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Abstract

The ability to decipher the three-dimensional structures of biomolecules at high resolution will
greatly improve our understanding of the biological machinery. To this aim, X-ray crystallogra-
phy has been used by scientists for several decades with tremendous results. This imaging method
however requires a crystal to be grown, and for most interesting biomolecules (proteins, viruses)
this may not be possible. The single-particle experiment was proposed to address these limita-
tions, and the recent advent of ultra-bright X-ray Free Electron Lasers (XFELs) opens a new set of
opportunities in biomolecular imaging.
In the single-particle experiment, thousands of diffraction patterns are recorded, where each im-
age corresponds to an unknown, random orientation of individual copies of the biomolecule.
These noisy, unoriented two-dimensional diffraction patterns need to be then assembled in three-
dimensional space to form the three-dimensional intensity function, which characterizes com-
pletely the three-dimensional structure of the biomolecule.
Thiswork focuses on geometrical variations of an existing algorithm, theExpansion-Maximization-
Compression (EMC) algorithm introduced by Loh and Elser. The algorithm relies upon an expec-
tation-maximization method, by maximizing the likelihood of an intensity model with respect to
the diffraction patterns. The contributions of this work are (i) the redefinition of the EMC algo-
rithm in a spherical design, motivated by the intrinsic properties of the intensity function, (ii) the
utilisation of an orthonormal harmonic basis on the three-dimensional ball which allows a sparse
representation of the intensity function, (iii) the scaling of the EMC parameters with the desired
resolution, increasing computational speed and (iv) the intensity error is analysed with respect to
the EMC parameters.
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CHAPTER1
Introduction

1.1 Deciphering the structure of biomolecules with single-particle imaging

1.1.1 Motivation

Biological components, such as proteins or viruses, are driven by processes operating at atomic scale;
therefore the knowledge of the precise three-dimensional structure of these biological components
would provide a crucial understanding of the interaction and the role of each sub-component. The
potential applications are numerous, from more accurate simulations of the biochemical machinery
to the design of new materials with optimized properties.
Determination of high-resolution structures resolved at spatial atomic resolution requires the use of
probes with a sensitivity comparable to the atomic scale.1 Several candidates fulfill this requirement,
from the Atomic Force Microscope (AFM) to the short wavelength offered by neutrons, electrons or
X-rays.
One of the most popular tools used in structure determination is X-ray crystallography. This tech-
nique has successfully led to the determination of atomically-resolved protein structures in the last few
decades, and is one of the key contribution of physical sciences to life sciences.2 X-ray crystallography
relies on the ability to bind biomolecules in a repetiting pattern, thus creating a crystal. The crystal is
then used to amplify the incoming X-ray radiation, leading to an ensemble diffraction picture which
can be eventually inverted to obtain the individual protein structure.
This method suffers from several drawbacks, the most critical step being the ability to grow a crystal.
Unfortunately growing a crystal from an arbitrary molecule is far from trivial, and it is believed that
it may be impossible in many cases, especially for membrane proteins. It was proposed to overcome
this limitation using microscopic approaches similar to those used in electron microscopy,1,3 however
designing efficient X-rays lenses is a challenging problem.
Coherent X-ray diffraction imaging, also known as diffractionmicroscopy has been introduced at the
end of the last century in order to overcome the limitation of X-ray crystallography.4,5 Thismethod re-
lies upon the measurement of the far-field scattered intensity of a non-crystalline and isolated object.6
The achievable resolution only depends on the wavelength and the maximum scattering angle avail-
able on the detector. This lensless imaging technique however requires intense and bright X-ray
sources to obtain high-resolution images of biomolecule structures.
X-ray Free Electron Lasers (XFELs) carry the hope of making atomic resolution accessible. These
new X-ray sources are more than 109 times brighter in peak power than the best synchrotron sources
available today7 and provide more than 1012 photons in pulses lasting less than few femtoseconds8
(fs) (1 fs = 10−15 s). As of today, numerous XFELs facilities have been built; SACLA in Japan, FLASH
in Germany, FERMI in Italy, and the LCLS in Stanford. The most powerful XFEL facility is expected
to be the European XFEL, which is still in construction in Hamburg, Germany, with a operational
date planned to be 2017.
The new techniques of coherent X-ray diffraction imaging, alongside the exceptional peak power of
XFELs have opened a totally new area of research, at the edge of the physical, life and computer

1Anton Barty, Jochen Küpper, and Henry N Chapman. Annual review of physical chemistry, 64: 415–435, 2013.
2VL Shneerson, A Ourmazd, and DK Saldin. Acta Crystallographica A, 64: 303–315, 2008.
3Weilun Chao et al. Nature, 435: 1210–1213, 2005.
4D. Sayre and H. N. Chapman. Acta Crystallographica Section A, 51: 237–252, 1995.
5D. Sayre, H. N. Chapman, and J. Miao. Acta Crystallographica Section A, 54: 232–239, 1998.
6Henry N Chapman et al. JOSA A, 23: 1179–1200, 2006.
7Andrew V Martin and Ne-Te Duane Loh. Synchrotron Radiation News, 26: 11–19, 2013.
8KJ Gaffney and HN Chapman. Science, 316: 1444–1448, 2007.
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2 1.2. Single-particle experiment physics

sciences. In the following, we describe the single-particle experiment proposed to achieve high-
resolution reconstruction of biomolecules.

Remark In this work, we use the words biomolecule, protein and molecule interchangeably.

1.1.2 The single-particle experiment

The single-particle experiment was originally proposed by Neutze et al. 9 as a method to overcome
the limitations of X-ray crystallography. We briefly describe here the main ideas behind the single-
particle experiment.
The principle of the experiment is simple: a pulsed train of X-ray photons illuminate a synchronized
train of identical single proteins. Ideally only one copy of the considered protein is injected in front
of the beam. The photons scattered by the protein are recorded on a detector, located in the far-field.
Only one diffraction pattern per protein can be recorded since the intensity of the beam is so high
that the molecule is destroyed by a Coulomb explosion within a few tens of femtoseconds. Moreover
each diffraction pattern corresponds to an unknown random orientation of the molecule.
Using a pulsed train of photons with a faster dynamic than the radiation-damage process allows to
obtain almost damage-free diffraction patterns.9 Typically the pulses last about 5-15 fs, whereas the
radiation damage effects start to occur significantly at 20-30 fs. However recent research suggests that
imaging of single molecules is possible with 30-50 fs pulses.10

The mathematical relation between the protein structure, i.e. its electron density function, and the
intensity measured on the detector is well known. The Fourier transform of the electron density
function gives the molecular transform, which is related to the three-dimensional intensity func-
tion by its square magnitude and up to a scaling factor. Each diffraction pattern corresponds to a
two-dimensional slice trough the three-dimensional intensity function, which is defined in recipro-
cal space. This is a consequence of the Fourier projection-slice theorem, which states that the 2D -
Fourier transform of a projection in real space is equivalent to a 2D slice of the 3D - Fourier trans-
form in reciprocal space. Thus provided that one is able to recover the relative orientation of each
molecule, it is possible to reconstruct the three-dimensional intensity function in reciprocal space by
associating each diffraction pattern with the corresponding orientation.
In practice, it is impossible to measure the actual orientation of the molecule, and computing tools
have to be developed instead. Furthermore the radiation-damage curse limits the number of photons
recorded on the detector, and up to millions of diffraction patterns may have to be acquired to recon-
struct the molecule structure. This has lead to the development of numerous intensity reconstruction
algorithms, which we briefly describe in section 1.3.1.
In order to determine the molecule structure, we need both the intensity and the phase of the Fourier
transform of the electron density; however in the single-particle experiment only the intensity is mea-
sured. The phase has to be retrieved, so that the reconstructed molecule structure is unique. The
so-called phase retrieval procedures are quickly discussed in section 1.3.2.
Getting the single-particle experiment to work is a tremendous challenge. The several issues raised
by the experimental complexity will probably take a few years to be solved. Also since beamtime is
sparsely allocated, theoretical work has tomainly rely upon simulated data, as it is the case for thework
presented in this manuscript. The next section introduces the physical model for the single-particle
experiment, as well as the simulation methods.

1.2 Single-particle experiment physics

We introduce the physical model of the single-particle experiment, and discuss the geometric proper-
ties of the three-dimensional intensity function. We give also practical expressions for the simulation
of diffraction patterns, and discuss the different assumptions made throughout our approach.

9Richard Neutze et al. Nature, 406: 752–757, 2000.
10Andrew V Martin et al. arXiv preprint arXiv:1502.00737, , 2015.
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ksc
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Figure 1.1 : Scattering geometry and Ewald sphere construction.

1.2.1 X-ray scattering and intensity model

X-ray interaction with matter

When X-rays photons are in the vicinity of an atom, several processes may occur. At typical energies
available at XFEL facilities, E = 1.2 keV to E = 12 keV which correspond to wavelengths λ = 10
Å and λ = 1 Å, the predominant physical process is absorption. That is, an incoming photon has a
non-zero probability to disappear from the system by interaction with the atom electronic structure.
Another process is photon scattering, where the photon can change its direction and energy. In that
case, the photon does not disappear from the system.
Absorption primary occurs by photo-ionization. When a photon falls upon an electron, this electron
may be ejected outside the atom while the photon disappears. This electron can then hit other elec-
trons and lead to new ionizations, until the energy of the ejected electron becomes sufficiently small
to avoid the emission of secondary electrons or until the photoelectron escapes the sample, which is
more likely for a small molecule. Since X-rays principally interact with inner shell electrons, several
processesmay arise after the photo-ionization. One electron of an upper-shell can relax into an inner-
shell with fluorescence. Another process is auto-ionization: when the upper-shell electron relax into
the inner-shell vacancy, another electron from the upper-shell can be ejected: this phenomenon is
known as Auger decay.
Scattering can be either elastic or inelastic. In elastic scattering, the photon does not lose energy,
and therefore incoming photon wavelength and scattered photon wavelength are identical. We will
describe elastic scattering in detail in the sections below. Inelastic scattering occurs when a part of the
incoming photon energy is absorbed, and then the scattered photon has a larger wavelength. We shall
note here that in the context of XFELs, the coherence can not be conserved in the case of inelastic
scattering, as the wavelength changes. Elastic scattering however conserves optical coherence, and
therefore we will concentrate our efforts on the study of elastic scattering, as it represents the signal
we shall consider to obtain the 3D structure of the molecule. The other phenomenons – fluorescence,
Auger Decay, inelastic scattering – will be considered as a global noise.

The intensity model

We are now interested in modeling the (elastic) scattered intensity of the incoming X-ray beam by a
biomolecule. Two complementary approaches exist; the full quantum derivation, which uses the sec-
ond quantization framework and Fermi golden rule to find an expression of the scattered intensity I ,
and a semi-classical perspective which derivates the intensity model step by step, from the free elec-
tron to the complete biomolecule. The quantum calculations have been presented by Santra in a PhD
tutorial,11 and will not be reproduced here. However, we choose to introduce a perhapsmore intuitive
calculation, which works step-by-step and emphasizes the link between the scattered intensity and
Fourier analysis. The incoming beam has wavevector kin, which is assumed to remain constant. The

11Robin Santra. Journal of Physics B: Atomic, Molecular and Optical Physics, 42: 023001, 2009.



4 1.2. Single-particle experiment physics

direction of the scattered wave is given by the wavevector ksc, and we denote by θsc the angle of scat-
tering. We introduce the scattering momentum q = ksc − kin, and therefore parametrize reciprocal
space in terms of this vector. Since we only consider the elastic scattering case, no energy is lost during
the scattering process so that ∥ksc∥ = ∥kin∥. Geometrically, this means that the scattering wavevec-
tor ksc draws a sphere in reciprocal space, centered at q = −kin and with radius kin = ksc = 2π/λ,
known as the Ewald sphere.12–14 The notations and the constructions are drawn on figure 1.1.
The Ewald sphere has a particular importance. For a given orientation of the molecule, that is for
a given value of incident beam wavevector kin only particular values of the intensity I(q) can be
obtained, i.e. those such that the scattering momentum q lies on the Ewald sphere. Therefore, we say
that the Ewald sphere samples the three-dimensional reciprocal space. Rotating the molecule about its
own frame, or equivalently rotating the incoming beam wavevector about the origin of the reciprocal
space leads to rotated Ewald sphere, and thus to a different sampling of the reciprocal space. Onemay
eventually reconstruct the whole reciprocal space by taking enough rotated views of the biomolecule.
This question is addressed later on, in section 1.2.3.
Before moving to the expression of the intensity I(q), we give the relation between the angle of scat-
tering θsc and the norm of the scatteringmomentum q = ∥q∥. Simple geometry from figure 1.1 yields
to the relation

q =
4π

λ
sin

θsc
2

= qmax · sin
θsc
2
, (1.1)

where we have introduced the quantity qmax for convenience. The above equation is valid for the
whole interval of definition of θsc, that is [0, π]. The scattering momentum is equal to 0 when there is
no scattering (θsc = 0) whereas the norm of the scattering momentum reaches its maximum qmax for
θsc = π which corresponds to the backscattering case. We eventually note that q is usually given in
Å−1, since it is common in X-ray physics to give the wavelength λ in angströms, where 1 Å= 10−10

m.
The scattered intensity as a function of the scattering momentum q can now be derived. First, it is
common in X-ray physics to express all the intensities in terms of Thomson units IT , which corre-
sponds to the intensity scattered by a free electron under the same incoming beam conditions:

IT = πr2eP(θsc)I0, (1.2)

where re = 2.82 10−15 m is the classical radius of the electron, P(θsc) is a function depending on
the polarization of the incident beam, and I0 is the incident beam intensity, supposed constant. The
polarization factorP(θsc), although depending on the scattering angle θsc, does not play an important
role in the forthcoming study of scattering by a biomolecule, since it is independent of the particle
itself.
In the case of atoms, the scattered intensity can be expressed by introducing a function of the scattering
momentum, the scattering factor f(q)whichmodulates the amplitude of the scatteredwave for a given
scattering momentum q. Each atom scatters X-rays differently, and hence the scattering factor is a
signature of the electron density of the atom ρ(at). The scattering factor can be defined inmathematical
terms as the Fourier transform of the electron density of the atom:

f(q) =

∫
ρ(at)(r) exp(iq · r)d3r, (1.3)

where r designates the position vector in the frame of reference of the atom. The scattering factors
can be either computed theoretically or determined experimentally.15 However practical expressions
are tabulated mixing both methods.16 In a first approximation, the scattering factors only depend on
the norm q of the scattering momentum, leading to the definition of the isotropic scattering factor
f0. The scattered intensity from a single atom is then, in Thomson units:

I(at)(q) = |f0(q)|2IT . (1.4)

12David M Paganin. Coherent X-ray optics. Oxford University Press, 2006.
13M. H. Pirenne. The diffraction of X-Rays and electrons by free molecules. Cambridge University Press, 1946.
14Bertram Eugene Warren. X-ray Diffraction. Courier Dover Publications, 1969.
15Theo Hahn et al. International tables for crystallography. D. Reidel Publishing Company, 2005.
16D Waasmaier and A Kirfel. Acta Crystallographica Section A: Foundations of Crystallography, 51: 416–431, 1995.



Chapter 1. Introduction 5

0 2 4 6 8 10 12

q  (
−1

)

0

1

2

3

4

5

6

7

8

f0
(q

)

H
C
N
O

Figure 1.2 : Isotropic scattering factors f0 for the most common atoms in biomolecules hydrogen (H), carbon
(C), nitrogen (N) and oxygen (O). Scattering momentum norm ranges from 0 to 4π, the upper
bound corresponding to the backscattering case with wavelength λ = 1 Å.

The isotropic scattering factors f0 (henceforth denoted as scattering factors) are often computed from
their Cromer-Mann coefficients17 which give f0 as a weighted sumof exponential functions. We have
presented on figure 1.2 scattering factors for the most common elements in biomolecules: hydrogen,
carbon, nitrogen and oxygen. A first remark is that the value of f0 at the origin is equal to the atomic
number of the element: this is a direct consequence of the definition of the scattering factor, as seen
in (1.3). As q increases, the value of f0 decreases, showing that the amplitude of the scattered wave
decreases as the scattering angle increases. In quantum mechanics, we say that the probability that a
photon is scattered decreases as the scattering angle gets larger.
Finally, our interest focuses on the scattered intensity froma given biomolecule. Just like the definition
of the scattering factor for an atom, it is possible to define themolecular scattering factor ormolecular
transform F (q) as the Fourier transform of the electron density of the biomolecule ρ(mol):

F (q) =

∫
ρ(mol)(r) exp(iq · r)d3r. (1.5)

The question is, how does this expression link with the scattering factor of each atom in the molecule
? Several ways exist to deal with this issue. The simplest is to consider that all chemical bond effects
on the electron density can be neglected, and to view each atom as isolated from its neighbors. With
this approximation, the electron density ρ(mol) is transformed into a sum over the electron density of
each atom in the molecule:

F (q) ≃
∫ ∑

j

ρ(at)
j (r − rj) exp(iq · r)d3r =

∑
j

f0j (q) exp(iq · rj), (1.6)

with j an index over the atoms in the biomolecule, and rj the position vector of the j-th atom in the
frame of reference of the molecule. Note that in this expression, even if the scattering factors fj are
supposed to depend only on the value of q, the whole molecular scattering factor depends on every
vector q due to the phase term exp(iq · rj) which summarizes the contribution of each atom with
respect to its position in the molecule. It is now straightforward to define the intensity scattered by

17Don T Cromer and Joseph B Mann. Acta Crystallographica A, 24: 321–324, 1968.
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• q = qdec
max

q = qmax

CA

B

D

Figure 1.3 : Reconstructing the intensity function frommultiple orientations. TheEwald spheresA,B,C and
D, corresponding to four different orientations of the molecule span a ball of radius qmax. If the
measurements are made on symmetric portions of the respective Ewald spheres, the ball spanned
has a radius equal to qdec

max, where qdec
max is the norm of the maximum scattering momentum on one

of these Ewald sphere portions. Adapted fron Paganin.12

the molecule by mimicking the equation for a single atom:

I(q) = |F (q)|2IT =

∣∣∣∣∣∣
∑
j

f0j (q) exp(iq · rj)

∣∣∣∣∣∣
2

IT . (1.7)

In other words, the intensity is simply the square magnitude of the Fourier transform of the electron
density ρ(mol) according to a proportionality factor IT . This Fourier transform relation has a fortunate
symmetry property, called the Friedel symmetry. The electron density ρ(mol) of the molecule is real;
therefore its Fourier transform F (q) satisfies the Hermitian symmetry F (−q) = F (q). As a con-
sequence, the intensity I(q) satisfies the parity property, known as the Friedel symmetry property18

I(q) = I(−q). (1.8)

We will show in chapter 2 that sparse representations of I can be conveniently obtained from this
property.

1.2.2 Reconstructing the intensity function from multiple orientations and geometric proper-
ties of the intensity

Even though the formula (1.7) is quite general and is valid for all q, one has to remember that in
a given experiment, i.e. a particular orientation of the molecule, the only values of q available are
those sampled by the Ewald sphere. Therefore a single measurement corresponds to a slice through
the three-dimensional intensity. The acquisition of an increasing number of measurements, each
corresponding to a different orientation of the molecule, eventually fills the three dimensional space
so the intensity is fully determined.
The accumulation of spherical slices has a fortunate consequence on the geometry of the intensity
function I(q). In figure 1.3 are depicted four Ewald spheres A, B, C and D, each corresponding to

18Arthur James Cochran Wilson. Elements of X-ray Crystallography. Addison-Wesley Reading, Massachusetts, 1970.
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Figure 1.4 : Geometry of the experiment.

experiments where the orientation of the molecule is different from the others. The figure is drawn in
two-dimensions for convenience, but the same discussion is valid for the three-dimensional case. The
Ewald sphere corresponding to a new orientation of the molecule is obtained by rotation around the
origin q = 0 of the Ewald sphere of reference (e.g.A). This rotation is not arbitrary, it corresponds
exactly to the rotation we have applied to the molecule such that the original orientation gave the
Ewald sphere A. Since each Ewald sphere has diameter 4π/λ, the accumulation of different orienta-
tions spans a ball of radius qmax = 4π/λ. It is worth noticing that the intensity is here defined within
a ball of radius qmax with respect to a certain wavelength λ; changing λ adjusts accordingly the support
of the intensity function, trough the radius qmax.
The previous discussion implicitly assumed that we were able to measure the totality of the Ewald
sphere: that is one would have in practice to build a complete spherical detector ! This is obviously not
possible, and experimental data is consequently collected on a portion of the Ewald sphere. The dark
lines on figure 1.3 represent symmetrical portions on the Ewald spheresA,B,C andD respectively.
The maximum norm of the scattering momentum is given by qdecmax: using the same construction as
before, the accumulation of measurements spans a ball of radius qdecmax < qmax .
This construction of the three-dimensional intensity I(q) through a particular tomographic proce-
dure, i.e. the acquisition of two-dimensional measurements in various orientations, has emphasized
the geometrical structure of the intensity. The intensity is defined within the ball of radius qdecmax, cen-
tered at the origin of reciprocal space q = 0. This motivates this work, where we believe that one
could take advantage of the spherical geometry of the intensity. This work makes use of spherical
coordinates as much as possible, and the remaining of this work develops tools for the analysis, rep-
resentation and reconstruction of the intensity based on this motto.

Remark The reconstruction of the intensity provided here is specific to the single-particle imaging experiment, where we
assume that the wavelength λ is fixed. Another way of reconstructing the intensity function is to vary the incident energy
(through λ) while leaving the orientation of the object unchanged: we obtain therefore a collection of Ewald spheres, all
attached to the origin q = 0 but with different radii. We note that this method is irrelevant in the single-particle imaging
since we are unable to control the orientation of the imaged object.

1.2.3 Intensity measured on the detector

Most experiments are performed with a planar detector, and therefore the measured intensity results
from the projection of the Ewald sphere on the planar detector. Also, for simulation purposes, we
need a formalism describing the intensity measured on a detector in a single particule experiment.
The first step is to obtain the expression of the scatteringmomentum q in terms of the pixel considered
on the detector. The spherical coordinates are a natural choice for q, from the discussion above. We
denote by q ∈ R+ the radius, φ ∈ [0, 2π] the azimuth angle, and θ ∈ [0, π] the colatitude angle, such
that q = (q, φ, θ). The detector is assumed to be planar, with square pixels of side pw , and located at
distance zD of the molecule sample, see figure 1.4. We consider a pixel of center (xi, yj) = pw(i, j),
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(i, j) ∈ Z2 where the reference is taken at the center of the detector. Simple geometry from figure 1.4
gives the expression of the scattering angle θsc,

θsc = arctan

(
pw
√
i2 + j2

zD

)
. (1.9)

A quick check of the domain of definition of θsc reveals that this expression is valid for any point on the
detector, since the planar detector imposes θsc < π/2. The maximum scattering angle θmax

sc should
normally be obtained on the edge of the detector; however with our spherical geometry it is more
convenient to consider the angle subtended by the largest circle inscribed within the square detector.
The outer regions are then simply discarded. Now, using equation (1.1) we obtain the expression of
the radius q as a function of the pixel position

q = qmax · sin

[
1

2
arctan

(
pw
√
i2 + j2

zD

)]
. (1.10)

Whereas in general this relation is non-linear, for pixels near the center of the detector (i.e. small
scattering angle) the relation becomes linear in the norm

√
i2 + j2. The largest value of q is denoted

by qdecmax and is obtained for the maximum scattering angle θmax
sc , as explained above. We now obtain

the values of the azimuth angle φ an the colatitude angle θ. The angle φ is simply given by projection
of the Ewald sphere on a flattened Ewald sphere: therefore the value of φ is obtained by

φ = angle(xi, yj). (1.11)

The colatitude angle θ is determined thanks to figure 1.1. From the geometry, we have

θ(q) =
π

2
− θsc =

π

2
− arcsin

(
q

qmax

)
. (1.12)

The notation θ(q) emphasizes the inter-dependence between θ and the norm q of the scattering mo-
mentum. This dependence is not surprising, since the measurement results from the projection of
the Ewald sphere: the Ewald sphere is a two-dimensional surface, therefore only two independent
parameters (here q and φ) are needed to describe it.
In the single-particle experiment eachmolecule is dropped in a random, unknownorientation. Equiv-
alently it means that a random unknown rotation Rk has been applied to the original atom coordi-
nates rj , leading to new coordinates Rkrj . In this work we assumed that the random rotations Rk

are drawn from a uniform distribution on the rotation group SO(3), as it is common in the XFEL
literature. More information on the generation of random uniform rotations is provided in section
3.2.2.
We give an expression for the intensity measured on the detector, for a rotation of the molecule Rk.
The expression below is derived from (1.7), where the measured intensity has to be proportional to
the solid angle ∆Ω subtended by the considered pixel on the detector,

I(q,Rk) =

∣∣∣∣∣∣
∑
j

fj(q) exp (iq · (Rkrj))

∣∣∣∣∣∣
2

IT∆Ω, ∆Ω =
p2w
z2D

cos θsc(q). (1.13)

We recall that this expression is only valid for the values of q = (q, φ, θ(q)) as given above. The
demonstration of the expression of the solid angle, alongside some technical details about the param-
eter values used in our simulations are given in appendix A.
There is no such thing as an ideal experimental setup, and the single particle imaging experiment
makes no exception. We now discuss quickly the perturbations and sources of noise preventing from
measuring I(q,Rk) directly. In the single particle imaging experiment, the noise could havemultiple
origins: e.g. it can be due to inelastic scattering, scattering of water (water is needed such that the
biomolecule is functionalized), presence of impurities or other molecules in the stream, etc. In the
following of this work, we assume that these perturbations can be neglected. However in the single-
particle imaging experiment one feature can not be omitted. Even with the intensities encountered
at XFEL facilities, the scattering of the incident beam by the molecule is very weak; for a 500 kDa
protein, one may expect only a few hundreds of photon to be recorded on the detector. Therefore
a sensible model is to consider random realizations of a two-dimensional inhomogeneous Poisson
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(a) GroEL molecule, 400 kDa (b) Bence-Jones protein, 24 kDa

Figure 1.5 : The two molecules used in the simulations presented in this manuscript.

process, that is each detector pixel of coordinates q in reciprocal space is a random realization of a
Poisson process of parameter I(q,Rk).
The simulations presented in this work concerns two particular biomolecules, the bacterial chaper-
onin GroEL and Bence-Jones protein respectively. Their molecular structure has been determined
by previous measurements19,20 and are available online in the Protein Data Bank (PDB), under the
entries 1GRL and 1REI respectively. The GroEL is approximately 16 times larger than the Bence-
Jones protein, with respective molecular masses of 400 kDa and 24 kDa. For completeness we have
represented the molecular structure of these two biomolecules in figure 1.5.
Several diffraction patterns of both GroEL and the Bence-Jones protein are represented on figure
1.6 and 1.7. Each row correspond to a different orientation of the molecule. The first column depicts
continuous diffraction patterns, that is they have been computed through equation (1.13). The second
column corresponds to Poisson samples of each of these intensities; the values on the detector are
integers, since they represent a photon count. The last column is also showing Poisson samples, but
the underlying intensity has been rescaled to obtain a diffraction patternwith an average photon count
per Shannon-Nyquist pixel close to those obtained in single-particle experiments. As expected, for
the same experimental conditions the photon count is higher for the larger molecule (1GRL), and the
rate of variation of the intensity with the angle of scattering is lower for the smaller molecule (1REI).
As a side note, it is interesting to point out that in the single-particle imaging experiment two sources
of randomness are present. The first one is intrinsic to the measurement process, that is the Poisson
realizations of the intensity, and the latter resides in the single-particle imaging procedure; since there
is no possibility to control – or even measure – the orientation of the particle, we had to consider
random rotations instead. The main challenges of intensity reconstruction algorithms are therefore
to address the low-photon counts, as well as the lack of orientational information.

1.2.4 The oversampling requirement

Since we are only measuring intensities, that is the square modulus of the Fourier transform of the
molecule, the phase information has to be recovered to obtain the electron density of the molecule.
In the following, we show that the intensity has to be oversampled so that we are able to recover the
phases of the electron density. We recall a discussion presented by Chapman et al. , in one of the
original papers to demonstrate the feasibility of the single-particle experiment.6 Similar results have
been presented by Thibault et al. 21 for a simpler version of the actual experiment.
Let us consider a three-dimensional Cartesian grid in reciprocal space, with coordinates ui,j,k and
withN -equispaced samples on each axis, with step size∆u. The values ofu –which are frequencies – ,
on a given axis, range from (−N/2−1)∆u toN/2∆u, whereN is supposed even. Let∆x represents
the grid spacing in real-space, that is in the space of themolecule. From the discrete Fourier transform

19Kerstin Braig et al. Nature, , 1994.
20Otto Epp et al. Biochemistry, 14: 4943–4952, 1975.
21Pierre Thibault and Ivan C Rankenburg. American Journal of Physics, 75: 827–832, 2007.
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Continuous High photon count Low photon count (XFEL)
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Figure 1.6 : Diffraction patterns for the 1GRL protein. Rowwise are represented two different orientations of
themolecule. From left to right, the continuous intensity I , a corresponding Poisson sample with a
high photon count, and a typical diffraction pattern with expected photon count at XFEL facilities.
All diffraction patterns were computed on a 123× 123 pixel detector, for a wavelength λ = 2 Å.
All remaining parameters are speficied in appendix A.

we have the relation

∆u∆x =
2π

N
. (1.14)

The inverse Fourier transform of the intensity is proportional to the autocorrelation function of the
electron density that would be recovered if ever the phases were known6

i(x) = F−1 [I(u)] ∝ ρ(mol)(x)⊗ ρ(mol)(x). (1.15)

If the molecule has a finite width D along one axis, the autocorrelation function i(x) has then a
finite extent of 2D, and therefore the intensity function I(u) is band-limited. Therefore, in virtue
of the Shannon-Nyquist theorem, the minimum grid spacing in reciprocal space to recover all the
information in I(u) is given by

∆SNu =
2π

2D
=
π

D
, (1.16)

where the subscript stands for Shannon-Nyquist. We introduce the oversampling ratio, σ such that
∆u = 2π/(σD). For σ = 2, we obtain the critical Shannon-Nyquist spacing introduced above. The
retrieval of the phase information is made possible through the oversampling condition.
In the first approximation of small scattering angles, the available sampling step on the detector is
given by

∆q =
2π

λ

pw
zD

, (1.17)
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Continuous High photon count Low photon count (XFEL)
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Figure 1.7 : Diffraction patterns for the Bence-Jones protein (1REI). Rowwise are represented two different
orientations of the molecule. From left to right, the continuous intensity I , a corresponding Pois-
son sample with a high photon count, and a typical diffraction pattern with expected photon count
at XFEL facilities. All diffraction patterns were computed on a 123× 123 pixel detector, for a wave-
length λ = 2 Å. All remaining parameters are speficied in appendix A

which is easily obtained by a Taylor series of expression (1.10). Equalizing (1.17) with the expression
of ∆u allows us to choose the pixel size pw with respect to the oversampling ratio σ, the wavelength
λ and the detector distance zD and the object sizeD,

pw =
zDλ

σD
. (1.18)

Literature often refers to the Shannon-Nyquist pixel, the corresponding pixel size is given through
equation (1.18) for the critical Shannon-Nyquist sampling case, that is for σ = 2.
We conclude this section by numerical examples. First, we consider the case of the molecule 1GRL,
whose diffraction patterns are depicted in figure 1.6. Using the values of pw, zD , λ, and recalling that
1GRL has roughly a characteristic size of 150 Å19, we obtain the following oversampling ratio

σ1GRL ≃ 4. (1.19)

In the second case, for the protein 1REI, the transverse size is approximately 54 Å, and therefore we
obtain an oversampling ratio

σ1REI ≃ 11. (1.20)

The oversampling ratio is in the two cases over the critical case σ = 2, which is motivated it by the
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fact that oversampling improves in practice the signal-to-noise ratio in the experiments.

Remark The principle of coherent X-ray imaging requires the detector to be placed in the far-field zone, where in that case
the diffraction pattern does no longer depend on the propagation distance. For a given molecule size D, one has to check if
the detector distance zD from the sample is greater than the Fraunhofer distance zF , given by zF = 2D2/λ.6

1.2.5 Discussion on the assumptions and XFEL case

Before stepping into reconstruction procedures, we highlight some implicit assumptions taken in this
section. Precisely, we discuss the validity of our intensity model regarding the specific case of XFEL
single-particle imaging.
Let us consider the scattering factor f(q) defined by equation (1.3). We removed the angular depen-
dence, and considered the isotropic scattering factor f0 only. However, we forgot to mention that the
energyE = hc/λ of the incoming photons modifies the value of f0. We introduce two terms, f ′ and
f ′′ which only depend on the photons energy E, such that the energy-corrected isotropic scattering
factor reads

f(q, E) = f0(q) + f ′(E) + if ′′(E). (1.21)

XFELs provide very bright, short pulses. In our calculations, we assumed that the intensity of the
incoming beam was constant and equal to I0. This would be exact if the pulse was perfect, just like a
rectangular window. However, this is hardly the case at XFEL facilities and refinement can be done
using a time dependent incoming intensity I0(t). Therefore all the intensity-related quantities listed
above would need to be integrated over the pulse duration.
The last remark concerns the geometry of the detector, as presented on the right side of figure 1.4. We
used a rectangular detector with equal-area pixels, which is far from the real design of XFEL detectors.
For reference, the design of the detector used at LCLS has a much more complex structure, showing
multiple CCD detectors coupled in a spiral fashion. Pixels are of various size and shape, and gaps
exist between pixel clusters. Also in XFEL experiments a few pixels in the center of the detector are
removed, so that the huge amount of unscattered photons does not destroy the detector. For further
information on this topic, one may want to check for instance Porro et al. 22 Assumptions are here
made for simplicity, since the algorithm presented here is independent from the detector geometry.
When needed, we will point out the small adjustments if relevant.

1.3 From diffraction patterns to molecular structure

A single-particle experiment is expected to produce up to millions of diffraction patterns, and the
final goal is to obtain a high-resolution image of the structure of the biomolecule. The molecular
structure determination contains two distinct procedures. First the diffraction patterns are assembled
to give the three-dimensional intensity function I(q), by solving the orientation problem. Second,
the intensity phases are recovered trough a phase retrieval step, and the electron density (molecular
structure) is obtained.

1.3.1 Intensity reconstruction strategies

Due to the low photon counts on the diffraction patterns – about 5 × 10−2 photons per Shannon-
Nyquist pixel (in the high angular part) expected for a 500 kDa protein – and the subsequent poor
signal-to-noise ratio, an important number of diffraction patterns have to be acquired to allow a
reconstruction. Since each diffraction pattern is related to an unknown random orientation of the
molecule, accurate orientation determination or compensation of the lack of orientational informa-
tion is fundamental.
An intensity reconstruction algorithm needs to address the two issues above, and should ideally be
computationally efficient to give intensity reconstructions in a reasonable time. Figure 1.8 shows
the assembly of two-dimensional patterns to form the three-dimensional intensity function, as the
number of patterns K increases. The situation depicted here corresponds to the ideal case where

22M Porro et al. Nuclear Instruments and Methods in Physics Research Section A:, 624: 509–519, 2010.
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the relative orientation of each diffraction pattern is known. The bottom row shows Poisson realiza-
tion of the above diffraction patterns, and the low-photon count in the high-angular part makes the
reconstruction much harder.

In order to assemble the two-dimen-sional noisy diffractionpatterns into a consistent three-dimensional
intensity function, numerous algorithms have been proposed to date. Early work from Huldt et al. 23

determined the relative orientation of two diffraction patterns by searching the common line, which is
precisely the intersection between the associated Ewald spheres to each diffraction pattern. Locating
the common could be efficiently done with continuous diffraction patterns, however due to the low
number of photons in a actual diffraction pattern this is not possible. The diffraction patterns have
to be classified first according to a similarity measure, which is done by cross-correlation. Averaging
over the diffraction patterns in a same class increases the signal-to-noise ratio, and allows the use of
the common-line algorithm. This classification step however limits unfortunately the applicability of
the common line algorithm, such that this method fails with the photon counts expected in the single
particle experiment.2

Fung et al. 24 proposed an algorithm based on a manifold embedding technique. This approach is
based on a Generative Topographic Mapping (GTM), where each pattern is considered as a vector of
theN -dimensional space of intensities, withN the number of pixels on the detector. The idea is that,
since a continuous rotation of the sample implies a continuous variation of the diffraction intensities,
the images obtained should span a three-dimensional manifold embedded inN -dimensional space.
The manifold is generated from a large number of diffraction patterns, and averaging out the closest
diffraction patterns leads to the expected smooth manifold. However, a large number of diffraction
patterns may be required to obtain a sufficiently smooth manifold.1

The first attempt at a geometry constrained algorithm was taken by Saldin et al. ,25 where the three-
dimensional intensity function was expanded on the spherical harmonic basis. Their approach re-
lies on the cross-correlation of the diffraction patterns and exploits the orthogonality of spherical
harmonics to obtain a decomposition of the cross-correlation function with the spherical harmonic
degree. It is interesting to note that this method has been tested experimentaly 26 on large dimers
with known structure. However this method does not allow the recovery of the spherical harmonic
expansion coefficients, and the correlation approach has to be coupled with a molecular replacement
method to estimate the protein structure.

Loh and Elser27 introduced the Expansion-Maximization-Compression (EMC) algorithm which re-
lies on an Expectation-Maximization (EM) technique. The algorithm tries iteratively tomaximize the
likelihood of the reconstructed intensity given the set of diffraction patterns. The algorithm does not
determine the actual orientation of themolecule in each pattern, it rather estimates the probability for
a diffraction pattern to be associated with a certain orientation. Recently, this algorithm has proven
its feasibility with the reconstruction of Mimivirus from experimental data collected at LCLS .28 The
EMC algorithm is studied in detail in this work, with the introduction of several improvements.

Recently, Walczak et al. 29, developed further the Bayesian approach providing two algorithms. The
first one uses a seed structural model, which leads eventually to the determination of the molecular
orientation for each diffraction image. The averaging of the oriented diffraction patterns lead to a re-
construction of the intensity. The second approach proposes to determine the probability that a given
set of diffraction patterns fits the seed model of the molecular structure, which allows to discriminate
between different structures.

Overall, it seems that Bayesian techniques have supplanted the cross-correlation methods, as they
suffer from several drawbacks30,31 given the low-number of photons expected in the single-particle
experiments.

23G Huldt, A Szőke, and Janos Hajdu. Journal of structural biology, 144: 219–227, 2003.
24Russell Fung et al. Nature Physics, 5: 64–67, 2009.
25DK Saldin et al. Journal of Physics: Condensed Matter, 21: 134014, 2009.
26Dmitri Starodub et al. Nature communications, 3: 1276, 2012.
27Ne-Te Duane Loh and Veit Elser. Physical Review E, 80: 026705, 2009.
28Tomas Ekeberg et al. Physical review letters, 114: 098102, 2015.
29Michał Walczak and Helmut Grubmüller. Physical Review E, 90: 022714, 2014.
30Veit Elser. Ultramicroscopy, 111: 788–792, 2011.
31Veit Elser. New Journal of Physics, 13: 123014, 2011.
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(a) K = 1 (b) K = 3 (c) K = 100

Figure 1.8 : 3D-intensity assembly procedure. Each diffraction pattern corresponds to a different 2D-slice
(Ewald sphere) through the intensity. The accumulation of multiple diffraction patterns recon-
structs the 3D intensity. Top row: continuous diffraction patterns. Bottom row: the random Pois-
son counterparts, with a very low-photon count in the high-angular part. Diffraction patterns
were simulated from the Bence-Jones protein 1REI.

1.3.2 A brief overview of phase retrieval

Asmentioned earlier, oversampling allows to recover the phase information from the recordeddiffrac-
ted intensities. Phase retrieval techniques date back to the 1950s,32 inspired by the new Shannon the-
orem, and have been adapted to coherent diffractive methods about a decade ago.33–36 The study of
the different phase retrieval methods is not the purpose of this work, where we concentrate on the
intensity reconstruction problem. However to make this work self-contained we present the general
idea behind phase retrieval techniques. The reader interested by an extensive review of the phase
retrieval methods in coherent diffractive imaging may look at Marchesini37 or more recently in the
signal processing community.38
Quite generally, the phase problem is solved by considering that the imaged molecule is isolated, that
is the electron density ρ is assumed to be equal to zero outside a so-called support constraint S,

ρ(r) = 0, for r ̸∈ S. (1.22)

This support constraint has to be specified beforehand and is part of some a priori information we
have about themolecule. We recall that the relationship between the three-dimensional intensity I(q)
and the electron density ρ is given by (1.7),

I(q) ∝ |F {ρ(r)} |2, (1.23)

where F denotes the Fourier transform. Equations (1.22) and (1.23) define constraints that should
fulfill the recovered electron density ρ. Phase retrieval algorithms are iterative procedures, and by
re-constraining at each step the solution and an appropriate update rule, convergence to an unique
solution is achieved.

1.4 Outline of this work

This work focuses on the development of an intensity reconstruction algorithm taking into account
the geometry and the symmetry constraints the intensity function has to abide by.

32David Sayre. Acta Crystallographica, 5: 843–843, 1952.
33J Miao, D Sayre, and HN Chapman. JOSA A, 15: 1662–1669, 1998.
34Veit Elser. JOSA A, 20: 40–55, 2003.
35Stefano Marchesini et al. Physical Review B, 68: 140101, 2003.
36D Russell Luke. Inverse Problems, 21: 37, 2005.
37Stefano Marchesini. Review of Scientific Instruments, 78: 011301, 2007.
38Yoav Shechtman et al. Signal Processing Magazine, 32: 87–109, 2015.
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Thegeometric construction of the three-dimensional intensity functiondescribed in section 1.2 show-
ed the importance of the spherical geometry, and suggests that it could be beneficial to propose an
adequate parametrization of the intensity function.
The determination of the high-resolution intensity function of a protein is a complex problem, and
algorithms require appropriate tuning of their parameters to be efficient. By estimating incrementally
resolved versions of the three-dimensional intensity, we believe that some insight could be given on
the choice of the different parameters. Obtaining low-resolution intensity functions has also a desir-
able property: to make the dream of on-demand imaging with XFELs come true, one has to develop
computationally efficient algorithms. This would be beneficial since as of today computational issues
are key in the development of single-particle imaging.
Our work focuses on the implementation of these constraints in the EMC algorithm developed by
Loh and Elser27.
We start by introducing in chapter 2 several mathematical tools concerning harmonic analysis on the
ball, i.e. the solid sphere. The last section of this chapter applies these tools to the representation of
three dimensional intensity functions, and we show how a sparse representation of the intensity is
obtained.
The lack of orientational information in the single-particle experiment is compensated in the EMC
algorithm by the introduction of deterministic sampling sets on the rotation group SO(3). These sets
of rotations are exploited in the heart of the algorithm to associate cross-probabilities between each
diffraction pattern and each rotation of the sampling set. In chapter 1, we address the design of such
sampling sets in connection with the sparse representation developed in chapter 2.
Chapter 4 presents the incorporation of the geometry and symmetry constraints in the EMC algo-
rithm, as well as the parameter scaling regarding the requested resolution. We demonstrate trough
our simulations that computational scaling is efficiently achieved, and the limits of our method.
The last chapter 5 finally concludes and draws the future work towards symmetry-constrained recon-
struction algorithms.





CHAPTER2
Harmonic analysis on the ball

2.1 Mathematical preliminaries

The previous chapter introduced the expression of the intensity scattered by a single molecule, and
we saw how beneficial the use of spherical coordinates (q, φ, θ) could be. In this chapter we aim at
developing harmonic analysis tools for functions defined in terms of spherical coordinates: to avoid
the confusion that comes with the term “sphere”, we will rather refer as harmonic analysis on the ball
B3. We define the 3-dimensional ballB3 by the Cartesian productB3 = R×S2, where S2 denotes the
2-sphere. The radial intervalR can either designate the radial lineR+ or a finite interval [0, Q], where
Q is the ball radius. This distinction is needed since often orthonormal bases are build on the radial
line before being restricted to a finite interval. We recall that the correspondence between spherical
and Cartesian coordinates is given by q = (q sin θ cosφ, q sin θ sinφ, q cos θ)T , where q ∈ R is the
radius, and where (φ, θ) ∈ [0, 2π) × [0, π] are the angular coordinates, i.e. azimuth and colatitude
respectively.
Following Kennedy and Sadeghi’s approach,39 we consider harmonic analysis as part of Hilbert space
signal processing. To this end we introduce the space of square integrable complex-valued functions
defined onR, S2 andB3 denoted byL2(R),L2(S2) andL2(B3) respectively. These spaces, equipped
with the following inner products

⟨f, g⟩R =

∫
R
f(q)g(q)q2dq, (2.1)

⟨f, g⟩S2 =

∫∫
S2
f(φ, θ)g(φ, θ) sin θdθdφ, (2.2)

⟨f, g⟩B3 =

∫∫∫
B3

f(q, φ, θ)g(q, φ, θ)q2 sin θdqdθdφ, (2.3)

form Hilbert spaces provided that f, g are complex-valued functions on R, S2 and B3, respectively.
Thepreviously defined inner products induce the norm ∥f∥ = ⟨f, f⟩1/2 on each of these three spaces.
By definition each element f of L2(R), L2(S2) or L2(B3) has a finite induced norm, ∥f∥ < ∞.
We refer to elements of these Hilbert spaces as signals, following a common convention through the
literature.39,40
This chapter is dedicated to harmonic analysis on the ball. The term “harmonic” is used as a synonym
of Fourier, in that it concerns the definition of valid dual spaces, i.e. spatial and spectral domains.
Classically the term “analysis” is put in opposition with “synthesis” in that they refer to forward and
inverse Fourier transforms respectively. However we consider here the term “analysis” in a broader
sense, that is it covers both forward and inverse transforms.

2.1.1 Harmonic analysis on the sphere

Orthonormal basis on L2(S2)

We first focus on the space of square integrable functions defined on the sphere, that is L2(S2). The
inner product on this space for two functions f, g ∈ L2(S2) is given by

⟨f, g⟩S2 =

∫∫
S2
f(φ, θ)g(φ, θ) sin θdθdφ. (2.4)

39Rodney A Kennedy and Parastoo Sadeghi. Hilbert Space Methods in Signal Processing. Cambridge University Press,
2013.

40Zubair Khalid, Rodney A Kennedy, and Jason D McEwen. Applied and Computational Harmonic Analysis, , 2015.
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The famous spherical harmonic functions, or spherical harmonics form a complete orthonormal
basis of L2(S2). The spherical harmonic Y ml (φ, θ), of degree l ∈ {0, 1, 2, . . .} and order m ∈
{−l,−l + 1, . . . , l} is defined by

Y ml (φ, θ)
∆
=

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ = Nm

l P
m
l (cos θ)eimφ, (2.5)

where the first term Nm
l ensures that the spherical harmonics are normalized with respect to the

inner product ⟨f, g⟩S2 . The second terms involve the associated Legendre polynomials Pml , which
we now define. Let x = cos θ, so x ∈ [−1, 1]. The associated Legendre polynomials for positive order
m ∈ {0, 1, . . . , l} are defined explicitly by

Pml (x)
∆
=

(−1)m

2ll!
(1− x2)m/2 dl+m

dxl+m
(x2 − 1)l, m ∈ {0, 1, . . . , l} , (2.6)

whereas the following equation defines the associated Legendre polynomials for negative values of
m ∈ {−l,−l + 1, . . . , 0},

P−m
l (x) = (−1)m

(l −m)!

(l +m)!
Pml (x), m ∈ {0, 1, . . . , l} . (2.7)

The expressions for the associated Legendre polynomials (2.6) and (2.7) differ only by a scaling factor.
The term (−1)m in (2.7) is called the Condon-Shortley phase factor. A particular interesting case is
when m = 0, where the associated Legendre polynomials P 0

l reduces to Legendre polynomials Pl,
thus (2.6) and (2.7) become the well-known Rodrigues’ formula

Pl(x)
∆
=

1

2ll!

dl

dxl
(x2 − 1)l, l ∈ {0, 1, . . .} . (2.8)

These associated Legendre polynomials are, by the previous definitions, real-valued functions of the
variable x = cos θ. Therefore the only complex valued term in the definition of spherical harmonics
(2.5) is the complex exponential eimφ.
The spherical harmonics form a complete orthonormal basis inL2(S2). The orthonormality property
reads

⟨Y ml , Y m
′

l′ ⟩S2 = δll′δmm′ , (2.9)

where δll′ is the Kronecker delta, that is δll′ = 1 if l = l′ and δll′ = 0 otherwise. The completeness
of spherical harmonics in L2(S2) states that any function f ∈ L2(S2) can be expanded in terms of
spherical harmonics

f(φ, θ) =
∞∑
l=0

l∑
m=−l

fml Y
m
l (φ, θ), (2.10)

where the fml are the coefficients obtained by projection on the corresponding spherical harmonic,
i.e.

fml
∆
= ⟨f, Y ml ⟩S2 =

∫∫
S2
f(φ, θ)Y ml (φ, θ) sin θ dθdφ (2.11)

Equations (2.10) and (2.11) define the inverse and forward spherical harmonic transforms, respec-
tively.

Remark One can legitimately wonder where do the spherical harmonics come from. Spherical harmonics arise naturally
when the eigendecomposition of the Laplacian operator ∇2

Ω in spherical coordinates is performed, i.e. these are solution of
the equation

∇2
ΩY

m
l + l(l+ 1)Y m

l = 0 where ∇2
Ω =

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ
∂2

∂φ2
. (2.12)

For a given degree l, the subspace associatedwith the eigenvalueλl = −l(l+1) has dimension 2l+1, with eigenvectorsY m
l ,

m ∈ {−l,−l+ 1, . . . , l}. Resolving the eigendecomposition problem leads to the analytic form (2.5) of orthonormalized
spherical harmonics.
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Figure 2.1 : Representation of the spherical harmonics functions for degrees l = 0, . . . , 6 and corresponding positive orders m. The negative orders were ommited beacause of the symmetry property 2.13.
Spherical harmonics are real-valued for m = 0, and complex-valued for m ̸= 0, such that we represented in these cases the real part (top) and the imaginary part (bottom). All representations
are Mollweide projections, a projection which preserves the areas and is commonly used in Physics.
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Symmetries

Using the relationship (2.7) between associated Legendre polynomials of opposite ordermwe obtain
the expression of Y −m

l in terms of Y ml :

Y −m
l (φ, θ) = (−1)mY ml (φ, θ), l ∈ {0, 1, . . .} , m ∈ {0, 1, . . . , l} . (2.13)

The specific application considered in this work, the single-particle experiment, leads us to consider
another property: the parity property of spherical harmonics. This property reads

Y ml (π + φ, π − θ) = (−1)lY ml (φ, θ) (2.14)

and will be very useful when applied to our specific application, notably when incorporating the
Friedel symmetry (1.8) in our formulations.

Parseval relation and energy per degree

From a signal processing perspective, it is particularly interesting to evaluate the energy of a signal
f ∈ L2(S2). By definition, the energy E of a signal is simply the inner product between f and itself,
E = ⟨f, f⟩S2 = ∥f∥2. The Parseval relation for spherical harmonics states that the energy of f is
equal to the sum of the square magnitude of each coefficient flm, that is

E =

∫
S2
|f(φ, θ)|2 sin θ dθdφ =

∞∑
l=0

l∑
m=−l

|fml |2. (2.15)

The formula above is directly the result of the completeness property (2.10) and the orthonormality
of the spherical harmonics (2.9). Similarly we can define the energy per degree El, which reads

El
∆
=

l∑
m=−l

|fml |2, (2.16)

where l ∈ {0, 1, . . .}. This quantity allows us to analyse the energy distribution among the degrees l,
in a casual Fourier transform fashion. The degree l is indeed the frequency counterpart in spherical
harmonics analysis. We shall note however that we summed in (2.16) over the values of the orderm:
the reason behind this definition lies in the effect of rotations on spherical harmonics coefficients. Let
consider a rotationR ∈ SO(3) and rotates the sphere angles (φ, θ) byR. We obtain a new system of
coordinates, say (φ̃, θ̃) and proceed to the spherical harmonics decomposition of the same function
f in this new system of coordinates. This change of frame has a well-known effect: the coefficients
of this decomposition, f̃ml are a linear composition of the previous coefficients fml with the same
degree l and therefore their energy |f̃ml |2 is different. This is due to the strong connection between
the spherical harmonics and the irreducible representation of the rotation group SO(3), the Wigner-
D matrices. Without dwelling any further in this topic, which will be addressed in chapter 4, the
summation in (2.16) eliminates the rotation dependence in the energy, and one can safely obtain the
same energy El for two different rotated versions of the same function f .

2.1.2 Radial harmonic analysis

We now study the case of radial square integrable functionsL2(R), whereR can either designate the
radial lineR = R+ or the finite intervalR = [0, Q]. Quite generally, we recall that the inner product
between two functions f, g ∈ L2(R) is defined by

⟨f, g⟩R =

∫
R
f(q)g(q)q2dq. (2.17)

In the following, we introduce two complete orthonormal bases on L2(R) and their subsequent for-
ward and inverse transforms. Precisely, we start by introducing the well-known spherical Bessel func-
tions, followed by the spherical Laguerre functions, a set of functions based on the orthogonality of
exponentially weighted Laguerre polynomials on R+.
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Spherical Bessel functions

The spherical Bessel functions of the first kind jl and order l form a complete orthogonal basis for
functions defined on the radial line R = R+. They satisfy the orthogonality relation

∀k, k′ ∈ R+, ⟨jl(kq), jl(k′q)⟩R+ =

∫
R+

jl(kq)jl(k
′q)q2dq =

π

2k2
δ(k − k′), (2.18)

where δ(k − k′) is the Dirac delta. Note that we have omitted the conjugate operation since the
spherical Bessel function jl is real. It is important to understand that the orthogonality property holds
over the values of k, rather than over the order l as one may think in the first place. The spherical
Bessel function (of the first kind) of order l is given by41

jl(kq) =

√
π

2q
Jl+1/2(kq), Jl+1/2(kq) =

(
kq

2

)l+1/2 ∞∑
j=0

(
−1

4k
2q2
)j

j!Γ(l + 1/2 + j + 1)
, (2.19)

where Γ denotes the Gamma function, and Jl+1/2 the Bessel function of first kind with (fractional)
order (l + 1/2). The orthogonality property (2.18) suggests that the basis functions should have the
form

√
π/2 · kjl(kq), that is we have simply normalized the spherical Bessel function of order l.

Therefore for every l ∈ {0, 1, . . .} we have the completeness property for f ∈ L2(R+)

f(q) =

√
2

π

∫
R+

fl(k)kjl(kq)dk (2.20)

where the coefficients fl(k) are computed by projection of f on the radial basis functions, i.e.

fl(k) =

⟨
f,

√
2

π
kjl(kq)

⟩
R+

=

√
2

π

∫
R+

f(q)kjl(kq)q
2dq. (2.21)

Equations (2.20) and (2.21) define the inverse and forward l-th spherical Bessel transform on the
radial line, respectively.40
Now we shall step back a little and recall the original goal. We are interested in signals defined within
the ball B of radius Q; therefore instead of considering complete orthonormal bases on L2(R+),
we shall consider orthonormal bases on L2([0, Q]). Nevertheless using Stourm-Liouville theory it
is possible to adapt the basis functions

√
2/πkjl(kq) such that they form a complete orthonormal

basis on L2([0, Q]). A prerequisite is to define a boundary condition at q = Q such as Dirichlet or
Neumann type. We think that the most sensible choice in our application is the Dirichlet boundary
condition, i.e. f(Q) = 0. The equations (2.20) and (2.21) then become42,43

f(q) =
∞∑
n=1

fl(kln)ρlnjl(klnq) (2.22)

fl(kln) =

∫ Q

0

f(q)ρlnjl(klnq)q
2dq, (2.23)

where kln = zln/Q and zln is the n-th zero of spherical Bessel function of order l. The weights ρln
are defined by

ρln =

√
2Q−3/2

|jl+1(zln)|
. (2.24)

Imposing the Dirichlet boundary condition f(Q) = 0 leads to a fortunate consequence: now, fre-
quency space is discretized – we replaced k by kln – and the integral in (2.20) is replaced by a discrete
sum in (2.22).

41Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with formulas, graphs, and mathe-
matical tables. 55 Courier Corporation, 1964.

42QingWang, Olaf Ronneberger, andHans Burkhardt. Pattern Analysis andMachine Intelligence, IEEE Transactions
on, 31: 1715–1722, 2009.

43Qing Wang, Olaf Ronneberger, and Hans Burkhardt Fourier analysis in polar and spherical coordinates tech. rep.
2008
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We finally note that the spherical Bessel functions provide a redundant description of radial functions.
Indeed, let l and l′, l ̸= l′, we are able to write the decomposition of a radial function f in the bases
corresponding to l and l′, respectively

f(q) =

∞∑
n=0

fl(kln)ρlnjl(klnq) =

∞∑
n=0

fl′(kl′n)ρl′njl′(kl′nq). (2.25)

This property can be described as themulti-completeness of the spherical Bessel functions on the radial
interval [0, Q]. Without loss of generality we have only considered the caseR = [0, Q], but the same
results are valid for the R = R+ case.

Remark The connection between the order l of the spherical Bessel function jl and the corresponding degree l of the
spherical harmonics Y m

l is a direct consequence of the relationship with the Laplacian in spherical coordinates. Indeed, the
Laplacian ∇2 is given by

∇2 = ∇2
q +

1

q2
∇2

Ω where ∇2
q =

1

q2
∂

∂q

(
q2

∂

∂q

)
, (2.26)

and ∇2
Ω is defined in (2.12). The spherical Bessel functions jl verifies

∇2
q jl(kq) +

(
k2 −

l(l+ 1)

q2

)
jl(kq) = 0, (2.27)

which is the eigenfunction problem for the Laplacian in spherical coordinates. This expression is not independent from the
spherical part of the Laplacian, since the degree l of the spherical harmonics appears. As as consequence the radial part can
not be fully decoupled from its angular counterpart.

Spherical Laguerre functions

The spherical Laguerre basis functions were first introduced by Leisdedt and McEwen44 as an answer
to the practical limitations of the spherical Bessel functions, which we describe later on in section
2.1.3. This basis relies on the orthogonality of Laguerre polynomials on R+ with exponential weight
function. Reproducing some material from the original paper, we define the p-th spherical Laguerre
basis functionKp(q) by

Kp(q)
∆
=

√
p!

(p+ 2)!

e−q/(2τ)√
τ3

L(2)
p

( q
τ

)
, (2.28)

where L(2)
p is the p-th generalized Laguerre polynomial of order two, defined as

L(2)
p (q)

∆
=

p∑
j=0

(
p+ 2

p− j

)
(−q)j

j!
, (2.29)

and τ ∈ R+ is a scale factor that allows to rescale the spherical Laguerre basis functions to any
region of interest [0, Q], see equation (2.54). It can be shown using the properties of the generalized
Laguerre polynomials that the so-defined basis functions are indeed orthonormal under the radial
inner product, such that

⟨Kp,Kp′⟩R+ =

∫
R+

Kp(q)Kp′(q)q
2dq = δpp′ (2.30)

where again the complex conjugation was omitted because the basis functions are real-valued. The
basis functionsKp form a complete basis for functions f ∈ L2(R+)

f(q) =
∞∑
p=0

fpKp(q), (2.31)

where the definition of the coefficients fp is

fp = ⟨f,Kp⟩R+ =

∫
R+

f(q)Kp(q)q
2dq. (2.32)

44Boris Leistedt and Jason D McEwen. IEEE Transactions on Signal Processing, 60: 6257–6269, 2012.
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Figure 2.2 : (left) Representation of the first six spherical Laguerre functions Kp(q), p = 0, 1, . . . , 5 for

P = 6 and rescaled in [0, 1]. (right) Radial sampling schemes on [0, 1] for different values of
bandlimit P = 2, 4, . . . 20. Odd values of P were omitted for clarity. Sampling schemes are
non-uniform, and become more concentrated towards the origin as P increases.

Equations (2.31) and (2.32) define the inverse and forward spherical Laguerre transform on the radial
line, respectively.
We end this section by representing the spherical Laguerre functions in the left part of figure 2.2. We
have depicted the first six spherical Laguerre functions, for a particular value of bandlimit P = 6
and a scaling factor τ such that the interval of interest is [0, 1]. The bandlimit definition is developed
further on in section 2.2.1.

2.1.3 Spherical Fourier-Bessel Transform on the ball

Wefirst consider the caseR = R+. Combining the spherical Bessel functions jl(kq) and the spherical
harmonics Y ml , we obtain the spherical Fourier-Bessel functions Υml (k, ·)

Υml (k, q) =

√
2

π
kjl(kq)Y

m
l (φ, θ), k ∈ R+, (2.33)

where the order l of the spherical Bessel function matches the respective degree of the spherical har-
monic Y ml . This basis of functions forms a complete orthonormal basis in L2(B3), by completeness
and orthonormality of the spherical Bessel and spherical harmonic functions onL2(R+) andL2(S2),
respectively. The orthonormality property is obtained directly⟨

Υml (k, q),Υm
′

l′ (k′, q)
⟩
B3

= δ(k − k′)δll′δmm′ (2.34)

whereas the completeness property defines the inverse and forward Spherical Fourier-Bessel Trans-
form (SFBT), respectively

f(q, φ, θ) =

∫
R+

∞∑
l=0

l∑
m=−l

fml (k)Υml (k, q)dk, (2.35)

fml (k)
∆
=

∫∫∫
B3

f(q, φ, θ)Υml (k, q)q2 sin θdqdφdθ. (2.36)

We consider now the case R = [0, Q] which is directly linked with the application discussed in this
work. We saw earlier that using a boundary condition at q = Qwe obtained a complete orthonormal
basis on the radial interval [0, Q]. This is stated in equations (2.22) and (2.23). Proceeding exactly
as above, the spherical Bessel functions Υml (kln, ·) form a complete orthonormal basis on the ball
B3 = [0, Q]× S2 such that

Υml (kln, q) = ρlnjl(klnq)Y
m
l (φ, θ), (2.37)
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where we used the notation introduced earlier. Again since the basis Υml (kln, ·) is a complete or-
thonormal basis on L2(B3) we are able to define the inverse and forward SFBT

f(q, φ, θ) =
∞∑
n=1

∞∑
l=0

l∑
m=−l

fml (kln)Υ
m
l (kln, q), (2.38)

fml (kln)
∆
=

∫∫∫
B3

f(q, φ, θ)Υml (kln, q)q
2 sin θdqdφdθ. (2.39)

The SFBT is a full harmonic transform, since the spherical Fourier-Bessel functions are eigenfunc-
tions of the Laplacian in spherical coordinates. However the SFBT suffers from several implementa-
tion limitations. First, the radial and angular part are not fully decoupled, since the spherical Bessel
functions have the same order l as the degree l of the corresponding spherical harmonic. This leads in
practice to a redundant description of the radial part of the function f , due to themulti-completeness
of the spherical Bessel functions. One shall circumvent this first drawback in order to build a discrete
SFBT. This issue has been addressed recently by Lanusse et al. ,45 by building a discrete SFBT based
on a slightly different expression of the Spherical Bessel functions. The authors make use of multiple
tricks to obtain the inverse and forward discrete SFBT which will not be reproduced here.
Another drawback relies on the Dirichlet boundary condition. In regard of the intensity reconstruc-
tion problem addressed in this work, this condition might be too restrictive since it imposes the re-
construction to have f(Q) = 0, occurring a loss of information. Finally, the strong oscillatory nature
of the spherical Bessel functions is not desirable in a estimation setting, as already pointed out in the
literature.44
The several practical limitations of the SFBT motivate the introduction of the spherical Fourier-
Laguerre transform, which circumvent the drawbacks of the SFBT mentioned above.

2.1.4 Spherical Fourier-Laguerre Transform on the ball

Replacing the spherical Bessel functions by the spherical Laguerre functions in the spherical Fourier-
Bessel functions leads to the definition of a new basis on the ball, the spherical Fourier-Laguerre
functions Ψmp,l which read

Ψmp,l(q, φ, θ) = Kp(q)Y
m
l (φ, θ). (2.40)

These functions form a complete orthonormal basis on L2(B3), from completeness and orthonor-
mality of both spherical Laguerre functions and spherical harmonics on their respective spaces. We
define the inverse spherical Fourier-Laguerre transform as

f(q, θ, φ) =
∞∑
p=0

∞∑
l=0

l∑
m=−l

fmp,lΨ
m
p,l(q, φ, θ), (2.41)

where the coefficients fmp,l are obtained by the forward spherical Fourier-Laguerre transforms.

fmp,l =

∫
B3

f(q, θ, φ)Ψmp,l(q, φ, θ) q
2 sin θdqdθdφ. (2.42)

We have the Parseval relation from the orthonormality of the Spherical Fourier-Laguerre functions
in L2(B3)

E =

∫∫∫
B3

|f(q, φ, θ)|2q2 sin θdqdθdφ =
∞∑
p=0

∞∑
l=0

l∑
m=−l

|fmp,l|2
∆
=

∞∑
p=0

∞∑
l=0

Ep,l, (2.43)

where we have introduced the rotation-invariant energy per order, Ep,l =
∑l
m=−l |fmp,l|2. This

quantity allows us to analyse the energy distribution among both radial and angular coefficients.

45François Lanusse, Anais Rassat, and J-L Starck. Astronomy & Astrophysics, 540: A92, 2012.
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2.2 Numerical considerations

The definition of the Spherical Fourier-Laguerre Transform (SFLT) has been given, however the ex-
pression of the forward SFLT requires the evaluation of multiple integrals, which is numerically not
desirable. This section therefore focuses on the numerical implementation of the discrete SFLT.
A first assumption is key in the following. We consider bandlimited signals on the ball. First, we
define HP

L as the space of (P,L)-band-limited functions on the ball,

HP
L

∆
=
{
f ∈ L2(B2) | fmp,l = 0, ∀p ≥ P or ∀l ≥ L

}
. (2.44)

It is somewhat interesting to introduce two other subspaces, the space HL of L-bandlimited signals
on the sphere,

HL
∆
=
{
f ∈ L2(S2) | fml = 0, ∀l ≥ L

}
, (2.45)

and HP the space of P -bandlimited signals on the radial line,

HP ∆
=
{
f ∈ L2(R+) | fp = 0, ∀p ≥ P

}
. (2.46)

2.2.1 Implementation of discrete transforms

In this section we focus on the numerical implementation of the forward and inverse SFLT. Let us
recall that for f ∈ HP

L , the forward and inverse SFLT are given by

fmp,l =

∫
B3

f(q, φ, θ)Ψmp,l(q, θ, φ) q
2 sin θdqdθdφ (forward SFLT), (2.47)

f(q, φ, θ) =
P−1∑
p=0

L−1∑
l=0

l∑
m=−l

fmp,lΨ
m
p,l(q, φ, θ) (inverse SFLT), (2.48)

where the sum in (2.48) has been restricted to P − 1 and L − 1 since f is a (P,L)-bandlimited
function on the ball. We recall that the basis functions are given by the product Ψmp,l(q, φ, θ) =
Kp(q)Y

m
l (φ, θ) and therefore it is possible to rewrite the expression of the forward SFLT (2.47) as

fmp,l =

∫
R+

[∫∫
S2
f(q, θ, φ)Y ml (φ, θ) sin θdθdφ

]
Kp(q) q

2dq, (2.49)

which illustrates that the forward SFLT can be obtained by applying successively the forward Spherical
HarmonicTransform (SHT) followed by the forward Spherical LaguerreTransform (SLT).The inverse
SFLT is obtained in the reverse order, applying first the inverse SLT and then the inverse SHT.We note
that one can also do the reverse operations, that is starting by the forward SLT and then the forward
SHT, since these transforms commute. However a choice has to be made, and in this work we adopt
the first structure proposed, which is depicted in figure 2.4. In the next sections we construct an
efficient forward and inverse SFLT by building efficient forward and inverse SHT and SLT.

Discrete spherical Laguerre transform

Let us consider a P bandlimited radial function, namely f ∈ HP . The coefficients fp of its decom-
position in the spherical Laguerre basis, i.e. the forward SLT, are given by

fp =

∫
R+

f(q)Kp(q)q
2dq, (2.50)

whereas the inverse SLT is given by the reconstruction formula

f(q) =
P−1∑
p=0

fpKp(q). (2.51)

From a numerical perspective, the integral expression (2.50) is not practical. However, as shown in
Leistedt and McEwen44 the Laguerre-Gauss quadrature can be applied and therefore the coefficients
fp can be evaluated by

fp =
P−1∑
i=0

wif(qi)Kp(qi) (2.52)
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where qi = τq∗i and q∗i is the i-th root of L(2)
P , and the weights wi are such that

wi = τ3
(P + 2)q∗i exp(q∗i )
(P + 1)[L

(2)
P+1(q

∗
i )]

2
(2.53)

This quadrature formula is fortunate since it allows us to give an expression for the scale factor τ .
Since we want to rescale the sampling roots q∗i so that we can capture all the information available in
a given interval of interest [0, Q], a natural choice for τ is

τ =
Q

q∗P−1

. (2.54)

Putting all things together, to perform the forward SLT one only needs to evaluate the function f
at P points, namely q0, q1, . . . qP−1 defined in terms of the roots of the Laguerre polynomial L(2)

P .
This radial sampling scheme is depicted on the right side of the figure 2.2 for different values of the
bandlimit P and a scaling factor τ such that all the roots are in the interval [0, 1]. As P increases, the
roots tend to concentratemore around 0. The forward and inverse SLT can be conveniently performed
through matrix manipulation, as suggested by equations (2.52) and (2.51). The forward SLT reads

f0
f1
...

fP−1

 = TD


f(q0)
f(q1)

...
f(qP−1)

 ,
(
TD
)
ij
= wjKi(qj). (2.55)

Similarly we get the following matrix form for the inverse SLT:
f(q0)
f(q1)

...
f(qP−1)

 = T I


f0
f1
...

fP−1

 ,
(
T I
)
ij
= Kj(qi). (2.56)

Discrete spherical Harmonic transform

Let us consider f ∈ HL. The forward and inverse SHT are given by

fml =

∫
S2
f(θ, φ)Y ml (θ, φ) sin θdθdφ (forward SHT), (2.57)

f(φ, θ) =

L−1∑
l=0

l∑
m=−l

fml Y
m
l (φ, θ) (inverse SHT). (2.58)

The computation of the forward SHT requires the evaluation of an integral over the 2-sphere S2. The
evaluation of such integrals can be done by conveniently sampling the 2-sphere, i.e. distributing nodes
on the surface on the sphere in order to obtain a quadrature formula.
The development of sampling schemes on the sphere has been strongly motivated by the analy-
sis of the Cosmic Microwave Background (CMB) sky maps where the dataset lies on the celestial
sphere. Since CMB measurements lead to potentially multimillion pixels maps,46–50 these pixeliza-
tion schemes shall exhibit efficiency, exactness and speed qualities. However today these are slightly
conflicting requirements.51 Numerous pixelizations have been already proposed, each with differ-
ent properties. Healy et al. 52 proposed a angular rectangular grid which allows an exact quadra-
ture, but the distribution of pixels favors the poles and is far from efficient. Recent results from

46Jacques Delabrouille et al. , 493: 835–857, 2009.
47A Kogut et al. The Astrophysical Journal Supplement Series, 148: 161, 2003.
48PAR Ade et al. Astronomy & Astrophysics, 571: A16, 2014.
49JM Lamarre et al. New Astronomy Reviews, 47: 1017–1024, 2003.
50David N Spergel et al. The Astrophysical Journal Supplement Series, 148: 175, 2003.
51J.-F. Cardoso. IEEE Signal Processing Magazine, 27: 55–66, 2010.
52James R Driscoll and Dennis M Healy. Advances in applied mathematics, 15: 202–250, 1994.
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McEwen and Wiaux.53 seem promising, but have not been widely used yet. Other sampling schemes
include GLESP54 and IGLOO55, based respectively on Gauss-Legendre quadrature and the icosahe-
dron. However none of these sampling schemes has become the standard for CMB studies whereas
the Hierarchical Equal Area isoLatitude Pixelization (HEALPix) scheme56 has been widely used since
its introduction. It is worth noticing that an extensive package of HEALPix routines is available in C
and Python, allowing easier algorithmic integration.
The HEALPix scheme has been designed for high performance, fast and accurate computation of
spherical harmonics on the sphere. The sphere is tessellated into curvilinear equal-area pixels, where
the pixel centers are distributed on lines of constant latitude allowing faster computation of spher-
ical harmonic functions due to the separation of angular variables in the spherical harmonics. The
HEALPix sampling scheme is hierarchical and provides different levels of resolution trough a param-
eter called nside. The number of pixels npix at resolution nside is given by

npix = 12× n2side, (2.59)

where the parameter nside is a power of 2. The explanation is the following. The base grid of the
HEALPix sampling scheme is constituted of 12 pixels, and the next resolution sampling scheme is
obtained by dividing each pixel into four equal area pixels on the sphere, and so forth.
The main drawback with HEALPix is that it lacks exact weights for an exact quadrature formula.
However since the sphere is tessellated into equal-area pixels, one may obtain a very accurate quadra-
ture formula with equal weights 4π/npix. Given the set of HEALPix pixels {(φi, θi)}i=0,...,npix−1, the
forward SHT is obtained by the quadrature formula

fml =
4π

npix

npix−1∑
i=0

f(φi, θi)Y ml (φi, θi). (2.60)

We have not yet explained the choice of the resolution parameter nside with respect to the bandlimit
L, this will be done in section 2.2.2 where we introduce a sampling theorem.

Discrete spherical Fourier-Laguerre Transform

Let us consider a function f ∈ HP
L , and such that all the information of interest is concentrated in

the ball of radius Q. First given P and a scaling parameter τ , we define a radial sampling scheme
q0, q1, . . . , qP−1 ∈ [0, Q]. At each radial value we associate a spherical shell containing npix pixels.
We finally obtain a grid G in R3 defined by

G ∆
=
{
(qs, φi, θi) | s = 0, 1, . . . , P − 1, i = 0, 1, . . . , npix − 1

}
, (2.61)

which consists in P · npix points. With the discrete SLT and the discrete SHT formalism at hand,
we are now able to build the discrete SFLT on this grid according to the implementation depicted on
figure 2.4. In order to perfom the forward SFLT, the SHT is first performed on each concentric shell
of radius qs. This operation is conveniently performed thanks to the comprehensive set of routines
available in the HEALPix package. We obtain the set of coefficients fml (qs). Therefore for every l,m
we can compute P coefficients, namely fmp,l where p = 0, · · ·P − 1. The forward SLT can be easily
implemented in matrix form by a simple modification of (2.55)


fm0,l
fm1,l
...

fmP−1,l

 = TD


fml (q0)
fml (q1)

...
fml (qP−1)

 ,
(
TD
)
ij
= wjKi(qj). (2.62)

53Jason D McEwen and Yves Wiaux. Signal Processing, IEEE Transactions on, 59: 5876–5887, 2011.
54AG Doroshkevich et al. International Journal of Modern Physics D, 14: 275–290, 2005.
55Robert G Crittenden and Neil G Turok. arXiv preprint astro-ph/9806374, , 1998.
56Krzysztof M Gorski et al. The Astrophysical Journal, 622: 759, 2005.
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(a) nside = 1, npix = 12 (b) nside = 2, npix = 48

(c) nside = 4, npix = 192 (d) nside = 8, npix = 768

Figure 2.3 : HEALPix grids for the four first resolution parameters nside = 1, 2, 4, 8, leading to number of
pixels npix = 12, 48, 192, 768.

f(q) fml (qs) fmp,l (forward)

fmp,l fml (qs) f(q) (inverse)

SHT SLT

inv. SLT inv. SHT

Figure 2.4 : Implementation of the Spherical Fourier-Laguerre Transform (SFLT). The forward transform is
computed by performing succesively the Spherical Harmonic Transform (SHT) and the Spherical
Laguerre Tranform (SLT). The inverse transform is similarly computed in the reverse order.

Similarly, for the inverse SFLT, we get the following matrix form for the inverse SLT:
fml (q0)
fml (q1)

...
fml (qP−1)

 = T I


fm0,l
fm1,l
...

fmP−1,l

 ,
(
T I
)
ij
= Kj(qi), (2.63)

whereas the inverse SHT is again conveniently performed trough HEALPix package routines.

2.2.2 A sampling theorem on the ball

We omitted in the last section a key point: given f ∈ HP
L , how do we have to choose the number of

points of the grid G so that all of the information content is captured? First, it is clear that if the radial
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part of f is P -bandlimited, then according to the quadrature rule for the discrete SLT, only P points
suffice. However for the angular part, since the HEALPix scheme lacks an exact quadrature rule, no
theoretical result is available to the best of our knowledge.
This question is addressed heuristically in theHEALPix referencemanual.57 In the uncorrected quadra-
ture mode, that is the weights are uniform and equal to 4π/npix, a very good accuracy is obtained if
the condition

L ≤ 2nside + 1, (2.64)

is satisfied. It is nevertheless possible to go beyond this condition for 2nside + 1 < L ≤ 3nside
if the SHT routines are performed in iterative mode, which reduces efficiently the quadrature errors.
Another approach has been taken byGräf et al. 58 where they compute numerically by an optimization
procedure the weights for the HEALPix scheme. Their numerical results suggest that the number of
pixels npix on a spherical shell has to obey npix ≥ 4/3 ·L2 so that integrals of spherical harmonics up
to degree L − 1 are obtained with a very good accuracy. Some straightforward calculation leads to
the the following HEALPix sampling theorem on the sphere

3nside ≥ L, (2.65)

which is the same as the heuristic condition given by the HEALPix manual for the iterative mode.
In this work we will only consider the uncorrected quadrature mode, that is our sampling theorem
on the sphere takes the form (2.64). This choice is motivated by simplifying motivations, however
it is straightforward to adapt the rest of this work to other sampling theorems on the sphere. From
the SLT quadrature and the sampling theorem on the sphere (2.64), we obtain the following sampling
theorem on the ball

P · npix ≥ P · 3(L− 1)2. (2.66)

2.2.3 Radial and angular resolutions

We briefly give the expression of the radial and angular resolutions provided by the spherical Fourier-
Laguerre functions. Let us consider f ∈ HP

L . The radial and angular resolutions are fixed indepen-
dently from each other, because of the decoupling of the radial and angular part in the basis functions
Ψmp,l. The angular resolution ∆Ω of f is given by the resolution of the spherical harmonic of high-
est degree, that is Y mL−1, where the order has been left arbitrary since it does not intervene in the
resolution. The angular resolution of f is given by

∆Ω =
π

L− 1
, (2.67)

which is well-defined for L > 1. In the case L = 1, the notion of angular resolution is meaning-
less since the function f has a constant angular part and therefore is independent from the angular
coordinates.
The radial resolution ∆q is more complicated to obtain, since the spherical Laguerre functions are
not strictly speaking harmonic (they are not solution of the radial Laplacian). We propose our own
resolution criterion by considering the sampling scheme associated with the SLT for P -bandlimited
radial functions. We estimate that the radial resolution is given by the smallest distance between two
nodes of this sampling q0, q1, . . . , qP−1,

∆q = min
0≤i<j<P

|qi − qj |, (2.68)

where again the expression is well-defined for P > 1, the case P = 1 being meaningless. One may
conjecture that the radial resolution is equal to the distance between the two first nodes, as suggests
the behavior of the sampling nodes as P increases.
Equations (2.67) and (2.68) will be useful in the next section, when we will link the upper-bound
on the resolution parameters P and L with the intrinsic resolution provided by the experimental
measurements.

57NASA anafast reference and documentation June 2010 url: http : / / healpix . jpl . nasa . gov / html /
facilitiesnode7.htm

58Manuel Gräf, Stefan Kunis, and Daniel Potts. Applied and Computational Harmonic Analysis, 27: 124–132, 2009.

http://healpix.jpl.nasa.gov/html/facilitiesnode7.htm
http://healpix.jpl.nasa.gov/html/facilitiesnode7.htm
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2.3 Spherical Fourier-Laguerre decomposition of the scattered intensity

This work is dedicated to the reconstruction of the three-dimensional intensity scattered by a single
molecule in a XFEL experiment. We have seen in the previous chapter that this intensity function
is conveniently described in spherical coordinates q = (q, φ, θ) and therefore we have introduced
a tool to perform harmonic analysis on the ball, the SFLT. The remaining of this chapter shows that
a sparse representation of the scattered intensity is obtained thanks to the SFLT formalism, and we
provide several numerical results supporting our approach.
As seen in section 1.2.1, the scattered intensity I is equal to the square-magnitude of the scattering
factor F :

I(q) = |F (q)|2I0 where F (q) =
∑
j atoms

fj(q) exp (iRj · q) , (2.69)

where fj is the scattering factor of the atom j andRj is the position vector of this atom in the frame
of reference of the molecule. As a direct consequence, the intensity function is a real-valued, non-
negative function on the ball B3. Another fundamental feature property of the scattering intensity
function is the Friedel-symmetry as introduced in 1.8, which reads

I(−q) = I(q), (2.70)

and will lead to a fortunate consequence on the Fourier-Laguerre coefficients, as discussed in the next
section.

2.3.1 The scattered intensity as a bandlimited function

The first key property of the scattered intensity function is its bandlimited aspect. We have seen in
section 1.2.1 the Fourier-type connection between the electron density of the molecule ρ(mol) and the
scattered intensity function I . The fact that the imaged molecule has a finite extent D, yields to an
bandlimited intensity function.
Using some approximations, it is possible to give a qualitative estimation of the radial and angular
bandlimits, namely, namely P lim and Llim, in terms of the size of the biomolecule. More precisely, we
assume that the molecule is roughly spherical, with a diameter equal to the extentD.
The angular bandlimitLlim is easily obtained using the resolution of the spherical harmonics given by
(2.67) and the definition of the Shannon-Nyquist spacing (1.16). Considering that we are measuring
intensities on a detector, the angular resolution∆Ω is themost critical in the last shell available, which
has radius qdecmax. Thus the Shannon-Nyquist angular resolution ∆SNΩ is given by

∆SNΩ =
∆SNq

qdecmax
=

π

Llim − 1
, (2.71)

which yields to the expression of the bandlimit Llim,

Llim = qdecmaxD − 1. (2.72)

However this bandlimit is far too high for the other shells, and it is more interesting to introduce a
bandlimit per shell Llim

s such that

Llim
s = qsD − 1, (2.73)

where qs is the radius of the shell considered.
The radial case is a bit more complex, since the radial transform is not harmonic in the Fourier sense,
and because the radial nodes are not equispaced. As a consequence it is not straightforward to estab-
lish a criterion based on the Shannon-Nyquist sampling rate, and further investigation is needed. A
first guess would lead to the following definition of P lim

∆SNq = min
0≤i<j<P lim

|qi − qj |, (2.74)

but because the nodes qi of the radial sampling go quickly to the origin, the condition (2.74) seems
rather unrealistic. The lack of direct definition of the radial bandlimit P lim will be however par-
tially compensated by the definition of another criterion, based on the geometry of the detector, as
explained in the remark of section 4.3.1.
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2.3.2 Properties of the spherical Fourier-Laguerre coefficients

The SFLT formalism was developed in the broader setting of complex-valued functions: therefore the
spherical Fourier-Laguerre coefficients should reasonably reflect the different properties of the inten-
sity scattering function. The decomposition of the intensity function I onto the spherical Fourier-
Laguerre basis, i.e. the inverse SFLT, writes

I(q, φ, θ) =

l∑
m=−l

Imp,lKp(q)Y
m
l (φ, θ), (2.75)

where Imp,l are the spherical Fourier-Laguerre coefficients as defined by (2.32). Note that the sums in
(2.75) are not truncated even though the scattered intensity is in practice bandlimited due either to
the finite size of the molecule or the bandlimited measurements on the detector.
The intensity is real-valued, therefore its complex conjugate and itself are equal. Using the symmetry
property (2.13) of spherical harmonics, we obtain after some simple manipulations of (2.75)

I−mp,l = (−1)mImp,l, l ∈ {0, 1, . . .} , m ∈ {0, 1, . . . , l} , (2.76)

that is the coefficients I−mp,l are the complex conjugate of the coefficients Imp,l formpositive. By formula
(2.76) the spherical Fourier-Laguerre coefficients I0p,l are strictly real-valued.
We consider now the Friedel rule (2.70). Again, some tedious manipulations of (2.75) lead to another
feature in the coefficient domain. We write

I(−q) =
P lim−1∑
p=0

Llim−1∑
l=0

l∑
m=−l

Imp,lKp(q)Y
m
l (π − θ, π + φ) (2.77)

=
P lim−1∑
p=0

Llim−1∑
l=0

l∑
m=−l

Imp,lKp(q)(−1)lY ml (θ, φ) (2.78)

=
P lim−1∑
p=0

Llim−1∑
l=0

l∑
m=−l

Imp,lKp(q)Y
m
l (θ, φ) (2.79)

= I(q) (2.80)

where we took advantage from the parity property of spherical harmonics (2.14). The Friedel sym-
metry is then satisfied if and only if the spherical harmonics coefficients Imp,l(q) are equal to zero for
every odd degree l, that is

I(q) = I(−q) ⇐⇒ ∀l ∈ {1, 3, . . .} , Imp,l = 0. (2.81)

In the general case of an arbitrary complex-valued function f ∈ HP
L , the number of independent,

non-zero spherical Fourier-Laguerre coefficients is equal to PL2. The angular part gives indeed∑L−1
l=0 (2l + 1) = L2 coefficients, leading to the result. The intensity function I however is not

arbitrary and exhibits several properties as seen above. The number of independent, non-zero coef-
ficients is now P lim(Llim +1)2/4. Moreover the angular bandwidth Llim has to be an odd number in
virtue of the Friedel symmetry (2.81).
Wemention eventually another property which relies on a reformulation of the decomposition (2.75).
Using the the radial and angular part separation, (2.75) reads

I(q, φ, θ) =
Llim−1∑
l=0

l∑
m=−l

Iml (q)Y ml (φ, θ), Iml (q)
∆
=
P lim−1∑
p=0

Imp,lKp(q), (2.82)

where we have introduced the radial spherical harmonic coefficients Iml (q). This intensity decom-
position was proposed by Starodub et al. ,26 but the radial spherical harmonic coefficients were left
arbitrary and no radial basis was introduced. In the following, we determine the value of the ra-
dial spherical harmonics coefficients at the origin q = 0, that is Iml (0). We start by expanding the
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Property Consequence

Real-valued I−mp,l = (−1)mImp,l
Friedel symmetry Imp,l = 0 for l odd
Value at q = 0 I00 (0) ̸= 0, Iml (0) = 0 ∀m, ∀l > 0

Table 2.1 : Summary of the properties of the spherical Fourier-Laguerre coefficients for an intensity function.

scattering factor F (q) into spherical harmonics thanks to the plane-wave expansion formula59

eiq·R = 4π
∞∑
l=0

l∑
m=−l

iljl(qR)Y
m
l (θ, φ)Y ml (θR, φR) (2.83)

where (R, θR, φR) denotes the spherical coordinates of the vectorR. We obtain finally the spherical
harmonic expansion of the scattering factor F (q)

F (q) =

∞∑
l=0

l∑
m=−l

Fml (q)Y ml (θ, φ), Fml (q) = 4πil
∑
j atoms

fj(q)jl(qRj)Y
m
l (θRj , φRj ). (2.84)

It is now possible to give an expression of the corresponding Iml (q) coefficients in terms of Fml (q)
coefficients, by using the result60:

Iml (q) =
∑

l1,l2,m1,m2

(−1)m1−m

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

×
(
l1 l2 l
0 0 0

)(
l1 l2 l
m1 −m2 −m

)
Fm1

l1
(q)Fm2

l2
(q)

(2.85)

where the matrices denotes the Wigner-3j coefficients, widely used in quantum mechanics in the
description of the interaction between two angular momenta.61 Let us recall an important property of
the spherical Bessel functions jl. For all degrees l > 0, the value at the origin is zero, whereas for l = 0
the value at the origin is equal to 1. As a consequence, the values of Fml (0) are equal to zero, except
for the first coefficient F 0

0 . Moreover, this result can be extended to the values at the origin of the
spherical harmonics coefficients Iml (q) by looking at the expression (2.85) and using the non-zeros
properties of the Wigner-3j coefficients.61 It is interesting also to note that the first property outlined
in this section is a straightforward consequence of equation (2.85).

2.3.3 Sub-resolved versions of the intensity

One of the goals of the work presented in this manuscript is the estimation of sub-resolved versions
of the true scattering intensity, that is (P,L)-bandlimited intensity functions such that L ≤ Llim and
P ≤ P lim. We have considered the Bence-Jones protein 1REI for our simulations, and a detector such
that the maximum scattering vector is qdecmax = 0.63 Å−1, that is in the SFLT formalism the radius of
the ball isQ = qdecmax. We recall that this protein has an approximate size ofD = 54 Å, and therefore
the angular bandlimit Llim is given by

Llim = qdecmaxD − 1 ≃ 33. (2.86)

According to the sampling theorem on the sphere (2.64), the bandlimit Llim fixes the resolution pa-
rameter of the regular grid to nside = 16.
We computed then the theoretical scattered intensity by this protein on two different grids G, for
P = 7 and P = 21 and nside = 16. For the two cases P = 7 and P = 21, we computed the
spherical Fourier-Laguerre coefficients Imp,l by the forward SFLT, and investigated the accuracy of
the reconstruction obtained by the inverse SFLT. This reconstruction is a filtered – sub-resolved –

59Roger G Newton. Scattering theory of waves and particles. Springer Science & Business Media, 2013.
60Heinrich B. Stuhrmann. Acta Crystallographica A, 26: 297–306, 1970.
61Michael Tinkham. Group theory and quantum mechanics. Courier Corporation, 2003.
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version of the true scattering intensity. These results are depicted in figure 2.5, where the angular
bandwidth L takes the values L = 1, 5, 17, 33. The case L = 1 can be seen as the spherical average
of the function I since only the terms I0p,0 are non-zero. As one would expect, the accuracy of the
reconstruction increases as L grows, until becoming almost indistinguishable from the computed
theoretical intensity in the case L = 33 = Llim, which validates our estimation of the maximum
bandlimit Llim. Also we note that the case P = 21 provides a better radial resolution than the case
P = 7, as expected.

2.3.4 Parseval decomposition of the intensity

We conclude this section by the analysis of the energy decomposition of the intensity. The Parseval
relation (2.43) allows the separation of the total energy of the intensity into the energy per coefficients,
that is

E =

∞∑
p=0

∞∑
l=0

Ep,l, (2.87)

where the orderm has been simplified through the rotation invariant quantity Ep,l =
∑l
m=−lE

m
p,l.

The analysis of the energy distribution among the coefficients is of great importance, since it gives
some insight about which coefficients contribute effectively to the total energy. In X-ray imaging,
angular details increase as the scattering magnitude q, as the radius grows. A natural question then
is, how does the energy distribution behaves as q increases? This can be also investigated through
the SFLT formalism. The grid G which is used to perform the SFLT is made of concentric spherical
shells of radius q0, q1, . . . , qP . Given an intensity function I , the forward SFLT gives Imp,l, but we have
access to the radial spherical coefficients at q0, q1, . . . , qP through the inverse SLT:

fml (qs) =
P−1∑
p=0

fmp,lKp(qs). (2.88)

We then introduce another quantity El(qs), the energy per degree l and spherical shell s which is
defined formally by

El(qs)
∆
=

l∑
m=−l

|fml (qs)|2. (2.89)

In the following we illustrate the two approaches with two molecules of different size and mass, 1REI
which is a relatively small protein of mass 24 kDa, and GroEL (pdb entry: 1GRL) which has a mass
of 400 kDa. The results are summarized on figure (2.6).
We computed the scattered intensity for the two molecules with the same parameters as above in
the case P = 21. The spherical Fourier-Laguerre coefficients were computed through the forward
SFLT with L = 33 and energies are obtained as mentioned above. The left side of figure (2.6) cor-
responds to the energy distribution Ep,l, whereas the right side depicts the energy distribution per
shell El(qp). Each distribution is represented in relative energy contribution scale, where the total
energy was approximated by the sum of all energies.
We start to describe the energy distribution per shell, which is perhaps the more intuitive. In both
1REI and 1GRL cases, most of the energy is concentrated in the inner shells, and only few l degrees
are relevant. As we move to the outer shells, the distribution becomes more widespread, as expected.
Also we notice that the energy distribution of the bigger molecule, 1GRL, vanishes faster as the shell
radius increases. This is a consequence of the fact that our computations were done for the same
detector, that is qdecmax is fixed. However, the significant shells have a slightly larger spherical harmonic
distribution in the 1GRL case, exactly as predicted by the expression of Llim

s .
The analysis of the energy distribution of the spherical Fourier-Laguerre is less convenient, since there
is a priori no intuition that can be developed. Nevertheless, it gives us some information about how
the energy distribution in the radial spherical Laguerre behaves.
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(a) P = 7, L = 1 (b) P = 7, L = 5 (c) P = 7, L = 17 (d) P = 7, L = 33 (e) P = 7, computed

(f) P = 21, L = 1 (g) P = 21, L = 5 (h) P = 21, L = 17 (i) P = 21, L = 33 (j) P = 21, computed

Figure 2.5 : Sub-resolved versions of the computed scattered intensity of protein 1REI. Intensity functions I defined within the ball of radiusQ = qdec
max are represented trough three cut planes x, y, z = 0 and

a spherical shell in the center, where this spherical shell belongs to the grid G. The values on the cut planes are obtained by linear interpolation of the values available on the grid G. The spherical
shells depicted are: the shell p = 3 for P = 7, corresponding to a scattering vector of magnitude q = 0.19 Å−1 whereas for P = 21 the shell is p = 10 such that q = 0.14 Å−1. (a)–(d) P = 7
is fixed, and sub-resolved versions are depicted for L = 1, 5, 17, 33. The case L = 33 corresponds to the maximum angular bandwidth for parameter nside = 16. (e) Computed intensity for
nside = 16 and P = 7. (f)–(i) same as above with P = 21. (g) Computed intensity for nside = 16 and P = 21.
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Figure 2.6 : Energy distributions of 1REI and 1GRL. Intensities were computed on a grid with parameters
P = 21 and nside = 16. The SFLT decomposition was computed up to L = 33, in accordance
with the sampling theorem on the ball. The left column represents the energy distribution of the
spherical Fourier-Laguerre coefficients for 1REI and 1GRL. The right column depicts the energy
per degree and shell index for the twomolecules. The correspondence between the shell index and
the shell radius q has been added for convenience.





CHAPTER3
Sampling schemes and quadrature formulae

on SO(3)

This chapter is dedicated to the study of uniform sampling schemes on the rotation group SO(3),
as well as the construction of quadrature rules on SO(3). Main results presented here are extracted
from the literature, with some extensions developed in regard of the single-particle imaging recon-
struction problem. We start by recalling in section3.1 different properties of the rotation group, and
move to the construction of uniform sampling schemes in section 3.2. The final section 3.3 addresses
the problem of quadrature rules on SO(3) which will motivate some part of our approach in the
upcoming chapters.

3.1 Special orthogonal group SO(3)

3.1.1 Definition

The special orthogonal group in three dimensions SO(3) denotes the set of all the 3×3 real matrices
R which satisfy

RRT = I3 and detR = 1, (3.1)

whereRT is the transpose of the matrixR, detR its determinant and I3 the 3× 3 identity matrix.62
The set SO(3) is a group under the matrix product: first, it is straightforward that I3 belongs to
SO(3). Then for R1,R2 ∈ SO(3) we have R1R2 ∈ SO(3) and R−1 = RT ∈ SO(3) for every
matrix R ∈ SO(3).
The first condition in (3.1) states that the columns of R form an orthonormal basis in R3. The sec-
ond condition states that this orthonormal basis is direct, or in other words positively oriented. The
Riemannian (or angular) distance between two rotations R1,R2 ∈ SO(3) is given by

dSO(3)(R1,R2) = arccos
{
1

2

[
Tr
(
R2R

T
1

)
− 1
]}

. (3.2)

This metric is invariant by left and right translation, that is dSO(3)(R1,R2) = dSO(3)(R2,R1).

3.1.2 Parametrizations of SO(3)

Every rotationR ∈ SO(3) can be represented as an orthonormal basismade of its columns (r0, r1, r2).
Besides this representation there exists numerous ways of describing, i.e. parametrizing, rotations in
R3. In this section we give a few parametric representations that we shall use in this work.

Axis-angle and quaternion parametrization

A parametrization of great importance is the axis-angle parametrization. Any rotation R can be
uniquely specified by its axis n = (nx, ny, nz)

T and the angle of rotation θ around its axis n, that
is we write R = R(n, θ). Since n is chosen to be of unit length, there are only three independent
parameters describing the rotation as one would expect. The matrixR(n, θ) is written explicitly as62

62Simon L Altmann. Rotations, quaternions, and double groups. Courier Corporation, 2005.
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R(n, θ) = exp (θZ) where Z =

 0 −nz ny
nz 0 −nx
−ny nx 0

 , (3.3)

where exp (·) denotes the matrix exponential.
The axis-angle parametrization of SO(3) is intimately related to the quaternion representation of the
rotation group. Each rotation R corresponds to two unit quaternions q and −q which are diamet-
rically opposed on the surface of the 3-sphere S3. The unit quaternion q relates to the axis-angle
parametrization via the equation

q = cos θ + sin θ (nxi + nyj + nzk) , n = (nx, ny, nz)
T
. (3.4)

Here, i, j, k denote the usual pure quaternions, see for instance Conway.63 The correspondence be-
tween the quaternion representation and the matrix form of a rotation R is given by the Euler-
Rodrigues formula

R =

q20 + q21 − q22 − q23 2 (q1q2 − q0q3) 2 (q1q3 − q0q2)
2 (q1q2 + q0q3) q20 + q22 − q21 − q23 2 (q2q3 − q0q1)
2 (q1q3 + q0q2) (q2q3 + q0q1) q20 + q23 − q21 − q22

 , q = (q0, q1, q2, q3) (3.5)

where it is indeed clear that the quaternions q and −q give the same rotation matrix R.

Euler angles

Euler angles have been used widely as a parametrization of SO(3). Each element R ∈ SO(3) is
parametrized by a set of three angles, namely (φ, θ, ψ) ∈ [0, 2π)×[0, π]×[0, 2π)where each element
corresponds to the angle of rotation around the canonical axes x, y or z. Let ex = (1, 0, 0)T , ey =
(0, 1, 0)T , ez = (0, 0, 1)T the corresponding unit vectors. Rotations R(ex, θ), R(ey, θ), R(ez, θ)
read explicitly

R(ex, θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (3.6)

R(ey, θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (3.7)

R(ez, θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (3.8)

Twelve different conventions exist to represent a rotation, each convention corresponding to a dif-
ferent ordering of rotation around the canonical axes, e.g. xyz or xyx. In this work we will only use
the zyz convention, as it is of standard use in quantum mechanics.61 Following this convention, any
rotation REuler(φ, θ, ψ) ∈ SO(3) can be written as the product R(ez, φ)R(ey, θ)R(ez, ψ). We re-
mark that even φ is written first, it is actually the third angle applied while ψ is the first one applied.
Using the matrix forms (3.7) and (3.8), we obtain the matrix REuler(φ, θ, ψ)

REuler(φ, θ, ψ) =

cosφ cos θ cosψ − sinφ sinψ − cosφ cos θ sinψ − sinφ cosψ cosφ sin θ
sinφ cos θ cosψ + cosφ sinψ − sinφ cos θ sinψ + cosφ cosψ sinφ sin θ

− sin θ cosψ sin θ sinψ cos θ

 . (3.9)

The relative simplicity of use of the Euler angles shall not hide the several issues thatmay arise with its
usage. For instance, one shall note that this parametrization does not lead to a continuous mapping
in the parameter space, which may lead to a phenomena known as gimbal lock, where the normally
3-dimensional parameter space becomes 2-dimensional.

63John H Conway and Derek A Smith. AMC, 10: 12, 2003.
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Orthogonal axes parametrization

We now introduce another parametrization, which is based on recent work from Mitchell64 and Gräf
and Potts.65 We start by recalling that a rotationR ∈ SO(3) is represented by the set of its orthonor-
mal columns R = (r0, r1, r2). The idea of the orthogonal axes parametrization relies in the de-
composition of a rotation R in two successive rotations R1 and R2, such that their respective axes
are orthogonal. Before moving to the definition of theses two rotations, we proceed to an heuristic
construction of a rotation matrix R = (r0, r1, r2). First we start by choosing r2 ∈ S2. Then we can
choose r0 in the tangent circle at vector r2, i.e. r0 ∈ S2⊥r2

∼= S1. The last element r1 is obtained by
orthogonality constraints,

r1 = r2 × r0 (3.10)

This parametrization leads to the decomposition of the rotation R in two successive rotations R1

and R2. The first rotation moves the north pole ez to r2 along the shortest geodesic: posing r2 =
(sin θ cosφ, sin θ sinφ, cos θ)T , i.e. r2 is given by its spherical coordinates (θ, φ), the rotation R1

writes

R1 = R(r⊥2 , θ), r⊥2 = (− sinφ, cosφ, 0)T . (3.11)

Indeed in order to rotate ez to r2 along the shortest geodesic, we perform a rotation of angle θ with
the axis perpendicular to r2, i.e. r⊥2 = (− sinφ, cosφ, 0)T . The second rotation R2 determines the
vector r0 ∈ S2⊥r2

. The rotation R2 should leave r2 unchanged, so we can choose r2 as the axis, and
we shall denote by ω ∈ [0, 2π) the angle. The total rotation Rortho reads

Rortho = R2(r2, ω)R1(r
⊥
2 , θ)

∆
= Rortho(θ, φ, ω). (3.12)

We note that the angle ω is uniquely determined by the choice of r0, since r0 = R2R1ex. We
eventually make the connection with the zyz-Euler angle parametrization, since this will be needed
in the subsequent sections. It is possible to show that65

REuler(φ, θ, ψ) = Rortho(φ, θ, ω − φ). (3.13)

The change of parametrization is then only the application of an offset to the last angle. This last
parametrization highlights the connection between SO(3) and the tensor product S2 × S1, from
which we will take advantage later on, in order to build uniform sampling schemes and quadrature
results.

3.1.3 Harmonic analysis on SO(3)

Let f : SO(3) → C, f ∈ L2(SO(3)) i.e. f is a square integrable function with respect to the
normalized Haar measure on SO(3):∫

SO(3)

|f(R)|2dµ(R) <∞, (3.14)

where µ(R) is the normalized Haar measure which reads in Euler angle coordinates

dµ(R) =
1

8π2
sin θ dφ dθ dψ. (3.15)

The Peter-Weyl theorem66,67 in the SO(3) setting gives the harmonic basis for L2(SO(3)) . These
functions are the Wigner-D functions {Dm,n

l |l ∈ N, |m| ≤ l, |n| ≤ l}, which read in zyz-Euler an-
gles parametrization (φ, θ, ψ) ∈ [0, 2π)× [0, π]× [0, 2π)

Dm,n
l (φ, θ, ψ) = exp(−imφ)dm,nl (θ) exp(−inψ), (3.16)

64Julie C Mitchell. SIAM Journal on Scientific Computing, 30: 525–547, 2008.
65Manuel Gräf and Daniel Potts. Numerical Functional Analysis and Optimization, 30: 665–688, 2009.
66Asim Orhan Barut and Ryszard Raczka. Theory of group representations and applications. vol. 2 World Scientific,

1986.
67Salem Said et al. arXiv preprint arXiv:0907.2601, , 2009.
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where the dm,nl (θ) functions are called the Wigner-d functions which are defined by the following
expression61

dm,nl (θ) =
∑
k

[
(−1)k [(j +m)!(j −m)!(j + n)!(j − n)!]

1/2

k!(l + n− k)!(j −m− k)!(k +m− n)!

×
(
cos

θ

2

)2l−2k−m+n(
− sin

θ

2

)2k+m−n
]
.

(3.17)

As a side note, we shall remark that the dm,nl functions defined here are real-valued. This is a special
feature of the zyz convention for the Euler angles, whichmay explain its popularity among physicists.
As in classical Fourier series analysis – where the basis function are complex exponentials rather than
Wigner-D functions – we can write any function f ∈ L2[SO(3)] as an infinite sum of increasing
frequency Wigner-D functions. The frequency here is controlled by the value of the degree l ∈ N in
theDm,n

l functions. The decomposition of an arbitrary function f ∈ L2[SO(3)] is given by

f(R) = f(φ, θ, ψ) =

∞∑
l=0

∑
|m|,|n|≤l

fm,nl Dm,n
l (φ, θ, ψ), (3.18)

where the fm,nl are the coefficients obtained by the projection of f onto the correspondingWigner-D
function

fm,nl
∆
=

1

8π2

∫
SO(3)

f(φ, θ, ψ)Dm,n
l (φ, θ, ψ) sin θ dφ dθ dψ. (3.19)

We define bandlimited functions on the rotation group in the same way we have defined bandlimited
functions on the ball. Precisely, we say that f is L-bandlimited if there exists an integer L such that,
for all l ≥ L, we have fm,nl = 0.

3.2 Uniform sampling on SO(3)

In this section we focus on the design of uniform deterministic sampling sets on SO(3). One shall
note that, since we are no longer working in Euclidean space, we have to define tools to evaluate the
uniformity and the resolution of such sampling sets. This is done in section 3.2.1. We then introduce
different sampling methods on SO(3) in section 3.2.2 and compare their respective performance at
different resolutions in section 3.2.3.

3.2.1 Measuring sampling uniformity

Let X (SO(3)) be a sampling set over the rotation group SO(3). The target angular step, or equiva-
lently the separation distance α(X (SO(3))) is defined by

α(X (SO(3))) = min
Ri ̸=Rj

Ri,Rj∈X (SO(3))

dSO(3)(Ri,Rj). (3.20)

There are several ways of defining the uniformity of a sampling scheme on a Riemannian manifold.
OnSO(3), a fewwere introduced such as global coverage, local separation, dispersion or discrepancy
to name all but a few.65,68,69 Each of these criteria have a rigorous definition which is beyond this work.
A simpler criterion however can be formulated to perform a quick analysis of the quality of a given
sampling set. This criterion consists in the minimization of a repulsive potential energy, as it would
be done for a set of charged particles in electrostatics for instance. This repulsive potential reads

E =
M−1∑
i=0

M−1∑
j=i+1

d−pSO(3)(Ri,Rj) (p > 0) (3.21)

whereM is the size of the sample and p is the repulsive order allowing tuning of the criteria. For all
our comparisons we will solely use the case p = 1, although a wide range of other values has already
been investigated in the literature.64

68Anna Yershova et al. The International journal of robotics research, , 2009.
69Anna Yershova and Steven M LaValle. “Deterministic sampling methods for spheres and SO (3)” in: Robotics and

Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on. vol. 4 IEEE 2004. 3974–3980
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(a) (b)

Figure 3.1 : Comparison between uniform random sampling and uniform deterministic sampling on SO(3).
Each sampleR = (r0, r1, r2) is represented by an oriented arrow on the 2-sphere. Each sample
corresponds to the doublet (r2, r0), where r2 is the base point on S2 and r0 lies in the tangent
plane S2⊥r2

∼= S1. (a) Uniform random sampling on SO(3) with N = 1000 samples. (b) Uni-
form deterministic sampling using theHealpix-basedmethod, for resolution parameternside = 2,
which give 576 samples on SO(3).

3.2.2 Sampling schemes

We start by considering the specific case of uniform random sampling on SO(3), and we then in-
troduce several deterministic sampling schemes. Precisely the uniform random sampling scheme is
needed to simulate the random orientation taken by the biomolecule in the single-particle experi-
ment, that is in our formalism the rotation Rk defined in section 1.2.3. The deterministic sampling
sets are at the heart of the Expectation-Maximization-Compression (EMC) algorithm, and these de-
terministic rotations are used to assemble the two-dimensional diffraction pattern into a consistent
three-dimensional intensity.

Random uniform sampling

Using the quaternion representation of rotations, it is quite straightforward to obtain uniform ran-
dom samples from random uniform quaternion of unit length, that is each sample belongs to the
3-sphere.70,71 The method relies on three intermediate random variables,

s ∼ U([0, 1]), θ1 ∼ U([0, 2π]), θ2 ∼ U([0, 2π]). (3.22)

The corresponding unit quaternion q, drawn according to the uniform distribution on S3 is then
given by

q0 =
√
1− s cos θ2, q1 = s sin θ1, q2 = s cos θ1,

√
1− s sin θ2, q = (q0, q1, q2, q3).

(3.23)

One should note that this method may be close to optimal in terms of robustness and speed. There
exists othersmethods described in the literature such as randomuniform sampling of Euler angles,29,70
which is very similar to its deterministic counterpart, the variable steppingmethodwhich is described
in the next section.

Variable stepping

Thevariable steppingmethod, i.e. the deterministic discretization of theEuler angles triplet (φ, θ, ψ) ∈
[0, 2π]× [0, π]× [0, 2π] is now discussed. In this method, the angles θ and ψ are sampled uniformly

70James J Kuffner. “Effective sampling and distance metrics for 3D rigid body path planning” in: Robotics and Automa-
tion, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on. vol. 4 IEEE 2004. 3993–3998

71Ken Shoemake. “Uniform random rotations” in: Graphics Gems III. Academic Press Professional, Inc. 1992. 124–132
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at the target angular step α, whereas the angle φ is sampled uniformly according to α′ = g(α, θ),
where

g(α, θ) =
α

sin θ
. (3.24)

Since for certain values of θ near θ = 0 or θ = π it can occur that the induced step α′ exceeds 2π,
only φ = 0 is sampled. As suggested by the notation, the first two angles (φ, θ) uniquely determine
r2 on the 2-sphere, as shown by equation (3.9). To obtain an uniform coverage of the 2-sphere with
the vectors r2, we remark that for a given colatitude angle θ the circumference of the circle obtained
by varying the azimuthφ all over the interval [0, 2π] is equal to 2π sin θ. Equation (3.24) simply states
that ratio of number of points sampled on each circle should be equal to the ratio of each circle length,

α′

α
=

2π

2π sin θ
=

1

sin θ
. (3.25)

From a numerical perspective however, this method has to be slightly modified so it is tractable.
Indeed it is not possible to sample the Euler angles uniformly for an arbitrary value of α: for instance,
sampling uniformlyψ ∈ [0, 2π] atα is only feasible when the ratio 2π/α is a integer, which in practice
is never the case. Instead, we compute ⌈2π/α⌉ and obtain a new target angular angle, α̃ψ , such that

α̃ψ =
2π

⌈ 2π
α ⌉

, (3.26)

where ⌈·⌉ stands for the ceiling function. The same approach applies to the angle θ, leading to α̃θ =
π/⌈πα⌉. Now remains the case of the angle φ ∈ [0, 2π]. The same type of argument leads to a similar
result,

α̃′
φ =

2π

⌈ 2π
α′ ⌉

=
2π

⌈ 2π sin θ
α ⌉

, (3.27)

where α̃′
φ is the new uniform sampling rate for the angleφ. We remark however that these corrections

barely affect the angular resolution of the sampling, since α̃ψ ≃ α̃θ ≃ α and α̃′
φ ≃ α′ as the target

angular distance diminishes.

Healpix-based sampling

This sampling scheme is based on the orthogonal axes parametrization. This parametrization high-
lights the connection between SO(3) and the tensor product S2 × S1. As a consequence we can
think of a uniform sampling schemeX (SO(3)) as being constructed fromuniform sampling schemes
X (S2) and X (S1) respectively. This is stated in Theorem 1. We introduce metrics on S2 and S1,

dS2(x1,x2)
∆
= arccosxT1 x2, x1,x2 ∈ S2, (3.28)

dS1(ω1, ω2)
∆
= arccos cos(ω1 − ω2), ω1, ω2 ∈ [0, 2π). (3.29)

The corresponding target angular steps on S2 and S1 are then given by

α(X (S2)) = min
xi ̸=xj

xi,xj∈X (S2)

dS2(xi,xj) (3.30)

α(X (S1)) = min
ωi ̸=ωj

ωi,ωj∈X (S1)

dS1(ωi, ωj). (3.31)

Theorem 1 (Gräf and Potts). Let the sampling sets

X (S2) ∆
=
{
(φi, θi) ∈ S2, i = 0, . . . ,M1 − 1

}
(3.32)

X (S1) ∆
=
{
wj ∈ S2, j = 0, . . . ,M2 − 1

}
(3.33)

with target angular step α = α(X (S2)) = α(X (S1)). Then for arbitrary offsets ci ∈ S1, i =
0 . . . ,M1 − 1, the sampling set

Xortho(SO(3))
∆
= {Rortho(φi, θi, ωj + ci)|i = 0, . . . ,M1 − 1, j = 0, . . . ,M2 − 1} (3.34)

has a target angular step α(Xortho(SO(3))) = α.
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The uniformity of the sampling scheme Xortho(SO(3)) is thus obtained by balancing the sampling
rates in each subspace accordingly. This theorem somewhat formalizes the balancing property be-
tween S2 and S1 sampling rates estimated by Mitchell,64 which we recall here. Given a target angular
step α, the number of elements in each subspace have to satisfy

|X (S2)| =
⌈
4π

α2

⌉
, |X (S1)| =

⌈
2π

α

⌉
(3.35)

where | · | denotes the cardinality of each set. With this condition at hand, we are able to discretize
each subspace accordingly. The simplest way to obtain a set X (S1) verifying the condition (3.35) is
to sample the circle S1 at the target angular step α̃ = ⌈2π/( 2πα )⌉ according to the same arguments
as for the variable stepping method. For X (S2) however the task is not trivial. Since the equation
(3.35) suggests that we have to divide the 2-sphere S2 in pixel of equal area α2, we choose to use the
HEALPix discretization scheme,56 which exhibits an equal area partition of the 2-sphere. We refer
the reader to section 2.2.1 where the HEALPix discretization scheme is studied in detail. We recall
that HEALPix is a hierarchical sampling controled by a refinement parameter nside, and the number
of samples (pixels) npix is given by

npix = 12 n2side. (3.36)

Therefore the set of values available for α will be discrete, as a function of nside. The resulting value of
α is approximated by

α =

√
π

3
(nside)

−1
. (3.37)

The HEALPix-based sampling scheme, for a resolution nside, is explicitly given by

Xortho(SO(3)) =

{
Rortho(φi, θi, ωj)|i = 0, . . . , npix − 1, ωj =

α̃

2π
j, j = 0, . . . ,

2π

α̃
− 1

}
(3.38)

The number of elementsM in the sampling setXortho(SO(3)) as a function of the resolution param-
eter nside is given by

M(nside) = 12n2side ·

⌈
2π

√
3

π
nside − 1

⌉
. (3.39)

Platonic solids and sampling schemes

It is also possible to take advantage of the tensor product structure S2 × S1 of the rotation group
in a different way. In virtue of the parametrization in orthogonal axes and Theorem 1, a few num-
ber of sampling schemes can be obtained based on Platonic solids: the tetrahedron, octahedron and
icosahedron. Indeed each vertex of a Platonic solid will define a base point in S2, as required in the
orthogonal axes parametrization. Then the uniformity constraint of Theorem 1 is given by the inher-
ent regularity of Platonic solids, and by discretizing at the correct angular step the subspace S1. The
usage of Platonic solids was suggested earlier69 but the present method was introduced recently.65 The
vertices of the three Platonic solids considered are given by

T ∆
=

{
x0 = ez, xi =

(
2

3
iπ, arccos−1

3

)∣∣∣∣i = 1, 2, 3

}
(3.40)

O ∆
=

{
x0 = ez, x5 = −ez, xi =

(
1

2
iπ,

π

2

)∣∣∣∣i = 1, . . . , 4

}
(3.41)

I ∆
=

{
x0 = ez, x11 = −ez, xi =

(
2

5
iπ, arctan 2

)
, xi+5 =

(
2

5
π +

1

5
π, π − arctan 2

)∣∣∣∣i = 1, . . . , 5

}
(3.42)
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(a) (b)

(c) (d)

Figure 3.2 : Comparison between the variable stepping method and HEALPix based sampling. (a) and (b)
HEALPix sampling with nside = 1, 2, which gives 72 and 576 samples on SO(3) respectively. (c)
and (d) Variable steppingmethod with corresponding values ofα as a function ofnside. We obtain
84 and 612 samples respectively.

where we have used the short-hand notation xi = (φi, θi) for better readability. The corresponding
rotation group sampling schemes are then obtained

XT
∆
=

{
Rortho

(
xi,

2

3
kπ + ci

)∣∣∣∣xi ∈ T , ci = (1− δ0,i)
π

3
; i = 0, . . . , 3, k = 0, 1, 2

}
(3.43)

X0
∆
=

{
Rortho

(
xi,

1

2
kπ + ci

)∣∣∣∣xi ∈ O, ci = 0; i = 0, . . . , 5, k = 0, . . . , 3

}
(3.44)

XI
∆
=

{
Rortho

(
xi,

2

5
kπ + ci

)∣∣∣∣xi ∈ I, ci = (1− δ0,i)(1− δ11,i)
π

5
; i = 0, . . . , 11, k = 0, . . . , 4

}
.

(3.45)

These sampling schemes have respective sizes, |XT | = 12, |XO| = 24 and |XI | = 60. One shall
note that other sampling schemes can be obtained with the same approach using different Platonic
solids, such as the hexahedron or the dodecahedron. As we will see in section 3.3, these sampling
schemes will be of particular importance when evaluating integrals of low-frequency functions, due
to the small sample size compared to the other sampling schemes already introduced.

3.2.3 Comparison

We have introduced a variety of uniform sampling schemes on the rotation group SO(3). We may
visualize a sampling set X ⊂ SO(3) at a set of oriented arrows on the surface on the 2-sphere. The
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(a) (b) (c)

Figure 3.3 : The three Platonic-based sampling schemes of SO(3). (a) Tetrahedron-based XT (b)
Octahedron-based XO (c) Icosahedron-based XI .

reason is the following: based on the tensor productS2×S1 parametrization of the rotation group, one
may think of a element R = (r0, r1, r2) ∈ X as a doublet (r2, r0) where r2 is the base point on S2
to which the vector r0 is attached. Moreover, since r0 lies in the tangent plane at r2 by construction,
we have r0 ∈ S2⊥r2

. This representation is also quite interesting since it allows the representation of
a 3-dimensional manifold (SO(3)) in the three-dimensional Euclidean space R3.
On figure 3.1a we have represented a random sampling set of sizeN = 1000 built using the method
presented in 3.2.2 along with an HEALPix based sampling set for nside = 2 on figure 3.1b. These
two figures illustrate the difference between random and deterministic uniform sampling in terms of
angular resolutionα, which is guaranteed in the deterministic approachwhereas absent in the random
case due to the finite number of samples. HEALPix based sampling sets for resolutions nside = 1 and
nside = 2 are depicted on figure 3.2a and 3.2b, respectively. The corresponding sets for the variable
stepping method at target angle α(nside) are plotted on figure 3.2c and 3.2d. The HEALPix approach
seems qualitatively to lead to better results in terms of uniformity: this will be confirmed by the energy
criteria (3.21).
We are now interested in the performance of each sampling method, i.e. determining how uniform
the sampling is for a given angular resolution α. Leaving random uniform sampling as a special case
we only consider uniform deterministic sampling schemes. We also exclude the Platonic solids based
schemes, since they do not provide incremental covering of SO(3) – however as mentioned they will
be of much importance in section 3.3. We assess the relative performance of the variable stepping
method and the HEALPix based sampling using the energy repulsion criteria (3.21). Tomaintain our
comparison sensible, we compare HEALPix sampling schemes for different values of the resolution
parameter nside and compute the corresponding variable stepping scheme with parameter α(nside)
(3.37). These results are summarized in Table 3.1. For the different resolutions nside investigated, the
set size obtained becomes more and more similar as the resolution increases: the relative difference
between the variable stepping method and the HEALPix based method is about 16% for nside = 1,
whereas approaches 1% for nside = 8 . The repulsive energy E is higher with the variable stepping
method than with the HEALPix based method for nside = 1, 2, 4, with relative differences 52%, 12%
and 3.2% respectively. For nside = 8, the variable stepping method performs slightly better with a
relative difference of 2.1%. We note that the variable stepping method performs better as far as nside
increases, and is better than the HEALPix based method. However in our application we will mainly
consider low resolution sampling schemes, i.e. small values of nside. In this case, the better coverage
uniformity obtained in theHEALPixmethod, along with its simpler construction validates the choice
of HEALPix based methods over the variable stepping method. This method also has the advantage
of being self-contained with the rest of our work, since we also use the HEALPix grid to describe the
intensity scattered by a protein in chapter 2.

3.3 Quadrature formulæ

Quadrature formulæ, or in short quadratures, are useful tools for the numerical evaluation of inte-
grals. Let us consider a real-valued function f : U → R, where U ⊂ R is an arbitrary connected set.
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nside α (◦) HEALPix Variable stepping

E Size E Size
1 58.6 1.13e3 72 1.72e3 84
2 29.3 8.54e4 576 9.65e4 612
4 14.7 5.54e6 4608 5.72e6 4680
8 7.33 3.71e8 37632 3.63e8 37240

Table 3.1 : Comparison between the different sampling schemes and their respective size and repulsive ener-
gies, for several values of refinement parameter nside.

Then if we are able to write∫
U

f(x)dx =

M−1∑
i=0

wif(xi), wi ∈ R, xi ∈ U, i = 0, . . . ,M − 1, (3.46)

then such an equation is called a quadrature formula. It replaces the calculation of an integral by a
weighted sum of the function f evaluated atM arbitrary nodes xi, with weightswi. Quadrature rules
can be either exact or approximate: in the latter case the equal sign (=) in (3.46) is replaced by an
approximate sign (≃). Quadrature rules range from simple, e.g. rectangle rule or trapezoidal rule, to
more complex ones as Gauss-Legendre or Gauss-Laguerre rules. An extensive range of quadrature
rules on Euclidean space can be found in the literature, see e.g. 72 for a complete overview.
Quadrature rules on Riemannianmanifolds and groups are less common, but have attracted attention
recently.65,73 However quadrature rules on the 2-sphere holds a long history, due to its importance in
many others fields such as geology or astrophysics.74–78

3.3.1 Quadrature rule on SO(3)

As we will see further on in the next chapter, the EMC algorithm involves computations of orienta-
tion probabilities. These probabilities are defined as integrals on SO(3), and since we are interested
in bandlimited reconstructions, the integrand is also bandlimited. In this section we thus develop
quadrature formulæfor bandlimited functions on the rotation group SO(3).
As we have seen in the previous section, exploiting the tensor product S2 × S1 allows to translate
results on S2 and S1 to the rotation group SO(3). The same idea applies to obtain quadrature results
on SO(3). Theorem 2,65 proves that quadrature on SO(3) can be obtained from quadrature formulæ
on S2 and S1, respectively.

Theorem 2 (Gräf and Potts). For L ≥ 1, let a quadrature rule Q(S2) on the sphere S2 with degree
of exactness L − 1 by the sampling set X (S2) ∆

=
{
(φi, θi) ∈ S2, i = 0, . . . ,M1 − 1

}
with weights

wi(S2), be given, i.e.

1

4π

∫ 2π

0

∫ π

0

Y ml (φ, θ) sin θdθdφ =

M1−1∑
i=0

wi(S2)Y ml (φi, θi), 0 ≤ l ≤ L−1, |m| ≤ l. (3.47)

Furthermore let a quadrature rule Q(S1) with degree of exactness L− 1 by the sampling set X (S1) ∆
=

{ψj , j = 0, . . . ,M2 − 1} with weights wi(S2), be given, i.e.

1

2π

∫ 2π

0

einψdψ =

M2−1∑
j=0

wj(S1)einψj , |n| ≤ L− 1. (3.48)

72Philip J Davis and Philip Rabinowitz. Methods of numerical integration. Courier Corporation, 2007.
73Luca Brandolini et al. Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 13: 889–923, 2014.
74Kendall Atkinson. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 23: 332–347,

1982.
75Oscar L Colombo Numerical methods for harmonic analysis on the sphere tech. rep. DTIC Document, 1981
76Manuel Gräf. Efficient algorithms for the computation of optimal quadrature points on riemannian manifolds. 2013.
77Vyacheslav Ivanovich Lebedev. USSR Computational Mathematics and Mathematical Physics, 16: 10–24, 1976.
78VI Lebedev and DN Laikov. “A quadrature formula for the sphere of the 131st algebraic order of accuracy” in: Doklady.
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Sampling scheme Quadrature Bandlimit Size

XT Exact 3 12
XO Exact 4 24
XI Exact 6 60

HEALPix Approx. 2nside + 1 M

Table 3.2 : The different sampling schemes and their respective properties: exact or approximate, order of
quadrature rules and size.

Then we obtain for arbitrary offsets ci ∈ R, i = 0, . . .M1 − 1, a quadrature rule Q on the rotation
group

X (SO(3))
∆
= {REuler(φi, θi, ψj + ci), i = 0, . . . ,M1 − 1, j = 0, . . . ,M2 − 1} (3.49)

with corresponding weights

wi,j(SO(3))
∆
= wi(S2)wj(S1), i = 0, . . . ,M1 − 1, j = 0, . . . ,M2 − 1 (3.50)

That is, we integrate exactly all L-band-limited functions f by the formula

∫
SO(3)

f(R)dµ(R) =

M1−1∑
i=0

M2−1∑
j=0

wi,j(SO(3))f (REuler(φi, θi, ψj + ci)) (3.51)

Proof. The proof can be found in the original paper65 and will not be reproduced here.

The same theorem can be extended to approximate quadrature rules, that is replacing at least one
exact quadrature on S1 or S2 by an approximate quadrature will lead to an approximate quadrature
on SO(3). This would be useful in Corollary 2. A key consequence of this theorem is that it is indeed
possible to build efficient quadrature rules on SO(3) by considering efficient quadrature rules on S2
and S1. In the following section, we investigate the quadrature rules available with the sampling sets
introduced in section 3.2.2.

3.3.2 Uniform sampling sets and associated bandlimit

Earlier in this chapter we introduced three uniform sampling sets based on Platonic solids: the tetra-
hedron, octahedron and icosahedron. These sets were denoted by XT , XO and XI respectively. The
following corollary of theorem 2 associates an exact quadrature rule to each of these sets.

Corollary 1 (Exact quadrature rules). The sampling sets XT , XO and XI respectively integrate exactly
all 3, 4 and 6-band-limited functions f ∈ L2[SO(3)] by the formula∫

SO(3)

f(R)dµ(R) =
1

|X |
∑
Ri∈X

f(Ri), (3.52)

where X = XT , X0, XI .

Proof. For XT and X′ the proof is straightforward quadrature rule with equal weights on S2 and S1,
see for instance.65,79 The caseXI is a bit more complicated, since application of theorem 2 would only
give an exact quadrature for 5-band-limited functions. However a direct calculation shows that this
quadrature formula is also exact for 6-band-limited functions.65

This result is very interesting in practice, since it may be that the sets XT , XO and XI are the small-
est sets leading to exact quadrature rules with equal weights for 3, 4 and 6-band-limited functions.
This is a very desirable property when computation time is critical as in the single-particle image
reconstruction.

79Yiming Hong. European Journal of Combinatorics, 3: 255–258, 1982.
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However it is not clear whether these sampling sets can be generalized to higher band-limited func-
tions, and exact quadrature rules may not be available. Nevertheless we can still introduce approxi-
mate quadrature rules using the HEALPix based sampling defined previously. Indeed the HEALPix
sampling scheme on S2 leads to an approximate quadrature rule on S2 with a very good accuracy.56
The following corollary extends this quadrature rule to the rotation group SO(3).

Corollary 2 (Approximate quadrature rules). Let Xortho the HEALPix based sampling as constructed
in section 3.2.2, with resolution parameter nside. Consider a L-band-limited function f . Then we have
the following approximate quadrature rule∫

SO(3)

f(R)dµ(R) ≃ 1

M

M∑
i=0

f (Ri) , Ri ∈ Xortho, (3.53)

provided that L ≤ 2nside + 1.

Proof. TheHEALPix grid at resolutionnside allows the accurate integration of spherical harmonics up
to order 2nside, leading to an approximate quadrature rule of degreeL− 1 = 2nside − 1with uniform
weights wi = 1/npix. Now, following our construction of the HEALPix based sampling on SO(3),
we discretize uniformly S1 at a step α̃ = ⌈2π/( 2πα )⌉, which leads to N ≃ ⌈2π/(

√
(π/3))nside⌉ − 1

points. This set of equidistant points defines a regular polygon on S1, and therefore leads to an exact
quadrature rule79 with equal weights wj = 1/N for L′ − 1 = N − 1. Since it is clear that L′ > L,
the quadrature rule on S1 is also valid forL-band-limited functions. Applying theorem 2 leads to the
result.

From our application perspective, the two types of quadrature rules have their interest. Since com-
putation time is the most critical constraint, the choice of the type of quadrature rule will be strongly
tied with the number of nodes needed to evaluate the integral, i.e. the size of the sampling set in-
volved. A nice property of the exact quadrature formulæ is that they require only a few nodes and
are probably optimal in terms of sampling set size. However, one is not able to evaluate integrals of
L-band-limited functions if L ≥ 1. Despite its larger size, the HEALPix based sampling allows the
accurate approximation of integrals of such functions, and offers a hierarchical structure via the re-
finement parameter nside. The general properties of each sampling scheme are summarized in Table
3.2.



CHAPTER4
A spherical-symmetry approach to the EMC

algorithm

4.1 Three-dimensional intensity reconstruction by expectation-maximization

Single-particle imaging experiments promise tomake the determination of atomic-resolved biomolec-
ular structures realizable. We saw earlier that the ability to decipher the high-resolution structure of
biomolecules involves two distinct processes. First the three-dimensional intensity function has to
be estimated given the noisy, unoriented two-dimensional diffraction patterns. Then the electron
density can be recovered during a so-called phase retrieval step.
We focus here on the intensity reconstruction problem. To this aim, Loh and Elser introduced the
Expansion-Maximization-Compression (EMC) algorithm,27 which has now been successfully applied
to experimental data.28 The algorithm is based upon an Expectation-Maximization (EM) algorithm.80
The general feature of EM algorithms is that they provide an efficient way to estimate a model given
missing or incomplete statistical data.
The EMC algorithm consists in an update rule of an intensity model IG → ĨG based on the definition
of an appropriate likelihood function. In this section, we start by introducing the different notations,
and then define each step of the EMC algorithm. We finally identify the limitations of the original
algorithm and motivate our approach to the EMC algorithm.

4.1.1 Notations and assumptions

A dataset consists inK diffraction patterns, which are indexed by k = 0 . . .K − 1. The diffraction
patterns are recorded on a pixelated detector, where each pixel is labeled by index i = 0 . . . N − 1
and has coordinates in reciprocal space qi. The qi vectors describe a portion of an Ewald sphere,
see section 1.2.2. We denote by Πik the photon count at pixel i, for an unknown orientation of the
moleculeRk Throughout this work the random rotationsRk are assumed to be distributed uniformly
on SO(3) as free falling particules have no preferred orientation, especially with the use of aerosol
injectors. We explained in section 3.2.2 how such rotations could be simulated. Given the low photon
counts expected in single-particle experiments, a good approximation is that the photon count Πik
follows a Poisson process, where the underlying parameter is given by I(qi,Rk), which is the value
of the continuous intensity function I at the pixel i, for a rotation of the molecule Rk. The formal
expression of I(qi,Rk) is given in section 1.2.3, equation (1.13). In mathematical terms,

Πik ∼ P (I(qi,Rk)) , (4.1)

where P(λ) denotes the Poisson process of parameter λ.
The EMC algorithm requires a deterministic rotation set X ⊂ SO(3) to compensate the missing
information about the molecule orientation in the k-th experiment. Namely, the set X is defined by

X ∆
= {Rj ∈ SO(3), j = 0 . . .M − 1}. (4.2)

With the deterministic rotations Rj at hand, we are able to construct the tomographic grid. The
combination of the reciprocal space coordinates qi of the detector with the rotations Rj leads to the
sequence of points qij

∆
= Rj · qi that constitutes the tomographic grid. We define the tomographic

80Arthur P Dempster, Nan M Laird, and Donald B Rubin. Journal of the royal statistical society B, 1–38, 1977.
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intensities as

Iij
∆
= I(Rj · qi) = I(qij) (4.3)

which is a redundant representation of the three-dimensional intensity model since it is possible to
find i′ and j′ such that the pointsqi′j′ andqij are very close to each other. The tomographic intensities
Iij are at the heart of the EMC algorithm, as we shall see further.
The redundancy of the tomographic grid motivates the introduction of a regular grid to represent
efficiently the estimated intensity model. We define the intensity model IG , which corresponds to the
estimated intensity on a regular grid G. The grid G is composed of Ngrid nodes labeled by the index
µ. In the original paper,27 a regular three-dimensional Cartesian grid was used, whereas the work
described in this chapter takes a different approach by using a spherical grid.

4.1.2 Principle

We start by defining the likelihood function, which will lead to the maximization step of the EMC
algorithm. The log-likelihood function of the tomographic intensity Ĩij given the photon count Πik
is given by

Lijk(Ĩij ,Rj |Πik) = logP (Πik|Iij ,Rj) = Πik log Ĩij − Ĩij , (4.4)

where we have stripped away the irrelevant constant factor. If we assume that in a single experiment
k, the Poisson processes on every pixel i are independent, we obtain the log-likelihood per orientation
j and experiment k by simply summing over the detector pixels i:

Ljk
(
{Ĩij}i,Rj

∣∣∣{Πik}i) =
N∑
i=1

Lijk(Ĩij ,Rj |Πik), (4.5)

where the subscript i is a shorthand notation for i = 0 . . . N . The goal now is to obtain the total log-
likelihoodL. First, we need to compute the probability Pjk, that is the probability that the diffraction
pattern k corresponded to an orientation j of the molecule, conditionally on the current values of
the tomographic intensity values Iij . The unnormalized conditional probability is given by the joint
Poisson probability distribution on every pixel i,

N−1∏
i=0

P (Πik|Iij ,Rj) =

N−1∏
i=0

IΠik
ij exp(−Iij), (4.6)

where again we have exploited the independence of the Poisson processes on each pixel, and omitted
the j-independent factor in the Poisson probability distribution. The normalized probability distri-
bution Pjk is given by

Pjk
∆
= Pjk (Rj |{Πik}i, {Iij}i) =

wj
∏N−1
i=0 IΠik

ij exp(−Iij)∑M−1
j=0 wj

∏N−1
i=0 IΠik

ij exp(−Iij)
. (4.7)

The presence of the rotation weightswj results from two different aspects. First, it can describe a non-
uniform deterministic sampling of the rotation group SO(3), which may be needed if the random
rotations that affect the molecule are non-uniform (this may be the case with liquid-based molecule
injectors). However the vast majority of the literature considers the uniform random rotation as-
sumption, which is satisfied experimentally with aerosol injectors. In that case, the deterministic
rotation samplingX needs to be uniform. As pointed out by Loh and Elser,27 the rotation weightswj
may still be needed in the uniform case since it is not possible in general to obtain a sampling set such
that the weights are uniform. This work circumvents this issue by using the sampling sets developed
earlier in chapter 3.
The total likelihood function of the tomographic intensities Ĩij given the photon counts Πik and the
current tomographic intensities Iij is therefore given by

L
(
{Ĩij}i,j

∣∣∣{Πik}i,k, {Iij}i,j) =
K∑
k=1

M−1∑
j=0

PjkLjk
(
{Ĩij}i,Rj

∣∣∣{Πik}i) . (4.8)
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IG(qµ) Iij Ĩij ĨG(qµ)
E M C

Figure 4.1 : A single iteration of the EMC algorithm. The current model IG is expanded on the tomographic
grid such that Iij = I(qij). The current tomographic model Iij is updated, leading to a new
tomographic model Ĩij and compressed back to a new intensity model ĨG .

Themaximization rule is obtained by taking the derivative of the total likelihood functionwith respect
to the tomographic intensities Ĩij . The likelihood expression (4.8) is quite practical since it allows an
explicit and simple update rule:

(M) : Iij → Ĩij =

∑K
k=1 PjkΠik∑K
k=1 Pjk

. (4.9)

The tomographic intensities Iij give a redundant representation of the estimated intensity model.
This over-specification of the intensity is solved by compressing or condensing the tomographic model
Iij back to the intensity model IG , which is defined on a regular grid G,

(C) : Iij → IG(qµ). (4.10)

The compression step has an intrinsic smoothing character: because the tomographic grid defined by
the vectors qi,j is much larger than the regular grid G, the intensity IG corresponds to an averaged
version of the tomographic intensity.
The expansion step is the reverse of the compression step, that is from a regular intensity model IG it
creates the tomographic model needed by the maximization step:

(E) : IG(qµ) → Iij . (4.11)

Here, the expansion step corresponds to an interpolation between the smaller grid, the regular grid,
and the overspecified grid, the tomographic grid.
A single iteration IG → ĨG of the EMC therefore consists into three steps, the expansion step (E),
the maximization step (M) and the compression step (C). This is summarized on figure 4.1. As a side
note, we point out that the most computationally expensive step is the maximization step where we
have to calculate the cross-probabilities Pjk, whereas the expansion and compression steps are much
less expensive.

Remark It is interesting to note that the cross-probabilities Pjk are actually a discrete version of a continuous probability
density function of the intensity given the orientation of the molecule. As a consequence the weights wj can be seen as
quadrature weights, and the discrete sum over the rotations in the likelihood function corresponds to the Expectation step in
the EM algorithm.

4.1.3 Limitations of the original EMC algorithm and proposed improvements

The EMC algorithm, in its form presented by Loh and Elser presents several limitations. First it does
not account for the particular geometry of the three-dimensional intensity function; as we have seen
earlier in chapter 1 the intensity function is defined within a ball of certain radius. In its original form,
the algorithm compresses the tomographic model to a regular model defined on a 3D Cartesian grid.
In this work, we propose a spherical grid design in accordance with the intensity function geometry.
The second limitation resides in the absence of control of the resolution of the reconstructed intensity
IG . Even though the ultimate goal of single-particle experiments is atomically-resolved structures, we
believe that intermediate resolutions are desirable, especially in experimentswhere they can be used to
monitor in real-time the incoming data. In our work, we take advantage of both the Fourier-Laguerre
sampling theorem on the ball and the Fourier-Laguerre transform on the ball to build intensity mod-
els at the desired resolution. This corresponds to the harmonic analysis on the ball developed earlier
in chapter 2. We eventually note that the use of the Fourier-Laguerre expansion allows us to encode
the different algebraic properties of the three dimensional intensity in its Fourier-Laguerre decom-
position, as seen in section 2.1.3.
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Thirdly, to the best of our knowledge, the only rotation group sampling X used today in the EMC is
the one introduced by Loh and Elser, based on a regular polytope in R4, the 600-cell.81,82 However
the link between the reconstruction resolution and the sampling set size is rather qualitative, and
the weights wj defined above are non-uniform. Our approach proposes to use the sampling sets
developed in chapter 3, where the weightswj are uniform and the relationship between sampling size
and resolution is clearly established.
Overall, we will show in the next section that these improvements effectively scale the problem, both
in terms of complexity and computing time.

4.2 Equivalent spherical shell reconstruction problem

Taking into account the spherical geometry of the intensity function allows us to rephrase the esti-
mation of the intensity function in a simpler way. Since an intensity function is defined within a ball
of radius qdecmax, we may represent the intensity function as a collection of concentric spherical shells,
just like an onion. As a consequence, if we label the shells by s = 0, 1, . . ., the three-dimensional
intensity reconstruction problem boils down to the ability to solve a collection of two-dimensional
intensity reconstruction problems, each on a spherical shell s.
This mental leap from three-dimensional reconstruction to two-dimensional reconstruction is de-
picted in figure 4.2. In figure 4.2.A we drew two circles on a typical (continuous) Bence-Jones protein
diffraction pattern, where the radii correspond to reciprocal space values qin and qout. These two
cases, which are further denoted as the inner shell and outer shell are chosen so that they represent
well the nature of the estimation problem. Recall that a diffraction pattern is a spherical slice through
the intensity function, known as the Ewald sphere, see section 1.2.2. The intersection between this
spherical slice and the inner (resp. outer) shell defines a circle on the shell, as seen in figure 4.2.B and
4.2.C.These circles are indeed sampling points on the inner and outer shells, denoted byDin andDout

respectively. Since each diffraction pattern correspond to a random orientation of the molecule, the
equivalent sampling points on spherical shells are rotated versions of the reference sampling points
Din and Dout, as represented in 4.2.D and 4.2.E. Finally, the actual measurements are Poisson real-
izations of the intensity defined at the sampling points Din

Rk
and Dout

Rk
. We note that the sparse mea-

surements in the outer shell are characteristic of the single-particle imaging context and constitute a
challenging problem.
In the remaining of this section, we first give the formal definition of equivalent measurement model
on a single spherical shell, and then we detail the implementation of the spherical EMC algorithm.
The formulation proposed here is a simplified version of the actual reconstruction problem, however
it highlights the main features of the reconstruction process, and allows us to consider separately the
mapping between the intensitymeasured on the planar detector and the corresponding point sampled
on the sphere.

4.2.1 Equivalent measurement model on a single shell

Rephrasing the estimation problem within a signal processing framework start by defining an equiv-
alent measurement model. As shown in figure 4.2.A, on a spherical shell s the corresponding diffrac-
tion patterns are mono-dimensional, as circles on this spherical shell. Formally, we will denote byDs

the detector on the shell, that is the reference sampling points. We define Ds as the set of N pixels
coordinates on the sphere,

Ds ∆
= {qi = (qs,Ωi)|i = 1, 2, . . . , N} , (4.12)

where Ωi = (φi, θ(qs)) ∈ [0, 2π) × [0, π] are the angular coordinates, and qs the radius of the
spherical shell. The dependence of θ on the radius qs is a consequence of the scattering geometry, as
shown previously in equation (1.12). For completeness we recall that the relation is given by

θ(qs) =
π

2
− arcsin

q

qmax
, (4.13)

where qmax is defined in terms of the wavelength λ, see section 1.2.3.

81John Horton Conway and Neil James Alexander Sloane. Sphere packings, lattices and groups. vol. 290 Springer
Science & Business Media, 2013.

82Harold Scott Macdonald Coxeter. Regular polytopes. Courier Corporation, 1973.
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The number of pixels contributing to a shell, i.e. the number of pixels on a circle on the diffraction
pattern increases with the radius qs. Therefore to be consistent with the diffraction imaging context,
the number of pointsN on the detector are also scaled as a function of qs, such that:

N =

⌈
2πqs
∆q

⌉
, φi =

2π

N
i, i ∈ {0, 1, . . . , N − 1} , (4.14)

where ⌈·⌉ denotes the ceiling function, and ∆q is the reciprocal space pixel size.
Finally, each measurement, or diffraction pattern on a shell consists in a set of N samples Πik, i =
0, . . . , N − 1 given by:

Πik = P (I(qi,Rk)) . (4.15)

We also define the corresponding sampling points, for a rotation Rk by

Ds
Rk

∆
= {Rk · qi|i = 0, 1, . . . , N − 1} . (4.16)

4.2.2 Spherical EMC algorithm implementation

We denote by Is the intensity on the spherical shell s. We are interested in the reconstruction of
sub-resolved intensity models, that is we look at models which read

Is(Ω) =

L−1∑
l=0

l∑
m=−l

Iml (qs)Y
m
l (Ω) (4.17)

where L < Llim
s is the bandlimit of the reconstruction. To this aim, the spherical EMC algorithm

proposed here consists of an update rule Iml (qs) → Ĩml (qs) of the spherical harmonic coefficients
Iml (qs) of the intensity Is. We recall that the spherical harmonic coefficients are a sparse representa-
tion of the intensity Is, since they fulfill the properties enumerated in section 2.3.2.
Extending the EMC algorithm presented in section 4.1.2 to the single shell reconstruction problem is
done easily, as we now describe.
In the spherical setting, the compression step corresponds to two distinct steps. First, the tomographic
intensitymodel Iij has to be compressed to a regular spherical gridG, and thus the spherical harmonic
coefficients can be retrieved with the Spherical Harmonic Transform (SHT)

(C) : Ĩij → ĨG → Ĩml (qs). (4.18)

The expansion step is the reverse part, where we first apply the inverse SHT to get the intensity on
the grid IG , and the tomographic model is obtained by interpolation between the grid G and the
tomographic grid qij ,

(E) : Iml (qs) → IG → Iij . (4.19)

The maximization step is left unchanged, but we slightly modify the definition of the cross probabil-
ities Pjk such that

Pjk =

∏N−1
i=0 IΠik

ij exp(−Iij)∑M−1
j=0

∏N−1
i=0 IΠik

ij exp(−Iij)
, (4.20)

inducing that the weights wj have disappeared due to an appropriate choice of the rotation group
sampling X .
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(a) nside = 1, HEALPix-based sampling with nrot
side =

1
(b) nside = 2, HEALPix-based sampling with nrot

side =
2

Figure 4.3 : Correspondence between the tomographic grid and the regular grid G. The redundancy intro-
duced by the tomographic grid (grey points) is compressed onto the regular grid G (blue points)
by Inverse Distance Weighting (IDW) between the pixel center and the tomographic grid points
belonging to this pixel.

Grid G and implementation of Expansion and Compression steps

Wemake use of thematerial introduced earlier in thismanuscript by choosing theHEALPix sampling
scheme on the sphere for our grid G. For completeness we recall that this sampling scheme lacks an
exact quadrature formula on the sphere, however it provides a good approximation of integrals of
L-bandlimited functions provided that56

L ≤ 2nside + 1 with weights wµ =
4π

npix
, µ = 1, 2, . . . , npix, (4.21)

where nside is a resolution parameter and npix = 12n2side. Each point qµ in the HEALPix grid G is
located at the center of its associated pixel. The pixels define an equal-area partition of the sphere.
The compression step is done as follows. We first determine the tomographic points qij belonging to
each HEALPix pixel, and then the intensity value on this pixel is given by Inverse Distance Weighting
(IDW) between the respective qij and the pixel center qµ,

I(qµ) =

∑
neighbors Iij/∥qij − qµ∥2∑
neighbors 1/∥qij − qµ∥2

. (4.22)

The coefficients Iml (qs) are then computed up to orderL−1 as given by the sampling theorem (4.21)
using the set of routines available in the HEALPix package. The Friedel symmetry is restored by
canceling the coefficients for odd values of l. The correspondence between the regular grid G and the
tomographic grid is shown in figure 4.3, for the first two resolutions nside = 1, 2 and HEALPix-based
rotation group sampling with nrot

side = 1, 2.
The expansion step is done by the successive expansion of the coefficients Iml (qs) to obtain IG , then
by computation of the tomographic intensities by interpolation on the sphere. Precisely the intensity
IG is obtained by inverse SHT, again implemented using the HEALPix package routines. The inter-
polation from the regular grid G to the tomographic grid is done by bilinear interpolation using the
four nearest-neighbors on the regular grid.

Rotation group sampling sets adaptative choice

The main purpose of the work presented in this manuscript is to give more insight on the choice of
parameters of the EMC algorithm. Specifically, the focus is put on the choice of the rotation sampling
setX with respect to the desired resolution of the reconstructed intensity. Themotivation arises from
the simple thought that it is more likely that estimating a low-resolution intensity model with a very
large rotation sampling set will be a waste of time and computational resources.
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Bandlimit L Optimal grid G Optimal rotation group sampling X
nside Size Type Size

3 1 12 XT 12
5 2 48 XI 60
9 4 192 HEALPix, nrot

side = 4 4608
17 8 768 HEALPix, nrot

side = 8 37632
33 16 3072 HEALPix, nrot

side = 16 301056

Table 4.1 : Corresponding optimal choices of grid parameters and rotation sampling schemes, for increasing
values of bandlimit L.

We have introduced earlier in chapter 3 several rotation sampling sets, and we gave the respective
bandlimit LX of the associated quadrature formula on SO(3) for each of these sampling sets. The
strong connection betweenSO(3) and the sphere S2 leads to a simple choice criterion for the rotation
sampling set given the bandlimit L of the reconstruction. Precisely, we consider that the quadrature
bandlimit of the sampling set should be larger than the desired reconstruction bandlimit, that is

LX ≥ L. (4.23)

The optimal choice of X satisfying equation (4.23) is thus made by finding a rotation sampling set
such that its size |X | is minimal. We give in table 4.1 the corresponding optimal choices of grids G
and rotation sampling sets X for different values of bandlimit L.

4.2.3 Miscellaneous

We conclude this section with several technicalities, from numerical considerations to iterations con-
vergence assessment.

Numerical considerations

Several numerical precautions need to be taken to make the numerical implementation of the al-
gorithm more efficient. The most consuming time step is the computation of the probabilities Pjk
(4.20). This step involves the computation of the joint probability (4.6) over the sampling points Ds

on the spherical shell s. To avoid overflow/underflow in the computation of these probabilities, we
rewrite (4.6) as

log
N−1∏
i=0

P (Πik|Iij ,Rj) =
N−1∑
i=0

Πik log Iij − Iij (4.24)

which is more efficient numerically. The value of the joint probability is then obtained by taking the
exponential of the latter expression (4.24) and using an appropriate numerical library which allows
the manipulation of very large and small numbers. Another improvement can be made given the
sparse nature of the measurements Πik. In the outer shells, the scattering intensity is very low, and
therefore the majority of the Πik values are equal to zero. Skipping the i values where the photon
count Πik vanishes improves tremendously the execution time of the algorithm in the outer shells.

Initialization and convergence assessment

Initialization of EM algorithms is in general a critical step, since EM methods only ensure the con-
vergence to a local maximum of the expectation value of the likelihood function. Therefore a badly-
initialized algorithmmay never reach a global maximum, and remain stuck in a local maximum, even
with a large number of iterations.
We propose to initialize the EMC algorithm from a random perturbation of the spherical average of
the measurements Πik,

I
(0)
ij =

1

K

K∑
k=1

Πik + uij , uij ∼ U([0, 1]). (4.25)
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Thealgorithm also needs a stopping criterion based on the evolution of the values of the reconstructed
model coefficients Iml (qs). We evaluate the “gradient”∆Iml (qs) between two successive iterations by

∆Iml (qs) =

L−1∑
l=0

l∑
=−l

|Ĩml (qs)− Iml (qs)|
|Iml (qs)|

, (4.26)

where normalizing by the previous estimate norm ensure that the stopping criterion below is indepen-
dent from the total shell energy. The EMC algorithm stops when the following criterion is satisfied,

∆Iml (qs) < η, (4.27)

where η is typically, in our experiments, about the order of magnitude of a percent.

4.3 Full reconstruction

We have presented in the last section a simplified version of the actual reconstruction problem. We
now translate this work back to the full reconstruction problem, that is the reconstruction of the
three-dimensional intensity given two-dimensional diffraction patterns.

4.3.1 A 3D spherical grid

As shown in the last section, the three-dimensional reconstruction can be decomposed into a collec-
tion of two-dimensional reconstruction problems on spherical shells s = 0, 1, . . .. The first question
that arises is how should we choose the shells radii, so that we efficiently reconstruct the full three-
dimensional intensity function at some given resolution? A natural answer to this question is tomake
use of the spherical Fourier-Laguerre expansion presented earlier in chapter 2.
If we fix a radial bandlimit P in the spherical Fourier-Laguerre domain, then we are given a set of
P radial nodes, namely q0, q1, . . . , qP−1 defined in terms of the roots of Laguerre polynomials. If
we are able to compute or estimate the spherical harmonic coefficients of the intensity function on
each of these shells, we can obtain the corresponding spherical Fourier-Laguerre coefficients using
the Spherical Laguerre Transform (SLT) as explained in chapter 2.
As a consequence, we choose our three-dimensional grid as follows. First, we fix the bandlimit tuple
(P,L), where P is the radial bandlimit andL the angular bandlimit. Using the sampling theorem for
the Spherical Fourier-Laguerre Transform, this choice gives us directly the regular grid G,

G ∆
=
{
qµ(qs, φα, θα)

∣∣ s = 0, 1, . . . , P − 1, α = 0, 1, . . . , npix − 1
}
. (4.28)

In the sequel, we fix P = 8 and we let L vary to obtain different angular bandlimits.

Remark As mentioned earlier in chapter 2, the choice of the radial bandlimit P with respect to radial resolution is a bit
more complex than usual, since the radial transform is not harmonic in the Fourier sense, and because the radial nodes are not
equispaced. As a consequence it is not straightforward to establish a criterion based on the Shannon-Nyquist sampling rate.
We define instead a upper-bound P lim based on the definition of the radial resolution (2.68) and on the detector geometric
properties. In short, the upper bound P lim corresponds to the maximum value of P such that the two conditions below are
satisfied simultaneously:

∆q = min
0≤i<j<P

|qi − qj | > ∆q(inter pixels) and q0 > q(first pixel). (4.29)

We note eventually that with the detector parameters used in our simulations (see appendix A for more details) the upper-
bound is given by P = P lim = 8, corresponding to choice made throughout the sequel.

4.3.2 Pixels contributing to a shell

Since rotations are isometries, the intensity measured at a given pixel i for an arbitrary rotation of the
molecule lies on a spherical shell of radius qi. For a ring on the detector of width 2εradial, themeasured
intensities lie within a spherical volume of same width.
In the present setting with P = 8, we are given a radial sampling scheme q0, q1, . . . , q7. The radial
nodes are drawn on figure 4.4. We are now interested in the determination of the contributing pixels
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Figure 4.4 : Selection of detector pixels with the considered shell for P = 8.

i to the shell s. The specificity of the radial nodes lies in their non-uniform distribution, and therefore
no natural choice is available. However, since it appears that the spacing between nodes increases as
we go towards the outer shells, we postulate that a convenient choice for the pixels contributing to the
shell s is such that the ring half-width εradial is equal to

εradial
∆
=

1

2
(qs − qs−1) , s ≥ 1, εradial

∆
=

1

2
(q1 − q0), s = 0. (4.30)

This particular choice of εradial ensures that there is no overlap between the shells, that is there is no
pixel contribution to two consecutive shells. In figure 4.4 we represented the pixels contributing to
shells s = 1 and s = 6, respectively. We notice that a consequence of the radial Laguerre sampling
is that the ring width increases with the shell index. Also, we have far more pixels contributing to
the outer shell s = 6 than the inner shell s = 1, with Nshell = 3428 pixels and Nshell = 76 pixels
respectively. It is interesting that the higher number of pixels in the outer shell is balancing the fewer
photons, and conversely the fewer pixels are balancing the high photon counts in the inner shell part.

4.3.3 Iterative shell by shell reconstruction

The algorithm presented in section 4.2 was, by simplicity, only described on a single spherical shell.
However since the goal is to reconstruct the three-dimensional intensity function, we have to expand
the same approach to the whole set of shells that constitute the grid G.
At first, a naive approach would lead us to the following reasoning. Since it is possible to perform a
spherical EMC on each single shell, why not performing separately P spherical EMC algorithms on
each of these shells that constitute the grid G? Given that computation time is critical in this setting,
one would greatly take advantage of this induced parallelization property. This proposition however
eclipses an intrinsic property of the EMC algorithm, that is it converges to a randomly oriented shell.
This feature corresponds to the fact that a “rotated” intensity shell has the same likelihood that the
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{Πik}s=0 spherical EMC, s = 0
{Iij}s=0

{IG}s=0

{Πik}s=1 spherical EMC, s = 1
{Iij}s=0,1

{IG}s=0,1

{Πik}s=P−1 spherical EMC, s = P − 1
{Iij}s=0,1,...,P−1

{IG}s=0,1,...,P−1

Figure 4.5 : Proposed iterative shell-by-shell EMC algorithm based on the cascade of single shell EMC.

“non-rotated” version, therefore running separately the spherical EMC algorithms on the spherical
shells does not ensure that these shells are angularly aligned.
This first approach may be however useful in the future if an efficient way to re-align the shells can be
formulated, thus allowing an efficient parallelization property.
The three-dimensional reconstruction algorithm presented here does not exhibit the same drawback
as our first naive proposition, and still builds upon the EMCalgorithmon a single shell. Themain idea
is to work iteratively, from the inner shells to the outer shells, and such that the reconstructed model
grows with every new shell. To simplify the reasoning, we consider the same angular grid resolution
on every shell, that is Ls = L for all shells s.
We start by the first shell (s = 0) and perform the spherical EMC algorithm on this shell, as described
in section 4.2. Once the algorithm has converged, we store both the values of the reconstructedmodel
on this shell IG and of the tomographic intensities on this shell Iij . The second shell (s = 1) is now
computed as before, at the exception that the maximization step is now different. To ensure that
the shells are aligned, the computation of the probabilities Pjk is done on the tomographic model
composed of the first shell and of the second shell, instead of being computed on the second shell
only. The update however only concerns the current shell, which also ensures the coherence of the
model with the previous estimated shells. The other shells are computed using the same method, and
the EMC algorithm grows in complexity as we move to the outer shells. The principle of this iterative
shell-by-shell EMC algorithm is depicted in figure 4.5.
Wenote that thismethod ismade possible by the fact that the tomographicmodels for two consecutive
shells do not overlap, which is a consequence of the choice of the pixels contributing to one shell
developed earlier in section 4.2.

Remark In the iterative shell-by-shell version introduced here, the spherical grid resolution is the same for every shell.
In practice, since the energy distribution of the coefficients widens as we go to the outer shells, one may want to adapt the
spherical grid resolution with the spherical shell considered. Such a refinement is possible in the present context, by adjusting
the size of the previous tomographic grid accordingly with the current shell tomographic grid.

4.4 Results

In this section, we present some numerical results which validate our spherical geometry approach
to the EMC algorithm. We start by introducing an appropriate error metric, and we present a de-
tailed statistical analysis of the spherical EMC algorithm. Finally we show an example of a three-
dimensional low-resolution reconstruction using the iterative EMC scheme proposed in the last sec-
tion.
All simulations presented here were performed for a Bence-Jones protein (PDB entry: 1REI), which
has amolecularweight of 24 kDa. Thismolecule is relatively small, which helpsmaking the simulation
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Figure 4.6 : Energy distribution in the spherical harmonic domain for the inner shell (s = 1) and the outer
shell (s = 6), in the case P = 8 for the Bence-Jones protein. The distribution is wider in the
outer shell case, with a lower total energy than in the inner shell case, as expected.

of a large number of diffraction patterns more tractable.

4.4.1 Evaluation of the reconstruction accuracy

We recall that the spherical EMC algorithm presented in this manuscript is an iterative update of the
spherical harmonic coefficients Iml (qs)where qs is the radius of the shell s. In the full reconstruction
problem the shell index s ranges from s = 0, 1, . . . , P − 1 where P is the radial bandlimit whereas
s is fixed in the single shell framework.
To perform a statistical performance analysis of the proposed spherical EMC algorithm, an appropri-
ate error metric has to be introduced. Such a metric has various requirements to fulfill, namely (i) it
has to be a rotation-invariant metric, because each estimate of the intensity function has a different
orientation than the “true” intensity function, as mentioned earlier, (ii) it has to separate the contri-
bution of each degree l in the spherical harmonic decomposition and (iii) it has to be normalized so
that it corresponds to a relative error.
We propose an error metric agreeing with the points (i)–(iii) as follows. We define the relative error
per degree l on the shell s as

εl =
|Êl − El|

El
, El =

l∑
m=−l

|Iml (qs)|2 (4.31)

where Êl andEl are respectively the estimated and theoretical energy of degree l. The normalization
ensures that εl is a relative quantity, allowing the comparison between shells with different energy per
degree. The terms El and Êl are rotation-invariant, as explained earlier in chapter 2.

4.4.2 Single shell reconstruction statistical analysis

In this section we look at the reconstruction performance of the spherical EMC algorithm for two
typical cases. We consider the inner and outer shells depicted in figure 4.6, computed from the struc-
ture of the Bence-Jones protein. For both shells we evaluated the energy distribution in the spherical
harmonic domain, and to avoid any aliasing phenomenon, the theoretical intensity functions were
computed on a large spherical grid G with resolution parameter nside = 128, allowing the accurate
evaluation of the spherical harmonic coefficients up to degree l = 256.
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We note that we have removed the odd degrees of l in figure 4.6 since the energy is equal to zero
thanks to the Friedel symmetry (2.70). In both inner and outer shell cases, the distribution of the
energy per degree reaches machine precision once the threshold Llim is attained. This shows that the
choice nside = 128 respects the sampling theorem on the sphere.
As expected, the energy per degree distribution is wider in the outer shell than in the inner shell, with
threshold values Llim

outer = 45 and Llim
inner = 13, respectively. We note as well that the total energy in

the outer shell is much lower than in the inner shell, as shown by the low-photon counts in the outer
parts.

Procedure

The goal here is to obtain the average behavior of the spherical EMC algorithm as the number of
patterns K (observations) increases. The procedure is as follows: first, we fix a bandlimit L, which
is typically L = 3 and L = 5 in our case, that is we are interested in low-resolution reconstruc-
tions. Moreover, we choose the adequate rotation group sampling with our optimality criterion
given in table 4.1. Now, for a given number of patterns K , we simulate K uniform random rota-
tionsRk ∼ U(SO(3)) to obtain the sample pointsDs

Rk
, and the measurementsΠik are obtained by

the Poisson model described in section 4.2.1. The algorithm is initialized at random using the pro-
cedure described in section 4.2.3 and the values of the spherical harmonics coefficients Iml (qs) are
stored after convergence of the algorithm. We finally compute the error εl.
The average behavior of the algorithm is obtained by quasi-Monte Carlo method, and with NMC =
100 runs. Indeed, the computational cost of the algorithm prevents us from using a large number of
Monte-Carlo iterations to obtain the average behavior.
We now discuss the results obtained for the inner and outer shells, in the case of low-resolution re-
construction with L = 3 and L = 5, that is the rotation group sampling sets are chosen to be the
tetrahedron-based rotation group sampling XT and the icosahedron-based rotation group sampling
XI , respectively. In this case, the appropriate resolution parameter choices for the HEALPix spherical
grid are nside = 1 and nside = 2.

Discussion of the simulation results

In figure 4.7, one can see the convergence of the estimation of the spherical harmonic coefficients for
L = 3 and L = 5 as a function of the number of diffraction patterns, in both inner and outer shell
cases. For the inner shell, depicted in the top row, the relative error per degree εl is low for l = 0 and
l = 2 for the two low-resolutions (L = 3 and L = 5). We note that the case l = 4 exhibits a large
relative error, but this case is special since the relative energy contribution of the spherical harmonic
coefficients of degree l is very low in the reconstruction.
For the outer shell, as shown in the bottom row of figure 4.8, convergence is achieved slower, as ex-
pected due to the sparse measurements in the outer shells.
For all cases we note that the relative error does not go to zero as the number of observations increases,
and reaches instead some finite threshold. This is explained by several aspects. First, the estimation
bias can arise from interpolation errors in the compression and expansion steps of the spherical EMC
algorithm. More importantly, the estimation bias results from aliasing of the higher order coeffi-
cients, which are not estimated while considering low-resolution reconstructions. Indeed, we have
considered the case L ≤ Llim, and therefore sampled, i.e. chosen the spherical grid G according to
the value ofL nor the value ofLlim. The resulting sub-Nyquist sampling therefore induces an aliasing
phenomenon, which is unavoidable.
As the chosen reconstruction bandlimit increases, the aliasing bias is reduced, andwill disappear once
L is larger than the value of Llim on the spherical shell considered. However in practice the value of
Llim can only be guessed, and it does not seem reasonable to increase brutally L to ensure there is
no aliasing, since computational cost is critical in our application. We shall point out that the true
quantity of interest here is not the set of coefficients Iml (qs) in itself, but rather the reconstructed
intensity from these coefficients. The fact that they provide a sensible low-resolution approximation
to the true intensity function is here the main desired property.
Figure 4.8 indeed presents reconstructions from the set of coefficients estimated in the caseK = 400
observations, with a grid nside = 128. A first feature of the spherical EMC algorithm emphasized
here is that the reconstruction orientation is not preserved as there is no orientation reference to “fix”
the reconstruction in a particular orientation.
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Figure 4.7 : Reconstruction error εl as a function of the number of observations, i.e. diffraction patterns. Re-
sults are presented for low-resolution reconstructions, with L = 3 and L = 5, in both inner and
outer shell cases.

For the inner shell, despite the different orientations of the reconstructions, the features of the inten-
sity function are well recovered, showing that our choice of a low-resolution reconstruction does not
have a large impact on the accuracy of the reconstruction of the true intensity function. For the outer
shell, we see that the low-resolution reconstructions remain quite far from the true intensity function:
in that case, spherical harmonic coefficients of higher degree l would be needed to give an accurate
reconstruction of the true intensity function. Nevertheless these low-resolution reconstructions pro-
vide a sensible reconstruction of a low-pass version of the true intensity function, as said earlier. Also
we mention that the spherical harmonics do not ensure the positivity of the reconstructed intensity
function. The possible negative values in the intensity reconstruction are set to zero to this aim. This
phenomenon is typical with the outer shells, where the spherical harmonics distribution is wide and
where a low-resolution reconstruction only corresponds to a small fraction of the total shell energy.
This effect can be seen with the case L = 3 in the outer shell depicted in figure 4.8.
Finally we recall that by using a spherical harmonic decomposition of the intensity function, or more
generally using any orthonormal basis, allow us to oversample the reconstruction at will (for instance
here we used nside = 128 as resolution parameter for the regular grid G). It should allow much more
flexibility for phase retrieval algorithms to be performed after intensity reconstruction.

4.4.3 A shell-by-shell low-resolution intensity reconstruction

The end of this chapter is dedicated to an example of a three-dimensional intensity reconstruction
performed with the iterative shell-by-shell EMC algorithm. For computational cost, we illustrate only
a low-resolution reconstructed model, but the same ideas can be transposed to higher resolutions.
We used 100 simulated diffraction patterns from the Bence-Jones protein, and such that the average
number of photon per diffraction pattern is equal to 3570. The resolution of the grid was taken as
nside = 2, and we used the HEALPix rotation group sampling with nrot

side = 2. The stop criterion
was fixed at η = 10−2. After convergence of the algorithm, we computed the spherical harmonic
coefficients Iml (qs) and re-expanded on a larger angular grid of resolution nside = 16. The obtained
reconstruction is 5-bandlimited, and is depicted in figure 4.9, alongside the true intensity function
computed for P = 8.
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Figure 4.9 : (a) Low-resolution reconstruction of the intensity function of 1REI molecule, bandlimited atL =
5, P = 8. (b) Corresponding true intensity function computed for P = 8.

The reconstruction exhibits slowly varying features, as expected. In the inner shell part, where the
intensity function has a low bandlimit, the reconstructed intensity features are close the “true” ones.
In the outer shell region however more spherical harmonic coefficient would be needed to obtain an
accurate high-resolution reconstruction. We note finally that the reconstructed intensity function is
rotated by some unknown rotation from the reference frame of the computed intensity function, as
already mentioned in the single shell case.





CHAPTER5
Conclusion and perspectives

5.1 Summary of contributions

The work presented in this manuscript was motivated by the three dimensional intensity reconstruc-
tion in single-particle experiments. The first aims were to study the most popular algorithm used
today in three-dimensional intensity reconstructions, the Expansion-Maximization-Compression al-
gorithm, and to rephrase it taking into account the spherical geometry of the intensity function. In
chapter 1 we gave a rapid overview of the single-particle experiment Physics, and we motivated the
use of a spherical geometry approach to reconstruction algorithms.
Following our motivation, we reviewed harmonic analysis on the solid sphere, i.e. the ball, in chap-
ter 2. This preliminary chapter is indeed vital towards the use of sparse representations of functions
defined on the three-dimensional ball. Building upon the work of Leistedt and McEwen,44 we intro-
duced a Spherical Fourier Laguerre Transform which allows an efficient spectral representation of
three-dimensional intensity functions.
Analysis on the sphere, and by extension analysis on the ball, naturally involves working with rota-
tions. In particular, the rotations in three-dimensional space are at the heart of the single-particle
experiment. They arise from the random rotations applied to the molecule during the imaging pro-
cess as well as the deterministic sampling sets on the rotation group used in the EMC algorithm.
Chapter 3 studied in detail these problems, and we left aside the single-particle imaging context for
a moment to obtain more general results on sampling sets and quadrature formulæ on the rotation
group.
Finally, we proposed in chapter 4 to rephrase the original EMC algorithm in a spherical setting using
the tools developed in chapter 2 and chapter 3. This transposition was done in two parts, we first
studied in detail the spherical EMC algorithm for a single shell, and we finally make use of the spher-
ical Laguerre radial transform to solve the full three-dimensional intensity reconstruction problem.
Simulations results were presented to illustrate the feasibility of the approach.
In short, the contributions of the work presented in this manuscript are twofold: the reconstruction
problem has been rephrased in a spherical setting using a sparse intensity representation, and the
proposed algorithm exhibits scalability upon some radial-angular resolution tuple (P,L).

5.2 Perspectives

The work presented here can be seen as a direct extension of the EMC algorithm, rather than a com-
plete reformulation of the reconstruction algorithm. Future work will rewrite the reconstruction al-
gorithm using the Expectation-Maximization formalism, and make use of the spherical harmonic
representation to remove the compression and expansion steps. This will result into a direct update
of the spherical harmonic coefficients, while limiting the interpolation errors due to the compression
and expansion steps.
The next idea to explore comes from the distribution of the radial nodes with the discrete spherical
Laguerre transform. Indeed, as the radial bandlimit P increases the distribution of radial nodes be-
comes more concentrated towards the origin. This is a main drawback, for two principal reasons.
First it appears that in the actual single-particle experiments the center of the diffraction pattern is
not measured, to avoid the detector to measure the huge amount of unscattered photons. This central
region corresponds to the q ≃ 0 values, and therefore at large P one may have nodes located in the
masked region. On the other hand, the intensity function varies slowly in the vicinity of the origin,
therefore having a lot of nodes in this region would provide a redundant description. We think that
an algorithm working with spherical shells defined at arbitrary nodes would be more attractive in
practice.
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Finally, an interesting track could be to investigate other estimations approaches: sparsity-based, such
as wavelets decomposition of the intensity function, or kernel density estimators on the sphere. Both
ideas arise from the speckle structure in the outer shells, where the intensity function is very localized.
Hope is that these descriptions of the intensity function will overcome the performance of the direct
spherical harmonics approach.



APPENDIXA
Simulation of diffraction patterns

We give here some details about the evaluation of the intensity measured on the pixelated detector,
given by equation (1.13). We recall the expression of the intensity, at reciprocal coordinates q for a
rotation of the molecule Rk,

I(q,Rk) =

∣∣∣∣∣∣
∑
j

fj(q) exp (iq · (Rkrj))

∣∣∣∣∣∣
2

IT∆Ω, (A.1)

where fj is the scattering factor of atom j, rj is the position vector of the j-th atom, IT is theThomson
scattering intensity (see below), and ∆Ω is the solid angle subtended by the detector pixel whose
reciprocal coordinates are given by q. In the following, we derive the expression of the solid angle
∆Ω, and we give the expression of the Thomson scattering intensity for our simulations.

A.1 Expression of the solid angle

By definition, the solid angle ∆Ω subtended by a surface S is given in spherical coordinates by

∆Ω =

∫∫
S

sin θdθdφ. (A.2)

In general,S corresponds to a spherical cap on the sphere. However, in our case the detector is located
in the far field, and therefore we can approximate S by a square surface. We introduce δ = pw/zD ≪
1, where pw is the pixel size and zD is the sample-detector distance. The integration bounds are now
given by [θ0 − δ/2, θ0 + δ/2] for the angle θ, and [φ0δ/2, φ0 + δ/2] for the angle φ, where (θsc, φsc)
are the spherical coordinates in physical space of the considered pixel. We can now write ∆Ω as

∆Ω =

∫ θ0+δ/2

θ0−δ/2

∫ φ0+δ/2

φ0−δ/2
sin θdθdφ (A.3)

= δ [cos θ]θ0+δ/2θ0−δ/2 (A.4)

= δ [cos (θ0 + δ/2)− cos (θ0 − δ/2)] (A.5)
= 2δ sin θ0 sin δ/2 (A.6)
≃ δ2 sin θ0 (A.7)

Now, some simple scattering geometry yields to the relation θsc(q) = π/2 − θ0, and hence we have
the result

∆Ω ≃
(
pw
zD

)2

cos θsc(q). (A.8)

A.2 Simulation parameters

The Thomson intensity corresponds to the intensity scattered by a free electron under the same in-
coming beam conditions as those used in the actual experiments. Its expression is given in 1.2, which
we recall here

IT = πr2eP(θsc)I0, (A.9)
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68 A.2. Simulation parameters

Parameter Value Unit

nphotons 1013 -
S 10 µm2

pw 3.38× 10−5 m
zD 10−2 m

Table A.1 : Numerical values of the simulation parameters.

where re = 2.82 10−15 m is the classical radius of the electron, P(θsc) is a function depending of
the polarization of the incoming beam, and I0 is the incoming beam intensity. The latter quantity is
defined as the ratio of the number of photons nphotons in one pulse by the beamarea S. For simplicity,
we consider P(θsc) = 1, that is the polarization is set in the plane perpendicular to the scattering
direction. Finally, we give the practical expression of the scattered intensity measured on the detector,

I(q,Rk) =

∣∣∣∣∣∣
∑
j

fj(q) exp (iq · (Rkrj))

∣∣∣∣∣∣
2

πr2e
S
nphotons

(
pw
zD

)2

cos θsc(q). (A.10)

The numerical values of simulation parameters used for our experiments are given explicitly in table
A.1.
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