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Abstract

The morphological structure of the brain plays an important role in studying neuro-

degenerative diseases and disorders. Despite the great importance of the investigation

of the brain microstructure, there is not any direct and non-invasive imaging techniques

available to measure the micro-structural tissue parameters. Conventional Magnetic Res-

onance Imaging (MRI) cannot provide images of the brain microstructure due to the

limitations in the image resolution. Hence, there is a need to develop indirect techniques

to measure the microscopic features of the brain tissue.

Although there is not any technique developed to directly investigate the brain microstruc-

ture, studying the diffusion of water molecules in the tissue can reveal information about

the underlying tissue microstructure and hence can provide an indirect method to cap-

ture the micro-structural information. Therefore, Diffusion Weighted Magnetic Resonance

Imaging (DWI), which measures the diffusion of water molecules, has the capability to

be used as a non-invasive method to study the microstructure of the brain and has been

used in the past decade to achieve this purpose. The measurements based on DWI utilise

model-based techniques to deduce the information about the tissue microstructure from

the signal, which inherently suffer from bias error (as the data may not be derived from

a member of the model class). However, they offer superior performance in variance min-

imisation, and allow the inference of parameters based on limited datasets.

In this work, we review a number of the existing model-based techniques developed to

identify micro-structural parameters from DWI datasets. We present a critical analysis of

different techniques in terms of their assumptions, advantages and drawbacks. In the next

step, we compare the performance of different models in terms of their minimum uncer-

tainty level. We utilise Cramer-Rao Lower Bound (CRLB) analysis to assess the minimum

estimation error for different Diffusion Weighted Magnetic Resonance (DWMR) signal de-

cay models. This includes the study of effect of optimisation of acquisition parameters

on the performance of the models and identification of limiting factors to achieve higher

performances. We demonstrate that, under typical measurement conditions, none of the

models can provide parameter estimations with a reasonable uncertainty level. This will
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show up in estimation algorithms that are extremely sensitive to parameter initial condi-

tions, for example. At the end, we present a simulation framework to model the packing

of the axons in the nerve bundles and to model the diffusion of water molecules in the

tissue to construct simulation datasets and utilise them to investigate the validity of the

models. We demonstrate that the sensitivity of models to initial conditions of the fitting

algorithm is high and none of the models are capable of providing realistic estimations

in general. Our analysis sheds a new light on methods that aim to infer microstructure

from DWI data, and provides a method by which to assess the practicality of proposed

techniques in the future.
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Chapter 1

Introduction

1.1 Introduction

The brain microstructure plays an important role in brain function and dysfunction. It has

been shown that the brain diseases such as Alzheimer, multiple sclerosis and autism, are

associated with altered physical structure of axons and myelin sheaths [3–7]. Figure 1.1

depicts the histological images of corticospinal tract axons in the spinal cord in healthy and

multiple sclerosis affected tissues [8]. Figure 1.2 also illustrates the morphometric axonal

analysis in mice optic nerves [9]. As it can be observed from the figures the size and

density of the axons have been changed due to multiple sclerosis. The size change is more

obvious in small fibres in comparison with large fibres [8]. It is also well known that the

axon diameter in myelinated axons directly affects the nerve conduction velocity [10,11].

Despite the great significance of the investigation of axon diameter distribution, the mea-

surement of axon diameter distribution has only been performed using ex vivo histology.

Although diagnostic imaging techniques promise to image internal organs, they cannot

provide images of the axons due to the limitations in the spatial resolution. The axon

diameters in the human brain ranges from 1 µm to 10 µm while for example a typical

voxel size in Magnetic Resonance (MR) images is in the order of 100 µm along each di-

mension, which limits the capability of Magnetic Resonance Imaging (MRI) in identifying

axon diameter distributions.

Over the last decade, there have been a number of efforts for indirect measurements of

axon diameter distribution in vivo using Diffusion Weighted Magnetic Resonance Imaging

(DWI). The main motivations behind the application of DWI for measuring the axon

diameter distribution lies in the relationship between the changes in the diffusion patterns

of water particles in the biological tissue due to underlying tissue microstructure.
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(a) (b)

Figure 1.1: Palmgren-stained transverse section of corticospinal tract axons in the spinal cord in

(a) a control case and in (b) a case of multiple sclerosis photographed at 400 times magnification.

There is a selective reduction in the density of small fibres compared with large fibres, which are

relatively preserved; (Images modified from DeLuca et al., Brain 2004 [8]).

Water is a highly dynamic medium and water molecules continuously move and collide with

each other and other molecules due to their thermal energy [12]. Hence, the investigation of

self-diffusion of water molecules in the medium can reveal information about the underlying

geometric structure. DWI measures the diffusion in tissues and can be used as a non-

invasive method to study the microstructure of brain tissue [13]. Most techniques employ

a model based approach trying to correlate the parameters of the model with the DWMR

signal.

The questions addressed in this work can be summarised as follows:

1. What is the state of the art of the microstructure identification using DWI and what

are the benefits and drawbacks of different techniques developed so far?

2. How to develop a theoretical framework to evaluate and compare different tech-

niques?

3. Perform a numerical study of the different approaches using a single simulation

framework.

4. What are the major obstacles these techniques encounter in clinical scanners and

what are the practical solutions to overcome these obstacles?

Our main contributions are as follows:
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Figure 1.2: Morphometric axonal analysis in mouse optic nerve. Typical pre-chiasmal optic nerve

cross-section stained with methylene blue from (A) healthy mouse and compared with (B) similar

section from a mouse suffering from Multiple Sclerosis. Optic nerve size is reduced due to MS. (C

and D) The central portions of methyleneblue stained cross-sections of pre-chiasmal optic nerves

were photographed at 100 times magnification; (Images modified from Wu et al., Neuroimage

2007 [9]).

1. We present the physical and mathematical principles behind the derivation of dif-

ferent models.

2. We present all the models using similar notations to ease the comparison of different

models.

3. We present a brief review over physical and mathematical principles of diffusion,

DWI and the existing model-based techniques developed for interpreting the micro-

structural information from the DWI data.

4. We link different models to the mathematical derivations presented earlier and dis-

cuss different assumptions considered in derivation of their descriptions. We also

analyse the limitations imposed by these assumptions on the applicability of the

models.

5. We develop a single mathematical framework to analyse, evaluate and compare the

performance of different models under similar practical conditions

6. We develop a simulation framework to model the placement of the axons inside the

nerve bundles and resulting DWMR signals and utilise it to validate different models.

Performing these analyses and considering the practical acquisition parameters which can

be achieved using the current scanners, we demonstrate that none of the models are able to

produce estimations of the tissue microstructure parameters with a reasonable uncertainty

level.



4 Chapter 1

1.2 Outline of the thesis

In this chapter, we introduced the basic idea and motivations behind this work and pro-

vided the questions to be addressed through out this work. The outline of the thesis is as

follows.

In chapter 2, first we introduce the diffusion process and present the physical principles

related to it. This follows a discussion about different diffusion types according to differ-

ent geometrical structures and time scales. This chapter also includes a brief review on

the porous media and the diffusion process within them. We present the solution of the

diffusion equation for some simple boundary conditions. The topics covered in this part,

are used further on through this chapter to introduce the Nuclear Magnetic Resonance

(NMR) based techniques to measure the diffusion properties of a medium. A clear under-

standing of the NMR based measurement techniques requires adequate knowledge about

the NMR phenomenon and MRI. Here, we assume that the reader has an adequate knowl-

edge about NMR physics and pulse sequences used for signal acquisition. A short review

over NMR and MRI principles can also be found in Appendix A. In order to provide a

clear understanding of the different methods used for relating the observed DWMR signal

to the underlying geometrical structure, we review a number of approximations used to

facilitate the modelling process. The understanding of these topics is crucial for a better

understanding of the DWMR signal models in neural tissue, which are covered in the next

chapter.

In chapter 3, a number of existing methods for modelling the DWMR signal decay in neural

tissue is presented. The models are analysed and compared in terms of their assumptions

and linked to the techniques and assumptions presented earlier in chapter 2. At the end

of this chapter a summary of different models along with their characteristics is provided.

In chapter 4, we address the question of evaluating the performance of the models by using

a mathematical framework based on Cramer-Rao Lower Bound (CRLB). We analyse the

performance of a number of two compartment hindered/restricted models in terms of their

minimum uncertainty level under practical acquisition conditions and compare the results.

The effect of optimising the acquisition parameters (the measurement parameters which

can be controlled on the scanner) on the performance is discussed together with an analysis

of the practical limitations to achieve reasonable results. We demonstrate that none of

the models could provide tissue related parameter estimates with reasonable uncertainty

levels under practical conditions.

In chapter 5, we present a simulation framework for modelling the placement of the axons

in a nerve bundle as well as the simulation of the Brownian motion of the water particles
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in the neural tissue and the resultant DWMR signals. Next, we use the simulation data

to analyse the validity of different models.

At the end, we provide a conclusive discussion about the work and the importance of its

outcome on the research field, suggesting future work in order to address to remaining

research questions.
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Chapter 2

Diffusion Weighted Magnetic

Resonance Imaging

Water molecules in the body exhibit random motions due to their thermal energy. These

motions lead to random rotation and more importantly displacement of water particles

from one position to another, which is called diffusion [14]. Although the nature of these

displacements are completely random, they can provide some information about the geom-

etry of the underlying medium through tracking the changes in the precession rate caused

by the displacement of a particle in a nonuniform magnetic field, during a certain diffusion

time. This is the basic idea behind DWI [12].

In this chapter, we study the physical principles of diffusion process and especially as it

applies to brain tissue, and discuss the NMR techniques used to measure diffusion in brain

tissue.

2.1 Physics of diffusion

Diffusion is one of the several transport phenomena in nature by which a matter is dis-

placed as a result of thermally induced random molecular motions [15]. The concept of

diffusion is closely related to the transfer of heat by conduction [16, 17]. This analogy

was recognised first by Fick in 1855 who presented the mathematical equation of diffu-

sion based on the mathematical theory for heat conduction derived earlier by Fourier in

1822 [16–19].

Based on Fick’s second law, the diffusion of particles can be modelled using the diffusion

equation as:
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∂c(r, t)

∂t
= ∇ · [D(r, t)∇c(r, t)] (2.1)

where c(r, t) and D(r, t) are the concentration density of the diffusing particles and the

(n × n) diffusion tensor at location r = (x, y, z) and time t respectively and n is number

of spatial dimensions [1, 18]. In general the diffusion tensor in 3D Cartesian space can be

represented by

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.2)

The associated diffusion matrix is symmetric and positive definite. In the case that D is

isotropic and time-invariant, i.e. D(r, t) = D0In, the diffusion equation, Eq. (2.1), can be

written as:

∂c(r, t)

∂t
= D0∇2c(r, t) (2.3)

which is known as the Fick’s second law of diffusion [18]. Here, ∇2 is the Laplacian

operator

∇2 =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
(2.4)

Diffusivity is an intrinsic property of a medium. In general diffusivity depends on tem-

perature, pressure, viscosity and the size of the diffusing particles [1, 20–22]. The higher

the temperature, the more the energy of the particles and the faster the particles are

moving [1,16,22]. As a result, increasing the temperature results in an increase in the dif-

fusivity. On the other hand, if a medium is very viscous, the particles cannot move easily

and the diffusivity decreases. The diffusion coefficient, D0 [m2.s−1], assuming spherical

particles is given by:

D0 =
kT

6πηRs
(2.5)

where k [m2.kg.s−2.K−1] is the Boltzmann’s constant, T [K] is the temperature, η

[kg.s−1.m−1] is viscosity and Rs [m] is the effective hydrodynamic radius (i.e. Stokes

radius) of diffusive particles. Eq. (2.5) is known as the Stokes-Einstein equation [1,20–23].

The diffusion propagator, P (r|r0, t), is used to analyse the diffusion of particles. It is

defined as the (conditional) probability density of finding a particle starting initially at

position r0 and ending up at position r after time t [1]. Since P (r|r0, t) is a probability

density function (PDF) ,

∫ ∞
−∞

P (r|r0, t)dr = 1 (2.6)
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For the case of isotropic diffusion in homogeneous medium the diffusion propagator is in-

dependent of the initial position r0. However, in a heterogeneous system the displacement

and hence the diffusion propagator depend on the initial position [1].

Since the spatial derivatives in the diffusion equation, Eq. (2.1), refer to the final position

r, the concentration of particles can be substituted using the diffusion propagator P (r|r0, t)

as

∂P (r|r0, t)

∂t
= ∇ · [D(r, t)∇P (r|r0, t)] (2.7)

with the initial condition

P (r|r0, 0) = δ(r− r0) (2.8)

where δ(.) is the dirac delta function . The solution of the diffusion equation Eq. (2.7) for

a homogeneous system and time-invariant diffusion tensor, i.e. D(r, t) = D0 is

P (r|r0, t) =
1√

(4πt)n|D0|
exp

(
− [r− r0]TD−1

0 [r− r0]

4t

)
∀t > 0 (2.9)

where the superscript [.]T denotes the vector transpose, |D0| and D−1
0 denote the deter-

minant and the inverse of the diffusion tensor respectively, and n is the number of spatial

dimensions considered [1]. Eq. (2.9) demonstrates that for a homogeneous system with

time-invariant diffusion tensor, the diffusion propagator can be modelled by a multivariate

Gaussian distribution i.e. P (r|r0, t) ∼ N (r0,Σ) for which the covariance matrix,

Σ =


σ2
x σxσy σxσz

σxσy σ2
y σyσz

σxσz σyσz σ2
z

 (2.10)

is a positive, semi-definite matrix. It can be shown that:

Σ = 2D0t ∀t > 0 (2.11)

For the particular case of isotropic and time-invariant diffusion tensor, D(r, t) = D0In,

the diffusion propagator is given by:

P (r|r0, t) =
1

(4πD0t)
n/2

exp

(
−|r− r0|2

4D0t

)
, ∀t > 0, (2.12)

and the associated mean squared displacement (MSD) is calculated as:

MSD(t) = E{|r− r0|2} = tr(Σ) = tr(2D0 In t) = 2nD0t , ∀t > 0, (2.13)
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Figure 2.1: Free, hindered and restricted diffusion in 1D. (a) Change of Mean square displacement

(MSD) over time normalised to 2D0. (b) Change of the diffusivity over time normalised to D0.

The diffusivity in hindered diffusion is reduced due to porosity and tortuosity. The MSD becomes

plateau in restricted diffusion in the long diffusion time regime and the diffusivity tends to zero. a

denotes the pore radius and ξ denotes tortuosity; (Figure modified from Price 2009 [1]).

where E{.} denotes the expected value and tr(Σ) denotes the trace of the covariance

matrix. The mathematical derivation of the solution to the diffusion equation is presented

in Appendix B. Eq. (2.12) indicates why the free diffusion of particles is called Gaussian

diffusion. However, the diffusion of molecules in heterogeneous media is not isotropic in

general and the diffusion may not be Gaussian. Moreover, if the diffusion is hindered by

barriers or restricted in the medium, the diffusion tensor depends on the diffusion time

and is not time-invariant [24]. In this case, the mean squared displacement is no longer

linear in the diffusion time.

MSD(t) = E{|r− r0|2} = tr

(
2

∫ t

0
D(r, t′) dt′

)
(2.14)

A simple visualisation of free, hindered and restricted diffusion patterns and the resultant

MSDs and time-dependent diffusion coefficients in 1D are presented in Figure 2.1.

The diffusion of particles is related to their thermal energy and at any temperature above

absolute zero (0◦ K) the particles have random displacements. The greater the kinetic

energy the faster the movements [23]. The random motion of suspended particles was

first observed by Brown and as a result is referred to as Brownian motion [25]. In 1905,

Einstein developed the mathematical expression for the Brownian motion and presented

it as an indirect proof for the existence of molecules [26]. Brownian motion is a random

walk process. A simple visualisation of Brownian motion of a particle by random walk

in 2D is depicted in Figure 2.2. However, the expression of the variance and direction
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Figure 2.2: A simple visualisation of Brownian motion of a particle with random walk process.

The start and end points are depicted by red and blue squares respectively.

of movements in general would be very complex. For the simple case of free isotropic

diffusion in a homogeneous medium the movements are independent and the distribution

of distances travelled by the particles after certain diffusion time t can be modelled by a

Gaussian distribution as presented in Eq. (2.12).

The diffusion of molecules in heterogeneous media is not isotropic and will not be Gaussian

in general. The inhomogeneities in the medium will result in the dependence of the

diffusion propagator on the initial positions and the diffusion tensor will not be isotropic

nor time-invariant. If the medium consists of non-mixing substances the mutual diffusivity

will be zero and the boundaries of the spaces with different substance species will act as

a barrier and the diffusion will be restricted.

2.2 Diffusion in isolated pores

In order to analyse the diffusion pattern of particles undergoing restricted diffusion, we first

consider one of the most commonly used closed geometries. The structure of each geometry

determines the boundary conditions for solving the diffusion equation. We present the

derivation of propagators for the diffusion inside the isolated (single site) cylindrical pores.

Here, we present the final mathematical descriptions. The mathematical derivations and

analytical solutions of the diffusion equation for many geometries can be found in the

literature [1, 15,27–36].
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2.2.1 Cylindrical pores

For diffusion in a cylindrical pore with radius a and reflective boundaries, the Neumann

boundary condition is:

∂P

∂r

∣∣∣∣
r=a

= 0 (2.15)

where r = |r|. Solving the diffusion equation, the diffusion propagator is calculated as:

P (r|r0, t) =
1

πa2

+
∞∑
n=1

∞∑
k=0

2Jn(βnkr0) Jn(βnkr) cos(nθ − nθ0)

πa2
(

1− n2

β2
nka

2

)
Jn(βnka)2

exp
(
−D0β

2
nkt
) , r ≤ a

(2.16)

where n is an integer, θ is the angle between r and the plane perpendicular to the cylinder’s

main axis (similarly for θ0 and r0) [1]. Jn(.) is the nth order Bessel function of the first

kind and βnm are the roots of the first derivative of the Bessel function i.e.

J ′n(βnka) = 0 (2.17)

In the case of the parallel planes with relaxation boundaries, the Robin boundary condition

is:

(D0~n · ∇P + ΥP )

∣∣∣∣
|x|=a

= 0 (2.18)

where ~n is the surface normal and Υ is a positive constant denoting the surface relaxivity.

The diffusion propagator is then given by:

P (r|r0, t) =
1

πa2

∞∑
k=0

β0k/J
2
0 (β0k)

β2
0k + (Υa/D0)2

J0

(
β0kr0

a

)
J0

(
β0kr

a

)
exp

(
−
β2

0kD0t

a2

)

+
2

πa2

∞∑
n=1

∞∑
k=0

β2
nk/J

2
nβnk

βnk2−n2+(Υa/D0)2)
Jn

(
βnkr0

a

)
Jn

(
βnkr

a

)
× cos(nθ0) cos(nθ) exp

(
−
β2
nkD0t

a2

)
, r ≤ a (2.19)

2.3 Measurement time-scales and restricted diffusion

The time dependent diffusion coefficient for particles undergoing restricted diffusion is

related to both time and geometries of the underlying medium [1]. To illustrate the effect
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of restriction on the time-dependent diffusion, we consider restricted diffusion in a sphere

with radius a and with an intrinsic diffusivity of the particles equal to D0. In order to

characterise the effect of diffusion time and geometric scale, we define the dimensionless

parameter κ as

κ =
D0∆

a2
(2.20)

where D0 is the intrinsic diffusivity of the medium and ∆ is the diffusion time (the time

at which we measure diffusion). Based on the value of κ three different cases can be

identified:

2.3.1 Short diffusion time regime

In the short time diffusion limit, κ � 1, the particles does not travel far enough during

diffusion time to interact with the boundaries and the diffusion can be considered free

with the diffusion propagator described by Eq. (2.12). Hence, the measured diffusivity is

independent of diffusion time and is equal to the intrinsic diffusivity of the particles i.e.

D(∆) = D0 (2.21)

and Mean squared displacement (MSD) is a linear function of time as given in Eq. (2.13)

[1, 37].

2.3.2 Intermediate diffusion time regime

In the intermediate time regime, κ ≈ 1, the particles start to interact with boundary.

Hence the intermediate (transient) time regime is the cross-over regime of the short time

limit to long-time limit [1]. The fraction of particles that interact with the boundaries

is related to the surface to volume ratio (Sp/Vp) of the pore and the diffusion time (∆)

[28, 38–43]. Hence, the measured diffusivity, D(∆, Sp/Vp), will be a function of diffusion

time and Surface-to-Volume ratio as well and can be modelled as

D(∆, Sp/Vp) =D0

[
1− 4

3n
√
π

Sp
Vp

√
D0∆− Sp

2nVp

(
1

2R̄
− ΥSp

Vp

)
(D0∆)

+
Sp
Vp
O
(

(D0∆)3/2
)]

(2.22)

where n is the spatial diminution (i.e. n = 1,2 or 3), R̄ is the average principal radius

of the curvature of the interface, Υ is the surface relaxivity and O(.) denotes the higher

order terms [28,38–43].
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As ∆ increases the values for measured and intrinsic diffusivity diverge (Figure 2.1) because

more particles interact with the boundaries. The MSD during this period is a non-linear

function of diffusion time. Only the particles within the diffusion distance
√
D0∆ will

interact with the boundary. Hence, the higher order terms become more important at

larger ∆ since larger portion of the particles are affected. The time dependent diffusion

at intermediate times is also called anomalous diffusion [1].

2.3.3 Long diffusion time regime

In the long time regime, κ� 1, all the diffusive particles interact with the boundaries and

as a result the MSD of particles is a constant, independent of the diffusion time and equal

to squared radius of the pore (a2),

MSD(∆) = a2 (2.23)

for a sphere with perfectly reflecting boundaries (i.e. Υ = 0) [1, 44]. Therefore, in the

long time regime, the MSD reflects the shape, dimension and orientation of the restrict-

ing geometry. This can be seen by calculating the limit of the diffusion propagator for

cylindrical boundaries given in Eq. (2.16) when t → ∞, which results only in the first

terms arising from zero eigenvalue. Hence, the particles trapped in a closed pore, at long

diffusion time lose the dependencies to their initial point and their final positions become

independent of their starting points [1]. Similarly, for the case of diffusion with radiative

boundaries, the second and third terms in the diffusion propagator Eq. (2.19) tend to

zero.

2.4 Diffusion in porous media

A porous medium is an impermeable frame containing pores. Porous media are found in

nature for example in rocks and biological tissues such as bone and brain. They also can

be found in man-made materials like foams, cellulose fibres, concentrated emulsions and

ceramics. The properties of porous media have been studied comprehensively in different

disciplines like petroleum engineering, material science and biophysics [1, 45].

A porous medium consists of at least two phases (a) a porous matrix and (b) the pore

space filled with a liquid or gas. Most porous media have disordered morphology and the

determination of the interface between pore space and the matrix is complicated. The

transport and thermodynamic properties of fluids in porous media are closely related to

the size and connectivity of the pores [1,46]. Porosity (ψ) is defined as the volume fraction
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of the pore space as:

ψ =
Vp
V

(2.24)

where Vp is the volume of the pore space and V denotes the total volume of the sample [1].

Most porous media consist of interconnected pores (an open geometry) and the diffusive

particles can move around the boundaries. In general, the characterisation of diffusion

is more complicated in pores than in the free diffusion case. In contrast to imperme-

able pores, where the time dependent diffusivity D(t) tend to zero, in material containing

interconnected media the time dependent diffusivity decreases to a plateau value D∞ de-

termining the long range connectivity of the medium [1,42,47–49]. The inter-connectivity

of a porous medium is determined by tortuosity (ξ) defined as

ξ =
D0

D∞
(2.25)

which indicates the average hindrance of a complex medium relative to an obstacle-free

medium and can be interpreted as a path-length multiplication factor for particles to

find their way around the obstacles. Tortuosity is a measure of a part of specific surface

by diffusing particles before they lose the memory about the orientation of the surface at

initial position and hence indicates the connectivity and curvature of the surfaces in porous

media [1, 42, 47, 48, 50–53]. The identification of tortuosity has been used widely in the

past as an important characteristic to understand several processes in the brain [1,54,55].

Tortuosity can be calculated for uniform colloidal objects and periodic porous mediums.

However, the calculation of tortuosity in complex systems like biological tissue would be

difficult and can only be determined experimentally [1, 53,55,56].

Based on the discussion above, it could be concluded that the diffusion in complex and

disordered media (e.g biological tissue), is not free in general due to restrictions and

hindrances by the boundaries and interconnected pores and as a result the diffusion cannot

be determined a by Gaussian Propagator. Therefore, more advanced modelling techniques

are required to identify the diffusion characteristics of molecules in the complex systems.

2.5 Diffusion in the brain white matter

Diffusion plays an important role in brain functioning. Glucose and oxygen are delivered

from the vascular system into the brain cells by diffusion. Diffusion also facilitates the

transportation of hormones, ions and in general cell signalling substances [54,57–59].

The building blocks of the central nervous system are neurons which receive, process and

transmit information through electrical-chemical signals. The neurons consist of a cell
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Figure 2.3: A simple representation of cellular components of neurons in the brain (Figure

modified from Edgar and Griffiths 2009 [60]).

body or soma, dendrites and an axon. A simple representation of a neuron is depicted in

Figure 2.3. Dendrites receive the signal from other neurons and deliver it to the soma.

The soma transmits a signal through its axon. The axons can be very long in comparison

to the soma. Long axons are usually insulated in a fatty myelin sheath. The myelination

of axons increase the speed of signal transmission through the axons. If the myelin of an

axons degrades, the conduction of signals through the nerve can be impaired or lost. The

axon diameter in the central nervous system (CNS) is typically about 1[µm]. However,

depending on the degree of myelination, the axon diameter can be as much as 10[µm] [61].

The axons in the CNS are bundled together in fibre tracts or fasciculi. Figure 2.4 depicts

the myelinated nerve bundles. The cell bodies and dendrites are placed in the grey matter

at the cerebral cortex and the myelinated axons are placed in the white matter connecting

different functional areas of the cortex. As a result, the white matter produces high

intensities in T1 weighted MR imaging as depicted in Figure 2.5. Besides the grey and white

matter, there are also a number of cavities filled with the cerebrospinal fluid (CSF) [60].

The axons within the fibre tracts are surrounded by extracellular space which contains

interstitial fluid (ISF). The ISF is in contact with CSF at the ventricular surfaces. The

main transport mechanism in the extracellular space is diffusion and extensive studies

have established that the extracellular space acts like a porous medium for diffusion of

particles [54, 58]. This assumption makes it possible to describe the diffusion processes

in the brain using the established theory of diffusion in porous media developed in other

disciplines introduced previously [54,62].
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(a) (b)

Figure 2.4: Sciatic Nerve bundle of mouse Photographed at 40 times magnification. Tissue fixed

in 2.5% glutaraldehyde. (a) Myelinated nerves. The black circles around the axons are myelin

sheath. Postfixation with 1% Osmium tetroxides. Tissue was resin embedded and sectioned at

1µm on an ultramicrotome. (b) Myelinated nerve bundle. The axons are packed in a nerve bundle.

Tissue stained with 1% Toluidine Blue. (Photo credit: Australian Phenomics Network (APN),

Histopathology and Organ Pathology)

2.6 Diffusion Weighted Magnetic Resonance measurement

The measurement of the diffusion is performed using several methods including NMR

[63–69], light scattering [70, 71], neutron scattering [72], capacity intermittent titration

techniques (CITT) [73], capillary methods, florescence [74,75], attenuated total reflection

infrared spectroscopy (ATRIR) [76] and centrifuge studies [77]. The application of non-

NMR methods are generally limited because they are quite tedious and usually invasive

[1,20,78]. On the other hand, due to non-invasive nature and not requiring labelled probe

molecules, NMR based techniques are used widely in studying diffusion of molecules in

chemical and biological systems. NMR methods also utilise the non-ionising magnetic

fields to acquire signals, and have much lower health concerns in comparison with the

other imaging techniques such as conventional X-Ray imaging and Computed Tomography

(CT)-scan, which use hazardous ionising radiations to capture the image. As a result,

NMR based techniques are well suited for medical diagnostics applications.

2.6.1 Bloch-Torrey equations

The effect of diffusion on the MR signal was presented by Hahn in 1950 [63], Carr and

Purcell in 1954 [64] and Woessner in 1961 [65]. Hahn described that diffusion of spins in a

nonuniform magnetic field contributes to the decay of transverse magnetisation [79]. Based
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on the Fick’s second law given by Eq. (2.1), the self-diffusion of spins can be modelled by:

∂ ~M

∂t
= ∇ ·

[
D(r, t)∇ ~M

]
(2.26)

where D is the time dependent diffusion tensor of the medium and ~M is the bulk magneti-

sation vector (see Appendix A) [1]. Torrey [80], showed that in order to take the effect of

diffusion on the transverse magnetisation vector, the term related to diffusion of particles

should be added to the right hand side of the original Bloch equations [81] (see Appendix

A) resulting in

∂ ~M

∂t
= 2πγ ~M × ~B − Mx

~i+My
~j

T2
− (Mz −M0)~k

T1
+∇ ·

[
D(r, t)∇ ~M

]
(2.27)

where γ [MHzT−1] is the gyromagnetic ratio, ~B [T] is the total magnetic field, and T1 [s]

and T2 [s] are spin-lattice and spin-spin relaxation time constants respectively. Mx, My

and Mz are the components of the bulk magnetisation vector parallel to unit vectors ~i, ~j

and ~k respectively [80].

Eq. (2.27) is called Bloch-Torrey equation and describes the complete equation of mag-

netisation vector by taking the effect of diffusion of spins into account. In the case of

a homogeneous medium and isotropic diffusion, the diffusion tensor D(r, t) = D0In and

Fick’s second law of diffusion is reduced to Eq. (2.3). Hence, the Bloch-Torrey equation

for the particular case of isotropic diffusion and homogeneous medium can be written as:

∂ ~M

∂t
= 2πγ ~M × ~B − Mx

~i+My
~j

T2
− (Mz −M0)~k

T1
+D0∇2 ~M (2.28)

Considering a constant magnetic field gradient, ~G(t) [Tm−1], the total magnetic field is

given by the sum of constant and gradient terms:

~B = (B0 + ~G(t) · r(t))~k (2.29)

where ~k is the unit vector in z direction. Hence, the Bloch-Torrey equations in transverse

plane and rotating frame (the coordinate system which rotates with angular frequency

~ω = ω0
~k, see Appendix A) can be written as:


∂Mx′(r, t)

∂t
= −Mx′(r, t)

T2
+ 2πγ ~G(t) · r(t)My′(r, t) +D0∇′2Mx′(r, t)

∂My′(r, t)

∂t
= −

My′(r, t)

T2
− 2πγ ~G(t) · r(t)Mx′(r, t) +D0∇′2My′(r, t)

(2.30)
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Figure 2.5: T1 weighted coronal MR image of the brain

Here ∇′2 is the Laplacian operator in the rotating frame defined as:

∇′2 =

(
∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2

)
(2.31)

Using complex notation Mx′y′(r, t) = Mx′(r, t) + jMy′(r, t) to show the transverse com-

ponent of the bulk magnetisation, the Bloch-Torrey equation in transverse plane can be

written as:

∂Mxy(r, t)

∂t
= −Mxy(r, t)

T2
− j
(
ω0 + 2πγ ~G(t) · r(t)

)
Mxy(r, t) +D0∇′2Mxy(r, t) (2.32)

The solutions for the equation above at time t is in the form:

Mxy(r, t) = Mxy(r, 0
+) f(t) exp

[
− t

T2
− j

(
ω0t+ 2πγ

∫ t

0

~G(t′) · rdt′
)]

(2.33)

where Mxy(r, 0
+) is the magnitude of transverse magnetisation vector immediately after

the RF excitation pulse and f(t) is an unknown function depicting the effect of the diffusion

on the transverse magnetisation [79, 82]. Taking derivative of Eq. (2.33) with respect to

time, we can write

∂Mxy(r, t)

∂t
= Mxy(r, 0

+) exp

[
− t

T2
− j

(
ω0t+ 2πγ

∫ t

0

~G(t′) · rdt′
)]
×[

df(t)

dt
+

(
− 1

T2
− j(ω0 + 2πγ ~G(t′) · r(t)

)
f(t)

]
(2.34)
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Substituting Eq. (2.33) and Eq. (2.34) into Eq. (2.32) we have

df(t)

dt
exp

[
− t

T2
− j

(
ω0t+ 2πγ

∫ t

0

~G(t′) · rdt′
)]

=

D0 f(t)∇2 exp

[
− t

T2
− j

(
ω0t+ 2πγ

∫ t

0

~G(t′) · rdt′
)]

(2.35)

Considering a structurally homogeneous system, and

∇2 exp

[
− t

T2
− j

(
ω0t+ 2πγ

∫ t

0

~G(t′) · rdt′
)]

=
∂

∂r
· ∂
∂r

exp

[
− t

T2
− j

(
ω0t+ 2πγ

∫ t

0

~G(t′) · rdt′
)]

= 4π2

[
γ

∫ t

0

~G(t′)dt′
]T [

γ

∫ t

0

~G(t′)dt′
]
×

exp

[
− t

T2
− j

(
ω0t+ 2πγ

∫ t

0

~G(t′) · rdt′
)]

(2.36)

the Eq. (2.35) can be written as

df(t)

dt
= 4π2

[
γ

∫ t

0

~G(t′)dt′
]T

D0 f(t)

[
γ

∫ t

0

~G(t′)dt′
]

= 4π2 qT D0 f(t) q (2.37)

where q [m−1] is a vector defined as:

q(t) = γ

∫ t

0

~G(t′)dt′ (2.38)

and qT denotes the transpose of q. Therefore, the function f(t) by considering f(0) = 1

can be calculated as:

f(t) = exp (−bD0) (2.39)

where

b(t) = 4π2

∫ t

0

[
γ

∫ t′

0

~G(t′′)dt′′

]T [
γ

∫ t′

0

~G(t′′)dt′′

]
dt′

= 4π2

∫ t

0
qT (t′)q(t′) dt′ (2.40)
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is the diffusion weighting factor, which incorporates the gradient pulse characteristics

[45,79].

Using Eq. (2.33) and considering the equation for MR signal (see Appendix A), the MR

signal in presence of diffusion weighting gradient field can be written as:

S(b, t) = S0(t) exp (−bD0) (2.41)

where S0(t) = S(0, t) is the MR signal in the absence of diffusion encoding gradients (i.e.
~G(t) = 0). Eq. (2.41) describes the effect of diffusion on the attenuation of the MR signal.

One can always use Eq. (2.41) to estimate the Apparent Diffusion Coefficient (ADC) by

measuring the signal first without a gradient field (b = 0) and then in the presence of a

gradient field ~G (certain b value).

In order to cancel the effects of the field inhomogeneity and T2 effect, the diffusion signal

in Eq. (2.41) is normalised by S0(t). Therefore, the normalised DWMR signal attenuation

due to diffusion can be presented as:

x(b) =
S(b, t)

S0(t)
= exp (−bD0) (2.42)

2.6.2 Stejskal-Tanner Pulsed Gradient Spin Echo sequence

Although the earlier DWMR measurements were performed using a continuos and steady

field gradients [63, 64, 80], the NMR diffusion measurement became more populated in

1960s by the introduction of a single-PGSE sequence known as Stejskal-Tanner method

[66, 67, 69, 83]. This technique utilises a measurement setup consisting of two symmet-

ric diffusion encoding and decoding gradient pulses with duration (δ) and separated by

diffusion time (∆) to sensitise the received MR signal to the diffusion of particles. The

gradient pulses are placed in either side of refocusing 180◦ pulse as depicted in Figure 2.6.

The acquisition parameters (which can be set on scanner) for a single-PGSE sequence are

diffusion sensitising gradient field amplitude and direction (~G), gradient pulse duration

(δ) and diffusion time (∆).

Based on the measurement setup, during the first gradient pulse, spins acquire phase shifts

proportional to the initial positions of the molecules in the direction of the gradient. The

second gradient pulse applied after a 180◦ RF refocusing pulse, shifts back the phase of

particles proportional to their final position [66, 85]. If a particle does not move between

two pulses (the diffusion time), the phase shifts during the first and second pulses will

cancel out each other completely and the spins become completely refocused at echo time.
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Figure 2.6: Stejskal-Tanner pulse sequence employed to sensitise the MR signal to molecular

diffusion. Characteristic parameters of the waveform are the gradient amplitude (G), the diffusion

time (∆) and the gradient pulse width (δ). The encoding (first) and decoding (second) gradient

pulses are separated by a 180◦ refocusing RF pulse (Figure modified from Yablonskiy et al., NMR

in biomedicine 2010 [84]).

However, if particles move during the diffusion time, there will be a remaining phase offset

related to the displacements during this period. The accumulated phase offset of a single

particle (i-th particle) at echo time 2τ after the RF excitation pulse can be calculated as:

ϕi(ri, 2τ) = 2πγ

[∫ τ

0

~G(t) · ri(t) dt−
∫ 2τ

τ

~G(t) · ri(t) dt
]

(2.43)

where ri(t) [m] is the position of the i-th spin at time t [s] and ~G(t) [T.m−1] is the

diffusion sensitising gradient waveform. γ [Hz.T−1] is the gyromagnetic ratio and 2τ [s]

is the echo time. Due to the dot product in Eq. (2.43), only the component of motion in

the direction of the gradient will contribute to a change in the phase of the spin [1]. The

diffusion weighting factor for single-PGSE sequence using Eq. (2.40) at echo time (2τ)

can be calculated as:

b(2τ) = 4π2γ2G2

(
∆− δ

3

)
= 4π2qTq

(
∆− δ

3

)
(2.44)

where q [m−1] is determined using a set of acquisition parameters as:

q = γ ~Gδ (2.45)

and qT denotes the transpose of q. The signal at echo time (2τ) can be calculated using
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Eq. (2.41) as

S(q,∆, 2τ) = S0(2τ) exp

[
−4π2qTD0 q

(
∆− δ

3

)]
(2.46)

where S0(2τ) = S(0,∆, 2τ) is the signal at echo time in the absence of diffusion sensitising

gradient. The normalised DWMR signal at echo time is:

x(q,∆) =
S(q,∆, 2τ)

S0(2τ)
= exp

[
−4π2qTD0 q

(
∆− δ

3

)]
(2.47)

For the case of continous gradients, δ = ∆ = τ , and Eq. (2.46) and Eq. (2.47) reduce to

S(G, 2τ) = S0(2τ) exp

(
−4π2γ2G2D0

2τ3

3

)
(2.48)

x(G, 2τ) =
S(G, 2τ)

S(0, 2τ)
= exp

(
−4π2γ2G2D0

2τ3

3

)
(2.49)

which are the well-known expressions for Hahn spin-echo signal in the presence of a con-

tinous gradient field G [1].

It should also be noted that the analysis presented above is performed by solving the

Bloch-Torrey equations under the assumption of free and Gaussian diffusion profile for

the particles in a homogeneous system with an isotropic and time-invariant diffusion ten-

sor, i.e. D(r, t) = D0In. Therefore, Eq. (2.42), Eq. (2.47) and Eq. (2.49) are only

valid under the assumption of free isotropic diffusion. In general case of anisotropic and

hindered/restricted diffusion, the diffusion tensor will be time dependent and the signal

definition would be more complex.

2.6.3 Linking the Diffusion Weighted MR signal to diffusion

As it was mentioned earlier, the diffusion profile of water molecules in a heterogeneous

medium is not Gaussian in general and depends on the underlying geometry. A complete

analysis of the resultant DWMR signal requires solving the Bloch-Torrey equations. How-

ever, the analytical solutions to Bloch-Torrey equations is quite time consuming and is

possible only for a number of simple geometries. Although, these equations can be solved

using numerical methods by having a priori knowledge about the geometrical structure

of the underlying medium, in most cases this a priori information is not available which

makes the application of this technique impossible in practice. On the other hand, we are

usually interested in determining the underlying geometrical structure from the measured

signals and hence instead of solving the forward problem by applying a priori knowledge to
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Figure 2.7: Conceptual regions of δ vs ∆ in terms of δD/a2 and ∆D/a2. There are three regions

which can be identified according to the durations of δ and ∆ compared to the characteristic time

a2/D required to travel to a barrier. Region A: Unrestricted diffusion, where ∆D/a2 � 1. Region

B: Restricted diffusion where δD/a2 � 1� ∆D/a2. Region C: Rapid-diffusion where δD/a2 � 1.

The line δ = ∆ denotes the steady gradient case. The sizes of the regions indicated are exaggerated;

(Figure modified from Wang et al., Journal of Magnetic Resonance 1995 [83]).

determine the resultant signal, we are interested in solving the inverse problem to predict

the underlying microstructure from a set of measurement data. This is particularly of more

interest, since it can reveal information about the microstructure in spatial scales much

smaller than the resolutions, which can be achieved by conventional MRI techniques [1,86].

There have been a number of techniques developed to correlate the measured DWMR sig-

nal decay to the underlying diffusion process by considering certain approximations. The

validity of these approximations mainly depends on the timing of the diffusion sensitising

gradients with respect to the characteristic time of the underlying geometry. Figure 2.7

depicts the regions of gradient pulse duration δ and diffusion time ∆ with respect to the

characteristic time of the geometry, a2/D, which is the time needed for a particle to travel

to the boundary [83]. a represents the characteristic distance of the geometry (i. e. radius

of the pore or half the distance between two parallel planes).

Three regions can be identified as:

A. Unrestricted diffusion, where ∆D/a2 � 1. The diffusion time ∆ is so short that

only particles in vicinity of the boundaries can interact with the boundaries. Hence,

diffusion of particles in this region can be considered as free. This is identical to

short diffusion time regime (see section 2.3.1).

B. Restricted diffusion, where ∆D/a2 � 1 but δD/a2 � 1. The diffusion time ∆ is long
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enough so many particles encounter interactions with the boundaries. On the other

hand, since the gradient pulse duration δ is relatively short with respect or diffusion

time, i. e. δ � ∆, the diffusion of particles during the application of gradient pulses

can be neglected and the signal attenuation can merely be linked to the diffusion of

particles during the time interval (∆− δ).

C. Rapid diffusion, where δD/a2 � 1. The spins have many wall encounters even

during the gradient pulse application. Hence the diffusion of particles during the

gradient pulses cannot be neglected [83]. The 45◦ line denotes the case where δ = ∆,

which corresponds to application of continuous (steady) gradient as considered by

Robertson [87] and Neuman [88].

2.6.4 Gaussian Phase Distribution Approximation

One of the commonly used approximations used to link the DWMR signal decay to diffu-

sion process is Gaussian Phase Distribution (GPD) or Gaussian phase approximation.

The total phase offset of a single particle due to diffusion and at the end of the PGSE

sequence is given by Eq. (2.43). GPD assumes that the distribution of phase offsets can

be modelled by a Gaussian PDF as

P (ϕ, 2τ) =
1√

2πσ2
ϕ

exp

(
− ϕ2

2σ2
ϕ

)
(2.50)

where σ2
ϕ denotes the phase variance at the end of the pulse sequence and can be calculated

for Hahn Spin Echo sequence [63] as:

σ2
ϕ = E

{
ϕ2
}

= 4π2γ2E

{[∫ τ

0

~G(t) · r(t) dt−
∫ 2τ

τ

~G(t) · r(t) dt

]2
}

= 4π2γ2

[∫ τ

0
G(t)dt

∫ τ

0
G(t′)dt′ − 2

∫ τ

0
G(t)dt

∫ 2τ

τ
G(t′)dt′ +

∫ 2τ

τ
G(t)dt

∫ 2τ

τ
G(t′)dt′

]
× E

{
rG(t)rG(t′)

}
(2.51)

where rG denotes the displacement in the direction of gradient field ~G, τ is half the

echo time and E{·} denotes the expectation operator. E {rG(t)rG(t′)} is expressed as the

products of the probability of each motion times the corresponding displacement in the

direction of the gradient, which is given by
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E
{
rG(t)rG(t′)

}
=

∫∫∫
(r1 − r0)G (r2 − r0)G ρ(r0)P (r1|r0, t)P (r2|r0, t

′ − t) dr0 dr1 r2

t′ > t (2.52)

where subscript (.)G denotes the component of the displacement in the direction of the

gradient field ~G [1, 88–90]. Substituting Eq. (2.12) for the case of isotropic free diffusion

and setting n = 1 for single gradient field direction, we have

E
{
rG(t)rG(t′)

}
= 2D0t (2.53)

which is the same expression for MSD given in Eq. (2.13) [1, 89].

In order for the signal to be detected, there must be enough phase coherence of the

magnetisation. In a structurally homogenous system, the attenuation of DWMR signal

due to diffusion related phase offset distribution, P (ϕ, 2τ) is given by

x(2τ) =

∫ ∞
−∞

P (ϕ, 2τ) exp (jϕ)dϕ (2.54)

where P (ϕ, 2τ) is the probability density function of the phase offsets at the end of the

pulse sequence and

∫ ∞
−∞

P (ϕ, 2τ)dϕ = 1 (2.55)

Eq. (2.54) depicts the Fourier relationship between distribution of diffusion related phase

offsets and DWMR signal attenuation.

Substituting Eq. (2.53) into Eq. (2.51), the phase variance is calculated as:

σ2
ϕ = 8π2γ2G2δ2D0 (∆− δ/3) (2.56)

and the signal decay due to diffusion using Eq. (2.50) and Eq. (2.54) is given by

x(G, 2τ) = exp

(
−
σ2
ϕ

2

)

= exp
(
−4π2γ2G2δ2D0 (∆− δ/3)

)
(2.57)

which agrees with the Eq. (2.47) derived by solving Bloch-Torrey equations.
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For the case of diffusion inside a cylinder with radius a and the diffusion propagator

given in Eq. (2.16), and by assuming diffusion perpendicular to the cylinder’s main axis

(θ = π/2), the DWMR signal decay using GPD approximation is calculated as

x(G, 2τ) = exp

{
− 8π2γ2G2

D2
0

∞∑
n=1

2β2
nD0δ − 2 + 2f(δ)− f(∆− δ) + 2f(∆)− f(∆− δ)

β6
n (β2

na
2 − 1)

}
(2.58)

where

f(t) = exp
(
−β2

nD0t
)

(2.59)

βn is the n-th root of

J ′1(βna) = 0 (2.60)

and J ′1(.) denotes the first derivative of the first order Bessel function of the first kind [1,89].

The GPD approximation is valid under the assumption of Gaussian probability distribu-

tion for phase offsets of the particles. This assumption is valid in the short diffusion time

regime corresponding to region A in Figure 2.7 because the diffusion time is so short that

only a small proportion of particles located close enough to the walls have enough time

to interact with the boundaries. Hence, the random motion of particles in the absence of

boundaries results in a Gaussian displacement profile as well as the phase offsets. Consid-

ering the short diffusion time limit, κ � 1, Eq. (2.58) reduces to Eq. (2.49). The proof

that Eq. (2.58) reduces to Eq. (2.49) in the short diffusion time limit follows from the

fact that

∞∑
n=1

1

β2
na

2 − 1
=

1

2
(2.61)

when βn is the n-th root of Eq. (2.60) [1, 88].

The GPD approximation is also valid in the rapid diffusion regime corresponding to region

C in Figure 2.7. This can be confirmed by considering the time interval ∆t long enough

such that the position of particles at the end of the interval does not depend on their

position at the beginning of the interval. Then from central limit theorem we can conclude

that the distribution of sums of increments in phase offsets over large number of intervals

becomes Gaussian, even though the distribution of displacements is not Gaussian [83,88].

In the long diffusion time limit κ� 1 and assuming δ � ∆, Eq. (2.58) reduces to

x(G,∞) = exp
[
−(2πγGδa)2

]
(2.62)

which is identical to the expression presented by Van Gelderen et al. [91].
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Neuman [88], has presented the DWMR signal attenuation for the case of steady gradients

(δ = ∆ = τ) using GPD approximation as

x(G, 2τ) = exp

{
− 8π2γ2G2

D0

∞∑
n=1

β−4
n

β2
na

2 − 1(
2τ −

3− 4 exp
[
−β2

nD0τ
]

+ exp
[
−β2

nD0 2τ
]

β2
nD0

)}
(2.63)

In the long diffusion time limit, κ� 1 and considering a continuous gradient, the DWMR

signal attenuation given in Eq. (2.63) becomes

x(G, 2τ) = exp

[
−4π2γ2G2a4

D0

7

296

(
2τ − 99

112

a2

D0

)]
(2.64)

Here, we only presented the final equations. The complete derivation of these equations

can be found in Price 2009 [1], Van Gelderen et al. 1994 [91] and Neuman 1974 [88].

2.6.5 Short Gradient Pulse approximation

Another approximation used for correlating DWMR signal measured with Stejskal-Tanner

technique and underlying diffusion process is Short Gradient Pulse (SGP) approximation,

in which the length of gradient pulses are considered very small in comparison with the

diffusion time (i.e. δ � ∆) so that the diffusion of particles during the application of

gradient pulses can be neglected [1, 83]. This corresponds to Region B in Figure 2.7.

Using Eq. (2.43) and considering SGP approximation (i.e. δ � ∆), the phase offset of a

spin which was at position r0 during the first gradient pulse and at position r during the

second gradient pulse can be written as

ϕ(r− r0) = 2πq(δ) · (r− r0) (2.65)

where q(δ) can be calculated using Eq. (2.38) [1, 89]. For the case of symmetric constant

gradient pulses as depicted in Figure 2.6, q is calculated using Eq. (2.45). Note that,

in the SGP approximation, we consider that the length of gradient pulse is much smaller

than the diffusion time and as a result we can neglect the diffusion of particles during the

gradient pulses and merely consider the displacement in the time interval between the two

pulses (which is approximated by ∆) [1, 83].
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The probability density of a particle starting from r0 and ending at r during time ∆ is given

by the diffusion propagator P (r|r0, t) (recall the calculation of the diffusion propagators

presented in sections 2.1 and 2.2). Therefore, the signal from a single particle is calculated

as:

Si(q,∆) = S0,iρ(r0)P (r|r0, t) exp [−jϕi(r− r0)] (2.66)

where ρ(r0) denotes the starting spin density and ϕi(r − r0) is the phase offset induced

by the displacement of particle from position r0 to r during time ∆. Here, we assume a

homogeneous medium and uniform starting spin density ρ(r0) = 1. The total signal is

the integration of signals from each spins over all possible starting and ending positions.

Hence the total signal can be written as

S(q,∆) = S0

∫∫
P (r|r0, t) exp [−jϕ(r− r0)] dr0dr

=

∫∫
P (r|r0, t) exp [−j2πq · (r− r0)] dr0dr (2.67)

where S0 = S(0,∆) is the total signal in the absence of diffusion sensitising gradients

[1, 89,90]. Therefore, the diffusion related DWMR signal decay can be written as

x(q,∆) =
S(q,∆)

S0

=

∫∫
P (r|r0, t) exp [−j2πq · (r− r0)] dr0dr

=

∫
P̄ (R,∆) exp (−j2πq ·R) dR (2.68)

where R = r− r0 and P̄ (R,∆) is the mean propagator defined as

P̄ (R,∆) =

∫
ρ(r0)P (r0|r0 + R) dr0 (2.69)

Eq. (2.68) shows a Fourier relationship between x(q,∆) and P̄ (R,∆) namely

x(q,∆) = F
{
P̄ (R,∆)

}
(2.70)

where F {·} denotes the Fourier transform.
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Substituting the diffusion propagator for the free isotropic diffusion given in Eq. (2.12)

into Eq. (2.69) and using Eq. (2.68), the DWMR signal attenuation in the SGP limit can

is calculated as

x(q,∆) = exp
(
−4π2q2D0∆

)
(2.71)

where q2 = |q|2 and D0 is the diffusion coefficient.

Similarly considering the diffusion propagator for the diffusion in a cylinder with radius a

given in Eq. (2.16), the DWMR signal attenuation is given by

x(q,∆) =

∞∑
m=0

∞∑
n=1

∞∑
k=0

2Kmka
2(2πqa)4 sin2(2θ) [1− (−1)m cos (2πql cos(θ))]β2

nk

l2 [(nπa/l)2 − (2πqa)2 cos2(θ)]2
[
β2
nk − (2πqa)2 sin2(θ)

]2
(β2
nk − k2)

×
[
J ′n (2πqa sin(θ))

]2
exp

(
−

[(
βnk
a

)2

+
(mπ
l

)2
]
D∆

)
(2.72)

where βnk is the k-th root of J ′n(βnk) = 0, l is the height of the cylinder, and θ is the angle

between the gradient direction and main axis of the cylinder. The constant Kmk depends

on the values of the indices m and k defined as

Kmk =


1 if m = k = 0

2 if (m 6= 0 and k = 0) or (k 6= 0 and m = 0)

4 if m 6= 0 and k 6= 0

(2.73)

for the case of θ = π/2, Eq. (2.72) is reduced to

x(q,∆) = 4(2πqa)2
∞∑
n=1

∞∑
k=0

K0kβ
2
nk [J ′n(2πqa)]2[

β2
nk − (2πqa)2

]2 (
β2
nk − k2

) exp

[
−
(
βnk
a

)2

D∆

]
(2.74)

The complete derivation of the equations above along with the signal expressions for other

geometries can be find in [1, 29,92].

2.7 Summary

In this chapter, first we had a brief review over the physical principles behind the diffusion

process and presented diffusion equation as a mathematical tool to model the diffusion
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of particles in a medium. We discussed different types of diffusion (free, hindered, and

restricted) and the relevant diffusion time scales. Next, we presented a review of diffusion

in porous media and discussed the parameters affecting the diffusion process in the porous

media (Surface to Volume ratio, Porosity, Tortuosity etc.). Next, we had an overview of

the structure of the central nervous system in human and discussed the diffusion process

in the neural tissue.

As presented in this chapter, DWI has the potential to measure the diffusion of water

through its sensitivity to the motion of water molecules during diffusion time [1, 13, 93].

Considering the effects of the boundaries on the diffusion of water, DWI has the capability

to reveal the information about the microstructure with smaller sizes than that can be

achieved by conventional MRI. Hence it can be used as a non-invasive method to study

the microstructure of neural tissue [1, 45, 60, 94, 95]. We presented the methods used to

measure the DWMR signal including Stejskal-Tanner method and discussed the Bloch-

Torrey equations describing the diffusion weighted MR measurement.

At the end, we presented different approaches used to link the DWMR signal attenuation

to diffusion process. Basically there are four approaches have been developed for this

purpose, which are:

1. Solving Bloch-Torrey equations considering a given boundary conditions.

2. GPD Approximation.

3. SGP Approximation.

4. Simulating the Brownian motion of molecules for a given geometry.

However, as discussed in this chapter, solving Bloch-Torrey equations would be intractable

for most but simple geometries. The simulation of Brownian motion of molecules would

be quite time consuming and requires huge number of computations. On the other hand,

in practice, we mostly do not have any a priori knowledge about the underlying geometry

and are interested in inferring geometric information from the DWMR signal (reverse

modelling) instead of calculating the DWMR signal for a given geometry. Hence, the

simulation of Brownian motion of particles is not beneficial for this purpose. We presented

two main approximation methods (GPD,SGP) used to link the DWMR signal attenuation

to the diffusion and discussed the conditions under which these assumptions are valid

[1,83,89]. A good understanding of the topics covered in this chapter is crucial as most of

the concept discussed in this chapter will be used in the next chapter, when we talk about

the signal models in the neural tissue and the ideas behind their derivations.
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Models of Diffusion Weighted

Magnetic Resonance Signal

In the previous chapter, we discussed basic physical principles behind the diffusion process

and presented DWI as a technique to investigate the diffusion characteristics of a medium

through its sensitivity to the displacements of the molecules. The diffusion of particles in

a medium during certain diffusion time can reveal some information about the geometric

structure of the medium which can be measured by analysing DWMR signal attenuation

due to diffusion [1, 28,39,96,97].

DWI has been used in the past as a non-invasive method to study the morphological

structure of the brain white matter. The diffusion of water particles in the brain white

matter is non-isotropic due the semi-impermeable properties of the axons. This makes

it possible to determine the geometry of the axons in the brain through investigation of

restrictions and hindrances imposed by axon boundaries on the diffusion of particles [13].

A number of model-based techniques have been presented in the literature to model the

influence of geometrical microstructure of the brain white matter on the DWMR signal

attenuation. Among the different morphological parameters of the white matter, the axon

orientation, axon diameter distribution and axon density have been of interest due to the

hypothetical link between their changes and neuro-degenerative disorders [3–7, 13, 98]. In

this chapter, we discuss a number of model-based techniques used to describe the tissue

microstructure from the characteristics of DWMR signal decay.

Any technique used for modelling DWMR signal attenuation is based on certain assump-

tions regarding the distribution and orientation of the axons. Some techniques consider

a known diameter distribution and orientation, discard estimation of axon orientation

and dispersion and try to estimate the parameters of the pre-assumed statistical distri-
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bution [99–104]. However, considering the known orientation limits the application of

these methods to the brain regions with uniform and known orientation like the Corpus

Callosum. Other techniques take the orientation and dispersion of axons into account

and provide models to predict the orientation of the axons simultaneously with other

parameters [13,105–108].

In this work, we focus on the analysis of the DWMR signal decay models for the single-

PGSE pulse sequence. We study the main assumptions of each model in more detail and

review the benefits and drawbacks of each model. For the ease of comparison, all models

are presented using the same conventions, which are introduced in this chapter.

3.1 ADC model

A simple way to express the normalised DWMR signal attenuation would be to use Eq.

(2.42) in the form:

x(q,∆) = exp

(
−4π2q2(∆− δ

3
)D

)
(3.1)

where ∆ [s] is the diffusion time, q = |q| [m−1] is the reciprocal wavenumber which can

be calculated from a set of measurement parameters using Eq. (2.45). The tissue related

parameter to be estimated using this model is the ADC (D) [m2/s].

Eq. (3.1) for describing the diffusion related signal attenuation is valid under the assump-

tions of a Gaussian diffusion profile and requires a short diffusion time such that the effect

of the interaction with boundaries can be neglected (see section 2.6.4) [83]. However, one

can always use Eq. (3.1) to calculate a time-dependent ADC value, D(∆), for a particular

pulse sequence and diffusion time [1].

The ADC model provides an easy to estimate parameter (ADC) which captures some

information about the underlying tissue microstructure [84]. The ADC parameter was

introduced by Le Bihan et al. [109] in 1986, as a global parameter reflecting the diffusion

related characteristics in the biological tissue. However, a single parameter cannot describe

morphology in detail. Nevertheless, the ADC model is widely used as a biomarker in the

identification of stroke where the deviation of ADC parameter from “normal” indicates the

ischemia in the brain [110]. The measurement of the ADC parameter is usually performed

by measuring the MR signal once without the diffusion encoding gradients (~G = 0) and

later with a certain gradient field amplitude. However, measurement of the ADC value is

usually performed using more than one diffusion weighting factor to cancel out the effect of

noise and other artefacts. It should also be noted that in the case of anisotropic diffusion,
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Figure 3.1: Diffusion Weighted (Magnetic Resonance) Imaging. The imaging sequence is per-

formed using several values of diffusing weighting factor (b values). (a) The signal intensity in a

particular voxel attenuates by increasing the b-value. The signal in structures with fast diffusion

(higher diffusivity) like water-filled ventricular cavities decays more rapidly while the signal in

tissue with slower diffusion (lower diffusivity) for example grey and white matter decays slowly.

The apparent diffusion coefficient (ADC) for each voxel is calculated by fitting the signal to mono-

exponential function of b-factor. (b) The resultant ADC map showing the apparent diffusion

coefficient at different voxels of the image. The brighter the intensity in ADC map, the higher the

ADC value of the voxel; (Figure modified from Le Bihan, Nature reviews. Neuroscience 2003 [96]).

the ADC value calculated using this method is based on the GPD approximation and will

be dependent on the diffusion time (∆) as well as the gradient direction [111]. A simple

visualisation of the application of DWI to calculate the ADC map of the brain is presented

in Figure 3.1.

3.2 Diffusion Tensor Imaging

As mentioned earlier, the diffusion in the biological tissue is not isotropic in general and

the ADC value calculated from Eq. (3.1) depends on the gradient direction and diffusion

time in general. The diffusion tensor is represented by a positive definite symmetric matrix

(see section 2.1) [1,112]. Assuming a Gaussian diffusion profile for the particles it would be

possible to reconstruct the apparent diffusion tensor D by measuring the ADC values in at

least 6 different orthogonal directions (because the associated matrix is symmetric) [113].

For a gradient field Gi in direction ei, the net DWMR signal decay is modelled as:
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x(qi,∆) = exp

(
−4π2

(
∆− δ

3

)
qTi Dqi

)
(3.2)

where qi = γδ ~Gi and qTi is the vector transpose of qi. Eq. (3.2) can be used to deter-

mine the apparent diffusion tensor by solving the system of linear equations with several

gradient direction. Although theoretically, the apparent diffusion tensor can be calculated

by performing the measurements in six non-collinear directions, the measurements usually

are performed with more number of gradient directions to cancel the effect of noise and

artefacts [45,112,114,115].

The diffusion tensor provides information about the ADC values in different directions.

Since the diffusion tensor is symmetric and positive definite, it can be decomposed using

eigenvalue decomposition as:

D = VΛV−1 (3.3)

where V = [v1 v2 v3] is a matrix, each column of which is an eigenvector of D and Λ

is a diagonal matrix of the corresponding eigenvalues:

Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 (3.4)

By convention, we order λ1 ≥ λ2 ≥ λ3 (vi is the eigenvector corresponding to λi). The

diffusion tensor is usually visualised by an ellipsoid illustrating the diffusion profile of the

particles. The eigenvectors coincide with the axes of the ellipsoid and the eigenvalues are

axes length. As presented in the previous chapter, for the case of isotropic diffusion, the

diffusion tensor can be represented by a sphere and λ1 = λ2 = λ3 > 0.

In order to produce a single figure of merit describing different aspect of the diffusion profile

within the brain tissue, a number of parameters calculated from the diffusion tensor. Each

of these parameters captures a single characteristic of diffusion profile. Among the different

parameters, mean diffusivity (MD), fractional anisotropy (FA), relative anisotropy (RA)

and volume ratio (VR) are of more interest [45, 116]. The definition of these quantities is

described below:
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MD =
1

3
(λ1 + λ2 + λ3) =

tr(D)

3
(3.5)

FA =

√
3

2
× (λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ2
1 + λ2

2 + λ2
3

(3.6)

RA =

√
1

2
× (λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

MD
(3.7)

VR =
λ1λ2λ3

(MD)3
(3.8)

Mean diffusivity provides an estimate of the overall diffusivity of the tissue and can be used

to predict the average mean square displacement (MSD) of diffusive particles. The frac-

tional isotropy is a number between zero and one, and describes the degree of anisotropy

of a diffusion process. A value of zero indicates the isotropic diffusion, i.e. the diffu-

sion is unrestricted (or equally restricted) in all directions. A value of one indicates that

the diffusion is only possible in one direction and is completely restricted along all other

directions. Relative anisotropy reflects the ratio of anisotropy relative to the mean dif-

fusivity and volume ratio presents the ratio between the volume of the diffusion ellipsoid

and the volume of the isotropic mean diffusion sphere. For the case of isotropic diffusion,

MD = λ1 = λ2 = λ3, FA = 0, RA = 0 and VR = 1. The features derived from DTI are

commonly used clinically to localise white matter lesions, which cannot be identified using

other forms of clinical MRI [45,117].

In order to illustrate the diffusion properties of the white matter, the diffusion tensor is

calculated for each voxel of the image. The fibre direction is identified by the eigenvector

corresponding to the largest eigenvalue, which can be colour-coded to achieve a cartogra-

phy of the fibre tracts, a process called tractography. The colour-codes are indicated as red

for left-right, blue for superior-inferior, and green for anterior-posterior and is quantised

and combined to illustrate the directions in compound directions (e.g. left-inferior). The

brightness is weighted by the fractional anisotropy which indicates the degree of anisotropy

in a given voxel. Figure 3.2 depicts a simple visualisation of application of DTI tractogra-

phy in the human brain. Tractography is widely used in the fields of cognitive neuroscience

and neurobiology as a tool for measuring deficits in white matter, such as in ageing since

its estimation of fibre orientation is interestingly accurate [117].
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Figure 3.2: Diffusion Tensor Imaging (DTI) used for tractography.

3.3 Bi-exponential model

Due to the high complexity of the microstructure of the white matter, the assumption

of a Gaussian diffusion profile is not valid in general and as a result the dependence of

the DWMR signal decay on single gradient field amplitude cannot be explained using a

mono-exponential function [118]. A number of studies have demonstrated the non-mono-

exponential behaviour of the DWMR signal decay [84, 101, 119–131]. The deviation of

DWMR signal decay from mono-exponential function is considered as an evidence for the

existence of two or more compartment models. Considering the porous structure of the

brain tissue and the fact that the total received signal is the integral over all the particles,

a number of studies suggested modelling the DWMR signal decay using a bi-exponential

model as a weighted sum of two mono-exponential functions with different ADC values

arising from the restricted (slow) and hindered (fast) compartments [119,120].

x(q,∆) = (1− f)xh(q,∆) + f xr(q,∆) (3.9)

where xh and xr are the signal attenuation related to hindered and restricted compart-

ments respectively and f is the volume fraction [45,119,132]. The volume fraction is related

to surface-to-volume ratio (Sp/Vp) of the porous structure and determines the ratio of the

particles which interact with the boundaries to the total number of spins. It should be

noted that the volume fraction is a function of time, however, in this model it is consider

as a fixed value. It is also assumed that the exchange of particles between hindered and

restricted compartments are quite slow in comparison to the diffusion time scale and can

be neglected. Therefore, the signal can be modelled as a weighted sum of the signals from

hindered and restricted compartments [119]. The ADC for restricted compartment is lower
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resulting in a slow decay function while the ADC for hindered part is larger and results in

a fast attenuation of the DWMR signal. Assuming GPD approximation, the contribution

of the hindered compartment to the normalised signal attenuation can be modelled as:

xh(q,∆) = exp

(
−4π2|q|2(∆− δ

3
)Dh

)
(3.10)

where Dh is the ADC for the hindered or fast compartment. On the other hand, the

normalised signal from restricted compartment is modelled as:

xr(q,∆) = exp

(
−4π2|q|2(∆− δ

3
)Dr

)
(3.11)

where Dr is the ADC for the restricted or slow compartment.

The parameters of the model to be estimated are the diffusivities for the hindered and

restricted compartment (Dh and Dr respectively) and the volume fraction. Therefore,

the number of measurements needed to estimate the parameters should be at least three

(measurements using 3 different q values).

3.4 Statistical approach

The ADC approach determines the average diffusion coefficient value in the voxel being

examined using mono-exponential model of DWMR signal. A most reasonable develop-

ment would be to consider the signal as the combination of several mono exponential

compartments arising from different spin packets.

The voxel being examined under diffusion magnetic resonance measurement contains a

variety of cells, intercellular and extracellular spaces. Hence, the DWMR signal can be

considered as the sum of signals arising from a large number of spin packets originating

from different positions in the voxel. For each spin packet a mono exponential function as

in Eq. (3.1) is considered. Each spin packet has its own ADC [133].

Since spin packets are originated from different positions and travel through different

displacement trajectories, their ADC values are different. The total DWMR signal can be

described by the distribution function of ADCs, P (D) or the fraction of each spin packet.

For simplicity, the dependency of ADC to the pulse gradient waveform and diffusion time

is neglected. Given these assumptions the DWMR signal can be written as:

S = S0

∫ ∞
0

P (D) exp (−bD)dD (3.12)
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In the case of identifiable number of spin packets with known fractions and ADC values,

the distribution function is:

P (D) =
n∑
i=1

fiδ(D −Di) (3.13)

in which fi is the fraction of packets with D = Di and δ(.) is the Dirac delta function.

Hence, the DWMR signal can be written as:

S = S0

n∑
i=1

fi exp (−bDi) (3.14)

If the diffusion time (∆) is much longer than the time required for the spins to encounter a

big number of hinderances and restrictions, the shape of P (D) reflects the micro-structural

information in the voxel [103,133].

3.5 Kurtosis approach

As mentioned earlier, the assumption of Gaussian diffusion profile for the diffusion of

water molecules in the brain white matter is not valid in general and the attempt to

model the signal decay using a mono-exponential function fails to describe the signal

behaviour accurately [118]. Another technique which has been used to model the non-

mono-exponential characteristics of DWMR signal attenuation is to take into account the

excess diffusion kurtosis as a measure to quantify the deviation of the diffusion profile

from Gaussian shape [134,135]. The excess diffusion kurtosis K is defined as:

K =
E{(r− r0)4}
E{(r− r0)2}2

− 3 =
µ4

σ4
− 3 (3.15)

where r and r0 are the initial and final positions respectively. µ4 is the forth moment

and σ is the standard deviation. The kurtosis factor is a measure of the sharpness or

smoothness of a PDF and provides a measure for the deviation from being Gaussian. For

a Gaussian PDF the excess kurtosis factor is zero [134,135].

Jensen et al. [136] presented a model based on the Taylor series expansion of signal ln (x(b))

as:

ln (x(b)) = −bD +
1

6
Kb2D2 +O(b3) (3.16)

in which, K is the diffusion kurtosis factor and D is the ADC. b is the diffusion weighting

factor as described by Eq. (2.40) and O(b3) denotes the higher order terms. Neglecting
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the higher order terms, the normalised DWMR signal attenuation can then be modelled

as:

x(b) = exp

(
−bD +

1

6
Kb2D2

)
(3.17)

The tissue related parameters of the model to be estimated are the apparent diffusion

coefficient (D) and diffusion kurtosis (K).

Eq. (3.17) is derived using the Taylor series expansion of ln (x(b)) for sufficiently small

values of b so that the bD falls inside the convergence radius bc (The radius for which

the approximations converge to the exact values). In general considering more terms

in the Taylor series expansion results in larger convergence radius. However, using more

terms introduce more non-linearity and increases the approximation errors, needing greater

number of measurements. On the other hand, the b-values used in DWMR measurements

are typically chosen larger to increase the sensitivity of the measurements to the motion of

the particles and considering the terminated series of Eq. (3.17), does not guarantee that

the bD values will fall inside the convergence radius. This limits the application of this

model to the cases of small b-values or small diffusivities (D). For the b-values resulting

in bD values beyond the convergence radius bc, the cumulant series expansion will diverge

and the application of the model to fit the experimental data will fail [137].

The kurtosis model is also only valid under the assumption of short diffusion time regime

(κ� 1) by which the diffusion length
√
Dt is much smaller than the characteristic length

of the tissue micro-structure. In the case of long diffusion time regime (κ� 1), the time

dependent diffusion coefficient falls dramatically and the mean square displacement will

be independent of the diffusion time and the Taylor series expansion in Eq. (3.16) will

not be valid [137].

3.6 CHARMED

Among the models developed, Composite Hindered And Restricted Model of Diffusion

(CHARMED) assumes that the white matter is modelled as a population of imperme-

able cylindrical axons embedded in a homogeneous medium. The model embodies both

hindered and restricted diffusion in the brain white matter and presents a modelling frame-

work which captures both the aspects of the diffusion tensor imaging and q-space imag-

ing [100,105].

The model assumes the diffusion weighted signal attenuation as a combination of signals

arising from hindered diffusion in the extra-axonal volume (including extra- and intra-
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cellular spaces) and restricted diffusion in the intra-axonal volume [100]. The exchange

between the compartments considered slow with respect to measurement time scale and

as a result the net normalised DWMR signal attenuation is modelled as:

x(q,∆) = fhxh(q,∆) + frxr(q,∆) (3.18)

where xh(q,∆) and xr(q,∆) are the signal from hindered and restricted compartments

and fh and fr are T2-weighted volume fractions respectively [100,105]. q is the reciprocal

wavenumber described using Eq. (2.45)

3.6.1 Signal model for restricted compartment

The signal from restricted compartment itself, xr(q,∆), is also decomposed into contri-

butions from spins diffusing parallel and perpendicular to the axon direction [105]. The

displacements of particles perpendicular to fibre direction are considered independent from

the displacements parallel to it since there is no boundaries for the displacement in the

fibre direction. Hence, the signal from restricted compartment can be written as:

xr(q,∆) = xr⊥(q⊥,∆)xr‖(q‖,∆) (3.19)

where q⊥ = γG⊥δ and q‖ = γG‖δ. In general ~G is not perpendicular to the fibre direction.

However, we can decompose ~G into components parallel and perpendicular gradient field

strengths, G‖ and G⊥ respectively, where

G‖ = G cos(α)

G⊥ = G sin(α) (3.20)

and α is the angle between ~G and the fibre direction [138].

For displacements parallel to axon direction, the model assumes 1D Gaussian diffusion

with diffusion coefficient D‖. Therefore, the signal arising from spins diffusing parallel to

axon directions can be written as:

xr‖(q‖,∆) = exp

(
−4π2q2

‖(∆−
δ

3
)D‖

)
(3.21)

which is identical to Stejskal’s familiar equation presented in Eq. (2.47).

The model assumes a constant gradient field under the condition δ ∼ ∆ and considers the

signal arising from displacement of the particles perpendicular to axons using Neuman’s
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expression [88] for the diffusion in a cylinder with radius R using a constant gradient field

and under GPD assumption (see section 2.6.4).

xr⊥(q⊥,∆) = exp

(
−4π2R4q2

⊥
D⊥τ

× 7

296
×
(
2− 99

112

)
× R2

D⊥τ

)
(3.22)

where D⊥ is the intra-cellular diffusivity perpendicular to the axon direction and τ is half

the echo time. Eq. (3.22) is identical to Eq. (2.64) derived under GPD assumption in

section 2.6.4.

Substituting Eq. (3.21) and Eq. (3.22) into Eq. (3.19), the signal from restricted com-

partment consisting of bundles with radius R is expressed as:

xr(q,∆) = exp

(
−4π2q2

‖(∆−
δ

3
)D‖

)
exp

(
−4π2R4q2

⊥
D⊥τ

× 7

296
×
(
2− 99

112

)
× R2

D⊥τ

)
(3.23)

3.6.2 Signal model for hindered compartment

As mentioned earlier, the diffusion of water particles in the extra-axonal space is assumed

as hindered and as a result the signal arising from extra-cellular space can be modelled

using 3D Gaussian displacement distribution [105]. In general the diffusion in extracellular

space is considered anisotropic which can be characterised by the diffusion tensor Dh. By

considering cylindrical symmetry, one can represent the diffusion tensor in 3D frame of

references as:

Dh =


λ⊥ 0 0

0 λ⊥ 0

0 0 λ‖

 (3.24)

where λ⊥ and λ‖ are the eigenvalues of the diffusion tensor associated with the eigenvectors

perpendicular and parallel to the fibre direction respectively. Eq. (3.24) indicates that

the matrix associated with the diffusion tensor is considered as a rank two matrix which

consists of two independent elements λ⊥ and λ‖ [91].

The signal is then represented as

xh(q,∆) = exp

(
−4π2

(
∆− δ

3

)
qTDhq

)
(3.25)

The anisotropy in the extracellular space is considered as a result of reflections from axon

boundaries and increased tortuosity due to the existence of axons and other biological
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components. Considering q = q‖+q⊥ and q⊥ ·q‖ = 0 we can simplify the quadratic term

in Eq. (3.25) as:

qTDhq = (q‖ + q⊥)TDh(q‖ + q⊥)

= qT⊥Dhq⊥ + qT‖Dhq‖

= qT⊥λ⊥q⊥ + qT‖ λ‖q‖

= q2
⊥λ⊥ + q2

‖λ‖ (3.26)

Therefore, Eq. (3.25) can be written as:

xh(q,∆) = exp

(
−4π2

(
∆− δ

3

)(
q2
⊥λ⊥ + q2

‖λ‖
))

= exp

(
−4π2

(
∆− δ

3

)
q2
⊥λ⊥

)
exp

(
−4π2

(
∆− δ

3

)
q2
‖λ‖

)
(3.27)

which shows relationship similar to what we had for restricted compartment in Eq. (3.19).

The net signal decay is modelled by substituting Eq. (3.23) and Eq. (3.27) into Eq. (3.18)

and noting that fh + fr = 1. Hence

x(q,∆) = (1− f) exp

(
−4π2

(
∆− δ

3

)
q2
⊥λ⊥

)
exp

(
−4π2

(
∆− δ

3

)
q2
‖λ‖

)
+ f exp

(
−4π2q2

‖(∆−
δ

3
)D‖

)
exp

(
−4π2R4q2

⊥
D⊥∆

× 7

296
×
(
2− 99

112

)
× R2

D⊥∆

)
(3.28)

where f = fr is the volume fraction for the restricted compartment [100, 105]. It is also

possible to consider a number of restricted compartments in the CHARMED model:

x(q,∆) = fh.xh(q,∆) +
N∑
j=1

f jr .x
j
r(q,∆) (3.29)

where f jr and xjr(q,∆) are the volume fraction and signal decay of the jth restricted

compartment respectively [94,100,105,139] and

fh +
N∑
j=1

(
f jr
)

= 1 (3.30)
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CHARMED utilises High Angular Resolution Diffusion Imaging (HARDI) [140–142] tech-

nique consisting of several measurements with different gradient field amplitudes (q-values)

and different directions distributed uniformly and symmetrically over a sphere to capture

the tissue related information [100, 143]. In order to fit the experimental data a non-

linear least square estimation technique (Levenberg-Marquardt minimisation procedure)

has been utilised and three cases have been considered:

1. The model consists of one hindered compartment and no restricted compartments

i.e. N = 0. This case is identical to DTI analysis.

2. The model consists of one hindered and one restricted compartments i.e. N = 1.

This case can be used in the areas with parallel and homogeneous fibres e.g. Corpus

Callosum.

3. The model consists of one hindered and two restricted compartments i.e. N = 2.

This case can be used for considering the crossing fibres [100,105].

The model parameters to be estimated are the orientation of the fibres, volume fractions

for restricted compartments, the parallel and perpendicular diffusivities for restricted com-

partment (D‖ and D⊥) and the parallel and perpendicular diffusivities for hindered com-

partment (λ‖ and λ⊥). The noise floor is also estimated during the fitting procedure [100].

3.7 AxCaliber

Later, Assaf et al. [99] presented a method based on CHARMED [100,105], but included

an Axon Diameter Distribution (ADD) function. The method, which is called AxCaliber,

models the tissue as a composition of hindered and restricted compartments and incor-

porates the diameter distribution of restricted cylindrical axons as an unknown function

to be estimated. AxCaliber assumes that the axon radii follow a two-parameter gamma

distribution and intracellular space has the fraction density fr.

AxCaliber, extends the two compartment hindered/restricted CHARMED model to de-

scribe the diffusion weighted signal attenuation. Hence, the net signal is modelled with the

equation presented in Eq. (3.18). The experimental protocol assumes that the measure-

ments are performed perpendicular to the fibre direction. The diffusion in the extra-axonal

space is considered hindered and can be modelled as an anisotropic diffusion with an ap-

parent diffusion coefficient Dh in the direction perpendicular to the direction of nerve

bundle. Therefore, the contribution of hindered compartment is modelled as:
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xh(q,∆) = exp

(
−4π2q2

(
∆− δ

3

)
Dh

)
(3.31)

where ∆ and δ are the diffusion time and gradient pulse width respectively and q = |q|.
Since the experiments satisfy the SGP approximation i.e. δ ∼ 0 and δ � ∆, Callaghan’s

approach [29, 144] can be used by which the contribution of the intra-axonal restricted

diffusion for an axon with radius R to the DWMR signal decay is expressed as:

xr(q,∆) =
∑
k

4 exp
(
−β2

0kD0∆/R2
)((2πqR)J ′0(2πqR)

(2πqR)2 − β2
0k

)2

+
∑
nk

8 exp
(
−β2

nkD0∆/R2
)
×

β2
nk

β2
nk − n2

×
(

(2πqR)J ′n(2πqR)

(2πqR)2 − β2
nk

)2

(3.32)

Where J ′n are the derivatives of the nth-order Bessel function and βnk are the arguments

that result in zero-crossings of J ′n (roots of Eq. (2.60)) [99]. Eq. (3.32) is identical to Eq.

(2.74) derived using the SGP approximation in section 2.6.5.

Generalizing Eq. (3.32), the restricted diffusion signal for the multi-compartment AxCal-

iber model is described as:

xr(q,∆) =

N∑
j=1

πR2
jf

j
r

[∑
k

4 exp
(
−β2

0kD0∆/R2
j

)((2πqRj)J
′
0(2πqRj)

(2πqRj)2 − β2
0k

)2

+
∑
nk

8 exp
(
−β2

nkD0∆/R2
j

)
×

β2
nk

β2
nk − n2

×
(

(2πqRj)J
′
n(2πqRj)

(2πqRj)2 − β2
nk

)2
]

(3.33)

where Rj is the radius of the j-th axon, f jr is the volume fraction of the j-th axon and

D0 is the intra-cellular diffusivity perpendicular to the fibre direction and is considered

equal to the intrinsic diffusivity of the medium. The axon radii are modelled using gamma

distribution i.e. f jr ∼ Γ(k, θ) where,

Γ(k, θ) =
1

Γ(k)θk
Rk−1
j exp (−Rj/θ) ∀R ≥ 0 and k, θ > 0 (3.34)

is the gamma distribution with the shape parameter k and the scale parameter θ [99].

Γ(k) is the gamma function described as:

Γ(k) =

∫ ∞
0

tk−1 exp (−t)dt (3.35)

where k is a complex number with positive real part .

AxCaliber technique takes a series of PGSE measurements with a wide range of different

diffusion weightings (q values) and different diffusion times. The framework can be applied
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either spectroscopically i.e. considering the whole sample as a homogeneous voxel or for a

particular voxel where the axon diameter distribution is measured within that particular

voxel in the imaging volume. The model parameters to be estimated are the volume

fraction of the restricted compartment fr, the diffusivity of the hindered compartment

and the parameters of the gamma distribution (k and θ) [94,99].

It has been assumed that the axons in the imaged sample are perpendicular to the gradient

magnitudes and diffusion gradients. Therefore, AxCaliber supports the estimation of a

model of full axon diameter distribution only under the assumption of a priori knowledge

about the orientation of axons which is not applicable in general. [145].

3.8 MMWMD

Alexander [146] developed a simple tissue model based on CHARMED model. The model

which is called Minimal Model of White Matter Diffusion (MMWMD), reduces the number

of parameters in the CHARMED model by simplifying the model using the following

assumptions [106,146,147]:

1. The net signal is a combination of signals from one hindered and one restricted

compartments without water exchange between compartments.

2. All parallel non-abutting cylindrical axons have identical radius.

3. The particles in the extra-axonal space have cylindrically symmetric hindered diffu-

sion. Therefore, the apparent diffusion tensor for the hindered compartment can be

described as Dh = (λ‖ − λ⊥)vvT + λ⊥I where λ‖ and v are the major eigenvalue

and eigenvector in the fibre direction respectively, λ⊥ is the minor eigenvalue which

is perpendicular to v and I is the identity tensor. λ‖ and λ⊥ are the diffusivities

parallel and perpendicular to the fibre direction (v) respectively.

4. The intrinsic diffusivity of extra- and intracellular spaces are the same.

Based on these assumptions and utilising CHARMED model, MMWMD describes the net

normalised diffusion weighted MR signal decay as a weighted sum of signals from hindered

and restricted compartments similar to CHARMED model given in Eq. (3.18) [100, 105].

However, since the model considers only a two compartment model, the net signal decay

is described using Eq. (3.9).
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3.8.1 Signal model for restricted compartment

The signal model for restricted compartment, utilises the assumption of in-dependency of

displacements parallel and perpendicular to the fibre direction and presents the restricted

signal similarly to CHARMED model given in Eq. (3.19) as a product of signals from

parallel and perpendicular components.

xr(q,∆) = xr⊥(q⊥,∆)xr‖(q‖,∆) (3.36)

where q⊥ = γG⊥δ and q‖ = γG‖δ. G‖ and G⊥ are the parallel and perpendicular compo-

nents of ~G respectively, which can be calculated using Eq. (3.20) [138].

The diffusion within the axons and parallel to axon direction is considered as Gaussian

diffusion similar to the assumption in CHARMED. Since the diffusivity of particles parallel

to the fibre direction in the intra-axonal and extra-axonal space are considered the same

and equal to λ‖, the parallel component is described as:

xr‖(q‖,∆) = exp

(
−4π2q2

‖(∆−
δ

3
)λ‖

)
(3.37)

which is similar to the expression for the parallel component of the restricted signal in the

CHARMED model Eq. (3.21).

The perpendicular component is calculated using the Van-Gelderen’s extension [91] to

Murday and Cotts model [148] under the assumption of long diffusion time limit i.e.

κ � 1. Hence the signal attenuation due the diffusion of particles perpendicular to the

cylindrical axons with radius R is expressed as:

xr⊥(q⊥,∆) = exp
(
−4π2q2

⊥R
2
)

(3.38)

Which is identical to Eq. (2.62) for the diffusion in a cylinder considering long diffusion

time limit (κ� 1) and GPD approximation (see section 2.6.4). Therefore, the total signal

from restricted compartment is calcualted by substituting Eq. (3.37) and Eq. (3.38) into

Eq. (3.36), which results in:

xr(q,∆) = exp

(
−4π2q2

‖(∆−
δ

3
)λ‖

)
exp

(
−4π2q2

⊥R
2
)

(3.39)

3.8.2 Signal model for hindered compartment

The hindered extra-axonal compartment is modelled using a simple cylindrically symmet-

ric Gaussian anisotropic diffusion with diffusion tensor Dh = (λ‖ − λ⊥)vvT + λ⊥I, where
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λ‖ and λ⊥ are diffusivities parallel and perpendicular to the fibre direction v. Therefore,

using the same approach for CHARMED, the signal from the hindered compartment is

described as [138,146]:

xh(q,∆) = exp

(
−4π2

(
∆− δ

3

)
qTDhq

)
(3.40)

The tissue model parameters to be estimated are:

1. The volume fraction of the intracellular space (f) which is equal to the packing

density.

2. The apparent diffusion coefficients parallel and perpendicular to the fiber orientation

(λ‖ and λ⊥).

3. The major eigenvector (v) which is the same as the axon orientation.

4. The axon radius (R).

The estimated axon radius R, in the voxel is often called the axon index [13].

The model is extended by Alexander [13], to improve the previous technique [106] by

adding extra compartments to the model. This extended model considers the signal as

the weighted sum of signals arising from four different tissue compartments:

x(q,∆) =
4∑
i=1

fi.xi(q,∆) (3.41)

where fi and xi(q,∆) are the volume fraction and signal component corresponding to i-th

compartment such that
4∑
i=1

fi = 1 (3.42)

Each compartment has its own characteristics and signal decay models. Signal x1(q,∆)

corresponds to the diffusion of the water molecules trapped inside the axons with equal

radius R along the axis of the cylinders. It can be modelled using Gaussian phase distri-

bution approximation of the signal from particles trapped inside a cylinder developed by

Murday and Cotts [148]. This is equivalent to the expression presented in Eq. (3.39).

Signal x2(q,∆) corresponds to the diffusion of water molecules outside the cylinders and

can be modelled as an anisotropic hindered diffusion with an apparent diffusion tensor

Dh [149]. The hindered diffusion tensor has a major eigenvalue λ‖ corresponding to the

diffusivity parallel to the fibre direction and a minor eigenvalue λ⊥ corresponding to the
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diffusivity perpendicular to the fibre direction. This is identical to Eq. (3.40) presented

earlier [138]. The diffusion inside the cylinders is considered unhindered along the fibre

direction with the intrinsic diffusivity equal to λ‖ as assumed in [106].

Signal x3(q,∆) arises from the diffusion of water molecules in CSF, where the cylinders

do not affect diffusion. The diffusion of particles in CSF is assumed as free and modelled

with an isotropic Gaussian diffusion, as in [94], with a diffusion coefficient equal to the

intrinsic diffusivity λ‖ [13].

Signal x4(q,∆) corresponds to stationary water trapped in glial cells and other subcellular

structures which remains unattenuated by diffusion weighting i.e. x4(q,∆) = 1 [13,150].

The tissue related parameters of the model to be estimated are fi, λ‖, λ⊥, R and the

orientation of cylinders (v).

The basic benefits of this technique is that it considers additional CSF (similar to [94])

and sub-celluar (similar to [101]) compartments. It also utilises an optimised experimental

design to explore all possible PGSE combinations by improving a priori parameter settings.

The estimation of the parameters are performed using Bayesian estimation techniques from

a set of PGSE measurement data acquired with different diffusion weighting b values and

in several directions. In order to achieve better performance, the framework uses a grid

search and gradient descent stages in the fitting procedure [13].

3.9 Generalised 1D

Johnston et al. [104] developed a simple closed-form restricted signal decay model based

on the work of Cory et al. [97]. The model assumes the signal as a two compartment

hindered/restricted model as presented in Eq. (3.9). The signal from the hindered com-

partment is considered as a result of Gaussian displacement profile for the water molecules.

Hence the signal from the hindered compartment is modelled using Eq. (3.10).

For ∆ >> R2/D the 1-d brownian motion trajectories fully explore the restricted space

during the diffusion time and the resultant phase distribution is uniform. Integrating over

all initial positions results in a triangular phase distribution with twice the compartment

width and sinc2(.) decay function. Hence, the signal from intracellular space is described

as an integral with closed-form solution:
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xr(q,∆) =

∫ ∞
0

xr(q,∆, R)p(R)dR

=

∫ ∞
0

sinc2(2Rq)
Rk−1 exp (−r/θ)

θkΓ(k)
dR

=
1

4π2kθ2q2

[
1− 1(

1 + 4π2θ2q2
)k ] (3.43)

where q = |q|. Here, it is assumed that the axon radii can be model by a two parameter

gamma distribution described in Eq. (3.34).

The model parameters to be estimated are the volume fraction for the restricted compart-

ment f , the gamma distribution parameters (shape parameter (k) and scale parameter

(θ)) and the ADC value for the hindered part (Dh).

In order to estimate the parameters in the Generalised 1D model, one uses a series of

PGSE measurements at different gradient field amplitudes with several diffusion times (∆

values).

3.10 Discussion

A number of models are presented in the literature to describe the geometry-related at-

tenuation of DWMR signal in the brain white matter. Earlier models e.g. ADC proposed

by Le Bihan et. al [109] and DTI presented by Basser et al. [149], provide simple and

easy-to-use techniques to estimate the apparent diffusion coefficient (ADC) and apparent

diffusion tensor (ADT) by assuming a Gaussian diffusion profile for the diffusion of water

molecules in the brain tissue. Although, the non-Gaussian characteristics of the diffusion

of particles in the brain white matter is now completely accepted, due to the simplicity,

these models are widely used as a biomarker to determine the orientation of axons and

the major changes in the brain microstructure, such as brain damage in stroke [151–154].

However, the markers derived from ADC and DTI, cannot be linked directly to the features

of tissue microstructure and are related to a variety of different parameters simultaneously.

For example, the size and packing density of axons, the permeability of cells membranes

and axon myelination and the distribution of axon orientations, all affect the mean diffu-

sivity and fractional anisotropy in a voxel. Therefore, a change in any of these markers

cannot be identified exactly using these techniques [13].

More sophisticated techniques, assume the deviation of the DWMR signal decay from

a mono-exponential function as an evidence for the existence of two or more compart-

ments [101, 119–131, 134, 135]. Niendorf et al. [119] presented a Bi-exponential model for
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describing the effect of “slow” and “fast” compartments corresponding to restricted and

hindered diffusion respectively. Each compartment has its own diffusivity and volume

fraction and the total signal is modelled as the weighted sum of the signals related to each

compartment [13]. Stanisz et al. [101], presented a three compartment model for water

molecules inside elongated ellipsoidal axons, inside spherical glial cells, and in the extra-

cellular space. The statistical model proposed by Yablonskiy et al. [133] generalises this

model and presents the signal as a sum of a large number of spin packets originating from

different positions in the voxel, relating the microstructural features of the tissue with the

distribution of ADC values.

Jensen et al. [136], has incorporated the deviation of signal from mono-exponential into

kurtosis parameter and presented a two parameter model based on the cumulant expansion

of ln (S/S0) terminated in two terms, where the second term relates to the kurtosis of

diffusion profile. On the other, since the approximation is valid only for the small diffusion

weighting factors (b-values) and the range of b-values are usually considered much higher

to sensitise the signal to the motion of the spins the approximations does not fall into the

convergence region and the method fails. Moreover, the parameters derived from Kurtosis

model, do not provide geometric related and physically sensible information about tissue

microstructure.

Among the models developed to link the DWMR signal attenuation to the neural tissue

microstructure, two compartment models have gain more interest as they propose more

tissue related parameters in the models yet relatively simple models. Assaf et al. [100,105]

presented a two compartment hindered/restricted model assuming parallel impermeable

cylindrical axons in a homogeneous extracellular space. The model uses the GPD as-

sumption and considers the signal from the restricted compartment as a combination of

signals related to the diffusion parallel to fibre direction (modelled using Stejskal-Tanner

equation, Eq. (2.57)), and the diffusion perpendicular to the fibre direction (modelled

using Neuman’s equation, Eq. (2.64)) for the diffusion inside a cylinder with radius R and

using a constant gradient field (δ ∼ ∆). The signal for hindered compartment is modelled

considering the DTI model presented in Eq. (3.2). CHARMED utilises HARDI technique

(measurements with different directions and different gradient weighting factors), to esti-

mate the model parameters. It should be noted that, the CHARMED model assumes the

long diffusion time limit (κ� 1) and constant gradient field (δ ∼ ∆) to derive the model

for the restricted compartment. Considering the typical diffusion times, typical length

scales and the gradient field pulses used to perform the measurement, these assumptions

are very unlikely to be satisfied.

Later, Assaf et al. [94,99] presented AxCaliber method based on a two compartment hin-

dered/restricted model. The diffusion in the hindered compartment modelled using GPD
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Table 3.1: Summary of the models used to describe DWMR signal decay

Model Parameters Complexity Assumptions Geometric

interpretation

ADC D 1 GPD No

DTI D 6 GPD No

Bi-exponential Dh,Dr,f 3 GPD Yes

Kurtosis D,K 2 SGP No

CHARMED Dh,f ,R 3 GPD, δ ∼ ∆ Yes

AXCaliber Dh,f ,k,θ 4 SGP, GPD, Orientation Yes

MMWMD Dh,f ,R 3 GPD Yes

Generalised 1D Dh,f ,k,θ 4 SGP, GPD, Orientation Yes

approximation Eq. (2.57) while the diffusion in restricted compartment is modelled using

SGP Approximation Eq. (2.74). The AxCaliber model assumes a Gamma distribution for

the axon radii and incorporates the axon diameter distribution into the model. AxCal-

iber uses measurements with several diffusion weighting factors but with a single direction

(perpendicular to fibre direction) to capture the information about the underlying tissue

microstructure. It also perform the measurements with different diffusion times in order

to sensitises the signal to the restricted geometries. The limitations of this model are the

need for a priori knowledge about the direction of the nerve fibres, high gradient field

strength and long acquisition times.

The MMWMD model presented later by Alexander [106, 146], uses the GPD approxima-

tion to derive the equations describing the signal attenuation. Similarly to CHARMED,

the model assumes the signal from restricted compartment as a combination of signals

related to diffusion parallel and perpendicular to the fibre direction. However, it uses Van

Gelderen’s expression (Eq. (2.62)) in the long diffusion time limit (κ � 1) instead of

Neuman’s expression (Eq. (2.64)) for the case of constant gradient field (δ ∼ ∆). It also

considers the DTI model (Eq. (3.2)) for the signal from hindered compartment similarly

to CHARMED. MMWMD also utilises measurements with different diffusion weighting

factors and different gradient directions to capture the microstructural information.

In order to summarise the models presented in this chapter, we presented all the models

along with their complexity (the number of parameters of the model to be estimated, which

is the same as the minimum number of measurements needed), and the assumptions used

to derive the models in Table 3.1.



54 Chapter 3

3.11 Summary

In this chapter, we presented a review over a number of existing and state-of-the-art models

developed to link the DWMR signal decay to the tissue microstructure in the brain. For

the ease of comparison, we presented all the models using a single mathematical notation.

Next, we analysed the assumption considered for deriving each model and linked them

to the concepts presented in the previous chapter. This was followed by the analysis of

the advantages and disadvantages of different models. At the end, we summarised all

the models in a single table and compared the models in terms of their complexity, the

underling assumptions and the possibility to interpret geometric information from using

the models.

In the next chapter, we will basically consider two-compartment models which provide

geometric information about the tissue microstructure and compare their performance in

term of the minimum uncertainty of the estimations.
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Cramer-Rao Lower Bound analysis

and model evaluation

In the previous chapter, we introduced a number of parametric models proposed in the

literature to describe the signal attenuation in DWI due to natural diffusion of water in

the brain white matter. Given a sufficiently rich data set, the parameters in a model may

be estimated thus revealing the geometric nature of the white matter as “described” by

the model. Because the models cannot describe the white matter, nor the signal properly

there are inevitably two types of errors in the parameter estimation process. Firstly, there

is a “bias” error. The model not being accurate implies that there is a best possible model

with a non-zero residual error. Secondly, there is a “variance” error. A statistical error

due to a lack of sufficient data to estimate any non-systematic error in the experimental

data. There may also be a third type of error, if it were difficult to extract the parameter

estimator from the experimental data, a so called algorithmic error may be present. Here

to proceed, we assume that there is no algorithmic error. Moreover, we will present each

model in an ideal experimental environment in which there is not any bias error either.

The latter is unrealistic, but does focus on the intrinsic performance of the model with

respect to our ability to reliably extract model parameters from a given dataset (produced

by the model itself).

The disadvantage of this approach is that no two models are compared against the same

dataset. However, if a model perform poorly under these ideal condition, it is clear that

it will perform poorly and worse under a realistic test against realistic DWI data (not

conforming to the model). In order to proceed, we use the Cramer-Rao Lower Bound

(CRLB) as the tool to compare the variance of the models. Even though, because all

models use different parametric (under different modelling) assumptions, we will need to
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derive some figures of merit in order to facilitate the comparison. Quantities such as mean

square error and normalised mean squared errors are envisaged.

Before engaging in this analysis, the chapter provides a basic overview of CRLB analysis.

Next, it discusses the CRLB for the various models and compares their performance. Our

conclusion is that most of the models as presented perform poorly and should be used

with extreme caution in realistic estimation procedures.

4.1 Cramer-Rao Lower Bound

The model-based techniques are used to infer the parameters of the model from the mea-

surement data. All the information we have is embodied in the observed data and the

underlying likelihood function, which is a function of the model. The performance of

the estimations is directly related to the likelihood function. In particular, the more the

likelihood function is influenced by the unknown parameter the better the estimation of

that parameter may be [155]. Therefore, understanding the sensitivity of the likelihood

function to different parameters can provide us with a useful measure of performance.

The DWMR data consists of a set of signal intensities at a specific voxel of diffusion

weighted magnetic resonance images. Noise in MRI is modelled as additive with a Rician

distribution. The Rician noise for magnitude images can be approximated by a Gaussian

noise with a certain bias in the mean value. However, it has been shown that for reasonably

large SNR values (SNR ≥ 3) this bias is negligible and the noise can be approximately

modelled using a Gaussian distribution [156].

We assume that the model is the true representation of the observed data. The measure-

ment data y can therefore be modelled as:

y(θ) = x(θ) + ε(θ) (4.1)

where ε is a random Additive White Gaussian Noise (AWGN) with ε ∼ N (0, σ2
nI), and y

and x are (N × 1) data and true signal vectors respectively.

y = [y1, y2, ..., yN ]T

x = [x1, x2, ..., xN ]T (4.2)

Here, each element of the measurement vector corresponds to the signal intensity of a

particular voxel in the MR image, measured at a certain q and ∆ value (yi = y(qi,∆i)

and N is the total number of measurements.
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The parameters to be estimated are collected in the parameter vector θ,

θ =
[
σ2
n, θ1, θ2, ..., θM

]
(4.3)

where M is the number of parameters of the model.

Given that the noise’s covariance matrix is diagonal, the joint probability density function

can be written as:

p(y;θ) =
1

(2πσ2
n)N/2

exp

(
− [y − x]T [y − x]

2σ2
n

)
(4.4)

The log likelihood function can be written as:

ln
(
p(y;θ)

)
= −N

2
ln(2πσ2

n)− [y − x]T [y − x]

2σ2
n

(4.5)

For any unbiased estimator θ satisfying ”regularity” condition:

E

{
∂ ln (p(y;θ))

∂θ

}
= 0 (4.6)

where E{.} denotes the expectation with respect to p(y;θ) and defined as:

E

{
∂ ln (p(y;θ))

∂θ

}
=

∫
∂ ln (p(y;θ))

∂θ
p(y;θ) dy (4.7)

the Fisher information matrix Iθ is defined as:

[Iθ]i,j = −E

{
∂2 ln

(
p(y;θ)

)
∂θi∂θj

}
(4.8)

Taking the first derivative of Eq. (4.5) with respect to σ2
n, and noting that

∂x

∂σ2
n

= 0 (4.9)

we have:

∂ ln
(
p(y;θ)

)
∂σ2

n

= − N

2σ2
n

+
[y − x]T [y − x]

2σ4
n

(4.10)
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and taking the second derivative with respect to σ2
n, we can write:

∂2 ln
(
p(y;θ)

)
∂(σ2

n)2
=

N

2σ4
n

− [y − x]T [y − x]

σ6
n

(4.11)

since y−x = ε ∼ N (0, σ2
nI), the quadratic term [y−x]T [y−x] has chi-square distribution

i.e.

[y − x]T [y − x] ∼ χ2 (4.12)

and the expected value can be calculated as:

E

{
∂2 ln

(
p(y;θ)

)
∂(σ2

n)2

}
= E

{
N

2σ4
n

}
− E

{
[y − x]T [y − x]

σ6
n

}
=

N

2σ4
n

− tr(σ2
nI)

σ6
n

= − N

2σ4
n

(4.13)

where tr(σ2
nI) is the trace of the covariance matrix i.e. tr(σ2

nI) = Nσ2
n.

Eq. (4.13) shows that the Fisher information for estimating noise variance (σ2
n) is only

depended on the number of samples and noise variance itself. Therefore, in order to

simplify our analysis and since we are not interested in estimating the noise variance at

this stage, we discard σ2
n from the parameter vector and re-write the parameter vector:

θ = [θ1, θ2, ..., θM ]T (4.14)

where M is the number of parameters to be estimated.

Using the same technique, we can write:

∂ ln
(
p(y;θ)

)
∂θi

=
1

σ2
n

[y − x]T
[
∂x

∂θi

]
(4.15)

and
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∂2 ln (p(y;θ))

∂θi∂θj
=

1

σ2
n

∂

∂θj

(
[y − x]T

[
∂x

∂θi

])
=

1

σ2
n

[
∂

∂θj
(y − x)

]T [ ∂x

∂θi

]
+ [y − x]T

[
∂2x

∂θi∂θj

]
=

1

σ2
n

[
− ∂x

∂θj

]T [ ∂x

∂θi

]
+ [y − x]T

[
∂2x

∂θi∂θj

]
(4.16)

Taking expectation and knowing that E{y − x} = 0, the Fisher information matrix can

be written as:

[Iθ]i,j = −E
{
∂2 ln (p(y;θ))

∂θi∂θj

}
= −E

{
1

σ2
n

[
− ∂x

∂θj

]T [ ∂x

∂θi

]
+ [y − x]T

[
∂2x

∂θi∂θj

]}

=
1

σ2
n

[
∂x

∂θj

]T [ ∂x

∂θi

]
(4.17)

The Fisher information indicates the sensitivity of the model to each parameter. The

CRLB matrix is the reciprocal of the Fisher information matrix [157]. Therefore, we can

find CRLB for estimated parameters as:

var(σ̂n
2) ≥ 2σ4

n

N

var(θ̂i) ≥
[
I−1
θ

]
i,i

(4.18)

Here
[
I−1
θ

]
i,i

denotes the diagonal element of the inverse Fisher information matrix situated

on row i and column i. Eq. (4.18) indicates the effect of the noise variance, the number

of samples and the model on the lower bound.

Generalizing the analysis above and considering the derivation of Fisher information ma-

trix for the case of AWGN with E
{
εεT
}

= Σ, and assuming,

∂Σ

∂θi
= 0 (4.19)

the Fisher information matrix becomes:

[Iθ]i,j =

[
∂x

∂θi

]T
Σ−1

[
∂x

∂θj

]
(4.20)

For the special case when Σ = σ2
nI, Eq. (4.20) reduces to Eq. (4.17).
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4.2 Model evaluation using CRLB

In this section, we utilise the Cramer-Rao Lower Bound to calculate the minimum un-

certainty levels of a number of models presented in the previous chapter. We consider

the best-scenario for each model, by which we neglect the estimation bias and assume

that the measurement data originated from the model itself (The model is completely true

representation of the data). The analyses compare the sensitivity of the model parameters

to the noise levels and give us an understanding about the reliability of the estimations

without considering the capability of the models in fitting real data (non-model data).

The CRLB analysis for each model, is performed by calculating the Fisher information

matrix for all the possible combinations of acquisition and tissue related parameters. In

this work, we only consider the single-PGSE acquisition regime for which the acquisition

parameters are the maximum gradient field amplitude (Gmax), the gradient pulse width

(δ), diffusion time (∆) and the number of measurements (N) at different q-values. The

tissue related parameters are different for different models. The analyses have been per-

formed for a range of practical acquisition and typical tissue related parameters. The

range of parameters used in the CRLB analysis for all models is presented in Table 4.1.

The range of acquisition parameters is chosen in alignment with the range of values for

existing human and animal scanners. The range is however larger to allow us exploration

of the models under more favourable conditions, and predict somewhat the potential of the

models when used in conjunction with future scanners. The ranges for maximum gradient

amplitude is chosen such that they result into q values from 0.01 [µm−1] to 0.1 [µm−1],

which is more than what is achievable in the existing clinical scanners. However, this will

lead to a knowledge about the predicted performance for higher gradient field amplitudes.

The range of tissue related parameters is chosen based on the typical values for human

white matter acquired from histological studies. All the parameter intervals have been

divided to the particular number of steps (presented in the Table 4.1) linearly.

We analyse the two compartment hindered/restricted models which have the capability

of providing geometrically related information (see Table 3.1). The models considered

for this comparative analysis are Bi-exponential [119], CHARMED [105], AxCaliber [99]

and Generalised 1D [104]. The number and the physical nature of the parameters of each

model vary which makes it complicated to provide a comparative analysis of the models.

The bounds presented in Eq. (4.18), determine the minimum variance for an unbiased

estimator [157]. Therefore, in order to normalise the error with respect to the parameter

itself, and present it as a unit-less variable, we introduce the relative error ratio (RER)

defined by:
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Table 4.1: Range of acquisition (top) and tissue related (bottom) parameters used for CRLB

analysis of all models

Parameter [unit] Min. value Max. value Number of steps

Gmax [mT/m] 47 986 21

N - 6 20 8

∆ [ms] 20 100 5

δ [ms] 5 5 1

Dh [µm2/ms] 0.1 2.9 15

Dr [µm2/ms] 0.05 1.15 12

f - 0.1 0.9 9

R [µm] 0.5 4 8

RER(θi) =
σmin (θi)

θi
=

√
min (var(θi))

θi
(4.21)

where σmin(θi) denotes the minimum standard deviation of parameter θi calculated as

σmin(θi) =
√[

I−1
θ

]
i,i

(4.22)

The RER provides a quantitative measure for the minimum uncertainty level of each model

parameter given a set of measurement and model parameters. Using RER, we can map all

the minimum error levels for different parameters and different models into a normalised

scale, in which the RERs can be used to compare the performance of the models. In order

to produce a single figure of merit for the comparison of different models, we use the total

RER defined as the sum of the RERs for all the model parameters (i.e. trace of the CRLB

matrix divided by the true values of the parameters) for each model.

It may be observed that we present as a total figure of merit for a model the sum of

the relative errors for each relevant parameter in the model. One may object to this on

the ground of adding ”totally unrelated quantities”, and furthermore, one may object

to comparing models on the basis of their total RER, because the models do not even

share the same variables. These observations are correct. Nevertheless, relative errors are

expressed in per unit, and indicate how poorly a particular parameter can be recovered

under the ”best possible data scenario”. Hence, the sum of the RERs does reflect the

quality or better, the lack of quality of a model under the best possible data scenario (i.e.

one where the measurement data were derived from the model). As a consequence, we feel

justified to use the sum of the relative errors as a total figure of merit of any single model
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and moreover, feel justified in comparing models based on this figure of merit. The larger

the figure of merit, the more problematic the model is.

We simplify all the models to strictly two compartment hindered/restricted model for

which, the net normalised DWMR signal decay is described by Eq. (3.9). We also consider

the models for the case of a single direction PGSE sequence and assume a priori knowledge

about the orientation of the fibres. The gradient field direction is assumed perpendicular

to the fibre directions. We also simplify all the models to the case of singe radius axons

(mean axon radius). However, it is clear that increasing the complexity of the models will

increase the uncertainty levels and reduce the performance. Here we consider the best-case

scenarios. The performance of the models under more realistic conditions will be worse

than what is calculated here. The analyses in this step, provide the lower bounds for

the uncertainty of the models under an unrealistic best-case scenario. Performance under

practical conditions will be worse than what is calculated here.

For each model we consider two different estimation approaches. The first approach called

single-∆ uses the information from different measurements with different gradient field

amplitude but a single diffusion time, while the second approach called multiple-∆ utilises

the information from all the measurements at different gradient amplitudes and for all

different diffusion times. It can also be stated that the second method will result in lower

RERs as it uses more information in comparison to the first approach.

We consider the noise as AWGN and set Signal to Noise ratio, SNR = σ−1
n = 10 in CRLB

analyses for all models. Theoretically, the performance of the models will be improved by

increasing the SNR due to the inverse relation between SNR and RER (Eq. (4.17) and

Eq. (4.18)).

A reasonable range for the RER would be 0.1 which represents 10% relative error i.e.

under the best-scenario assumptions, the estimated parameters will have 10% uncertainty.

4.2.1 Results for Bi-exponential model

Table 4.2: Range of hindered diffusion coefficient (Dh) used for CRLB analysis of B-exponential

model

Parameter [unit] Min. value Max. value Number of steps

Dh [µm2/ms] 1.5 2.9 15

The Bi-exponential model [119] for hindered and restricted signal decay models are pre-

sented in Eq. (3.10) and Eq. (3.11) respectively. The net DWMR signal decay is modelled
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Table 4.3: Minimum RER values for bi-exponential model using single-∆ estimation approach

Min. Avrg. RERs RER(Dh) RER(Dr) RER(f) Total RER

RER(Dh) 2.66 2.72 2.66 2.66

RER(Dr) 2.56 2.50 2.56 2.56

RER(f) 7.32 7.51 7.32 7.32

total RER 12.54 12.73 12.54 12.54

Gmax [mT/m] 188 188 188 188

N 20 20 20 20

∆ [ms] 80 100 80 80

by a two compartment hindered/restricted diffusion model as presented in Eq. (3.9). The

tissue related parameters of the bi-exponential model to be estimated are the hindered

(fast) and restricted (slow) diffusion coefficients (Dh and Dr respectively) and the volume

fraction (f). The range of the measurement and tissue related parameters is presented in

Table 4.1. In order to prevent the singularity of the model (when Dh = Dr), we changed

the range of Dh in a way to remove any overlapping with the range of Dr. The range of

Dh used for the CRLB analysis for Bi-exponential model is presented in Table 4.2

The CRLB analysis has been performed and the minimum average RER values for different

parameters as well as the minimum total average RER are calculated. The results for

single- and multiple-∆ approaches are presented in Table 4.3 and Table 4.4 respectively.

The values of average RER for each parameter is also presented along with the set of

measurement parameters resulting in the minimum average RERs at each step.

As it can be understood from the results, the minimum average RERs for bi-exponential

model are high even considering the case when the ”fast” and ”slow” diffusion coefficients

(Dh and Dr) are completely separated. In order to have reasonable estimations, very high

Table 4.4: Minimum RER values for bi-exponential model using multiple-∆ estimation approach

Min. Avrg. RERs RER(Dh) RER(Dr) RER(f) Total RER

RER(Dh) 1.24 1.30 1.24 1.24

RER(Dr) 1.19 1.19 1.19 1.19

RER(f) 3.54 3.68 3.54 3.54

total RER 5.97 6.16 5.97 5.97

Gmax [mT/m] 235 282 235 235

N 20 20 20 20
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SNR values are required which limits the application of bi-exponential model for practical

applications.
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Table 4.5: Minimum RER values for CHARMED model using single-∆ estimation approach

Min. Avrg. RERs RER(Dh) RER(f) RER(R) Total RER

RER(Dh) 0.74 0.83 0.80 0.80

RER(f) 0.20 0.13 0.36 0.36

RER(R) 912.74 341.38 115.28 115.28

total RER 913.68 342.34 116.44 116.44

Gmax [mT/m] 611 986 986 986

N 20 20 20 20

∆ [ms] 80 100 20 20

4.2.2 Results for CHARMED model

The restricted and hindered signal models for CHAMRED [100, 105], is presented in Eq.

(3.23) and Eq. (3.27) respectively. The net DWMR signal decay uses a two compartment

model described in Eq. (3.9). For the ease of calculation, we assume symmetric gradient

pulse sequence i.e. τ ≈ ∆. Since for this comparative study, it is assumed that the fibre

orientation is known and is perpendicular to the gradient direction, the parallel component

of the gradient G‖ is zero and the restricted signal models is simplified to:

xr(q,∆) = exp

(
−4π2R4q2

D0∆
× 7

296
×
(
2− 99

112

)
× R2

D0∆

)
(4.23)

where D0 is the diffusivity perpendicular to the fibre direction, which is assumed equal to

the intrinsic diffusivity of the medium, R is the axon radius, ∆ is the diffusion time and

q is the reciprocal wave number calculated from Eq. (2.45). The signal from hindered

compartment also simplifies to

Table 4.6: Minimum RER values for CHARMED model using multiple-∆ estimation approach

Min. Avrg. RERs RER(Dh) RER(f) RER(R) Total RER

RER(Dh) 0.24 0.31 0.31 0.31

RER(f) 0.07 0.05 0.05 0.05

RER(R) 327.81 45.59 45.59 45.59

total RER 328.12 45.96 45.96 45.96

Gmax [mT/m] 376 986 986 986

N 20 18 18 18
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xh(q,∆) = exp

(
−4π2q2

(
∆− δ

3

)
Dh

)
(4.24)

where Dh is the diffusivity of water molecules perpendicular to the axon direction in the

extra-axonal space.

The model assumes a priori knowledge of the diffusivity of water particles in the intra-

axonal space (D0) and typically one selects the intrinsic diffusivity of water (D0 ≈ 2×10−9

[m2s−1]). Therefore, the parameters of the model to be estimated are the ADC in hindered

compartment (Dh), the volume fraction of restricted compartment (f) and the (mean)

axon radius R.

The results for CRLB analysis of CHARMED model under single- and multiple-∆ estima-

tion approaches are presented in Table 4.5 and Table 4.6 respectively. The results show

that at the best case, the total RER will fall below 10% for SNR ≥ 459.6, which is not

be possible in practice. The typically achievable SNR is human scanners is in the order of

30. It should also be noted that the increase in the SNR needs more measurements which

results in a dramatical increase in the acquisition time.
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Table 4.7: Minimum RER values for single radius AxCaliber model using single-∆ estimation

approach

Min. Avrg. RERs RER(Dh) RER(f) RER(R) Total RER

RER(Dh) 0.61 0.76 0.85 0.71

RER(f) 0.21 0.17 0.17 0.23

RER(R) 3.56 0.53 0.33 0.39

total RER 4.38 1.46 1.34 1.32

Gmax [mT/m] 282 705 986 986

N 20 20 20 20

∆ [ms] 100 100 100 20

4.2.3 Results for AxCaliber model

The CRLB analysis of AxCaliber [99] was performed considering the assumption of single

(mean) radius axon. The two compartment hindered/restricted AxCaliber models the

net DWMR signal decay as a weighted sum of contributions from hindered and restricted

compartments as presented in Eq. (3.9). The signal from restricted compartment is

presented in Eq. (3.32) for an axon with radius R. AxCaliber considers the assumption

of perpendicular gradient field direction with respect to axon direction. Hence, the signal

decay for hindered component can be used without any alteration as presented in Eq.

(3.31). The intrinsic diffusivity of water in the biological tissue is assumed D0 ≈ 2× 10−9

[m2s−1].

The tissue related parameters of the model in the single axon version are the diffusivity of

extra-axonal compartment (Dh), the volume fraction for the restricted compartment (f)

Table 4.8: Minimum RER values for single radius AxCaliber model using multiple-∆ estimation

approach

Min. Avrg. RERs RER(Dh) RER(f) RER(R) Total RER

RER(Dh) 0.24 0.30 0.33 0.33

RER(f) 0.10 0.08 0.08 0.08

RER(R) 1.54 0.24 0.15 0.15

total RER 1.88 0.62 0.57 0.57

Gmax [mT/m] 282 705 986 986

N 20 20 20 20
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and the axon radius (R). The range of acquisition and tissue related parameters used for

analysis of AxCaliber model is presented in Table 4.1. The results for CRLB analysis of

AxCaliber model using single- and multiple-∆ approaches are presented in Table 4.7 and

Table 4.7 respectively.

For the multiple-∆ approach, the total average RER fall below 10% for SNR ≥ 57 which is

difficult t achieve under clinical conditions. Moreover, in order to have accurate estimations

the number of measurements should be at the maximum (N = 20), and considering the

fact that the measurements should be performed for all the different diffusion times (20,

40, 60, 80, 100) the total number of measurements needed is 100. This will increase the

measurement time and cost dramatically and can be considered as a barrier in application

of this method in clinic. On the other hand, in order to have accurate estimations, a huge

gradient field amplitude should be applied (Gmax = 986 [mT/m]), which is not applicable

using the existing clinical scanners and implies a number of design and safety constraints.
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Table 4.9: Minimum RER values for MMWMD model using single-∆ estimation approach

Min. Avrg. RERs RER(Dh) RER(f) RER(R) Total RER

RER(Dh) 2.52 2.53 2.58 2.53

RER(f) 17.40 17.24 17.48 17.24

RER(R) 1.22 1.18 1.18 1.18

total RER 21.14 20.95 21.23 20.95

Gmax [mT/m] 611 658 705 658

N 20 20 20 20

∆ [ms] 80 80 80 80

4.2.4 Results for MMWMD model

The MMWMD model [106, 146] utilises a two compartment hindered/restricted model

as presented in Eq. (3.9) to model the net DWMR signal decay. The contributions

from restricted and hindered compartments are presented in Eq. (3.39) and Eq. (3.40)

respectively. Here, we consider the MMWMD model under the assumption of single

direction PGSE for which the direction of gradient field is assumed perpendicular to axon

direction. Therefore, the model for the contribution from the restricted compartment is

simplified to:

xr(q,∆) = exp
(
−4π2q2R2

)
(4.25)

where q = |q| is the reciprocal wavenumber and R is the axon radius. Based on the above

assumption, the signal from hindered compartment can also be simplified to Eq. (3.10).

The CRLB analysis was performed for all the possible combinations of measurement

Table 4.10: Minimum RER values for MMWMD model using multiple-∆ estimation approach

Min. Avrg. RERs RER(Dh) RER(f) RER(R) Total RER

RER(Dh) 0.29 0.29 0.39 0.32

RER(f) 0.16 0.16 0.20 0.17

RER(R) 0.31 0.25 0.15 0.18

total RER 0.75 0.70 0.74 0.66

Gmax [mT/m] 376 423 939 564

N 20 20 20 20
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and tissue related parameters presented in Table 4.1. The results of CRLB analysis for

MMWMD model using single- and multiple-∆ approaches are presented in Table 4.9 and

Table 4.10 respectively.

As it can be inferred from the results, the minimum average RERs for MMWMD is slightly

higher than AxCaliber model and the RERs fall below 10% for SNR ≥ 66. However, the

maximum gradient field needed to achieve the minimum RERs in this technique (Gmax =

564), which is less than what was needed for AxCaliber.

The total RER are reduced in general as the number of measurements and maximum gra-

dient field amplitude increases giving the idea that in order to obtain better estimations,

more measurements and higher gradient fields are required. For this model also the mini-

mum total average RER value could be obtained by having large number of measurements

(N = 20) and by using all different diffusion times. Increasing the number of measure-

ments will lead to increase in the scanning time and cost, while increasing the maximum

gradient field runs into physical design obstacles and safety concerns. In general such

gradient fields cannot be implemented in clinical scanners. Therefore, the application of

these methods in clinical studies using existing clinical scanners is not practical.
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Table 4.11: Minimum RER values for single radius Generalised 1D model using single-∆ estima-

tion approach

Min. Avrg. RERs RER(Dh) RER(f) RER(R) Total RER

RER(Dh) 0.86 0.92 1.47 0.92

RER(f) 0.37 0.31 0.36 0.31

RER(R) 0.68 0.35 0.26 0.35

total RER 1.92 1.58 2.09 1.58

Gmax [mT/m] 94 141 235 141

N 20 20 20 20

∆ [ms] 100 100 100 100

4.2.5 Results for Generalised 1D model

The generalised 1D model [104] utilises a two compartment hindered/restricted model for

the net DWMR signal decay presented in Eq. (3.9). The experimental method assumes

a priori knowledge about the orientation of the axons. The direction of the gradient

field vector is assumed perpendicular to the fibre direction. The signal from the hindered

compartment is modelled using a Gaussian diffusion approximation as presented in Eq.

(3.10). Since, we consider the simple case of single (mean) axon radius, the signal from

restricted water molecules inside an axon with radius R is modelled as:

xr(q,∆) = sinc2(2Rq) (4.26)

The CRLB analysis was performed for all possible combinations of acquisition and tissue

related parameters presented in Table 4.1 and the RERs were calculated. The results

for CRLB analysis of Generalised 1D model for single- and multiple-∆ approaches are

Table 4.12: Minimum RER values for single radius Generalised 1D model using multiple-∆

estimation approach

Min. Avrg. RERs RER(Dh) RER(f) RER(R) Total RER

RER(Dh) 0.29 0.30 0.51 0.35

RER(f) 0.16 0.11 0.15 0.12

RER(R) 1.28 0.29 0.11 0.16

total RER 1.73 0.71 0.78 0.62

Gmax [mT/m] 47 94 282 141

N 20 20 20 20
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presented in Table 4.11 and Table 4.12 respectively.

For the Multiple-∆ approach the total average RER will fall below 10% for SNR ≥ 62.

The minimum total RER is obtained at the maximum number of measurements (N = 20).

However, the maximum gradient amplitude needed is lower than other techniques, which

can be considered as an advantage for this model.

4.3 Summary

In this chapter, we investigated the performance of a number of models used for describing

diffusion weighted MR signal decays. We utilised the CRLB as a tool to analyse the

minimum variance of an unbiased estimator. Our analysis was performed in the ideal and

unrealistic sitting that the data are derived from the model and AWGN. We calculated

the CRLBs for a range of acquisition and tissue related parameters and calculated the

RERs for all the combinations of the parameters. In order to calculate the minimum total

RER for each model, we found a particular combination of acquisition parameters which

results in the minimum total average RER. The average is taken over all the RER values

for different possible combinations of tissue related parameters.

The models were simplified for the case of approximating single (mean) axon radius and

the direction of fibres were assumed to be known and perpendicular to the gradient field

direction. The minimum total average RERs for different models are presented in Table

4.13. Theoretically, RERs will decrease by increasing the SNR and one should keep in

mind that by increasing the SNR by factor K all the RER values presented in Table 4.13

will be divided by the factor K. The results demonstrate that, none of the models could

provide estimation with reasonable uncertainty level (RER ≤ 0.1) under normal SNR and

ideal unrealistic model validity.

Table 4.13: Minimum total average RER values for all models using multiple-∆ estimation

approach

Model Bi-exp. CHARMED AxCaliber MMWMD G.1D

Min. Total

Avrg. RER 5.97 45.96 0.57 0.66 0.62

Avrg. RER(Dh) 1.24 0.31 0.33 0.32 0.35

Avrg. RER(Dr) 1.19 - - - -

Avrg. RER(f) 3.54 0.05 0.08 0.17 0.12

Avrg. RER(R) - 45.59 0.15 0.18 0.16
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Theoretically, an increase in the number of measurements results in the decrease in the

Total average RER. On the other hand, an increase in the maximum field gradient can

lead to higher Total RER, because of the effect of the faster signal decay at higher diffusion

times and loss of signal. It can be shown that for higher diffusion times the DWMR signal

will drop sharply and obtaining more measurement with higher gradient amplitudes will

not produce more information (Since the SNR drops dramatically).
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Chapter 5

Simulation framework

In order to be able to compare different techniques and estimate the accuracy of each

model, we need to develop a simulation framework, which has the behaviour as similar

as possible to the real biological tissue. The simulation framework for this project should

be able to model the axon placement and water molecule diffusion and calculate the

accumulated phase and displacement. The phase distribution then can be used to estimate

the DWMR signal decay and fit the model.

The simulation framework we have developed consists of two parts:

1. Axon Packing: This routine simulates the placement of axons (of various diameters).

2. Signal modelling: In this routine, the diffusion of water molecules in the simulated

tissue is modelled, and the resulting phase distribution is computed and used to

produce simulated data of the DWMR signal.

5.1 Axon Packing Algorithms

Modelling of the placement of axons in a nerve bundle plays an important role in the

investigation of the axon diameter distribution using DWI. Based on the images obtained

from electron microscopy, the axon radii in a nerve bundle can be well modelled by a

gamma distribution [99]. The probability density function of the gamma distribution is

given by Eq. (3.34). In this part, we present a technique for simulating axon packings in

nerve fibres based on a dynamic and constructive approaches.

From visual inspection of the microscopy images, the axons within a nerve bundle are

packed together (see Figure 2.4(b)). In order to simulate the axons and restricted water
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Figure 5.1: Hexagonal circle packing

diffusion, the structure of packing and the distribution of axon radii must be considered.

The model consists of a voxel (a rectangle) with width and height W filled with circles

(axons) with the radii ri generated from a gamma distribution. The circles are separated by

interfaces with specific thickness (h) called boundaries and there is no overlap between any

two circles. The problem is to distribute the circles in a rectangle considering the desired

packing density. The packing density in this context is defined as the proportion of surface

area occupied by the circles in a voxel. This density depends on the size distribution of

axons, the thickness of boundaries and the way the axons are packed. Therefore, the

problem of packing axons in a voxel is similar to packing circles inside a rectangle. Joseph

Louis Lagrange proved in 1773 that in particular case where circles have identical size

in two dimensional Euclidean space the, the highest density is the hexagonal packing

arrangement, in which the centers of the circles are arranged in a hexagonal lattice, and

each circle is surrounded by 6 other circles as depicted in Figure 5.1. The density of this

arrangement is π/
√

12 ≈ 0.9069 [158,159].

In the case that we know that the radii distribution is derived from a gamma distribution,

we can estimate the number of axons resulting in a particular packing density. The

expected value for the area of a circle with a radius derived from a gamma distribution is:

E{A} =

∫ ∞
0

πr2p(r)dr. (5.1)

where p(r) is the probability density function of gamma distribution as given by Eq. (3.34).

By substituting Eq. (3.34) into Eq. (5.1), the expected value for the area of an axon is

the solution of the following integral:
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E{A} =
π

Γ(k)θk

∫ ∞
0

rk+1 exp (−r/θ)dr

= π
Γ(k + 2)θ2

Γ(k)
(5.2)

where Γ(k) denotes the gamma function as given by Eq. (3.35).

Therefore, the number of circles can be estimated as:

NA =
W 2fr
E{A}

(5.3)

where W is the width of the voxel and fr is the packing density which is a real number

and fr ∈ (0, 1).

In designing our simulation algorithm, we have considered two different approaches for

filling a square with circles, which are Dynamic and Constructive approach.

5.1.1 Dynamic Approach

In the dynamic approach, for the placement of a new circle the information about the

position of previous circles is not considered. The only constraint here is that any two

circles do not intersect with each other. Therefore, after selecting the values for radius and

centre coordinates, the intersection of the new circle with previous circles is checked to

decide whether to keep the current position or not. In this particular problem we are strict

about the size distribution of the axons, in the case of any intersection between the new and

previous circles, the size of the circle cannot be changed and a new centre coordinates for

the circle is tried. Usually the dynamic method is not computationally efficient and is quite

time consuming especially for the cases with high packing density [158]. A simple outcome

of the dynamic packing approach is depicted in Figure 5.2. The axon radii distribution

histogram and probability density function fitting is shown in Figure 5.3. Since in the

dynamic method, there is a possibility that for a particular radius value there would be no

available place in the voxel to fit the circle, we have to discard some random values after

certain number of failed trials. Consequently, the probability density function in dynamic

method does not match the expected curve accurately.
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Figure 5.2: Dynamic axon packing algorithm results with W = 100 µm , fr = 0.6, k = 4 and

θ = 5× 10−4

5.1.2 Constructive Approach

In the constructive approach, the position of a new axon is determined using the informa-

tion from previously placed axons. The algorithm starts with a circle in the centre of the

voxel continuing in the levels around the first circle. In order to have the structure as dense

as possible in each step, the boundary for new circle is in contact with the boundaries of

two previously placed circles.

The constructive approach utilises the concept of advancing neighbours in which each

neighbour is a pointer to a circle adjacent to the new circle. In order to place a new circle,

the information of the placement of two previously placed neighbours is used.

A pseudo-code description of constructive algorithm is:

1. Produce NA radii based on the gamma distribution with desired parameters, k and

θ.

2. Place the first circle in the centre of the voxel i.e. (x1, y1) = (W/2,W/2).

3. Create the first neighbour L1 and set it to 1, i.e. L1 = 1.

4. Place the centre of the second circle (x2, y2) with the constraint to be on the circle
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Figure 5.3: Dynamic axon packing radii distribution histogram and expected and estimated PDF

curves with W = 0.1 mm and fr = 0.6, k = 4 and θ = 5× 10−4

with the following equation:

x2
2 + y2

2 = (r1 + h1 + r2 + h2)2, (5.4)

Here, r1 and h1 are the radius and boundary thickness of the first axon and, r2

and h2 are the radius and boundary thickness of the second axon respectively. This

constraint guarantees that the boundary of the second circle will be in contacts with

the boundary of the first circle.

5. Create the second neighbour L2 and set its value to 2 to point to the second circle,

i.e. L2 = 2.

6. for i=3 to NA

place the new circle with radius ri at the centre with coordinates (xi, yi) with the

constraint to satisfy the following system of equations:

{
(xi − xL1)2 + (yi − yL1)2 = (rL1 + hL1 + ri + hi)

2

(xi − xL2)2 + (yi − yL2)2 = (rL2 + hL2 + ri + hi)
2

(5.5)

Here, (xi, yi) is the coordinates for the centre of the i-th axon. The set of coordinates

(xL1 , xL1) (xL2 , xL3) are the centre of the first and second neighbours respectively.

These equations guarantee that the new circle’s boundary is in contact with the L1

and L2 neighbors as depicted in Figure 5.4.
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Figure 5.4: Placement of the new circle with regard to the first and second neighbours

7. for j=1 to i

Check the intersection of the new circle with centre coordinate (xi, yi) and radius ri

and the j-th circle with centre (xj , yj) and radius rj using the following equation:

‖(xi, yi)− (xj , yj)‖ < (ri + hi + rj + hj) (5.6)

8. If two circles intersect, discard the centre coordinate (xi, yi) and increment L1, i.e.

L1 = L1 + 1.

9. If L1 = L2, decrement L2, i.e. L2 = L2 − 1, set L1 = 1 and go to 6

else keep the coordinates, increment i and go to 6.

The results of the constructive packing approach is depicted in Figure 5.5. The histogram

and probability density function of the axon radii distribution using constructive approach

is also demonstrated in the Figure 5.7. The distribution of the radii using the constructive

approach gives better results in comparison with the dynamic method.

5.1.3 The relationship between boundary thickness and packing density

Thickness parameter (h) is a representative of the boundary thickness of axons and is the

ratio of the boundary thickness to axon radius. In the simulations we consider h ∈ [0, 1].

However it can be greater than one if needed.

The packing density can be altered by changing the thickness parameter. Figure 5.6 shows

the relationship between the packing density and thickness parameter. By increasing the
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Figure 5.5: Constructive axon packing algorithm results with W = 0.1 mm, fr = 0.6, k = 4 and

θ = 5× 10−4.

thickness parameter, the number of axons in the voxel is decreased approximately by a

factor of (1 + h)2:

NA ≈
W 2fr0

(1 + h)2E{A}
(5.7)

where fr0 is the mean value for the maximum packing density which can be achieved for

h = 0. For dynamic method fr0 = 0.55 and for constructive method fr0 = 0.85. Hence,

the relationship between the packing density and the thickness parameter can be written

as:

fr(h) = NA ×
E{A}
W 2

≈ fr0
(1 + h)2

(5.8)

Eq. (5.8) can be used to determine the desired packing density of the model and reduce

the model parameters by one.

5.1.4 Statistical analysis of results

In this section we present the statistical analysis of the model to verify the accuracy of

the model and the simulated parameters. The simulated parameters of the model are the

sample mean and variance of the radii distribution. We calculate the expected value for

variance of the sample mean and use central limit theorem to calculate an approximation
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Figure 5.6: The relationship between packing density and thickness parameter. (a) Dynamic

approach (b) Constructive approach

of the sampling distribution. Therefore, the normal distribution will be utilised to find

the probabilistic bounds for the estimation error and find the confidence intervals for the

estimated values.

We consider the estimated mean as:

r̄ =
1

n

n∑
i=1

ri (5.9)

We can consider r̄ as an estimation of actual radius mean (µ). The sampling distribution

of r̄ determines how accurately r̄ estimates µ. Using central limit theorem, the sampling

distribution of the estimated mean can be modelled by a normal distribution. It can be

stated that the more tightly the sampling distribution of r̄ is centred around µ, the better

the estimate.

The variance of the estimated mean, neglecting the finite population correction, is:

var(r̄) =
1

n2

n∑
i=1

var(ri) =
σ2

n
(5.10)

in which σ2 is the actual variance of the population and n is the number of axons in the

sample [160]. The standard deviation of r̄ which is called standard error is:

σr̄ =
σ√
n

(5.11)
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Figure 5.7: Constructive axon packing radii distribution histogram along with the expected and

estimated PDF curves with W = 100µm, fr = 0.6, k = 4 and θ = 5× 10−4.

In the case that we do not know the exact value for the population variance, we can

estimate the population variance by the sample variance [160], given by

s2 =
1

n

n∑
i=1

(ri − r̄)2 (5.12)

The standard error can be calculated as:

sr̄ =
s√
n

(5.13)

Eq. (5.11) and Eq. (5.13), show that the standard error has the inverse relation with the

sample number. Therefore, for the models with more axons, the accuracy of the estimation

would be better.

According to central limit theorem for a fixed number z,

P

(
r̄ − µ
σr̄

≤ z
)
→ Φ(z) (5.14)

Therefore,we can derive a confidence interval for the population mean (µ). A confidence

interval for a population parameter µ is a random interval, calculated from the sample
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Figure 5.8: (a) Estimated axon radii mean, (b) Estimated axon radii variance

which contains µ with a certain probability. Therefore, a confidence interval for µ can be

calculated as:

P (r̄ − z(α/2)σr̄ ≤ µ ≤ r̄ + z(α/2)σr̄) ≈ 1− α (5.15)

Where z(α) is a number such that the area under the standard normal density function

to the right of z(α) is α [160]. The standard error vs. packing density for both techniques

is depicted in Figure 5.9 for comparison. Comparing the standard error for dynamic

approach with the standard error for constructive approach, it can be inferred that the

constructive approach leads to smaller standard error and consequently a more accurate

simulation of the model parameters.

To summarise, it can be stated that the dynamic algorithm is easy to implement and less

complicated in comparison with constructive algorithm. However, the simulation time

required is relatively high especially for the models with high packing density and leads to

lower computational efficiency, and higher standard error rate. The constructive approach

is more efficient and produces more accurate results. Hence, we utilise this method in

modelling the axons in a nerve bundle.

5.2 Random walk simulation of the diffusion of water par-

ticles in the brain white matter

In order to simulate the resultant NMR signal, the Brownian motion and diffusion of water

molecules in biological tissue is modelled during the application of Stejskal-Tanner pulse
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Figure 5.9: Standard error vs. Packing density. The more axons the lower the error.

sequence.

The accumulated phase offset of a single particle at time t after the RF excitation pulse

can be calculated as:

φ(r, t) = 2πγ

∫ t

0

~G(t′) · r(t′) dt′ (5.16)

where r(t) [m] is the trajectory of a single particle during time t [s] under gradient pulse

waveform G(t) [T.m−1], and γ [Hz.T−1] is the gyromagnetic ratio.

Based on the measurement setup, during the first gradient pulse, spins acquire phase

shifts proportional to the displacements of the molecules in the direction of the gradient.

The second gradient pulse applied after a 180◦ RF refocusing pulse, shifts the phase of

particles back proportional to their displacements during the second pulse [66, 85]. If a

particle does not move between two pulses, the diffusion time (∆), the phase shifts during

the first and second pulses will cancel out each other completely and the spins become

completely refocused at echo time. However, if particles move during the diffusion time,

there will be a remaining phase offset related to the displacements during this period. In

order to find the analytical description of this phase offset, we consider a single particle

starting at time (t0 = 0) in (r0 = 0). We assume without loss of generality that at t = t0

the gradient field G is zero. The motion of water molecules during diffusion follows a

Brownian motion [161] and can be modelled by a random walk process at small time steps
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∆t. At each time step, the new position of the particle would be the sum of its initial

position and a random Gaussian increment:

rk = rk−1 + wk (5.17)

where wk ∼ N (0, σ2In), i.i.d and the variance of the movements is calculated from Eq.

(2.13) as σ2 = 2nD0∆t. D0 is the intrinsic diffusivity of the particles in an unrestricted

medium. Substituting rk and considering r0 = 0, without loss of generality the position

at time tk could be written as:

rk = w1 + w2 + ...+ wk (5.18)

Since only the phase difference is important, we consider the phase of the particles at t = 0

to be φ0 = 0. Each particle accumulates phase on each time step ∆t:

φk = φk−1 + 2πγ ~G · rk∆t (5.19)

Here γ is the gyromagnetic ratio in [Hz.T−1]. Substituting Eq. (5.18) into Eq. (5.19) the

phase offset at the k-th time step is:

φk = φk−1 + 2πγ ~G · [w1 + w2 + ...+ wk] ∆t

= φk−2 + 2πγ ~G ·

[
k−1∑
i=1

wi∆t

]
+ 2πγ ~G ·

[
k∑
i=1

wi∆t

]
= ...

= 2πγ ~G ·

 k∑
i=1

i∑
j=1

wj∆t

 (5.20)

At the end of the first gradient pulse (t = δ) the phase of each particle can be written as:

φM = 2πγ ~G ·

[
M∑
i=1

(M − i+ 1) wi∆t

]
(5.21)

where M = b δ∆tc is the largest integer such that M ≤ δ
∆t . During the period δ < t < ∆,

the gradient pulse is zero and the phase offset is fixed. During this period a 180◦ RF pulse

is applied which inverts all the phases:

φN = −φM (5.22)

Here, N = b ∆
∆tc is the largest integer such that N ≤ ∆

∆t . During the period ∆ < t < ∆+δ,

the second gradient is applied:

φN+1 = φN + 2πγ ~G · [w1 + w2 + ...+ wN+1] ∆t

= −φM + 2πγ ~G · [w1 + w2 + ...+ wN+1] ∆t (5.23)
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and at the end of sequence t = ∆ + δ the final phase is:

φK = −φM + 2πγ ~G ·

[
N∑
i=1

Mwi∆t

]
+ 2πγ ~G ·

 M∑
i=1

i∑
j=1

wN+j∆t


= −φM + 2πγ ~G ·

[
N∑
i=1

Mwi∆t

]
+ 2πγ ~G ·

[
M∑
i=1

(M − i+ 1)wN+i∆t

]
(5.24)

Here K = b∆+δ
∆t c is the largest integer such that K ≤ ∆+δ

∆t . Substituting Eq. (5.21) into

Eq. (5.24) we have

φK = 2πγ ~G ·

[
−

M∑
i=1

(M − i+ 1) wi∆t+
N∑
i=1

Mwi∆t+
M∑
i=1

(M − i+ 1) wN+i∆t

]

= 2πγ ~G ·

[
M−1∑
i=0

iwi+1∆t−
N∑
i=M

Mwi∆t−
M∑
i=1

(M − i+ 1) wN+i∆t

]
(5.25)

Since wk ∼ N (0, σ2I) and σ2 = 2nD0∆t

φK ∼ N

(
0, 4π2γ2|~G|2σ2

(
M∑
i=1

i2∆t2 +

N∑
i=M+1

M2i∆t2 +

M∑
i=1

i2∆t2

))
(5.26)

Therefore, the phase variance of a single particle can be written as:

σ2
φ = 8nπ2γ2|~G|2D0

(
M∑
i=1

i2∆t3 +
N∑

i=M+1

M2∆t3 +
M∑
i=1

i2∆t3

)
(5.27)

Considering the limit when ∆t → 0 the phase variance can be written in the continuous

form as:

σ2
φ = 8nπ2γ2|~G|2D0

(∫ δ

0
t2dt+ δ2

∫ ∆

δ
dt+

∫ δ

0
t2dt

)
(5.28)

which results in

σ2
φ = 8nπ2q2(∆− δ

3
)D0 (5.29)

where n is the spatial dimension (n=1, 2 or 3) and q = |q| [m−1] is the reciprocal wave-

number determined using a set of measurement parameters using Eq. (2.45).

For the case of having a single gradient direction, n = 1, and the phase variance is:

σ2
φ = 8π2q2(∆− δ

3
)D0 (5.30)

Therefore, the particle will have certain amount of accumulated phase offset at time t

which is related to the trajectory of the particle and the gradient pulse waveform.
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The net diffusion attenuated DWMR signal in a particular voxel is calculated by averaging

the signals from individual molecules over all initial positions and possible trajectories.

S = S0

∫ ∞
−∞

P (φ) exp(−jφ)dφ (5.31)

Here, P (φ) is the probability density functions for the phases in (2.43) and S0 is the MR

signal measured without using diffusion encoding gradients. Equation (5.31) indicates the

effect of accumulated diffusion related phase offset of particles on the MR signal decay

during a particular diffusion encoding gradient waveform G(t).

As it is shown earlier, in the case of unrestricted Brownian motion of water particles (Gaus-

sian distribution for the random movements), the accumulated phase of water particles

can be modelled by a Gaussian distribution

P (φ) =
1√

2πσ2
φ

exp

(
− φ2

2σ2
φ

)
(5.32)

in which the variance of accumulated phases is calculated using Eq. (5.29). Therefore,

the resultant MR signal can be modelled as:

S(q) = S0 exp

(
−4π2q2D(∆− δ

3
)

)
(5.33)

which agrees with the results derived from solving Bloch-Torrey equations as given in

Eq.(2.46). Therefore, the distribution of phase offset at the end of pulse sequence can be

used to calculate the resultant NMR signal decay.

In order to simulate the DWMR signal decay, we utilised a two-dimensional simulation

of 1,024,000 random walkers within a two-compartment tissue structure developed in the

previous section. The simulations were performed using Message Passing Interface (MPI)

parallel programming paradigm with 256 CPUs on an IBM BlueGene/Q supercomputer

hosted at Victorian Life Sciences Computation Initiative (VLSCI). For each simulation,

particles were initially spread randomly inside a voxel of 100 [µm] × 100 [µm]. The

underlying tissue structure simulated using constructive approach described earlier with

different values of the mean axon radius (R) and volume fraction (f). The values presented

for axon radius in Table 5.1 was used as the true values for mean axon radii. The true

values for volume fraction (f) was chosen as

0.22 0.24 0.27 0.31 0.35 0.40 0.46 0.53 0.62 0.74 0.90

The trajectories of the particles at each time step were calculated by moving the particles

according to Eq. (5.17). The diffusivity of particles inside the tissue is set to 2 × 10−9
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Figure 5.10: Simulation of diffusion of water particles in the biological tissue. Particles demon-

strated with red + and black • are intracellular and extracellular respectively.

[m2s−1]. A sample visualisation of tracking the Brownian motion of water particles inside

a simulated biological tissue is demonstrated in Figure 5.10.

The permeability of axon boundaries is considered zero i.e. there is not any transfer of

particles between intracellular space and extracellular space and the amount of intracel-

lular and extracellular particles are constant during the simulation. Particles hitting the

boundaries of axons, were elastically reflected and the reflection of particles was continued

until no more reflection was required. However, the surface relaxation (Υ) of axon bound-

aries was set to zero and the total random distance was constant during the reflection.

Particles leaving the examined voxel were re-entered the voxel from the opposite side.

Table 5.1: Values of acquisition (top) and tissue related (bottom) parameters used for simulations

Parameter [unit] Min. value Max. value Number of steps

Gmax [mT/m] 986 986 1

N - 20 20 1

∆ [ms] 20 100 5

δ [ms] 5 5 1

f - 0.22 0.9 11

R [µm] 1 10 10
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Figure 5.11: Modelling the Brownian motion of water particles in the brain white matter

Figure 5.11 depicts a simple illustration of 2D simulation of Brownian motion of water

particles using a random walk process.

Given the assumptions above, the simulations were designed to model the Brownian motion

of the water molecules in a two-compartment environment.

5.3 Validation of the DWMR signal attenuation models

The random walk simulations of the Brownian motion of particles were performed as

described in the previous section and the resultant DWMR signal decays were calculated.

The noise-free simulations were run for different combination of the acquisition and tissue

related parameters as given in Table 5.1. In order to verify the validity of the models,

the models were fitted to the noise-free simulated DWMR signals using a Levenberg-

Marquardt algorithm. The fittings were performed using the multiple-∆ approach, in

which the data from all different diffusion times were used simultaneously during the

fitting process. The fitting process were performed 1000 times with random starting

points for the algorithm in each run. In order to avoid results outside the acceptable

ranges, the limits for the fitting algorithm were set with respect to the range of the tissue

related parameters given in Table 5.1. However, we extended the limits slightly in order to

capture estimated parameters close to the acceptable regions. Here, we only investigated

the models which provide estimations of the mean axon radius (R) and volume fraction

(f) as these are the only characteristic features of the simulated tissue that we can control

during simulation. Therefore, the models used for validation are CHARMED, AxCaliber,

MMWMD and Generalised 1D.
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Figure 5.12: Validation of the CHARMED model. (a) Results for mean axon radius (R), (b)

Results for volume fraction (f)

5.3.1 Results for CHARMED model

The results of the fitting the noise-free simulation data to CHARMED model [105] is

presented in Figure 5.12. In order to investigate the effect of a random starting point for

the Levenberg-Marquardt algorithm on the derived estimations, the results are presented

in separate box plots for mean axon radius R and volume fraction f with respect to

their true values. the box plots provide us with a better understanding of the statistical

presentation of the estimated parameters resulted from different starting points.

As it can be inferred from the results the CHARMED model fails to produce accurate

estimations of the mean axon radius (R) and volume fraction (f). However, the model

can follow the increasing trend in the data and the estimations provided by the model

increase as the mean axon radius increases. The model overestimate the mean axon

radius. Sensitivity of the estimated values to the starting points are relatively high for this

model. This is much worse for the estimations of volume fraction, where the sensitivity

increases by the increment in the true volume fraction. The model underestimate the

values for volume fractions and the uncertainty of the estimations increases as the true

volume fraction increases.

5.3.2 Results for AxCaliber model

The results of the fitting the noise-free simulation data to AxCaliber model [99] is presented

in Figure 5.13. As it can be inferred from the results, AxCaliber model underestimates the
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Figure 5.13: Validation of the AxCaliber model. (a) Results for mean axon radius (R), (b)

Results for volume fraction (f)

values for mean axon radius (R). The error (difference between true and estimated value)

in the estimation of mean axon radius increases as the true values increase. On the other

hand, the model provides a relatively accurate estimations of the volume fraction (f).

The uncertainties related to the selection of the starting points for the fitting algorithm is

relatively low for this model.

5.3.3 Results for MMWMD model

The results of the fitting the noise-free simulation data to MMWMD model [106] is pre-

sented in Figure 5.14. The results show that MMWMD model underestimates the values

for the mean axon radius (R). The error (difference between true and estimated value)

increases as the true mean axon radius increases.

The results for estimating volume fraction (f) reveals that the model slightly overestimate

the true volume fraction. The uncertainty related to the choice of starting points increases

as the true value increases. However, the estimations are relatively accurate and follow

the trend in the real values.

The results for estimating using MMWMD is very similar to the results obtained from

AxCaliber. However, the uncertainties due to the selection of starting points are higher in

MMWMD in comparison with AxCaliber. This can be seen by more number of outliers

and larger uncertainty regions in the box plots.
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Figure 5.14: Validation of the MMWMD model. (a) Results for mean axon radius (R), (b)

Results for volume fraction (f)

5.3.4 Results for Generalised 1D model

The results of the fitting the noise-free simulation data to Generalised 1D model [104]

is presented in Figure 5.15. The results show that the model fails to provide accurate

estimations of the mean axon radius (R) and volume fraction (f). The estimations are

highly sensitive to the selection of the starting point and the estimated values cover the

whole acceptable region set during the fitting process. Hence, the model is not accurate

and is not applicable in practice.

5.4 Summary

In this chapter, we presented a simulation framework to model the axon packings in the

nerve bundles and to model the Brownain motion of water molecules and capture resultant

DWMR signal decays.

We presented two different approaches for placement of the axons in the nerve bundles

(Dynamic and Constructive approaches). We demonstrated that the constructive approach

provides an efficient and accurate algorithm to model the placement of the axons within

the nerve bundles.

In the next step, we presented an algorithm to simulate the Brownian motion of water

molecule within the tissue models produced in the previous step. We utilised a ran-

dom walk process to model the Brownian motion of water molecules. The mathematical
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Figure 5.15: Validation of the Generalised 1D model. (a) Results for mean axon radius (R), (b)

Results for volume fraction (f)

calculations of the phase offsets of the particles undergoing DWMR measurements were

presented. We used the phase information to construct the simulated DWMR signal. The

simulations were implemented using MPI parallel programming paradigm on a Blue Gene

supercomputer and the resultant DWMR signals were recorded. The datasets provided by

this simulation framework were used later to analyse the accuracy of the models, by fitting

to the simulated data using a Levenberg-Marquardt algorithm. In order to investigate the

sensitivity of the estimations to the starting points in the fitting algorithm, the fitting

process was repeated 1000 times with random starting points for each run.

The results demonstrated that none of the models were able to provide accurate esti-

mations of the simulated tissue parameters. The more complex models like AxCaliber

could provide a better estimations of the volume fraction and had lower sensitivity to the

selection of starting points, while the simpler models like CHARMED and Generalised

1D failed to produce an accurate estimations of the tissue parameters and were highly

sensitive to the choice of starting points in the fitting algorithm.

Comparing the results presented in this chapter, with the results in the previous chapter,

we can conclude that more complex models can provide better noise-free estimations of

the tissue-related parameters but have higher noise-related minimum uncertainty levels

and lower performance, while simpler models perform better in terms of noise-related

uncertainty levels but fail to present the tissue-related parameters accurately even in the

noise-free situation. However, these results are not surprising and were predictable.
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Diffusion Weighted Magnetic Resonance Imaging has the capability to reveal useful infor-

mation about the microstructure of the central nervous system, through the measurement

of diffusion of water in the biological tissue [1, 13,93,97].

There have been a number of techniques developed to derive geometric information from

DWMR measurements. Most of the methods employ a model-based approach to relate

DWMR signal decay to microstructure characteristics [13, 84, 88, 96, 99, 105, 106, 119, 162–

164].

We presented an analysis of different models in terms of their assumptions and approxi-

mations used to derive them and noted the advantages and drawbacks of different models.

The performance of the methods depend on both the quality of the proposed model and

the experimental measurement setup e.g. SNR, number of measurements, gradient field

strength, etc.

The quality of the model is broadly determined by how well the model can describe reality

(bias error) and how sensitive the model parameters are to the measurements (variance

error). Here, we ignored the bias error, hence we assumed that the models are “perfect”

and indeed in our work we have used the models to generate the data (in this sense the

models are perfect). Our focus has been to elucidate the variance error. To this end, we

computed the CRLB for the model parameters (given a certain SNR). The CRLB is a

simple function of the model itself.

Under a number of reasonable assumptions for the measurement setup, and the number

of data points collected, we computed typical (normalised) error (variance) for estimated

model parameters. We conclude that at present no single model is suitable for parameter

estimation under presently feasible experimental conditions.

We demonstrated that in order to increase the performance of the models, the measure-

ment setup should be improved in a way to increase the SNR, and increase the gradient

field strength, which would not be possible using current scanners. On the other hand in-
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creasing the SNR would require more number of measurements and longer scanning times

and higher costs, which limits the applications of this methods in clinical scanners.

At the end, we presented a simulation framework to model the axon packings in nerve

bundles. We utilised the resultant axon packing and modelled the Brownian motion of

water particles and the resultant simulated datasets. The simulated data were used to

investigate the validity of the models by fitting the models to the simulated data. The

results indicated that none of the models were able to provide accurate estimations and the

estimated parameters were extremely dependent on the fitting algorithm and the choice

of starting points for the iterative fitting algorithm.

The results also showed that the more complex models can provide better estimations of

the tissue-related parameters in noise-free conditions but have higher noise-related min-

imum uncertainty levels and perform poorly in noisy conditions, while simpler models

perform better in terms of noise-related uncertainty levels but fail to present the tissue

related parameters accurately even in noise-free conditions. Overcoming the challenge of

complexity/performance of the models is the main problem facing the researchers in the

field.

A future work might be to study the performance of the models under the real experimental

setup and using empirical data. However, the performance of the models will be worse

than what we presented here, as our results were based on the mathematical analysis

under the best possible scenarios for each model.
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Appendices

A Principles of Magnetic Resonance Imaging

Since a good understanding of the fundamentals of NMR and MRI is crucial for a better

understanding of the DWMR techniques presented in this work, here we present a brief

review on basic physical principles of MRI. This appendix is mainly adopted from the

textbook by Liang et al. [2]. More complete descriptions can be found in the literature

[2, 79,86].

A.1 Nuclear Magnetic Resonance phenomenon

MRI is based on the NMR phenomenon discovered independently by Bloch and Purcell in

1946 [81,165,166]. NMR is due to the interaction between nuclei with a non-zero magnetic

moment and an external oscillating magnetic field [2, 79]. A fundamental property of the

nuclei having odd atomic mass number (number of protons and neutrons) e.g. nucleus of

Hydrogen atom (1H) is that they have intrinsic nuclear spin with angular moment ~J . The

magnitude of angular moment for spins is given by

J =
h

2π

√
I(I + 1) (A.1)

where, h is Planck’s constant (6.63×10−34 [J.s]) and I is the nuclear spin quantum number

which is an integer multiple of 1
2 i.e.

I = 0,
1

2
, 1,

3

2
, 2, ... (A.2)

For 1H, 13C, 19F and 31P nuclei, I = 1
2 and such a spin system is called a spin-1

2 system [2].

A nucleus is NMR active if I 6= 0. Since the nucleus of atoms has electric charge (because

of protons), like any spinning charged object, the spinning of nucleus around its own axis

creates a magnetic moment ~µ which can be modelled by:
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Table A.1: NMR properties of some nuclei

Element Spin quantum number (I) Gyromagnetic ratio (γ) [MHz.T−1]

1H 1/2 42.576
13C 1/2 10.705
19F 1/2 40.053
23Na 3/2 11.262
31P 1/2 17.235

Figure A.1: Spinning nucleus will create magnetic moment.

~µ = 2πγ ~J (A.3)

where γ [Hz.T−1] is a nucleus dependent physical constant known as the gyromagnetic

ratio [2, 79]. The values for gyromagnetic ratio for some important nuclei are presented

in Table A.1. Figure A.1 depicts a simple visualisation of spinning nucleus and resulting

magnetic moment.

Based on quantum mechanics and using Eq. (A.3) and Eq. (A.1), the magnitude of ~µ can

be calculated as

µ = γh
√
I(I + 1) (A.4)

The magnetic moments for NMR active nuclei at thermal equilibrium (but not absolute

zero) are in random directions and as a result, the net macroscopic magnetic field is zero.

However, if a NMR active spin system is placed in an external magnetic field, B0, the

magnetic moments can have one of a discrete set of (2I + 1) orientations. For spin-1
2

system, I = 1
2 and the magnetic moments can obtain one of the two possible orientations
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as depicted in Figure 5.2(a). The torque that a magnetic moment experiences due to an

external magnetic field without considering any interaction between different magnetic

moments can be calculated using

~τ = ~µ×B0
~k (A.5)

where we considered the external magnetic field to be of magnitude B0 and aligned with
~k, a unit vector in z direction. The rate of change of angular momentum is equal to the

torque being applied hence

d ~J

dt
= ~µ×B0

~k (A.6)

Replacing Eq. (A.3) into Eq. (A.6), the equation for motion of magnetic moments in

external magnetic field can be written as:

d~µ

dt
= 2πγ~µ×B0

~k (A.7)

where ~µ can be defined in Cartesian coordinate system as

~µ = µx~i+ µy~j + µz~k (A.8)

Eq. (A.7) can be written in scalar form as



dµx
dt

= 2πγ B0 µy = ω0 µy

dµy
dt

= −2πγ B0 µx = −ω0 µx

dµz
dt

= 0

(A.9)

Taking second derivatives with respect to time from the first two equations we have


d2µx
dt2

= −ω2
0 µx

dµy
dt

= −ω2
0 µy

(A.10)

which has solutions of the form


µx(t) = µx(0) cos(ω0t) + µy(0) sin(ω0t)

µy(t) = −µx(0) sin(ω0t) + µy(0) cos(ω0t)

µz(t) = µz(0)

(A.11)
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(a) (b)

Figure A.2: Spinning nucleus in external magnetic field (a) A spinning nucleus in spin- 12 system

can have one of the two positions when being placed in an external magnetic field B0 (b) A spinning

nucleus will start to precess around the axis parallel to B0 filed.

Using the complex notation for the vectors in the transverse plane, the equation of motion

of magnetic moment is described as

{
µxy(t) = µxy(0) exp(−jω0 t)

µz(t) = µz(0)
(A.12)

where µxy(t) = µx(t) + jµy(t); µxy(0) and µz(0) are the initial values of magnetic moment

the in transverse (perpendicular to the direction of the external magnetic field) and lon-

gitudinal (parallel with the direction of the external magnetic field) planes respectively

and

µ(0) =
√
µxy(0)2 + µz(0)2 (A.13)

Eq. (A.12) indicates that the magnetic moments placed in external magnetic field exhibit

precession around the axis parallel to the external magnetic field as depicted in Figure

5.2(b). The angular frequency of nuclear precession is given by:

ω0 = 2πγB0 (A.14)

which is the well-known Larmor frequency relation. In order to be able to analyse the

macroscopic behaviour of the spin system, the bulk magnetisation vector ~M is introduced

as the vector sum of all microscopic magnetic moments in the object being investigated

and is described as:
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~M =

Ns∑
n=1

~µn (A.15)

where ~µn is the n-th microscopic magnetic moment and Ns is the total number of magnetic

moments in the object. In the absence of external magnetic field ~M = 0. As discussed

before, for a spin-1
2 system and when placed in an external magnetic field, the magnetic

moments will become either aligned or anti-aligned with the external field (Figure 5.2(a)).

Spins in different directions have different energy. Based on the relations from quan-

tum mechanics, the energy of the magnetic moments aligned with the magnetic field is

calculated as:

E = −~µ · ~B0 = −µzB0 = −1

2
γhB0 (A.16)

and for the moment in the reverse direction is

E =
1

2
γhB0 (A.17)

Hence, the energy difference between two states is

∆E = γhB0 (A.18)

which is known as the Zeeman splitting phenomenon. According to Boltzmann relation-

ship, the ratio of the spins aligned and anti-aligned can be calculated as:

N1

N2
= exp

(
∆E

kT

)
(A.19)

where k is the Boltzmann’s constant (1.38 × 10−23 [J.K−1]), T is the temperature in [K]

and N1 and N2 are the number of aligned and anti-aligned spins respectively. Considering

∆E << kT , and using first order approximation:

N1

N2
≈ 1 +

γhB0

kT
(A.20)

and

N1 −N2 ≈ Ns
γhB0

2kT
(A.21)

where Ns = N1 +N2 denotes the total number of spins.

Eq. (A.20) indicates that the number of spins in lower energy state are slightly more than

the number of spin in higher energy state. This difference results in an observable bulk

magnetisation vector ~M aligned with the external magnetic field. The magnitude of the

magnetisation vector can be calculated using the following equation
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(a) (b)

Figure A.3: The effect of external magnetic field on magnetic moments (a) Without the external

field, the magnetic moments are aligned randomly so the net magnetisation vector is zero. (b)

Magnetic moments placed in an external magnetic field take one of the two aligned or anti-aligned

states. However, the number of magnetic moments in aligned state is more so the net magnetisation

vector will be aligned to the external magnetic field.

M0 = | ~M | = (N1 −N2)
1

2
γh =

γ2h2NsB0

4kT
(A.22)

Eq. (A.22) depicts the linear dependence of the bulk magnetisation on the external mag-

netic field strength B0 and the total number of spins Ns [2].

A.2 RF excitation

As discussed in the previous section, the magnetic moments placed in an external magnetic

field start to precess around the external field. From a macroscopic point of view, we can

describe an ensemble of a large number of spins with a bulk magnetisation vector ~M

which is aligned with the external magnetic field. Although there exists a microscopic

transverse component for each magnetic moment vector, the transverse component of the

bulk magnetisation vector ~M is zero. This is due to the random distribution of phases

for different magnetic moments as expressed in Eq. (A.12). The phases of the precessions

in the transverse plane for an ensemble of magnetic moments are distributed uniformly in

[−π , π], as depicted in Figure A.4.

By applying a second oscillating magnetic field ~B1(t) perpendicular to ~B0 and with the

same frequency of the precession frequency of spins, it is possible to establish a coherence

in the spin phases. This phenomenon is called resonance. Since the Larmor frequency of
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Figure A.4: Snapshot of an ensemble of magnetic moments placed in external magnetic field ~B0.

The number of moments aligned with the external magnetic field is slightly more than the number

of moments aligned in opposite direction and results a bulk magnetisation vector ~M .

the spins are usually in the RF range, it is possible to generate the B1 field using a RF

pulse. For the ease of vector operations, we use complex notation to illustrate vectors in

the transverse (xy) plane. A typical B1 field using the complex notation takes the form:

~B1(t) = Be
1(t) exp (−j(2πνt+ φ)) (A.23)

where Be
1(t) is the pulse envelope function, ν is the frequency of oscillations of B1 field in

[Hz] and φ is the phase offset in [rad]. j is the unit imaginary number where j2 = −1. The

envelope function Be
1(t) determines the frequency selectivity of the RF pulse which will

be explained later in this chapter. Figure A.5 depicts the RF pulses with two different

envelope functions.

Based on Planck’s law, an electromagnetic radiation with frequency ν carries the energy:

E = hν (A.24)

In order for a spin to transit from one energy state to another, the amount of energy it

receives must be equal to the energy difference between the two energy states as described

in Eq. (A.18). As a result,

hν = γhB0 =
1

2π
hω0 (A.25)

Therefore, the angular frequency of the oscillations should be equal to the Larmor fre-

quency of the spins, which is called the resonance condition:

ωRF = ω0 (A.26)

where ωRF = 2πν is the angular frequency of the oscillating RF magnetic field in [rad.s−1].
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Figure A.5: RF excitation pulses with (a) Rectangular and (b) Sinc envelope functions

In order to analyse the motion of the magnetic moments during the application of RF pulse,

we use the rotating coordinate system, for which the transverse plane rotates clockwise

with the angular frequency ω0. For the rotating coordinate system, we use ~i′, ~j′ and ~k′

to depict the unit vectors in rotating x′, y′ and z′ directions [2]. The transformation of

laboratory frame to rotating frame is given by:


~i′ = cos(ω0t)~i− sin(ω0t)~j

~j′ = sin(ω0t)~i+ cos(ω0t)~j

~k′ = ~k

(A.27)

We consider a simple case where the spin system consists of an ensemble of magnetic

moments with identical Larmor frequency ω0 = 2πγB0. Without loss of generality, we

assume that the initial phase offset (φ) of the oscillating magnetic field in Eq. (A.23) is

zero. Therefore, the oscillating magnetic field in rotating coordinate system denoted by

B′1, can be written as:

~B′1(t) = Be
1(t)~i′ (A.28)

Using the equation of motion for a single magnetic moment in Eq. (A.7), the equation of

motion for bulk magnetisation vector ~M , can be written as:

d ~M

dt
= 2πγ ~M × ~B (A.29)
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which can be written in the rotating coordinate system as:

∂ ~M ′

∂t
= 2πγ ~M ′ × ~B′ − ~ω′ × ~M ′ (A.30)

= 2πγ ~M ′ ×
(
~B′ +

~ω′

2πγ

)
(A.31)

= 2πγ ~M ′ × ~B′eff (A.32)

where ~M ′ and ~B′ are the bulk magnetisation and magnetic field vectors respectively. ~ω′

denotes the rotation of the coordinates and is defined as:

~ω′ = −ω0
~k (A.33)

for a clockwise rotation. ~B′eff is the effective magnetic field that the bulk magnetisation

vector experiences in the rotating coordinate system [2]. In the case that the applied

magnetic field to the spin system is only ~B = B0
~k, the effective field is zero:

~B′eff = ~B′ − 2πγB0
~k′

2πγ
= B0

~k′ −B0
~k′ = 0 (A.34)

which confirms that the bulk magnetisation is aligned with the magnetic field and there

is not any force to move it.

However, in the presence of the oscillating magnetic field, ~B1(t), satisfying the resonance

condition and using Eq. (A.28), the effective magnetic field is calculated as:

~B′eff = ~B′ − 2πγB0
~k′

2πγ
=
(
B0
~k′ +Be

1(t)~i′
)
−B0

~k′ = Be
1(t)~i′ (A.35)

Therefore, the equation of motion for the bulk magnetisation vector is:

∂ ~M ′

∂t
= 2πγ ~M ′ ×Be

1(t)~i′ (A.36)

For a rectangular RF pulse envelope given by:

Be
1(t) = B1Π

(
t− Tp/2
Tp

)
=

{
B1 0 ≤ t ≤ Tp ,
0 otherwise ,

(A.37)

in which Tp is the pulse width in [s], and considering the initial conditions Mx′(0) =

My′(0) = 0 and Mz′(0) = M0, the solution of Eq. (A.36), can be written as
Mx′(t) = 0

My′(t) = M0 sin(ω1t)

Mz′(t) = M0 cos(ω1t)

(A.38)



122 Appendix A

x
y

z

M

Figure A.6: The trajectory of magnetisation vector in response to a rectangular 90◦ RF pulse.

where ω1 = 2πγB1. This solution shows that the bulk magnetisation vector ~M ′ precesses

around x′ axis with angular frequency ~ω1 = −2πγ ~B1 . The flip angle α is defined as the

angle between ~M and the z- axis can be calculated using:

α =

∫ Tp

0
ω1(t)dt =

∫ Tp

0
2πγBe

1(t)dt (A.39)

For the case of rectangular pulse envelope, the flip angle is calculated as:

α = ω1Tp = 2πγB1Tp (A.40)

A pulse which causes the rotation of α◦ degree is called an α◦ pulse (like 90◦ pulse or 180◦

pulse). A simple visualisation of the tip of the magnetisation vector during a rectangular

90◦ excitation pulse is illustrated in Figure A.6.

The analysis presented above, was based on the case in which the resonance frequency for

all spins is the same. In practice, because of field inhomogeneity and chemical shift effect,

excitations are not on-resonance for all the magnetic moments. Therefore, the effective

magnetic field in the case of off-resonance excitations and in the rotating frame can be

calculated as:

~B′eff =

(
B0 −

ν

γ

)
~k′ +Be

1(t)~i′ (A.41)

Here ν is the frequency of RF pulse oscillations. This relationship indicates that, in

the case of off-resonance excitations, the effective magnetic field has two components in

the rotating coordinate system, a B1 related component along the x′-axis and a residual

(B0 − ν/γ) component along the z′-axis. As a result, the transverse magnetisation vector
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immediately after the RF pulse for the case of off-resonance excitation is no longer along

the y′ axis and has a phase shift φ0 from y′ axis toward x′ axis.

The frequency selectivity of an RF pulse is determined using the Fourier transform of its

envelope function and can be approximated as:

α(∆ω0)

α(0)
≈ F{B

e
1(t)}(∆ω0)

F{Be
1(t)}(0)

(A.42)

where ∆ω0 = ω0−ωRF , α(∆ω0) is the flip angle for a pulse with ∆ω0 deviation from Lar-

mor frequency and F{Be
1(t)}(ω) is the Fourier transform of the envelop function calculated

as:

F{Be
1(t)}(ω) =

∫ ∞
−∞

Be
1(t) exp (−jωt) dt (A.43)

A.3 Spin relaxation and the Bloch equations

In the previous section, we described the process of excitation of the magnetic moments

using an external oscillating magnetic field. However, quantum mechanics indicate that,

the spins will return to their thermal equilibrium state after a certain time provided that

the external force is removed. This process is called relaxation [2,79]. The recovery of the

longitudinal magnetisation ~Mz is called longitudinal relaxation and the destruction of the

transverse magnetisation Mxy is called transverse relaxation.

The complete time dependent behaviour of the motion of bulk magnetisation vector ~M is

described using the Bloch equations [81].

d ~M

dt
= 2πγ ~M × ~B − Mx

~i+My
~j

T2
− (Mz −M0)~k

T1
(A.44)

where ~M0 = M0
~k is the longitudinal magnetisation vector at thermal equilibrium in the

presence of ~B0 field only and can be calculated from Eq. (A.22). T1 and T2 are the time

constants describing the relaxation in longitudinal and transverse planes, respectively

[2, 79]. By transforming Eq. (A.44) into rotating frame coordinates and considering the

case of on-resonance excitation, the Bloch equations in rotating coordinates are described

as:


dMz′

dt
= −Mz′ −M0

T1

dMx′y′

dt
= −

Mx′y′

T2

(A.45)

where ~Mx′y′ = Mx′
~i′ +My′

~j′. The solutions of Eq. (A.45) are of the form:
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
Mx′y′(t) = Mx′y′(0

+) exp

(
− t

T2

)
Mz′(t) = M0

(
1− exp

(
− t

T1

))
+Mz′(0

+) exp

(
− t

T1

) (A.46)

where Mx′y′(0
+) and Mz′(0

+) are the magnetisation on transverse and longitudinal planes

immediately after the RF pulse. These results show that the relaxation processes fol-

low exponential functions. The values of T1 and T2 depend on tissue structure and its

surroundings and for a given spin system T1 is always longer than T2.

The combined effect of free precession and relaxation can be shown in the laboratory

coordinates and using the complex notation as


Mxy(t) = Mxy(0

+) exp

(
− t

T2

)
exp (−jω0t)

Mz(t) = M0

(
1− exp

(
− t

T1

))
+Mz(0

+) exp

(
− t

T1

) (A.47)

where Mxy = Mx + jMy is the transverse component of bulk magnetisation in the labora-

tory frame and Mxy(0
+) = M0 sin(α)

Mz(0
+) = M0 cos(α)

(A.48)

and α is the flip angle [2, 79]. A simple visualisation of the relaxation of magnetisation

vector in longitudinal and transverse planes is illustrated in Figure A.7.

A.4 Signal detection

Detection of the NMR signal is performed based on the Faraday’s law of electromagnetic

induction which states that time-varying magnetic flux through a coil will induce a time

varying electric voltage [2]. Based on Faraday’s law, the voltage, V (t), induced in the coil

is calculated using:

V (t) = −∂Φ(t)

∂t
= − ∂

∂t

∫
object

~Br(r) · ~M(r, t)dr (A.49)

where ~Br(r) is the magnetic field at location r and ~M(r, t) is the time varying bulk

magnetisation vector at location r.
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Figure A.7: (a) The trajectory of the tip of magnetisation vector during relaxation period in

laboratory frame (b) Relaxation curves in longitudinal and transverse planes after 60◦ excitation

pulse

Assuming that the magnetic field ~Br(r) is only a function of location r, the voltage induced

in the coil can be written as:

V (t) = −∂Φ(t)

∂t
= −

∫
object

~Br(r) · ∂
∂t

~M(r, t)dr (A.50)

The magnetisation vector at location r and time t can be expressed in the laboratory

frame as:
~M(r, t) = Mx(r, t)~i+My(r, t)~j +Mz(r, t)~k (A.51)

in which using Eq. (A.47) and Eq. (A.48), we can write

Mx(r, t) = M0(r) sin(α) exp

(
− t

T2(r)

)
cos (−ω(r)t+ φe(r))

My(r, t) = M0(r) sin(α) exp

(
− t

T2(r)

)
sin (−ω(r)t+ φe(r))

Mz(r, t) = M0(r)

(
1− exp

(
− t

T1(r)

))
+M0(r) cos(α) exp

(
− t

T1(r)

) (A.52)

where ω(r) is the Larmor frequency at location r, M0(r) is the bulk magnetisation at

location r before RF excitation and can be calculated using Eq. (A.22), α is the flip angle,

and φe(r) is the initial phase shift induced by the RF excitation at location r.

The derivative of magnetisation vector with respect to time at location r can be calculated

as:

∂

∂t
~M(r, t) =

∂

∂t
Mx(r, t)~i+

∂

∂t
My(r, t)~j +

∂

∂t
Mz(r, t)~k (A.53)
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Figure A.8: (a) Relaxation of transverse magnetisation vector in xy plane and (b) resultant NMR

signal

where

∂

∂t
Mx(r, t) = M0(r) sin(α)

[
− 1

T2(r)
exp

(
− t

T2(r)

)
cos
(
− ω(r)t+ φe(r)

)
+ ω(r) sin

(
− ω(r)t+ φe(r)

)
exp

(
− t

T2(r)

)]
(A.54)

∂

∂t
My(r, t) = M0(r) sin(α)

[
− 1

T2(r)
exp

(
− t

T2(r)

)
sin
(
− ω(r)t+ φe(r)

)
− ω(r) cos

(
− ω(r)t+ φe(r)

)
exp

(
− t

T2(r)

)]
(A.55)

and

∂

∂t
Mz(r, t) = M0(r)

[
1

T1(r)
exp

(
− t

T1(r)

)
− cos(α)

T1(r)
exp

(
− t

T1(r)

)]
(A.56)

In practice, ω(r) � 1
T2(r) >

1
T1(r) . Hence the first terms in Eq. (A.54) and Eq. (A.55)

can be neglected. The derivative of longitudinal magnetisation given in Eq. (A.56) also is

small in comparison with the free precession rate. Hence the derivatives can be simplified

to:

∂

∂t
Mx(r, t) = M0(r) sin(α)ω(r) exp

(
− t

T2(r)

)
sin
(
− ω(r)t+ φe(r)

)
(A.57)
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and

∂

∂t
My(r, t) = −M0(r) sin(α)ω(r) exp

(
− t

T2(r)

)
cos
(
− ω(r)t+ φe(r)

)
(A.58)

A simple visualisation of the relaxation of the transverse magnetisation vector is depicted

in Figure A.8. The magnetic field at location r can be expressed as:

~Br(r) = Br,x(r)~i+Br,y(r)~j +Br,z(r)~k (A.59)

where

Br,x(r) = Br,xy(r) cos(φr(r))

Br,y(r) = Br,xy(r) sin(φr(r)) (A.60)

Here φr(r) is the reception phase angle. Substituting Eq. (A.57), Eq. (A.58) and Eq.

(A.60) into Eq. (A.50), the voltage induced in coil is calculated as:

V (t) =

−
∫

object
M0(r) sin(α)Br,xy(r)ω(r) exp

(
− t

T2(r)

)
sin
(
− ω(r)t+ φe(r)− φr(r)

)
dr =

∫
object

M0(r) sin(α)Br,xy(r)ω(r) exp

(
− t

T2(r)

)
cos
(
− ω(r)t+ φe(r)− φr(r) +

π

2

)
dr

(A.61)

Most of modern scanners use a quadrature detection method in which the detection is

performed using two coils perpendicular to each other. Therefore, if we consider that the

second RF coil has a reception angle with π
2 difference with respect to the first coil, i.e.

φ′r(r) = φr(r) + π
2 , the signal detected using the second coil can be calculated as:

V ′(t) =

−
∫

object
M0(r) sin(α)Br,xy(r)ω(r) exp

(
− t

T2(r)

)
sin
(
− ω(r)t+ φe(r)− φr(r)− π

2

)
dr

=

∫
object

M0(r) sin(α)Br,xy(r)ω(r) exp

(
− t

T2(r)

)
sin
(
ω(r)t− φe(r) + φr(r) +

π

2

)
dr

(A.62)

Therefore, it is possible to consider the signals from two coils as a complex valued signal
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S(t) = V (t) + jV ′(t)

= exp
(

j
π

2

)∫
object

~Br,xy(r) · ~Mxy(r, 0
+)ω(r) exp

(
− t

T2(r)

)
exp (−jω(r)t) dr

(A.63)

where using complex notation we can defineBr,xy(r) = Br,xy(r) exp (jφr(r))

Mxy(r, 0
+) = M0(r) sin(α) exp (jφe(r))

(A.64)

Considering a receiver coil considering a receiver coil with homogeneous reception field the

MR signal induced in the coil can be simplified to:

S(t) = exp
(

j
π

2

)∫
object

ω(r)Mxy(r, 0
+) exp

(
− t

T2(r)

)
exp (−jω(r)t) dr (A.65)

which can be simplified using Eq. (A.47) as

S(t) = exp
(

j
π

2

)∫
object

ω(r)Mxy(r, t) dr (A.66)

Eq. (A.66) shows that the MR signal is only dependent on the transverse magnetisation.

This expression can further be simplified by ignoring the initial phase of the transverse

magnetisation (φe(r)) and using the Eq. (A.64) which results in:

S(t) = exp
(

j
π

2

)
sin(α)

∫
object

M0(r)ω(r) exp

(
− t

T2(r)

)
exp (−jω(r)t) dr (A.67)

Since the transverse magnetisation vector precesses at Larmor frequency, the received sig-

nal is modulated with a high frequency component. Therefore, in order to decrease the

complexity of the electronic circuits needed for further processing the signal, the received

signal is demodulated by a reference signal with Larmor frequency. The demodulation

is performed using mixing the signal with a local oscillator with frequency equal to Lar-

mor frequency and filtering out the high frequency component using a low-pass filter.

Therefore, the output signal of the demodulator can be written as:

Sd(t) = ω0 exp
(

j
π

2

)
sin(α)

∫
object

M0(r) exp

(
− t

T2(r)

)
exp

(
− j∆ω(r)t

)
dr (A.68)
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where ∆ω = ω(r) − ω0 is the position related deviation of the Larmor frequency of the

magnetisation vector. The scaling factor ω0 exp
(
jπ2
)

is often omitted and the demodulated

signal is expressed as:

Sd(t) = sin(α)

∫
object

M0(r) exp

(
− t

T2(r)

)
exp

(
− j∆ω(r)t

)
dr (A.69)

For a heterogenous system, the distribution of the frequency deviations (∆ω) can be

described by a function ρ(ω). where,

M0 =

∫ ∞
−∞

ρ(ω)dω (A.70)

As a result, Eq. (A.67) can be written with resect to the spin spectral density function

ρ(ω) as:

S(t) = sin(α)

∫ ∞
−∞

ρ(ω) exp

(
− t

T2

)
exp (−jωt)dω (A.71)

where α is the flip angle.

A.5 Free Induction Decay

Free Induction Decay (FID) signal as can be expected from its name, is generated by the

free precession of the excited bulk magnetisation vector ~M about the ~B0 field [2]. The free

induction decay signal after an α pulse can be expressed using Eq. (A.71), in which the

decay rate depends on T2 and the spin spectral density function ρ(ω). If the sample and

external magnetic field are both homogeneous the FID signal posseses the T2 characteristic

decay. However, this is not true in reality and usually the sample and magnetic field are

heterogenous. As a result, the decay characteristic is much faster which is shown by T ∗2 .

For the case in which the magnetic field inhomogeneity can be modelled using a Lorentzian

distribution:

ρ(ω) = M0
(γ∆B0)2

(γ∆B0)2 + (ω − ω0)2
(A.72)
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the resultant FID signal can be calculated using Eq. (A.71) as:

S(t) = sin(α)

∫ ∞
−∞

M0
(γ∆B0)2

(γ∆B0)2 + (ω − ω0)2
exp

(
− t

T2

)
exp (−jωt)dω

= sin(α)

∫ ∞
−∞

[
M0

(γ∆B0)2

(γ∆B0)2 + ω2
exp (−jωt)

]
exp

(
− t

T2

)
exp (−jω0t)dω

= πM0γ∆B0 sin (α) exp (−γ∆B0t) exp

(
− t

T2

)
exp (−jω0t)

= πM0γ∆B0 sin (α) exp

(
− t

T ∗2

)
exp (−jω0t) ∀t ≥ 0 (A.73)

where
1

T ∗2
=

1

T2
+ γ∆B0 (A.74)

T ∗2 indicates the decay characteristics of the MR signal created after the RF excitation

pulse. Eq. (A.74) is valid only when the field inhomogeneity could be modelled by

Lorentzian distribution. For other types of spectral density functions the decay curve

will not posses an exponential envelope function. In this case T ∗2 is approximated by the

time constant of the effective exponential envelope.

A.6 Spin Echoes

Spin echo is another form of MR signal which are created by refocusing and dephasing of

the transverse magnetisation vector components [63]. Spin echo is generated by application

of multiple RF pulses [2]. The simplest form of pulse sequence for producing a spin echo

consists of a 90◦ pulse followed by a 180◦ pulse after certain time (TE/2) as depicted in

Figure A.9. The total time from the first pulse until occurring echo signal is called Echo

time (TE).

A.7 Gradient Echoes

Gradient echoes are another form of echo signals which are generated by application of

time varying gradient fields to rephase the excited transverse magnetisation vectors. [2].

A gradient field, ~BG, is defined as an inhomogeneous magnetic field whose z-component,

BG,z, varies linearly with respect to certain spatial direction. The direction by which the

gradient field varies linearly is called the gradient direction. The gradient system consists

of three gradient coils referred to as x-gradient, y-gradient and z-gradient fields for which

BG,z = Gxx, BG,z = Gyy and BG,z = Gzz respectively. The gradient fields have also

components in the x and y directions but these components are very small in comparison

with the B0 field in the z direction and are neglected [2].



Appendix A 131

Figure A.9: A simple Spin Echo sequence. The dephased transverse magnetisation vectors

created by the first RF pulse are refocused using the second RF pulse to create the echo signal.

The decay of the FID signal follows T ∗
2 characteristics while the amplitude of the echo signal is

related to the T2 value of the sample.

The total gradient field at any local point (r) can be written as:

BG = Gxx+Gyy +Gzz (A.75)

which can be written as an inner product of the gradient vector ~G and the spatial position

r = x~i+ y~j + z~k, where the gradient vector is defined as:

~G = ~∇BG,z = Gx~i+Gy~j +Gz~k (A.76)

where ~∇ operator is defined as:

~∇ =
∂

∂x
~i+

∂

∂y
~j +

∂

∂z
~k (A.77)

As a result, the total magnetic field at point r is the sum of the static field B0 and the

gradient field at position r and time t

~B(r, t) = (B0 + ~G(t) · r)~k (A.78)

As a result of application of location dependent gradient magnetic field, the spins at

different locations experience different total magnetic field ~B(r). Therefore, the angular

frequency of a particle at point r can be calculated according to Eq. (A.14) as:

~ω(r, t) = 2πγ ~B(r, t) = 2πγ
(
B0 + ~G(t) · r

)
~k (A.79)
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Figure A.10: A simple Gradient Echo sequence. The dephased transverse magnetisation vectors

during the negative gradient field are refocused during the positive gradient field. The decay of the

FID signal in this case follows T ∗∗
2 time constant while the amplitude of the echo signal is related

to the T ∗
2 characteristics.

Hence, the offset in the angular frequency of particles with respect to the case when the

gradient field was not applied is:

∆ω(r, t) = ω(r, t)− ω0

= 2πγ(B0 + ~G(t) · r−B0)

= 2πγ ~G(t) · r (A.80)

where ω0 = 2πγB0 is the Larmor frequency in the absence of the gradient field. The

change in the precession frequency of particles will induce a location dependent phase

offset

∆φ(r, t) =

∫ t

0
∆ω(r, t′) dt′

= 2πγ

∫ t

0

~G(t′) · r dt′ (A.81)

Therefore, the transverse magnetisation vector at location r in the presence of a gradient

field ~G and considering the static field inhomogeneity is calculated as:

~Mxy(r, t) = ~Mxy(r, 0
+) exp

[
− t

T2(r)
− j (ω0t+ ∆φ(r, t))

]
(A.82)



Appendix A 133

where ~Mxy(r, 0
+) is the transverse magnetisation vector immediately after RF excitation

pulse. The MR signal in presence of gradient field is calculated by substituting Eq. (A.82)

and Eq. (A.64) into Eq. (A.66) which results in:

S(t) = exp
(

j
π

2

)
ω0 sin(α)

∫
object

M0(r) exp

[
− t

T2(r)
− j (ω0t+ ∆φ(r, t))

]
dr (A.83)

where M0(r) is the magnetisation before application of RF excitation pulse at location r

and α is the flip angle after application of RF pulse. ∆φ(r, t) is the phase offset induced

by the application of gradient field which can be calculated using Eq. (A.81) for the case

of single gradient ~G(t).

Application of gradient fields for producing gradient echo signals is depicted in Figure

A.10. A negative gradient −~G1 is turned on after an RF pulse excites the magnetisation

vector. As a result of gradient field the spins in different spatial positions acquire different

phase offsets which can be expressed as:

∆φ(r, t) = 2πγ

∫ t

0
−~G1 · r dt′ = −2πγ(~G1 · r)t 0 ≤ t ≤ τ1 (A.84)

Eq. (A.84) depicts that the phase difference increases as the time elapses and results in

the decay of the signal which is characterised by another time constant T ∗∗2 . At time τ ,

the gradient field changes its polarity resulting in a positive gradient field ~G2. The phase

offset of spins after the second gradient pulse is calculated as:

∆φ(r, t) = −2πγ(~G1 · r)τ1 + 2πγ

∫ t

τ1

~G2 · r dt′ =2πγ
(
−(~G1 · r) τ1 + (~G2 · r)(t− τ1)

)
τ1 ≤ t ≤ τ2 (A.85)

The total MR signal during the application of gradient echo signal can be calculated by

substituting Eq. (A.85) into Eq. (A.83).

In the particular case when ~G1 = ~G2 = ~G, the phase offset can be simplified as:

∆φ(r, t) = 2πγ
(
~G · r

)
(−2 τ1 + t) (A.86)

and the phase offset will become zero at time t = 2τ1. The analysis presented above was

under the assumption of static magnetic field homogeneity. However, it should be noted

that in the case that the static magnetic field B0 is inhomogeneous, the spins will not be

completely rephased by the gradient reversal and the amplitude of echo signal will follow

T ∗2 characteristics in this case, which differs from the spin echo [2].
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B Solution to diffusion equation

Based on Fick’s second law, the diffusion equation is presented as:

∂c(r, t)

∂t
= D0∇2c(r, t) (B.1)

where c(r, t) is the concentration density at position r = [rx1 , rx2 , ..., rxn ]T and time t and

D0 is the diffusion coefficient (diffusivity).

The concentration of particles can be written in term of the conditional probability density

function as:

c(r, t) =

∫ ∞
−∞

c(r0, 0)P (r|r0, t)dr0 (B.2)

where P (r|r0, t) is the conditional probability density for a particle starting at position r0

ending up at position r during time t.

We assume that the diffusion is independent of the starting point. Hence, the concentration

density can be replaced by the conditional probability density P (r|r0, t) and the diffusion

equation can be written as:

∂P (r|r0, t)
∂t

= D0∇2P (r|r0, t) (B.3)

We wish to solve:
∂P (r|r0, t)

∂t
= D0

∂

∂r
· ∂
∂r
P (r|r0, t) (B.4)

with the initial condition:

P (r|r0, 0) = δ(r− r0) (B.5)

and boundary condition as:

lim
|r|→∞

P (r|r0, t) = 0 ∀t > 0 (B.6)

which depicts that the particle is at position r0 at time t = 0 and the probability for

a particle to reach r = ±∞ is zero. We utilise the Fourier transform in spatial domain

defined as:

P̃ (kr, t) =

∫ ∞
−∞

P (r|r0, t) exp (−j 2πkr · r) dr (B.7)

to solve the partial differential equation (PDE). kr = [kx1 , kx2 , ..., kxn ]T denotes the

wavenumber in different directions. Taking the Fourier transform of Eq. (B.4) we have



Appendix B 135

∂P̃ (kr, t)

∂t
= D0

∫ ∞
−∞

∂

∂r
· ∂
∂r
P (r|r0, t) exp (−j 2πkr · r) dr

= −4π2D0 |kr|2 P̃ (kr, t) (B.8)

where we have used the differentiation property of the Fourier transform. Using the Fourier

transform, we converted the PDE in Eq. (B.4) to a simple first order Ordinary Differential

Equation (ODE) in Eq. (B.8). The solution for this ODE is in the form:

P̃ (kr, t) = P̃ (kr, 0) exp
(
−4π2D0 |kr|2 t

)
∀t > 0 (B.9)

where P̃ (kr, 0) is the Fourier transform of the initial condition as:

P̃ (kr, 0) =

∫ ∞
−∞

δ(r− r0) exp (−j 2πkr · r) dr

= exp (−j 2πkr · r0) (B.10)

Taking inverse Fourier transform of Eq. (B.9), we have

P (r|r0, t) =

∫ +∞

−∞
P̃ (kr, t) exp (j 2πkr · r)dkr

=

∫ +∞

−∞
exp

(
−4π2D0 |kr|2 t

)
exp (j 2πkr · [r− r0]) dkr (B.11)

Considering the separability of the integrals in Cartesian space, the solution to the above

integral is a Green’s function calculated as:

P (r|r0, t) =

∫ +∞

−∞
exp

(
−4π2D0 |kr|2 t

)
exp

(
j 2π

n∑
i=1

kxi(rxi − r0,xi)

)
n∏
i=1

dkxi

=

[∫ +∞

−∞
exp

(
−4π2D0 |kr|2 t

)
exp

(
j 2πkxi(rxi − r0,xi)

)
dkxi

]n
(B.12)

Therefore, the diffusion propagator for the case of isotropic and free diffusion can be

written as:

P (r|r0, t) =
1

(4πD0t)
n/2

exp

(
−|r− r0|2

4D0t

)
∀t > 0 (B.13)

where n is the spatial dimension (The number of elements of r). The Green’s Function

indictes how a single point of probability density initially at r0 evolves in time and space.
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Eq. (B.13) indicates that diffusion is happening in precisely the same way, independently in

all dimensions and diffusion in 3D is identical to diffusion in 1D happening simultaneously

on three orthogonal axes. This property is only valid for the case of free and isotropic

diffusion in which the diffusion tensor is time-invariant and D(t) = D0In and we can use

the separability of the PDE. In general the diffusion is not isotropic and the solution for

the disunion equation would be more complicated.


