

and their fundamental properties are studied in Section 2.2. Several aspects con-

cerning the coupling between adjacent square open loop resonators are reviewed in

Section 2.3. Section 2.4 is dedicated to the study the different quality factors that

are important in the analysis of resonators and microwave filters. The chapter ends

with a short review of modern microwave filter design given in Section 2.5 along

with the method used in this research for synthesizing bandpass filters by computer

optimization.
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2.2 Square Open Loop Resonators

The microstrip square open loop resonator can be obtained by folding a straight

open resonator as shown in Figure 2.1. Due to the corners and the fringing capaci-

tance between the open ends, a rigorous calculation of the electromagnetic fields in

the square resonator is impractical. However, it is possible to study the main char-

acteristics of the resonant modes of the square open loop resonator by analogy to

those of the straight resonator. This qualitative analysis can shed some light on the

behavior of the resonator with minimum effort. The conclusions drawn using this

approach can then be compared for validation against the actual distribution of the

electromagnetic fields obtained with the aid of full wave simulators.

Figure 2.1: The square open loop resonator can be obtained by folding a straight
open resonator.

Consider the straight microstrip open resonator shown in Figure 2.2a. The reso-

nant frequency can be obtained by looking at the input admittance from any point

within its length. Figure 2.2b shows an equivalent circuit that can be used to calculate

this admittance as:

Yin = jY0 (tan(θ1) + tan(θ2)) = jY0

sin(θT )

cos(θ1) cos(θ2)
(2.1)

where θT = θ1 + θ2 is the total electrical length of the resonator. A standing wave

can be maintained in the resonator whenever Yin = 0. This yields infinite resonant

6



frequencies at:

θT = nπ or l = nλ/2 (2.2)

θ = βl

(a)

θ1 θ2

Yin

(b)

Figure 2.2: Microstrip open resonator. (a) Top view of a microstrip straight resonator.
(b) Equivalent circuit used to calculate the input admittance from an arbitrary point
within the length of the resonator.

The voltage distribution at the first two resonant frequencies (n = 1, 2) is shown

in Figure 2.3. Since the open ends of the resonator force the current to be zero there,

the voltage attains a maximum and the modes shown are the only ones allowed at

those frequencies. If the loop were closed, this boundary condition would not apply

and two orthogonal modes would exist at each frequency [20].

z

V (z)

n = 1

n = 2

θ = βl

Figure 2.3: Voltage distribution in a straight open resonator.

When the denominator of Equation 2.1 is zero then Yin = ∞ (or Zin = 0). The

positions where this occurs correspond to the voltage nulls in the mode diagram of

Figure 2.3. At the first resonant frequency there is only one such null at θ1 = θ2 = π/2,
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while at the second resonance there are two of them at θ1 = π/2 and θ2 = 3π/2.

Knowing of the location of these voltage nulls is important since the resonator cannot

be excited there. As an interesting consequence, by choosing carefully the feeding

point of the resonator it is possible to excite only the odd (or only the even) modes

of the resonator. Take, for example, the center of the resonator. At this point the

fundamental resonance cannot be excited, nor can any other odd mode resonance.

This observation translates to the square open loop resonator as is shown in Figure

2.4a.

Not all of the signature characteristics of a square open loop resonator can be

obtained from the analysis of its straight counterpart. One of such is the possibility

of exciting the resonator at both open ends at the same time as illustrated in Figure

2.4b. This feeding point will force an equal voltage on both open ends of the resonator.

It can be seen in Figure 2.3 that the first mode of resonance (and actually all the odd

modes) are characterized by opposite voltages at both ends, and hence they cannot

be excited in this way.

(a) (b)

Figure 2.4: Two ways of exciting only the even modes of the square open loop res-
onator. (a) Excitation of the resonator in a null of the fundamental mode. (b)
Excitation of the resonator symmetrically with respect to both open ends.

It is important to recall that the previous analysis was intended to show qualita-

tively the main characteristics of the square open loop resonator. Equation 2.2 may

be used only to estimate the total length of a resonator, and in practice further tuning
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has to be performed if a particular resonant frequency is desired. Two considerations

that may help in the tuning process are:

• Reducing the gap between the open ends increases the effective length of the

resonator more than expected due to the increase of the fringing capacitance

across it.

• Meandering the corners reduces the effective length of the resonator increasing

the resonant frequency.

The increase of the effective length of the resonator due to the increasing fringing

capacitance across both open ends is of particular importance in this research and

will be studied further in Chapter 3.

2.3 Coupling Between Resonators

The main interaction mechanism between resonators for filter applications is due

to proximity coupling. This coupling can be characterized by a coupling coefficient

that depends upon the ratio of coupled energy to stored energy as follows:

k =

ˆ

εEa ·Eb dv
√

ˆ

εE2
a dv
ˆ

εE2
b dv

+

ˆ

µHa ·Hb dv
√

ˆ

µH2
a dv
ˆ

µH2
b dv

(2.3)

where Ea and Ha are, respectively, the electric and magnetic fields produced by the

first resonator, and Eb, Hb are the corresponding fields of the second resonator.
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The first term on the right-hand side of Equation 2.3 represents the coupling

due to the interaction between the electric fields of the resonators, or more simply:

the electric coupling. Similarly, the second term represents the magnetic coupling

between the resonators. Depending on which term dominates the sum the coupling

is said to be electric, magnetic, or mixed.

The nature of the coupling between square open loop resonators is related to the

relative orientation of both resonators. Four canonical arrangements are shown in

Figure 2.5. When the resonators are operating near their first resonant frequency,

the pair of resonators depicted in Figure 2.5a interact mainly through their magnetic

fields, this is because the magnetic field is maximum near the center of the resonator

opposite to its open ends, maximizing the numerator of the second term of Equation

2.3. The configuration of Figure 2.5b produces, in turn, an electric coupling since the

electric field is maximum near the open ends, maximizing the numerator of the first

term of Equation 2.3. The coupling produced by the two configurations of Figures

2.5c and 2.5d are collectively referred as mixed coupling because neither the electric

fields nor the magnetic fields dominate the interaction between the resonators.

s

(a)

s

(b)

s

(c)

s

(d)

Figure 2.5: Typical arrangements of a pair of square resonators with (a) magnetic
coupling; (b) electric coupling; (c) and (d) mixed coupling.
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The definition of k given in Equation 2.3 is not practical for calculation purposes

since it requires the knowledge of the electromagnetic fields everywhere. A useful

alternative expression for k can be obtained from a well known fact in physics: when

two resonators are coupled to each other they resonate together at two frequencies

f1 and f2, that are, in general, different from their original resonant frequency f0.

Furthermore, these two frequencies are associated with two normal modes of oscilla-

tion of the coupled system, and their difference increases as the coupling between the

resonators increases. A formula giving the exact relationship between these quantities

is derived in [21] and is given by:

k =
f 2
2 − f 2

1

f 2
1 + f 2

2

(2.4)

To find the coupling between a pair of resonators like any of those of Figure 2.5,

they are excited with a pair of loosely coupled feed lines to obtain a transmission

parameter S21(ω) from which the two resonant frequencies f1 and f2 can be obtained.

This procedure can then be repeated for several separations s between resonators in

order to produce a design plot that gives k vs. s.

2.4 Quality Factor

The equivalent circuit of a resonator coupled to an external system is shown in

Figure 2.6. The external circuit is modeled by its Norton equivalent with a system

admittance Y0; the resonator is modeled near resonance as an RLC shunt circuit; the

coupling between both is modeled as a black box that transforms the impedance seen

by the resonator to Yex as indicated in the figure.

11



IN Y0 k G0

C
L

Yex = Gex + jBex

Figure 2.6: Equivalent circuit of a resonator connected to an external circuit. The
coupling is modeled as a black box with coupling coefficient k.

The admittance Yex presented to the resonator affects the overall frequency re-

sponse of the network. The reactive part (jBex) detunes the resonator changing f0,

while the conductance Gex essentially impacts the quality factor. The change in f0

depends heavily on the strength of the coupling and in many cases can be ignored.

However, if the coupling is strong enough, the resonator may have to be retuned to

obtain the desired resonant frequency.

The change in the quality factor due to Gex is almost always important and can

be quantified by an external quality factor defined as the quality factor of the system

if the resonator were lossless:

Qex =
ω0C

Gex

(2.5)

The actual quality factor that takes into account all the losses is called the loaded

quality factor and is denoted by QL. It can be expressed as a function of the external

and unloaded quality factors Qex and Q0 as:

1

QL

=
1

Q0

+
1

Qex

(2.6)

This is also the only quality factor that can be measured directly.
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Another quantity of interest is the coupling coefficient between the resonator and

the external circuit. This can be defined as the ratio between the power dissipated

in the external circuit to the power dissipated within the resonator. Since the power

is proportional to the conductance, and all the elements are in parallel in the model

of Figure 2.6, this definition leads to:

k =
Pex

P0

=
Gex

G0

=
Q0

Qex

(2.7)

where k is the coupling coefficient. When k = 1 equal amounts of power are dissipated

in the resonator and in the external circuit, and the coupling is said to be critical. If

more power is dissipated within the resonator than outside it, k is less than unity and

the coupling is said to be undercritical. In the opposite case the coupling is called

overcritical. These last two cases are important in filter applications as explained

below.

The unloaded quality factor of a resonator is one of its most important figures of

merit since it determines the amount of loss associated with it. In order to determine

Q0 it is convenient to couple loosely (k # 1) with the measurement equipment. This

is obvious after eliminating Qex from Equations 2.6 and 2.7, yielding:

Q0 = QL(1 + k) (2.8)

Hence, if k is small enough, the measured quality factor QL represents a good estima-

tion of Q0. In many cases either the coupling cannot be made small enough without

exceeding some limitations of the measurement instruments, or a very accurate esti-

mation of Q0 is desired. In those cases a measurement approach that provides both

QL and k should be followed. In the next section one such approach is outlined as

well as some aspects that affect the unloaded quality factor of microstrip resonators.
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In many filter applications the first and last resonators have to be tightly coupled

to the rest of the system (k $ 1). In this case these resonators are loaded in such

a way that their resonant frequency changes and they have to be retuned. Since

this retuning requires a modification of the geometry of the resonator, its unloaded

quality factor is also changed. Because of this, it is better to have a method to find

Qex directly instead of relying on a previously determined Q0 and Equation 2.6. A

method for calculating Qex along with a correction of an error found in the literature

is presented in Section 2.4.2.

2.4.1 The Unloaded Quality Factor

The loss mechanisms affecting the quality factor of microstrip resonators are:

conduction loss, dielectric loss, and radiation loss [22]. The overall quality factor can

be expressed as a function of these as follows:

Q0 = ω0

U

PT

= ω0

U

Pc + Pd + Pr

(2.9)

where Q0 is the unloaded quality factor; U represents the energy stored in the res-

onator; PT is the total power loss; Pc, Pd, and Pr are the power losses due to con-

duction, dielectric polarization, and radiation, respectively; and ω0 is the resonant

frequency. This expression can be also written as:

1

Q0

=
1

Qc

+
1

Qd

+
1

Qr

(2.10)

where the terms Qc, Qd, and Qr represent the quality factor of the resonator due only

to conduction, dielectric, and radiation losses, respectively. In some filter applications
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the resonators are enclosed in metallic housings; in this case the radiation loss should

be replaced by loss due to the conducting walls of the housing.

There exists a tradeoff between the different loss mechanisms and this guaran-

tees the existence of maximum quality factor [23]. This maximum depends on the

frequency, the dielectric and conductor materials used, the housing size (or the lack

thereof), the substrate thickness, the conductor thickness and width, and so on; a

quantitative study is better done using computer simulation, however, some general

trends are obtained from basic physical principles: the higher the conductance of the

conductors used, the higher Qc will be; a thicker substrate will increase the value of

Qc and Qd while increasing the radiation losses and producing possible unwanted cou-

pling between resonators; a smaller dielectric constant increases Qd but decreases Qr

and makes the structure bigger. For a given geometry and substrate, the conductor

and dielectric loss dominate the unloaded Q at low frequencies while radiation does

it at high frequencies, so there is a frequency where the unloaded Q is maximum [23].

The method used in this investigation to estimate Q0 is based on the two port

measurement setup depicted in Figure 2.7. When the coupling coefficients k1 and k2

are identical to each other the unloaded quality factor is [24]:

Q0 =
QL

1− |S21(f0)|
(2.11)

The condition k1 = k2 is easy to achieve in computer simulations if the resonator

has a plane of symmetry. In practice the mechanical tolerances may produce some

error in the estimation of Q0. Note that while the previous formula can be derived

without assuming loose coupling, the accuracy is seriously reduced if the coupling is
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IN Y0 k1 G0

C
L k2 Y0

Port 1 Port 2

Figure 2.7: Two port measurement setup used to estimate the unloaded quality factor
of a resonator.

tight since |S21(f0)| would be close to 1 producing large errors in Q0 even for small

errors in QL. In practice a value of S21 at resonance of roughly −30 dB to −40 dB is

considered loose enough [25].

2.4.2 The External Quality Factor

The coupling structure used for the input and output of filters throughout this

research is shown in Figure 2.8. The external quality factor is controlled by the

location of the tapped line t. When the tapped line is located at the center of the

resonator, i.e. when t = 0, the external quality factor is very large since the resonator

cannot be excited at that position. Increasing t gradually decreases the external

quality factor.

t

S11

Figure 2.8: Tapped line structure used to couple to the first and last resonators of
filters in this investigation.
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In order to estimate Qex a one port measurement method based on the phase of

S11 is proposed in [21]. The method relies on the fact that while the magnitude of S11

is almost constant near resonance (since the resonator behaves as an open circuit), the

phase varies enough to be useful as a means to find Qex. Furthermore, by definition,

the impedance of the resonator at resonance is real and thus the phase of S11 is zero.

It is shown in [21] that the external quality factor can be expressed as:

Qex =
f0

f−90◦ − f+90◦
=

f0
∆ω

(2.12)

where f+90◦ and f−90◦ are the frequencies at which the phase of S11 is 90◦ and −90◦,

respectively, and ∆ω = f−90◦ − f+90◦ . A plot of the phase of S11 showing these

frequencies is shown in Figure 2.9.

0

45

90

135

−45

−90

−135

f

∠S11

f0f+90◦ f−90◦

∆ω

Figure 2.9: Phase of the reflection coefficient near resonance.

The previous formula was derived based on a lumped equivalent circuit that mo-

dels the resonator as a shunt RLC circuit. If the reference plane used to measure S11

does not coincide with this equivalent model, then the method fails since the phase

of S11 at resonance is not zero anymore.

To solve this issue the authors of [21] proposed to simply redefine f+90◦ and f−90◦

as the frequencies at which the phase shifts ±90◦ with respect to the absolute phase

at f0. Note that this is equivalent to assuming that the phase shift added by the
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difference in reference planes is frequency independent, i.e., the phase plot is shifted

up or down by a constant amount, but a shift in the reference plane can be modeled

as the addition of a 50Ω transmission line with fixed physical length between the

resonator and the measurement plane. In this case, the time delay is constant and

equals the change in the derivative of the phase of S11.

0

45

90

135

180

−45

−90

−135

−180

−225

f

∠S11

∠S11(f0)

f0

∆ω

∆ω′

Figure 2.10: Phase of S11 with an extra time delay.

An illustration of this is presented in Figure 2.10. The dashed curve belongs to

the resonator with the correct reference plane; the lower continuous curve is ∠S11 of

the same resonator when a different reference plane is used. The method suggested

in [21] suggests that this curve be shifted upward until the phase at resonance is zero

(see upper continuous curve) and then measure the bandwidth from f+90◦ and f−90◦ .

This bandwidth has been denoted ∆ω′ in the figure and obviously differs from the

original ∆ω because of the change in the slope of ∠S11.

In this investigation a new way to surpass this problem is proposed. The goal

is to shift forward the reference plane using a transmission line with negative length
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until the phase at resonance is zero. A schematic diagram of this approach is shown

in Figure 2.11.

θ < 0

S11

Measured
Ref. Plane

Corrected
Ref. Plane

Figure 2.11: Proposed method to correct ∠S11 using a transmission line with negative
length to shift the reference plane.

Note that the amount by which the reference plane needs to be shifted forward

is supposed to be unknown, otherwise the correction is trivial. In this case the

condition ∠S11(f0) = 0 is only necessary but not sufficient since the reference plane

could have been shifted initially more than 360◦. This would produce several answers

with ∠S11(f0) = 0 but with different slopes and thus, different estimations of Qex.

The solution is to keep shifting the reference plane forward until a phase response with

∠S11(f0) = 0 and least slope is found without violating Foster’s reactance theorem,

this is, d∠S11/df should always remain negative.

The previous analysis is based on the assumption that ∠S11(f0) is negative. In

certain occasions this may not be the case and the reference plane has to be shifted

backwards, i.e., the tranmission line added has to have positive electrical length.

Physically this means that this extra transmission line is part of the resonant struc-

ture.
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2.5 Bandpass Filter Design

Square open loop resonators are attractive for filter applications mainly due to

their compact shape and diverse coupling mechanisms. The latter is particularly

important in modern filter design where couplings with different signs between reso-

nators within a filter may be necessary to obtain the desired response. This is the case

in cross coupled filters where coupling between non-adjacent resonators can produce

transmission zeros or flat group delay, depending on its sign.

The modern approach to the design of bandpass filters with n coupled resonators

is based on the formulation of a coupling matrix of the form:

M =



















M11 M12 · · · M1n

M21 M22 · · · M2n

...
...

. . .
...

Mn1 Mn2 · · · Mnn



















(2.13)

where each element Mij is proportional to the coupling between the i-th and j-th

resonators. The coupling matrix is an n × n reciprocal matrix that along with the

external quality factor of the first and last resonator uniquely describes the behavior

of the filter.

Specifying the transfer response of a filter is thus equivalent, at least in principle,

to specifying a coupling matrix and the external quality factors of the first and last

resonators of the filter. The problem of obtaining the coupling matrix and external

quality factors from a given filter response S21(ω) is called synthesis; the inverse
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problem of finding the response given the matrix and the quality factors is called

analysis.

Many techniques have been devised to solve the synthesis problem, and it is still

a very active area of research. The main difficulty is that most analytical techniques

produce a fully populated coupling matrix that is impractical to implement. In this

research, an approach based on computer optimization is used. The crux of the

method is to generate a circuit representation of the coupling matrix and quality

factors in order to perform optimization on it with a commercial circuit simulator.

Z0 Z0J01 b1 J12 b2

J13

J23 b3 bn Jn,n+1

Figure 2.12: Generalized bandpass filter with admittance inverters and coupling be-
tween non-adjacent resonators.

Consider the general bandpass filter shown in Figure 2.12. The parameters b1, b2,

. . . , bn are the susceptance slope parameter of the resonators, that is:

bj =
ω0

2

dBj(ω)

dω

∣

∣

∣

∣

ω0

(2.14)

where Bj(ω) is the susceptance of the j-th resonator, and ω0 is the resonant frequency.
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The coupling between the i-th and j-th resonators is modeled with the admittance

inverter Jij . Note that this prototype includes coupling between non-adjacent reso-

nators, e.g. resonators 1 and 3 are coupled through J13. The relations between the

susceptance slope parameters, the admittance inverters, the external quality factors,

and the coupling factor between resonators are given by [26]:

Qe1 =
b1

Z0J2
01

Qe2 =
bn

Z0J2
n,n+1

Mi,j =
Ji,j

√

bibj
(2.15)

where Qe1 and Qe2 represent the external quality factor of the first and last resonator,

respectively.

The previous expression can be simplified further if some extra constraints are

imposed on the filter. For instance, it may be required that all resonators be identical,

this leads to:

b1 = b2 = · · · = bn = b (2.16)

Also, a resonator may be modeled as a lumped RLC shunt resonator near its resonance

frequency as illustrated in Figure 2.13a. In this case:

b = ω0C =
1

ω0L
and Q0 =

ω0C

G
=

R

ω0L
(2.17)

The last condition necessary to obtain an equivalent circuit is to determine an

implementation for the admittance inverters. Since the model assumed for the reso-

nators is already narrowband, nothing is lost if simple quarter wave transformers are

used. If the characteristic impedance of the transformer that connects the i-th and
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b
R C L

(a)

Jij Zij = 1/Jij

λ/4

(b)

Figure 2.13: Models assumed for the components of the generalized filter. (a) A
resonator is modeled as a lumped RLC shunt resonator. (b) An admittance inverter
is modeled as a quarter-wave transformer.

j-th resonators is Zij , then:

Jij =
1

Zij

(2.18)

as depicted in Figure 2.13b.

Recall that the inclusion of impedance inverters increases the degrees of freedom

on the filter parameters due to their impedance scaling property, therefore it can be

assumed without lost of generality that:

J2
01 = J2

n,n+1 =
1

Z2
0

or Z01 = Zn,n+1 = Z0 (2.19)

Combining the results 2.15-2.19 the following equations are obtained for the res-

onator parameters and quarter-wave transformers as a function of the unloaded qual-

ity factor of the resonators, the coupling between resonators, the external quality

factor, the resonant frequency, and the system impedance:

R = Z0

Q0

Qe

C =
Qe

ω0Z0

L =
Z0

ω0Qe

(2.20a)

Zij =
Z0

QeMij

i &= 0 and j &= n + 1 (2.20b)
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In summary, the synthesis process can be carried out as follows:

1. The unloaded quality factor of the resonators to be used is determined experi-

mentally (or set to a high value if the losses do not need to be considered).

2. The desired topology is created in a circuit simulator using a structure like that

shown in Figure 2.12 with the substitutions of Figure 2.13. The values of R, L,

C, and Zij are given by Equations 2.20 with Mij and Qe as variables.

3. The parameters Mij and Qe are varied using an optimization algorithm until

the desired response is obtained.

A final caveat: in some filter applications with cross coupled resonators the relative

signs of the couplings is vital; often a coupling has to have a phase response opposite

to that of the rest of the couplings, so it is said to be negative (though couplings

actually have an absolute sign given by Eq. 2.3, in filter applications just the rel-

ative signs matter). Whenever a negative Zij is obtained from equation 2.20b this

should be interpreted as a quarter wave transformer with characteristic impedance

|Zij| and electrical length θ = −90◦. This produces the desired phase response while

maintaining a positive characteristic impedance.
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Chapter 3

Miniature Microwave Filter

3.1 Introduction

The miniaturization of microwave filters below 3 GHz remains an active area of

research due to the relatively large physical size of traditional resonators and the great

demand from the wireless communication industry within this band. Square open

loop resonators allow for the design of compact filter realizations and are among the

most popular planar structures nowadays. Since they are already small (∼ λ/8×λ/8)

further miniaturization is challenging. Common techniques to achieve miniaturization

include loading the resonators with capacitively coupled lines [17], and meandering

the lines [8]. Recently, dual mode resonators have been introduced that allow for an

area reduction of nearly 50% [14].

In this chapter an aggressive miniaturization technique is introduced that allows

the design of narrowband filters with an area reduction of about 80%. The technique

is based on loading the square open loop resonator with a series lumped capacitor.

This will be shown to result, not only in a smaller size, but also in a wider stop band.
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3.2 Capacitively Loaded Resonator

The resonator proposed in this research is a microstrip square open loop with a

lumped capacitor connected across its open ends as shown in Figure 3.1a. It will be

shown in this section that this arrangement leads to miniaturization as well as other

advantages over the square open loop resonator alone. A simple circuit model of the

loaded resonator that will be used to derive its basic characteristics is shown in Figure

3.1b.

a

aw

C

(a)

θ

C

(b)

Figure 3.1: Square open loop resonator loaded with a series capacitor. (a) Schematic
representation. (b) Simple circuit model.

In order to apply a method similar to that used in Chapter 2 to derive the resonant

condition of an open resonator, it is convenient to convert the model of Figure 3.1b

to a more manageable one using Miller’s theorem from electronics. In one of its

many versions Miller’s theorem states that the circuits of Figure 3.2a and 3.2b are

equivalent if the following equations are satisfied:

Y1 = Y (1−G) (3.1a)

Y2 = Y (1− 1/G) (3.1b)

where G ≡ V 2/V 1 is the voltage gain from node 1 to node 2, and it is supposed to

be determined by independent means.
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YI1 I2

V1 V2

(a)

Y1 Y2

I1 I2

V1 V2

(b)

Figure 3.2: Miller’s theorem. Circuits (a) and (b) are equivalent if Equations 3.1 are
satisfied.

The goal is to apply this transformation to the circuit of Figure 3.1b in order to

change the series capacitor to shunt capacitors connected between each open end and

ground. This is illustrated in Figure 3.3a, where the shunt capacitors are assumed

to have unknown values C1 and C2. To obtain these values, the ratio G between the

voltage at both open ends is needed. This relation is, in general, not simple. Near

resonance, however, it was shown in Chapter 2 that both voltages are in opposite

phase and hence G = −1. Substituting this parameter in Equations 3.1 yields:

Y1 = Y2 = 2Y or C1 = C2 = 2C (3.2)

θC1 C2

(a)

θ1 θ2

Yin

2C 2C

(b)

Figure 3.3: Equivalent circuit with two shunt capacitors at the open ends. (a) General
case. (b) Near an odd mode resonance.

The condition for the fundamental resonance, therefore, can be found from the

circuit shown in Figure 3.3b, by equating the input admittance to zero; this is:

Yin = jY0

[

2ωC + Y0 tan(θ1)

Y0 − 2ωC tan(θ1)
+

2ωC + Y0 tan(θ2)

Y0 − 2ωC tan(θ2)

]

= 0 (3.3)
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After some manipulation and simplifications this equation can be casted into the

simpler expression:

tan(θT ) =
4Z0ωC

4Z2
0ω2C2 − 1

(3.4)

where θT = θ1 + θ2 is the total length of the resonator. This expression gives the

electrical length necessary for resonance given a frequency and loading capacitance.

Note that after loading some properties of the square open loop resonator remain

valid. In particular, it is possible to show that at the first resonant frequency the

center of the resonator is a voltage null, i.e., a point where Zin = 0. In effect, the

condition for a voltage null is that the denominator of Yin be zero, and when θ1 = θ2

this yields:

tan(θ1) =
1

2Z0ωC
(3.5)

When this equation is satisfied the center of the resonator presents a voltage null.

However, recalling that θ1 = θT /2 and the identity of the tangent of a double angle,

it is easy to see that Equations 3.4 and 3.5 are equivalent. This means that whenever

the resonance condition is satisfied there will be a voltage null at the center of the

resonator. Moreover, Equation 3.5 may be used as the resonant condition instead of

Equation 3.4.

Notice that the equivalent circuit of Figure 3.3b used to derive the resonant con-

dition of the loaded resonator is valid only near an odd mode resonance, where the

parameter G of the Miller theorem equals −1. Away from these frequencies the volt-

age relation among the open ends changes, and the equivalent admittances Y1 and Y2

do as well. This leads to great differences between the behavior of the series and shunt

loaded resonators away from the odd resonant frequencies. The two most important
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differences are the performance near the even resonant modes, and the existence of

antiresonances in the case of series loading.

The circuit of Figure 3.3b has been studied previously in its own right, i.e. without

any relation to the series loading, as a special case of a slow wave structure. The

analysis done in the literature shows that the second resonance is also shifted down

due to the capacitive loading [21]. In the case of the series loading shown in Figure

3.1b the situation is completely different; both open ends are in phase at even mode

resonances so the capacitor is virtually open circuited (this can also be seen from

the Miller theorem letting G = 1). Therefore, the series capacitor does not have any

effect on the behavior of the resonator near even mode resonances; these resonant

frequencies are unchanged by the presence of the capacitor.
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Figure 3.4: Resonant frequencies as a function of loading capacitance. (a) First and
second resonant frequencies for series and shunt loading. (b) Ratio of the second to
first resonant frequency for both cases.

As an illustration consider a microstrip open resonator with a characteristic impe-

dance of 50Ω, and fixed time delay of 0.1 nS (this is the ratio of the physical length to

the velocity of propagation, both assumed to be constant). Figure 3.4a shows a plot
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of the first and second resonant frequencies as a function of the loading capacitance

for both, the series and the shunt cases. Note that since the second resonance is fixed

in the series case, the distance between the first two resonances increases rapidly with

the capacitance. To observe this more directly, a plot of the ratio f2/f1 is shown on

Figure 3.4b. A greater ratio f2/f1 results advantageous for the design of bandpass

filters with a wide stop band.

The results presented in Figure 3.4 are somewhat artificial since an ideal straight

open resonator was used to generate them. The same experiment can be done with

square open loops resonators using the set up shown in Figure 3.5. The parameter

of interest is the transmission coefficient S21(ω), where the resonant frequencies are

manifested as peaks of maximum transmission between ports. Note that this and

other experiments may be done by computer simulation, and they usually are.

Z0

Z0

C

Port 1 Port 2

Figure 3.5: Setup used to measure the transmission coefficient S21(ω). The distance
between the resonator and the probes is not critical.

Figure 3.6 shows the result of this analysis obtained with the aid of a general

purpose electromagnetic simulator [27], and with commercially available substrate

dependent capacitor models [28]. The substrate used was RO4003c with a relative

dielectric constant of 3.55 and a thickness of 60 mil (1.524 mm). In this case the size

of the resonator is fixed with ω = 2mm and a = 26mm. The capacitors used belong

to the ATC 600S 0603 family. Note how the first resonant frequency is shifted down

with C while the second stays fixed. Note also that when the capacitance is increased
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beyond certain value (1.4 pF in this specific example), a couple of frequencies where

the transmission coefficient S21 is zero appear between the first and second resonant

frequencies. This is observed in Figure 3.6 for the case with C = 2 pF.
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Figure 3.6: Transfer response of a capacitively loaded square open loop resonator for
several capacitance values.

So far, the physical length of the resonator has been kept fixed while C is varied

producing a shift in the first resonant frequency. This shift can be capitalized into

miniaturization if we let the size of the resonator vary while we keep the fundamental

resonance fixed. Table 3.1 shows a summary of the results obtained by fixing the

resonant frequency at 1GHz using the same substrate as before. In the table Am

denotes the area occupied by the miniaturized resonator while Ac represents the area

of the conventional (unloaded) resonator. For simplicity the line width is w = 2mm

in all resonators. The quantity in the fifth row represents the ratio of the first spurious

resonance frequency f1 to the fundamental frequency f0. Note that as the loading

increases this ratio also does, e.g., when the loading capacitance is 1 pF the last row

of Table I indicates that the area of the miniaturized resonator is 36% that of the

conventional resonator (see fourth column), and that the first spurious resonance is

at 3.54GHz since f0 = 1GHz in this example.
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Table 3.1: Resonator characteristics as a function of loading capacitance. The fun-
damental frequency is fixed at 1 GHz.

C(pF) a (mm) Am(mm2) Am/Ac f1/f0
0 26 676 1 2

0.2 22.8 520 0.77 2.3
0.6 18.8 353.4 0.52 2.87
1 15.7 246.5 0.36 3.54

It is convenient to represent graphically the effect of the capacitive loading on the

size of a square open loop resonator. In order to obtain a curve that represents the

general trend of the area versus capacitance, two approximations will be done. In the

first place it will be assumed that the total length of the square open loop resonator

can be obtained from Equation 3.5, and hence:

θ1 =
θT
2

=
βl

2
= arctan

(

1

2Z0ωC

)

(3.6)

where l represents the physical length of the resonator. The second approximation

consists in neglecting the size of the gap where the capacitor is mounted, in this case

l is the perimeter of the resonator and its area is given by:

A ≈

(

l

4

)2

=
1

16β2
θ2T =

1

4β2

[

arctan

(

1

2Z0ωC

)]2

(3.7)

For a given substrate, line width, and frequency, the previous equation has the

functional form:

A(x) = b

[

arctan

(

1

ax

)]2

(3.8)

where a and b are constant, and x is the capacitance. Since the constants a and b

only have the effect of scaling the x and y axis respectively, any choice of them gives a

good representation of the general tendency. A plot of this curve, where for simplicity

a = b = 1, is shown in Figure 3.7a.

32



A(x)

A(0)

x
Capacitance

(a)

ω(x)

ω(0)

x
Capacitance

(b)

Figure 3.7: Relationship between the capacitance value and the resonator’s area (a),
and resonant frequency (b).

For a resonator with a fixed physical size, a curve showing the variation of the

resonant frequency with the capacitance value is useful to determine the sensitivity

to capacitor tolerances. The same approach used to generate Figure 3.7a can be

employed with one caveat, the electrical length θT depends on frequency as well.

Indeed, from Equation 3.5,

tan

(

ω
l

vp

)

=
1

2Z0ωC
(3.9)

where vp is the phase velocity. Although it is not possible to find an explicit expression

for ω as a function of C, the inverse relationship is straightforward and can be written

as:

x =
a

by tan(by)
(3.10)

where a and b are constants that depend on the substrate and resonator size, x is the

capacitance, and y is the resonant frequency. This equation can now be plotted and

inverted graphically. The result for a = b = 1 is shown in Figure 3.7b.

Both curves shown in Figure 3.7 indicate that there is maximum variability for

relatively small values of capacitance (how small is small depends on the specific

case, i.e. on the values of the constants a and b from previous equations). As the
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capacitance increases the rate of change decreases. Some conclusions that can be

drawn from this are:

• Designs with large capacitance values are more robust (less sensitive to capacitor

tolerances).

• For tunable operation small values of capacitance are better.

• Increasing the capacitance after a certain value does not provide significant

advantage.

Note that while large values of capacitance can provide robust designs, they may be

unrealizable due to the small resonator area.

As a last aspect regarding the behavior of the series loaded open loop resonator,

consider its voltage and current distribution. These can be derived at resonance using

transmission line theory and the shunt equivalent model of Figure 3.3. This yields:

V (θ) = cos(θ)−
sin(θ)

tan(θT/2)
0 < θ < θT (3.11a)

I(θ) =
j

Z0

[

cos(θ)

tan(θT/2)
+ sin(θ)

]

0 < θ < θT (3.11b)

where θ = βz is the electrical length measured from one open end of the resonator,

and θT is the total electrical length of the resonator. Figure 3.8 shows the plot of V (θ)

and I(θ) as well as the voltage and current for the unloaded case (in dashed lines).

Observe how the current never goes to zero but remains near its maximum value

along the resonator and how the voltage varies almost linearly between open ends.

A caveat: these plots are presented just to compare the distribution of the voltages

and currents between the loaded and unloaded resonators, not their amplitudes; they
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are normalized with respect to their respective maxima and they have either different

frequencies or different resonator sizes.
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1
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Figure 3.8: Voltage (a) and current (b) distribution in a loaded open loop resonator.
Dashed lines are for the unloaded case.

3.3 Miniature Resonator as a Filter Element

The miniaturization of the square open loop resonator by the series capacitive

loading proposed in the previous section affects some of its basic features. A study

of the most important factors for filter applications has to be performed to guarantee

that the resonator is still useful as a filter element. In this section the quality factor

(both unloaded and external) of a miniature resonator and the coupling between

resonators is studied. The study is done near the first resonant frequency since this

is the most useful region for filter applications.

Probably the most fundamental difference between the conventional and the minia-

turized resonator is the distribution of the electric field on them. While in both cases

the electric field is mostly located near the open ends, in the miniaturized resonator

most of the field is actually constrained to the interior of the capacitor. This has a

major effect in both, the quality factor and the coupling between adjacent resonators.
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3.3.1 Unloaded Quality Factor

The addition of the capacitor to the square open loop resonator changes its un-

loaded quality factor in two ways. First, the radiation losses from the open ends

of the resonator are reduced increasing the quality factor of the resonator. Second,

the capacitor dominates the losses due to dielectric polarization since most the elec-

tric field resides inside it. Therefore, a high Q capacitor could actually increase the

unloaded quality factor of the whole resonator. This is analogous to the case of di-

electric resonators where the fields are constrained to a small volume dielectric with

high permittivity and low loss tangent resulting in a high overall Q.

To give a quantitative example of this effect, the quality factors of the resonators

analyzed in last section were calculated and a column was appended to Table 3.1 as

shown in Table 3.2. Note that the Q is higher for C = 0.6 pF and C = 1 pF, in

agreement with the previous discussion (the family of capacitors used in this research

have quality factors on the order of 2000 near 1GHz whereas the simulated microstrip

resonator Q is about 230). The ability to decrease the size of a resonator while

increasing or even maintaining its quality factor is not typical in microwave design. In

this aspect this technique is unique. Observe that this advantage depends mainly on

the capacitor having low losses, if another type of capacitor is used, e.g. interdigital,

the quality factor may decrease with miniaturization.

Table 3.2: Resonator characteristics as a function of loading capacitance including
the unloaded quality factor. The fundamental frequency is fixed at 1 GHz.

C(pF) a (mm) Am(mm2) Am/Ac f1/f0 Qu

0 26 676 1 2 234
0.2 22.8 520 0.77 2.3 220
0.6 18.8 353.4 0.52 2.87 240
1 15.7 246.5 0.36 3.54 269
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3.3.2 Coupling Between Resonators

The miniaturization of the square open loop resonator reduces its capacity to

couple to adjacent structures. This is expected since a smaller size represents a

smaller volume of interaction between resonators; this is a common feature of any

miniaturization technique. Probably the most special characteristic of the technique

proposed in this research is the almost complete extinction of the electric coupling

between resonators. This is due to the fact that the majority of the electric field that

existed in the volume surrounding the open ends of a resonator is now confined to the

interior of a capacitor limiting its possibility to interact with a neighboring resonator.

The effect on the magnetic and mixed coupling is less severe than for the electric

coupling. An example is shown in Figure 3.9, where the magnetic coupling coefficient

is plotted against the separation between resonators for different loading capacitors.
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C = 0.6 pF

C = 1 pF

Figure 3.9: Magnetic coupling as a function of the distance between resonators for
several values of the loading capacitor.
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3.3.3 External Quality Factor

The external quality factor obtained by tapping into the resonator depends on the

voltage level at the tapping point at resonance. It was mentioned in Chapter 2 that if

the tapping point coincides with a voltage null, then no coupling is achieved between

the resonator and the external circuit and the resulting quality factor is very large.

Using the same reasoning, if the voltage at the tapping point is high then the external

quality factor will be low. Referring to the voltage distribution of the conventional

and the miniaturized resonator shown in Figure 3.8a, it is possible to predict that

in the case of the conventional resonator the external Q will decrease rapidly as the

tapping point is moved away from the voltage null at the center of the resonator.

It is also evident from the figure that in the case of the miniaturized resonator the

change in the external Q is slower. Therefore, the tapping distance from the null point

necessary to obtain a given Qex is larger in the case of the miniaturized resonator.

Figure 3.10 shows the external quality factor of two different resonators, one con-

ventional and one miniaturized, with the same resonant frequency (1GHz). Note how

the Qex diminishes quickly in the case of the unloaded resonator. Also note that in

the case of the miniaturized resonator the plot is drawn for tapping points on the

side of the resonator; this is because the quality factors obtained tapping closer to

the null point produces large values of Qex that are difficult to estimate accurately.

3.4 Filter Example

As a proof of concept, four filters were designed having the same bandpass charac-

teristic but with different degrees of miniaturization. The center frequency was chosen
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Figure 3.10: External quality factor of an: (a) unloaded resonator, and (b) a resonator
loaded with C = 1 pF (b).

to be 1GHz with a target bandwidth of 10%. A three pole equiripple response was

used in all the cases. The first filter was not miniaturized and is used as a reference.

Each resonator of the second filter was loaded with a low loss capacitor of nominal

value 0.2 pF. The third and fourth filters were loaded with capacitors of 0.6 pF and

1 pF, respectively.

The layout of the four filters, including the dimensions for a substrate Rogers

RO4003c (εr = 3.55) with a thickness of 60mil (1.524mm), are shown in Figure

3.11. The four filters are symmetrical with respect to a vertical line traced through

the middle of the center resonator, i.e. the first and last resonators have the same

dimensions. Note that the external coupling differs in all of the filters in order to

obtain the necessary external quality factor Qex. In the four examples the size of the

first and last resonator, as well as the distance between resonators, have been fine

tuned to obtain an equiripple in-band return loss using a method similar to the one

outlined in [25].
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Figure 3.11: Layout of the four filter examples (units are mm).

In Figure 3.12a the simulated broadband response of the four filters are compared,

and the corresponding in-band response is shown in Figure 3.12b. Note that the four

filters have similar response in the passband but differ considerably in the stopband.

It can be also observed how the first spurious resonance is shifted towards higher

frequencies for increasing degrees of miniaturization. In particular, the smallest filter

does not present any spurious resonance in the frequency range shown.

A summary with the absolute and relative sizes of the designed filters is shown

in Table 3.3. The last row represents the fraction of the area occupied by each filter

relative to the area occupied by the first (non-miniaturized) one. Note that Filter 4

occupies an area equal to 20% that of the conventional design.

From these designs, Filter 1 and Filter 4 were built and measured. Figure 3.13

shows the broadband result of both filters. Observe that the spurious free stopband

of the miniaturized filter extends beyond the frequency range considered as predicted
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Figure 3.12: Comparison of the simulated response of the four example filters. (a)
Broadband response. (b) Passband response.

Table 3.3: Summary of relative and absolute sizes of the designed filters. The sub-
strate used was RO4003c (εr = 3.55).

Filter 1 Filter 2 Filter 3 Filter 4
Area (mm2) 2033 1666 1034 407

A/A1 1 0.82 0.51 0.20

by the simulations. Figure 3.14a shows the measured and simulated broadband re-

sponse of the miniaturized filter (Filter 4). Note the general good agreement over

the complete frequency range studied. Figure 3.14b shows the measured narrowband

response versus the simulation. The shift in frequency of the miniaturized filter is

mainly due to the tolerance of the capacitors and it represents the main disadvantage

of this technique. Observe also that the insertion loss is basically the same for both

filters.
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Figure 3.14: Measured vs. simulated broadband response of the miniaturized filter.
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Chapter 4

Measurement of Equivalent Series Resistance of Small Capacitors

4.1 Introduction

The equivalent series resistance (ESR) of a capacitor is an important modeling

parameter that condenses the dielectric and conductor losses into a frequency depen-

dent resistor. For many years the conventional method that has been used to measure

the ESR of capacitors at microwave frequencies employs high-Q coaxial resonators as

described in [29]; the setup is shown schematically in Figure 4.1. There are several

potential error sources that limit the accuracy of this method for small capacitors

with high Q, some of which are [30]:

• The parasitic capacitance between the inner conductor and the plunger. This

capacitance increases when the size of the lumped component is decreased.

Therefore, it can become comparable with the capacitor under test affecting

the measurement. This effect may be safely ignored when the capacitor under

test is large, both in size and in value.

• The transmission line discontinuity in the contact between the inner conductor

and the lumped capacitor. This discontinuity adds inductance and resistance.

If the part under test has low ESL and ESR, i.e. it is a high Q component with

a high resonant frequency, then the discontinuity parasitics become comparable
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with those of the part affecting the measurement accuracy. Again, usually if

the capacitor is large the effect may be neglected.

Capacitor

Plunger

Outer ConductorInner Conductor

Figure 4.1: Standard method to measure ESR with a Boonton line.

In the miniature square open loop resonator introduced in the last chapter the ESR

of the capacitor may have an important effect on the losses of the resonant structure.

If this impact is large enough, then a square open loop resonator may be used to

measure the ESR of small capacitors. The process may be described as simulation-

based measurement and the general idea is illustrated schematically in Figure 4.2.

First, an unloaded resonator is used to validate and calibrate the computer simulation.

This step is crucial and without it the accuracy of any forthcoming measurement is

unknown. The output of this step should be a computer simulation that closely

matches the measurement throughout the desired frequency band.

The second step is to measure a similar resonator, i.e. with the same size, on

the same substrate, and using the same VNA calibration, but loaded with a series

capacitor. This situation can then be recreated in the computer just by adding the

capacitor model to the previous calibrated simulation. The differences between the

new simulation and measurement can be attributed to the capacitor model alone,
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and an appropriate selection of the capacitor’s parameters like capacitance, ESR,

and ESL, should provide a close match to the measured data. These parameters can

now be interpreted as “measured”.

There are several drawbacks that limit the practical implementation of this method.

The most important one is related to the first step since a match between the mea-

sured and simulated data may not be realizable to the desired degree of accuracy.

This is especially true in the microwave range since many characteristics of the real

system are idealized in the computer model. Such is the case of substrate parameters

like its permittivity and loss tangent that are assumed constant with frequency and

isotropic, as well as the conductor thickness, roughness, and cross section. Therefore,

the initial step of matching the simulation and measurements to within a high degree

of accuracy may require significant efforts and great amounts of time dedicated to

modeling and measurements of the microstrip structure. Some of these requirements

can be alleviated by the use of some specific substrates and fabrication processes with

tighter tolerances.

The objective of this chapter is to investigate the effect of the capacitor ESR in the

quality factor of the resonator. This will be done mainly in a simulation framework

and may be used to provide an indication about the feasibility of the second step

shown in Figure 4.2. For the reasons mentioned in the previous paragraph the actual

implementation of this technique to measure the capacitor ESR falls outside the

scope of this investigation. However, the insight gained through this study is used to

generate recommendations towards its successful realization.
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Figure 4.2: Simulation-based measurement process.

4.2 Capacitor Model

For the simulation experiments, capacitors from the ATC 600L 0402 family were

used. Accurate models for these capacitors were provided by Modelithics, Inc. [28],
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as were the models used in Chapter 3 to simulate the miniaturized filters. Though the

specific details behind the models are proprietary, some of the theoretical background

and modeling considerations can be found in [31]. For the sake of discussion the

simpler model shown in Figure 4.3 will be used, where the factor F is nominally

unity and will be used to vary the capacitor losses later on.

ESR · F ESL C

Figure 4.3: Simplified capacitor model.

As mentioned in the introduction, the conventional method using a high Q coaxial

resonator presents some difficulties for small capacitors. Preliminary considerations

show that for capacitors of size 0402 the error in ESR start increasing rapidly when

the capacitance values are below 4 pF [30]. The high uncertainty prevents one from

generating more accurate models, and the solution adapted so far is to assume that

the ESR is the same for all the part values below ∼ 3.9 pF. Figure 4.4 shows the

modeled ESR against frequency for different capacitors from the ATC 600L 0402

family in a 60 mil Rogers 4003c substrate (εr = 3.55). Note how the ESR is the

same for the capacitors smaller than 3.9 pF. It is important to remark that this is not

actually the case in real capacitors, but a modeling compromise due to the lack of a

measurement system that provides accurate values of ESR for small capacitors. In

the rest of this chapter capacitors with nominal values of 0.5 pF, 1.0 pF, and 2.0 pF

are used to explore the effect of ESR on the resonators quality factor.

In order to test the effect of the capacitors ESR on the quality factor of the reso-

nators, the factor F from Figure 4.3 will be varied from 1, representing the nominal

value, to 3 representing a 300% increase in the ESR value.
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Figure 4.4: Modeled effective series resistance against frequency for capacitors with
a nominal value below 4.3 pF belonging to the ATC 600L 0402 family.

4.3 Simulations and Results

The size of the square open loop resonators was designed to test the capacitors at

1GHz and 2GHz. As before, the substrate assumed was 60 mil Rogers 4003c with

a loss tangent of tan δ = 0.0027. Table 4.1 summarizes the simulations that were

performed. The last three columns of this table refer to the size of the resonators

used; the parameters w, a1, and a2 are defined in Figure 4.5. Note that in order to

produce a given center frequency for different capacitor values, the resonators must

have different sizes.

Table 4.1: Matrix of simulations that were performed.

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7
Frequency (GHz) 1 1 1 1 2 2 2
Capacitance (pF) 0 0.5 1 2 0 0.5 1

Substrate 60 mil Rogers 4003c (εr = 3.55, tan δ = 0.0027)
w (mm) 3 3 3 3 1.1 1.1 1.1
a1 (mm) 26.4 21.8 18.2 13.6 13.2 7.2 5.6
a2 (mm) 26.6 21.9 18.2 13.7 13.3 7.2 4.7

The results of the simulations at f = 1GHz are presented on Figure 4.6. This

comprises experiments two to four from Table 4.1. These results are congruent with
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Figure 4.5: Resonator used

the observation stated previously that it is easier to measure the ESR of capacitors

with high value. Observe, for instance, that the variation in the resonator Q is more

dramatic for C = 2 pF than for C = 0.5 pF. This means that the difficulty to measure

the ESR to a given degree of accuracy increases with decreasing capacitance. What is

remarkable from Figure 4.6 is that changes in the resonator Q due to changes in ESR

would be reasonably easy to measure even for capacitors as small as 0.5 pF. Consider,

as an example, a 1 pF capacitor with an estimated ESR found using conventional

measurement techniques; if the actual ESR is 1.5 times larger than the estimated,

that would produce a Q that is about 100 units below the expected value according to

Figure 4.6(d). The results for f = 2GHz are shown in Figure 4.7. The general trend

is the same as in the 1GHz case, but the absolute change in Q is more dramatic.

49



−35

−30

−25

−20

0.996 0.998 1.000 1.002 1.004
f (GHz)

S21 (dB)

C = 0.5 pF

ESR

(a)

500

550

600

1 1.5 2.0 2.5 3.0
F

Qu

f = 1GHz
C = 0.5 pF

(b)

−45

−40

−35

−30

0.996 0.998 1.000 1.002 1.004
f (GHz)

S21 (dB)

C = 1 pF

ESR

(c)

400

500

600

1 1.5 2.0 2.5 3.0
F

Qu

f = 1GHz

C = 1 pF

(d)

−45

−40

−35

−30

0.996 0.998 1.000 1.002 1.004
f (GHz)

S21 (dB)
C = 2 pF

ESR

(e)

250

350

450

550

1 1.5 2.0 2.5 3.0
F

Qu

f = 1GHz

C = 2 pF

(f)

Figure 4.6: Transfer response and unloaded quality factor of different loaded resona-
tors at 1GHz. In all cases the transfer response is plotted for F varying uniformly
between 1 and 3.
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Figure 4.7: Transfer response and unloaded quality factor of different loaded resona-
tors at 2GHz. In all cases the transfer response is plotted for F varying uniformly
between 1 and 3.

The results presented in this chapter are based on simulations only. In this sce-

nario, even after considering the loss tangent of the substrate, the finite conductivity

of the conductors, and radiation, the resonators presented a relatively high value of

Q on the order of 350-400. The quality factor of the unloaded resonator plays an

important part in its sensitivity to the capacitor ESR. If the quality factor is much

smaller, the results presented previously are optimistic, and the actual variation of Q

with F will be smaller.
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In order to perceive the degree of discrepancy between simulation and measure-

ment, an unloaded resonator was simulated, built, and measured. The result, shown

in Figure 4.8, illustrates the point. Not only the Q is different, but the whole response

is distinct throughout the band, and even the resonant frequency is off. The discrep-

ancy could be caused by frequency dependent substrate parameters and anisotropy,

and, to a lesser extent, mechanical tolerances. Different attempts were done to match

the simulation to the measured response; the difference in Q can be accounted for by

considering radiation loss, the roughness of the conductors, and increasing the loss

tangent of the substrate. The challenge lies not in obtaining a set of these parameters

that produce the measured Q, but in obtaining the right set that describes how the

loss is physically distributed among these factors. For this purpose it is necessary to

characterize the different loss mechanisms individually in the desired frequency band.

Obtaining the right Q is necessary but may not be sufficient; matching accurately the

response of the resonator throughout the whole band may require extracting prop-

erties of the substrate as the permittivity, including its dependency with frequency

and anisotropy. It was found during this research that in order to match the re-

sponses shown in Figure 4.8, modifying all of these parameters may be necessary. A

particular solution was found using a lossy and anisotropic substrate, however, the

degree of anisotropy was exceedingly high and could not be trusted without further

investigation.

As pointed out before, one way to deal with this issue would be to employ a well

known substrate with tighter tolerances like Quartz, Teflon, or Alumina. These mate-

rials also have very low loss tangents being even more attractive for this application.

In any case, the process of matching the simulation to the measurement should in-

clude the extraction of accurate substrate parameters at the desired frequency band
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Figure 4.8: Measured and simulated unloaded square open loop resonator near
2.75GHz.

instead of using the nominal values. The completion of this task was beyond the

scope of this research.

As final comment, there is the question about why, if it is so difficult to obtain

simulation results that closely match the measured data, it is still possible to design

working devices based on such simulators. The reason is that for general engineering

task, accurate match between measurements and simulation is not necessary. As an

illustration consider the design of microstrip filters, if the system level specification

for the minimum in-band return loss is 15 dB then usually the filter is designed for

a return loss near 20 dB instead [25]. From an engineering point of view, computer

simulations are extremely useful not because they produce exact results, but because,

when used properly, can lead to first-pass design success.
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Chapter 5

Conclusion

The miniaturization of microwave filters below 3GHz remains an active area of

research due to the relatively large physical size of traditional resonators and the

great demand from the wireless communication industry within this band. One of

the most popular structures for microstrip implementations is the square open loop

resonator due to its compact size and versatility.

In this thesis a miniaturization technique was studied that is based on the loading

of a square open loop resonator with a high Q capacitor. It was shown that this

allows for a high degree of miniaturization with size reductions of more than 80%

with respect to a conventional square open loop resonator filter. Moreover, the in-

band response of the filter was not compromised by the miniaturization process, and

the stop-band response was extended with a second pass-band higher than 4.5 times

the center frequency.

The problem of estimating the effective series resistance of small capacitors at

microwaves frequencies was also considered. It was proposed that the miniature

square open loop resonator could be used to measure the ESR of the loading capacitor

as long as an accurate model for the microstrip structure is obtained in advance.
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5.1 Recommendations

Some subjects that could be studied further are:

• The possibility of designing cross-coupled filters using the miniaturization tech-

nique proposed herein. For this a different way of generating an electric-like cou-

pling should be devised. A possibility could be to use a different input/output

structure that allows for a phase reversing in the coupling of the first and last

resonator for quadruplet sections. Another possibility could involve the use of

multiple layers to achieve different kinds of couplings.

• A thorough study of a substrate in order to implement the method proposed

in Chapter 4 to measured the capacitor of a small capacitor. The characteriza-

tion could be made using a combination of simple test structures and existing

methods to extract the radiation, conductor, and dielectric loss individually.

• The impact of the studied miniaturization technique for applications of the

square open loop resonator other than filters. One example is the use of split ring

resonators for meta-material applications. It was shown in Chapter 3 that the

current distribution in the miniature resonator is almost constant along it; this

may be advantageous since this resonators are used as artificial paramagnetic

and diamagnetic materials.
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