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ABSTRACT 

Federal regulations have recognized that arc flash hazards are a critical source of 

potential injury. As a consequence, in order to work on some electrical equipment, the 

energy source must be completely shut-down. However, power distribution systems in 

mission critical facilities such as hospitals and data centers must sometimes remain 

energized while being maintained. In recent years the Arc Flash Hazard Analysis has 

emerged as a power system tool that informs the qualified technician of the incident 

energy at the equipment to be maintained and recommends the proper protective 

equipment to wear. Due to codes, standards and historically acceptable design methods, 

the Arc Flash Hazard is often higher and more dangerous than necessary.  

This dissertation presents detailed methodology and proposes alternative 

strategies to be implemented at the design stage of 600 volt facility power distribution 

systems which will decrease the Arc Flash Hazard Exposure when compared to widely 

used code acceptable design strategies. Software models have been developed for 

different locations throughout a power system. These software model simulations will 

analyze the Arc Flash Hazard in a system designed with typical mainstream code 

acceptable methods. The model will be changed to show implementation of arc flash 

mitigation techniques at the system design level. The computer simulations after the 

mitigation techniques will show significant lowering of the Arc Flash Hazard Exposure. 
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1. INTRODUCTION 

The first power systems in the early 1880s were created to provide a source of 

electricity for lighting. Thomas Edison’s invention of the light bulb and the direct current 

electrical system to power it was the beginning of the electrical generation industry. 

Edison not only invented the light bulb, but also the distribution network, switches, 

protective fuses, and insulating materials to make it all work. This was soon followed by 

the invention of the electric motor in the late 1880s, which rapidly increased the demand 

on the power system. Just a few years later, Nikola Tesla and George Westinghouse 

would prove that their alternating current system was technically superior, since it was 

able to be transformed to different voltages for transmission [1]. Soon after these electric 

systems came on-line, the first electrical shock from a commercial power system 

occurred. This led to the beginning of development for today’s safety codes and 

standards. 

 

1.1 Overview of Electrical Safety 

People quickly learned that electric shock was not the only hazard created by 

power systems. When equipment was not installed properly, a fire could erupt creating 

even more danger.  The novice contractors knew very little about electrical installations 

making the likelihood of a disaster high. The need for some form of guidance in the 

practice of electrical installation was evident. This was the beginning of what is now 
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known as the NFPA 70: National Electric Code (NEC), first published in 1897 [1]. This 

code is used regularly for electrical system design standards and installation methods. 

The plan review process and electrical inspections performed by building departments are 

also based on the NEC. 

Even with the proper electrical design and installation, accidents could possibly 

occur when people make contact with energized equipment. Throughout the years, people 

learned that electrical shock could cause serious injury and death. However, there was 

very little knowledge on the effects of electrical shock on humans. It was not until 1956 

that Charles Dalziel began performing shock experiments on animals and humans. His 

quest to find out how much electrical current was needed to stop a person from breathing 

or to stop a heart from working led to the information in Table 1.1 [2]. This work alerted 

humans to the risk of small amounts of electricity and increased safety awareness. 

Table 1.1 Reaction of Human Body to Electric Current 

AC Current Effect of Current 

0.7 – 1 mA Perception Threshold (tingling sensation) 

1.2 – 1.8 mA Slight Shock – not painful 

6 – 9 mA Shock – painful (no loss of muscle control) 

15 – 23 mA Shock – severe (muscle control loss, breathing difficulty) 

0.1 A Possible ventricular fibrillation (3-second shock) 

0.2 A Possible ventricular fibrillation (1-second shock) 

0.5 A Heart muscle activity ceases 

1.5 A Tissue and organ burn 
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The industrial revolution from 1950 to 1970 created enormous growth in the 

United States. With this expansion came many workplaces with little concern for 

employee safety. Based on Occupational Safety and Health Administration statistics from 

1970, there were 14,000 worker deaths that year from job related accidents [3]. Close to 

2.5 million workers would become disabled and 300,000 individuals would contract an 

occupational disease [3]. This prompted Congress to pass the Occupational Safety and 

Health Act of 1970, leading to the formation of the Occupational Safety and Health 

Administration (OSHA). 

OSHA covers all employers and employees in the United States of America, with 

a few exceptions for self-employed people and family run farms. Among other things, 

OSHA, Title 29, Code of Federal Regulations addresses electrical safety. Typical of 

OSHA standards, this section gives a general requirement and not specific details on how 

to achieve the requirement. Initially, OSHA selected language from the NEC as a basis 

for the electrical regulations [1]. However, the NEC is aimed at design and installation 

practices and does not cover worker safety during equipment use. Therefore, a new code 

aimed at everyday worker safety on the job was needed. 

In 1976, the NFPA formed a committee at the request of OSHA to develop a new 

standard for electrical safety in the workplace. This resulted in NFPA 70E: Standard for 

Electrical Safety in the Workplace. The purpose of this standard is to provide a safe 

workplace for employees with regard to electrical safety. This gave OSHA a reference for 

electrical safety so employers could have a standard to follow. 

NFPA 70E, was the first standard responsible for instructing electrical 

maintenance personnel on how to work safely with regard to shock protection. This code 
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informed the worker of proper clothing, shoes, and rubber gloves. This code also gave 

guidelines for proper use of voltage measuring devices and insulated tools. Furthermore, 

NFPA 70E assigned given distances or boundaries from energized equipment that would 

give the workers a reference of where the clothing was to be worn. The electricians now 

had a strategy in place to protect themselves from electric shock. 

 

1.2  Importance of Arc Flash 

In time it became apparent that not all electrical accidents were due to electrical 

shock from making contact with energized devices. When an exposed energized 

conductor makes contact with the ground or another energized device, a small spark or a 

large explosion could ignite. This explosion, otherwise known as an arc flash, can have 

thermal energy that is dangerous from a distance of several feet away. One of the early 

papers addressing the arc flash was written in 1982 by Ralph Lee [4]. In this paper, Lee 

crossed the bridge between electrical shock from contact with energized devices, to 

thermal burn from the radiant heat output of electrical arcs. Lee’s paper presented 

theoretical methods for evaluating incident energy of an arc in open air. Additionally, 

Lee’s research explained the relationship between heat transfer from hotter to cooler 

objects and the importance of the distance between them. Lee’s paper goes on to develop 

a relationship between heat transfer and distance with its effects on human skin tissue.  

Acknowledging arc flash had several important consequences. First, electrical 

workers needed to protect themselves from the dangers of both shock hazards and arc 

flash thermal effects. Secondly, the workers needed to know what degree of potential 

electrical hazards they were being exposed to. Thirdly, workers would need to know the 
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proper protective clothing and equipment required to ensure their safety at a particular 

level of exposure. 

In time, the focus of arc flash hazard research turned toward predicting and 

calculating the incident energy produced. In 1998, Doughty, Neal, and Floyd did 

extensive research on the measurement and calculation of arc flash [5]. Their research 

detailed a testing program completed to measure incident energy from 6-cycle arcs on 

600 volt power systems. The testing led to algorithms for predicting incident energy 

based on available fault current and the distance from the source. These algorithms were 

shown to support Ralph Lee’s research. However, this testing also showed an increase in 

incident energy when the source is in an enclosure with an open door versus a source in 

open air, such as an overhead conductor. This proved important because most arcs occur 

when a person is standing in front of an open electrical enclosure and the arc is confined 

in the panel-board or switchgear. 

In 2000, the NFPA released a new version of NFPA 70E. This update recognized 

the existence of the “Arc Flash Hazard” and included a new protection strategy in 

addition to shock protection. There was now a section on Personal Protection Equipment 

(PPE) requirements and hazard risk tables. This standard identified specific electrical 

work activities and put them in five categories (0-4). Each category had a detailed 

clothing arc flash rating and additional equipment to be worn, such as hard hats and 

facemasks. However, this method of selecting protective equipment was based solely by 

task and not on actual knowledge of the arc flash hazard level at any location in the 

electrical system. 
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The findings detailed above, along with the focus of industry on electrical safety, 

led to the need for guidelines and standards addressing the arc flash. In 2002, The 

Institute of Electrical and Electronics Engineers published Standard 1584 “IEEE Guide 

for Performing Arc-Flash Hazard Calculations” [6]. This guide was a direct result of 

research conducted by the IEEE and was sponsored by large electrical corporations and 

manufacturers. The standard provided the first complete set of guidelines for calculating 

incident energy of the arc flash at the location of interest in a power distribution system.  

This was important because it provided a standardized way to calculate the arc flash 

hazard associated with working on energized equipment.  

By utilizing these calculation methods, an engineer is able to predict the thermal 

exposure at any location in an electrical system. The workers now have a guideline for 

protection from electrical shock and arc flash hazard. This is important because the shock 

protection protective equipment is made from specific materials to keep a person isolated 

from touching the energized equipment. The arc flash hazard protective equipment is 

made of materials that are designed to protect the worker from getting burned from the 

thermal effects of the arc flash. 

 

1.3 Research Objectives 

New electrically critical facilities, including computer data centers and hospitals, 

are electrically designed and constructed to have a continuous energy source. This is 

accomplished by integrating the electrical utility with on-site generators and 

uninterruptible power supplies. This electrical equipment must be serviced and 

maintained, but de-energizing the devices is not an option. The application of arc flash 
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mitigation techniques after construction can lead to additional equipment and expenses. 

Furthermore, there can be situations where an extremely high arc flash hazard is 

unavoidable. Implementing design strategies as described in this paper can minimize the 

arc flash hazard exposure at many locations throughout the electrical distribution system.  

This research focuses on the challenges of minimizing the arc flash hazard 

exposure to electricians working on energized electrical equipment in 600 volt and below 

power systems. Although the electrical systems analyzed in this dissertation are at 480 

volts, the 600 volt rating is important to the applicable standards for the voltage class. 

This work looks at the electrical system design requirements that are currently acceptable 

by the NEC and how this can expose electrical workers to a high arc flash hazard. These 

systems will be modeled using an industrial grade software package, which implements 

arc flash hazard calculations per IEEE-1584. Recommended design changes that include 

NEC and NFPA 70E requirements will be implemented and the systems will be re-

calculated to show significant decrease of the arc flash exposure. 

It is the researcher’s hypothesis that NEC acceptable design strategies can be 

altered to include NFPA 70E concerns, therefore minimizing Arc Flash Hazard exposure. 

This is specifically in the areas of: 

1. When applying the National Electric Code, Article 230, Part VI, always 

specify a single main circuit breaker for building shutdown. 

2. At the electrical service entrance the design shall specify enclosed low voltage 

power circuit breakers in place of fused disconnects. 

3. Specify adjustable low voltage power circuit Breakers for protection of step-

down transformers rated above 125kVA. 
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4. Step-Down Transformers larger than 125kVA shall be replaced with a design 

having two smaller kVA transformers. 

1.4 Contribution of the Dissertation 

The design techniques recommended in this dissertation are a result of 21 years of 

experience as a licensed professional engineer focusing on designing electrical systems 

and performing arc flash hazard studies. The outcome of this study can influence future 

design techniques that would consider NEC, NFPA 70E, and Arc-Flash hazard exposure. 

If the resulting information is transferred to a training environment for electrical system 

design engineers it can be implemented into their future projects. The implementation of 

these results can produce electrical systems with lower arc flash hazard at maintainable 

areas of a building electrical system. 

 

1.5 Outline of the Dissertation 

This dissertation consists of 6 chapters, with the first chapter introducing the 

development of electrical safety codes with regard to electrical shock and arc flash 

hazard. The history and development of the NEC, NFPA-70E, and IEEE-1584 are briefly 

discussed. The focus for conducting this research along with the hypothesis and goals are 

described. 

Chapter 2 will present the basics of power system protection from a time versus 

current analysis. There will be discussion of electrical current overloads and short 

circuits. The principles of electrical circuit breaker devices and fuses will be described. 

The different types of circuit breakers and their specifications will be discussed. 
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Chapter 3 presents an overview of electrical power system studies for 480 volt 

power systems. The process of a fault current calculation will be conceptually described 

to show the purpose of the study, modeling approach, and the software implementation. 

The utility source and its contribution into the system will be presented. The protective 

device coordination will be shown and the circuit breaker options will be discussed. The 

arc flash hazard analysis will be presented and shown how it applies to 480 volt systems. 

Chapter 4 will explore existing methods, techniques and devices aimed at 

mitigating the arc flash hazard exposure. These devices and techniques will be computer 

simulated to show the arc flash hazard before and after mitigation techniques are applied. 

The implemented equipment and techniques will show a decreased arc flash hazard 

incident energy and category. 

Chapter 5 will present the impact of arc flash hazard analysis on existing mission 

critical facilities. The existing electrical systems will be described along with objectives 

for the arc flash hazard analysis. The study will be performed by using computer 

simulation software and the results discussed. Methods for mitigating the arc flash hazard 

will be recommended and the system will be reevaluated by the software to show a 

decrease in the arc flash hazard. 

Chapter 6 will highlight design methods to help mitigate arc flash hazard 

exposure. Each case will show part of a 480 volt electrical system that is in compliance 

with the NEC and acceptable for an electrical building permit. The arc flash analysis will 

be performed on the system giving an incident energy level and hazard category. 

Recommendations to the system design will be made and a recalculation of the arc flash 
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hazard will be performed. The implemented design recommendations will show a 

decreased arc flash hazard incident energy and category. 

Chapter 7 will discuss the conclusions and future work. The results of 

implementing the recommended design techniques will be reviewed. Guidelines for 

future work will be discussed. 
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2. POWER SYSTEM PROTECTION 

In theory, the ideal electrical system receives power from the utility distribution 

system and performs exactly as the customer demands with no interruptions, voltage 

sags, or outages. This would allow for a system to be designed for amperage demand 

without having any concern about short term electrical transients. The practical use and 

maturation of an electrical system can involve many system abnormalities, such as 

overloads and short circuits. The response by the system under these transient conditions 

determines the functionality, viability, safety, and long term usefulness of the electrical 

distribution equipment. Power system protection is part of the design, planning and 

operation of an electrical system. Some of the main objectives of the protection system 

are to isolate short circuits and prevent equipment failure due to overload. This is 

accomplished by detecting electrical system abnormalities with the proper application of 

circuit breakers and fuses.  

 

2.1 Electrical System Abnormalities 

 
There are a multitude of electrical system abnormalities that can occur at any 

time. Some of these disturbances are voltage related and others are current based. The 

voltage related electrical system disturbances are classified as power quality issues and 

usually result in the alteration of the ideal sine wave. This is an important issue because 

newer generation load equipment, with microprocessor-based controls and power 
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electronic devices, is more sensitive to power quality variations than equipment used in 

the past [36]. The term power quality is an umbrella concept for a multitude of individual 

types of power system disturbances [36]. Some of these voltage based disturbances are 

interruptions, sags, swells, under-voltages, overvoltage, voltage imbalance, and 

harmonics. From a protection standpoint, these voltage disturbances are classified 

separately from current disturbances. 

Although voltage and current disturbances can be related through causation, 

current disturbances are primarily defined by the presence of an overcurrent.  The 

National Electrical Code defines an overcurrent as any current in excess of the rated 

current of equipment or the ampacity of a conductor. It may result from overload, short 

circuit, or ground fault [17]. Therefore, from a protection standpoint, the main objective 

is to avoid exposing the devices to overload conditions and isolate the equipment from 

faults and short circuits. 

 

2.2 Electrical System Overloads 

One of the main objectives for the electrical protection system is to prevent 

equipment failure caused by overload. Overload is defined by the National Electrical 

Code as the operation of equipment in excess of normal, full-load rating, or of a 

conductor in excess of rated ampacity that, when it persists for a sufficient length of time, 

would cause damage or dangerous overheating. A fault, such as a short circuit or ground 

fault, is not an overload [17].  Therefore, an overload occurs when the system is properly 

intact, but the use of the system is not per design. An example of overload is when two 

1500 watt hair dryers are attached to receptacles on the same 120 volt, 20 amp circuit. In 
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this case, the 3000 watts equates to 25 amps thus overloading the 20 amp conductor and 

circuit breaker. 

 

2.3 Electrical System Faults 
 

A fault occurs when the use of the system is per design, but the system is not 

properly intact. Some causes of faults can include weather, insulation failure, wildlife, 

vehicle crashes, and vandalism. When this unintentional electrical path is created, the 

system creates undesirable current paths that must be accounted for. The result is a 

collapse in voltage and an extreme inrush of current toward the fault location.  

During a fault, the current from all parts of the electrical system flow in the 

direction of the short circuit. This fault current level can range from 6.5kA amps at a 

13.2kV substation, to near 100kA at a 480 volt paralleled system. Fault levels are known 

to decrease with distance from the source due to system impedance [38]. It is important to 

protect the system from adverse effects that can occur from large magnitude currents.  

Power system faults may be categorized as one of four types: single line-to-ground, line-

to-line, double line-to-ground, and balanced three-phase [37]. Line-to-line faults are 

approximately 87% of three–phase fault currents. Line-to-ground faults can range from a 

few percent to possibly 125% of the three-phase value. In industrial systems, however, 

line-to-ground fault currents higher than the three-phase value are rare [49]. It is widely 

recognized that line-to-line faults in equipment or cables quickly escalate into three-phase 

faults [6]. In an industrial system, the three-phase fault condition is frequently the only 

one considered, since this type of fault generally results in maximum current [49]. All 

testing used in arc flash modeling was three-phase tested because three-phase arcs 
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produce the greatest possible arc-flash in ac equipment. Therefore, this project will focus 

only on three-phase balanced faults. 

It is convenient to analyze fault current as an asymmetrical waveform consisting 

of a symmetrical AC wave superimposed on a DC current [12]. The resulting waveform 

is shown to have an original peak value several magnitudes above the pre-fault conditions 

and is asymmetrically shaped from the x-axis.  The peak value occurring during the first 

half cycle of the fault is known as the Available Fault Current (AFC). This can be 

graphically represented as shown in Figure 2.1. 

 

v(t) = voltage waveform 

iac(t) = original current waveform before fault occurs 

idc(t) = DC component of the fault 

i(t) = fault current waveform 

 

Figure 2.1: Fault Current Waveform Profile  

At the moment of initiation of a fault, the fault current wave i(t) is a combination 

of the original sine wave iac(t) and the DC component idc(t). The peak magnitude of i(t) 

can be multiples higher than the original current, depending on system conditions such as 

power factor. The magnitude decays as a result of the DC exponential, which is a 

resultant of the system reactance and resistance known as the X/R ratio. 
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2.4 Circuit Breakers 

 
Low voltage circuit protective devices include Molded Case Circuit Breakers, 

Low-Voltage Power Circuit Breakers, and insulated Case Circuit Breakers [42]. A circuit 

breaker is an electrical device designed to open an energized circuit under loaded 

conditions. All circuit breakers have the primary function of protecting the circuit 

conductors by detecting and interrupting over-currents [43]. The opening of an electrical 

circuit is in response to transient current conditions, such as an overload or fault in the 

system. Circuit breakers are rated by available interrupting capacity and rated continuous 

current. The interrupting capacity of a circuit breaker is the maximum current a circuit 

breaker is rated to safely interrupt at a specific voltage. This short-circuit current rating is 

normally expressed in rms symmetrical amperes and is specified by current magnitude 

only [39]. The continuous current rating is the amount of current a circuit breaker can 

carry until it reaches overload conditions and opens the circuit.  

Until the late 1960s the only circuit breaker trip units available were thermal-

magnetic molded case circuit breaker designs (MCCB) [39]. These circuit breakers were 

designed to be bolted on or snapped-into standard breaker panels. These devices are 

constructed in a solid case that is not capable of being disassembled for maintenance and 

repair. 

The magnetic trip element is often referred to as the instantaneous trip time and 

reacts quickly in response to high level short circuit currents. The thermal element is 

typically some type of bi-metal that expands due to the heat in a circuit caused by current 

at overload that is less than the magnetic pickup threshold.  The element then trips the 

MCCB after a time delay.  
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Circuit breaker trip curves are analyzed graphically in order to understand the 

time versus current application of the device. When displayed in this manner the plot is 

referred to as a time current curve (TCC). A typical time TCC for a 480 volt, 100 amp, 

non-adjustable thermal magnetic MCCB is displayed in Figure 2.2. Here it is shown that 

the thermal element is 100 amps at 1000 seconds and the instantaneous sensor is at less 

than 0.02 seconds for short circuit currents greater than 2500 amps. For a fault current 

level in the range of 900-1900 amps, the interrupting time is shown to be greater than one 

second. 
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Figure 2.2: TCC Curve for 480 volt, 100 amp MCCB 
 

Thermal magnetic MCCB’s are also available with an adjustable magnetic trip 

setting. This is very useful in situations where the available fault current is low and quick 

interruption is important. Figure 2.3 shows a TCC for this type of circuit breaker. This 

plot introduces the flexibility available for the instantaneous trip setting when using an 

adjustable breaker. 
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Figure 2.3: TCC Curve for 480volt, 100 amp MCCB with Low and High Settings 

 

The next available circuit breakers manufactured in the late 1960’s were the low-

voltage power circuit breakers (LVPSBs). These circuit breakers were designed to be 

rack mounted in switchgear, have larger frame sizes and higher current ratings than 

MCCBs. These devices are maintainable and can be disassembled for cleaning of 

contacts and replacing parts. 

The LVPCBs have thermal-magnetic trip units that respond to overloads in a 

similar manner as MCCBs: however, LVPCBs had a 30-cycle short time current rating 

consistent with ANSI standards [41]. This short time current rating allows for a second 
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breaker adjustment between the magnetic pickup and the long time sensor. These settings 

are commonly referred to as Long-Time (L), Short-Time (S) and Instantaneous (I), hence 

calling the breaker an LSI protective device. A TCC for a LVPCB is shown in Figure 2.4.  

 

 
 

Figure 2.4: TCC Curve Showing 480 volt, 100 ampere LVPCB 
 

The LVBCB has five adjustments in three time domains that allow for a circuit breaker 

curve to be custom fitted for the application. 

1. Long Time Pickup is set at the overload amperage. 
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2. Long Time Delay allows the pickup to be postponed. 

3. Short Time Pickup is the trip amperage after a delay time. 

4. Short Time Delay postpones the short time pickup to a designated time. 

5. Instantaneous pickup is the magnetic setting for immediate response. 

The TCC for two 100 ampere LVPCBs showing lowest and highest settings at all 

pickups and time delays are displayed in Figure 2.5. 

  
Figure 2.5: TCC Curve for 480 volt, 100 ampere LVPCB with LSI Settings 
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The Insulated Case Circuit Breaker (ICCB) was introduced in the mid-1970s. 

These devices were specially designed molded case circuit breakers that included some of 

the low-voltage power circuit breaker features [39]. These features included short time 

current duty cycles and a stored energy mechanism [43]. The ICCB had an instantaneous 

trip element that was capable of being set at a much higher trip level than the MCCB, 

which allowed some short time current ratings to be achieved.  

 

2.5 Circuit Breaker Testing 

In North America, low-voltage circuit breakers are designed and tested in 

accordance with ANSI/UL standard 1066, which refers to a series of applicable ANSI 

C37 standards [41,44,45,46]. Insulated case and molded case circuit breakers are 

designed and tested in accordance with UL standard 489 [40]. The UL standards 1066 

and 489 consist of a series of tests and construction for required ratings, trip units, 

overloads, endurance, short-time current, temperature rise, and dielectric withstand. Each 

standard is specific in the guidelines for an acceptable device. One of the particular 

testing parameters is the X/R ratio or dc offset decay. All low voltage protective devices 

are tested at pre-determined X/R ratios per the table below [17]. 

Table 2.1 Test X/R Ratios for Protective Devices 

DEVICE Test X/R ratio 

Low Voltage Power Circuit Breakers 6.6 

Molded Case Circuit Breakers rated less than 10k AIC 1.7 

Molded Case Circuit Breakers rated between than 10k & 20k AIC 3.2 

Fuses, Insulated Case Circuit Breakers, Molded Case Circuit 

Breakers rated greater then 20k AIC 

4.9 
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Outside of the general construction and withstand requirements, the main 

application for this project is the adjustable setting of a circuit breaker that primarily 

differs in the short-time. The low-voltage power circuit breakers are manufactured to 

meet the testing requirements of UL 1066 [43]. This testing requirement is different than 

the UL 489 standard, mainly because the low-voltage power circuit breaker is required to 

carry fault current for two 0.5 second periods and the molded case device does not have a 

short time requirement.  

 

2.6 Fuses 

The term fuse is defined by ANSI/IEEE Std 100-2001 as “an overcurrent 

protective device with a circuit-opening fusible part that is heated and severed by the 

passage of overcurrent through it” [50]. Fuses were first introduced in the 1880s and were 

used for the protection of lighting installations. They were located adjacent to lamps and 

were to protect them from excess currents caused by source-voltage fluctuations [47]. 

Over the years, this device has improved its uses to include many different applications 

throughout the electrical system. The fuse has a wide range of protection applications 

from micro-electronic components up to high-voltage power system protection. 

The fuses used in 480 volt electrical systems are intended to protect the system 

from over-loads and fault currents. The basic operation of a fuse is a simple thermal 

process; the passage of excess currents through specifically designed fuse elements 

causes them to melt, and so isolate the faulty circuit [47]. The interrupting capability is 

altered by the fuse element and the filler in the fuse cartridge. 
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The fuse has no moving parts and, therefore, can be extremely fast acting upon 

the presence of high fault currents. The actuation of a fuse represents the end of its useful 

life and therefore the reliability and accuracy is maintained when new fuses are inserted 

into the circuit. The lack of moving parts leaves no ability to adjust the time domains of 

the fuse, which can be costly when trying to protect a system against fault currents. The 

TCC for a fuse is shown in Figure 2.6. The fuse curve shows the interrupting times for 

various levels of overcurrent. These interruptions can occur over a short range of time as 

shown by the minimum melt characteristic, which is the time the fuse begins to melt, and 

the total clearing characteristic, which is the complete interruption of the current. 

 



24 

 

 
Figure 2.6: TCC for 480 volt, 100 ampere Fuse 
 

The TCC for the 100 ampere fuse has similar inverse time characteristics as the 

circuit breakers. This particular device is shown to have 100 amperes of over-load 

protection beyond 100 seconds. For a short circuit of 2000 amperes, this device interrupts 

at approximately 0.05 seconds.  
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3. ELECTRICAL POWER SYSTEM STUDIES 

The electrical system must be studied with the anticipation of transients such as 

overloads and faults. This is accomplished by implementing a fault current analysis, 

protective device time current coordination study, and an arc flash hazard analysis. 

This chapter is an overview of electrical power system studies for 480 volt power 

systems. The process of a fault current calculation will be conceptually described to show 

the purpose of the study and the software application. The utility source and its 

contribution to the system will be presented. The protective device coordination will be 

shown and the circuit breaker selections will be discussed. The arc flash hazard analysis 

will be presented and the resulting personal protective equipment requirements will be 

discussed. 

 

3.1 Fault Current Analysis 

 
The Fault Current Analysis or Short Circuit Study is an analysis of the electrical 

system under fault conditions. These faults can have many causes from adverse weather 

to aged insulation on conductors, to varmints chewing on the equipment. The result is a 

sudden electrical path from any phase to ground or any phase to another phase. In most 

cases these short circuits migrate to a three-phase fault and are studied from that 

perspective.  
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Analyzing fault current on a theoretical basis is accomplished by studying the 

response of the series R-L circuit shown in Figure 3.1 below. 

 

Figure 3.1: Series RL Circuit 
 

 When the switch SW closes at time t=0, the circuit will react in the same manner 

as a balanced three-phase fault with zero impedance between the phases [12]. Writing 

Kirchoff’s Voltage Law for the circuit when t >0: 

������
�� � 		�
��	 � 	√2� sin��� � ��         (3.1) 

Solving this results in the fault current i(t): 

 
��� � √��
� �sin����	∝ 	�	�� � sin	�� � 	�����/�          (3.2) 

 i(t) =    iac(t)  -  idc(t)                                                     (3.3) 

 Z =  	� 	� 	��!��            (3.4) 

 �  = �"#�$ %�& 	� 	 �"#�$ 	'&                     (3.5) 

 (	 � 	 �& 	� 	 '%& 	� 	 '
�)*& 	+�,                     (3.6) 

To find i(t) at its greatest value we allow α =(θ-π/2), then: 



27 

 

 i(t) = √2-./�sin 0�� � )
�1 � ��

2
34         (3.7) 

 The main purpose of the Short Circuit Study is to determine the available fault 

current (AFC) at locations throughout the system under fault conditions. The AFC is then 

compared to equipment withstand ratings and available interrupting capacity (AIC) of 

protective devices. Devices with a withstand rating do not interrupt fault current but must 

“ride through” a fault without damage imposed by the magnetic forces resulting from the 

large currents. Therefore, each panel-board must have a withstand rating greater than the 

AFC calculated at its bus. Each protective device must have an AIC greater than the AFC 

in order to be capable of interrupting the maximum fault current seen at its contacts. If a 

breaker or fuse is not rated to handle the maximum available fault current it might see, 

the device may not operate properly and its internal parts could fuse together or buckle 

under the destructive stresses of a fault condition, which can cause serious injury and/or 

property damage [11]. 

The AFC found at any point in an electrical system is a result of the fault 

contributions forced into the system and the impedances in their path to the fault location. 

The contributions toward the system consist of the utility, generators, and rotating 

machinery. The impedances throughout the system are supplied by conductors and 

transformers.  An example of a basic electrical system with a faulted bus can be displayed 

as one utility serving one main circuit breaker switchboard shown in the partial one-line 

diagram in Figure 3.2.  
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Figure 3.2: One-Line Diagram of Utility Serving Main SWBD 
 

In this system, the utility is the lone fault contribution with only the impedance of 

the conductors in the path to the faulted bus. The AFC at the Main SWBD is calculated 

using computer simulation software for speed and accuracy. This project will be 

conducted with multiple scenarios of electrical systems requiring calculations which will 

be aided by computer software. The actual process of calculating a fault current has been 

very well documented in the IEEE Standard 141 Red Book and IEEE Standard 242 Buff 

Book and will not be duplicated here [49,15]. However, this attenuation of fault current 

can be estimated using a point to point calculation method by the following equation 

[15].  

F= (1.732 x L x AFC)/(C x n x V)          (3.8) 

where 

L Length of conductor 

AFC Available fault current a beginning of run 

C  Constant representing conductor type 

n  number of conductor parallel runs  

UTILITY

Voltage 480 V
AFC 85635.0 Amps

CBL-MAIN

4   Sets of:
350 AWG/kcmil
Copper
Length 150.0 ft

PD-MAIN CB

AIC 100.0 kA
Rating 1200.0 A

MAIN SWBD

AFC 55.291 kA



29 

 

V Voltage line to line 

The AFC at the service entrance is a vital part of the calculation and is readily 

provided by the local electrical utility. Historically, this value is a very conservative large 

figure with the intent of evaluating the system during a worst case high fault current 

scenario. Therefore, the AFC is typically given as an infinite bus calculation that depends 

on the service transformer size and impedance. This results in the highest possible fault 

current that can be seen on the service transformer secondary terminals. The simple form 

of this calculation, based on infinite bus theory is indicated below [11]: 

1. Step One: Calculate the full load current at the secondary of the transformer. 

FLA (secondary) = 	5�6�7�89.:;�5������		√7                     (3.9) 

2. Step Two: Calculate the Available Fault Current at the secondary of the 

transformer. 

 AFC (secondary) = 
<�6	�:;/=>�.?@�A	$BB

%�       (3.10) 

For a 13.2kV-480V, 1500kVA transformer with impedance (Z) = 5%, the resulting 

infinite bus calculation for AFC = 36,085 amps.  

The idea of the infinite bus value being a conservatively high AFC can be tested 

as follows. Given the primary side distribution voltage of the 1500kVA transformer at a 

typical 13.2kV we will simulate the secondary AFC with a range of primary side AFC 

values. It is shown in Figure 3.3 and Table 3.1 that even for very high primary side AFC, 

the secondary AFC does not exceed the infinite bus value. Therefore, using the infinite 

bus method to calculate AFC is acceptable for evaluating AIC and withstand ratings of 

equipment. 
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Figure 3.3: Utility Contribution One-Lines 
 

 

Table 3.1 Simulation Results for 1500kVA Transformer with Z=5% 

Primary Side Contribution Transformer Secondary AFC 

5,000 amps 25,553 amps 

25,000 amps 30,010 amps 

65,000 amps 30,838 amps 

95,000 amps 31,006 amps 

UTILITY-1

Voltage 13200 V
AFC 5000.0 Amps

CBL-MAIN-1

4   Sets of:
350 AWG/kcmil
Copper
Length 150.0 ft

S

P XF-UTILITY-1

Nominal kVA 1500.0 kVA
Primary 13200 V
Secondary 480 V

XF-UTILITY-1 secondary

AFC 25.553 kA

PD-MAIN-1

AIC 100.0 kA
Rating 1200.0 A

MAIN SWBD-1

Withstand 100.0 kA
AFC 22.036 kA

UTILITY-2

Voltage 13200 V
AFC 25000.0 Amps

CBL-MAIN-2

4   Sets of:
350 AWG/kcmil
Copper
Length 150.0 ft

S

P XF-UTILITY-2

Nominal kVA 1500.0 kVA
Primary 13200 V
Secondary 480 V

XF-UTILITY-2 secondary

AFC 30.010 kA

PD-MAIN-2

AIC 100.0 kA
Rating 1200.0 A

MAIN SWBD-2

Withstand 100.0 kA
AFC 25.241 kA

UTILITY-3

Voltage 13200 V
AFC 65000.0 Amps

CBL-MAIN-3

4   Sets of:
350 AWG/kcmil
Copper
Length 150.0 ft

S

P XF-UTILITY-3

Nominal kVA 1500.0 kVA
Primary 13200 V
Secondary 480 V

XF-UTILITY-3 secondary

AFC 30.838 kA

PD-MAIN-3

AIC 100.0 kA
Rating 1200.0 A

MAIN SWBD-3

Withstand 100.0 kA
AFC 25.818 kA

UTILITY-4

Voltage 13200 V
AFC 95000.0 Amps

CBL-MAIN-4

4   Sets of:
350 AWG/kcmil
Copper
Length 150.0 ft

S

P XF-UTILITY-4

Nominal kVA 1500.0 kVA
Primary 13200 V
Secondary 480 V

XF-UTILITY-4 secondary

AFC 31.006 kA

PD-MAIN-4

AIC 100.0 kA
Rating 1200.0 A

MAIN SWBD-4

Withstand 100.0 kA
AFC 25.935 kA
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The peak value of the first cycle is a result of the DC exponential decay value. 

The rate of DC exponential decay occurs as a result of the system impedance properties 

when looking from the fault back to the short circuit contribution. The DC component of 

the current normally decays rapidly and reaches an insignificant value within 0.1 second 

in most power systems [12]. The conductor and transformer properties of resistance (R) 

and reactance (X) in calculation with the utility source system properties account for this 

value. This value is known as the X/R ratio and varies throughout the system depending 

on inherent properties. The protective devices must be measured against this value as 

well as the AFC. 

Right after a fault occurs the current is no longer a sine wave. The waveform can 

now be represented as the combination of a sine wave and a decaying exponential. Figure 

3.4 displays this waveform in a graphical setting. 

 

Figure 3.4: Fault Current Waveform 
 

At the moment of initiation of a fault the ac current wave, which is normally 

symmetrical about the zero axis, BX is offset by some value, creating a waveform which 

is symmetrical about another axis, CC’ [12]. The degree of the shifting is a result of the 
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circuit parameters and the location of the waveform when the short circuit was initiated. 

These system parameters also determine the rate of decay of the offset which is referred 

to as the DC current.  

There are some important measurements shown in Figure 3.4. The value from 

BA, Imc represents the asymmetrical peak value of the short circuit. This is termed 

asymmetrical because the waveform is no longer symmetrical about the time axis. This is 

the maximum instantaneous current in the major loop of the first cycle of short-circuit 

current. The rms symmetrical value of the short circuit current at any point in time, such 

as EE’, is the rms value of the ac portion of the current wave. The value of the rms ac is 

equal to the ac current divided by the square root of two, and is shown graphically by the 

distance from CC’ to DD’. The rms asymmetrical value of the short circuit current is the 

rms value of the combined ac and dc waves, and is calculated by the formula [12]: 

  - � D�E6F�G� � �-HI��                    (3.11)  

These different parameters and nomenclature of the sine wave are important when 

equipment is manufactured to meet various standards and specifications. The 

specification of the standards can require performance and testing based on certain 

parameters of the short circuit current. 

The actual waveform of the asymmetrical fault current is hard to predict 

depending on exact moment during the voltage cycle the fault occurs. However, the 

largest asymmetrical fault current occurs when the fault happens at a point when the 

voltage is zero [51]. Then, the asymmetrical fault current depends only on the X/R Ratio 

and the magnitude of the symmetrical fault current. Figure 3.5 shows how the ratio of the 

peak asymmetrical current to RMS symmetrical current varies with the X/R Ratio [52].  
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Figure 3.5: Peak Asymmetrical Current versus X/R Ratio 
 

The devices manufactured for 480 volt systems have AIC and withstand ratings 

specified in RMS amperes. Furthermore, the AFC is calculated as an RMS value for 

consistency in equipment qualification and approval.  Even though low voltage devices 

do not have asymmetrical ratings, if the test X/R Ratio and symmetrical current rating are 

known, the maximum asymmetrical fault current rating can be achieved from Figure 3.5. 

The X/R value of the system is important because it determines the value of the 

fault current at 3-5 cycles after the fault which corresponds to the moment in time when 

the protective device will activate to isolate the fault. The higher the X/R ratio, the longer 

the DC component exists [16]. If the system X/R is greater than the protective device 

tested X/R, then further investigation is required to determine if the device is acceptable 

for use.  

When the system X/R ratio exceeds the protective device tested X/R the AIC of 

the protective device shall be de-rated per the following multiplication factor [51].  

         (3.12) 
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If the resulting de-rated AIC is greater than the AFC, then the device is properly 

rated for installation in the system at the specified location. 

All low voltage protective devices are tested at pre-determined X/R ratios per the 

table below [51]. 

 

Table 3.2 Test X/R Ratios for Protective Devices 

DEVICE Test X/R Ratio 

Low Voltage Power Circuit Breakers 6.6 

Molded Case Circuit Breakers rated less than 10k AIC 1.7 

Molded Case Circuit Breakers rated between than 10k & 20k AIC 3.2 

Fuses, Insulated Case Circuit Breakers, Molded Case Circuit 

Breakers rated greater then 20k AIC 

4.9 

 

The short circuit study qualifies the equipment by measuring it against two 

parameters: 

1. The AIC rating of the equipment against the calculated system AFC. 

2. The X/R ratio at which the device was tested against the calculated X/R ratio 

of the system. 

If both of these requirements are met, then the equipment is suitable for 

installation in the system at the location of calculation. Figure 3.6 shows a partial one-line 

diagram with simulation results for AFC and X/R Ratio. The Figure shows that the circuit 

breaker PD-MAIN CB has an AIC greater than the system AFC and a test X/R Ratio 

greater than the system X/R Ration. The panel MAIN SWBD has a withstand rating 

greater than the system AFC and a test X/R Ratio greater than the system X/R ratio. 
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Therefore, both the circuit breaker and switchboard are sufficient for operating at this 

location within this electrical system. 

 

 

 

Figure 3.6: Partial One-Line Diagram Showing Fault Current Values and X/R 

Ratios 

 

 

 

3.2 Protective Device Selective Coordination 
 

Selective coordination first became a requirement in the 1996 National Electrical 

Code (NEC) in Article 620, “Elevators, Dumbwaiters, Escalators, Moving Walks, 

Wheelchair Lifts, and Stairway Chair Lifts” [34]. Section 620.62 required that protective 

devices in each disconnect be selectively coordinated with the supply side overcurrent 

protective devices, where more than one driving machine’s disconnecting means is 

supplied by a single feeder. The NEC further expanded the requirement for selective 

coordination in 2005 as part of Article 700, “Emergency System”, and Article 701 for 

UTILITY

Voltage 480 V
AFC 85635.0 Amps

CBL-MAIN

4   Sets of:
350 AWG/kcmil
Copper
Length 150.0 ft

PD-MAIN CB

AIC 100.0 kA
Test X/R 4.899

MAIN SWBD

Withstand 200.0 kA
AFC 55.291 kA
Test X/R 6.600
System X/R Ratio 2.630



36 

 

“Legally Required Standby Systems” in Sections 700.27 and 701.18 entitled 

“Coordination” [33]. The 2005 NEC defines selective coordination as “Localization of an 

overcurrent condition to restrict outages to the circuit or equipment affected, 

accomplished by the choice of overcurrent protective devices and their ratings or 

settings” [17]. These additions to the code expanded the selective coordination 

requirement to ‘Essential electrical systems of Health Care Facilities”. The 2008 NEC  

added the requirement for selective coordination into the new Article 708, “Critical 

Operations Power Systems (COPS)” [35]. Section 708.54, “Coordination”, requires that 

COPS overcurrent devices shall be selectively coordinated with all supply side 

overcurrent devices [35].  

Protective device selective coordination is the response of circuit breakers and 

fuses during a transient, with the intent of isolating the faulted part of the system from 

service. The goal is to minimize the damage to equipment and personnel in nearby 

locations, while maintaining electrical service in parallel branches. This is particularly 

important in mission critical systems that this project is based on. It is stated in the IEEE 

Buff Book that, “Coordination is a basic ingredient of a well-designed electrical 

distribution system and is mandatory in certain healthcare and continuous process 

industrial systems” [15]. This coordination must be done for all protective devices in a 

series from the sources to the loads. When circuit breakers are properly set and installed, 

a fault at any location has minimal effect on nearby panels and feeders. A one line 

diagram of an electrical system is shown in Figure 3.7. If a fault occurred at Motor-1 then 

proper selective coordination would exist if circuit breaker PD-Motor-1 opened before 

PD-Panel-C or any device further upstream. 
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Figure 3.7: One-Line Diagram of a Two Motor Electrical System 
 

The protective devices responsible for system selective coordination consist of 

fuses and circuit breakers.   These devices have a profile of current versus time that they 

will allow to pass before activating that is referred to as a time-current curve (TCC).  

Figure 3.8 shows a TCC for circuit breaker PD-Breaker and fuse PD-Fuse.  
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Figure 3.8: Time Current Curves for a Circuit Breaker and a Fuse 
 

Since the reference voltage is 480 volt and the current is shown at times 10, a 6kA 

fault current would be cleared by this circuit breaker at 0.015 seconds and by this fuse at 

0.9 seconds.  

The TCCs for the system above with proper selective coordination is shown 

below in Figure 3.9. This plot shows all protective devices in the series from the Utility 

source to Motor-1.   

 

0.5 1 10 100 1K 10K
0.01

0.10

1

10

100

1000

CURRENT IN AMPERES

bkr-fuse.tcc   Ref. Voltage: 480V   Current in Amps x 10   

T
IM

E
 IN

 S
E

C
O

N
D

S

PD-Fuse

PD-Breaker

PD-Fuse

PD-Breaker



39 

 

 

Figure 3.9: Time Current Curves for a Selectively Coordinated System 
 

It is clear that the breaker curves do not touch or overlap each other and therefore 

proper selective coordination exists. The TCC for the system above is shown with a lack 

of selective coordination in Figure 3.10.  
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Figure 3.10: Time Current Curves with a Lack of Selective Coordination 
 

The overlap of breaker curves PD-Main and PD- Panel B is evidence that 

selective coordination does not exist. If a fault of 2800 amps were to occur on Panel B, 

then PD-Main would open before PD-Panel B. This would cause the feeder to Motor-2 to 

lose power and our goal of isolating the fault without disturbing nearby devices would 

not be achieved. 

Selective coordination is achieved by properly selecting and setting the protective 

devices. Actually, all electrical systems have a degree or some level of selective 
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coordination because the overcurrent protective devices closest to the source have higher 

ratings than the downstream devices [18]. This project focuses on coordination with 

circuit breakers because they can contain adjustable settings, where fuses do not. The 

adjustable features in a circuit breaker are divided by time segments. The Long Time 

(LT) is the setting of the breaker for overload conditions and is referred to as the 

amperage rating. This is generally in the time period beyond 60 seconds and reacts 

similarly to a thermal element. The Short Time (ST) is the setting for the breaker 

typically 0.5 seconds until the long time segment. This transitional period is important for 

sensing low level faults that may occur due to system impedances. The Instantaneous (I) 

element is the setting for the initial transient of a fault. This is often set very high to allow 

for motor and transformer inrush currents in the first few cycles of start-up but not higher 

than the available fault current.  

Figure 3.11 shows two thermal magnetic breakers with identical Long Time 

amperage ratings and an adjustable setting in the Instantaneous region only. PD-Panel-B 

is set at the lowest setting Instantaneous setting and PD-Panel-D is adjusted to the highest 

setting. Therefore, they have different curve locations in the Instantaneous regions, but 

overlap in the Long Time domain. 
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Figure 3.11: Time Current Curves for Thermal Magnetic Breakers 
 

Figure 3.12 shows two electronic breakers with adjustable settings in the Long 

Time, Short Time, and Instantaneous regions. When a circuit breaker is specified with 

this type of setting options, it is referred to as an LSI device. PD-Main is set at the proper 

overload rating for Long Time and is shown at the lowest settings for Short Time and 

Instantaneous. PD-M2 is also set at the proper overload rating for the Long Time but is 

adjusted to the highest settings for Short Time and Instantaneous. Therefore, they have 
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different curve locations in the Short Time and Instantaneous regions but overlap in the 

Long Time. This shows that an LSI breaker can be set to protect for Long Time overload 

and still have a multitude of curve locations in the Short Time and Instantaneous regions 

These curve locations can be adjusted for selective coordination with upstream and 

downstream protective devices. By specifying the proper breakers and adjusting the time 

domains, the goal of attaining selective coordination can usually be achieved. 

 

Figure 3.12: Time Current Curves for LSI Circuit Breakers 
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3.3 Arc Flash Hazard Analysis 
 

Performing a fault current analysis and a protective device coordination study 

allows us to proceed with the arc-flash hazard analysis. An arc-flash hazard analysis 

should be performed in association with or as a continuation of the short-circuit study and 

protective-device coordination study [6]. The results from the short-circuit study are used 

to determine the available fault current at electrical equipment locations and therefore be 

able to properly specify equipment withstand ratings and interrupting capabilities. The 

results from the protective-device coordination study give us information on the time the 

system takes to isolate overload or fault conditions. The results of the short-circuit and 

protective device evaluation are used in combination to give us the necessary information 

required to perform an arc-flash hazard analysis. The results of the arc-flash hazard 

analysis are used to identify the flash-protection boundary and the incident energy at 

assigned working distances throughout any position or level in the electrical system [6]. 

IEEE-1584 defines an empirical method to calculate the incident energy from the 

arc due to heat, which is responsible for the most common effect of an arc-flash: burns 

[6]. This procedure does not consider other adverse effects of the arc flash such as 

pressure waves, molten metal, shrapnel or flying debris. This method is applicable over a 

specified range of voltages, fault currents, and frequencies. The multiple steps taken 

included calculating an arcing current, using that result to calculate incident energy, then 

applying that information to determine an arc flash boundary. 
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The first step in the arc-flash analysis is to calculate the arcing current. Arcing 

current is a short circuit via ionized gas between one live part and the ground or another 

live part [19]. Due to the arc resistance, the arc current is not the same as the available 

fault current. Arcing current is always lower than the bolted fault current [20, 21].  

From the IEEE-1584 empirical derived model for a system under 1000V and 

having an available fault current between 700A – 106kA, the arcing current can be 

calculated as follows [6]: 

lg Ia= J � 	0.662 lg -P* �0.0966	� � 0.000526	S � 0.5588	�	Ulg VP*W � 0.00304	S	�VZVP*�	  (3.13) 

where 

 

 lg is the log10 

 

 Ia is arcing current (kA) 

 

 K is -0.153 for open configurations and 

  is -0.097 for box configurations 

 

 Ibf is bolted fault current for three-phase faults (kA) 

 

 V is system voltage (kV) 

 

 G is the gap between conductors, (mm) 

 

 

This project analyzed the effects of the arc-flash exposure for qualified 

technicians working on electrical equipment in a mission critical facility. Therefore, the 

K value is -0.097 to represent the arc occurring inside an electrical panel, switchboard, or 

motor control center. The system voltage V, for this project is 480 except when a step-

down transformer is inserted to achieve a 208 volt feeder. The value for G is the gap 

spacing between the conductors or bus bars, which is dependent on equipment design. 
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This research studies low voltage switchgear which equates to a value of 32 from the 

IEEE-1584 table below. 

 

Table 3.3 Classes of Equipment and Typical Bus Gaps 

Classes of Equipment Typical Bus Gaps (mm) 

15kV switchgear 152 

5kV switchgear 104 

Low-voltage switchgear 32 

Low-voltage MCCs and panelboards 25 

Cable 13 

Other Not required 

 

This reduces the arcing current equation (3.13) to: 

Ia  = 10��B.B7\	]	B.^77_`aEbc�           (3.14) 

The incident energy is a value that represents the amount of thermal energy that a 

person is exposed to at a given distance. Incident energy is measured in Joules per square 

centimeter (J/cm
2
) and is defined as a watt second [6]. The calculations in this research 

are performed in the English system and, therefore, reports in the conversion 

nomenclature of calories per square centimeter (cal/cm
2
).  The incident energy, 

normalized for an arc duration of 0.2 seconds and a distance of 24” can be calculated 

given the arcing current above and using the following formula [6].   

The Incident Energy normalized is calculated as follows: 

 

lg En = K1 + K2 + 1.081 lg Ia + 0.0011 G        (3.15) 

where 
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 En is normalized incident energy (J/cm
2
) 

 

 K1 is -0.792 for open box configurations (no enclosure) and 

  is -0.555 for box configurations (enclosed equipment) 

 

 K2 is 0 for ungrounded and high-resistance grounded systems and 

  is -0.113 for grounded systems 

 

 Ia is arcing current from above 

 

 G is the gap between conductors (mm) 

 

The constants K1 and K2 are dependent upon the physical enclosure of the circuit 

breaker. Since circuit breakers are mounted in a panel-board or switchgear it is in a box 

configuration. This will give a K1 value of -0.555. The systems this project will analyze 

are grounded and therefore a K2 value of -0.113 is appropriate. 

This reduces the normalized incident energy equation (3.15) to: 

 En  = 10
(-0.633 + 1.081logIa) 

        (3.16) 

For a different arc duration and/or distance from the arc, the normalized incident 

energy can be converted into the actual incident energy as follows [6]: 

E = CfEn � �B.��(d$B
e

fe )            (3.17) 

where 

 

 E is incident energy (cal/cm^2) 

 

 Cf is 1.0for voltages above 1kV and 

  is 1.5 for voltages at or below 1kV 

 

 En is normalized incident energy 

 t is arcing duration in seconds 

 

 D is the distance from possible arc point to the person (mm) 

 

 x is the distance exponent  

 

 



48 

 

This equation can be reduced by verifying system parameters. This project 

analyzes systems at 480 volts and therefore Cf is 1.5. The value for the distance exponent 

x, is furnished by the IEEE 1584 table below. 

Table 3.4 Distance x Factors  

System Voltage Equipment Type Distance x Factor 

208-1kV Open Air 2.000 

208-1kV Switchgear 1.473 

208-1kV MCC and Panels 1.641 

208-1kV Cable 2.000 

 

The value of D represents the distance from the exposed energized electrical 

conductor to the maintenance personnel working on the equipment. This value is 

standardized by IEEE 1584 depending on the class of the energized electrical equipment 

[6]. 
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Table 3.5 Classes of Equipment and Typical Working Distances 

Classes of Equipment Typical working distance (inches) D 

15kV switchgear 36 

5 kV switchgear 36 

Low-voltage switchgear 24 

Low-voltage MCC’s and panel-boards 18 

Cable 18 

Other TBD 

 

Using x=1.473 and D = 18”, reduces the incident energy equation (3.16) to: 

 E  = 2.295 En(t/0.2)           (3.18) 

Equations 3.14, 3.16, and 3.18 may now be combined into one equation which expresses 

the incident energy E as a function on Ibf and t, as follows [22]: 

 E = 2.295 {10
(-0.670 + 0.901 log Ibf

)} (t/0.2)        (3.19) 

Note that (3.19) is only valid for the assumptions made above, which are made for 

a power circuit breaker in an electrical system analyzed by this project (i.e., a solidly 

grounded 480 volt system, a circuit breaker mounted in a low-voltage switchgear, and at 

a working distance of 18”). 

The arc-flash hazard analysis provides important information that helps establish 

a safety barrier for workers when exposed to energized equipment. The incident energy 

level that will cause a just curable burn or a second degree burn is 1.2cal/cm
2
 [4]. If a 

butane lighter is held 1 cm away from a person’s finger for 1 second and the finger is in 

the blue flame, a square centimeter area of the finger will be exposed to about 1.2cal/cm
2
 

[6]. The entire premise of safety and arc flash is based on a curable or second degree burn 
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and, therefore, the incident energy level of 1.2cal/cm
2
 is an important value. The distance 

away from an exposed energized conductor that is calculated at 1.2cal/cm
2
 is known as 

the arc-flash boundary. This can be calculated by rearranging equation (3.17) and solving 

for distance at an incident energy of 1.2cal/cm
2
. 

 Db = {4.184 Cf En (
�
B.�)(610

x/Eb
)}

1/x     
                       (3.20) 

where 

 Db is the boundary from the arcing point or the flash protection boundary 

 Cf is 1.5 for voltages at or below 1Kv 

 En is incident energy normalized 

 Eb is incident energy at boundary distance 

 t is time in seconds 

 x is the distance exponent from Table 3.3 

After comparing equations 3.19 and 3.20, it is clear that the determining factors 

for the incident energy level are the arcing current that results from the available fault 

current and the time that the arc exposure exists. These factors are controlled by the 

system in which the circuit breaker is installed and the interrupting characteristics of the 

circuit breaker. Figure 3.13 shows a circuit breaker time current curve with the arcing 

current crossing it.  
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Figure 3.13: Circuit Breaker TCC Interrupting Arcing Current 
 

Here it is shown that an arcing current of approximately 10.9kA is interrupted by 

the circuit breaker PD-PANEL-B at a time of 0.0175 seconds. This entire process is 

recalculated at a fault current level of 85% less than the reported AFC. This allows for a 

worse-case scenario if the fault current is lower than anticipated. This arcing current is 

simultaneously plotted against the protective device curve and the slowest interrupt time 

is used in calculating the incident energy. Figure 3.14 shows both arcing currents plotted 

against PD-Panel-B. 
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Figure 3.14: Circuit Breaker TCC Interrupting Arcing Currents 
 

This information can be used in the equations above to calculate the incident 

energy for Panel-B. The computer simulation output results are shown in the partial one-

line diagram in Figure 3.15. 
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Figure 3.15: Partial One-Line Showing Panel-B Incident Energy 
 

With this information of an incident energy level of 0.6 cal/cm
2
, the qualified 

technician can select clothing and personal protective equipment rated for arc-flash 

safety. The clothing and equipment selected must always have an arc flash rating greater 

than the incident energy at the electrical device to be maintained. Since the incident 

energy level can have a multitude of values ranging from 0.1cal/cm
2
 up to over 

40cal/cm
2
, the amount of different clothing devices could be enormous. Therefore, the 

concept of grouping the incident energy levels into categories arose.  
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3.4 Arc Flash Hazard Risk Categories 

 
While incident energy prediction was being researched, there were also studies 

being conducted on how to protect workers in the event of an arc-flash. In 1997 and 

1098, two papers on the testing of Personal Protective Equipment (PPE) for Arc-Flash 

Exposure were published [8,9]. This project tested the flammability of clothing when 

exposed to arc flashes of differing incident energy magnitudes. Ultimately the paper 

proposed protective clothing classes based on ranges of incident energy exposure which 

correlated to a fire rated clothing system and description. This project also included the 

performance of safety glasses, face shields, and work gloves when exposed to an arc-

flash. This research provided the ground work for a standardized system focused on 

worker safety in the event of an incident. 

In parallel with the developments of the IEEE Standard, the NFPA 70E Standard 

for Electrical Safety in the Workplace was created [10]. A portion of this document 

covers the need for informing employees of the electrical arc flash hazard they are 

exposed to when working on energized equipment. NFPA 70E divides incident energy 

levels into hazard/risk categories ranging from 0-4. Each category is given a clothing 

description and a required minimum arc rating of personal protective equipment. These 

categories are very similar to those suggested by Neal and Bingham. [8,9]. 

The Arc Flash Hazard Analysis gives us an incident energy level at a specified 

working distance from the source of the arc. This enables us to select Personal Protective 

Equipment (PPE) that is rated above the incident energy. Although the concept of 

wearing PPE that is suited for the task is simple, the different incident energy levels can 
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be numerous. Therefore, the implementation of hazard risk categories was instituted into 

the PPE selection process. 

There are hazard risk category levels 0,1,2,3, and 4 which correlate to maximum 

incident energy levels (cal/cm
2
) of 1.2, 4, 8, 25, 40. This allows for an electrical device to 

be labeled per category and the selection of PPE can be matched the same way. 

Table 3.6 Hazard Risk Categories and PPE Characteristics 

Hazard Risk Category 

(HRC) 

Typical Protective 

Clothing Systems 

Required Minimum PPE 

Arc Rating 

(cal/cm
2
) 

0 Non-melting, flammable 

materials(natural or treated 

materials with at least 4.5 

oz/yd
2
) 

N/A (1.2) 

1 FR pants and FR shirt, or 

FR coverall 

4 

2 Cotton Underwear, plus FR 

shirt and FR pants  

8 

3 Cotton Underwear, plus FR 

shirt and FR pants and FR 

coverall 

25 

4 Cotton Underwear, plus FR 

shirt and FR pants and 

multi-layer flash suit  

40 

 

The partial one-line diagram for Panel-B can now include a hazard risk category 

also known as a PPE Category as shown below in Figure 3.16. 



56 

 

 

Figure 3.16: Partial One-Line Showing Panel-B Incident Energy and Hazard Risk 

Category 
 

Per Table 3.6, the highest hazard risk category is level 4, with a maximum 

incident energy of 40cal/cm
2
. While PPE is certainly available in ratings well above 

40cal/cm
2
, working near exposed energized electrical equipment above 40cal/cm

2
 is 

discouraged [27]. Annex D of NFPA 70E notes that, “greater than normal emphasis 

should be placed on de-energizing the equipment” (Annex D.8 FPN) at such high 

incident energy levels. 
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4. EXISTING ARC FLASH HAZARD MITIGATION TECHNIQUES 

This chapter will present existing products, techniques and devices aimed at 

mitigating the arc flash hazard exposure. These products and techniques will be computer 

simulated with before and after simulations of the electrical system. The implemented 

equipment and techniques will show a decreased arc flash hazard incident energy and 

category. 

 

4.1 Changing Work Methods and Procedures 

The approach of changing work methods for mitigating arc flash hazards focuses 

on the existing calculations and changes of the environment to decrease arc flash 

exposure. Incident energy reduction approaches by changing working methods include 

changing work procedures, modifying existing settings, and increasing work distances 

[24].  

There are multiple work procedures that can be implemented to reduce arc flash 

exposure. The best work practice to avoid exposure is to work in the de-energized state 

[25]. NFPA 70E devotes an entire section to de-energizing or the process of achieving an 

electrically safe work condition. However, this is typically not possible in mission critical 

facilities where life support equipment is dependent on a constant power supply. 

Energized work shall be permitted where the employer can demonstrate that de-

energizing introduces additional or increased hazards such as the interruption of life 
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support equipment, deactivation of emergency alarms, and shutdown of hazardous 

location ventilating equipment [10].  

There are workmanship and technical training procedures that can be instituted to 

decrease the arc-flash exposure. A specific example is by changing locations when taking 

measurements with a power quality meter. Historically, measurements have been 

performed by direct connection of the voltage and current probes to the primary circuit, 

where incident energy can be relatively high [24]. By taking the measurements at the 

potential transformers and current transformers, the arc-flash exposure can be reduced.   

 

4.2 Temporarily Modifying Existing Protective Device Settings 

One of the most common and easiest arc flash mitigation techniques is to 

temporarily modify the existing settings of the first upstream protective device. This can 

be accomplished by lowering the instantaneous setting of the circuit breaker that is 

protecting the equipment to be worked on. An example of this is shown by the partial 

one-line diagrams in Figure 4.1.  
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Figure 4.1: Incident Energy Before and After Temporary Setting of Breaker CB-

Main 
 

Here, it is shown that by lowering the instantaneous setting of circuit breaker CB-

MAIN from 15 (24000A) to 10 (16000A) the incident energy decreases from 

121.8cal/cm
2
 to 4.9cal/cm

2
 and the PPE Category decreases from Dangerous to HRC 2. 

Care must be taken when implementing this solution, as protective device coordination 

may be affected when reducing the clearing time of protective devices [24]. Furthermore, 

there must not be any devices downstream that could require sudden in-rush of current 

that could trip the lowered instantaneous setting. The starting of a motor or energizing a 

transformer could draw up to six times the operating amps for that device and therefore 

cause a circuit breaker trip in the instantaneous time domain. 
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MAIN SWBD-2
IE 4.9 Cal/cm^2
PPE Category 2
AFC 23.858 kA
Arcing Current 13.782 kA
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4.3 Increasing the Working Distance 

The calculations from IEEE-1584 for incident energy involve several unknowns 

that must be collected in order to achieve an accurate result. However, the most critical 

variables are the distance from the arc and the time to interrupt the fault. Since the 

incident energy is proportional to the square of the distance (in open air), increasing the 

working distance will significantly reduce the incident energy [23]. Care must be taken 

when implementing this solution because increasing the distance could hinder a person’s 

ability to work on the equipment [24].  Working distance can easily be increased by using 

remote racking devices, remote operating equipment, and extension tools. Where the 

equipment design permits, it is very beneficial to carry out all switching operations 

remotely, away from the switch gear [25]. Racking and switching of a low voltage power 

circuit breaker is probably the highest exposure that will occur in industrial facilities [27]. 

One way to reduce the hazard is to lengthen the tool used to rack the breaker, or use 

remote racking/switching equipment that is available from manufacturers or other 

suppliers [27]. The partial one-line diagrams in Figure 4.2 show the effectiveness of 

increasing the working distance. 
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Figure 4.2: Incident Energy Before and After Increasing Working Distance 
 

Here it is shown that by increasing the working distance from 18 inches to 10 feet 

through the use of a remote racking device, the incident energy decreases from 

67.6cal/cm
2
 to 3cal/cm

2
 and the PPE Category decreases from Dangerous to HRC 1.  

 

4.4 Arc Flash Resistant Switchgear 

 The selection and specification of electrical equipment can be accomplished with 

the inclusion of arc-flash hazard properties. However, the design and manufacturing 

specification should be carefully reviewed before purchasing equipment. Low voltage 

switchgear and control gear assemblies are tested for short time and short circuit 

withstand according to IEEE C.37.20 [29]. Many new designs are available from 

manufacturers to reduce the arc flash hazard exposure [25]. Arc flash resistant switchgear 

UTILITY SOURCE
AFC 26984.0 Amps
480.0 V

CBL-MAIN

CB-MAIN
1600.0 A
   LTPU (A);LTD 1 (1600A); 2
   STPU 8 (12800A)
   STD INST (I^2t Out)
   INST 15 (24000A)

MAIN SWBD
IE 67.6 Cal/cm^2
PPE Category Dangerous!
AFC 23.858 kA
Arcing Current 11.715 kA
WorkingDistance 18 inches

UTILITY SOURCE-2
AFC 26984.0 Amps
480.0 V

CBL-MAIN-2

CB-MAIN-2
1600.0 A
   LTPU (A);LTD 1 (1600A); 2
   STPU 8 (12800A)
   STD INST (I^2t Out)
   INST 15 (24000A)

MAIN SWBD-2
IE 3 Cal/cm^2
PPE Category 1
AFC 23.858 kA
Arcing Current 11.715 kA
WorkingDistance 120 inches
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is a new manufacturing procedure for the mitigation of incident energy exposure. Arc-

resistant switchgear is tested to withstand an internal arc, and ensure that the person 

operating the switch or working on the equipment is not exposed to the hazard [28]. This 

is typically accomplished by ventilating the energy out of the top of the switchgear or 

some direction away from the worker. Although this is an excellent idea for personal 

protection when the equipment is closed, the worker is generally engaged with the 

devices when the enclosure is open. 

 

4.5 Optical Light Sensor Technology 

 Electrical system protection is designed to interrupt the flow of electricity in the 

event of an overcurrent or fault condition. When an arc flash occurs the arcing time is a 

critical factor in limiting the damage and risk of personal injury resulting from an arc 

flash [26]. Therefore, the faster the relay senses the arc-fault, the lesser the incident 

energy will be and the safety of the worker is increased. Optical sensor technology 

detects the light from the arc-flash and initiates a shutdown.  

When an arc flash occurs there is a tremendous release of radiant energy that 

consists of audible, thermal, light, and other energy properties. The light intensity of the 

arc flash is comprised of different wavelengths than visible light.  Visible light consists of 

the light spectrum ranging from 400nm to 700nm wavelengths but arc flash tests have 

shown to produce wavelengths in the range of 200nm to 600nm. Consequently, optical 

arc flash relays are designed to operate in the lower end of the visible spectrum and 

slightly lower including ultraviolet light [30].  
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An optical arc flash detection relay system requires a light sensor and a current 

measuring device. The light sensor detects the sudden change in the light spectrum 

wavelength and the current measuring device detects the change in instantaneous over-

current. Tripping only occurs if both light and fault current are detected [30]. These 

relays are equipped with solid state technology for additional speed and they utilize peak 

to peak measurements to avoid the delay associated with root-mean-square calculations. 

The total operating time is typically less than 2.5ms for the relay [31]. After the relay 

sends a signal to the disconnecting device, it is another 5 cycles or 84ms for circuit 

breaker opening time. This equates to a total arc flash detection and interrupting time of 

approximately 0.09 seconds. 

This type of system is dedicated to arc-flash protection and can be viewed as a 

stand-alone system. When in use, this avoids the process of coordinating with upstream 

and downstream protective devices. However, if more dedicated arc flash protection was 

added to the system, then time delays for trip time should be selectively coordinated. 

The optical sensing device most often used is a fiber optic cable that can be up to 

200 feet long. The cable is constructed of plastic fiber with a glass core and is routed 

throughout all switchgear compartments where an arc flash could occur. The routing for 

the fiber optic cable in two-high construction switchgear is shown in Figure 4.3.  
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Figure 4.3: Typical Fiber Optic Routing in Switchgear 
 

The fiber is shown routed in a continuous loop to allow for the option of 

continuous monitoring by the arc detection relay. This can be accomplished by sending a 

test pulse through the system at periodic intervals. If the test pulse is not received as 

programmed, then an alarm can be activated to alert maintenance personnel of an 

equipment failure. 

Unlike communication fibers, this optical sensor has no cladding to prevent 

ambient light from entering the fiber [23].  This is vital to the operation because the 

system depends on external light to alert of an arc flash. The lack of opaque fiber 

cladding allows some of the light to enter through the exposed cylindrical exterior 

surface, where it propagates back to the electronics. When arc flash occurs, the system 

will detect the light and the relay will send a trip signal to the circuit breaker. The light 

sensor system can be operated in automatic or manual mode. In automatic mode, the 

system continually adjusts its pickup to normal slow changing background light levels 

and therefore any false trips associated with opening an equipment enclosure door can be 

avoided. Manual light intensity level settings may be more appropriate where some 

normal low-level arcing might take place such as in older air-magnetic switchgear [23] 
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To supervise the instantaneous overcurrent change during a fault, the relay has 

inputs for a signal from conventional 5 amp current transformers. These are typically 

connected to the current transformers located on the source side of the main breaker and 

are used to drive instantaneous phase and ground over-current elements [26]. These over-

current elements behave as fault detectors and signal the relay when a rapid change in 

current is detected. Fault detector supervision is selectable but recommended by the 

manufacturer for most applications [23]. When both the optical and fault detection 

systems indicate an arc-flash, the relay will send a trip signal to the circuit breaker. A 

block diagram is shown in Figure 4.4. 

 

 

 
Figure 4.4: Arc Detection Relay Block Diagram 
 

The block diagram shows two high speed solid state relays and one conventional 

normally-open contact for tripping. The operating times of the solid state and contact 

tripping times are illustrated below in Figure 4.5. 
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Figure 4.5: Arc Detection Relay Operating Times 
 

 

The major benefit of using this style of arc flash detection relay is the ability to 

limit incident energy whether the available fault current is relatively high or low. IEEE 

1584 states that the worst case incident energy level may not occur at the bolted fault 

current point. With the standard protection of time overcurrent and instantaneous 

protection, low level fault currents can easily result in higher incident energy levels 

because the clearing time is so much longer [32]. The increased clearing time from a 

lower amperage fault current can offset the higher amperage from a larger fault current 

and produce an incident energy that is more hazardous. Once the arcing current exceeds 

the instantaneous setting, incident energy levels drop dramatically [23]. Figure 4.6 below 

illustrates this. 
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Figure 4.6: Incident Energy Levels With and Without Arc Flash Relay 
 

The arc flash relay is shown to provide instantaneous tripping across all 

magnitudes of fault current. Because there is no coordination requirement, clearing time 

is essentially reduced to the operating time of the back-up breaker [23]. This shows the 

benefit in reducing the clearing time of the arc flash. 

A typical single loop example for the fiber optic sensor is shown below in Figure 

4-7. In this application the single optical fiber covers four circuit breaker feeder cubicles. 

When the fault detector pickup threshold is exceeded and an optical arc flash is detected, 

the arc detection relay will send a trip signal to both the high-side and low-side circuit 

breakers. 
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Figure 4.7: Single Fiber Loop Layout 
 

 

4.6 Allowing a Lack of Circuit Breaker Selectivity 

The goal of protective device coordination is to isolate the faulted section of the 

electrical system and to not interrupt nearby or parallel feeders. This process is 

accomplished by the setting of protective devices as shown in Chapter 2. However, when 

protecting the system for arc flash, the isolation of the faulted section must happen as 

quickly as possible in order to avoid the damage to electrical equipment and maintenance 

personnel. When a protective device system has been selectively coordinated with the 

goal of isolating faults, the optimal arc flash protection might not be in place.  

Allowing the electrical system to operate with a lack of selective coordination can 

sometimes decrease the arcing current interruption time and therefore decrease the 

incident energy. Although the 2008 NEC Article 708 calls for selective coordination in 

all “Critical Operations Power Systems (COPS), not all electrical systems fall under this 



69 

 

categorization [35]. An example is of a manufacturing facility that produces aluminum 

siding where the system is not COPS, but the company management has decided not to 

de-energize for certain types of electrical system maintenance.  
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5. IMPACT OF ARC FLASH ANALYSIS 

 
 This chapter presents the impact of arc flash hazard analysis on existing facilities 

and the implementation of mitigation techniques with the intent of lowering arc flash 

hazards. The facilities analyzed are from a database of over one-hundred electrical 

system studies completed during the last 12 years. The existing electrical systems will be 

described along with owner’s objectives and goals for the arc flash hazard analysis. The 

study will be performed with the assistance of computer software and the results analyzed 

and discussed. Methods for mitigating areas of high arc flash hazard will be 

recommended and then the system will be reevaluated by the computer software. 

 

5.1 Free Standing Ambulatory Surgery Center 

 This section of the project analyzes a power distribution system located in a free 

standing ambulatory surgery center located in Pinellas County that was built in 1999. The 

facility contains approximately 7500 square feet of offices and surgical suites. Per the 

State of Florida Statutes and the Agency for Healthcare Administration, a fault current 

study and protective device coordination analysis was required for this facility before a 

Certificate of Occupancy could be issued. Years after opening, an arc flash hazard 

analysis was directed by ownership with the intent to comply with OSHA and NFPA. 

The company goal was to achieve a hazard risk category 3 or below at all electrical 

breaker panels in the system. 
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The electrical service entrance is 120/208 volts, 600 amps, 3-phase, 4-wire, 

grounded Y. The distribution design consists of a main distribution panel (MDP) 

specified at 800 amp main lug only with 5 feeder breakers serving as the system main 

disconnects.  The system design and installation is acceptable per the National Electrical 

Code and all applicable building codes. The partial one-line diagram in Figure 5.1 shows 

this feeder system. 

 

Figure 5.1: One-Line Diagram for Surgery Center 
 

By observing the output results of the computer simulation in Figure 5.1, it is 

possible to verify the equipment ratings by comparing the system fault current and X/R 

ratio with the equipment withstand or AIC and tested X/R ratio. This comparison is 

shown in the equipment evaluation Table 5.1 and each device is shown as a pass or fail 

based on this criteria.  For this electrical system, all devices pass the equipment 

evaluation for fault current analysis. 

  

UTILITY

MDP
BoltedFault 23.857 kA
Withstand 65.0 kA
System X/R 0.006
TestX/R 4.899
ArcingFault 8.010 kA
ProtDev PD-UTILITY
Incident Energy 47.42 Cal/cm^2
PPE Category Dangerous!

PD-N1
200.0 A
Test X/R 4.899
AIC 25.0 kA

PNL N1
BoltedFault 13.982 kA
Withstand 35.0 kA
System X/R 0.008
TestX/R 4.899
ArcingFault 5.504 kA
ProtDev PD-N1
Incident Energy 0.29 Cal/cm^2
PPE Category 0

PD-N2
200.0 A
Test X/R 4.899
AIC 25.0 kA

PNL N2
BoltedFault 13.982 kA
Withstand 35.0 kA
System X/R 0.008
TestX/R 4.899
ArcingFault 5.504 kA
ProtDev PD-N2
Incident Energy 0.29 Cal/cm^2
PPE Category 0

PD-N3
200.0 A
Test X/R 4.899
AIC 25.0 kA

PNL N3
BoltedFault 13.982 kA
Withstand 35.0 kA
System X/R 0.008
TestX/R 4.899
ArcingFault 5.504 kA
ProtDev PD-N3
Incident Energy 0.29 Cal/cm^2
PPE Category 0

PD-CH-1
225.0 A
Test X/R 4.899
AIC 25.0 kA

CH-1
BoltedFault 14.819 kA
Withstand 35.0 kA
System X/R 0.008
TestX/R 4.899
ArcingFault 5.734 kA
ProtDev PD-CH-1
Incident Energy 0.3 Cal/cm^2
PPE Category 0

PD-E1
250.0 A
Test X/R 4.899
AIC 65.0 kA

PNL-E1
BoltedFault 14.819 kA
Withstand 35.0 kA
System X/R 0.008
TestX/R 4.899
ArcingFault 5.734 kA
ProtDev PD-ATS
Incident Energy 0.73 Cal/cm^2
PPE Category 0

S

P XF-UTIL
575.0 kVA
Primary 13200 V
Secondary 208 V

PD-UTILITY
30.0 A
Test X/R 15.000
AIC 12.5 kA
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Table 5.1 Equipment Evaluation Table for Surgery Center 

Device AFC/Bolted 

Fault 

Withstand/AIC System X/R Device 

Tested X/R 

Result 

MDP 23.8kA 65kA 0.006 4.8 Pass 

PD-N1,2,3 13.9kA 25kA 0.006 4.8 Pass 

PD-E1 14.8kA 25kA 0.006 4.8 Pass 

PD-CH-1 14.8kA 25kA 0.006 4.8 Pass 

PNL-N1,2,3 13.9kA 35kA 0.008 4.8 Pass 

PNL-E1 14.8kA 35kA 0.008 4.8 Pass 

PNL-CH-1 14.8kA 35kA 0.008 4.8 Pass 

 

After all devices are evaluated per fault current analysis, the system must be 

analyzed for protective device coordination. Due to the design of this electrical system, 

the protective device coordination can quickly be tested. Since all feeder breakers are the 

same size and type, one typical TCC curve showing the selective coordination with the 

utility fuse is all that is necessary. 
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Figure 5.2: TCC Curve for Surgery Center 

 
The time current curves show that there is no overlap of the protective device 

curves, hence this system is selectively coordinated.  

The results of the arc flash hazard analysis are given on the one line diagram. This 

shows incident energy levels for PNL-N-1,2,3 at 0.29cal/cm
2
,  PNL-E1 at 0.73cal/cm

2
, 

and PNL-CH-1 at 0.3cal/cm
2
 which are all hazard risk category 0. A typical time current 

curve with arcing current and hazard risk categories for these panels is shown below in 

Figure 5.3. 
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Figure 5.3: Time Current Curve for Arcing Current at PNL-N1 
 

The arc flash hazard analysis for the main distribution panel MDP shows a much 

more serious situation. The results of the simulation report an incident energy of 

47.42cal/cm
2,

 which results in a hazard risk category of Dangerous. This is a result of the 

MDP’s primary protective device being the utility fuse PD-Utility. The TCC with arcing 

current for the MDP is shown below. 
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Figure 5.4: Time Current Curve for Arcing Current at MDP 

 
The time current curve for PD-Utility is shown to clear the arcing current at 

approximately 8 seconds. This results in a hazard risk category of Dangerous. 

 The next step is to investigate arc flash hazard mitigation techniques for this 

electrical system. There is one panel that has an incident energy resulting in an 

unacceptable hazard risk category which is the MDP. The inherent system design and 

installation does not offer any options to adjust protective device settings with the intent 
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of protecting the MDP with a quicker interrupt during an arc flash. This electrical system 

is a candidate for add-on equipment.  

A possible solution for this surgery center is to add a main protective device 

ahead of the MDP. Installing a 600 amp fuse ahead of the MDP, results in the software 

analysis shown in the one line diagram below in Figure 5.5. 
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Figure 5.5: One-Line Diagram for Surgery Center with Added Main Fuse

UTILITY

MDP
BoltedFault 12.591 kA
Withstand 65.0 kA
System X/R 0.008
TestX/R 4.899
ArcingFault 4.347 kA
ProtDev PD-Main
Incident Energy 16.89 Cal/cm^2
PPE Category 3

PD-N1
200.0 A
Test X/R 4.899
AIC 25.0 kA

PNL N1
BoltedFault 9.208 kA
Withstand 35.0 kA
System X/R 0.010
TestX/R 4.899
ArcingFault 4.105 kA
ProtDev PD-N1
Incident Energy 0.22 Cal/cm^2
PPE Category 0

PD-N2
200.0 A
Test X/R 4.899
AIC 25.0 kA

PNL N2
BoltedFault 9.208 kA
Withstand 35.0 kA
System X/R 0.010
TestX/R 4.899
ArcingFault 4.105 kA
ProtDev PD-N2
Incident Energy 0.21 Cal/cm^2
PPE Category 0

PD-N3
200.0 A
Test X/R 4.899
AIC 25.0 kA

PNL N3
BoltedFault 9.208 kA
Withstand 35.0 kA
System X/R 0.010
TestX/R 4.899
ArcingFault 4.105 kA
ProtDev PD-N3
Incident Energy 0.21 Cal/cm^2
PPE Category 0

PD-CH-1
225.0 A
Test X/R 4.899
AIC 25.0 kA

CH-1
BoltedFault 9.544 kA
Withstand 35.0 kA
System X/R 0.010
TestX/R 4.899
ArcingFault 4.210 kA
ProtDev PD-CH-1
Incident Energy 0.22 Cal/cm^2
PPE Category 0

PD-E1
250.0 A
Test X/R 4.899
AIC 65.0 kA

PNL-E1
BoltedFault 9.544 kA
Withstand 35.0 kA
System X/R 0.010
TestX/R 4.899
ArcingFault 4.210 kA
ProtDev PD-E1
Incident Energy 0.52 Cal/cm^2
PPE Category 0

S

P XF-UTIL
575.0 kVA
Primary 13200 V
Secondary 208 V

PD-UTILITY
30.0 A
Test X/R 15.000
AIC 12.5 kA

PD-Main
600.0 A
Test X/R 4.899
AIC 200.0 kA
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The one line diagram now shows the incident energy at MDP at 16.89cal/cm
2
, 

which results in a hazard risk category 3. The TCC for this added fuse PD-MAIN is 

shown below. 

 

 

Figure 5.6: TCC for Arcing Current at MDP with Added Fuse 
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The TCC shows the new main fuse PD-MAIN interrupting the arcing current at 

approximately 0.4 seconds thus resulting in a hazard risk category 3. 

In theory, this is a viable solution. However, implementation this could create a 

number of serious issues for the facility, including: 

1. The electrical service will have to be interrupted for an extended period of 

time. 

2. The existing electrical service conduit and conductors will have to be dug-up 

and replaced. 

3.  The expense for this could be large and will have to be budgeted. 

There are no other arc-flash mitigation options for the MDP panel of this 

electrical system. As the system currently operates, they will need to have the power 

company take them out of service when they maintain the MDP panel. 

 

5.2 Heart Catheterization Center  

 This section of the project analyzes a power distribution system located in a free 

standing ambulatory heart catheterization center located in Putnam County, FL that was 

built in 2001. The facility contains approximately 8100 square feet of offices, exam 

rooms, and heart catheterization suites. Per the State of Florida Statutes and the Agency 

for Healthcare Administration, a fault current study and protective device coordination 

analysis was required for this facility before a Certificate of Occupancy could be issued. 

Years after opening, an arc flash hazard analysis was directed by ownership with the 

intent to comply with OSHA and NFPA. The owner’s goal was to achieve a hazard risk 

category 1 or below for all buses and electrical breaker panels in the system. 
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The electrical service entrance is 277/480 volts, 800 amps, 3-phase, 4-wire, 

grounded Y. The distribution design consists of a main distribution panel (MDP) 

specified at 800 amp main circuit breaker with 4 feeder breakers distributing power to 

distribution panels and transformers.  The system design and installation is acceptable per 

the National Electrical Code and all applicable building codes. The partial one-line 

diagram in Figure 5.7 shows this electrical system. 

 

 

Figure 5.7: One-Line Diagram for Heart Catheterization Lab 
  

UTILITY

CBL-UTIL

PD-MDPmcb
800.0 A
Test X/R 4.899
AIC 50.0 kA

MDP
BoltedFault 7.791 kA
Withstand 65.0 kA
System X/R 0.035
TestX/R 4.899
ArcingFault 5.298 kA
ProtDev PD-MDPmcb
Incident Energy 0.67 Cal/cm^2
PPE Category 0

PD-H1
200.0 A
Test X/R 4.899
AIC 25.0 kA

PANEL H1
BoltedFault 7.516 kA
Withstand 35.0 kA
System X/R 0.036
TestX/R 4.899
ArcingFault 5.138 kA
ProtDev PD-H1
Incident Energy 0.27 Cal/cm^2
PPE Category 0

PD-CATH-1
200.0 A
Test X/R 4.899
AIC 25.0 kA

PANEL CATH-1
BoltedFault 7.516 kA
Withstand 35.0 kA
System X/R 0.036
TestX/R 4.899
ArcingFault 5.138 kA
ProtDev PD-CATH-1
Incident Energy 0.27 Cal/cm^2
PPE Category 0

PD-XF-LDP
225.0 A
Test X/R 4.899
AIC 25.0 kA

S

P XF-LDP
150.0 kVA
Primary 480 V
Secondary 208 V

PANEL LDP
BoltedFault 6.002 kA
Withstand 100.0 kA
System X/R 0.019
TestX/R 4.899
ArcingFault 3.039 kA
ProtDev PD-XF-LDP
Incident Energy 18.32 Cal/cm^2
PPE Category 3

PD-PNL-L1
150.0 A
Test X/R 4.899
AIC 25.0 kA

PANEL L1
BoltedFault 4.348 kA
Withstand 10.0 kA
System X/R 0.023
TestX/R 1.732
ArcingFault 2.424 kA
ProtDev PD-PNL-L1
Incident Energy 0.12 Cal/cm^2
PPE Category 0

PD-PNL-L2
150.0 A
Test X/R 4.899
AIC 25.0 kA

PANEL L2
BoltedFault 4.348 kA
Withstand 10.0 kA
System X/R 0.023
TestX/R 1.732
ArcingFault 2.424 kA
ProtDev PD-PNL-L2
Incident Energy 0.12 Cal/cm^2
PPE Category 0

PD-CATH-2
200.0 A
Test X/R 4.899
AIC 25.0 kA

PANEL CATH-2
BoltedFault 7.516 kA
Withstand 35.0 kA
System X/R 0.036
TestX/R 4.899
ArcingFault 5.138 kA
ProtDev PD-CATH-2
Incident Energy 0.27 Cal/cm^2
PPE Category 0
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From observing the output results of the computer simulation in Figure 5.7, it is 

possible to verify the equipment ratings by comparing the system fault current and X/R 

ratio with the equipment withstand or AIC and tested X/R ratio. This comparison is 

shown in the equipment evaluation Table 5.2 and each device is shown as a pass or fail 

based on this criteria.  For this electrical system all devices pass the equipment evaluation 

for fault current analysis. 

Table 5.2 Equipment Evaluation Table for Heart Catheterization Lab 

Device AFC/Bolte

d Fault 

Withstand/AI

C 

System 

X/R 

Device 

Tested X/R 

Result 

PD-MDPmcb 7.8kA 50kA 0.035 4.8 Pass 

PD-H1,Cath1&2 7.8kA 25kA 0.035 4.8 Pass 

PD-XF-LDP 7.8kA 25kA 0.035 4.8 Pass 

MDP 7.8kA 65kA 0.035 4.8 Pass 

PNL-H1, Cath1&2 7.5kA 35kA 0.036 4.8 Pass 

PNL-LDP 6.0kA 100kA 0.019 4.8 Pass 

PNL-L1&L2 4.3kA 10kA 0.024 1.7 Pass 

 

Next, the system must be analyzed for protective device coordination. Due to the 

design of this electrical system, the protective device coordination can quickly be tested. 

Following the largest feeder breaker in each leg allows for one TCC diagram to show 

selective coordination. 
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Figure 5.8: TCC Curve for Heart Catheterization Lab 
 

The time current curve for the heart catheterization lab shows that there is no 

overlap of the protective devices, hence this system is selectively coordinated.  

The results of the arc flash hazard analysis are given on the one line diagram. This 

shows incident energy levels for MDP at 0.67cal/cm
2
, Panels-H1, Cath1&2 at 

0.27cal/cm
2
, and Panels-L1&2 at 0.12cal/cm

2
 which are all hazard risk category 0. A 
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typical time current curve with arcing current and hazard risk categories for these panels 

is shown below in Figure 5.9. 

  
Figure 5.9: Time Current Curve for Arcing Current at Panel H1 
 

The arc flash hazard analysis for the Panel LDP shows a much more hazardous 

situation. The results of the simulation report an incident energy of 18.32cal/cm
2
 which 

results in a hazard risk Category 3. This is a result of the transformer XF-LDP primary 

protective device being the thermal magnetic breaker PD-XF-LDP. The TCC with arcing 

current for the Panel LDP is shown below. 
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Figure 5.10: Time Current Curve for Arcing Current at Panel LDP 
 

Figure 5.10 shows the time current curve for PD-XF-LDP clearing the arcing 

current at approximately 8 seconds. However, due to research results and the guidelines 

of IEEE 1584, the analysis will limit the arcing duration at 2 seconds and calculate the 

incident energy then. This results in a hazard risk of Category 3. 

The next step is to investigate arc flash hazard mitigation techniques for this 

electrical system. There is one panel that has an incident energy resulting in an 

unacceptable hazard risk category which is Panel LDP. The protection device for this 
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panel is a thermal magnetic breaker and the instantaneous adjustment does not offer 

enough flexibility to interrupt the arcing current at a shorter duration.  

A possible solution for this heart catheterization lab is to replace the thermal 

magnetic breaker with a more flexible LSI style device. By installing a 225 amp LSI 

adjustable breaker to protect the transformer XF-LDP, the system gets the results shown 

in the software analysis below. 
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Figure 5.11: One-Line Diagram for Surgery Center with Added Main Breaker 
 

The one line diagram in Figure 5.11 now shows the incident energy at Panel LDP 

at 0.37cal/cm
2,

 which results in a hazard risk category 0. The TCC for this changed PD-

XFV-LDP is shown below in Figure 5.12. The arcing current is now interrupted at 

approximately 0.085 seconds thus lowering the arc flash hazard. 
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Figure 5.12: TCC for Arcing Current at Panel LDP with LSI Breaker 
 

It is important to check with the series breakers for verification that selective 

coordination still exists with the new LSI circuit breaker. This is accomplished by 

plotting the upstream and downstream breakers with the new settings of PD-XF-LP. 

These circuit breakers are shown to be selectively coordinated in Figure 5.13. 
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Figure 5.13: TCC for Heart Catheterization Lab after Breaker Change 
 

5.3 Metal Container Manufacturer  

This section of the project analyzes a power distribution system located in a metal 

container manufacturing plant located in Hillsborough County that was originally 

constructed in the 1970s. The facility is approximately 2500 square feet of offices and 

175,000 square feet of manufacturing. An arc flash hazard analysis was directed by upper 

management with the intent to comply with OSHA and NFPA 70E. The corporate goal 

was to achieve a hazard risk category 1 or below at all points in the system. 
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The electrical service entrance is 13.2kV at 2500 amps with step down 

transformers to 277/480 volts, 3-phase, grounded Y. The distribution design consists of 

an entrance switchboard with four feeder breakers serving the manufacturing sections of 

the factory. Each quadrant consists of an LSI circuit breaker serving a continuous bus 

duct with fused bus-taps serving the subsequent bus duct. The partial one-line diagram in 

Figure 5.14 shows this feeder system. 
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Figure 5.14: Partial One-Line Diagram for Bus Duct Feeder  
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From observing the output results of the computer simulation in Figure 5.14, it is 

possible to verify the equipment ratings by comparing the system fault current and X/R 

ratio with the equipment withstand or AIC and tested X/R ratio. This comparison is 

shown in the equipment evaluation Table 5.3 and each device is shown as a pass or fail 

based on this criteria.  For this portion of this electrical system all devices are shown to 

be acceptable based on fault current analysis. 

Table 5.3 Equipment Evaluation Table for Bus Duct Feeder 

Device AFC Withstand/AIC System 

X/R 

Device 

Tested X/R 

Result 

Bus-B 20.7kA 35kA 0.013 5.0 Pass 

Bus-B1 17.9kA 22kA 0.015 4.9 Pass 

PD-Bus-B1 17.9kA 300kA 0.015 5.0 Pass 

 

After all devices are evaluated per fault current analysis, the system must be 

analyzed for protective device coordination. The time current curves for PD-Bus-B and 

PD-Bus-B1 are shown below in Figure 5.15.  
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Figure 5.15: TCC PD-Bus-B and PD-Bus-B1  

 

The time current curves show that although there is some overlap of the protective 

device curves, selective coordination with these devices does exist because the fuse PD-

Bus-B1 will melt before the tripping of circuit breaker PD-Bus-B. 
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The results of the arc flash hazard analysis are given on the partial one line 

diagram. This shows incident energy levels for Bus-B and Bus-B1 at 49.7cal/cm
2
 and 

19.3cal/cm
2
 respectively, resulting in hazard risk category Dangerous and 3. The time 

current curves with arcing current and hazard risk categories for Bus-B and Bus-B1 are 

shown below in Figures 5.16 and 5.17. 

 

Figure 5.16: Time Current Curve for Arcing Current at Bus-B 
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The time current curve for PD-Bus-B relay is shown to clear the arcing current at 

well beyond 10 seconds. This results in a hazard risk category of Dangerous. 

 

Figure 5.17: Time Current Curve for Arcing Current at Bus-B1 
 

The time current curve for PD-Bus-B1 is shown to clear the arcing current at 

approximately 0.45 seconds. This results in a hazard risk category of 3. 

The next step is to investigate arc flash hazard mitigation techniques for this 
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the adjustable LSI breaker PD-Bus B relay. This is good news for Bus B because the 

settings of the PD-Bus B relay can be adjusted downward to interrupt the arcing current 

quicker. At the same time our protection options for Bus B1 are limited because there are 

no possible adjustments for the fuse interrupting the arcing current there. However, Bus 

B1 can be better protected by adjusting the PD-Bus B relay below the fuse melting point. 

This is developing into a classic case of allowing for dis-coordination. The partial one-

line diagram if Figure 5.18 shows the results of this implementation. 

  
 

Figure 5.18: Partial One-Line Diagram after Implementation of Dis-Coordinated 

Settings  
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The results of the arc flash hazard analysis after adjusting PD-Bus B are given on 

the partial one line diagram in Figure 5.18. This shows incident energy levels for Bus-B 

and Bus-B1 decreased to 2.1cal/cm
2
 and 1.8cal/cm

2
 respectively, resulting in hazard risk 

category 1 for both buses. The time current curves with arcing current and hazard risk 

categories for Bus-B and Bus-B1 are shown below in Figures 5.19 and 5.20. 

 

Figure 5.19: TCC for Arcing Current at Bus-B after Breaker Adjustment 
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The time current curve for PD-Bus-B in Figure 5.19 is shown to clear the arcing 

current at Bus B in approximately 0.05 seconds. This results in a hazard risk category 

rating of 1. 

  
Figure 5.20: TCC for Arcing Current at Bus-B1 after Breaker Adjustment 
 

The time current curve for PD-Bus-B in Figure 5.20 is shown to clear the arcing 

current at Bus B1 in approximately 0.05 seconds. This results in an arc flash hazard risk 

category of 1. 
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This chapter has taken actual electrical power systems and analyzed them for 

short circuit, protective device coordination, and arc flash hazard. The results have shown 

that some existing electrical systems have been designed and constructed with inherent 

properties that often create a high arc flash hazard. The arc flash hazards in these existing 

systems were mitigated using after-market products and techniques that can be costly and 

sometimes leave the system to operate in a less than ideal condition.  It is important to 

investigate ways to mitigate the arc flash hazard during the design phase of the project 

because additional expense and dangerous conditions can be avoided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



99 

 

 

 

 

 

6. IMPLEMENTATION OF DESIGN METHODS FOR ARC FLASH 

MITIGATION 
 

The previous chapters of this dissertation have focused on background 

information important to understanding the arc flash hazard. Those chapters also detailed 

the methods for analyzing an electrical system and the process that must occur in order to 

calculate the arc flash hazard exposure of a technician performing work on energized 

electrical devices. The research completed in this dissertation focused on the 

recommended design practices that should be implemented with the goal of mitigating 

the arc flash hazard before an electrical system is constructed. 

This chapter highlights techniques developed by the researcher to be implemented 

during the design phase of electrical distribution systems that will help mitigate arc flash 

hazard exposure. These techniques were extracted from a database of over three hundred 

case studies. The case study projects were all designed by licensed professional engineers 

over the last 21 years. The analysis of the case studies has led to these techniques. For 

each case study presented a 480 volt electrical system that is in compliance with the NEC 

and acceptable for an electrical building permit is the starting point. The arc flash 

analysis is then performed on the system giving an incident energy level and hazard 

category. Recommendations for arc flash hazard mitigation to the design of the system 

are made and a recalculation of the arc flash hazard performed.  The implemented design 

recommendations will show a decreased arc flash hazard incident energy and hazard risk 

category. 
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The following sections show that NEC acceptable design strategies can be altered 

to include the safety concerns of NFPA 70E and therefore will minimize the arc flash 

hazard exposure. This is specifically evident in the following areas: 

1. When applying the National Electric Code, Article 230, Part VI, always 

specify a single main circuit breaker for building shutdown. 

2. At the electrical service entrance the design shall specify enclosed low voltage 

power circuit breakers in place of fused disconnects. 

3. Specify adjustable low voltage power circuit Breakers for protection of step-

down transformers rated above 125kVA. 

4. Step-Down Transformers larger than 125kVA shall be replaced with a design 

having two smaller transformers. 

 

6.1 When Applying the National Electric Code, Article 230, Part VI, Always 

Specify a Single Main Circuit Breaker for Building Shutdown 
 

There are several important factors that need to be included in the decisions made 

during the design of the electrical service entrance and main distribution panel. The 

service entrance must meet all NEC requirements for system shutdown and electrical 

protection. The main distribution panel must be properly sized to carry the facility 

demand load to avoid an overcurrent situation. The main distribution panel and the 

protective devices installed inside it must be braced to withstand the available fault 

current imposed during a short circuit. Furthermore, the main breakers and feeder 

breakers in the main distribution panel must coordinate with each other and downstream 

devices to ensure proper isolation of short circuits within the system. In mission critical 
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facilities the main distribution panel must be properly maintained and therefore the arc 

flash hazard at this location is important.     

The National Electrical Code, Article 230, Part VI addresses building main shut 

down and disconnect requirements. This part of the code states that an electrical service 

may be shut down by a maximum of six grouped devices. These devices can be circuit 

breakers, fused switches, or disconnect switches. This is often accomplished by having a 

main panel with no main circuit breaker and a maximum of six feeder breakers. A one-

line diagram of this scenario is shown in Figure 6.1. This installation is acceptable by the 

NEC and is a typical installation found in 480 volt electrical distribution systems. 

 

Figure 6.1: Partial One-Line Diagram with 6-Hand Rule in Use 
 

The simulation in Figure 6.1 shows a utility serving a main distribution panel 

MDP. This MDP is constructed with no main circuit breaker and five feeder breakers 

denoted PD-MAIN#1-5. In this state the five feeder breakers are acceptable for use as the 

building disconnecting means per NEC, 230, Part VI. 
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The simulation shows the fault current of the MDP calculated at 21.13kA, which 

can be considered a moderate level. The arcing current is shown to be 7.35kA and is a 

reasonable level for this type of facility. However, the arc flash hazard for this type of 

installation is very high because the only protective device for the main panel (MDP) is 

the utility fuse on the primary side of the service transformer. Figure 6.1 shows an 

incident energy of 47.64 cal/cm
2
 at the MDP, which corresponds to a PPE Category of 

Dangerous.  

Studying the service entrance from a time current analysis gives another 

perspective. The TCC is plotted in Figure 6.2 and this shows the utility fuse (PD-UTIL) 

interrupting the arcing current beyond 10 seconds thus justifying the high exposure. The 

hazard risk category lines are superimposed on the TCC allowing us to see the 

justification for this scenario having a hazard risk category of Dangerous. 
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Figure 6.2: TCC Showing Arc Flash Exposure for Six-Hand Rule 
 

This is an unacceptable scenario in a mission critical facility because the incident 

energy is above 40 cal/cm
2
 and, therefore, a hazard risk category of Dangerous. 

According to NFPA-70E: energized electrical work is not permitted on this device so 

periodic maintenance or facility changes that include this panel cannot be performed 

without an electrical shutdown. The feasibility of an electrical shutdown is often not 

possible in a mission critical facility, thus the system must be designed and constructed 

differently. 
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The result of this research is a recommendation that when applying the National 

Electric Code, Article 230, Part VI, always specify a single main circuit breaker for 

building shutdown and do not use numerous feeder devices as main disconnects. 

Furthermore, this single main breaker should be in a separate enclosed device located 

away from the MDP. This will isolate the protection device of the main panel from the 

technician working on the panel and therefore lowering the arc flash exposure. If the 

main breaker is located within the MDP, then there is a dangerous arc flash exposure at 

the entrance of the service conductors.  

The recommendation for minimizing this exposure is to eliminate the 

implementation of numerous main devices. This can be accomplished by installing a low 

voltage power circuit breaker ahead of the MDP. This low voltage power circuit breaker 

should be specified with adjustable settings in the long time, short time, and 

instantaneous time domains. Adjusting the main breaker settings to mitigate the arc flash 

will create a safer working environment at the MDP and will allow the facility to be 

flexible if the fault contribution from the distribution were to change due to generation 

plant or substation alterations.   

After the implementation of this recommended circuit breaker installation, the 

case study was re-simulated. The one-line diagram showing the computer simulation 

results is shown in Figure 6.3. The new 1200 amp main circuit breaker is now located 

ahead of the MDP and is referred to PD-MDP NEW.  

At each panel the available fault current, arcing fault, incident energy, and PPE 

Category are given. The available fault current and arcing current at the MDP remain at 

approximately the same level. However, with the new main breaker inserted ahead of the 
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MDP, the result is an incident energy down from 47.6 cal/cm
2
 and Category Dangerous 

to 2.38 cal/cm
2
 and a Category 1. This is a significant change that would allow 

technicians to perform energized maintenance on this device.   

  
 

Figure 6.3: Partial One-Line Diagram with Main Breaker Installed 
 

 The results of this change can be further validated by analyzing the results in the 

time versus current domain. The TCC is plotted in Figure 6.4 and it shows the new main 

device PD-NEW MAIN plotted with the arcing current of 7.35kA. The plot displays the 

interrupting of the arcing current by PD-NEW MAIN at 0.10 seconds which is in the 

range of a Category 1 exposure. This allows maintenance to be performed on the MDP 

while it is energized and the facility remains in normal operation. 
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Figure 6.4: TCC with Main Breaker Installed 
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6.2 At the Electrical Service Entrance the Design Shall Specify Low Voltage 

Power Circuit Breakers Instead of Fused Disconnect Switches 

 
The National Electrical Code, Article 230, Part IV addresses building main shut 

down and proper disconnecting methods. Every facility must have a readily accessible 

means of disconnecting the electrical service. This is often accomplished by installing a 

main fused disconnect switch at the service entrance typically near the electrical meter. A 

one-line diagram of this scenario is shown in Figure 6.5.  

 

  
Figure 6.5: One-Line Diagram Showing Main Fused Disconnect 
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arcing current. Figure 6.5 shows an incident energy at the MDP of 136 cal/cm
2
 resulting 

in a PPE Category of Dangerous. This is unacceptable for a mission critical facility 
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because the electrical system must remain energized and NFPA 70E does not allow 

energized work where an arc flash hazard is this extreme. 

Analyzing this in the time versus current domain justifies the results of the 

simulation. Figure 6.6 plots the 3000 amp fuse and the 19.4kA arcing current at the MDP. 

The fuse curve shows the interruption of the 19.4kA arcing current beyond 2 seconds and 

resulting in a hazard risk category Dangerous.  

  
Figure 6.6: TCC for Main Fused Disconnect 
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The technique developed in this research for minimizing the exposure is to 

specify a low voltage power circuit breaker with LSI adjustments instead of the fused 

disconnect switch. This will allow for shaping the protection curve based on the available 

fault current and arcing current. The one-line diagram showing this system is shown in 

Figure 6.7. The simulation of the revised circuit shows the arcing current remaining at 

19.4kA which is expected. However, the incident energy was decreased to 4.8 cal/cm
2
, 

resulting in a PPE Category 2.  

 
 

Figure 6.7: Partial One-Line Diagram for Service Entrance with LSI Main Breaker 
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shown to occur within the hazard risk category 2 range. The simulations result of incident 

energy at 4.8 cal/cm
2
 is consistent with this finding. 

 

 

Figure 6.8: TCC for Service Entrance with LSI Main Breaker 
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6.3 Specify Adjustable Low Voltage Power Circuit Breakers for Protection of 

Step-Down Transformers Rated above 125kVA  

 
There are several important factors included in the decisions made during the 

design of the electrical feeders served from the main distribution panel. The feeder 

conductors and circuit breakers must be sized to carry the calculated amount of current 

load to avoid an overcurrent situation. The feeder breakers must have proper available 

interrupting capacity ratings to withstand the fault currents that they must interrupt during 

a short circuit. The feeder breakers must be properly coordinated with the upstream and 

downstream protective devices. In mission critical facilities, the transformers and 

subpanels served by these feeders must be properly maintained and therefore the arc flash 

hazards at these locations are important.     

The service voltage in the facilities being studied is 480 volt, three-phase. 

However, there are numerous loads in a building that require 120/208 volt service, such 

as air conditioning equipment, service receptacles, computers, and lighting. This creates a 

need for the 480 volt service voltage to be transformed down to 120/208 volts. This is 

accomplished by creating a lower voltage leg in the system by inserting a large step-down 

transformer fed from the main panel to serve 120/208 volt loads downstream. A one-line 

diagram of this scenario with a thermal magnetic breaker (PD-XF-1) protecting a 

225kVA transformer feeding Panel L1 is shown in Figure 6.9.  
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Figure 6.9: Partial One-Line Diagram Showing Arc Flash Increase across 225kVA  
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directly relate to the arcing current. Therefore, the arcing current at the secondary side of 
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decreased arcing current at the secondary will delay the time for the primary side breaker 

to interrupt an arc flash.  

The amount of time needed to interrupt the arc is directly related to the arc flash 

incident energy. This leads to an increase in incident energy from 0.6 cal/cm
2
 on the 

primary side of the transformer to 23.3cal/cm
2
 on the secondary side and a PPE category 

change from 1 to 4. This is a significant increase in the protection equipment required to 

work on this energized equipment. 

Analyzing this in the time versus current domain further validates this outcome. 

Figure 6.10 displays the TCC plot for the primary side of the transformer. The circuit 

breaker PD-XF-1 is plotted along with the primary side arcing current of 17.79kA. It is 

shown that the circuit breaker interrupts the arc at approximately 0.015 seconds which is 

in the range of hazard category line 1. The calculations in the simulation calculate this at 

1.55cal/cm
2
.  

 

 

 

 

 

 

 

 

 

 



114 

 

 

Figure 6.10: TCC Showing Thermal-Mag Breaker and Arcing Current at Primary 

of XF-1 
 

Figure 6.11 displays the TCC plot for the secondary side of the transformer. The 
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arc at approximately 50 seconds, which is above all hazard category lines and therefore 

considered dangerous for energized work. However, IEEE 1584 limits the maximum 

exposure time for calculating incident energy at 2 seconds and therefore the calculations 

in the simulation report this at 27.78kA cal/cm
2
 which corresponds to a hazard risk 

category 4.  

  
Figure 6.11: TCC Showing Thermal-Mag Breaker and Arcing Current at 

Secondary of XF-1 
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Category 4 personal protective equipment is available, but it is preferred to lower 

the exposure to a category 0 or 1 whenever possible and limit the potential exposure of 

the technicians. It is the conclusion of this analysis to protect these transformers with a 

low voltage power circuit breaker containing adjustable LSI adjustments in lieu of the 

standard thermal magnetic circuit breaker. Although the thermal magnetic breaker has 

instantaneous adjustment, this change in arcing current is shown to potentially attenuate 

into the short time region and delay the interrupt time. The low voltage power circuit 

breakers with LSI are adjustable in the short time and therefore can mitigate this arc flash 

exposure by interrupting the arc much quicker. The simulation one-line diagram showing 

this improved system is shown in Figure 6.12.  
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Figure 6.12: Partial One-Line Diagram Showing Arc Flash Mitigation across 

225kVA  
 

The simulation for the new system shows that the available fault currents on the 
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quicker interrupting time of the LSI circuit breaker, the result is lowered incident energy 
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2
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side. The primary side of the transformer is decreased to a hazard risk category 0 and the 

secondary side is reduced to a category 1.  

Analyzing this in the time versus current domain validates the results of the 

simulation. Figure 6.13 plots the new LSI circuit breaker PD-XF-1 and the arcing current 

on the primary side of the transformer. The breaker curve shows instantaneous 

interruption of the arcing current and therefore a quicker extinguish of the arc than the 

thermal magnetic breaker. This is shown to occur in the hazard risk category 0 range. The 

simulation result of incident energy at 0.055 cal/cm
2
 is consistent with this finding. 
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Figure 6.13: TCC Showing LSI Breaker and Arcing Current at Primary of XF-1 
 

Figure 6.14 shows the decrease in fault current and therefore lowering of the 

arcing current across the transformer XF-1. This moves the arcing current level inside the 

adjustable short-time range of the LSI breaker. Setting the short time inside the arcing 

current allows for short exposure time and low arc flash hazard. Circuit breaker PD-XF-1 

is shown to interrupt the arcing current at approximately 0.21 seconds and therefore low 

incident energy is calculated and a PPE Category 1 is calculated on the secondary of the 
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transformer. This is consistent with the simulation incident energy calculation resulting in 

2.85cal/cm
2
. 

 
Figure 6.14: TCC Showing LSI Breaker and Arcing Current at Secondary of XF-1 
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6.4 Step-Down Transformers Larger than 125kVA Shall Be Replaced with a 

Design Having Two Smaller Transformers  

 
The service voltage in the facility we are studying is 480/277 volt, three-phase. 

However, there are numerous loads in a building that require 120 volt service such as 

basic receptacles, computers, and lighting. This requires the 480 volt service voltage to be 

transformed down to 120 volts. This is typically accomplished by creating a lower 

voltage leg in the system by inserting a large step-down transformer in the system and 

feeding all 120/208 volt loads downstream. When the 120/208 volt load is significant, the 

step down transformer can be 150kVA and larger. A one-line diagram of this scenario 

with a 225kVA transformer feeding Panel L1 is shown in Figure 6.15.  

 

Figure 6.15: Partial One-Line Diagram with 225kVA Step-Down Transformer 
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The computer simulation of the circuit described in Figure 6.15 shows an incident 

energy of 25 cal/cm
2
 and a PPE Category 4.  

The TCC for this configuration is plotted in Figure 6.16 and this shows the circuit 

breaker (PD-XF-1) interrupting the arcing current beyond 2 seconds thus confirming the 

high exposure. 

 

Figure 6.16: TCC Showing Arc Flash Hazard at Panel L1 
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The recommendation for minimizing this exposure is to replace one large step 

down transformer with multiple smaller transformers that are less than 125kVA. The 

increased impedance of the smaller conductors and transformers brings down the fault 

current and arcing current. The smaller rated circuit breaker has the ability to stay below 

this arcing value. This also allows for application of NFPA 70E option of reporting 

Category 0 for any bus served by a transformer less than 125kVA and 240 volts. The 

one-line diagram showing this system is shown in Figure 6.17. The 225kVA transformer 

feeding Panel L1 is replaced by two 112.5kVA transformers feeding Panels L1 and L2. 

The result is an incident energy of 0.2 cal/cm
2
 and a Category 0.  

 

Figure 6.17: Partial One-Line Diagram Showing Two 112.5kVA Transformers 
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The TCC for this configuration is plotted in Figure 6.18 and this shows the circuit 

breaker (PD-XF-2) interrupting the arcing current at 0.027 seconds therefore reducing the 

incident and PPE Category. 

 

 

 

 

Figure 6.18: TCC Showing Arc Flash Hazard at Panel L2 
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This chapter has focused on the introduction and implementation design 

techniques developed during this dissertation research intended to mitigate the arc flash 

hazard at specific locations in a 480 volt electrical distribution system. The four 

techniques were described and simulated in locations of an electrical system where a high 

arc flash hazard is typically present due to inherent properties of the system design. When 

applied as shown, these methods resulted in the ability to considerably decrease the arc 

flash hazard. While planning mission critical facilities, electrical design engineers can 

develop systems with lower arc flash hazards by implementing these techniques.  
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7. CONCLUSIONS AND FUTURE WORK 

 
This work has been focused on techniques for mitigating arc flash hazard 

exposure in 600 volt and below electrical systems. The methodologies for fault current 

calculations, protective device coordination, and arc flash hazard analysis have been 

presented. Several of the mainstream arc flash mitigation products and techniques have 

been described. Case studies of existing facility arc flash studies have been presented 

along with the applied mitigation solutions. The theory of instituting design techniques 

with the goal of mitigating the arc flash hazard was developed and tested. 

 

7.1 Conclusions 

The impact of using four design techniques to decrease the arc flash hazard at 

specific locations in an electrical distribution system has been examined.  

1. When applying the National Electric Code, Article 230, Part VI, always 

specify a single main circuit breaker for building shutdown. 

The first design technique is applied at the electrical service entrance and is aimed 

at lowering the arc flash hazard at the main distribution panel. The simulation showed 

that when multiple electrical disconnects are used as permitted by NEC, Article 230, Part 

VI, the arc flash hazard can be extremely high. When designing the system with one main 

circuit breaker the main distribution panel has an interrupting device to limit the exposure 

of an arc flash. 
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The implementation of this design technique for this particular case decreased the 

arc flash incident energy from 47.6cal/cm
2
 to 0.95cal/cm

2
. This changed the PPE 

category from a Dangerous level down to a category 0. This allows a qualified technician 

to perform maintenance on this device with minimal arc-flash exposure. 

2. At the electrical service entrance the design shall specify enclosed low voltage 

power circuit breakers in place of fused disconnects. 

The second design technique is applied at the electrical service entrance and is 

also aimed at lowering the arc flash hazard at the main distribution panel. The simulation 

showed that sometimes when fused disconnects are used as permitted by NEC, Article 

230, Part VI, the arc flash hazard can be extremely high at the main distribution panel. 

When designing the system with a low voltage power circuit breaker with LSI 

adjustments as the main circuit breaker the exposure of an arc flash is limited. 

The implementation of this design technique for the particular case analyzed 

decreased the arc flash incident energy from 136cal/cm
2
 to 4.8cal/cm

2
. This changed the 

PPE category from a Dangerous level down to a category 2. This allows a qualified 

technician to perform maintenance on this device with minimal arc-flash exposure. 

3. Specify adjustable low voltage power circuit Breakers for protection of step-

down transformers rated above 125kVA. 

The third design technique is applied at a feeder circuit from the main distribution 

panel that is serving a step down transformer. The simulation showed that when a 

transformer larger than 125kVA is protected by a thermal magnetic breaker, the 

secondary side arc flash hazard can be extremely high. When designing the feeder with a 
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low voltage power circuit breaker with LSI adjustments the arc flash exposure can be 

mitigated to a safer level. 

The implementation of this design technique for this particular case decreased the 

arc flash incident energy from 23.3cal/cm
2
 to 0.6cal/cm

2
. This changed the PPE category 

from a category 3 level down to a category 0. This allows a qualified technician to 

perform maintenance on this device with minimal arc flash exposure. 

4. Step-Down Transformers larger than 125kVA shall be replaced with a design 

having two smaller kVA transformers. 

The fourth design technique is applied at a feeder circuit from the main 

distribution panel that is serving a step down transformer. The simulation showed that 

when a transformer larger than 125kVA is protected by a thermal magnetic breaker the 

secondary side arc flash hazard can be extremely high. When designing the feeder with 

two smaller circuits with reduced kVA transformers the arc flash hazard is reduced 

significantly. 

The implementation of this design technique for this particular case studied 

decreased the arc flash incident energy from 25.0cal/cm
2
 to 0.2cal/cm

2
. This changed the 

PPE category from a category 4 level down to a category 0. This allows a qualified 

technician to perform maintenance on this device with minimal arc-flash exposure. 

In all four cases the implementation of the recommended design technique has 

shown a significant decrease in the incident energy and hazard risk category. Table 7.1 

displays the cumulative results of all four methods for each particular case and 

summarizes the decrease of the arc flash hazard. 
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Table 7.1 Before and After Arc Flash Hazard 

Method 

# 

Before Incident Energy 

(cal/cm
2
) 

Before 

Category 

After Incident Energy 

(cal/cm
2
) 

After 

Category 

1 47.6 Dangerous 0.95 0 

2 23.3 3 0.6 0 

3 136 Dangerous 4.8 2 

4 25 4 0.2 0 

 

7.2 Further Work 

The application of these design techniques are based on the interpretation of the 

most current publications of NFPA-70E and IEEE-1584 and should be applied within that 

framework. There is a continued joint research effort by NFPA and IEEE to further the 

understanding of arc flash hazards. As this research is performed, new codes and 

standards are likely to be released in the future. The design techniques described in this 

work should be verified under any new releases of codes and standards.  

The design techniques described in this dissertation should be offered for 

continuing education to design engineers. If these methods become a part of the design 

process then the constructed electrical systems will have more flexibility to control arc 

flash hazards. 
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