
Networked Control System: Stability,
Robustness and Controllability with

respect to Packet Dropouts and
Scheduling

Lješnjanin Merid

Submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy
(with coursework component)

Department of Electrical and Electronic Engineering
THE UNIVERSITY OF MELBOURNE

June 2015

Copyright © 2015 Lješnjanin Merid

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author.

Abstract

Control systems which use a communication network as a communication medium are

the focus of this thesis. These systems are widely recognized as Networked Control

Systems (NCSs). In particular, we consider NCSs in which the corresponding network

induces two communication issues. One of them is a packet dropout(s) while the other is

scheduling. To mitigate the undesirable effects of packet dropouts and scheduling, such

as instability or deteriorated performance, we use a protocol and controller co-design.

More precisely, we use a Model Predictive Control (MPC) framework and the flexible

nature of NCS architecture which allows for distributed computation.

Considering a specific NCS architecture affected with packet dropouts and/or schedul-

ing we focus on stability, robustness and controllability properties of the corresponding

NCS.

In particular, we begin by considering stability property of a NCS in which the cor-

responding network is located between the controller output and the plant input. The

network is prone to packet dropouts and it induces scheduling of its communication re-

source. To address these communication constraints we employ a protocol and controller

co-design and show stability, in particular, Uniform Global Asymptotic Stability (UGAS)

of the corresponding NCS state. We use two approaches to establish this result. One ap-

proach consists of finding an appropriate Lyapunov function while the other approach

uses a cascade idea.

Following this is an investigation of the same NCS architecture with the difference

that it is governed not with a standard MPC controller but an Economic MPC controller.

Here we combine several recently established results for an Economic MPC in a way so

that our result can be applied off the shelf to establish UGAS of the corresponding NCS

iii

state.

We then proceed by considering robustness properties of the same NCS architecture.

In particular, we consider the case where, additionally, the plant is affected with exoge-

nous disturbances. Here we exploit a concept of nonlinear gains to establish the cor-

responding result, namely, partial nonlinear gain `2 stability. We also establish partial

linear gain `2 stability, recover and strengthen a result from the literature for the case

when there is no disturbance, provide an alternative robustness characterization for the

case when there is no scheduling and finally, by using stronger assumptions, we establish

Input-to-State Stability (ISS) of the corresponding NCS state.

The last theoretical contribution is controllability of a NCS where the network only

induces the scheduling of its communication resource. Namely, we first provide an inter-

esting and novel model which is followed by splitting attention to a NCS with a nonlinear

and a NCS with a linear plant. In the former case, we establish general results while in

the latter case we extend a result from the corresponding literature and use it to establish

our controllability result.

Finally, we finish with the implementation of the obtained results within a Hardware-

in-the-loop (HIL) simulation. We verify the expectations from theoretical stability and

robustness results. Finally, we encounter several issues while carrying out the imple-

mentation which will be used as a motivation for further research.

iv

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Lješnjanin Merid, June 2015

v

This page intentionally left blank.

Acknowledgements

I would like to use this opportunity to thank my supervisor Dragan Nešić for his time,

help, support and above all, his patience. I am truly grateful for each advice and sugges-

tion but more importantly for the established friendship.

A special thanks is due to Daniel E. Quevedo with whom I worked on most of my

Ph.D. projects and whose suggestions lead to many improvements.

I would also like to thank my committee members, Ying Tan and Wei Wang, for all

useful advice.

A special thanks also goes to Michael Cantoni, Peter Farrell and Ying Tan for provid-

ing me with the opportunity to work with the undergraduate students in their respective

subjects.

Also, I would like to thank all the students and staff at the University of Melbourne

for making such a stimulating and friendly environment.

Finally, expressing in words my gratitude for love, understanding and support from

my family and friends is simply impossible.

vii

This page intentionally left blank.

To you!

ix

This page intentionally left blank.

Contents

1 Mathematical Preliminaries and Notation 1

2 Introduction 7
2.1 Goal . 12
2.2 Motivation . 12
2.3 Methodology . 15
2.4 Literature review . 19

2.4.1 Networked Control Systems . 19
2.4.2 Model Predictive Control . 24
2.4.3 Packetized MPC . 27

2.5 Overview and contributions . 31
2.6 Publications . 34

3 Stability with respect to Packet Dropouts and Scheduling 37
3.1 NCS Architecture . 40

3.1.1 Plant . 40
3.1.2 Network . 42
3.1.3 Buffer . 43
3.1.4 Controller . 49

3.2 Stability analysis . 53
3.2.1 Assumptions . 53
3.2.2 Results . 56

3.3 Proofs . 63

4 Stability with respect to Packet Dropouts and Scheduling - Economic MPC 75
4.1 UGAS-Economic MPC . 77
4.2 Proofs . 83

5 Robustness with respect to exogenous disturbances 87
5.1 NCS architecture . 89

5.1.1 Plant . 89
5.1.2 Network . 90
5.1.3 Buffer . 91
5.1.4 Controller . 91

5.2 Robustness Analysis . 94

xi

5.2.1 Assumptions . 96
5.2.2 Results . 99
5.2.3 Simulations . 111

5.3 Proofs . 115

6 Controllability with respect to Scheduling 129
6.1 NCS architecture . 130

6.1.1 Plant . 131
6.1.2 Network protocols . 132
6.1.3 Processing devices . 134
6.1.4 NCS architecture with dynamic devices 136
6.1.5 NCS architecture with static devices 136

6.2 Results . 137
6.2.1 Controllability: nonlinear plants . 139
6.2.2 Controllability: linear plants . 143

6.3 Proofs . 147

7 Implementation 151
7.1 NCS architecture . 153

7.1.1 Plant . 154
7.1.2 Network . 154
7.1.3 Buffer . 157
7.1.4 Controller . 158

7.2 Assumptions . 160
7.2.1 Stability – UGAS . 160
7.2.2 Robustness – Partial linear gain `2 stability 161

7.3 Implementation . 162
7.4 Results . 164

8 Conclusion and future work 171
8.1 NCS architecture . 172
8.2 Network . 172
8.3 Analysis and design . 173
8.4 Implementation . 173

A Implementation details 175
A.1 Hardware-in-the-loop simulation . 175
A.2 Control Area Network . 176
A.3 Simulation setup . 183

A.3.1 Considered plant . 184
A.3.2 Designing CAN structure . 184
A.3.3 Physical realization of CAN structure 189
A.3.4 Designing MPC controller(s) . 189
A.3.5 NCS model . 192
A.3.6 ControlDesk Next Generation® . 193

A.4 Specific settings of RTICANMM blocks . 195

xii

List of Figures

2.1 Control systems. 7
2.2 A ”traditional” interconnection versus usage of a network; Σi, i ∈ {1, . . . , 8}

denotes a system while u and y denotes its corresponding input and out-
put, respectively. 8

2.3 A wireless NCS; e.g., with Bluetooth network. 10
2.4 General NCS with extra devices. 15
2.5 Schematic methodology for addressing packet dropouts and scheduling. . 19
2.6 An NCS architecture for addressing unbounded delay. 28
2.7 An NCS architecture for addressing the issues of packet dropouts and

scheduling. 29
2.8 An NCS architecture for addressing the issues of packet dropouts. 30
2.9 An NCS architecture for addressing robustness with respect to the packet

dropouts and scheduling. 33
2.10 An A NCS architecture for addressing controllability. 33

3.1 An NCS architecture considered for stability. 37
3.2 Illustration of the function of a buffer. 38
3.3 Illustration of what we refer to as inter-sample behavior; k denotes current

discrete time. 57

5.1 A NCS architecture for investigating robustness with respect to packet
dropouts and scheduling. 89

5.2 Dynamic and static scheduling comparison; buffer set to zero value; dropout
probability 0.2, 1 – channel 1 (e.g., up1) while 2 – channel 2 (e.g., up2). . . . 113

5.3 Dynamic and static scheduling comparison; buffer set to the “last value”;
dropout probability 0.2, 1 – channel 1 (e.g., up1) while 2 – channel 2 (e.g., up2).113

5.4 Dynamic and static scheduling comparison; buffer set to zero value; dropout
probability 0.6, 1 – channel 1 (e.g., up1) while 2 – channel 2 (e.g., up2). . . . 114

5.5 Dynamic and static scheduling comparison; buffer set to the “last value”;
dropout probability 0.6, 1 – channel 1 (e.g., up1) while 2 – channel 2 (e.g., up2).114

6.1 A NCS architecture for addressing controllability. 131
6.2 A NCS architecture for addressing controllability - a simplified represen-

tation. 132
6.3 Conceptual abstraction of static devices for a plant with three inputs. . . . 134
6.4 A convention for ”transitioning” form hybrid time to discrete time. 137

xiii

6.5 A block diagram abstraction of the concept of the realization of control
sequences over a network. 138

6.6 Illustration of tricking TOD with APC0 for a plant with three inputs. 141
6.7 Case 1: uδ(0) = xµd

p
(0); Case 2: uδ(0) 6= xµd

p
(0) but when up(k) = uδ(k) we

have φ fp(k, xp, {uδ}∞
0) = φ fp(k, xp, {ũδ}∞

0) where k ≥ m; Case 3: uδ(0) 6=
xµd

p
(0) but when up(k) = uδ(k) we have φ fp(k, xp, {uδ}∞

0) 6= φ fp(k, xp, {ũδ}∞
0)142

7.1 Implementation as a Hardware-In-the-Loop (HIL) simulation. 151
7.2 Implemented NCS architecture. 153
7.3 Demonstrating quantization issues on CAN bus; here we use only one byte

to transmit the values of sine signal since we have to use one byte to trans-
mit the values of each control element from the sequence of the optimally
predicted controls. 155

7.4 Demonstrating delay on CAN bus. 156
7.5 The effects of generated packet dropouts. 157
7.6 Conceptual illustration of the considered NCS in Simulink®. 164
7.7 Stability: scheduling of input up1 . 165
7.8 Stability: scheduling of input up2 . 166
7.9 Stability: Euclidean norm of plant state . 166
7.10 Stability: indication of packet dropouts through updating contents of buffer

located before input up2 . 167
7.11 Stability: Euclidean norm of plant state due to packet dropouts 167
7.12 Robustness: Euclidean norm of plant disturbance 168
7.13 Robustness: indication of packet dropouts through updating contents of

buffer located before input up2 . 168
7.14 Robustness: Euclidean norm of plant state 169

A.1 Serial bus networking; node n· is an abstraction for a communication par-
ticipant, e.g., a plant. 177

A.2 OSI 7 layer communication model. 178
A.3 Basic communication principles in OSI 7 layer communication model; PCI

- Protocol Control Information, PDU - Protocol Data Unit. 179
A.4 Three Layer model. 179
A.5 CAN data framing. 181
A.6 Principle of CAN bus access; ITM - Intermission. 182
A.7 CAN structure designed in Vector Informatik® CANdb++ editor 185
A.8 dSPACE® Simulator - back view. 189
A.9 Physical connections resembling the designed CAN connection structure. 190
A.10 Simulink® model of the implementation of the corresponding NCS. 192
A.11 Other custom made Simulink® sub-models. 193
A.12 dSPACE® RTICANMM Simulink® blockset. 193
A.13 dSPACE® ControlDesk New Generation®. 194
A.14 Generating communication errors and/or misbehaviors which are effec-

tively packet dropouts. 195
A.15 Specific settings of RTICANMM blocks . 196

xiv

A.16 Specific settings of RTICANMM blocks . 196
A.17 Specific settings of RTICANMM blocks . 197
A.18 Specific settings of RTICANMM blocks . 197
A.19 Specific settings of RTICANMM blocks . 197
A.20 Specific settings of RTICANMM blocks . 198
A.21 Specific settings of RTICANMM blocks . 198
A.22 Specific settings of RTICANMM blocks . 198
A.23 Specific settings of RTICANMM blocks . 199
A.24 Specific settings of RTICANMM blocks . 199
A.25 Specific settings of RTICANMM blocks . 199
A.26 Specific settings of RTICANMM blocks . 200
A.27 Specific settings of RTICANMM blocks . 200

xv

This page intentionally left blank.

List of Tables

1.1 Notation for basic sets. 1
1.2 Symbols for parts of NCS architecture. 4
1.3 Symbols for dynamical description where � ∈ {c, n, b, p}. 4

2.1 Typical references for network-induced issues. 25

6.1 Communication sequence matrix polynomials for different periodic se-
quences and roots of the corresponding polynomials for a second ordered
system; permutation of added elements, adding (1, 0) instead of (0, 1), or
adding both where possible, does not generate new polynomials. 149

xvii

This page intentionally left blank.

Chapter 1

Mathematical Preliminaries and
Notation

We will present a collection of mathematical preliminaries and notations used throughout

the thesis. We start with notation used for basic sets given in Table 1.1.

Set Symbol Definition

Natural numbers N Consult [1]
Integer numbers Z Consult [1]
Real numbers R Consult [1]
Complex numbers C Consult [1]

”Dummy” D D ∈ {N, Z, R, C}
Extended ”dummy” D̄ D∪ {−∞, ∞}

Elements bounded by a specific element c D�c {ν ∈ D : ν � c, c ∈ D, � ∈ {≤,<,>,≥}}

Natural numbers including zero N0 Z≥0

Table 1.1: Notation for basic sets.

We will use symbol > for transposition and quite often we will use tuple notation to

denote a column vector, that is

(ν1, . . . , νi) :=
[
ν>1 . . . ν>i

]>
=


ν1
...

νi

 , i ∈N, (1.1)

1

2 Mathematical Preliminaries and Notation

where νj are vectors for each j ∈ {1, . . . , i}.
The origin element of the ith dimensional space of real numbers is denoted by 0i, more

precisely

0i := (0, . . . , 0) ∈ Ri, i ∈N. (1.2)

The i× i identity matrix is denoted via

Ii×i = Ii := diag(1, . . . , 1) :=


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 , i ∈N, (1.3)

while i× i zero matrix is denoted via

0i×i = 0i := diag(0, . . . , 0) :=


0 · · · 0
...

. . .
...

0 · · · 0

 , i ∈N. (1.4)

We use the following notation for a sequence of elements

νk
j := {ν(i)}k

i=j, if j ≤ k,

{}, if j > k,

 (1.5)

where j ∈ Z̄ and k ∈ Z̄.

We define a set of infinite sequences initialized at index 0 whose elements take value

from some set V as

SV := {ν∞
0 : ν(i) ∈ V , ∀i ∈N0}. (1.6)

We use the following definitions of some functions.

Definition 1.1 (Positive definite function). A function ρ : Rn → R≥0 is said to be positive

definite (ρ ∈ PD) with respect to ν = c if it is continuous, ρ(c) = 0 and ρ(ν) > 0 for all ν 6= c.

3

Definition 1.2 (Class - K function). A function α : R≥0 → R≥0 is said to be of class-K
(α ∈ K) if it is continuous, α(0) = 0, and strictly increasing.

Definition 1.3 (Class - K∞ function). A function α : R≥0 → R≥0 is said to be of class-K∞

(α ∈ K∞) if α ∈ K and, in addition, limi→∞ α(i) = ∞.

Definition 1.4 (Class - L function). A function σ : R≥0 → R>0 is said to be of class-L
(σ ∈ L), if it is continuous, monotonically decreasing to zero for nonzero argument and it is zero

at zero.

Definition 1.5 (Class - KL function). A function β : R≥0 × R≥0 → R≥0 is said to be of

class-KL (β ∈ KL) if it is class-K in its first argument and class-L in its second argument; that

is, β ∈ KL if for each fixed j ∈ R≥0, β(·, j) ∈ K and for each fixed i ∈ R≥0, β(i, ·) ∈ L.

Definition 1.6 (UIB function [2]). A class-KL function β(i, j) is called Uniformly Incremen-

tally Bounded (UIB) if there exists a number P > 0 such that β(i, j) ≤ Pβ(i, j+ 1) for each i ≥ 0

and each j ∈N.

We will use the fact that for any class-K∞(class-K) function α and any non-negative

real numbers c1 and c2 it holds that

1
2

α(c1) +
1
2

α(c2) ≤ α(c1 + c2) ≤ α(2c1) + α(2c2). (1.7)

Using the former inequality it is easy to show the following ones

−α(c1 + c2) ≤ − α(c1)
2 + α(c2)

2 ,

α
(

∑
j
l=i cl

)
≤ ∑

j
l=i α(2j−icl), i ≤ j,

∑
j2
j=j1

α
(

∑
j
l=i cl

)
≤ (j2 − j1 + 1)∑

j2
l=i α(2j2−icl), i ≤ j ≤ j1 ≤ j2,

 (1.8)

where all elements from {i, j, j1, j2} are non-negative numbers. We have dedicated some

lowercase Fraktur letters1 to denote certain parts of NCS architecture, see Table 1.2.

Further, for dynamical description we use symbols presented in Table. 1.3.

1The reason for this is that same symbol in standard letters will be used for dimension; for instance, a
dimension for plant output vector yp will be denoted with p, e.g., yp ∈ Rp.

4 Mathematical Preliminaries and Notation

NCS element Lowercase Fraktur letter

Controller c

Network n

Buffer b

Plant p

Address a

Data d

Table 1.2: Symbols for parts of NCS architecture.

Symbol

Dynamical system Σ�
State x�
State mapping f�
Input u�
Input mapping υ�
Disturbance w�
Disturbance mapping v�
Output y�
Output mapping h�

Table 1.3: Symbols for dynamical description where � ∈ {c, n, b, p}.

Solution mapping

Let � ∈ {p, c, n, b} and consider the corresponding dynamical system in discrete-time

Σ� : x�(k + 1) = f�(x�(k), u�(k), w�(k)), k ∈N0, (1.9)

where x� ∈ Rn� is the state, u� ∈ Rm� is the input and w� ∈ Rq� is the exogenous dis-

turbance of � with n�, m� and q� belonging to natural numbers. We denote the solution

of Σ�, j− i steps into the future, starting at initial condition x� at time instant i ≤ j, under

the influence of control input sequence {u�(k)}j−1
k=i and disturbance sequence {w�(k)}j−1

k=i

via φ f�
(

j− i, x�, {u�(k)}j−1
k=i , {w�(k)}

j−1
k=i

)
. Note that φ f�

(
0, x�, {}, {}

)
= x� = x�(0). Also,

note that we do not use a frequently used notation for an initial condition x�, such as writ-

ing a number ”0” or a lower case letter ”o” at the subscript place, due to the fact we have

5

decided to use the subscript place to denote objects (�) and/or index of a corresponding

vector element.

Whenever appropriate we will use the following succinct notation for Eq. 1.9 (and

other similar equations)

Σ� : x+� = f�(x�, u�, w�). (1.10)

Finally, if a system is defined as augmentation of several variables, e.g.,

Σx : x+ :=

x+p

x+b

 =

 fp(xp, up, wp)

fb(xb, up, wp)

 =: f (x, up, wp) (1.11)

then, to extract, say plant component from a solution mapping of system Σx, that is

φ f (·), we will write φ fp(·).

This page intentionally left blank.

Chapter 2

Introduction

The focus of this thesis are the so-called Networked Control Systems (NCSs). More pre-

cisely, these are a special class of control systems in which a communication network is

used as a communication medium to send and/or receive the corresponding control-related

signals.

Controller

Plant

uc1uc2

up2
up1

yp1
yp2

yc2yc1

(a) ”Traditional”.

Controller

Plant

uc1uc2

up2
up1

yp1
yp2

yc2yc1

Network protocol

Network protocol

un12

un21
un22

yn22
yn21

yn11
yn12

Network

un11

(b) Networked (wired).

Figure 2.1: Control systems.

In order to provide more detail about NCSs, let us consider a ”traditional” control sys-

7

8 Introduction

tem1, see Fig. 2.1a. As illustrated, the chosen ”traditional” control system is very simple.

Both, the plant and the controller, have two inputs and two outputs, but more impor-

tantly, for each corresponding pair of inputs and outputs there is a dedicated point-to-point

connection. Equally important is to notice that this dedicated point-to-point connection

ensures that the output of the plant is equal to the input of the controller and vice versa,

i.e., up· = yc· and uc· = yp· .

On the other hand, an alternative to interconnecting the corresponding inputs and

outputs is to use a communication network as depicted in Fig. 2.1b, which schematically

illustrates an NCS diagram. In this case, we do not have dedicated point-to-point connec-

tions and thus the output of the plant is not (necessarily) equal to the input of the controller

and vice versa; i.e., it is very likely that up· = yn2· 6= un1· = yc· and uc· = yn1· 6= un2· = yp· .

A figure that illustrates the difference between ”traditional” control systems and NCSs

even more is depicted in Fig. 2.2. Moreover, this figure sets a nice stage for making the

basic comparison between the two systems, which in turn will additionally provide more

detail about NCSs, as desired.

⌃1⌃1 ⌃2⌃2 ⌃3⌃3 ⌃4⌃4

⌃5⌃5 ⌃6⌃6 ⌃7⌃7 ⌃8⌃8

⌃1⌃1 ⌃2⌃2 ⌃3⌃3 ⌃4⌃4

⌃5⌃5 ⌃6⌃6 ⌃7⌃7 ⌃8⌃8

 Network
Network protocol

Network protocol

u u u u u u u u

uuuuuuuu

y y y y

yyyy y y y y

yyyy

Figure 2.2: A ”traditional” interconnection versus usage of a network; Σi, i ∈ {1, . . . , 8}
denotes a system while u and y denotes its corresponding input and output, respectively.

Let us first focus on a ”traditional” type of interconnection, i.e., a non-networked

type of interconnection. As illustrated in the previous figures, for each pair of inputs and

outputs one needs a dedicated channel, i.e., a dedicated point-to-point connection. In

small and simple control systems this approach of interconnecting the inputs and out-
1We note that the concept of a (”traditional”) control system is directly related to the concept of a system

and the concept of control. Since both concepts are very broad, the usage of generic and general definitions
might potentially distract the reader. For this reason, and for the sake of rigor, we rely on the corresponding
notions and definitions documented in control literature, e.g., see [3–8].

9

puts makes a lot of sense. However, in larger systems or systems with many inputs and

outputs this type of interconnection increases the number of dedicated channels which

in turn increases the price, volume and weight of the corresponding system. Moreover,

installation of the system, its maintenance, troubleshooting and/or addition of new ele-

ments to the existing system are all relatively complex and expensive tasks; especially in

large-scale ”traditional” control systems.

On the other hand, its networked counterpart, i.e., NCS (see Fig 2.2), does not have

these issues. Moreover, the above-mentioned issues for ”traditional” control systems can

be seen as some of the advantages of NCSs. More precisely, as illustrated in the previ-

ous figures, the number of dedicated channels decreases or, as illustrated in Fig. 2.3, it

despairs in a case of wireless network. This results in a lower price, volume and weight,

making NCS paradigm ideal for transporting systems such as cars, plains and spacecrafts

and certain applications such as vehicle platooning (which in particular is not realizable

with wired network). Moreover, installation, maintenance, troubleshooting and/or ad-

dition of new elements all become much simpler and less expensive tasks; this, together

with a reduction in price, resulted in a wide adaptation of networks in large-scale systems

such as power and/or manufacturing plants.

On the other hand, when it comes to design and analysis, the ”traditional” control

systems are comparatively older and thus have much larger set of tools for analysis and

design. Correspondingly, there are not as many tools which one can use for design and

analysis of NCSs. Now, one would hope that the established tools for analysis and design

of ”traditional” control system should be applicable (perhaps with minor modifications)

to NCSs. Unfortunately, more often than not, due to intrinsic network communication

phenomena this is not the case and a lot of work needs to be done to make the corre-

sponding tools applicable in the NCS setting. There are quite a few of intrinsic network

communication phenomena including:

• Packet dropouts

Most networks operate in a packet-based fashion, i.e., they communicate the corre-

sponding data via data packets. Usually, a packet dropout occurs due to the packet

collisions, traffic congestion and/or failed transmissions. Moreover, if the delay of

10 Introduction

Controller

Plant

uc1uc2

up2
up1

yp1
yp2

yc2yc1

un12

un21
un22

yn22
yn21

yn11
yn12

un11

Wireless network

Figure 2.3: A wireless NCS; e.g., with Bluetooth network.

the package reception is too long (or even infinite), the packet is considered to be

dropped; that is, the information is lost. Also, note that network induced delays

more than one sampling/transmission interval can lead to a packet disorder, which

corresponds to mixing packet indices of the packets transmitted over a network,

see [9]. However, due to past packets rejection logic, the older packets will be dis-

carded if the most recent packet has arrived. Thus, due to implementation of this

logic, the packet disorder can be viewed as the packet dropout in the analysis and

design. However, it should be noted that the discard is due to the implemented

logic, which essentially differs from the real packet losses.

• Scheduling

Another intrinsic network communication phenomenon is scheduling of its com-

munication resource, e.g., the network bandwidth. Scheduling usually occurs due

to the available resources (the finite bandwidth) not matching the demand for trans-

mission. One of the main reasons for this mismatch between the demand and the

11

supply, is the sharing of network resources among different systems; note that the

ability to do so is one of the main advantages for exploitation of the network as a

communication medium in control applications, e.g., see Fig. 2.2.

• Delays

The sources of delay can roughly be classified into four groups: processing delay

- time routers take to process the packet header, queuing delay - time the packet

spends in routing queues, transmission delay - time it takes to push the packet’s

bits onto the link, and propagation delay - time for a signal to reach its destination.

• Quantization

Similarly as for scheduling, the quantization occurs due to finite bandwidth of the

network making data transmission with infinite precision unrealistic. Namely, due

to finite bandwidth, packets have finite length, and hence we need to quantize.

• Time-varying packet transmission and/or sampling intervals

Due to limited processing resources and insufficient accuracy of the local clocks,

time instants at which the network transmits and samples data packets is inaccu-

rate. This results in time-varying packet transmission and/or sampling intervals.

Indeed, there are much more intrinsic network communication phenomena such as

clock asynchronization among local and remote nodes and network security and safety.

Each of the above-mentioned network induced communication issues, alone or in combi-

nation with another communication issue(s) can potentially deteriorate the performance

of the corresponding NCS or even destabilize it, e.g., see [10–14] and references therein.

Addressing the effects of these issues constitutes most of the research within the NCS

community. In this thesis we focus on two network induced communication issues,

namely, packet dropouts and scheduling. The motivation for our focus is provided in the

sequel. We start by first stating precisely and succinctly the goal of the thesis.

12 Introduction

2.1 Goal

The main goal of the thesis, is to provide a better and deeper understanding of NCSs

affected with packet dropouts and scheduling. Our approach to achieving this goal is by

concentrating on the following control system properties:

• Stability,

• Robustness,

• Controllability.

2.2 Motivation

We motivate NCSs from three perspectives. First, we draw the attention to the econom-

ical and practical improvements over ”traditional” control systems. Then, we focus on

the conceptual value, namely, the fact that NCS constitute an abstraction and architecture

for the convergence of control, computation and communication which is predicted to be

the next big leap in (information) technology. Finally, we end the motivation section by

concentrating on theoretical values which come from addressing fundamental commu-

nication constraints in control systems.

Economical and practical improvements

Due to the rapid technological advancements in communication technology in the last

few decades, communication networks have become ever more omnipresent; they are

everywhere, in our pockets, in our cars, in our homes, on our streets, etc. Indeed, a

resource which is only omnipresent does not necessarily imply we should adapt to it,

especially when it comes to control applications which are so sensitive to real-time com-

munication of control-related signals. Extra incentives are necessary and present commu-

nication networks have a sufficient number of incentives, spanning both, economical and

practical fields, to cause a fundamental change in design of control systems. As we have

2.2 Motivation 13

mentioned earlier, see also Fig. 2.2, the amount of wiring drastically reduces, or even dis-

appears in the case of a wireless network (see Fig. 2.3), resulting in the lower price of the

overall system and reduced volume and weight. While the reduction of the price is es-

pecially important for large-scale systems such as power and/or manufacturing plants,

reduction in volume and weight (and price) is extremely important for transportation

systems such as cars, airplanes and spacecrafts. Furthermore, the complexity of the over-

all system reduces not only through wiring, see Fig. 2.2 once again, but also through the

installation of the corresponding system, its maintenance, troubleshooting and the ease

of the addition of new elements to the existing system. Last but not the least, the current

networks are sufficiently fast and reliable to be used in real-time applications, i.e., control

applications, e.g., application of Control Area Network (CAN) and FlexRay network in

cars, aircrafts and spacecrafts.

An abstraction and architecture for the next technological leap

Further, with the increasing trend of technological enhancements, the level of the inter-

action between the technology and our physical environment is set to be even greater in

the near future. At the moment, some of the examples that capture this interaction are as

follows: cars, aircrafts, spacecrafts, vehicle platooning, cooperative control of unmanned

aerial vehicles, tele-operated haptic systems, smart homes, large manufacturing/power

plant systems, chemical plants, water distribution networks, distributed power gener-

ation networks, intelligent highways, mobile sensor networks, remote surgery, smart

phones and networked city services. In the seminal report [15], the convergence of com-

munication, computation and control was predicted to be the next phase in (information)

technology. The immediate follow-up question was/is: ”What is the right abstraction

and architecture for this convergence?” The answer to the last question is complex to say

the least, and vast literature on the topic to date confirms this. One abstraction and archi-

tecture that encapsulates the mentioned convergence is an NCS, which we are going to

focus on. Recent report [16] confirms the predictions on the importance and application

of NCSs from [15], and puts them again as one of the important directions for the field of

control.

14 Introduction

Fundamental communication challenges in control applications

Unfortunately, as indicated earlier, the network does not come only with incentives but

with (motivating) challenges as well. These challenges come from the intrinsic network

communication phenomena such as delays, quantization, packet dropouts, scheduling

and time-varying transmission intervals. These network imposed communication issues

can not only degrade the performance of a corresponding (networked) control system

but can lead to instability. Of course, some of them are easier to mitigate than the others

and some are important only within certain networks and applications; for instance, the

quantization issue can be quite important in a case when CAN bus is used due to only 8

bytes for useful data while in a case of FlexRay network it can be usually ignored due to

a much larger useful data field (254 bytes). Considering all known communication issues

that a network introduces, at the same time, usually, amounts to an extremely complex

system. Designing and/or analyzing the corresponding system, if possible at all, leads

to very challenging analysis and design problems. Another, a more systematic and more

fruitful approach is the divide and conquer approach, where one considers only few issues

and investigates them at a deeper level. In our case this translates in concentration on

two network induced issues (even this will result in a hard problem). Namely, we focus

on the issue of packet dropout and the issue of scheduling; in what follows we motivate

why we consider specifically these two.

In control applications, the unavailability of current control value and/or measure-

ment will degrade the performance of the corresponding system and may even cause

the instability. Due to the nature of how NCSs communicate the corresponding control

data, this scenario is very likely to happen due to a packet dropout. Indeed, networks

are designed to have few dropouts on average, and in ”non-control” communication ap-

plications, the usual practice is to resend the data when a dropout occurs. However, this

usually is insufficient for the purposes of control. Moreover, dropouts are inevitable, see

for instance [17–20] on how the throughput is affected by packet dropouts due to exces-

sive delays, failed transmissions, congestions and/or collisions. Hence, packet dropouts

can not be avoided and have to be properly addressed for control purposes. This makes

them very important and, thus, we have paid a special attention to this issue in this thesis.

2.3 Methodology 15

Depending on the network load, the scheduling issue might not be avoided in the

same manner as the issue of packet dropouts. Moreover, this issue can cause packet

dropouts if not properly addressed. However, besides potentially causing packet dropouts,

the scheduling issue on its own, is also very interesting and important since it tackles the

question: ”How much network resources do I really need to control a system?” More-

over, it induces the computation related questions, e.g.: ”How much computation on

controller side can free network resources for other processes and systems?”

In summary, NCSs offer many improvements over ”traditional” control systems and

from the point of view of abstraction and architecture they encapsulate what is believed

to be the next technological leap in information technology. They do impose some chal-

lenging analysis and design problems caused primarily with intrinsic network commu-

nication phenomena. Out of many network induced communication issues, we focused

on packet dropouts and scheduling and in the sequel we provide a methodology we used

to mitigate their undesirable effects.

2.3 Methodology

One degree of freedom one can use to address the networked induced communication

issues in an NCS is its flexible architecture. Namely, as pointed out in the previous section,

the addition of new elements (devices) to an existing NCS is quite easy. Correspondingly,

this can enable distributed computation which can be used to address the aforementioned

issues; see Fig. 2.4 for a general NCS including these devices.

Controller PlantNetwork
Device

Device

Device

Device

Figure 2.4: General NCS with extra devices.

In this thesis, we focus only on packet dropouts and scheduling. Both issues will

most-likely deteriorate the performance of the system or even cause the instability. The

available approach for dealing with packet dropouts in non-control communication ap-

16 Introduction

plications, i.e., resend the data, usually is not the best idea for control applications. Namely,

this is due to the fact that the old measurements or control values are typically not useful

and it is better to discard lost data and transmit the new data. On the other hand, schedul-

ing must be properly addressed since it can lead to congestion which can cause delays

and packet dropouts and thus harm the system.

As indicated above, augmenting an NCS architecture with devices that enable dis-

tributed computation can be used to address packet dropouts and scheduling. A natural

question is which device(s) to add and where to place it (them).

In order to provide an answer to this question let us first briefly consider what hap-

pens when a packet dropout occurs; for simplicity, let us focus on the scenario where a

controller sends a packet to the plant input. The information is lost and the correspond-

ing plant input lacks the control packet. An ad hoc fix can be to apply last received value

or some fixed value (e.g., a zero value), and perhaps for some applications this might

do the job. But then, what if we have consecutive packet dropouts. Would the previous

approach still work and if so for how large classes of systems. Another approach, that

appears to be more natural in this setting, is to use predictions. Namely, let us imagine if

we had a sequence of predicted control values over a finite horizon which we could store

in a device (placed before the plant input) which would apply these predictions in the

case of a packet dropout(s). A simple device that enables this sort of simple computation,

and which we will use, is a buffer, e.g., a parallel-in-serial-out shift register. Scheduling,

on the other hand, is addressed by having a buffer in front of each plant input.

Using devices (buffers) which enable distributed computation is one part of method-

ology for addressing packet dropouts and scheduling. The other part is using a control

paradigm that can generate control predictions over a finite horizon which accounts for

packet dropouts and scheduling. In our case this will be the Model Predictive Control

(MPC) paradigm. Unfortunately, inclusion of a network in most cases makes many well

developed control tools for analysis and design inapplicable. Luckily, certain tools re-

main applicable with relatively small changes to account for the network part and MPC

is one of them.

Roughly speaking, MPC is a control framework which involves solving on-line open-

2.3 Methodology 17

loop finite-horizon optimization problem at each sampling time instant. The current mea-

surement of the state of the plant is used as the initial state in the predictive model used in

the optimization. The result of the optimization is a sequence of optimally predicted con-

trol values where the length of the sequence corresponds to a finite prediction horizon.

Finally, the usual practice (in non-networked applications) is to apply the first element of

this control sequence and repeat the process ad infinitum.

More precisely, the model of the plant is usually given in discrete-time as

Σm
p : x̃p(k + 1) = fp(x̃p(k), ũp(k))

where: x̃p ∈ Rn is the state and ũp ∈ Rm is the input of the plant model, R is the set of real

numbers, n and m are, respectively, the numbers of plant states and inputs, k belongs to

nonnegative integers and finally, fp : Rn×Rm → Rn. Now, at each sampling time instant

the plant model is initialized by the measurement of the plant state xp(k) and is used for

obtaining the corresponding predictions which are penalized via a cost function given as

J
(
xp(k), {ũp(k + i)}h−1

i=0

)
:=

h−1

∑
i=0

l
(
φ fp
(
k + i, xp(k), {ũp(k + i)}h−1

i=0

)
, ũp(i)

)
+ g
(
φ fp
(
k + h, xp(k), {ũp(k + i)}h−1

i=0

))
where:

• xp(k) is the plant measurement at time instant k,

• {ũp(k+ i)}h−1
i=0 := {ũp(k), . . . , ũp(k+ h− 1} is a sequence of predicted control values

over a finite prediction horizon h,

• h is an integer number greater than one which represents a finite prediction horizon,

• φ fp(·) is a solution mapping for plant model under the influence of {ũp(·+ i)}h−1
i=0 ,

• l : Rn ×Rm → R is a stage cost function,

• g : Rn → R is a terminal cost function.

18 Introduction

This cost function is minimized with respect to {ũp(k + i)}h−1
i=0 (and usually some con-

straints which we omit for simplicity) resulting in an optimal value function as

V
(
xp(k)

)
:= min
{ũp(k+i)}h−1

i=0

J
(
xp(k), {ũp(k + i)}h−1

i=0

)
.

Finally, from the optimal value function one extracts the sequence of optimal control

values via

{u∗p(k + i)}h−1
i=0 := argmin

{ũp(k+i)}h−1
i=0

V
(
xp(k)

)
,

and usually applies only the first value from the sequence which defines the implicit MPC

control law as

κ(xp(k)) := u∗p(k).

In our case, the optimization problem will account for packet dropouts and schedul-

ing, and we will use the whole sequence of optimally predicted control values. Namely,

we will send it over a network to the corresponding buffer, and thus address packet

dropouts and scheduling. Notice that because we are sending a sequence of control val-

ues instead of only a control value, we might potentially put a higher burden on the cor-

responding network and perhaps even increase the likelihood of a packet dropout. More

precisely, we would need to use more data to transmit a sequence of control values. How-

ever, many modern data-like networks, such as Ethernet, have large payloads which can

accommodate the need for extra data. Indeed, sending only a control value might require

less network resources but as mentioned above dealing with packet dropouts becomes

much harder and it can often lead to instability. Also notice that in some applications

sending only a control value will use the same packet as sending a sequence of control

values since data packets are of fixed size, see [21]. Now, in comparison to Fig. 2.4, our

methodology, conceptually, can be schematically depicted as in Fig. 2.5. Important part

to notice from Fig. 2.5 is that we assumed that the controller has direct access to measure-

ments of plant state. This approach is taken since accurate plant measurements are crucial

2.4 Literature review 19

in making predictions in MPC framework; e.g., see [107] for in-depth explanations.

MPC Plant
Network

Buffer

Buffer
...

...

Packet dropout(s)

Figure 2.5: Schematic methodology for addressing packet dropouts and scheduling.

2.4 Literature review

We consider NCSs and we use an MPC framework to mitigate the undesirable effects

of packet dropouts and scheduling. Both topics, NCSs and MPC, are vibrant research

areas on their own. Hence, we first overview each separately and then review papers

that considered MPC for NCS, i.e., packetized MPC.

2.4.1 Networked Control Systems

The literature on NCSs is vast, e.g., see the books [22–24], survey papers [10–14] and spe-

cial issues [25–28]. Usually, the literature on NCS revolves around networks, or more

precisely, around network induced issues. This enables one to compile a table2 of typical

references for the corresponding issues, see Table 2.1. Besides the latter table, addition-

ally, we will provide the basic overview of the most addressed network induced issues.

However, largely we will focus on the issue of packet dropouts and scheduling since they

are considered explicitly in this thesis; before we begin, we note that we have used the

recent survey paper [14] to provide the basic overview of the most addressed network

induced issues.

2This table is compiled by closely following [14].

20 Introduction

Packet dropout

Roughly, most of the analysis and design for mitigating the effects of packet dropouts

relies on two strategies which differ in how the current packet dropout affects the corre-

sponding controller.

One strategy is packetized MPC and it is the strategy considered in this thesis. More

precisely, one computes the predictions over a finite horizon and applies the predicted

control values in a case of a packet dropout. To be able to apply the predicted control

values one needs actuators with some computational power and memory. This is due to

the fact that the corresponding predictions have to be stored and applied when dropout

occurs. More precisely, one starts by assuming a finite upper bound on the number of

consecutive packet dropouts. Then, an optimization problem over a finite horizon, which

corresponds to the assumed upper bound on the number of consecutive packet dropouts,

is solved. The result is a sequence of optimally predicted control values, which is sent

over a network to a device which can store this sequence and apply the predicted values

in the case of a packet dropout(s). The origin of this idea is considered to be [29] and

some recent works that have used this idea are [30–32]. Related approaches in a sense

that the current packet dropout dictates which controller is being applied, can be found

in, for instance, [33–35]. In [33] and [35], the correlation between packet dropout and no

packet dropout is modeled as a two-dimensional Markov chain, resulting with a Markov

jump system. The corresponding design results with two controllers which are applied

depending if packet dropout occurred or not. This approach can be replaced with a

nondeterministic switched systems approach as described in [34].

Another strategy is to design a stabilizing controller which is valid as long as the num-

ber of consecutive packet dropouts is less than a given bound, e.g., see [36–42]. Note that

here, regardless of how many consecutive packet dropouts there are, the same controller

is still applied; that is, actual packet dropouts do not change a controller and the only re-

quirement is that the number of consecutive packet dropouts is less than a given bound.

Now, depending, for instance, on the dynamics of the plant and how one models packet

dropouts, different tools and approaches are applied for the corresponding analysis and

design. For instance, in [37], focusing on the stability analysis and controller design of

2.4 Literature review 21

the corresponding NCS, authors considered linear plants and determined a stabilizing

memoryless controller via delay-dependent approach. In [39], authors used a linear ma-

trix inequality (LMI)-based procedure for designing a state-feedback controllers, which

guarantee that the output of the closed-loop networked control system tracks the output

of a given reference model well in the H∞ sense. Further, in [40], the packet losses are

modeled as a linear function of a stochastic variable satisfying Bernoulli random binary

distribution, resulting with a stochastic description of the corresponding stability. Other

approaches that also use probability tools can be found in [36, 38, 41–43].

Scheduling

A natural approach to address the issue of scheduling is to design and implement a

scheduling protocol. One of the early references that investigates stability of NCSs, with

respect to scheduling issue, by employing scheduling protocols, are [44–46]. There, two

special cases of protocols were considered. Namely, they considered a static Round-

Robin and a dynamic Try-Once-Discard protocol. The former protocol operates in a static

fashion (token-ring-type scheduling), meaning that the corresponding schedule is prede-

fined and nodes get access according to this schedule. Usually, this schedule is repeated

ad infinitum. On the other hand, for the latter protocol one needs to define an error, usu-

ally as the difference between the current value of the sensor/actuator signal and its pre-

vious value. Then, usually, a maximum-error-first (MEF) scheduling policy is employed,

implying that the node with the greatest weighted error from its last reported value will

be granted access to network. For both protocols, bounds on maximally allowable trans-

mission interval (MATI) are provided which ensure global exponential stability. Finally,

note that an emulation approach was used for designing a stabilizing controller, i.e., it

is designed a priori without the network included into the loop. Extensions and gener-

alizations of these results are provided in [47–50] where it was also discovered that RR

and TOD protocols are in fact special cases of Uniformly Globally Exponentially Stable

(UGES) protocols. Further, stochastic protocols were considered in [51] while controlla-

bility questions with respect to the scheduling issues were addressed in, e.g., [52–56].

In the sequel, even though we do not address the issue of delays, quantization and

22 Introduction

time-varying transmission interval in this thesis, due to their importance, we discuss

briefly.

Delays

How the delay is modeled depends on the corresponding application and used net-

work(s). Consequently, this dictates analysis and design of the corresponding NCSs.

For instance, in Controller Area Network (CAN) protocol or in case when buffers are

used at network nodes, delays can be considered constant. On the other hand, the de-

lay induced by Ethernet is typically time-varying. Furthermore, some applications might

allow for deterministic delay models while others require stochastic delay models. Ad-

ditionally, in some applications only an upper bound on delay might be sufficient for the

corresponding analysis and design.

The type of delay considered, coupled with the corresponding NCSs, gives rise to dif-

ferent control strategies and methodologies. Up until the year 2003, the survey paper [10]

covers very nicely the typical methodologies in analysis and design of NCSs with respect

to delays such as: LQR, hybrid system and perturbation approach, to name a few. Then,

the survey paper [12] covers the period from 2003 to 2007 including delayed differential

equations approach and switched systems approach among others. Worth mentioning is

also the survey paper [11] which includes two Markov chain models. Finally, the recent

survey paper [14] classifies two frameworks with respect to delays, namely, a robustness

and an adaptation framework. The former framework corresponds to a case where con-

trol design is robust with respect to time-varying delays, e.q., see [57–60] for details. The

latter framework exploits modern network attributes such as sending data in packets

(which can be relatively large) and/or time-stamping of messages. Additionally, some

references exploit actuators which posses some computational power and memory, for

instance see [29, 33, 34, 61–66].

2.4 Literature review 23

Quantization

Among many results documented, two approaches stand out. The first one revolves

around memoryless feedback quantizers or also denoted as static quantization policies,

[67–70]. In such policies, data quantization at time k depends on data at time k only,

resulting in relatively simple structures for coding/decoding schemes. One of the first

treatments of control systems with uniform quantized feedback is documented in [67].

Later, in [68], in order to stabilize a linear system, a bound on the number of quantization

intervals was imposed. Further, in [69], authors showed that for a quadratically stabi-

lizable discrete-time single-input single-output (SISO) linear time-invariant systems, the

quantizer needs to be logarithmic. Following this work, authors of [70], gave a com-

prehensive study on feedback control systems with logarithmic quantizers by using the

sector bound approach to quantized feedback control.

The second approach employs a class of dynamic quantizers which dynamically scale

the quantization levels according to the location of the corresponding state, [71, 72]. Re-

laying on this approach, different scenarios were considered. The treatment of both, in-

put and output quantization, is documented in [73]. Consideration of exogenous distur-

bances in the quantized control systems can be found in [74] while the nonlinear systems

models are covered in [75]. In [76], authors provide a unified framework for the design

of NCSs with simultaneous existence of the scheduling and the quantization issue.

Even though, recently, less attention is being given to this issue, justifying it with

assumption on sufficiently large data packets which is true for certain networks, e.g.,

Ethernet and FlexRay. However, in case of CAN one still needs to think about this issue

due to the fact that only 8 bytes can be used for data. However, regardless which network

is used, this issue is still very important for its fundamental values.

Time-varying transmission interval

The time-varying sampling problem has been a major topic in classical sampled-data

systems. For some relatively recent results, for instance, see [77–80].

With the emergence of NCSs, time-varying transmission interval problem has drawn

24 Introduction

research attention once again. For instance, plant outputs are transmitted at instants that

may vary significantly due to the network, e.g., due to congestion, which results in time-

varying transmission intervals. To date, many results have been published, concentrating

mainly on stability. For emulation type design of time triggered networks, for instance

see [36, 81]. On the other hand for a model-based approach, e.g., see [82] and [83]. Other

approaches, such as hybrid system approach, and a more detailed review of model-based

approach can be found in survey paper [12].

Besides these five network induced issues there are many more, such as network secu-

rity, for instance, which are becoming more popular. Finally, a lot of research is dedicated

at considering combinations of the issues discussed above, and we have provided typi-

cal references dealing with these combinations in Table 2.1. Thus, we will stop the NCS

literature review here and proceed with literature review for MPC.

2.4.2 Model Predictive Control

The available literature on MPC to date is vast. Good starting references are books [104–

109], survey papers [110–121], papers [122, 123] and references therein.

Many properties and applications of MPC, such as stability, robustness, tracking, out-

put feedback, soft constraints, adaptation and optimization algorithms, have been and

are still being investigated. However, we will briefly concentrate only on the stability

and robustness of MPC since these two properties are considered in this thesis. Further-

more, we will also provide a very brief review of the so-called Economic MPC since this

also is to some extent covered in this thesis. Finally, note that other topics related to MPC

are well documented and one can start by consulting the references presented in the first

paragraph of this subsection.

Over the years, many approaches for establishing stability have been reported. How-

ever, as discovered in [119], a consensus has been reached by many researchers on the es-

sential ingredients that ensure closed-loop stability when MPC is employed. This made

stability for MPC a mature topic. These ingredients are: a terminal cost, a terminal con-

straint set and a local stabilizing controller. Then, choosing an optimal value function as

a Lyapunov function and satisfying certain conditions on the ingredients listed above,

2.4 Literature review 25

Issue References

Delay [29, 33, 34, 57–66]

Packet dropout [31, 33–42]
Packet dropout & Delay [84–89]

Time-varying transmission interval [36, 82, 83]
Time-varying transmission interval & Delay [90–92]
Time-varying transmission interval & Delay & Scheduling [21]
Time-varying transmission interval & Delay & Packet dropout [93, 94]

Scheduling [45, 47–50, 95]
Scheduling & Delay [96, 97]
Scheduling & Packet dropout [51]
Scheduling & Delay & Packet dropout [98, 99]

Quantization [67–72]
Quantization & Delay [100, 101]
Quantization & Packet dropout [102, 103]
Quantization & Delay & Packet dropout [39, 87]
Quantization & Scheduling [76]

Table 2.1: Typical references for network-induced issues.

ensures the stability; for instance, see [104, 117, 124–134] for various approaches. One

of the underlying requirements in many approaches, is that a terminal cost is a control

Lyapunov function (CLF). A drawback of these approaches is the need for an a priori

computation of a CLF, though, when the linearization is stabilizable, it is easy to find a

CLF. An approach that does not require the terminal cost to be a local CLF is reported in

[123], which, as authors state, can be seen as discrete-time counterparts of those in [135]

for the class of systems investigated in [136].

Stability robustness of the systems governed by MPC has been relatively well investi-

gated; e.g., see Section 4 in [119]. The simplest approach is to rely on inherent robustness

as documented, for instance, in [132, 133, 137]. However, this is not always enough as re-

ported in [122]. Another approach, referred to as an open-loop model predictive control,

26 Introduction

is to include the uncertainty in both, cost minimization and constraint satisfaction; e.g.,

see [113, 127, 138–140]. However, this approach cannot contain the ”spread” of predicted

trajectories, leading to conservative or, even, infeasible solutions of the corresponding

uncertain optimal control problem. To overcome these issues, a feedback model predic-

tive control is investigated, for instance, in [113, 114, 139–144]. Note that both previous

approaches provide a feedback control. However, whereas in open-loop MPC the deci-

sion variable is a sequence of control actions, in feedback MPC it is a policy which is a

sequence of control laws. Determining a control policy is usually more difficult. Thus,

a lot of research effort was/is directed towards simplifying the feedback optimal control

problem. Some relatively recent results that (to some extent) overcome the corresponding

disadvantages of both methods are reported, for instance, in [145, 146].

We finish the MPC literature review with a brief overview of Economic MPC. Let us

start by noting that in a standard MPC, the corresponding stage cost function penalizes

either the distance to a desired equilibrium (stabilization) or time-varying reference solu-

tion (tracking). On the other hand, one might wish to consider a more general stage cost

function that potentially can encapsulate an economic criterion in its literal sense such as

an economical cost (e.g., money) related to controlling a plant; for instance see [147, 148].

Nice examples on how standard and Economic MPC differ are provided in [147]. How-

ever, to be mathematically precise, let us borrow the discussion from [149]; see the second

paragraph in the second section in [149]. For the standard MPC the following holds for

the corresponding cost function l : Rn ×Rm → R

0 = l(0, 0) ≤ l(x, u) for any admissible (x, u), (2.1)

where x is the state and u is the input of the corresponding plant3. On the other

hand, for the Economic MPC, the inequality (2.1) cannot be generally assumed and the

following can happen

3We assume that the origin is the equilibrium of the corresponding system, i.e., we would apply the
appropriate change of coordinates (if necessary).

2.4 Literature review 27

0 < l(0, 0) or,

l(0, 0) > l(x, u) for some admissible (x, u),

 (2.2)

where (x, u) do not correspond to any equilibrium point. Unfortunately, this fun-

damental difference between the standard and Economic MPC is sufficient that the ex-

tensive collection of results for the standard MPC stability analysis do not simply ex-

tend to Economic MPC. However, a noticeable progress has been made, see for instance

[147–156]. Most of the first stability results are established with the aid of the termi-

nal constraint. Usually, an optimal equilibrium is determined and the system is stabi-

lized by forcing a state to be equal to this equilibrium at the end of the horizon, e.g, see

[147, 148, 150, 152, 154, 155]. Recently, this has been relaxed by imposing a region con-

straint on the terminal state instead of a point constraint, and by adding a penalty on the

terminal state to the regulator cost [153]. Moreover, the stability analysis tools, devel-

oped for terminal constraint economic MPC, were extended and it was established that

strict dissipativity, introduced in [149], is sufficient for guaranteeing asymptotic stability

of the closed-loop system. An approach that does not need any terminal constraint can

be found in a very recent reference [156]. However, the trade-off for removing terminal

constraint requires a more involved analysis with stronger assumptions and getting an

approximate optimal performance instead of an exact as in [150, 152, 153].

We proceed with a more detailed review of references that are more directly related

to this thesis.

2.4.3 Packetized MPC

Before we begin, let us recall that we focus on two network induced issues. Namely, we

considered the issue of packet dropouts and the issue of scheduling. To address these

issues we use an MPC framework. One aspect of this framework is that it enables one

to incorporate the mentioned issues into the predictive model. This predictive model

is used by an MPC controller to generate the corresponding sequence of optimally pre-

dicted control values over a finite horizon. Another aspect of MPC framework is the

possibility to exploit (if the corresponding control system allows) distributed computa-

28 Introduction

tion; recall that the flexible nature of NCSs allows for distributed computation. Namely,

we use an extra device with computational capabilities and memory (buffer). This device

is used to store the sequence of predicted control values and to apply the corresponding

values in the case of packet dropouts. Moreover, if we add the issue of scheduling, this

device is used to apply the corresponding predicted control values not only in the case of

packet dropouts but also if the corresponding input was not updated due to scheduling.

Similar approaches have been considered previously for addressing the two mentioned

network induced issues. Thus, we proceed with a review of references that used similar

approaches to establish stability, robustness and/or controllability of similar NCS archi-

tectures.

Stability with respect to packet dropouts and scheduling – Chapter 3

The idea of exploiting more than just the first element of the sequence of optimally pre-

dicted control values over a finite horizon was proposed in [29]. There, the considered

network induced issue was an unbounded delay in a Internet TCP/IP (Transmission Con-

trol Protocol/Internet Protocol) communication links. The considered NCS architecture

is depicted in Fig. 2.6 where the controller consists of an MPC controller which takes as

an input human operator instructions and the output of a predictor. The piece to focus on

is a buffer which stores the sequence of optimally predicted control values and applies

them in a case of excessive delays (i.e., a packet dropout).

Controller
(MPC) PlantNetwork

Predictor

Buffer

Unbounded delay

Figure 2.6: An NCS architecture for addressing unbounded delay.

This idea of using a buffer at plant input and an MPC controller was later pursued,

for instance in [157]. To some extent it was extended in [30] to address not only the issue

of packet dropouts but also the issue of scheduling. The corresponding NCS architecture

2.4 Literature review 29

is depicted in Fig. 2.7.

Plant

Buffer 1

Buffer R

NetworkController
(MPC)

Packet dropout

...

Figure 2.7: An NCS architecture for addressing the issues of packet dropouts and
scheduling.

The network is affected by packet dropouts depicted as disturbance and is such that

allows access to only one plant input at each time instant. Due to scheduling, there are

now R buffers, one for each input. The buffers have a similar role as above. Namely, they

are used to store the sequence of optimally predicted control values and apply them in

case of a failed transmission, i.e., a packet dropout. However, due to scheduling, only

one plant input can be addressed at each time instant. Hence, if a buffer is not being up-

dated at the current time, it keeps using the values it has stored previously that originate

from previous optimization. How one obtains the optimal node and the corresponding

sequence of optimally predicted control values will be presented later in the thesis in de-

tail, see Chapter 3. At this stage, important to mention is that the underlying requirement

for showing the convergence of plant states was to assume the existence of a finite bound

on the number of consecutive packet dropouts plus some modification of standard MPC

stability assumptions; e.g., see [119] and/or Section 3 for standard stability assumptions

for non-networked MPC

Stability with Economic MPC with respect to packet dropouts and scheduling – Chap-
ter 4

As documented in, for instance, [147, 149–156], the existing stability analysis for a stan-

dard MPC, unfortunately, does not extend to Economic MPC. Thus, new tools had to be

30 Introduction

developed for stability analysis for Economic MPC. These early tools were developed for

the terminal constraint MPC formulation, in which the system is stabilized by forcing

the state to the best equilibrium point at the end of the horizon. More details on these

and some recent developments can be found in this collection of papers [147, 149–156].

We proceed with the focus on [153] where a relaxation of imposing a region constraint

on the terminal state instead of a point constraint, and adding a penalty on the terminal

state to the regulator cost, is established. Moreover, the stability analysis tools, developed

for terminal constraint economic MPC, were extended. The enabling assumptions is the

so-called strict dissipativity of a system introduced in [150]. This together with Lyapunov

tools, proved to be sufficient for establishing stability of the corresponding system.

Robustness with respect to packet dropouts and scheduling – Chapter 5

To address robustness of the same NCS architecture the results from [31, 122, 158] played

an important role. As documented in [122] in order to establish nominal robustness the

optimal value function and feedback law have to be continuous in the interior of the

feasibility region. Additionally, a simpler, but closely related, NCS architecture was con-

sidered in [31], see Fig. 2.8.

PlantBufferNetworkController
(MPC)

Packet dropout Disturbance

Figure 2.8: An NCS architecture for addressing the issues of packet dropouts.

There, only the issue of packet dropouts was considered. The key assumptions were

the uniform finite upper bound on the number of consecutive packet dropouts and the

continuity assumption on the optimal value function.

2.5 Overview and contributions 31

Controllability with respect to scheduling – Chapter 6

We have already seen that network-induced issues can affect performance and stability of

the corresponding system. An interesting question is: ”How does it affects controllability

of the corresponding NCS?” If it destroys it, can it be recovered by an appropriate NCS

structure?

The network-induced issue we focused on is scheduling. Some recent relevant ref-

erences that address the same question are [52–55]. In [55] a NCS with a Single-Input-

Single-Output (SISO) linear plant was considered and the effects of the so called blind

periods in communications were investigated. The authors do not consider scheduling

explicitly but the result can be seen as a special case of [56]. In [53] and [54], Multi-

Hop Control Networks with Multiple-Input-Multiple-Output (MIMO) and SISO linear

plants, respectively, were considered providing conditions for the controllability of the

corresponding systems.

2.5 Overview and contributions

Chapter 3

We begin with a focus on stability of the corresponding NCS architecture with respect to

packet dropouts and scheduling. More precisely, considering the same NCS architecture

as in Fig. 2.7 we established Uniform Global Asymptotic Stability (UGAS) of the aug-

mented state of the plant and buffer state [159]. Important to note is that the established

property is much stronger than the property in [30] with slightly stronger assumptions.

The enabling assumption is the lower bound on the stage cost function in terms of con-

trol, e.g., see [160]. Namely, this lower bound is a K∞ function only of an absolute value

of the control. Note that it is a standard stability-related assumption in MPC to have a

lower bound on the stage cost function which is a K∞ function of an absolute value of

the plant state. Our additional assumption is an assumption which is just not frequently

used.

To establish UGAS, advanced nonlinear system analysis techniques [2, 161, 162] were

32 Introduction

used. We established the property via two approaches. One involves finding an appro-

priate Lyapunov function. The other one uses a cascade idea. The key fact that leads to

this is the observation that the overall buffer (collection of all buffers, precisely defined

later in the thesis) as a system is Input-to-State Stable with respect to the input being

the arriving control sequence. Moreover, the overall buffer is UGAS uniformly in buffer

states, e.g., ISS with zero gain, which enables one to consider the corresponding NCS as a

cascade and use the corresponding stability analysis. The last two observations plus the

fact that the plant trajectories converge (see [30]) plus our extra assumption and the men-

tioned advanced control techniques enabled us to establish the result. Additionally, the

techniques used in the proofs are novel, providing an alternative approach for addressing

stability properties for similar NCS architectures.

Chapter 4

This chapter focuses on stability of a NCS governed by Economic MPC with respect to

packet dropouts and scheduling. Inspired by the results in [153], we first extend the defi-

nition of strict dissipativity introduced in [149, 153]. Then, we use the ideas documented

in [153] to formulate the corresponding stage and terminal cost function so that the re-

sults we established for Standard MPC in Chapter 3 can be applied with mild changes

in the assumption related to terminal control law. Namely, there is an extra term in the

corresponding inequality. The novelty we introduce is an extension of some results doc-

umented in [153] and a stability result for a NCS governed with an Economic MPC.

Chapter 5

In this chapter we concentrate on robustness of a corresponding NCS architecture with

respect to packet dropouts and scheduling.

Namely, we use the insights from [31] and the concept of nonlinear gains introduced

in [158]. The contributions of this chapter are as follows. We capture robustness of the

NCS architecture depicted in Fig. 2.9 via partial nonlinear gain `2 stability notion (defined

precisely later in the thesis). Using appropriate assumptions lead to a more traditional

2.5 Overview and contributions 33

Plant

Buffer 1

Buffer R

NetworkController
(MPC)

Packet dropout Disturbance

...

Figure 2.9: An NCS architecture for addressing robustness with respect to the packet
dropouts and scheduling.

linear gain `2 stability notion. For one node case, i.e., no scheduling, we establish alter-

native robustness characterization of the NCS architecture considered in [31]. Assuming

stronger assumptions we establish Input-to-State Stability of the aggregated state of the

plant and buffer state. We also recover global asymptotic stability for the disturbance-

free system. Additionally, via computer simulation, we demonstrate that the dynamic

scheduling outperforms the static one.

Chapter 6

This chapter investigates the property of controllability of the corresponding NCS archi-

tecture with respect to scheduling, see [56].

Controller PlantNetwork
Buffer

Buffer

Figure 2.10: An A NCS architecture for addressing controllability.

The considered NCS architecture is depicted in Fig. 2.10. Contributions are as follows.

First, we provide a novel model. Then, controllability results for a case where the plant is

nonlinear were established, followed by their linear counterparts. For linear case the re-

sult from [52] was extended and applied in establishing the corresponding controllability

34 Introduction

result from [56].

Chapter 7

Here we concentrate on the implementation of the considered framework and we focus

on demonstrating our stability and robustness results. The implementation is carried out

as a Hardware-in-the-loop (HIL) simulation. The real hardware is the network, more

precisely, Control Area Network (CAN). This network is not designed with large data

capabilities. In particular, it can dedicate at most 8 bytes for transmission of a message,

which in our case, is a sequence of predicted control values). Correspondingly, we en-

countered another network induced issue which we did not consider, namely, the issue of

quantization. Moreover, we have also encountered the issue of delay, but this issue was

easily addressed within MPC. We note that our results are tailored for networks with

better data capabilities (e.g., larger data fields for message transmissions), however, the

implementation results are still satisfactory, though with deteriorated performance.

2.6 Publications

The following publications have resulted from results in this thesis.

Journal

• Lješnjanin Merid, Quevedo Daniel E. and Nešić Dragan, ”Packetized MPC with dy-

namic scheduling constraints and bounded packet dropouts”, Automatica, volume

50., number 3, pages 784 – 797, 2014

• Lješnjanin Merid, Nešić Dragan and Quevedo Daniel E., ”Uniform Global Asymp-

totic Stability of Model Predictive Control Governed Networked Control Systems

Affected with Packet Dropouts and Scheduling”, submitted as a regular journal

paper in Automatica, June 2015

• Lješnjanin Merid, Nešić Dragan and Quevedo Daniel E., ”Implementation of Packe-

tized Control over Control Area Network bus”, to be submitted as a regular journal

2.6 Publications 35

paper in IEEE Transactions on Industrial Electronics in 2015

• Lješnjanin Merid, Nešić Dragan and Quevedo Daniel E., ”Controllability of Discrete-

time Networked Control System Affected by Packet Dropouts and Scheduling Is-

sues”, to be submitted as a regular journal paper in Automatica in 2015

Refereed conference

• Lješnjanin Merid, E. Quevedo Daniel and Nešić Dragan, ”Robustness of networked

control systems with multiple actuator-links and bounded packet dropouts” 52nd

IEEE Annual Conference on Decision and Control, pages 5963 – 5968, 2013

• Lješnjanin Merid, Quevedo Daniel E. and Nešić Dragan, ”Controllability of Discrete-

Time Networked Control Systems with Try Once Discard Protocol”, 19th IFAC World

Congress, pages 3758 –3763, year 2014

• Lješnjanin Merid, Nešić Dragan and Quevedo Daniel E., ”Uniform Global Asymp-

totic Stability of Model Predictive Control Governed Networked Control Systems

Affected with Packet Dropouts and Scheduling” submitted to 54th IEEE Annual

Conference on Decision and Control, March 2015

This page intentionally left blank.

Chapter 3

Stability with respect to Packet
Dropouts and Scheduling

The considered NCS architecture is depicted in Fig. 3.1. The piece to focus on is

a communication network Σn which is located between the controller Σc output

and plant Σp inputs. The network is such that it allows access to only one plant input

at each time instant which generates scheduling and, furthermore, it is affected with

packet dropouts wn. In order to establish stability with respect to scheduling and packet

dropouts, we carry out a controller and protocol co-design; e.g., see [30].

⌃p⌃p

⌃b1
⌃b1

⌃br
⌃br

⌃n⌃n⌃c⌃c

wnwn

(a, d)(a, d)

yn1
yn1

up1
up1

ynr
ynr

upr
upr

(ack, xp)(ack, xp)

...

Figure 3.1: An NCS architecture considered for stability.

Succinctly, the considered controller and protocol co-design consists of exploiting the

flexible architecture of NCSs which allows for distributed computation and employing MPC

paradigm to generate a sequence of optimally predicted control values over a finite horizon for

an optimal node (plant input).

In our case, the distributed computation comes from buffers Σb· . These are devices

which perform very simple computation and have a limited memory; e.g., a parallel-in-

37

38 Stability with respect to Packet Dropouts and Scheduling

serial-out shift register. In order to explain the function of a buffer(s), let us consider a

buffer Σbr , r ∈ {1, . . . , R} depicted in Fig. 3.2. Furthermore, for the sake of simplicity let

us fix the length of a buffer (e.g., number of memory places) to three. Now, let us assume

that at time instant k = 0 this buffer was addressed and that the corresponding packet

(carrying a sequence of optimally predicted control values) was sent. There are two pos-

sible outcomes. Either the transmission was successful or, due to a packet dropout, it was

not. In the case of a successful transmission, buffer initial content (xbr(0), xbr(1), xbr(2))

is being replaced with the packet content, namely, (upr(0), upr(1), upr(2)), and the first

element of this sequence upr(0) is applied to the plant. On the other hand, if there was

a packet dropout, the buffer content remains in the buffer and the first element xbr(0) is

applied to the plant. For the sake of simplicity, let us assume that for the next three con-

secutive time instances buffer Σbr has not been addressed. During this time, the buffer

will shift its content for one spot, place a zero at the last spot and apply the first element

to the plant; note that this behavior also applies to buffers not being addressed.

upr
(2)upr
(2)00

000

upr
(1)upr
(1)upr

(2)upr
(2)0

upr
(0)upr
(0)upr

(1)upr
(1)upr

(2)upr
(2)

xbr
(2)xbr
(2)00

xbr
(1)xbr
(1)xbr

(2)xbr
(2)0

xbr
(0)xbr
(0)xbr

(1)xbr
(1)xbr

(2)xbr
(2)

000

k = 0k = 0

k = 1k = 1

k = 2k = 2

k = 3k = 3

Successful transmission Packet dropout Time

Figure 3.2: Illustration of the function of a buffer.

On the other hand, the MPC framework enables us to define an optimization problem

which explicitly takes into account packet dropouts and scheduling. Then, we optimize

over control sequences and its corresponding nodes resulting in a sequence of optimally

predicted control values over a finite horizon for an optimal node. Finally, this forms a

packet that a controller sends over a network to the corresponding buffer.

Theoretically, the considered NCS architecture is important because it provides a plat-

39

form for deeper understanding of the undesirable effects of packet dropouts and schedul-

ing with the focus on mitigating them. Further, due to technological advancements in

electronics in the last decade, both, buffers and microprocessors (on which the controller

would be implemented), became affordable and sufficiently fast. Thus, practically, the

considered NCS architecture is implementable and potential computational issues, due

to on-line optimization, are addressable with current generation of microprocessors. For

instance, an application captured with the considered NCS is the control of mobile robots

in confined space where the position of robots is measured with sensors directly con-

nected to the controller while the communication between the controller and robots is

done through a wireless network.

The considered NCS architecture has been investigated in [30] to some extent. Namely,

the authors show the convergence of plant states with respect to scheduling and packet

dropout. They mitigated the corresponding undesirable effects via above-described pro-

tocol and controller co-design. In particular, they addressed packet dropout(s) with

an assumption that there exists a uniform bound on the number of consecutive packet

dropouts. This uniform bound is assumed smaller or equal than a finite horizon h used

in MPC model(s). Moreover, the corresponding optimization problems are formulated

with a specific sequence of dropout outcomes. Namely, it is assumed that there is a suc-

cessful transmission followed with h − 1 consecutive packet dropouts. Scheduling on

the other hand is addressed by formulating R optimization problems which corresponds

to the number of plant inputs. For each optimization problem the same sequence of

dropout outcomes is considered. Solving these problems results in a set of R optimal

value functions, one for each plant input (node). Determining the minimal one generates

the optimal node and the corresponding sequence of optimally predicted control values.

This is then sent over a network to the corresponding buffer which depending on the

real packet dropout either stores the new control sequence or keeps applying its current

content. Using the standard stability related assumptions for MPC, e.g., see [119], and

the assumption on the uniform bound on the number of consecutive packet dropouts the

authors show that the plant states converge in spite of packet dropouts and scheduling.

We adopt this approach and strengthen the corresponding result by showing UGAS

40 Stability with respect to Packet Dropouts and Scheduling

of the augmented state of the plant and buffers state. The enabling assumption is the

additional lower bound on the stage cost function in terms of control only, e.g., see [160].

Using this assumption and standard assumptions for showing stability in MPC setup

combined with techniques from [2, 161, 162] was sufficient to show UGAS of the aug-

mented state of the plant and buffer state. In fact, we prove the corresponding result in

two ways. One way is more standard, where we find an appropriate Lyapunov function.

The other way is not so standard and it uses a cascade idea. The enabling observation

is that the overall buffer (defined in the sequel) as a system is Input-to-State Stable with

respect to the input being the arriving control sequence. Combining this observation

with the fact that the plant trajectories converge (see [30]), our extra assumption on lower

bound on the stage cost function in terms of control only and the mentioned advanced

control techniques were sufficient to establish the result. In summary, the novelty and

contribution of the findings from this chapter are in the stability property we establish

for the corresponding NCS architecture and in the approach we use in the corresponding

proofs.

This chapter is organized as follows. In Section 3.1 we present a detailed descrip-

tion of the NCS architecture considered. Section 3.2 consists of stability analysis where

first the corresponding assumptions are presented and discussed. Finally, the proofs are

provided in Section 3.3.

3.1 NCS Architecture

The considered NCS architecture is depicted in Fig. 3.1. A brief and high-level descrip-

tion of the corresponding architecture is provided in the introduction above. For a more

detailed description, due to the complexity of the system at hand, we proceed by consid-

ering each part separately.

3.1.1 Plant

We consider discrete-time plants of the form

3.1 NCS Architecture 41

Σp : xp(k + 1) = fp(xp(k), up(k)), k ∈N0, (3.1)

where xp ∈ Rnp is the state and up ∈ Rmp is the input of the plant with all elements of

{np, mp} belonging to natural numbers. The mapping fp : Rnp ×Rmp → Rnp is general

nonlinear.

Remark: Note that we consider discrete-time plants since we assume equidistant

transmission instants. Indeed this might be applicable to a smaller set of networks but

the analysis becomes simpler and moreover it is a good starting analysis towards consid-

ering networks with time-varying transmission instants.

As stated in Chapter 1, whenever appropriate, we will use a succinct notation for

evolution equations, e.g., we rewrite (3.1) as

Σp : x+p = fp(xp, up). (3.2)

Furthermore, without the loss of generality, we assume that the equilibrium of the

system Σp is at the origin, more precisely

xe
p = fp(xe

p, ue
p) = fp(0np , 0mp) = 0np . (3.3)

Recall that this is always achievable by appropriate change of coordinates. For instance,

let the ”original” system be given as

Σo
p : x+po

= fpo(xpo , upo), xe
po
= fpo(xe

po
, ue

po
), (3.4)

where xpo ∈ Rnp is the state, upo ∈ Rmp is the input and xe
po

is the equilibrium point, not

necessarily the origin; with the mapping fpo : Rnp ×Rmp → Rnp being general nonlinear.

Then, with change of coordinates

xp = xpo − xe
po

,

up = upo − ue
po

,

 (3.5)

one arrives at (3.1) (see also (3.2)) with the corresponding equilibrium satisfying (3.3

42 Stability with respect to Packet Dropouts and Scheduling

where

fp(xp, up) := fpo(xp + xe
po

, up + ue
po
)− fpo(xe

po
, ue

po
). (3.6)

Finally, the plant control input is partitioned according to

up := (up1 , . . . , upR) (3.7)

where

upr ∈ Rmpr , mpr ∈N, ∀r ∈ R,

∑R
r=1 mpr = mp,

R := {1, . . . , R}.

 (3.8)

3.1.2 Network

The considered network is packet based and is modeled as an erasure channel. More pre-

cisely, the transmission effects which are also regarded as exogenous disturbances to the

network, are modeled as discrete dropout process {wn(k)}k∈N0 where

wn(k) :=


0, if dropout occurs at time instant k,

1, if dropout does not occur at time instant k.
(3.9)

We will denote the set of dropout outcomes with

D := {0, 1}. (3.10)

Note that for each k ∈ N0, wn(k) ∈ D. Furthermore, we will relabel successful transmis-

sion time instants by ki, i.e., wn(ki) = 1, where i ∈N0, and introduce the set consisting of

all successful transmission time instants as

K := {ki ∈N0 : wn(ki) = 1, ki+1 > ki, ∀i ∈N0}. (3.11)

3.1 NCS Architecture 43

We will define the number of consecutive packet dropouts between successful transmis-

sion instants ki and ki+1 as

∆ki := ki+1 − ki − 1. (3.12)

At each time instant the network will receive a packet π sent by the controller. This packet

will be a tuple consisting of address and data fields. The address denoted via a takes values

from the setR while the data denoted by d takes values from the set RL·m̄p where L is the

length of the buffer and m̄p = max{mp1 , . . . , mpR}. More precisely, we have

π := (a, d) ∈ R×RL·m̄p . (3.13)

The number of network outputs corresponds to the number of plant inputs. However, at

each time instant, due to scheduling issue we consider (i.e., at each time instant only one

plant input can be accessed), in the case of no packet dropout, only one of these outputs

will be ”active” with respect to the plant. More precisely, the one being addressed; of

course, the other network outputs are used for transmission of data to other processes

connected to the network. Hence, for each k ∈N0 we have

Σn :


ynr(k) = wn(k)d(k), if r = a(k),

ynr(k) is ”inactive” with respect to the plant, if r 6= a(k).
(3.14)

Note that we do not introduce a variable which would keep track if a network out-

put is active or not with respect to the plant. Indeed, this would be a more accurate

description but it would also, unfortunately, complicate the notation, resulting in a more

cumbersome presentation.

3.1.3 Buffer

As depicted in Fig. 3.1 there are R buffers between the network and the plant; one buffer

for each plant input. These buffers are devices consisting of a memory unit and a simple

processing unit. The dynamics of each buffer is captured by the dynamics of a linear

44 Stability with respect to Packet Dropouts and Scheduling

switched system

Σxbr
:



x+br
:=


Smpr

xbr , if r 6= a or wn = 0,

Smpr
d, if r = a and wn = 1,

ybr :=


[Impr 0mpr · · · 0mpr]xbr , if r 6= a or wn = 0,

[Impr 0mpr · · · 0mpr]d, if r = a and wn = 1,
,

(3.15)

for each r ∈ R, where

Smpr
:=



0mpr
Impr

0mpr
· · · 0mpr

...
.

...

0mpr
· · · 0mpr

Impr
0mpr

0mpr
· · · · · · 0mpr

Impr

0mpr
· · · · · · · · · 0mpr


∈ RL·mpr×L·mpr , (3.16)

is the shift matrix. As name suggests, this matrix when multiplying a corresponding

vector, will shift the values of a vector for one spot and place a zero value at the last spot.

Let us consider a very simple illustrative example.

Example 3.1 (Shift matrix). Consider the following shift matrix,

S3 :=


0 1 0

0 0 1

0 0 0


and a corresponding vector ν = (ν1, ν2, ν3) ∈ R3. Then, it follows

S3ν =


0 1 0

0 0 1

0 0 0




ν1

ν2

ν3

 =


ν2

ν3

0

 .

Note that with a small change to the shift matrix we can achieve that ”last” value of a vector is

repeated ad infinitum. Namely, let us consider the following matrix

3.1 NCS Architecture 45

S̃3 :=


0 1 0

0 0 1

0 0 1

 .

Then, it follows

S̃3ν =


0 1 0

0 0 1

0 0 1




ν1

ν2

ν3

 =


ν2

ν3

ν3

 ,

leading to S̃3 · · · S̃3S̃3ν = (ν3, ν3, ν3). �

Now, note the interconnection

ybr = upr , (3.17)

for each r ∈ R. To simplify notation and presentation we define the overall buffer as

xb := (xb1 , . . . , xbR
) ∈ RL·mp . (3.18)

(Note that nb := L ·mp.) Then, we capture its dynamics via

Σb :


x+b := fb(xb, a, d, wn) := Ξ(a, wn)Sxb + SΠ(d, a, wn),

yb := hb(xb, a, d, wn) := Γ
(

Ξ(a, wn)xb + Π(d, a, wn)
)

,
(3.19)

where

Ξ(a, wn) :=


diag(IL·mp1

, . . . , IL·mpa−1
, 0L·mpa

, IL·mpa+1
, . . . , IL·mpR

), if wn = 1,

IL·mp , if wn = 0,
(3.20)

is a mapping that selects the addressed element of the corresponding overall buffer;

S := diag(Smp1
, . . . , SmpR

), (3.21)

46 Stability with respect to Packet Dropouts and Scheduling

is the overall shift matrix;

Π(d, a, wn) :=


(
0L·mp1 , . . . , 0L·mpa−1 , d, 0L·mpa+1 , . . . , 0L·mpR), if wn = 1,

0L·mp , if wn = 0,
(3.22)

is a mapping that updates the buffer state in case of a successful transmission;

Γ := [ς1 · · · ςR],

ςr :=



0mp1
0mp1

· · · 0mp1
...

... · · · ...

0mpr−1
0mpr−1

· · · 0mpr−1

Impr
0mpr

· · · 0mpr

0mpr+1
0mpr+1

· · · 0mpr+1
...

... · · · ...

0mpR
0mpR

· · · 0mpR


∈ Rmp×L·mpr , ∀r ∈ R,



(3.23)

is a matrix which selects only the first element of each individual buffer. Let us illustrate

the former notation on a simple example.

Example 3.2 (Buffer dynamics). Let xb ∈ R3·3 and let (a, d) = (1, (d1, d2, d3)). There are two

possibilities, namely, a packet dropout (wn = 0) and a successful transmission (wn = 1). Let us

consider these two cases.

Packet dropout:

3.1 NCS Architecture 47

x+b =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0





xb11

xb12

xb13

xb21

xb22

xb23

xb31

xb32

xb33



+



0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0





0

0

0

0

0

0

0

0

0



=



xb12

xb13

0

xb22

xb23

0

xb32

xb33

0



,

yb =


1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0





xb11

xb12

xb13

xb21

xb22

xb23

xb31

xb32

xb33



=


xb11

xb21

xb31

 .

Successful transmission:

48 Stability with respect to Packet Dropouts and Scheduling

x+b =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0





xb11

xb12

xb13

xb21

xb22

xb23

xb31

xb32

xb33



+



0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0





d1

d2

d3

0

0

0

0

0

0



=



d2

d3

0

xb22

xb23

0

xb32

xb33

0



,

yb =


1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0





d1

d2

d3

xb21

xb22

xb23

xb31

xb32

xb32



=


d1

xb21

xb31

 .

�

Finally, note the interconnection

yb = up. (3.24)

3.1 NCS Architecture 49

3.1.4 Controller

The controller is an MPC controller. Recall that we want to mitigate the effects of packet

dropouts and scheduling. As discussed in the introduction of this thesis and this chapter,

these issues will be addressed by explicitly incorporating their effects into the prediction

model(s). For the ease of presentation let us assume that all inputs have the same di-

mension which enables us to consider a node r ∈ R instead all of them independently;

even in case that inputs have different dimensions the corresponding changes would be

minimal.The corresponding nominal prediction model used for generating predictions is

given as

Σm
p :


x̃p(k + i + 1) := fp(x̃p(k + i), ũr

p(k + i)),

x̃p(k) = xp(k), k ∈N0, i ∈ {0, . . . , h− 1}
(3.25)

where h ∈N is a finite horizon; in (3.25) we do not use a succinct notation since we want to

point out to a distinction between a ”real” time (k) and a ”prediction” (i) time. Note that

at each time instant k, a model (3.25) is initialized by the corresponding measurement

of the plant state, i.e., x̃p(k) = xp(k). Moreover, note that for each of these optimization

problems we can only minimize over the control values of the corresponding node while

control values of other nodes are fixed. This is denoted by ũr
p which is defined as

ũr
p :=



Γm1

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)

...

Γmr−1

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)

ũpr

Γmr+1

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)

...

ΓmR

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)



∈ Rmp , (3.26)

where

Σm
b : x̃+b := fb(x̃b, r, {ũpr}k+h−1

k , w̃n), x̃b = xb, (3.27)

50 Stability with respect to Packet Dropouts and Scheduling

is an overall buffer model initialized with xb;

ũpr ∈ {ũpr}k+h−1
k , (3.28)

is a current predicted control value for node r that belongs to a sequence of predicted

control values for node r over a finite horizon h;

w̃n ∈ {w̃n}k+h−1
k := {1, 0, . . . , 0}, (3.29)

is a current predicted dropout outcome that belongs to a sequence of chosen dropout out-

comes over a finite horizon h which captures the scenario of having a successful trans-

mission and then h− 1 consecutive dropouts;

Γ =
[
Γ>mp1
· · · Γ>mpR

]>, Γmpr
∈ Rmpr×h·mp , ∀r ∈ R, (3.30)

where Γmp· are rows of the matrix Γ.

Remark: As stated above, the chosen sequence {w̃n}k+h−1
k := {1, 0, . . . , 0} captures the

scenario where after a successful transmission, h− 1 consecutive dropouts occur. This

captures one of the scenarios where over a finite horizon h there will be only one suc-

cessful transmission. Having no successful transmissions over entire horizon h would

be the worst case possible. The next worst case would be to have only one. Indeed, one

would need some kind of metric to compare all possible h scenarios. However, from

control point of view it makes sense to consider scenario where a successful transmis-

sion is followed with h− 1 consecutive packet dropouts. Namely, in this case controller

computes h new control values. Otherwise, up until successful transmission, old values

would be used and less new values would be computed, e.g., (3.27) would be shorter.

Correspondingly, buffers would ran out of data much quicker. �

Note that the control predictions depend on the content of the overall buffer. Hence,

we assume that this content is known to the controller. This can be done by sending buffer

values along with plant measurements or perhaps via acknowledgments of receipt; for

the ease of presentation we denote any of these cases in Fig. 3.1 with ACK. However, if

such acknowledgments are not available then one could adopt a stochastic control frame-

3.1 NCS Architecture 51

work as in [163], or use a control which accounts for all transmission scenarios as in [164].

It will be convenient for presentation purposes to introduce the ”NCS” state as aug-

mentation of plant and buffer state, that is

x := (xp, xb) ∈ Rnp×h·mp . (3.31)

The cost function is then defined as

J(x, {ũpr}k+h−1
k) :=

k+h−1

∑
i=k

l(φ fp(i− k, xp, {ũr
p}k+h−1

k), ũr
p(i)) + g(φ fp(h, xp, {ũr

p}k+h−1
k))

(3.32)

where l : Rnp ×Rmp → R≥0 is a stage cost function and g : Rnp → R≥0 is a terminal cost

function. Recall again that we have R nodes, hence, we will have R cost functions. Corre-

spondingly, from each we will obtain the corresponding sequence of optimally predicted

control values for the corresponding node {u∗pr
}k+h−1

k , namely

V(x, {u∗pr
}k+h−1

k) := min
{ũpr}k+h−1

k

J(x, {ũpr}k+h−1
k). (3.33)

Then, we will extract the sequence of optimally predicted control values that produces

the minimal cost value, i.e.,

V(x) = V(x, {u∗pr∗ }
k+h−1
k) := min

r
V(x, {u∗pr

}k+h−1
k) (3.34)

Then, extracting the values for the optimal node and its corresponding sequence of opti-

mal control values reduces to

r∗ := argmin
r

V(x, {u∗pr
}k+h−1

k), (3.35)

and

{u∗pr∗ }
k+h−1
k := argmin

{ũpr∗ }
k+h−1
k

J(x, {ũpr∗ }k+h−1
k). (3.36)

52 Stability with respect to Packet Dropouts and Scheduling

The packet that controller sends to a network is then formed as

π = (a, d) := (r∗, (u∗pr∗ (ki), . . . , u∗pr∗ (ki + h− 1)). (3.37)

Recall that from an optimization viewpoint, at every discrete-time instant the con-

troller needs to solve R deterministic finite horizon optimization problems. A key feature

here is that these R optimization problems can be carried out in parallel. Thus, the compu-

tational burden scales linearly with the number of plant inputs (nodes). If implemented

on hardware with parallel processors, computation times will be comparable to those of

regular MPC with horizon h.

Note also, that our method is designed so that the controller addresses the buffer most

in need. Therefore, it may occur that some buffers will run out of data more often than

others. However, if appropriate assumptions are satisfied, then the proposed method

will guarantee stability in the presence of dropouts and scheduling, and even exogenous

disturbances on the plant (considered in the next chapter).

Before we state the closed-loop system we add a remark on the reasons why the net-

work is absent in feedback connection.

Remark: Recall that throughout this work we assumed that the controller has direct

access to measurements of plant state. This assumption is made since accurate plant

measurements are crucial in making predictions in MPC framework; e.g., see [107] for

in-depth explanations. Furthermore, due to lack of network imperfections in sensor-

controller connection the algorithms for acknowledgments of receipt will be simpler and

reliable. For instance, see [21, 94, 165] for complications that arise when a network is in-

cluded in sensor-controller connection. However, if one would take into account sensor-

controller connection imperfections within the scheme proposed one could use state ob-

servers with intermittent observations, e.g., see [40, 166–168]. (For robustness, which is

considered in the next chapter, one would need state observation errors to be bounded,

which is reasonable to expect due to bounded dropouts.) Alternatively, one could also

restrict the controller to only calculate control sequences at instances of successful sensor-

data receptions. Notice that works of [21, 94] provide high-level insight and results re-

lated to stabilization of NCSs which additionally include network in sensor-controller

3.2 Stability analysis 53

communication, scheduling of plant measurements, model uncertainties, time-varying

delays, irregularity of transfer intervals and/or design of the corresponding protocol.

Extending our results to such NCSs would introduce extra complexity which is outside

the scope of the thesis and will be considered in the future.

Finally, the closed-loop system is given as

Σx : x+ =

 fp(xp, hb(xb, r∗, {u∗r∗}k+h−1
k , wn))

fb(xb, r∗, {u∗r∗}k+h−1
k , wn)

 =: f (x, wn). (3.38)

3.2 Stability analysis

We concentrate on establishing Uniform Global Asymptotic Stability (UGAS) of the sys-

tem Σx, see (3.38). First, we state our assumptions. These are also necessary for further

presentation since some notation depends on it.

3.2.1 Assumptions

As discussed in the introduction of the thesis, there are many causes for packet dropouts,

some of them being excessive (infinite) delays, packet collisions, traffic congestion and/or

failed transmissions. Moreover, they are inevitable, see [17–20], and, they occur ran-

domly. Hence, imposing any deterministic finite bound on the number of consecutive

packet dropouts seems ”unrealistic”. However, the networks are designed to have a high

throughput, thus, from a practical point of view (and experience), dropouts occur with

low probability. Nonetheless, even rare packet dropouts can cause instability in the cor-

responding NCS, e.g., for unstable plants. Hence, in these cases it makes sense to assume

a deterministic finite bound on the number of consecutive packet dropouts which is done

next.

Assumption 3.1 (Bound on the number of consecutive packet dropouts). There exists1

∆k ∈N such that ∆k ≤ L and ∆ki ≤ ∆k− 1 for each ki ∈N0. �

1Recall that L ∈N is the length of a buffer.

54 Stability with respect to Packet Dropouts and Scheduling

As indicated above, the assumptions made will impact our notation to some extent.

The first effect is the definition of a set consisting of successful transmission instants such

that the number of consecutive packet dropouts is at most ∆k− 1. More precisely,

K∆k := {ki ∈ K : ∆ki ≤ ∆k− 1, k0 ≤ ∆k}. (3.39)

Further, we define a set consisting of all infinite sequences of dropout outcomes satisfying

Assumption 3.1 now as

SDK∆k
:= {{wn}∞

0 ∈ SD : ki ∈ K∆k}. (3.40)

Furthermore, note the following equality

{wn}ki+1−1
ki

= {wn}ki+∆k
ki

= {wn(ki), wn(ki + 1), . . . , wn(ki+1 − 1)} = {1, 0, . . . , 0} (3.41)

which enables us to partition each {wn}k
0 ⊂ {wn}∞

0 ∈ SDK∆k
as

{wn}k
0 = {{wn}k0−1

0 , {wn}k1−1
k0

, . . . , {wn}ki+1−1
ki

, {wn}ki+2−1
ki+1

, . . . , {wn}k j−1
k j−1

, {wn}k
k j
}. (3.42)

Next, let us proceed with the MPC related assumptions, but before we begin, we state

a remark regarding the horizon used in MPC.

Remark: The prediction horizon in MPC is assumed to be greater or equal than the

bound on the number of consecutive packet dropouts ∆k, however, for the presentation

purposes we will set it to be equal, that is

h := ∆k, ∀r ∈ R. (3.43)

Indeed, as stated at the beginning of this section, dropouts are random and, thus, we

can not really deterministically measure or ensure the bound on the number of consec-

utive packet dropouts. However, due to the design of networks so that they have high

throughput, practice and experience indicate that the probability of dropouts is relatively

3.2 Stability analysis 55

low, [17–20]. Thus, imposing a sufficiently large deterministic finite bound on the num-

ber of consecutive packet dropouts makes sense. Practically, one would typically set the

prediction horizon to be sufficiently long, and then would claim the stability for a situ-

ation where the actual bound on the number of consecutive packet dropouts is smaller

than this horizon. Indeed, increasing the horizon does require larger buffers and more

computation but that is something we have control over. �

Remark: Furthermore, notice that the model of the plant has to be ”accurate enough”.

For instance, if the model is not accurate, then the longer the horizon, the worse our

predictions are and this would affect the quality of predicted control values at the end

of the horizon. Analyzing robustness with respect to model uncertainty is particularly

important and it is left for further research. �

Now, the first MPC assumption is concerned with a stage and a terminal cost function,

see (3.32).

Assumption 3.2 (Semi-positive definiteness and lower bounds on stage cost function).

There exist class-K∞ functions αxp and αup such that

l(xp, up) ≥ αxp(|xp|), l(xp, up) ≥ αup(|up|), l(0np , 0mp) = 0,

g(xp) ≥ 0, g(0np) = 0,

 (3.44)

for each xp ∈ Rnp and each up ∈ Rmp . �

The stated assumption, without a lower bound on stage cost function in terms of

control, is a ”standard” one, see for instance [104–121]. The additional part, i.e., a lower

bound on stage cost function in terms of control only, is the enabling piece in establishing

UGAS; this additional bound on the stage cost function was used for instance in [160].

The following assumption is a modified ”standard” stability-related assumption, for

instance see [107]. In particular this assumption is used to construct a sequence of feasible

control values.

Assumption 3.3 (Terminal control law). For some node r ∈ R there exists a terminal control

law κr : Rnp×h·mp → Ūpr such that

56 Stability with respect to Packet Dropouts and Scheduling

g(fp(xp, κr(xp, xb)))− g(xp) + l(xp, κr(xp, xb)) ≤ 0,

fp(xp, κr(xp, xb)) ∈ Rnp ,

κr(xp, xb) ∈ Ūpr := 0mp1 × · · · × 0mpr−1 ×Rmpr × 0mpr+1 × · · · × 0mpR ,

 (3.45)

holds for each (xp, xb) ∈ Rnp×h·mp . �

Notice that the control law κr is not necessarily used on the plant. It is just a construct

adopted to establish stability results; e.g., see [107] for non-networked case. Establishing

easy-to-check conditions so that the latter assumption is satisfied would depend on the

plant dynamics and the chosen cost function. Locally, linearization could be a right ap-

proach to establish easy-to-check conditions. Also, notice that Ūpr captures the schedul-

ing constraints. The final assumption is related to the optimal value function. Namely,

we assume that it is possible to bound it by a class-K function.

Assumption 3.4 (Class-K bound on the optimal value function). There exist a class-K func-

tion γV such that

V(x) ≤ γV(|x|) (3.46)

holds for each x = (xp, xb) ∈ Rnp×h·mp . �

For instance, this bound can be ensured by assuming asymptotic controllability as in

Section III of [123].

We are now ready to proceed with the exposition of the main results.

3.2.2 Results

To establish UGAS of the system Σx (see (3.38)), we first establish that the corresponding

system is UGAS at successful transmission instants from set K∆k (defined in the sequel).

Then, we address the ”inter-sample” behavior which establishes the result. What we

mean by inter-sample behaviour is illustrated in Fig. 3.3.

3.2 Stability analysis 57

k-9 k-6 k-1k-2k-7 k-3k-8 kk-4k-5131211109876543210
Time

Unsuccessful transmission instants
Trajectory Inter-sample behaviour

k0 k1 k2 kiki�1

Successful transmission instants

Figure 3.3: Illustration of what we refer to as inter-sample behavior; k denotes current
discrete time.

This idea originates from [2, Theorem 2]. Namely, the corresponding result states that

a sampled-data system is UGAS, if and only if, the corresponding discrete-time system is

UGAS and uniformly bounded over a period T (UGBT); which needs to be longer than

the inter-sample interval lengths. We will omit the corresponding details and steer the

focus on how this result is modified so as to establish UGAS of the system Σx (see (3.38));

for those interested in the technical details we recommend to consult [2]. First, we define

UGAS at successful transmission instants from the set K∆k (UGAS-K∆k) of the system Σx (see

(3.38)).

Definition 3.1 (UGAS-K∆k). Consider the system Σx (see (3.38)). We say that Σx is UGAS at

successful transmission instances from the set K∆k if there exist a class-KL function β such that

for any initial condition x(k0) = x, any k0 and any {wn}ki−1
k0
⊂ {wn}∞

0 ∈ SDK∆k
we have

|φ f (ki − k0, x, {wn}ki−1
k0

)| ≤ β(|x|, ki − k0), (3.47)

for all ki ∈ K∆k. �

Next, we define Uniform Global Boundedness over ∆k (UGB-∆k) of the system Σx (see

(3.38)), which can be seen as a counterpart to a discrete-time system being UGBT in [2].

Notice that we rely on the reasoning provided in [2]. Namely, sufficient conditions for

58 Stability with respect to Packet Dropouts and Scheduling

UGB-∆k can be obtained by following the steps provided in Lemma 3 and Lemma 4 in

[2].

Definition 3.2 (UGB-∆k). Consider the system Σx (see (3.38)). We say the solutions of the

system Σx are Uniformly Globally Bounded over ∆k if there exist a class-K∞ function γ∆k such

that

|φ f (k− k̄0, x, {wn}k−1
k̄0

)| ≤ γ∆k(|x|) (3.48)

for all k̄0 ∈ {0, . . . , ki +∆ki}, ki ∈ K∆k and {wn}k−1
k̄0
⊂ {wn}∞

0 ∈ SDK∆k
where k ∈ {k̄0, . . . , k̄0 +

∆k}. �

The last two definitions enable us to state the main technical result which we use to

establish the UGAS of the system Σx (see (3.38)).

Lemma 3.1. The system Σx (see (3.38)) is UGAS, if the following conditions hold:

1. The system Σx is UGAS-K∆k,

2. The solutions of the system Σx are Uniformly Globally Bounded over ∆k (UGB-∆k).

More precisely, if the last two conditions are satisfied, then there exists a class-KL function β

such that for each x(k̄0) = x, each k̄0 and each {wn}k−1
k̄0
⊂ {wn}∞

0 ∈ SDK∆k
the following holds

|φ f (k− k̄0, x, {wn}k−1
k̄0

)| ≤ β(|x|, k− k̄0) (3.49)

for each k ≥ k̄0 ≥ 0. �

Establishing UGAS-K∆k is essential. In what follows we will establish this property

via two approaches because of their different insights. We will first present an approach

which uses the results on stability of cascaded systems. This approach reveals how one

can exploit the fact that the overall buffer as a system is ISS with respect to the input being

the arriving control sequence. Moreover, the application and modification of techniques

used in the proofs are useful since they provide an alternative approach for addressing

packet dropouts and scheduling.

3.2 Stability analysis 59

This approach will be followed by a ”standard” approach in which one constructs an

appropriate Lyapunov function. The merit of this approach is the corresponding con-

struction.

Cascade-based approach

In order to establish UGAS-K∆k, we use and/or modify several results. First, we ex-

ploit the result that establishes the equivalence between ”KL stability with respect to

two measures” on one hand, and ”uniform stability and global boundedness” and ”uni-

form global attractivity” on the other hand; for more details, please see [161] for the

continuous-time case and [162] for the discrete-time case. The mentioned result will be

modified and used for plant state and control trajectories. Then, by using the fact that the

overall buffer is ISS with respect to the input being the arriving control sequence, we es-

tablish an appropriate bound on the buffer trajectories. Moreover, the fact that the overall

buffer is UGAS uniformly in buffer states (i.e., ISS with zero gain), allows us to regard the

corresponding system as a cascade although in principal it is a feedback connection. This

further enables us to use stability proofs for cascade systems, such as the one provided

in [169], to establish UGAS-K∆k of the system Σx (see (3.38)).

Let us begin with the modification of the definition of KL stability with respect to

two measures from [162].

Definition 3.3 (Modified Definition 2.1 from [162]). Let ρi : Rnp ×Rh·mp → R≥0, i ∈ {1, 2}
be a positive-definite function. Consider the system Σx (see (3.38)). We say that Σx is KL-stable

with respect to (ρ1, ρ2) if there exist a class-KL function β such that for each initial condition

x(k0) = x, each k0 and any {wn}ki−1
k0
⊂ {wn}∞

0 ∈ SDK∆k
the following inequality holds

ρ1(φ f (ki − k0, x, {wn}ki−1
k0

)) ≤ β(ρ2(x), ki − k0), (3.50)

for all ki ∈ K∆k. �

Next, we state the proposition that establishes the desired equivalence.

Proposition 3.1. Let ρi : Rnp × Rh·mp → R≥0, i ∈ {1, 2} be a positive-definite function.

Consider the system Σx (see (Eq. 3.38)). The following are equivalent:

60 Stability with respect to Packet Dropouts and Scheduling

• The system Σx is KL-stable with respect to (ρ1, ρ2),

• The following holds:

– Uniform stability and global boundedness: There exists a class-K∞ function γ

such that for each initial condition x(k0) = x, each k0 and any {wn}ki−1
k0
⊂ {wn}∞

0 ∈
SDK∆k

it holds

ρ1(φ f (ki − k0, x, {wn}ki−1
k0

)) ≤ γ(ρ2(x)), (3.51)

for each ki ∈ K∆k,

– Uniform global attractivity: For each δ > 0 and ε > 0, there exists K(δ, ε) > 0

such that that for each initial condition x(k0) = x, each k0 and any {wn}ki−1
k0
⊂

{wn}∞
0 ∈ SDK∆k

it holds

ρ2(x) ≤ δ, ki − k0 ≥ K(δ, ε)⇒ ρ1(φ f (ki − k0, x, {wn}ki−1
k0

)) ≤ ε (3.52)

for each ki ∈ K∆k. �

Remark: The latter proposition originates from [162] and [161]. Note that in these

references, functions ρ1 and ρ2 (denoted, respectively, as σ1 and σ2) are required to be

continuous but we require only positive-definiteness. Additionally, note that Proposi-

tion 2.2 in [162] and our Proposition 3.1, in its proofs do not require the continuity of

ρ1 and ρ2. Moreover, note that results in [162] concentrate on difference inclusion and

indeed, even in our case, due to scheduling, we have a difference inclusion. However,

due to the MPC controller, which at each time instant chooses only one optimal node and

the corresponding control sequence, our corresponding difference inclusion reduces to a

difference equation, see (3.38). Hence, the reason why we use it in Proposition 3.1. �

Having stated Proposition 3.1, we steer the focus on ”uniform stability and global

boundedness” and ”uniform global attractivity”. First, we establish two lemmas that are

needed for showing the mentioned properties.

Lemma 3.2. Let Assumptions 3.1, 3.2 and 3.3 be satisfied. Then2

2Note that we write ur∗
p instead of u∗

r∗
p to simplify notation.

3.2 Stability analysis 61

∆V(x(ki)) := V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

))−V(x)

≤ −
ki+∆ki

∑
j=ki

αxp(|φ fp(j− ki, xp, {ur∗
p }ki+∆ki

ki
)|),

(3.53)

holds for each x(ki) = x and each ki. �

Remark: Note that Lemma 3.2 is a relaxed version of Theorem 3 in [30] and Lemma

2 in [32] for the case of no disturbances. The relaxation comes with Assumption 3.3 in

which a terminal control law κr has the domain Rnp ×Rh·mp and it exists only for some

node r. This assumption encapsulates their counterparts in [30] and [32] where the do-

main is Rnp (which does not account for buffers). Furthermore, unlike in Theorem 3 in

[30] but, similarly as in Assumption 3 of [32], the terminal control law κr from Assump-

tion 3.3 has to exist only for some node r and not for all nodes. �

Lemma 3.3. Let Assumptions 3.1, 3.2 and 3.3 be satisfied. Then

∆V(x(ki)) := V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

))−V(x)

≤ −
ki+∆ki

∑
j=ki

αup(|ur∗
p (i)|),

(3.54)

holds for each x(ki) = x and each ki. �

Finally, we have all the necessary ingredients to state lemmas that establish an appro-

priate KL bound on the plant state and control trajectories, respectively.

Lemma 3.4. Let conditions of Lemma 3.2 and Assumption 3.4 be satisfied. Then, the system Σx

(see (3.38)) is KL-stable with respect to (ρ1, ρ2) where ρ1(x(·)) := αxp(|xp(·)|) and ρ2(•) :=

| • |. �

Lemma 3.5. Let conditions of Lemma 3.3 and Assumption 3.4 be satisfied. Then, the system

Σx (see Eq. 3.38) is KL-stable with respect to (ρ1, ρ2) where ρ1(x(·)) := αup(|up(·)|) and

ρ2(•) := | • |. �

62 Stability with respect to Packet Dropouts and Scheduling

Before stating the result that establishes UGAS-K∆k, we need a lemma that establishes

ISS of the overall buffer (see (3.27)) with respect to the input being the data d sent by the

controller. This lemma is stated next.

Lemma 3.6. Consider the overall buffer given by (3.27) and consider any sequence of dropout

outcomes {wn}ki
k0
⊂ {wn}∞

0 ∈ SDK∆k
. Then, the overall buffer is ISS with respect to the input

being the data d. Namely, it follows that

|xb(ki)| ≤ β(|xb(k j)|, ki − k j) + γ(sup
k j≤τ≤ki

|d(τ)|)

where β ∈ KL, γ ∈ K and ki ≥ k j ≥ k0; also, recall that d(τ) = (u∗pr∗ (τ), . . . , u∗pr∗ (τ + ∆k−
1)). �

Finally, we are ready to state the theorem that establishes UGAS-K∆k for this cascade-

based approach.

Theorem 3.1 (UGAS-K∆k - Cascade-based approach). Consider the system Σx given by

(3.38). Let the following conditions be satisfied:

• (Lemma 3.4) The system Σx is KL-stable with respect to (ρ1, ρ2) where ρ1(x(·)) :=

αxp(|xp(·)|) and ρ2(•) := | • |,

• (Lemma 3.5) The system Σx is KL-stable with respect to (ρ̃1, ρ2) where ρ̃1(x(·)) :=

αup(|up(·)|) and ρ2(•) := | • |,

• (Lemma 3.6) The overall buffer (3.27) is ISS with respect to the input being the data d.

Then, the system Σx is UGAS-K∆k. �

Lyapunov approach

In the previous approach we established UGAS-K∆k of the system Σx (see (3.38)) by fo-

cusing on trajectories of the controller, the overall buffer and the plant. This led to an

approach that is not so common in the NCS literature. On the other hand, in this section,

we use a relatively standard approach of showing stability in control literature. Namely,

3.3 Proofs 63

by constructing an appropriate Lyapunov function. We do not provide construction pro-

cedure here because the proof of the following theorem establishes UGAS-K∆k of the

system Σx via construction of an appropriate Lyapunov function.

Theorem 3.2 (UGAS-K∆k - Lyapunov approach). Consider the system Σx given by (3.38).

Consider any sequence of dropout outcomes {wn}ki−1
k0

⊂ {wn}∞
0 ∈ SDK∆k

. Let the following

conditions be satisfied:

• (Lemma 3.3) Dissipation inequality

∆V(x(ki)) := V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

))−V(x)

≤ −
ki+∆ki

∑
j=ki

αxp(|φ fp(j− ki, xp, {ur∗
p }ki+∆ki

ki
)|),

holds for each x(ki) = x and each ki and where V is given in (3.34),

• (Lemma 3.5) The system Σx is KL-stable with respect to (ρ1, ρ2) where ρ1(x(·)) :=

αup(|up(·)|) and ρ2(•) := | • |.

Then, system Σx is UGAS-K∆k. �

We proceed with the proofs of all the stated results, chronologically ordered.

3.3 Proofs

Proof of Lemma 3.1. Before we begin, note that this proof follows the lines of the proof

of Theorem 2 from [2]. Consequently, instead of using the solution mapping φ f for the

trajectory of the system Σx (see (3.38)), we will use the corresponding variable x, as is

done in [2].

Let the conditions of Lemma 3.1 be satisfied. Consider any k̄0 ∈ {0, . . . , ki + ∆ki} ⊂
{0, . . . , ki + ∆k}, ki ∈ K∆k. From the inequality (3.48) it follows that3

3Note that instead of writing φ f (k − k̄0, x, {wn}k−1
k̄0

) we write x(k) because of the reason stated at the
beginning of the proof.

64 Stability with respect to Packet Dropouts and Scheduling

|x(k)| ≤ γ∆k(|x(k̄0)|), (3.55)

holds for all k ∈ {k̄0, . . . , ki + ∆ki + 1︸ ︷︷ ︸
ki+1

} ⊂ {k̄0, . . . , k̄0 + ∆k}; note that in the latter inequal-

ity, unlike in the inequality (3.48), we write x(k̄0) instead of x. Next, from the property of

the exponential function, namely, exp(T− τ) ≥ 1, ∀T ≥ τ, we can express the inequality

(3.55) as

|x(k)| ≤ γ∆k(|x(k̄0)|) exp(∆k− (k− k̄0))

=: β1(|x(k̄0)|, k− k̄0),
(3.56)

where k ∈ {k̄0, . . . , ki+1}. Moreover, UGB-∆k property, i.e., the the inequality (3.55), also

yields4

|x(k)| ≤ γ∆k(|x(ki + k̄)|), (3.57)

where k ∈ {ki + k̄, . . . , ki + k̄ + ∆ki} ⊂ {ki + k̄, . . . , ki + k̄ + ∆k}, k̄ ≥ 0; again, notice that

in the latter inequality, we write x(ki + k̄) instead of x for the initial state. Then, using

both properties, UGAS-K∆k and UGB-∆k, it follows5

|x(k)| ≤ γ∆k(|x(ki + k̄)|)

≤ γ∆k(β̃(|x(ki)|, k̄))

≤ γ∆k(β̃(γ∆k(|x(k̄0)|), k̄))

=: β̃2(|x(k̄0)|, k̄).

(3.58)

Now, if the function β̃2 is a UIB function (see Section 1 for a definition), then, accord-

ing to Corollary 1 from [2], it follows

4Please notice once again that instead of the solution mapping φ f for the trajectory of the system Σx (see
(3.38)), we use the corresponding variable x, as is done in [2].

5Note that in the definition of UGAS-K∆k property we used symbol β for the corresponding class-KL
function while in the upcoming inequality we use symbol β̃ instead.

3.3 Proofs 65

β̃2(|x(k̄0)|, k̄) ≤ P∆k β̃2(|x(k̄0)|, k̄ + ∆k), P > 1. (3.59)

On the other hand, if the function β̃2 is not a UIB function, then, according to Lemma 1

from [2], we can upper bound it with a UIB function. Namely, we can majorize it with

a UIB function β̄2(s, τ) := maxη∈{0,...,τ} 2−η β̃2(s, τ − η) with P = 2. Then, we can apply

Corollary 1 from [2] to arrive at the inequality similar to the inequality (3.59), as desired.

Moreover, since k− k̄0 < ki + k̄ + ∆k− ki = k̄ + ∆k it follows

|x(k)| ≤ P∆k β̃2(|x(k̄0)|, k̄ + ∆k)

≤ P∆k β̃2(|x(k̄0)|, k− k̄0)

=: β2(|x(k̄0)|, k− k̄0).

(3.60)

Finally, by introducing a new class-KL function

β(s, τ) := max{β1(s, τ), β2(s, τ)} (3.61)

we satisfy the inequality (3.49), as desired.

Proof of Proposition 3.1. The proof follows the same lines as in [162].

Proof of Lemma 3.2. As in the proof of Theorem 3 in [30] and the relating part of Lemma

2 in [32] for the case of no disturbances, we will consider two cases (due to Assumption

3.1). The first case will be the case where ∆ki < ∆k − 1 while the second case is where

∆ki = ∆k− 1. In both cases, the key is to find a sequence feasible control values over the

prediction horizon.

1. ∆ki < ∆k − 1: Consider a node from Assumption 3.3 at time instant ki+1, that is,

r(ki+1), which is not necessarily the same as the optimal node from the previous

successful transmission instant ki, i.e., r∗(ki). Consequently, consider a control se-

quence

66 Stability with respect to Packet Dropouts and Scheduling

{ũr(ki+1)
p }ki+1+∆k−1

ki+1
= {ur∗(ki)

p (ki+1), . . . , ur∗(ki)
p (ki + ∆k− 1),

ũr(ki+1)
p (ki + ∆k), . . . , ũr(ki+1)

p (ki+1 + ∆k− 1)} (3.62)

where ur∗(ki)
p (·) stands for plant input with node r∗(ki) being the last updated part

of plant input; i.e., the last updated control values are the ones for node r∗(ki). More

precisely, the first ∆k− ∆ki − 1 elements are from the buffers which originate from

past optimizations, last one received being obtained in optimization at time instant

ki; see Section 3.1.4 for more details. The rest of elements come from Assumption

3.3, namely

ũr(ki+1)
p (ki+1 + j) := κr(ki+1)(x̃(ki+1 + j)), (3.63)

for all j ∈ {∆k− ∆ki − 1, . . . , ∆k− 1}, where

x̃+ = f (x̃, w̃n) =

 fp(x̃p, κr(ki+1)(x̃))

Ξ(r(ki+1), w̃n)Sx̃b

 , (3.64)

with

w̃n ∈ {w̃n}ki+1+∆k−1
ki+∆k = {0, . . . , 0},

x̃ = φ f (∆k, x, {wn}ki+∆k−1
ki

).

 (3.65)

Note that the sequence given in the equation (3.62) is a feasible one. Now, direct

application of this sequence in the corresponding cost function produces the fol-

lowing

3.3 Proofs 67

J
(

φ f (∆ki + 1, x, {wn}ki+∆ki
ki

), {ũpr(ki+1)
}ki+1+∆k−1

ki+1
)
)

= V(x)−
ki+∆ki

∑
j=ki

l
(

φ fp(j− ki, xp, {ur∗
p }ki+∆ki

ki
), ur∗(ki)

p (j)
)

+
ki+1=∆k−1

∑
j=ki+∆k

{
g
(

fp(x̃(j), ũp(j))
)
− g
(

x̃(j)
)
+ l
(

x̃(j), ũp(j)
)}

≤ V(x)−
ki+∆ki

∑
j=ki

l
(

φ fp(j− ki, xp, {ur∗
p }ki+∆ki

ki
), ur∗(ki)

p (j)
)

(3.66)

where {ũpr(ki+1)
}ki+1+∆k−1

ki+1
is a sequence of corresponding control values for node

r(ki+1) from a feasible control sequence given in the equation (3.62); also, we write

{ur∗
p }ki+∆ki

ki
instead of {ur∗(ki)

p }ki+∆ki
ki

to simplify notation. Now, due to optimality,

we have

V
(

φ f (∆ki + 1, x, {wn}ki+∆ki
ki

)
)

≤ J
(

φ f (∆ki + 1, x, {wn}ki+∆ki
ki

), {ũpr(ki+1)
}ki+1+∆k−1

ki+1

)
,

(3.67)

thus, application of Assumption 3.2 (note that the lower bound in terms of the plant

state is used, but not the bound in terms of the plant control input), yields

∆V(x(ki)) := V
(

φ f (∆ki + 1, x, {wn}ki+∆ki
ki

)
)
−V(x)

≤
ki+∆ki

∑
j=ki

l
(

φ fp(j− ki, xp, {ur∗
p }ki+∆ki

ki
), ur∗(ki)

p (j)
)

≤ −
ki+∆ki

∑
j=ki

αxp

(
|φ fp(j− ki, xp, {ur∗

p }ki+∆ki
ki

)|
)

,

(3.68)

as desired.

2. ∆ki = ∆k − 1: The only difference is that now, we consider a feasible control se-

quence {ũr(ki+1)
p (ki+1), . . . , ũr(ki+1)

p (ki+1 +∆k− 1)}, whose values come from Assump-

68 Stability with respect to Packet Dropouts and Scheduling

tion 3.3.

Proof of Lemma 3.3. Follows the exact same lines as the proof of Lemma 3.2 where, when

applying Assumption 3.2 we employ the lower bound in terms of the plant control input.

Proof of Lemma 3.4. Let the conditions of Lemma 3.2 and Assumption 3.4 be satisfied.

From the inequality (3.53) it follows

V(x(ki+1))−V(x(ki)) ≤ −αxp(|φ fp(0, xp, {})|) = −αxp(|xp(ki)|). (3.69)

Now, consider time instances for the set {k0, . . . , ki} ∈ K∆k and the corresponding in-

equalities of the from given in the previous inequality, namely

V(x(k1))−V(x(k0)) ≤ −αxp(|xp(k0)|),
V(x(k2))−V(x(k1)) ≤ −αxp(|xp(k1)|),

...

V(x(ki))−V(x(ki−1)) ≤ −αxp(|xp(ki−1)|).


(3.70)

Adding all previous inequalities yields

V(x(ki)) ≤ V(x(k0))−
i−1

∑
j=0

αxp(|xp(k j)|). (3.71)

Note that due to Assumption 3.2 and the definition of cost function given in the equation

(3.32) it holds that

V(x(ki)) ≥ αxp(|xp(ki)|). (3.72)

Last inequality, combined with the inequality from Assumption 3.4 and inequality given

in (3.71) results in

αxp(|xp(ki)|) ≤ γV(|x(k0)|)−
i−1

∑
j=0

αxp(|xp(k j)|). (3.73)

3.3 Proofs 69

We now proceed to show Uniform stability and global boundedness and Uniform global at-

tractivity.

Uniform stability and global boundedness: Using the fact that −∑i−1
j=0 αxp(|xp(k j)|) ≤ 0

yields

αxp(|xp(ki)|) ≤ γV(|x(k0)|) (3.74)

were according to inequality given in (3.51) we have that

ρ1(x(·)) := αxp(|xp(·)|),
γ(·) := γV(·),
ρ2(·) := | · |,

 (3.75)

as desired.

Uniform global attractivity: Let us assume that there exist some δ > 0 and some ε > 0

so that for each K(δ, ε) > 0 and each x(k0) and {wn}ki−1
k0
⊂ {wn}∞

0 ∈ SDK∆k
it holds

ρ2(x) ≤ δ, ki − k0 ≥ K(δ, ε)⇒ ρ1(φ f (ki − k0, x, {wn}ki−1
k0

)) ≥ ε. (3.76)

Noting that −ρ1(φ f (0, x, {})) = −ρ1(x(k − i)) ≤ −ε and using (3.75) in the inequality

given in (3.73) yields

αxp(|xp(ki)|) ≤ γV(δ)− ε
i

∑
j=1

j. (3.77)

Finally, from the latter inequality, it follow that for sufficiently large i, αxp(·) will be

upper bounded by a negative number which is a contradiction since this function is class-

KL.

Proof of Lemma 3.5. Follows the same lines as the proof of Lemma 3.4.

Proof of Lemma 3.6. Let the Lyapunov candidate function be of the following form

W(xb) :=
R

∑
r=1

x>br
Πrxbr , (3.78)

70 Stability with respect to Packet Dropouts and Scheduling

where Rh·mpr×h·mpr 3 Π>r = Πr > 0 for each r ∈ R. Next, let us consider the difference of

the previous Lyapunov function between successful time instances ki and ki+1, namely

∆W(xb) := W(φ fb(∆ki + 1, xb, {a}ki+∆ki
ki

, {d}ki+∆ki
ki

, {wn}ki+∆ki
ki

))−W(xb). (3.79)

Now, recall that {wn}ki+∆ki
ki

= {1, 0, . . . , 0}; see (3.41). Thus, {a}ki+∆ki
ki

= {r∗(ki), . . . , r∗(ki)},
{d}ki+∆ki

ki
= {d(ki), SLd(ki), . . . , S∆ki

L d(ki)} where d(ki) = (u∗pr∗ (ki), . . . , u∗pr∗ (ki + ∆k− 1));

recall that L is length of each individual buffer. Now, it follows

∆W(xb) =
R

∑
r=1
r 6=r∗

x>br

(
(S∆ki+1)>ΠrS∆ki+1 −Πr

)
xbr − x>br∗Πr∗xbr∗ + d>Πr∗d

≤ −
R

∑
r=1
r 6=r∗

x>br
Λ(r,∆ki)xbr − x>br∗Πr∗xbr∗ + d>Πr∗d

≤ −min
r
{min

∆ki
{Λ(r,∆ki)}, |Πr|}︸ ︷︷ ︸

c1

R

∑
r=1
|xbr |2 + max

r
{|Πr|}︸ ︷︷ ︸
c2

|d|2

≤ −c1|xb|2 + c2|d|2

≤ − c1

2
|xb|2, ∀|xb| ≥

√
2c2

c1
|d|,

(3.80)

where (S∆ki+1)>ΠrS∆ki+1 − Πr = −Λ(r,∆ki), for each r ∈ R and where Rh·mpr×h·mpr 3
Λ>(r,∆ki)

= Λ(r,∆ki) > 0; this is due to the fact that for any ∆ki, satisfying 1 ≤ ∆ki ≤ ∆k− 1,

the resulting matrix S∆ki+1 is nilpotent, and thus, it has all of its eigenvalues located

strictly inside the unit circle.

Proof of Theorem 3.1. Let the conditions of Lemmas 3.4, 3.5 and 3.6 be satisfied. Consider

the initial successful transmission instant k0 ∈ K∆k. Conclusions of Lemmas 3.6 and 3.4

provide

|xb(ki)| ≤ β1(|xb(k j)|, ki − k j) + γ1(supk j≤τ≤ki
|d(τ)|)

|xp(ki)| ≤ β2(|xp(ki)|, ki − k j)

 (3.81)

3.3 Proofs 71

where ki ≥ k j ≥ k0, β1 and β2 are class-KL and γ1 is a class-K function. Now, recall that

d(τ) = (u∗pr∗ (τ), . . . , u∗pr∗ (τ + ∆k− 1)) and note that the conclusion of Lemma 3.5 results

in

|up(τ)| ≤ β3(|x(k j)|, τ − k j) (3.82)

where β3 is a class-KL function. Now, due to the properties of class-KL function it fol-

lows ∑τ+∆k−1
j=τ |up(j)| ≤ (∆k− 1)β3(|x(k j)|, τ− k j). Further, due to properties of Euclidean

norm, |d(τ)| ≤ ∑τ+∆k−1
j=τ |up(j)|, thus we have

|d(τ)| ≤ (∆k− 1)β3(|x(k j)|, τ − k j). (3.83)

Further, let k j = d ki−k0
2 e. Then

|xb(ki)| ≤ β1

(∣∣∣xb(⌈ ki + k0

2

⌉)∣∣∣, ⌈ ki − k0

2

⌉)
+ γ

(
sup

k j≤τ≤ki

|d(τ)|
)

. (3.84)

To estimate |xb(k j)|, we apply the first inequality of (3.81) with k j = k0 and ki replaced

with k j, which yields

|xb(k j)| ≤ β1

(
|xb(k0)|,

⌈ ki − k0

2

⌉)
+ γ

(
sup

k0≤τ≤k j

|d(τ)|
)

. (3.85)

Using the inequality (3.83), results in

supk0≤τ≤k j
|d(τ)| ≤ (∆k− 1)β3(|x(k0)|, 0),

supk j≤τ≤ki
|d(τ)| ≤ (∆k− 1)β3

(
|x(k0)|,

⌈
ki−k0

2

⌉)
.

 (3.86)

Substituting the inequality (3.85) in the inequality (3.84) and using the inequality (3.86) to-

gether with the inequalities |xp(k0)| ≤ |x(k0)|, |xb(k0)| ≤ |x(k0)| and |x(ki)| ≤ |xp(ki)|+
|xb(ki)|, yields

|x(ki)| ≤ β4(|x(k0)|, ki − k0), (3.87)

where

72 Stability with respect to Packet Dropouts and Scheduling

β4(t, s)

= β1

(
β1

(
t,

s
2

)
+ γ1((∆k− 1)β3(t, 0)),

s
2

)
+ γ1

(
(∆k− 1)β3

(
t,

s
2

))
+ β2(t, s),

(3.88)

as desired.

Proof of Theorem 3.2. Let the conditions of Lemmas 3.3 and 3.5 be satisfied. Let the Lya-

punov function be of the following form

L(x) := cU(x) + V(x) + W(xb), c > 0 (3.89)

where V(x) is given in the equation (3.34), W(x) is given in the equation (3.78), while

U(x) is defined as follows

U(x) :=
∞

∑
j=k

υ>p (φ f (j− k, x, {wn}k+j
k))Ωυp(φ f (j− k, x, {wn}k+j

k)), ∀j ≥ k ≥ 0, (3.90)

where Rmp×mp 3 Ω> = Ω > 0, υp(φ f (j− k, x, {wn}k+j
k)) := up(j) and υp : Rnp×h·mp →

Rmp is possibly a discontinuous function.

One can easily show that both, V and W are radially unbounded. Namely, for V,

one would use assumptions 3.2 and 3.4, while for W, one would use the fact that the

function is quadratic. Moreover, since V and U have the same argument and V is radially

unbounded there is no need to show that U is radially unbounded. Hence, we conclude

that L is radially unbounded.

Now, we proceed with analyzing the difference of L between time instances ki and

ki+1, namely

∆L(x(ki)) := L(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

))− L(x(ki))

= c∆U(x(ki)) + ∆V(x(ki)) + ∆W(xb(ki))
(3.91)

Note that ∆V(x(ki)) is considered in the inequality (3.68) while ∆W(xb(ki)) is considered

3.3 Proofs 73

in the inequality (3.80). Thus, we will concentrate on ∆U(x(ki)) resulting in

∆U(x(ki)) := U(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

))−U(x(ki))

≤
∞

∑
j=ki+1

υ>p (φ f (j− k, x, {wn}k+j
k))Ωυp(φ f (j− k, x, {wn}k+j

k))

−
∞

∑
j=ki

υ>p (φ f (j− k, x, {wn}k+j
k))Ωυp(φ f (j− k, x, {wn}k+j

k))

≤ −
ki+∆ki

∑
j=ki

υ>p φ f (j− k, x, {wn}k+j
k))Ωυp(φ f (j− k, x, {wn}k+j

k))

≤ −λmin(Ω)
ki+∆ki

∑
j=ki

|up(j)|2

≤ −λmin(Ω)|d(ki)|2

(3.92)

Finally, using latter inequality together with inequalities provided in (3.68) and (3.80)

and choosing c so that (cλmin(Ω)− c2) ≥ 0, yields

∆L(x(ki)) ≤ −αxp(xp(ki))− c1|xb(ki)|2 − (cλmin(Ω)− c2)|d(ki)|2

≤ −αxp(xp(ki))− c1|xb(ki)|2,
(3.93)

as desired.

This page intentionally left blank.

Chapter 4

Stability with respect to Packet
Dropouts and Scheduling - Economic

MPC

The stability result from the previous chapter is being extended to the case where

the cost function (e.g., see (3.32)) is more general. In particular, the cost function

need not be a positive definite function with respect to the corresponding equilibrium

point; e.g., see Definition 1.1. This scenario corresponds to the so-called Economic MPC.

More precisely, recall that for the standard MPC the following holds for the corre-

sponding cost function l : Rnp ×Rmp → R

0 = l(0np , 0mp) ≤ l(xp, up) for any admissible (xp, up), (4.1)

where xp is the state and up is the input of the corresponding plant. On the other hand, for

the Economic MPC, the inequality (4.1) cannot be generally assumed and the following

can happen1

0 < l(0np , 0mp) or,

l(0np , 0mp) > l(xp, up) for any admissible (xp, up),

 (4.2)

where (xp, up) does not correspond to any equilibrium point2.

Theoretically, Economic MPC is important since it considers more general cost func-

tions. Furthermore, it enables one to additionally and explicitly address the economical

1Note that in both inequalities, (4.1) and (4.2), we assume that the origin is the equilibrium of the corre-
sponding system, i.e., we apply the appropriate change of coordinates (if necessary); see (3.3)–(3.5).

2The latter discussion is borrowed from [149]; see the second paragraph in the second section in [149].

75

76 Stability with respect to Packet Dropouts and Scheduling - Economic MPC

cost of plant operation, for instance, the economical cost related to transition from one

set-point to another in industrial plants; note that standard MPC focuses only control

performance, e.g., track as quick as possible a set-point, and ignores the corresponding

economical cost. In NCS setting, for instance, Economic MPC can be used to minimize

the price related to the usage of network resources.

Unfortunately, the fundamental difference between the standard and Economic MPC

(see the inequalities in (4.2)) is a sufficient condition that the extensive collection of re-

sults for the standard MPC stability analysis does not simply extend to Economic MPC.

However, a noticeable progress has been documented in [147–156]. This chapter enlarges

the latter collection of results by adding a result applicable to NCS. In particular we ex-

tend our results by considering a stage function that captures the economic aspects of

control system design, i.e., we consider Economic MPC. Indeed, here we consider a ba-

sic Economic MPC which hopefully will be a good starting point for further extensions

which would include Economic MPC with periodic terminal constraints and/or average

constraints.

The considered NCS architecture is identical as the one in Chapter 3. The only differ-

ence is that the corresponding NCS is governed by Economic MPC. Again the network

induces the issues of packet dropouts and scheduling and our interest is to establish sta-

bility with respect to these issues. We accomplish this by extending some results from

[153] so that we can use our results established in Chapter 3 ”off the shelf”. In particular,

we first extend the definition of strict dissipativity introduced in [149,153]. Then, inspired

with the ideas in [153], we formulate the corresponding stage and terminal cost function.

These are formulated in such a way that only mild changes in the assumption related to

terminal control law are needed; there is an extra term in the corresponding inequality.

Finally, this enables us to directly apply the stability results we established in Chapter 3.

Before outlining this chapter note that because the considered NCS is identical to

the one presented in the previous chapter we will not present the model once again.

As mentioned above, the only difference is that the system is governed with Economic

instead of standard MPC controller. However, for the sake of the flow of presentation let

us rewrite the closed loop system, namely

4.1 UGAS-Economic MPC 77

Σx : x+ =

 fp(xp, hb(xb, r∗, {u∗r∗}k+h−1
k , wn))

fb(xb, r∗, {u∗r∗}k+h−1
k , wn)

 =: f (x, wn), (4.3)

and bear in mind that the control includes economic aspects. So, in Section 4.1 we pro-

vide the main discussion including definitions, assumptions and results while Section 4.2

provides the corresponding proofs.

4.1 UGAS-Economic MPC

To establish UGAS for the system Σx (see (4.3)), governed with an Economic MPC con-

troller, we will use the ideas from [153] and the stability results established for the stan-

dard MPC in the previous chapter. First note that the results established in [153] used

plant in original coordinates, e.g., see (3.4), where the equilibrium point is not necessarily

the origin. However, without loss of the generality and with a slight abuse of the nota-

tion (with respect to the results established in [153]), we will assume that the appropriate

change of coordinates were applied beforehand so that the equilibrium point is at the

origin (the corresponding equations change slightly and thus we omit the corresponding

derivations). Moreover, with regards to the stability results established in the previous

chapter, which are to be used in the sequel, we will focus only on Cascade-based approach.

As mentioned in the previous paragraph, we will use the ideas form [153]. The results

that are established in the latter reference rely on the so-called strict dissipativity property

of the corresponding system. Consequently, we adopt this property and modify it so it

fits our needs. Let us begin by providing the corresponding definition.

Definition 4.1 (Strictly dissipative system [149, 153]). The system Σp, see (3.2), is strictly

dissipative with respect to supply rate s : Rnp ×Rmp → R, if there exist a storage function

λ : Rnp → R and a positive definite function ρ : Rnp ×Rmp → R≥0 such that

λ(f (xp, up))− λ(xp) ≤ −ρ(xp, up) + s(xp, up) (4.4)

holds for all (xp, up) ∈ Rnp ×Rmp . �

78 Stability with respect to Packet Dropouts and Scheduling - Economic MPC

Note that unlike in [149, 153] the function ρ(·) has as an argument both, state and

control. The definition is tailored according to the requirements of the stability results

from the previous chapter.

Remark: Note that by assuming a lower bound only in terms of the state, e.g., ∃ρ̄ ∈
PD, ρ̄ : Rnp → R such that ρ(xp, up) ≥ ρ̄(xp), our definition subsumes the definition

given in [149, 153]. �

Moreover, let us illustrate the notion of strictly dissipative system stated in Definition

4.1 via an example. Namely, we will use the same example as in [149] where the notion of

strictly dissipative system is introduced. We will not repeat the entire example but only

the important parts; for all details please see [149].

Example 4.1 (Example 4.3 from [149]). Consider the following scalar linear system

x+p = αxp + (1− α)up, (4.5)

where α ∈ [0, 1) is a parameter to be discussed later, along with the non-convex cost functional

l(xp, up) = (xp +
up

3
)(2up − xp) + (xp − up)

4. (4.6)

Notice that, regardless of α, for each input up, there exist a unique equilibrium xe
p = up. Moreover,

l(xp, up)|xp=up =
4u2

p

3
(4.7)

so that (xs
p, us

p) = (0, 0) is the best steady-state3 and l(xs
p, us

p) = 0. The point (0, 0) is not,

however, the global minimum of l(xp, up), which in fact has two global minima for

(xp, up) = ±
(

21
√

6
64

,
7
√

6
192

)
.

In fact (0, 0) is a saddle-point of l(xp, up) and the level-set L0 = {(xp, up)|l(xp, up) = 0}
is in (0, 0) tangent to the lines of equation up = −3xp and up =

xp
2 . Notice that zero-average

period-2 solutions of (4.5) are possible. these correspond to the input sequences of alternating

3According to conventions used in [149], (xs
p, us

p) is the best feasible pair of the equilibrium state and the
associated control input.

4.1 UGAS-Economic MPC 79

signs, namely +up,−up,+up,−up, . . ., with the resulting periodic state sequence

− (1 + α)

(1− α)
up,

(1 + α)

(1− α)
up,− (1 + α)

(1− α)
up, · · · .

Choosing α = 0 or sufficiently small, yields period-2 solutions which, suitably tunning the

input amplitude up, belong to the sublevel-set L≤0 = {(xp, up)|l(xp, up) ≤ 0}, thus outperform-

ing the best steady state. Under such circumstances, one cannot expect dissipativity to hold. For

large values of α, however, the period-2 solution leave L≤0. One may, therefore wonder for which

values of α (if any) the system (4.5) fulfills strict dissipativity.

Correspondingly, as in [149], let us consider as a candidate function for a storage function

the quadratic function λ(xp) = kx2
p. Moreover, let the supply function given as ρ(xp, up) :=

ε(x2
p + u2

p), ε > 0. Then, following the exact same procedure as in [149], one can show that strict

dissipativity holds for all α ∈ [0, 1) for which there exist k and ε > 0 so that

k(x+p)
2 − kx2

p ≤ −ε(x2
p + u2

p) + l(xp, up), (4.8)

holds for all (xp, up) ∈ R2. Similarly as in [149], in order to show that (4.8) holds it is enough to

show that

(
xp +

up

3
)
(2up − xp) + kx2

p − k(αxp + (1− α)up)
2 ≥ ε(x2

p + u2
p) > 0.

Namely, the corresponding matrix

Q =

 k(1− α2)− 1 5
6 − kα(1− α)

5
6 − kα(1− α) 2

3 − k(1− α)2

 , (4.9)

remains the same. �

Now, as mentioned above, in order to establish UGAS for the system Σx (see (4.3)),

governed with an Economic MPC controller, we will focus only on Cascade-based approach;

see Subsection 3.2.2 - Cascade-based approach. Correspondingly, we proceed with out-

lining the sufficient assumptions needed to establish UGAS for system Σx, (see (4.3))

governed with Economic MPC controller.

80 Stability with respect to Packet Dropouts and Scheduling - Economic MPC

Assumptions

Before stating the assumptions we will remind the reader that the same remarks hold for

the horizon in MPC controller; see the remark just after the equation (3.42). Succinctly, the

horizon h is set to be equal to the bound on the number of consecutive packet dropouts,

that is, h := ∆k for each r ∈ R.

The first assumption is related to the strict dissipativity of the system Σp, see (3.2).

Assumption 4.1 (Strictly dissipative system). The system Σp, see (3.2), is strictly dissipative

with the supply rate

s(xp, up) := l(xp, up)− l(0np , 0mp), (4.10)

and there exist class-K∞ functions ρxp and ρup such that

ρ(xp, up) ≥ ρxp(|xp|),
ρ(xp, up) ≥ ρup(|up|),

 (4.11)

holds for each (xp, up) ∈ Rnp ×Rmp . �

The reason we assume lower bounds to be of class-K∞ comes from the fact that we

are interested in global property, that is, UGAS. In future work the corresponding UGAS

for Standard MPC (which is used to establish desired property for the case of Economic

MPC) will be established with weaker assumptions which will enable usage of results

from [153] without imposition of class-K∞ lower bounds.

We proceed with the assumption on terminal control law which is instrumental in

establishing dissipation inequalities in terms of state and control, e.g., see Lemma 3.2

and Lemma 3.3.

Assumption 4.2 (Terminal control law). For some node r ∈ R there exist a terminal control

law κr : Rnp×h·mp → Ūpr such that

g(fp(xp, κr(xp, xb)))− g(xp) + l(xp, κr(xp, xb))− l(0np , 0mp) ≤ 0,

fp(xp, κr(xp, xb)) ∈ Rnp ,

κr(xp, xb) ∈ Ūpr ,

 (4.12)

4.1 UGAS-Economic MPC 81

holds for each (xp, xb) ∈ Rnp×h·mp , where, Ūpr := 0mp1 × · · · × 0mpr−1 ×Rmpr × 0mpr+1 × · · · ×
0mpR . �

Remark: Recall that since we are considering Economic MPC, l(0np , 0mp) is not neces-

sarily equal to zero as is the case in Standard MPC. �

Results

Let us start by recalling that in order to establish UGAS for system Σx (4.3), we will exploit

the ideas from [153] and stability results established in see Subsection 3.2.2 - Cascade-

based approach.

The crucial part in Subsection 3.2.2 - Cascade-based approach, is to establish the cor-

responding dissipation inequalities. Correspondingly, following [153], first, we define

the rotated stage and terminal cost functions and then establish the desired dissipation in-

equalities. Once that is done, the desired UGAS for system Σx (4.3) follows directly from

the analysis done in the previous chapter, i.e., Subsection 3.2.2 - Cascade-based approach.

Let us proceed with providing the definitions of the rotated stage and terminal cost

functions, namely

l̄(xp, up) := l(xp, up)− l(0np , 0mp) + λ(xp)− λ(fp(xp, up)),

ḡ(xp) := g(xp)− g(0np) + λ(xp)− λ(0np),

 (4.13)

which results in the following rotated cost function

J̄(x, {ũpr}k+h−1
k) :=

k+h−1

∑
i=k

l̄(φ fp(i− k, xp, {ũr
p}k+h−1

k), ũr
p(i))ḡ(φ fp(h, xp, {ũr

p}k+h−1
k)).

(4.14)

Notice that the computation procedure of the optimal node and the corresponding con-

trols is not affected with the change of the definition of the cost function. Thus, we omit

rewriting it; see Subsection 3.1.4. Furthermore, in the sequel, (notation-wise) in order

to make distinction between optimal value function for a node (see (3.33)) and the op-

timal value function (see (3.34)) for a Standard MPC and an Economic MPC, we put a

82 Stability with respect to Packet Dropouts and Scheduling - Economic MPC

bar above the corresponding symbols; note that we do not change the symbols for the

resulting optimal node and corresponding controls.

Finally, before presenting the corresponding result we state Lemma 9 from [153] which

is used in establishing desired dissipation inequalities.

Lemma 4.1 (Modified terminal cost [153]). The pair (ḡ, l̄) satisfies the following property if

and only if (g, l) satisfies Assumption 4.2.

ḡ(fp(xp, κr(xp, xb))) ≤ ḡ(xp)− l̄(xp, κr(xp, xb)) (4.15)

for all (xp, xb) ∈ Rnp ×Rh·mp . �

UGAS

As mentioned in the introduction of this chapter, we extend our results established in

the previous chapter to the case of Economic MPC. With the aid of the ideas from [153],

this amounts to applying the results established in the previous chapter ”off the shelf”.

However, to do so we need the desired dissipation inequalities which we state next.

Lemma 4.2. Let Assumptions 3.1, 4.1, 4.2 and conditions of Lemma 4.1 be satisfied. Then

∆V̄(x(ki)) := V̄(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

))− V̄(x)

≤ −
ki+∆ki

∑
j=ki

ρxp(|φ fp(j− ki, xp, {ur∗
p }ki+∆ki

ki
)|),

(4.16)

for each ki ∈ K∆k. �

Lemma 4.3. Let Assumptions 3.1, 4.1, 4.2 and conditions of Lemma 4.1 be satisfied. Then

∆V̄(x(ki)) := V̄(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

))− V̄(x)

≤ −
ki+∆ki

∑
j=ki

ρup(|ur∗
p (i)|),

(4.17)

for each ki ∈ K∆k. �

4.2 Proofs 83

Now, as mentioned above, with the latter two lemmas our UGAS results established

in the previous chapter can be applied ”off the self” to show UGAS for the system Σx

(see (4.3)), governed with an Economic MPC controller. Thus, we omit restating the

corresponding lemmas and the theorem, i.e., see Lemma 3.4–3.6 and and Theorem 3.1.

Moreover, for the same reasons, we also omit the Lyapunov-based approach; notice that

in Lyapunov case only Lemma 4.2 would be used.

Finally, similarly as in the previous chapter, we proceed with the proofs of all the

stated results, chronologically ordered.

4.2 Proofs

Proof of Lemma 4.1. Proof of Lemma 4.1 follows the exact same lines as proof of the Lemma

9 in [153] and thus is omitted.

Proof of Lemma 4.2. The proof of Lemma 4.2 is very similar to the proof of Lemma 3.2.

Again, there are two cases, namely ∆ki ≤ ∆k − 1 and ∆ki = ∆k − 1. Since, the sec-

ond case is very simple we will omit it; recall that the only change is different feasible

sequence.

Let us consider a node from Assumption 4.2 at time instant ki+1, i.e., r(ki+1), which is

not necessarily the same as r∗(ki). Similarly as in the proof of Lemma 3.2, let us consider

a control sequence

{ũr(ki+1)
p }ki+1+∆k−1

ki+1

= {ur∗(ki)
p (ki+1), . . . ur∗(ki)

p (ki + ∆k− 1), ũr(ki+1)
p (ki + ∆k), . . . , ũr(ki+1)

p (ki+1 + ∆k− 1)},
(4.18)

where control values ur∗(ki)
p (·) are obtained by using Economic MPC, e.g., by minimizing

rotated cost function, see (4.14). Similarly as earlier, ur∗(ki)
p (·) stands for plant input with

node r∗(ki) being the last updated part of plant input. More precisely, the first ∆k−∆ki−
1 elements are from the buffers which originate from past optimizations using Economic

84 Stability with respect to Packet Dropouts and Scheduling - Economic MPC

MPC, last one received being obtained in optimization at time instant ki. The rest of

elements come from Assumption 4.2, namely

ũr(ki+1)
p (ki+1 + j) := κr(ki+1)(x̃(ki+1 + j)), (4.19)

for each j ∈ {∆k− ∆ki − 1, . . . , ∆k− 1} where

x̃+ = f (x̃, w̃n) =

 fp(x̃p, κr(ki+1)(x̃))

Ξ(r(ki+1), w̃n)Sx̃b

 (4.20)

with

w̃n ∈ {w̃n}ki+1+∆k−1
ki+∆k = {0, . . . , 0},

x̃ = φ f (∆k, x, {wn}ki+∆k−1
ki

).

 (4.21)

Note that the considered control sequence is a feasible one. Again, direct application

of the sequence given in (4.18) in the corresponding rotated cost function produces the

following

J̄(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

), {ũpr(ki+1)
}ki+1+∆k−1

ki+1
))

= V̄(x)−
ki+∆ki

∑
j=ki

l̄(φ fp(j− ki, xp, {ur∗
p }ki+∆ki

ki
), ur∗(ki)

p (j))

+
ki+1=∆k−1

∑
j=ki+∆k

{
ḡ(fp(x̃(j), ũp(j)))− ḡ(x̃(j)) + l̄(x̃(j), ũp(j))

}
≤ V̄(x)−

ki+∆ki

∑
j=ki

l̄(φ fp(j− ki, xp, {ur∗
p }ki+∆ki

ki
), ur∗(ki)

p (j))

(4.22)

where {ũpr(ki+1)
}ki+1+∆k−1

ki+1
is a sequence of corresponding control values for node r(ki+1)

from a feasible control sequence given in (4.18); similarly as above, again, we write

{ur∗
p }ki+∆ki

ki
instead of {ur∗(ki)

p }ki+∆ki
ki

to simplify notation. Due to optimality, we have

4.2 Proofs 85

V̄(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

))

≤ J̄(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

), {ũpr(ki+1)
}ki+1+∆k−1

ki+1
).

(4.23)

Further algebraic manipulations yield

∆V̄(x(ki))

:= V̄(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

))− V̄(x)

≤ −
ki+∆ki

∑
j=ki

l̄(φ fp(j− ki, xp, {ur∗
p }ki+∆ki

ki
), ur∗(ki)

p (j))

= −
ki+∆ki

∑
j=ki

l(φ fp(j− ki, xp, {ur∗
p }ki+∆ki

ki
), ur∗(ki)

p (j))

+ (∆ki + 1)l(xps , ups)

+ λ(φ fp(∆ki + 1, xp, {up}ki+∆ki
ki

))− λ(xp).

(4.24)

Now, summing (4.10) and (4.1) from ki to ki + ∆ki results in

ki+∆ki

∑
j=ki

s(φ fp(ki − j, xp, {up}j−1
ki

), up(j))

=
ki+∆ki

∑
j=ki

l(φ fp(j− ki, xp, {up}j−1
ki

), up(j))− (∆ki + 1)l(xps , ups)

(4.25)

and

λ(φ fp(∆ki + 1, xp, {up}ki+∆ki
ki

))− λ(xp)

≤ −
∆ki

∑
j=0

ρ(φ fp(j, xp, {up}ki+j−1
ki

)) +
∆ki

∑
j=0

s(φ fp(j, xp, {up}ki+j−1
ki

), up(ki + j)).
(4.26)

Finally, using the first lower bound from (4.11) and combining it with (4.25) and (4.26)

in (4.24), provides the desired dissipation inequality (4.16).

86 Stability with respect to Packet Dropouts and Scheduling - Economic MPC

Proof of Lemma 4.3. The proof of Lemma 4.3 follows the exact same lines as the proof of

Lemma 4.2, with the change being the usage of the second lower bound from (4.11).

Chapter 5

Robustness with respect to exogenous
disturbances

Robustness is another control system property which provides a deeper under-

standing of the corresponding system. Thus, in order to fulfill our goal of deeper

understanding of NCSs affected with packet dropouts and scheduling, we analyze ro-

bustness of the NCS architecture investigated in Chapter 3.

Namely, the plant is affected with exogenous disturbances wp, see Fig. 5.1. Other parts

and characteristics of the considered NCS architecture remain the same. In particular, the

network is affected with packet dropouts wn and it allows access to only one plant input

at each time instant resulting in the scheduling issue. Again, we address these issues

with the same approach, that is, we carry out a protocol and controller co-design but

with the focus on robustness. Recall that this protocol and controller co-design entails the

exploitation of the flexible nature of NCSs which allows for adding extra devices to the

architecture, i.e., buffers (distributed computation), and the usage of an MPC framework.

Robustness analysis is very important in general. For instance, real systems age and

the corresponding models might not be valid over time or we cannot obtain a good model

to start with. Notice that both scenarios usually translate into parameter uncertainty or

variation, leading to unbounded terms in the vector fields. On the other hand, some

times we simply have exogenous disturbances. Model uncertainty, within our setup, can

definitely result in poor performance since the control predictions over longer horizons

will not be good and due to packet dropouts we might end up using them.

As mentioned above, the NCS architecture is the same as the one in Chapter 5 besides

the fact that the plant is affected with exogenous disturbances. Thus, correspondingly,

87

88 Robustness with respect to exogenous disturbances

for the purpose of robustness analysis, we assume that the mapping that describes the

plant dynamics possess some continuity; e.g., see Assumption 5.1. Similarly as in [30,31]

and in the previous chapters, we address packet dropouts through the assumption on a

finite uniform bound on the number of consecutive packet dropouts, while scheduling is

addressed via an appropriate assumption on terminal control law. Furthermore, we use

a relatively restrictive assumption which is the continuity of the corresponding optimal

value function. This assumption is used in establishing robustness results in MPC liter-

ature for non-networked control system, e.g., see [107], and NCSs, e.g., see [31], but it is

considered relatively restrictive; relaxing this assumption is definitely one of the future

directions. Finally, we assume appropriate assumptions so that recursive feasibility is

satisfied; explicit investigation of recursive feasibility is left for future work.

The contribution of this chapter consists of several results. First, we employ a concept

of `2 stability with nonlinear gains introduced in [158] to capture robustness of the sys-

tem at hand. We show that, if the number of consecutive packet dropouts is uniformly

bounded and strictly smaller than the horizon in MPC, then partial nonlinear gain `2 sta-

bility can be achieved via similar assumptions used for showing stability in networked

MPC [31]. We also present additional assumptions which leads to, a more traditional, lin-

ear gain `2 stability. For the one node case, we present nonlinear gain `2 stability, which

represents an alternative robustness characterization of the NCS configuration consid-

ered in [31]. Finally, we also show that by exploiting stronger assumptions, which mimic

those used in the latter reference, Input-to-State Stability (ISS) can be achieved in a sim-

ilar way for the aggregated state of the plant and the buffer state. In this chapter, we

also illustrate, via simulation, that the dynamic scheduling using the proposed method

outperforms the static scheduling.

This chapter is organized as follows. In Section 5.1 we present the corresponding

NCS. Note that even though the considered NCS architecture is very similar to the one

considered in the previous chapter we will rewrite some equations from Chapter 3; only

the ones that are necessary for the flow of presentation. Section 5.2 encapsulate all as-

sumptions, results and simulations while Section 5.3 provides proofs.

5.1 NCS architecture 89

5.1 NCS architecture

The considered NCS architecture is depicted in Fig. 5.1. As indicated in the introduction

above and illustrated in the figure, the only difference between this NCS architecture

and the NCS architecture considered in Chapter 3, is that the plant is affected by exoge-

nous disturbance wp. Thus, let us recall once again that the network is prone to packet

dropouts wn and that it allows at each time instant access to only one plant input (R nodes

- the scheduling issue). To address these issues, similarly as in Chapter 3, we carry out a

protocol and controller co-design (see [30] and Chapter 3).

Due to the complexity of the considered NCS architecture, similarly as in Chapter 3,

we present each part of the corresponding NCS architecture separately. However, since

most of the part parts are exactly the same, we just present the final and important equa-

tions; we do this for the sake of the flow and self-containedness of the presentation.

⌃p⌃p

⌃b1
⌃b1

⌃br
⌃br

⌃n⌃n⌃c⌃c

wnwn

(a, d)(a, d)

yn1
yn1

up1
up1

ynr
ynr

upr
upr

(ack, xp)(ack, xp)

...

wpwp

Figure 5.1: A NCS architecture for investigating robustness with respect to packet
dropouts and scheduling.

5.1.1 Plant

The plant of interest is given as

Σp : xp(k + 1) = fp(xp(k), up(k), wp(k)), k ∈N0, (5.1)

where xp ∈ Xp ⊆ Rnp is the state, up ∈ Up ⊆ Rmp is the input and wp ∈Wp ⊆ Rqp is the

exogenous disturbance of the plant with all elements of {np, mp, qp} belonging to natural

90 Robustness with respect to exogenous disturbances

numbers. The mapping fp : Xp ×Up ×Wp → Xp is assumed to be general nonlinear.

Similarly as in the previous chapter and throughout this thesis, whenever appropriate, we

use a succinct notation for mathematical objects involving time, e.g., we write equation

(5.1) (whenever appropriate) as

Σp : x+p = fp(xp, up, wp). (5.2)

The plant control input is partitioned in the same way as in the previous chapter, that

is

up := (up1 , . . . , upR) (5.3)

with

upr ∈ Upr ⊆ Rmpr , ∀r ∈ R,

∑R
r=1 mpr = m,

R := {1, . . . , R}.

 (5.4)

5.1.2 Network

In the same manner as in the previous chapter, the transmission effects are modeled as

wn(k) :=


0, if dropout occurs at the time instant k,

1, if dropout does not occur at the time instant k.
(5.5)

The set consisting of all successful transmission time instants is given as

K := {ki ∈N0 : wn(ki) = 1, ki+1 > ki, ∀i ∈N0}, (5.6)

while the number of consecutive packet dropouts between successful transmission in-

stants ki and ki+1 is defined as

∆ki := ki+1 − ki − 1. (5.7)

5.1 NCS architecture 91

Finally, at each time instant the network will receive a packet π sent by the controller

and defined as

π := (a, d) ∈ R×RL·m̄p , (5.8)

where the address is denoted via a and it take values from the set R, while the data is

denoted by d and it take values from set RL·m̄p ; recall that L is the length of a buffer and

m̄p = max{mp1 , . . . , mpR}.

5.1.3 Buffer

Buffers models remain the same as in the previous chapters and the overall buffer is

defined as

xb := (xb1 , . . . , xbR
) ∈ UL

p, (5.9)

while its corresponding dynamics is captured via

Σxbr
:



x+br
:=


Smpr

xbr , if r 6= a or wn = 0,

Smpr
d, if r = a and wn = 1,

ybr :=


[Impr 0mpr · · · 0mpr]xbr , if r 6= a or wn = 0,

[Impr 0mpr · · · 0mpr]d, if r = a and wn = 1,
,

(5.10)

Finally, recall the interconnection

yb = up. (5.11)

5.1.4 Controller

Note that the MPC controller uses a nominal model for making predictions, i.e., the

model with no disturbances. Hence, there are no differences to the model introduced

in the previous chapter. However, there are some differences during minimization of the

92 Robustness with respect to exogenous disturbances

corresponding cost functions.

The nominal model for node r ∈ R is given as1

Σm
p :


x̃p(k + i + 1) := fp(x̃p(k + i), ũr

p(k + i)),

x̃p(k) = xp(k), k ∈N0, i ∈ {0, . . . , h− 1},
(5.12)

where h ∈N is a finite horizon and

ũr
p :=



Γm1

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)

...

Γmr−1

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)

ũpr

Γmr+1

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)

...

ΓmR

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)



∈ Rmp , (5.13)

with

Σm
b : x̃+b := fb(x̃b, r, {ũpr}k+h−1

k , w̃n), x̃b = xb,

w̃n ∈ {w̃n}k+h−1
k := {1, 0, . . . , 0},

ũpr ∈ {ũpr}k+h−1
k ,

Γ =
[
Γ>mp1
· · · Γ>mpR

]>, Γmpr
∈ Rmpr×h·mp , ∀r ∈ R.


(5.14)

The cost function is defined as

J(x, {ũpr}k+h−1
k)

:=
k+h−1

∑
i=k

l(φ fp(i− k, xp, {ũr
p}k+h−1

k), ũr
p(i)) + g(φ fp(h, xp, {ũr

p}k+h−1
k)),

(5.15)

where

1Note that in the equation (5.12) we slightly abuse notation with respect to the plant model (5.1). Namely,
for the nominal model (i.e., no exogenous disturbances) we write fp(x̃p(k+ i), ũr

p(k+ i)) instead of fp(x̃p(k+
i), ũr

p(k + i), 0qp). We do this for the sake of shortening the corresponding equations in proof section which
in turn should make the corresponding proof easier to follow.

5.1 NCS architecture 93

x := (xp, xb) ∈ X ⊆ Xp ×U
h
p. (5.16)

Note that now l : Xp ×Up → R≥0, while g : Xpt → R≥0, where Xpt ⊆ Xp is a set

that contains the origin, e.g., 0np ∈ Xpt . Furthermore, we will denote the set of all feasible

initial plant states as Xpf ; note that this is a set for which the left hand side of the equation

(5.15) is bounded.

For each node r, a corresponding cost function (5.15) is minimized with constraints

on control predictions (5.13) and corresponding predicted plant solutions φ fp . More pre-

cisely

ũr
p(k + i) ∈ Up, (5.17)

for each r ∈ R, each k ∈ N0 and each i ∈ {0, . . . , h}. Further, the solutions of the model

(5.12) are constrained with

φ fp(i− k, xp, {ũr
p}k+h−1

k) ∈ Xp, (5.18)

for each k ∈ N0 and each i ∈ {k, . . . , k + h− 1}. Finally, the solution at the end of the

horizon has to satisfy a terminal state-like constraint, namely

φ fp(h, xp, {ũr
p}k+h−1

k) ∈ Xpt . (5.19)

Now, recall that there are R models of (5.12)–(5.14), with the corresponding cost func-

tion (5.15) and constraints (5.17)–(5.19). To obtain the optimal node and the corresponding

sequence of optimal control values over a finite horizon h, first, each cost function is min-

imized with respect to its {ũpr}k+h−1
k . More precisely,

V(x, {u∗pr
}k+h−1

k) :=


minimize J(x, {ũpr}k+h−1

k)

subject to


(5.12)–(5.14)

(5.17)–(5.19).

(5.20)

Repeating this for each node results in {V(x, {u∗pr
}k+h−1

k)}r∈R, from which we obtain the

94 Robustness with respect to exogenous disturbances

minimum, namely

V(x) = V(x, {u∗pr∗}
k+h−1
k) := min

r
V(x, {u∗pr

}k+h−1
k), (5.21)

which defines the optimal value function. Extracting the corresponding optimal node

and its sequence of optimal control values reduces to

r∗ := argmin
r

V(x, {u∗pr
}k+h−1

k), (5.22)

and

{u∗pr∗ }
k+h−1
k := argmin

{ũpr∗ }
k+h−1
k

J(x, {ũpr∗ }k+h−1
k). (5.23)

These values form the packet that controller sends to the network, namely

π = (a, d) := (r∗, (u∗pr∗ (ki), . . . , u∗pr∗ (ki + h− 1)). (5.24)

Finally, the closed-loop system is then given as

Σx : x+ =

 fp(xp, hb(xb, r∗, {u∗pr∗ }
k+h−1
k , wn), wp)

fb(xb, r∗, {u∗pr∗}
k+h−1
k , wn)

 =: f (x, wn, wp). (5.25)

Note that a remark that addresses the possibility of the inclusion of a network in

sensor-controller connection and consideration of a more complex NCS within the frame-

work proposed is provided above the equation (3.38).

5.2 Robustness Analysis

Several results are established. The first one is partial nonlinear gain `2 stability for the

plant state. This notion of robustness characterization was introduced in [158]. Then,

we establish conditions for a more familiar notion of partial linear gain `2 stability for the

plant state. This is followed by considering two special scenarios. The first one is a

disturbance-free scenario, in which we recover the result from [30]. It should be noted

5.2 Robustness Analysis 95

that we use a weaker assumption on the terminal control law to arrive at the same result.

However, even though we recover (establish) a bit stronger result we have shown that by

using slightly stronger assumptions we can establish a much stronger results, i.e., UGAS;

see Chapter 3. The second scenario is the no scheduling scenario, in which we provide

an alternative robustness characterization of NCS architecture considered in [31]. Finally,

we establish sufficient conditions, which closely follow those in [31], to show ISS for the

overall NCS state consisting of augmentation of plant and buffer state.

Let us proceed with the definitions of mentioned robustness characterizations, which

will be followed with the exposition of the assumptions used. Main results are presented

at the end of this section.

First, we provide the definition of partial nonlinear gain `2 stability with respect to sys-

tem Σx (see (5.25)).

Definition 5.1 (Partial nonlinear `2 stability). Consider the system Σx (see (5.25)). The system

Σx is said to be partially nonlinear gain `2 stable with respect to sets SD and SW if for a given

finite horizon h ∈ N there exist class-K∞ functions γ1 and γ3 and class-K functions γ2 and γ4

such that

k

∑
i=0

γ1(|φ fp(i, x, {wn}i−1
0 , {wp}i−1

0)|) ≤ γ2(|x|) + γ3

(k−1

∑
i=0

γ4(|wp(i)|)
)

, (5.26)

holds for any x(0) = x = (xp, xb) ∈ X, each k ∈ N0, and any subsequence {wn}k−1
0 ⊂

{wn}∞
0 ∈ SD and {wp}k−1

0 ⊂ {wp}∞
0 ∈ SW. �

A more familiar robustness notion is stated next.

Definition 5.2 (Partial linear `2 stability). Consider the system Σx (see (5.25)). The system Σx

is said to be partially linear gain `2 stable with respect to sets SD and SW if for a given finite

horizon h ∈N there exist quadratic functions c1s2, c2s2 and c4s2 and a linear function c3s where

each element of {c1, c2, c3, c4} is a positive real number, such that

k

∑
i=0
|φ fp(i, x, {wn}i−1

0 , {wp}i−1
0)|2 ≤ c2

c1
|x|2 + c3c4

c1

k−1

∑
i=0
|wp(i)|2, (5.27)

96 Robustness with respect to exogenous disturbances

holds for any x(0) = x = (xp, xb) ∈ X, each k ∈ N0, and any subsequence {wn}k−1
0 ⊂

{wn}∞
0 ∈ SD and {wp}k−1

0 ⊂ {wp}∞
0 ∈ SW. �

Notice that in comparison to Definition 5.1 γ1(s) = c1s2, γ2(s) = c2s2,γ4(s) = c4s2

and γ3(s) = c3s. Next, we provide the assumptions used for establishing the results.

5.2.1 Assumptions

The first assumption is concerned with the continuity of the map for plant state.

Assumption 5.1. There exist class-K functions αxp and αwp such that

| fp(xp, up, wp)− fp(x̂p, up, 0qp)| ≤ αxp(|xp − x̂p|) + αwp(|wp|), (5.28)

holds for each x ∈ Xp, x̂p ∈ Xp, up ∈ Up and wp ∈Wp. �

Note that the stated assumption may preclude some systems with cross products, but

if the sets Up and Wp are compact, which is often the case, this issue is avoided.

The upcoming assumption is related to packet dropouts. In fact, we will use the

same assumption as in the previous chapter, hence, we will just restate it for the sake of

completeness.

Assumption 5.2 (Bound on the number of consecutive packet dropouts). There exists2

∆k ∈N such that ∆k ≤ L and ∆ki ≤ ∆k− 1 for each ki ∈N0. �

The former assumption has the same ramifications on the notation as in the previous

chapter, see equations (3.39)–(3.42).

The rest of the assumptions are MPC related. Recall from the previous chapter that

it is more natural to assume that the prediction horizon in MPC is greater or equal than

the bound on the number of consecutive packet dropouts ∆k. However, similarly as in the

previous chapter, for the presentation purposes, we will set it to be equal, that is

h := ∆k, (5.29)

2Recall that L ∈N is the length of a buffer.

5.2 Robustness Analysis 97

for each r ∈ R; for more details on this please see a remark right before the Assumption

3.2

The first MPC assumption is related to stage and terminal cost functions.

Assumption 5.3 (Semi-positive definiteness and lower bound on stage cost function).

There exist a class-K∞ function α such that

l(xp, up) ≥ α(|xp|), l(0np , 0mp) = 0, ∀xp ∈ Xpf , ∀up ∈ Up,

g(xp) ≥ 0, g(0np) = 0, ∀xp ∈ Xpt .

 (5.30)

�

Next assumption is a modification of a ”standard” stability related assumption in

MPC literature.

Assumption 5.4 (Terminal control law). For some node r ∈ R there exist a terminal control

law κr : Xpt → Ũpr such that

g(fp(xp, κr(xp), 0qp))− g(xp) + l(xp, κr(xp)) ≤ 0,

fp(xp, κr(xp), 0qp) ∈ Xpt ,

κr(xp) ∈ Ũpr := 0mp1 × · · · × 0mpr−1 ×Upr × 0mpr+1 × · · · × 0mpR , Upr ⊆ Rmpr ,

 (5.31)

holds for each xp ∈ Xpt . �

Note that here we assume a bit weaker assumption in comparison to Assumption

3.3. Namely, the domain of the corresponding terminal control mapping κr is now Xpt ⊆
Xp ⊆ Rnp , whereas in Assumption 3.3 it was Rnp×h·mp .

Further, when one investigates robustness of a systems governed by an MPC con-

troller it is very useful to assume continuity of the optimal value function; for instance,

consult [107, 122, 170] for non-networked case and [31] for networked case. We state this

assumptions next.

Assumption 5.5. There exist a class-K∞ function γV such that

|V(xp, xb)−V(x̂p, xb)| ≤ γV(|xp − x̂p|), (5.32)

98 Robustness with respect to exogenous disturbances

holds for each (xp, xb) ∈ Xpf ×U
h
p and (x̂p, xb) ∈ Xpf ×U

h
p. �

Note that the former assumption concentrates only on plant states. Moreover, note

that if the set Xpf is bounded, then the corresponding assumption is not strong. However,

if this is not the case, then the general conditions that would relax inequality (5.32) are

still an open question.

Next, similarly as in the previous chapter, we assume that we are able to bound the

optimal value function with a class-K function.

Assumption 5.6 (Class-K bound on the optimal value function). There exist a class-K func-

tion γV̄ such that

V(x) ≤ γV̄(|x|), (5.33)

holds for each x = (xp, xb) ∈ Xpf ×U
h
p. �

Note that the former assumption can be seen as a consequence of the corresponding

NCS system being asymptotically controllable to the origin; we remind the reader to

consult, for instance, Section III in [123] and/or Section II in [160].

Further, note that before the first successful transmission the plant will be governed

with the (initial) values in buffers in an open-loop fashion. Thus, we will assume that the

corresponding plant trajectories will be bounded during this period.

Assumption 5.7 (Bound on plant trajectories until first successful transmission). Consider

the system Σx, given by the equation (5.25). There exist class-K functions αx and αw̄p such that

| f (x, 0, wp)| ≤ αx(|x|) + αw̄p(|wp|), (5.34)

holds for each x ∈ Xp ×U
h
p and wp ∈Wp. �

The final assumption is related to recursive feasibility. Namely, we will assume that

the set Xpf ×U
h
p is positively invariant.

Assumption 5.8 (Positive invariance (recursive feasibility)). Consider the system Σx, given

by the equation (5.25). For any sequence {wp}∞
0 ∈ SWp the solutions of the system Σx satisfy

5.2 Robustness Analysis 99

φ f (i, x, 0h−1
0 , {wp}h−1

0) ∈ Xpf ×U
h
p ⊆ Xp, (5.35)

for each x = x(0) ∈ Xp, each {wp}h−1
0 ⊂ {wp}∞

0 ∈ SWp and each i ∈ {0, . . . , h}. Moreover,

for the sequence of dropout outcomes {1, 0, . . . , 0}

φ f (i− k, x, {1, 0, . . . , 0}, {wp}k+h−1
k) ∈ Xpf ×U

h
p ⊆ Xp, (5.36)

holds for each x = x(k) ∈ Xpf ×U
h
p, each {wp}k+h−1

k ⊂ {wp}∞
0 ∈ SWp and each i ∈

{k, . . . , k + h}, k ∈N. �

Remark: Note that we do not deal with the issue of recursive feasibility directly. This

is left for future work. For the purposes of the present result(s) we use Assumption 5.8.

Note that the first part of this assumption ensures that starting from any initial state

x(0) = x the trajectories will end up in the set Xpf ×U
h
p. On the other hand, the second

part mimics Assumption 3 from [31]. More precisely, it states that the set Xpf ×U
h
p is

robust positively invariant for the mapping of system Σx (see (5.25)) for up to h steps. �

Finally, we proceed with results obtained.

5.2.2 Results

Chronologically, we first present partial nonlinear gain `2 stability for plant states only.

This result uses the concept of `2 stability with nonlinear gains; e.g., see [158]. The un-

derpinning requirement is that the number of consecutive packet dropouts is finitely

uniformly bounded from above. Then, using similar assumptions as the ones used for

showing stability in networked MPC [31] does the rest of the work. This result is fol-

lowed with the corresponding modifications so that a more traditional, linear gain `2

stability can be established. Then, we consider two scenarios. In the first one we omit

disturbances on the plant and recover the main result from [30] with a weaker assump-

tion on the terminal control law, making our recovery a bit stronger result. In the second

scenario we omit scheduling, i.e., we consider only one node. There, we establish non-

linear gain `2 stability which can be seen as an alternative robustness characterization of

100 Robustness with respect to exogenous disturbances

the NCS configuration considered in [31]. Finally, we conclude by exploiting stronger as-

sumptions to establish ISS of the overall NCS state (i.e., the aggregated state of the plant

and buffer state).

Partial nonlinear gain `2 stability

As mentioned above, we exploit the concept of `2 stability with nonlinear gains to state

the upcoming theorem; see [158] for more details on this concept. Moreover, we use the

ideas from stability results for networked MPC to state the sufficient assumptions; see,

for instance, [31]. Finally, note that the enabling requirement is the uniform bound on the

number of consecutive packet dropouts.

Theorem 5.1 (Partial nonlinear gain `2 stability). Consider the system Σx, given by the equa-

tion (5.25). Let the Assumptions 5.1 - 5.8 be satisfied. Then for a finite horizon ∆k the system Σx

is partially nonlinear gain `2 stable with respect to sets SDK∆k
and SWp . �

To prove this result we establish four lemmas which are stated next. The first lemma

uses Assumptions 5.2 and 5.8 to establish the invariance of the set Xpf ×U
h
p.

Lemma 5.1 (Invariance of the set Xpf ×U
h
p). Consider any {wn}∞

0 ∈ SDK∆k
and {wp}∞

0 ∈
SWp . Let the Assumptions 5.2 and 5.8 be satisfied. Then for any x(0) ∈ X it follows that

x(ki) ∈ Xpf ×U
h
p for each ki ∈ K∆k. �

The second lemma establishes the difference of the optimal value function between

the two successful time instances. This lemma in particular is instrumental in the proof

of Theorem 5.1.

Lemma 5.2 (Dissipation inequality). Consider any {wn}∞
0 ∈ SDK∆k

and {wp}∞
0 ∈ SWp . Let

the Assumptions 5.1–5.6 and 5.8 be satisfied. Then, there exist a class-K∞ function α1 and a

class-K function α2 such that

V(x(ki+1))−V(x(ki))

≤ −
ki+1−1

∑
j=ki

α1(|φ fp(j− ki, x, {wn}j−1
ki

, {wp}j−1
ki

)|) +
ki+1−1

∑
j=ki

α2(|wp(j)|),
(5.37)

5.2 Robustness Analysis 101

holds for each x(ki) ∈ Xpf ×U
h
p, x(ki+1) ∈ Xpf ×U

h
p, ki ∈ K∆k and ki+1 ∈ K∆k. �

The following two lemmas concentrate on two time intervals and establish the corre-

sponding desired inequalities. The first one considers time interval {k0, . . . , k}.

Lemma 5.3 (Inequality for time interval {k0, . . . , k}). Let the assumptions of Lemma 5.2 be

satisfied. Then for the class-K∞ function α1 (from Lemma 5.2) and the class-K function γV̄ (from

Assumption 5.6) there exist a class-K function α3 such that

k−1

∑
j=k0

α1(|φ fp(j− k0, x, {wn}j−1
ki

, {wp}j−1
ki

)|) ≤ γV̄(|x(k0)|) +
k−1

∑
j=k0

α3(|wp(j)|) (5.38)

holds for any x(k0) ∈ Xpf ×U
h
p. �

The second one considers the time interval {0, . . . , k0}.

Lemma 5.4 (Inequality for time interval {0, . . . , k0}). Let the Assumptions 5.2 and 5.7 be

satisfied. Then for a class-K function γV̄ there exist a class-K functions α4 and α5 such that

γV̄(|x(k0)|) ≤ α4(|x(0)|) +
k0−1

∑
j=0

α5(|wp(j)|)−
k0−1

∑
j=0

γV̄(|φ fp(j, x, {wn}j−1
0 , {wp}j−1

0)|),

(5.39)

holds for any x(0) ∈ X where class-K function γV̄ is from Assumption 5.6. �

We now proceed with applying this result to special cases.

Partial linear gain `2 stability

The first special case is the case with a linear system and a quadratic cost; note that this

scenario is very common in practice and theory. Considering this case yields the result

that captures a more familiar notion of partial linear gain `2 stability. We state this result

next.

Corollary 5.1 (Partial linear gain `2 stability). Consider the system Σx, given by the equation

(5.25). Let the following conditions be satisfied:

102 Robustness with respect to exogenous disturbances

• The cost function given in the equation (5.15) is quadratic,

• Assumption 5.1 with sets Xp, Up and Wp being compact, and with αxp(s) := cxps, cxp >

0 and αwp(s) := cwps, cwp > 0,

• Assumption 5.2,

• Assumption 5.3,

• Assumption 5.4,

• Assumption 5.5 with γV(s) := cVs2, cV > 0,

• Assumption 5.6 with γV̄(s) := cV̄s2, cV̄ > 0,

• Assumption 5.7 with αx(s) := cxs, cx > 0 and αw̄p(s) := cw̄ps, cw̄p > 0,

• Assumption 5.8.

Then, for a finite horizon h from Assumption 5.2 the system Σx is partially linear gain `2 sta-

ble with respect to sets SDK∆k
and SW; with the constant gains that define functions γi(·), i ∈

{1, 2, 3, 4} in Definition 5.2 given as:

• c1 := min{cV̄ , 1
2},

• c2 := (∆k + 1)cV̄(2cx)2(∆k−1)c2
x,

• c2 := 1,

• c4 := 24(∆k−1) max{c2(∆k−1)
xp c2

wp
max{∆k

2 , cV}, ∆kcV̄c2(∆k−1)
x c2

w̄p
}.

�

Notice that we assume that sets Xp, Up and Wp are compact. This is done for their

bound property which enables us to assume γV(s) := cVs2, cV > 0 in Assumption 5.5.

5.2 Robustness Analysis 103

Disturbance-free scenario

The second case is the case with no disturbances. Note that the corresponding NCS ar-

chitecture becomes essentially the same as the one considered in [30] (and in Chapter 3).

Thus, our next result can be seen as a strengthened main result from [30].

Corollary 5.2 (No disturbance - plant state convergence). Consider the system Σx, given by

the equation (5.25) and let it be partially nonlinear gain `2 stable according to Definition 5.1 and

let Wp := {0}. Then

lim
k→∞
|φ fp(k, x, {wn}k−1

0 , {0, . . . , 0})| = 0 (5.40)

for any (xp, xb) ∈ Xp ×U
h
p, {wn}k−1

0 ∈ SDK∆k
and {0, . . . , 0} ∈ SWp . �

Remark: It is worth emphasizing that the authors in [30] used a stronger assumption

to come to the same conclusion. Namely, Assumption 5.4 was required to hold for all

nodes. More precisely, the corresponding terminal control law was required to exist for

each node while in our case we require it to exist only for some node. �

Remark: Note that the assumptions used in Chapter 5 were insufficient to establish the

result from Chapter 3, i.e., UGAS. Namely, the enabling assumption was the additional

lower bound on the stage cost function in terms of control only, e.g., see Assumption 3.2;

see also [160]. �

One node scenario

In this section we consider a one node case. Note that this particular NCS architecture has

been investigated to some extent in [31], where ISS was shown. However, partial nonlin-

ear gain `2 stability was not considered. In the sequel we show that, with assumptions

akin to those in [31], plus an extra assumption to explicitly consider the time interval up

until the first successful transmission we can show partial nonlinear gain `2 stability.

Let us begin by providing the changes to the NCS architecture. The nominal model is

now given as3

3Similarly as for the nominal model (5.12), note that in the equation (5.41) we slightly abuse notation with

104 Robustness with respect to exogenous disturbances

Σm
p :


x̃p(k + i + 1) := fp(x̃p(k + i), ũp(k + i)),

x̃p(k) := xp(k), ∀k ∈N0, ∀i ∈ {0, . . . , h− 1}
(5.41)

where h ∈N is a finite horizon. The cost function becomes

J(xp, {ũp}k+h−1
k)

:=
k+h−1

∑
i=k

l(φ fp(i− k, xp, {ũp}k+h−1
k), ũp(i)) + g(φ fp(h, xp, {ũp}k+h−1

k))
(5.42)

and is minimized with respect to the following constraints. The control is constraint as

ũp(k + i) ∈ Up, ∀k ∈N0, (5.43)

for each i ∈ {0, . . . , h}. Further, the solutions of the model (5.41) are constrained with

φ fp(i− k, xp, {ũp}k+h−1
k) ∈ Xp, (5.44)

for each k ∈N0 and each i ∈ {k, . . . , k + h− 1}. Finally, the solution at the end of horizon

has to satisfy terminal state-like constraint, namely

φ fp(h, xp, {ũp}k+h−1
k) ∈ Xpt . (5.45)

Then the optimal value function is obtained as

V(xp) := V(xp, {u∗p}k+h−1
k) :=


minimize J(xp, {ũp}k+h−1

k)

subject to


(5.41),

(5.43)–(5.45),

(5.46)

and the sequence of optimally predicted control values over a finite horizon is extracted

as

respect to the plant model (5.1). Namely, for the nominal model (i.e., no exogenous disturbances) we write
fp(x̃p(k + i), ũp(k + i)) instead of fp(x̃p(k + i), ũp(k + i), 0qp).

5.2 Robustness Analysis 105

{u∗p}k+h−1
k := argmin

{ũp}k+h−1
k

J(xp, {ũp}k+h−1
k). (5.47)

Also, note that for R = 1 buffer dynamics becomes

Σb :


x+b := fb(xb, d, wn) := (1− wn)Sxb + wnd,

yb := hb(xb, d, wn) := Γ
(
(1− wn)xb + wnd

)
.

(5.48)

Finally, the closed-loop system is now given as

Σxp : x+p = fp(xp, Γ fb(xb, {u∗p}k+h−1
k , wn), wp) := f̄ (x, wn, wp). (5.49)

Having presented all the corresponding changes, we proceed to state the result.

Corollary 5.3 (One-node scenario). Consider the system Σxp , given by the equation (5.49). Let

the following be satisfied:

• Assumption 5.1,

• Assumption 5.2,

• Assumption 5.3,

• There exist a terminal control law κ : Xpt → Up such that

g(fp(xp, κ(xp), 0qp))− g(xp) + l(xp, κ(xp)) ≤ 0,

fp(xp, κ(xp), 0qp) ∈ Xpt ,

κ(xp) ∈ Up,

 (5.50)

holds for each xp ∈ Xpt ,

• There exist a class-K∞ function γV such that

|V(xp)−V(x̂p)| ≤ γV(|xp − x̂p|), (5.51)

hold for any xp ∈ Xpf and x̂p ∈ Xpf ,

106 Robustness with respect to exogenous disturbances

• Assumption 5.7,

• Assumption 5.8.

Then, for a finite horizon h from Assumption 5.2 the system Σxp is partially nonlinear gain `2

stable with respect to sets SDK∆k
and SWp . �

Input-to-State Stability

We finish with ISS of the augmented state of the plant and the buffer state. Again, we

begin by providing the changes to the NCS architecture. Note that, similarly as for the

case of one node, some of the equations are repetitions of the equations stated earlier.

The nominal model becomes4

Σm
p :



x̃p(k + i + 1)

x̃b(k + i + 1)

 :=

 fp(x̃p(k + i), ũr
p(k + i))

fb(x̃b(k + i), r, {ũpr}k+h−1
k , w̃n(k + i))

 ,

x̃p(k)

x̃b(k)

 =

xp(k)

xb(k)

 , k ∈N0, i ∈ {0, . . . , h− 1},

(5.52)

where h ∈N is a finite horizon and

ũr
p :=



Γm1

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)

...

Γmr−1

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)

ũpr

Γmr+1

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)

...

ΓmR

(
Ξ(r, w̃n)x̃b + Π({ũpr}k+h−1

k , r, w̃n)
)



∈ Rmp , (5.53)

4Please notice once again that similarly as for the nominal model (5.12) and the nominal model (5.41),
in the equation (5.52), we slightly abuse notation with respect to the plant model (5.1). Namely, again, for
the nominal model (i.e., no exogenous disturbances) we write fp(x̃p(k + i), ũr

p(k + i)) instead of fp(x̃p(k +
i), ũr

p(k + i), 0qp).

5.2 Robustness Analysis 107

with

w̃n ∈ {w̃n}k+h−1
k := {1, 0, . . . , 0},

ũpr ∈ {ũpr}k+h−1
k ,

Γ =
[
Γ>mp1
· · · Γ>mpR

]>, Γmpr
∈ Rmpr×h·mp , ∀r ∈ R.

 (5.54)

The cost function is defined as

J(x, {ũpr}k+h−1
k)

:=
k+h−1

∑
i=k

l(φ f (i− k, x, {ũr
p}k+h−1

k), ũr
p(i)) + g(φ f (h, x, {ũr

p}k+h−1
k))

(5.55)

where

x := (xp, xb) ∈ X ⊆ Xp ×U
h
p. (5.56)

The cost function is minimized with respect to the following constraints. Control is

constrained as

ũr
p(k + i) ∈ Up, ∀r ∈ R, ∀k ∈N0, ∀i ∈ {0, . . . , h}. (5.57)

The solutions of the model (5.52) are constrained with

φ f (i− k, x, {ũr
p}k+h−1

k) ∈ X, ∀k ∈N0, ∀i ∈ {k, . . . , k + h− 1}. (5.58)

Finally, the solution at the end of horizon has to satisfy terminal state-like constraint,

namely

φ f (h, x, {ũr
p}k+h−1

k) ∈ Xpt ×U
h
p. (5.59)

The optimal value function for each node is defined as

108 Robustness with respect to exogenous disturbances

V(x, {u∗pr
}k+h−1

k) :=


minimize J(x, {ũpr}k+h−1

k)

subject to


(5.52)–(5.54)

(5.57)–(5.59).

(5.60)

Repeating this procedure for each node results in {V(x, {u∗pr
}k+h−1

k)}r∈R from which we

take the minimum, yielding the optimal value function

V(x) = V(x, {u∗pr∗ }
k+h−1
k) := min

r
V(x, {u∗pr

}k+h−1
k). (5.61)

Extracting the corresponding optimal node and its sequence of optimal control values

reduces to

r∗ := argmin
r

V(x, {u∗pr
}k+h−1

k), (5.62)

and

{u∗pr∗ }
k+h−1
k := argmin

{ũpr∗ }
k+h−1
k

J(x, {ũpr∗ }k+h−1
k). (5.63)

Again, these values form the packet that controller sends to a network, namely

π = (a, d) := (r∗, (u∗pr∗ (ki), . . . , u∗pr∗ (ki + h− 1)). (5.64)

The resulting closed-loop system is then given as5

Σx : x+ =

 fp(xp, hb(xb, r∗, {u∗pr∗ }
k+h−1
k , wn), wp)

fb(xb, r∗, {u∗pr∗ }
k+h−1
k , wn)

 =: f (x, wn, wp). (5.65)

Finally, we have all ingredients to state the last result of this chapter.

Theorem 5.2 (ISS). Consider the system Σx, given by the equation (5.65). Let the following be

satisfied:

• There exist class-K functions αx and αwp such that

5Recall that yb := hb(xb, a, d, wn) := Γ
(

Ξ(a, wn)xb + Π(d, a, wn)
)

.

5.2 Robustness Analysis 109

| f (x, wn, wp)− f (x̂, wn, 0qp)| ≤ αx(|x− x̂|) + αwp(|wp|), (5.66)

holds for each x ∈ Xpf ×U
h
p, x̂ ∈ Xpf ×U

h
p, wn ∈ D and wp ∈W,

• The set Wp is compact and correspondingly there exist

|W| := max
k0≤i≤k

|wp(i)|, (5.67)

• Assumption 5.2,

• There exist class-K∞ function α such that

l(x, up) ≥ α(|x|), l(0np×h·mp , 0mp) = 0, ∀x ∈ Xpf ×U
h
p, ∀up ∈ Up,

g(x) ≥ 0, g(0np×h·mp) = 0, ∀xp ∈ Xpt ×U
h
p,

 (5.68)

• For some node r ∈ R there exist a terminal control law κr : Xpt → Ũpr such that6

g

 fp(xp, hb(xb, r, {ιrκr}k+h−1
k , wn), 0mp)

fb(xb, r, {ιrκr}k+h−1
k , wn)


− g(x) + l(x, hb(xb, r, {ιrκr}k+h−1

k , wn)) ≤ 0, fp(xp, hb(xb, r, {ιrκr}k+h−1
k , wn), 0mp)

fb(xb, r, {ιrκr}k+h−1
k , wn)

 ∈ Xpt ×U
h
p,

κr(xp) ∈ Ũpr := 0mp1 × · · · × 0mpr−1 ×Upr × 0mpr+1 × · · · × 0mpR ,

Upr ⊆ Rmpr ,

ιr := diag(0mp1
, . . . , 0mpr−1

, Impr
, 0mpr+1

, . . . , 0mpR
),



(5.69)

holds for each xp ∈ Xpt

• There exist a class-K∞ function γV such that

|V(x)−V(x̂)| ≤ γV(|x− x̂|) (5.70)

6Recall that yb := hb(xb, a, d, wn) := Γ
(

Ξ(a, wn)xb + Π(d, a, wn)
)

.

110 Robustness with respect to exogenous disturbances

holds for each x ∈ Xpf ×U
h
p and x̂ ∈ Xpf ×U

h
p,

• At the first successful transmission instant we have that x(k0) ∈ Xpf ×U
h
p.

Then, there exist a class-KL function β and a class-K function γ such that the states of system

Σx are bounded via

|x(k)| ≤ β(|x(k0)|, k− k0) + γ(|W|) (5.71)

for each k ≥ k0. �

The proof of this theorem follows the exact same lines as the proof of the main result

from [31] and thus is omitted.

Before closing this section we discuss some assumptions we used. Let us begin with

the assumption provided by the equation (5.67). This assumption comes from the defi-

nition of ISS, for instance, see Definition 4.7 in [169]. Next we focus on the assumption

given in the equation (5.66). This assumption reflects the dependency on buffer contents

which is caused by dynamic scheduling. The assumption captured with the equation

(5.70) mimics the frequently used assumption when one considers robustness properties

of the corresponding system governed by MPC based controllers. For instance, for non-

networked systems see [107, 122, 170], while for the networked cases, see [31]. Next, the

assumption for stage and terminal cost functions, given by the equation (5.68), is a rea-

sonable extension of an assumption used in non-networked cases, e.g., see [107, 119] and

networked cases, e.g., see [31]. On the other hand, the assumption related to terminal

control law (see (5.69)) stems from the fact that the cost function considers buffer content

explicitly, and we can access only one input node at each time instant. It should be noted

that, as before, the control law used in (5.69) is just a construct which is not necessarily

used on the plant.

Finally, we finish by providing some insight into why ISS of the augmented state of

the plant and the buffer state instead of Input-Output Stability (IOS), where the output is

the plant state. As documented in [171], to show IOS one would need to show that the

corresponding system satisfies the output-uniform asymptotic gain property (see Definition

1.6 and Theorem 1 in [171]). Due to the specific structure of the NCS configuration we

5.2 Robustness Analysis 111

were unable to show that this property is satisfied. Recall that the network allows access

to only one input node at each time instant. Hence, the buffer content is used to derive

the sequence of optimal control predictions. This fact makes some needed assumptions

hard to satisfy. For instance, one would need the following continuity assumption on

the optimal value function:”There exist a class-K∞ function σ such that |V(x)−V(x̂)| ≤
σ|x − x̂| holds for each x ∈ Xpf ×U

h
p and x̂ ∈ Xpf ×U

h
p”. Now, note that if the optimal

value function is quadratic and x = (0np , xb) and x̂ = (0np , x̂b) where xb 6= x̂b, the latter

assumption is not satisfied. Thus, we focused on ISS of the overall NCS state and showed

that by modifying the cost function and exploiting stronger assumptions it is achievable.

5.2.3 Simulations

Here, we illustrate the performance aspects of the used method. First, let us emphasize

that we allow for Assumption 5.2 to be violated. This is due to the fact that in practice

we can not guarantee the corresponding bound on the number of consecutive packet

dropouts because of the random nature of dropouts; however, note that due to the fact

that the networks are designed so that the network throughput is high, the number of

consecutive packet dropouts should not be high.

The demonstration of the used method includes the comparison between dynamic

and static scheduling. Moreover, when no data is received over h consecutive time in-

stances, we compare two buffer mechanisms that deal with this issue; these mechanisms

correspond to different shift matrices. One mechanism corresponds to setting buffer state

to zero; for instance see shift matrix S3 in Example 3.1. The other mechanism corresponds

to setting buffer state to the “last received value”; for instance, see shift matrix S̃3 in Ex-

ample 3.1.

The considered system is of the form

x+p1
= xp1 + up1

x+p2
= xp2 + up2

x+p3
= xp3 + xp1 up2 − xp2 up1 + wp

112 Robustness with respect to exogenous disturbances

where (xp1 , xp2 , xp3) = xp ∈ Xp ⊂ R3 and (up1 , up2) ∈ Up ⊂ R2 where Xp is a compact set;

xp(0) = (−4, 4, 4). Disturbance wp ∈W ⊆ R is not known to the controller and it will be

defined in the sequel.

The nominal model (see (5.12)) is the discrete nonholonomic integrator and its dynamics

is considered in an MPC framework in [123] (see Example 2). Using results presented

there it follows that by choosing Γ̄ > 16/5 and h = 4 (see Example 2), one can select stage

and terminal cost as

l(xp, up) = x2
p1
+ x2

p2
+ 10|xp3 | and g(xp) = 4(x2

p1
+ x2

p2
+ 10|xp3 |).

It follows that the corresponding MPC feedback law will globally asymptotically stabilize

the origin; for details see [123].

Disturbance is constructed as follows, for time intervals {0, 1, . . . , 20} and {40, 41, . . . , 100}
it is a random Gaussian process with zero mean and variance of 0.01, while during time

interval {20, 21, . . . , 40} it is a step of amplitude one plus random Gaussian process with

zero mean and variance of 0.3.

Recall that we allow for Assumption 5.2 to be violated since in reality the packet

dropouts are random. Thus, first we consider a network which introduces i.i.d. dropouts

with 0.2 probability where probability distribution is discrete Bernoulli distribution. Fig-

ure 5.2 illustrates comparison between dynamic7 (solid line) and static8 (dashed line)

scheduling when buffer is set to zero while Figure 5.3 captures the scenario when buffer

is set to the “last received value”9.

First subplots of Fig. 5.2 and Fig. 5.3 clearly illustrate better performance when dy-

namic scheduling is applied regardless of how buffer state is set when no data is received

over h consecutive time instances.

Next, we increase the dropout probability to 0.6. Note that in this scenario the buffers

will more frequently ran out of data due to frequent 4 or more consecutive packet dropouts

7Try Once Discard protocol.
8Round Robin protocol.
9In all figures from this subsection, in the first subplot we illustrateL2 norms of the state of the considered

system while in subplots 2 (dynamic case) and 3 (static case) we depict corresponding scheduling (solid line)
and packet dropouts (diamonds) for channels 1 and 2. Finally, all subplots in each figure share the same time
denoted at the bottom of the last subplot.

5.2 Robustness Analysis 113

5

10

15

20

25

1

2

1

2

0 20 40 60 80 100
1

2

1

2

||xp||L2||xp||L2 — Static scheduling ||xp||L2||xp||L2 — Dynamic scheduling

Static
scheduling

Dynamic
scheduling

Droput
outcomes

Droput
outcomes

Figure 5.2: Dynamic and static scheduling comparison; buffer set to zero value; dropout
probability 0.2, 1 – channel 1 (e.g., up1) while 2 – channel 2 (e.g., up2).

2
4
6
8

10
12
14
16

1

2

1

2

0 20 40 60 80 100
1

2

1

2Static
scheduling

Dynamic
scheduling

Droput
outcomes

Droput
outcomes

||xp||L2||xp||L2 — Static scheduling

||xp||L2||xp||L2 — Dynamic scheduling

Figure 5.3: Dynamic and static scheduling comparison; buffer set to the “last value”;
dropout probability 0.2, 1 – channel 1 (e.g., up1) while 2 – channel 2 (e.g., up2).

as documented in the second and the third subplot of Fig. 5.4 and Fig. 5.5. Notice that

even in this severe dropout scenario, and despite the assumptions of the stability theorem

not being satisfied, the used method gives good behavior as illustrated in first subplots

of Fig. 5.4 and Fig. 5.5. Again, dynamic scheduling gives better performance when

114 Robustness with respect to exogenous disturbances

2
4
6
8

10
12
14
16

1

2

1

2

0 20 40 60 80 100
1

2

1

2Static
scheduling

Dynamic
scheduling

Droput
outcomes

Droput
outcomes

||xp||L2||xp||L2 — Static scheduling
||xp||L2||xp||L2 — Dynamic scheduling

Figure 5.4: Dynamic and static scheduling comparison; buffer set to zero value; dropout
probability 0.6, 1 – channel 1 (e.g., up1) while 2 – channel 2 (e.g., up2).

20

40

60

80

1

2

1

2

0 20 40 60 80 100
1

2

1

2Static
scheduling

Dynamic
scheduling

Droput
outcomes

Droput
outcomes

||xp||L2||xp||L2 — Dynamic scheduling

||xp||L2||xp||L2 — Static scheduling

Figure 5.5: Dynamic and static scheduling comparison; buffer set to the “last value”;
dropout probability 0.6, 1 – channel 1 (e.g., up1) while 2 – channel 2 (e.g., up2).

compared to static scheduling.

In summary, we conclude that simulations demonstrated that the used method showed

good performance and that dynamic outperformed static scheduling.

Similarly as in previous chapters we proceed with proofs.

5.3 Proofs 115

5.3 Proofs

Proof of Lemma 5.1. Assumption 5.2 implies that k0 ≤ h, thus, form (5.35) it follows that

x ∈ Xpf ×U
h
p. Then, by using (5.36) one can easily show by induction that x(ki) ∈

Xpf ×U
h
p for any ki ∈ K∆k.

Proof of Lemma 5.2. We start by splitting the left hand side of inequality (5.37) into the part

that involves the disturbance and the part that does not. More precisely, we have

∆V(x(ki)) := V(x(ki+1))−V(x(ki))

= V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

))−V(x(ki))

= V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {0, . . . , 0}))−V(x(ki))

+ V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

))

−V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {0, . . . , 0})).

(5.72)

• V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {0, . . . , 0}))−V(x(ki)):

1. ∆ki < ∆k− 1: Consider a node from Assumption 5.4 at time instant ki+1, that

is, r(ki+1), which is not necessarily the same as r∗(ki). Consequently, consider

a control sequence

{ũr(ki+1)
p }ki+1+∆k−1

ki+1
= {ur∗(ki)

p (ki+1), . . . , ur∗(ki)
p (ki + ∆k− 1),

ũr(ki+1)
p (ki + ∆k), . . . , ũr(ki+1)

p (ki+1 + ∆k− 1)} (5.73)

where ur∗(ki)
p (·) stands for plant input with node r∗(ki) being the last updated

part of plant input; i.e., the last updated control values are the ones for node

r∗(ki). More precisely, the first ∆k − ∆ki − 1 elements are from the buffers

which originate from past optimizations, last one received being obtained in

optimization at time instant ki; see Section 5.1.4 for more details. The rest of

elements come from Assumption 5.4, namely

116 Robustness with respect to exogenous disturbances

ũr(ki+1)
p (ki+1 + j) := κr(ki+1)(x̃p(ki+1 + j)), ∀j ∈ {∆k− ∆ki − 1, . . . , ∆k− 1}

(5.74)

where

x̃+p = fp(x̃p, κr(ki+1), 0qp) (5.75)

with

x̃p = φ fp(∆k, x, {wn}ki+∆k−1
ki

, {0, . . . , 0}). (5.76)

Note that the sequence given in (5.73) is a feasible one. Now, direct application

of this sequence in the corresponding cost function produces the following

J(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

), {ũpr(ki+1)
}ki+1+∆k−1

ki+1
, {0, . . . , 0}))

= V(x)−
ki+∆ki

∑
j=ki

l(φ fp(j− ki, x, {wn}ki+∆ki
ki

, {0, . . . , 0}), ur∗(ki)
p (j))

+
ki+1=∆k−1

∑
j=ki+∆k

{
g(fp(x̃(j), ũp(j), 0qp))− g(x̃(j)) + l(x̃(j), ũp(j))

}
≤ V(x)−

ki+∆ki

∑
j=ki

l(φ fp(j− ki, x, {wn}ki+∆ki
ki

, {0, . . . , 0}), ur∗(ki)
p (j))

(5.77)

where {ũpr(ki+1)
}ki+1+∆k−1

ki+1
is a sequence of corresponding control values for

node r(ki+1) from a feasible control sequence given in (5.73); also, we write

{ur∗
p }ki+∆ki

ki
instead of {ur∗(ki)

p }ki+∆ki
ki

to simplify notation. Now, due to optimal-

ity, we have

V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {0, . . . , 0}))

≤ J(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {0, . . . , 0}), {ũpr(ki+1)
}ki+1+∆k−1

ki+1
),

(5.78)

5.3 Proofs 117

thus, application of Assumption 5.3 yields

∆V(x(ki)) := V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {0, . . . , 0}))−V(x)

≤
ki+∆ki

∑
j=ki

l(φ fp(j− ki, x, {wn}ki+∆ki
ki

, {0, . . . , 0}), ur∗(ki)
p (j))

≤ −
ki+∆ki

∑
j=ki

αxp(|φ fp(j− ki, x, {wn}ki+∆ki
ki

, {0, . . . , 0})|),

(5.79)

as desired.

2. ∆ki = ∆k − 1: The only difference is that now, we consider a feasible control

sequence {ũr(ki+1)
p (ki+1), . . . , ũr(ki+1)

p (ki+1 + ∆k− 1)}, whose values come from

Assumption 3.3.

• V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

))−V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {0, . . . , 0})):
First, note that from Assumption 5.5 it follows that,

V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

))−V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {0, . . . , 0}))

≤ γV(|φ fp(∆ki + 1, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

)

− φ fp(∆ki + 1, x, {wn}ki+∆ki
ki

, {0, . . . , 0})|)
(5.80)

It might be useful to recall that φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

) and φ f (∆ki +

1, x, {wn}ki+∆ki
ki

, {0, . . . , 0}) have the same buffer contents and that {wn}ki+∆ki
ki

=

{1, 0, . . . , 0}. Applying Assumption 5.1 and the property of solution mapping,

namely

118 Robustness with respect to exogenous disturbances

φ fp(j− ki, x, {wn}j−1
ki

, {wp}j−1
ki

) =
xp(ki) if j = ki

fp(φ fp(j− ki − 1, x, {wn}j−2
ki

, {wp}j−2
ki

), up(j− 1), wp(j− 1)) if j ∈ {ki + 1, . . . , ki + h}

(5.81)

one arrives at

|φ fp(j− ki, x, {wn}j−1
ki

, {wp}j−1
ki

)− φ fp(j− ki, x, {wn}j−1
ki

, {0, . . . , 0})|

= | fp(φ fp(j− ki − 1, x, {wn}j−2
ki

, {wp}j−2
ki

), up(j− 1), wp(j− 1))

− fp(φ fp(j− ki − 1, x, {wn}j−2
ki

, {0, . . . , 0}), up(j− 1), 0)|

≤ αxp(|φ fp(j− ki − 1, x, {wn}j−2
ki

, {wp}j−2
ki

)

− φ fp(j− ki − 1, x, {wn}j−2
ki

, {0, . . . , 0})|) + αwp(|wp(j− 1)|)

(5.82)

which holds for any j ∈ {ki, . . . , ki+1} with |xp(ki)− xp(ki)| = 0 for j = ki. Using

the latter inequality one can easily show that

|φ fp(j− ki, x, {wn}j−1
ki

, {wp}j−1
ki

)− φ fp(j− ki, x, {wn}j−1
ki

, {0, . . . , 0})|

≤
j−ki

∑
l=1

ᾱl(|wp(j− l)|)
(5.83)

holds for any j ∈ {ki, . . . , ki+1} where ᾱl+1 := αxp ◦ 2 · Id ◦ ᾱl is a class-K function

and ᾱ1 = αwp . Now, note that due to Assumption 5.2 ki+1 − ki ≤ h = ∆k, and note

that since αxp and αwp are a class-K functions one can always bound them with new

class-K functions so that ᾱl+1 > ᾱl . Thus, it follows ᾱh = maxl∈{1,...,h} ᾱl . Then,

from latter inequality we have

5.3 Proofs 119

|φ fp(j− ki, x, {wn}j−1
ki

, {wp}j−1
ki

)− φ fp(j− ki, x, {wn}j−1
ki

, {0, . . . , 0})|

≤
j−1

∑
l=ki

ᾱh(|wp(l)|)
(5.84)

for any j ∈ {ki, . . . , ki+1}. Setting j = ki + ∆ki + 1 (= ki+1) results in

|φ fp(∆ki + 1, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

)− φ fp(j, x, {wn}ki+∆ki
ki

, {0, . . . , 0})|

≤
ki+∆ki

∑
l=ki

ᾱh(|wp(l)|)
(5.85)

Now, recall that due to Assumption 5.3, 5.4 and 5.8 V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

))

is bounded. Further, using the second inequality from (1.8) yields

V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

))

−V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {0, . . . , 0}))

≤ αV

(
ki+∆ki

∑
l=ki

ᾱh(|wp(l)|)
)

≤
ki+∆ki

∑
l=ki

αV(2∆ki ᾱh(|wp(l)|))

≤
ki+∆ki

∑
l=ki

αV(2∆k−1ᾱh(|wp(l)|))

(5.86)

Towards combining the latter inequality with the inequality (5.79) to establish the de-

sired dissipation inequality we will first add and subtract |φ fp(j− ki, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

)|
to the argument of the αxp function on the right hand side of the inequality (5.79). Then,

we will use first inequality from set of inequalities given in (1.8) and the triangle inequal-

ity (e.g., |x| − |y| ≤ |x− y|, ∀x ∈ Rn, y ∈ Rn, n ∈N) to obtain

120 Robustness with respect to exogenous disturbances

∆V(x(ki)) := V(φ f (∆ki + 1, x, {wn}ki+∆ki
ki

, {0, . . . , 0}))−V(x)

≤ −
ki+∆ki

∑
j=ki

αxp(|φ fp(j− ki, x, {wn}ki+∆ki
ki

, {0, . . . , 0})|

+ |φ fp(j− ki, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

)|

− |φ fp(j− ki, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

)|)

≤ −
ki+∆ki

∑
j=ki

αxp(|φ fp(j− ki, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

)|)
2

+
ki+∆ki

∑
j=ki

1
2

αxp(|φ fp(j− ki, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

)|

− |φ fp(j− ki, x, {wn}ki+∆ki
ki

, {0, . . . , 0}|)

(5.87)

Moreover, by using inequality (5.83) we can bound second term from the latter in-

equality as

ki+∆ki

∑
j=ki

1
2

αxp(|φ fp(j− ki, x, {wn}ki+∆ki
ki

, {wp}ki+∆ki
ki

)| − |φ fp(j− ki, x, {wn}ki+∆ki
ki

, {0, . . . , 0}|)

≤
ki+∆ki

∑
j=ki

1
2

αxp

(
j−1

∑
l=ki

ᾱh(|wn(l)|)
)

.

(5.88)

Now, we will use convention that whenever the lower index in the sum is greater than

the upper one the sum is equal to zero. Thus, for = ki the inner sum in latter inequality

will be equal to zero. Now, applying third inequality from set of inequalities given in

(1.8) we arrive at

ki+∆ki

∑
j=ki

1
2

αxp

(
j−1

∑
l=ki

ᾱh(|wn(l)|)
)
≤ (∆ki + 1)

ki+∆ki

∑
l=ki

1
2

αxp(2
∆ki ᾱh(|wn(l)|))

≤ ∆k
ki+∆ki

∑
l=ki

1
2

αxp(2
∆k−1ᾱh(|wn(l)|)).

(5.89)

5.3 Proofs 121

Finally, first we replace j with l in the first sum of the last inequality of (5.87). Then

we use inequalities (5.89) and (5.88) in inequality (5.87) and combine the new inequality

with (5.86). Then we define functions

α1 := 1
2 · Id ◦ α ∈ K∞,

α2 := max{ h2 · Id ◦ α ◦ 2h−1 · Id ◦ ᾱh, γV ◦ 2h−1 · Id ◦ ᾱh} ∈ K,

 (5.90)

which completes the proof.

Proof of Lemma 5.3. Let the conditions of Lemma 5.3 be satisfied. We first consider time

interval {k0, . . . , ki} by applying Lemma 5.2 i times which results in i inequalities which

cover the time interval of interest. Adding these inequalities results in

V(x(ki))−V(x(k0)) ≤ −
i−1

∑
j=0

k j+1−1

∑
l=k j

α1(|φ fp(l − k0, x, {wn}l−1
k0

, {wp}l−1
k0

)|)

+
i−1

∑
j=0

k j+1−1

∑
l=k j

α2(|wp(l)|)

= −
ki−1

∑
l=k0

α1(|φ fp(l − k0, x, {wn}l−1
k0

, {wp}l−1
k0

)|)

+
ki−1

∑
l=k0

α2(|wp(l)|).

(5.91)

Moreover, using Assumption 5.6 yields

V(x(ki)) +
ki−1

∑
l=k0

α1(|φ fp(l − k0, x, {wn}l−1
k0

, {wp}l−1
k0

)|)

≤ V(x(k0)) +
ki−1

∑
l=k0

α2(|wp(l)|)

≤ γV̄(|x(k0)|) +
ki−1

∑
l=k0

α2(|wp(l)|).

(5.92)

Now, we examine time interval between ki and k ≤ ki+1. First note

122 Robustness with respect to exogenous disturbances

V(x(ki)) = J(x, {u∗pr∗ }
ki+∆k−1
ki

)

=
ki+∆k−1

∑
l=ki

l(φ fp(l − ki, x, {wn}l−1
ki

, {0, . . . , 0}), ur∗
p (l))

+ g(φ fp(∆k, x, {wn}ki+∆k−1
ki

, {0, . . . , 0})

≥
k

∑
l=ki

l(φ fp(l − ki, x, {wn}l−1
ki

, {0, . . . , 0}), ur∗
p (l))

≥
k

∑
l=ki

α(|φ fp(l − ki, x, {wn}l−1
ki

, {0, . . . , 0})|)

(5.93)

where ki ≤ k ≤ ki+1 − 1. Adding and subtracting term |φ fp(l − ki, x, {wn}l−1
ki

, {wp}l−1
ki

)|
to the argument of the α function in latter inequality and using the lower bound from

inequality (1.7) yields

V(x(ki)) ≥
k

∑
l=ki

(1
2

α(|φ fp(l − ki, x, {wn}l−1
ki

, {wp}l−1
ki

)|

− 1
2

α(|φ fp(l − ki, x, {wn}l−1
ki

, {0, . . . , 0})| − |φ fp(l − ki, x, {wn}l−1
ki

, {wp}l−1
ki

)|)
)

≥
k

∑
l=ki

1
2

α︸︷︷︸
α1

(|φ fp(l − ki, x, {wn}l−1
ki

, {wp}l−1
ki

)|)

−
k

∑
l=ki

1
2

α︸︷︷︸
α1

(|φ fp(l − ki, x, {wn}l−1
ki

, {0, . . . , 0})| − |φ fp(l − ki, x, {wn}l−1
ki

, {wp}l−1
ki

)|),

(5.94)

which when used in inequality (5.92) results in

5.3 Proofs 123

ki−1

∑
l=k0

α1(|φ fp(l − k0, x, {wn}l−1
k0

, {wp}l−1
k0

)|) +
k

∑
l=ki

α1(|φ fp(l − ki, x, {wn}l−1
ki

, {wp}l−1
ki

)|)

≤ γV̄(|x(k0)|) +
ki−1

∑
l=k0

α2(|wp(l)|)

+
k

∑
l=ki

α1(|φ fp(l − ki, x, {wn}l−1
ki

, {0, . . . , 0})| − |φ fp(l − ki, x, {wn}l−1
ki

, {wp}l−1
ki

)|).

(5.95)

Finally using the inequalities (5.88) and (5.89) results in

k−1

∑
l=k0

α1(|φ fp(l − k0, x, {wn}l−1
k0

, {wp}l−1
k0

)|) ≤ γV̄(|x(k0)|) +
ki−1

∑
l=k0

α2(|wp(l)|)

+
k−1

∑
l=ki

h

2
α(2h−1ᾱh(|wp(l)|))

(5.96)

which after defining α3 := max{α2, h
2 · Id ◦ α ◦ 2h−1 · Id ◦ ᾱh} ∈ K provides desired in-

equality.

Proof of Lemma 5.4. Let the Assumptions 5.2 and 5.7 be satisfied. According to Assump-

tion 5.7 it follows

|φ f (1, x, {wn}0
0, {wp}0

0)| ≤ αx(|x(0)|) + αw̄p(|wp(0)|). (5.97)

Continuing like this until time first successful transmission k0 one arrives at

|φ f (j, x, {wn}j−1
0 , {wp}j−1

0)| ≤ ᾱxj(|x(0)|) +
j

∑
l=1

ᾱw̄pl
(|wp(j− l)|). (5.98)

where j ∈ {0, . . . , k0} and

ᾱxl+1 = αx ◦ 2 · Id ◦ ᾱxl ∈ K, ᾱx0 = Id, ᾱx1 = αx,

ᾱw̄pl+1
= αx ◦ 2 · Id ◦ ᾱw̄pl

∈ K, ᾱw̄p1
= αw̄p .

 (5.99)

Now, note that according to Assumption 5.2 we have that k0 ≤ ∆k, thus, similarly

124 Robustness with respect to exogenous disturbances

as in the proof of Lemma 5.2, we can always ensure that ᾱxl+1 > ᾱxl and ᾱw̄pl+1
> ᾱw̄pl

yielding

α̂x∆k = maxl∈{1,...,∆k} ᾱxl ∈ K,

α̂w̄p∆k
= maxl∈{1,...,∆k} ᾱw̄pl

∈ K,

 (5.100)

which provides

|φ f (j, x, {wn}j−1
0 , {wp}j−1

0)| ≤ α̂x∆k(|x(0)|) +
j−1

∑
l=0

α̂w̄p∆k
(|wp(l)|). (5.101)

Now, by applying function γV̄ from Assumption 5.6 to inequality (5.98) and summing

the resulting inequalities from j = 0 to j = k0 with the application of third inequality from

(1.8) results in

k0

∑
j=0

γV̄(|φ f (j, x, {wn}j−1
0 , {wp}j−1

0)|)

≤ (k0 + 1)γV̄(α̂x∆k(|x(0)|)) +
k0

∑
j=0

γV̄

(j−1

∑
l=0

α̂w̄p∆k
(|wp(l)|)

)
≤ (∆k + 1)γV̄(α̂x∆k(|x(0)|)) + k0

k0−1

∑
l=0

γV̄

(
2k0−1α̂w̄p∆k

(|wp(l)|)
)

≤ α4(|x(0)|) +
k0−1

∑
l=0

∆kγV̄

(
2∆k−1α̂w̄p∆k

(|wp(l)|)
)

(5.102)

where α4 := (∆k + 1) · Id ◦ γV̄ ◦ α̂x∆k ∈ K. Finally, noting that due to definitions of the

overall NCS state, see (5.16), and Euclidean norm it follows that |φ f (·)| = |(φ fp(·), φ fb(·))| ≥
|φ fp(·)|, thus

k0−1

∑
j=0

γV̄(|φ fp(j, x, {wn}j−1
0 , {wp}j−1

0)|) + γV̄(|φ fp(k0, x, {wn}k0−1
0 , {wp}k0−1

0)|)︸ ︷︷ ︸
γV̄(|x(k0)|)

≤ α4(|x(0)|) +
k0−1

∑
l=0

α5(|wp(l)|)

(5.103)

5.3 Proofs 125

wehre α5 := ∆k · Id ◦ γV̄ ◦ 2∆k−1 · Id ◦ α̂w̄p∆k
∈ K which after replacing j with l provides

desired inequality.

Proof of Theorem 5.1. Let the Assumptions 5.1–5.8 be satisfied. Let us consider some arbi-

trary x(0) ∈ X, {wn}∞
0 ∈ SDK∆k

and {wp}∞
0 ∈ SW. Then, according to Assumption 5.8

and the conclusion of Lemma 5.1 x(k) = φ f (k, x, {wn}k−1
0 , {wp}k−1

0) ∈ Xpf ×U
h
p for all

k > 0. Note that if 0 < k < k0 ≤ ∆k, then from Assumption 5.8 (see Eq. 5.35) it follows

x(k) ∈ Xpf ×U
h
p, while otherwise, if k ∈ {ki, . . . , ki+1} then according Assumption 5.8

(see Eq. 5.36) and conclusion of Lemma 5.1 x(k) ∈ Xpf ×U
h
p. Next, we use the conclusion

of Lemma 5.4 to bound term γV̄ in conclusion of Lemma 5.3 yielding

k0−1

∑
l=0

γV̄(|φ fp(l, x, {wn}l−1
0 , {wp}l−1

0)|) +
k−1

∑
l=k0

α1(|φ fp(l − k0, x, {wn}l−1
k0

, {wp}l−1
k0

)|)

≤ α4(|x(0)|) +
k0−1

∑
l=0

α5(|wp(l)|) +
k−1

∑
l=0

α3(|wp(l)|),
(5.104)

where after defining

γ1 := min{γV̄ , α1},
γ2 := α4,

γ3 := Id,

γ4 := max{α3, α5},


(5.105)

provides the desired property defined in Definition 5.1.

Proof of Corollary 5.1. The proof follows the same lines as the proof of Theorem 5.1, thus,

we merely present the corresponding functions. These are as follows

126 Robustness with respect to exogenous disturbances

α1(s) := 1
2 s2,

α2(s) := max{∆k
2 , cV}24(∆k−1)c2(∆k−1)

xp c2
wp

s2,

α3(s) := α2(s),

α4(s) := (∆k− 1)cV̄(2cx)2(∆k−1)c2
xs2,

α5(s) := ∆kcV̄24(∆k−1)c2(∆k−1)
V̄ c2

w̄p
s2,

γ1(s) := min{cV̄ , 1
2}s2,

γ2(s) := α4(s),

γ3(s) := s,

γ4(s) := max{c2(∆k−1)
x c2

wp
, ∆kcV̄c2(∆k−1)

x c2
w̄p
}24(∆k−1)s2.



(5.106)

Proof of Corollary 5.2. Immediately, from the inequality (5.26) it follows

k

∑
l=0

γ1(|φ fp(l, x, {wn}l−1
0 , {0, . . . , 0})|) ≤ γ2(|x(0)|) (5.107)

for any k ∈ N, x(0) ∈ Xpf ×U
h
p, {wn}l−1

0 ⊂ {wn}∞
0 ∈ SDK∆k

and {0, . . . , 0} ⊂ {wp}∞
0 ∈

SW. Since the sum in latter inequality is bounded by a finite number it follows

lim
k→∞

γ1(|φ fp(k, x, {wn}k−1
0 , {0, . . . , 0})|) = 0⇒ lim

k→∞
|φ fp(k, x, {wn}k−1

0 , {0, . . . , 0})| = 0,

(5.108)

which recovers the main result from [30]. Note that another way to conclude the latter

implication is to use dissipation inequality (5.79) as in [30].

Proof of Corollary 5.3. The proof of Corollary 5.3 is very similar to the proof of Theorem

5.1. Thus, correspondingly, we will point to the differences rather than repeating the

steps already written. First note that inequality (5.51) implies V(xp) ≤ γV |xp| for any

x ∈ Xpf ×U
h
p. Furthermore, due to definitions of the overall NCS state, see (5.16), and

Euclidean norm it follows V(xp) ≤ γV |xp| ≤ γV |x| for any x ∈ Xpf ×U
h
p. As mentioned

above, the proof of Corollary 5.3 is very similar to the proof of Theorem 5.1, e.g., it can

be seen as case where R = 1. Hence, next we present the changes in the conclusions of

5.3 Proofs 127

Lemmas used in the proof of Theorem 5.1 (due to slightly different assumptions) which

completes the proof. The changes are as follows:

1. Lemma 5.1: Stays the same,

2. Lemma 5.2: The dissipation inequality takes the following form

V(xp(ki+1))−V(xp(ki))

≤ −
ki+1−1

∑
j=ki

α1(|φ fp(j− ki, x, {wn}j−1
ki

, {wp}j−1
ki

)|) +
ki+1−1

∑
j=ki

α2(|wp(j)|),
(5.109)

for any ki ∈ K∆k, ki+1 ∈ K∆k, xp(ki) ∈ Xpf ×U
h
p and xp(ki+1) ∈ Xpf ×U

h
p,

3. Lemma 5.3: Due to the inequality 5.51 V(xp) ≤ γV |xp| ≤ γV |x| which introduces

the following change

k−1

∑
j=k0

α1(|φ fp(j− k0, x, {wn}j−1
ki

, {wp}j−1
ki

)|) ≤ γV(|x(k0)|) +
k−1

∑
j=k0

α3(|wp(j)|) (5.110)

for any x(0) ∈ Xpf ×U
h
p,

4. Lemma 5.4: Finally, in the same manner as in later inequality due to the inequality

(5.51) we have the following

γV(|x(k0)|) ≤ α4(|x(0)|) +
k0−1

∑
j=0

α5(|wp(j)|)−
k0−1

∑
j=0

γV(|φ fp(j, x, {wn}j−1
0 , {wp}j−1

0)|).

(5.111)

This page intentionally left blank.

Chapter 6

Controllability with respect to
Scheduling

Controllability is the last control system property we consider. Similarly as proper-

ties of stability and robustness, the controllability property also provides a specific

insight about the corresponding system which in turn aids in its deeper understanding.

However, unlike in previous chapters, here the network only induces scheduling; packet

dropouts are left for future work.

In particular we investigate if and how the controllability of a plant can be preserved

once a network which imposes the scheduling issue is introduced into the system. Our

approach consists of exploiting network processing capabilities and/or the architectural

flexibility that NCSs possess. Namely, similarly as in previous chapters, we add buffers

to the corresponding NCS architecture, if needed.

Controllability has been addressed in NCS society and some recent references that

document this are [52,53,55] and [54]. In [52], the authors consider static scheduling pro-

tocols and focus on linear plants with zero-order blocks in front of plant inputs. They use

a lifting technique to establish sufficient conditions for controllability (and observability)

of the corresponding NCS. In [55], the authors consider a NCS with a SISO linear plant

and investigate the effects of the so called blind periods in communication on controlla-

bility. Finally, the last two, relatively-related, references to our results are [53] and [54]

in which the authors consider Multi-Hop Control Networks with MIMO and SISO linear

plants and present conditions for controllability, respectively.

The contributions of this chapter are as follows. First we define a model of the corre-

sponding NCS which is interesting and novel in its own right. More precisely, the interest

129

130 Controllability with respect to Scheduling

and novelty associated with the NCS model come from the way we capture the evolution

of system variables. Namely, we use two indices to capture the evolution of system vari-

ables. In particular, the first index corresponds to discrete time while the second index

represents a counter which keeps track of transmission and processing instants. More-

over, transitioning from this model back to a model that uses only discrete time is quite

easy and we do that to establish the corresponding controllability results. To establish

our controllability results we rely on the assumption that the corresponding network has

appropriate processing capabilities (we call these additional processing capabilities (APCs))

which enable us to manipulate the corresponding communication protocols. Using that

we establish two controllability results for NCSs which have general nonlinear plants.

These results are rather general. On the other hand, for NCSs which have linear plants

we first extend a controllability result form [52] by showing the existence of an admis-

sible communication sequence so that the corresponding controllability result holds. Then

we use this extension and the resulting NCS architecture to establish our controllability

result. In [55], even though the authors do not consider explicitly the scheduling issue

(since the plant is SISO) the corresponding result can be viewed as a special case of our

result when there is no scheduling.

This chapter is organized as follows. In Section 6.1 we present the corresponding

model while in Section 6.2 we present the analysis and collect all results. Finally, in

Section 6.3 we provide the corresponding proofs.

6.1 NCS architecture

Similarly as in the previous chapters, we will present the considered NCS architecture,

see Fig. 6.1, by presenting each part separately in a more detail. However, before we

depart to the specifics of the corresponding NCS architecture let us spend few words on

assumptions we use that make the resulting model interesting and novel. Namely, we

assume that the transmission of the data through the network is instantaneous as well as

the processing in devices µp and µc. The corresponding effects of instantaneous transmis-

sion and processing can be described as jumps in the dynamical model of the NCS. This

6.1 NCS architecture 131

motivates us to adopt a discrete-time approach as documented in [47, 48] and use two

indices to capture time evolution in system variables. Moreover, notice that our model

can be seen to some extent as a discretization of a model from [47, 48]. More precisely,

the first index refers to discrete time while the second index is a counter which refers to

transmission plus processing instants. The indices do not evolve independently. Both are

incremented alternatively and can only be incremented by 1. For example, consider a

sequence of index pairs

{(0, 0), (0, 1), (1, 1), (1, 2), . . . }.

Whenever the second index is larger than the first, it indicates that transmission and

processing has just occurred. Using this convention we define the corresponding NCS

model. We believe that the model is novel and useful in its own right and maybe useful

for other problems as well. Let us now proceed with the presentation of the parts that

form the considered NCS architecture.

⌃c⌃c ⌃p⌃p⌃n⌃n
⌃µc
⌃µc

⌃µp
⌃µp

ycyc upup

ypyp

ynp
ynp

ync
yncucuc

Figure 6.1: A NCS architecture for addressing controllability.

6.1.1 Plant

The plant model is represented as

Σp :


xp(i + 1, i + 2) = fp(xp(i, i + 1), up(i, i + 1)),

yp(i, i + 1) = hp(xp(i, i + 1)),
(6.1)

where xp(i, i + 1) ∈ Rnp is the plant state, up(i, i + 1) ∈ Rmp is the plant input and

y(i, i + 1) ∈ Rpp is the plant output after transmission and processing have occurred.

The mappings fp : Rnp ×Rmp → Rnp and hp : Rnp → Rpp are assumed nonlinear where

np, mp and pp are positive integers. Moreover, we assume that during transmission and

132 Controllability with respect to Scheduling

processing, captured with our notation with (i, i) → (i, i + 1), the plant state does not

change, i.e.,

xp(i, i + 1) = xp(i, i), ∀i ∈N. (6.2)

Finally, as in the previous chapters, the plant control input is partitioned according to

up := (up1 , . . . , upR) (6.3)

where

upr ∈ Rmpr , mpr ∈N, ∀r ∈ R,

∑R
r=1 mpr = mp,

R := {1, . . . , R}.

 (6.4)

6.1.2 Network protocols

The considered network is assumed to impose only the scheduling issue. However, to

simplify analysis, we focus only on scheduling of plant inputs, i.e., we place a network

only between controller output and plant inputs. Consequently, there is no scheduling

of plant outputs. In this case, the corresponding NCS architecture can be depicted as in

Fig. 6.2.

⌃p⌃p⌃µ⌃µ⌃n⌃n⌃c⌃c
ycyc ynyn upup

ypyp

Figure 6.2: A NCS architecture for addressing controllability - a simplified representation.

In order to address this scheduling issues we characterize the network with a proto-

col which governs the medium access of each node; e.g., see [47, 48, 172]. We focus on

dynamic protocols which compare the data addressed to a node with network state, e.g.,

6.1 NCS architecture 133

the corresponding buffer contents before transmission. In our case, data to be transmitted

are controller outputs and the quantity used by the protocol is

e(i, i) := xn(i, i)− yc(i, i). (6.5)

In the latter equation, yc(i, i) is the controller output and xn(i, i) is the network state de-

fined as

xn(i, i) := fn(yc(i, i), yp(i, i)) (6.6)

where fn : Rpc ×Rpp → Rpc . Mapping fn captures the fact that some networks can have

additional processing capabilities (APC). For instance, via appropriate fn one can manipulate

which node will be picked, i.e., we can manipulate the protocol; this will be shown later

in the chapter.

Further, a protocol can be described by diagonal matrices Ψ(·, ·) which contain zeros

and ones on its diagonal; see equations (14), (16) and (17) in [47] for different types of

protocols. In this manuscript we will focus on the so-called Try Once Discard protocol

(TOD).

Definition 6.1 (TOD protocol, [48]). Suppose that there are R ∈ Z≥2 nodes competing for

access to the network. Correspondingly, the error vector is partitioned as e = (e1, . . . , eR). The

node r ∈ R with the greatest weighted error at instant (i, i), i ∈ N0 will be granted access. (It

is assumed that the weights are already incorporated into the model.) If a data packet fails to win

access to the network, it is discarded and new data is used at the next transmission time. If two or

more nodes have equal priority, a pre-specified ordering of the nodes is used to resolve the collision.

More precisely, the diagonal matrix Ψ(·, ·) is given as

Ψ
(
(i, i), e(i, i)

)
= diag

(
ψ1
(
e(i, i)

)
Imp1

, . . . , ψR

(
e(i, i)

)
ImpR

)
(6.7)

where i ∈N0 and ∑R
r=1 mpr = mp and where

134 Controllability with respect to Scheduling

ψr
(
e(i, i)

)
=


1, if r = min

(
arg maxr∈R |er(i, i)|

)
,

0, otherwise.
(6.8)

for each r ∈ R. �

6.1.3 Processing devices

As stated in the introduction of this chapter, in order to mitigate the undesirable effects

of the network one might exploit the flexibility of a NCS architecture and resort to dis-

tributed computing. In our case, this translates to the introduction of extra devices which

have simple processing capabilities and memory. We concentrate on two types.

One type of a device will just apply the received value for the addressed node and ze-

ros to the remaining nodes. Correspondingly, the output of this device is mathematically

described as

yµs
p
(i, i + 1) = hµs

p

(
yn(i, i + 1)

)
, (6.9)

for each i ∈N0, where s alludes to static since this device does not need any memory, e.g.,

see Fig. 6.3 for a conceptual abstraction of a static devices for a plant with three inputs;

e.g., it behaves as a switch.

⌃µs
p

⌃µs
p

⌃µs
p

⌃µs
p

⌃µs
p

⌃µs
p

(Address = 1, Data = u)(Address = 1, Data = u)

up1
= uup1
= u

up2
= 0up2
= 0

up3
= 0up3
= 0

Figure 6.3: Conceptual abstraction of static devices for a plant with three inputs.

6.1 NCS architecture 135

The other type of device will be dynamic. Its output is defined as follows:

yµd
p
(i, i + 1) = hµd

p

(
yn(i, i + 1), xµd

p
(i− 1, i)

)
(6.10)

for all i ∈N, where d alludes to dynamic.

Next, we proceed with the necessary preliminaries needed for stating the NCS archi-

tectures determined by the devices used. First, we assume that states in µd
p hold their

values until new data arrives, namely

xµd
p
(i, i + 1) = xµd

p
(i + 1, i + 1) (6.11)

for each i ∈ N0. Similarly, we assume that the value of controller’s output yc does not

change during transmission and processing, that is

yc(i, i) = yc(i, i + 1) (6.12)

for each i ∈N0.

Remark: Note that the equation (6.11) could be replaced with more complex process-

ing; e.g., see [31, 61, 83, 173, 174]. �

Now, note that the network output can be defined as

yn(i, i + 1) = Ψ
(
i, e(i, i)

)
yc(i, i) (6.13)

for each i ∈ N0. Using the latter equation, the output of the processing unit µd
p is then

given as

yµd
p
(i, i + 1) = Ψ

(
i, e(i, i)

)
yc(i, i) +

(
I −Ψ

(
i, e(i, i)

))
xµd

p
(i, i) (6.14)

for each i ∈N0. Note also that according to (6.9) we have

yµs
p
(i, i + 1) = hµs

p

(
yn(i, i + 1)

)
. (6.15)

As depicted in Fig. 6.2, we have that up(·, ·) = yµ∗p(·, ·) where ∗ ∈ {s, d}. Moreover, for the

136 Controllability with respect to Scheduling

case when µd
p is used xµd

p
(·, ·) = yµd

p
(·, ·) = up(·, ·). Now, given the above, the equation

(6.14) becomes

up(i, i + 1) = Ψ
(
i, e(i, i)

)
yc(i, i + 1) +

(
I −Ψ

(
i, e(i, i)

))
xµd

p
(i− 1, i) (6.16)

whereas, assuming xn(·) = xµd
p
(·), e(i, i) (see (6.5)) satisfies

e(i, i) = xn(i− 1, i)− yc(i, i + 1). (6.17)

6.1.4 NCS architecture with dynamic devices

Manipulating equations (6.1), (6.2), (6.10)–(6.14), (6.16) and (6.17) yields

xp(i + 1, i + 2) = fp
(
xp(i, i + 1),

(
I −Ψ

(
i, e(i, i)

))
e(i, i) + yc(i, i)

)
,

e(i, i + 1) =
(

I −Ψ
(
i, e(i, i)

))
e(i, i),

e(i, i) = e(i− 1, i) + yc(i− 1, i)− yc(i, i + 1).

 (6.18)

In order to simplify the upcoming analysis, we will write k for (i, i) and k + 1 for (i +

1, i + 1), see Fig. 6.4.

Using the latter convention, gives us the following model

xp(k + 1) = fp
(
xp(k),

(
I −Ψ

(
k, e(k)

))
e(k) + yc(k)

)
,

e(k + 1) =
(

I −Ψ
(
k, e(k)

))
e(k) + yc(k)− yc(k + 1).

 (6.19)

6.1.5 NCS architecture with static devices

Simple manipulations of equations (6.1), (6.2), (6.15) and (6.17) with assumptions that

xn(·, ·) = yµs
p
(·, ·) and xn(i, i + 1) = xn(i + 1, i + 1) yields

xp(i + 1, i + 2) = fp
(
xp(i, i + 1), yµs

p
(i, i + 1)

)
,

e(i, i + 1) =
(

I −Ψ
(
i, e(i, i)

))
e(i, i),

e(i + 1, i + 1) = yµs
p
(i− 1, i)− yc(i + 1, i + 2).

 (6.20)

6.2 Results 137

(0, 0)

(4, 4)

k = 0k = 0

k = 4k = 4(i, ·)(i, ·)

(·, i)(·, i)
(0, 1)

(1, 1)
(1, 2)

(2, 2)
(2, 3)

(3, 3)
(3, 4)

(4, 5)

k = 1k = 1

k = 2k = 2

k = 3k = 3

kk

(i, i)(i, i) (i, i + 1)(i, i + 1)

k + 1k + 1

(i + 1, i + 1)(i + 1, i + 1)Transmission
& Processing

Sampling
Period

Discrete Time

Figure 6.4: A convention for ”transitioning” form hybrid time to discrete time.

Using again the same convention for ”turning” hybrid time into a discrete time (see

Fig. 6.4) results in

xp(k + 1) = fp
(
xp(k), yµs

p
(k)
)
,

e(k + 1) = yµs
p
(k)− yc(k + 1).

 (6.21)

6.2 Results

The question we are interested in answering is how the scheduling issue (induced by the

network) affects the controllability of the plant. Let us begin by adopting the following

138 Controllability with respect to Scheduling

notion of controllability.

Definition 6.2 (Controllability). The system

Σx : x(k + 1) = f
(
x(k), u(k)

)
, k ∈N0 (6.22)

where x ∈ Rn is the state, u ∈ Rm is the input, n ∈N and m ∈N, is said to be asymptotically

controllable to the origin, if there exists β ∈ KL, such that for any initial condition x, there

exists a nonempty set of semi-infinite length control sequences SRm
(x) such that for all u∞

0 ={
u(0), u(1), . . .

}
∈ SRm

(x) the following inequality holds

∣∣φ(k, x, u∞
0)
∣∣ ≤ β

(
|x|, k

)
, ∀k ∈N0. (6.23)

Moreover, if β
(
|x|, k

)
can be chosen as β

(
|x|, k

)
= M exp(−kλ)|x| for some (M, λ) ∈ R>0 ×

R>0, then Σx is said to be exponentially controllable to the origin. �

Applying the latter definition to the plant makes explicit the fact that for a given xp

there may exist more than one control sequence which drives the plant state to the origin

satisfying the desired bound. This allows us to study the controllability property of the

same plant when the corresponding inputs are accessed through a network. The study

is done by examining whether for any xp ∈ Rnp , the network allows for realization of at

least one sequence in SRm
(xp).

By realization we mean on some sort of pre-processing (Σµpre) and/or post-processing

(Σµpost) and/or exploitation of the network capabilities to manipulate the corresponding

control values so that they remain the same once transmitted via network and received

by the plant input; see Fig. 6.5 .

⌃µpre⌃µpre ⌃n⌃n ⌃µpost⌃µpost

ycyc unun ynyn upup

Figure 6.5: A block diagram abstraction of the concept of the realization of control se-
quences over a network.

6.2 Results 139

Remark: Recall that we begin this chapter with the NCS architecture which commu-

nicates all signals through a network, see Fig. 6.1. However, due to our interest if for

a given xp the network allows for realization of at least one sequence in SRm
(xp), we do

not send plant outputs through a network since in that case what the controller receives

might be different from the real xp (due to scheduling). This results in a simpler NCS, see

Fig. 6.2. �

We proceed by presenting how to mitigate the scheduling issue effects on the control-

lability of the nonlinear and linear plants, separately.

6.2.1 Controllability: nonlinear plants

First, with SRm

S (xp) ⊂ SRm
(xp) we will denote a set that consists of semi-infinite length

control sequences from SRm
(xp) which can be realized by exploiting network process-

ing capabilities, network protocol and an appropriate processing unit µ∗p ; the notation

SRm

S (xp) alludes to a subset due to the scheduling.

Note that unlike static protocols, dynamic protocols need not have a predefined sched-

ule. In fact, values to be sent through a network have to satisfy a certain criterion defined

by the protocol which is usually fixed, see (6.8).

Now, let us assume that the network allows for manipulating this criterion. This ma-

nipulation we will call additional processing capability (APC); what it means exactly we will

define in the sequel. Important to note is that having the ability to manipulate the crite-

rion, e.g., see (6.8), enables us to trick the corresponding protocol and force which node

gets the access. Note that having ability to force (choose) which node gets the access

might be just enough to realize some sequences and preserve controllability. In fact, on a

high level, the former is exactly what we do. However, in order to be more precise, we

proceed with the needed definitions. We start by defining rigorously the ability to ma-

nipulate the criterion used by the protocol do provide an access to a node, i.e., we define

APC next.

Definition 6.3 (APC). Suppose that there are R ∈ Z≥2 nodes competing for access to the network.

Correspondingly, the network state vector is partitioned as xn = (xn1 , . . . , xnR). Then, additional

140 Controllability with respect to Scheduling

processing capability (APC) means that there exist δ > 0 such that provided r̄ ∈ {1, . . . , R},
xnr := upr + δ, ∀r ∈ {1, . . . , R}, r 6= r̄ and xnr̄ := upr̄ . �

Note that in Definition 6.3 we do not explain how r̄ is provided; this is done in the

sequel. Also note that by adding δ > 0 to all nodes except to r̄ we effectively are tricking

the protocol to choose node r̄, see (6.5) and (6.8) for the case of TOD protocol. In fact, next

we provide a lemma that captures precisely what tricking TOD means.

Lemma 6.1 (Tricking TOD). Consider any up(k) ∈ {up}∞
0 ∈ SRm

S (xp), k ∈ N0 for some

xp ∈ Rnp . Let the network be governed by the TOD protocol and let it have APC. Then, provided

r̄ ∈ {1, . . . , R}, upr̄(k) is chosen for transmission. �

As promised above, next we discuss how r̄ ∈ {1, . . . , R} is provided. First, we con-

centrate on a special subset of SRm

S (xp) which is additionally accompanied with the ap-

propriate processing unit µ∗p . More precisely, let us consider set SRm

S0
(xp) ⊂ SRm

S (xp)

which consists of control sequences where at each time instant a member of the corre-

sponding sequence has at most one nonzero element. Namely, let {u0}∞
0 = {u0(0), u0(1),

. . . , u0(k), . . .} ∈ SRm

S0
(xp), k ∈ N0. Then, for each k it follows u0(k) =

(
0, . . . , 0, u0

r (k), 0,

. . . , 0
)
, u0

r (k) ∈ Rmr , where r ∈ {1, . . . , R}. Furthermore, let the processing unit be µs
p; see

(6.9).

Now, for the sake of simplicity and precision, we modify Definition 6.3 with respect

to set SRm

S0
(xp). Namely, we extend the corresponding definition to additionally extract

the index of nonzero element or to provide any index if all elements are equal to zero; see

also Fig. 6.6.

Definition 6.4 (APC0). Consider SRm

S0
(xp) ⊂ SRm

S (xp) and suppose that there are R ∈ Z≥2

nodes competing for network access. Correspondingly, the network state vector is partitioned as

xn = (xn1 , . . . , xnR). Then, APC0 means that there exist δ > 0 and r̄ ∈ {1, . . . , R} is the index of

the nonzero element of the corresponding control vector at time k or it is any index otherwise, and

xnr(k) := u0
pr
(k) + δ, ∀r ∈ {1, . . . , R}, r 6= r̄ and xnr̄ := u0

pr̄
. �

It follows that with Definition 6.4 and processing unit µs
p, we can state the following

lemma related to realization of sequences from set SRm

S0
(xp), i.e., up(k) = u0(k), ∀k ∈ N0;

see (6.9).

6.2 Results 141

Lemma 6.2 (Realizing sequences from SRm

S0
(xp)). Consider set SRm

S0
(xp) ⊂ SRm

S (xp) and the

processing unit µs
p. Let the network be governed by TOD protocol and let it have APC0. Then, the

sequences from SRm

S0
(xp) are realizable . �

apc0apc0

TOD

(u1(k), 0, 0)(u1(k), 0, 0)

(u1(k), �, �)(u1(k), �, �)
⌃µs

p
⌃µs

p

⌃µs
p

⌃µs
p

⌃µs
p

⌃µs
p

(1, u1(k))(1, u1(k))

u1(k)u1(k)

0

0

Network

Figure 6.6: Illustration of tricking TOD with APC0 for a plant with three inputs.

We proceed by focusing on the SRm

Sδ
(xp) ⊂ SRm

S (xp) which consists of control se-

quences where at each two consecutive time instances the corresponding members of the

corresponding sequence differ in at most one element.

Namely, let {uδ}∞
0 = {uδ(0), uδ(1), . . . , uδ(k), . . .} ∈ SRm

Sδ
(xp), k ∈ N0, then for each k

it follows
∣∣uδ(k)− uδ(k + 1)

∣∣ = (0, . . . , 0, |uδ
r (k)− uδ

r (k + 1)|, 0, . . . , 0
)
=
(
0, . . . , 0, δr(k), 0,

. . . , 0
)
, r ∈ {1, . . . , R}, δr(k) ≥ 0. Furthermore, let the processing unit be µd

p, see (6.14).

Again, we modify Definition 6.3 but now with respect to SRm

Sδ
(xp). Similarly as above,

we extend the corresponding definition to additionally extract the index of differing ele-

ment or to provide any index if all elements are the same.

Definition 6.5 (APCδ). Let the processing unit µd
p be used. Consider set SRm

Sδ
(xp) and suppose

that there are R ∈ Z≥2 nodes competing for access to the network. The network state vector is

partitioned as xn = (xn1 , . . . , xnR). Then, APCδ means that there exist δ > 0 and by comparing

uδ(k) and xn(k − 1) = xµd
p
(k − 1), k ∈ N, index r̄ ∈ {1, . . . , R} is the index of the differing

element or it is any index if uδ(k) = xn(k). Finally, xnr(k) := uδ
r (k) + δ, ∀r ∈ {1, . . . , R}, r 6= r̄

and xnr̄ := uδ
pr̄

. �

142 Controllability with respect to Scheduling

Remark: It is important to note that it is possible that uδ(0) and xµd
p
(0) differ in more

than one element. Thus, let us take a short detour to discuss how realizations of se-

quences from the set SRm

Sδ
(xp) impose restrictions. If xµd

p
(0) and uδ(0) differ in more than

one element, then determination of an index for element to be sent would have to be

specified by some rule. However, by the time up(k) = uδ(k), the plant state might di-

verge from the trajectory that leads to the origin. Hence, without imposing constraint

that at time when up(k) = uδ(k) we have φ fp(k, xp, {uδ}∞
0) = φ fp(k, xp, {ũδ}∞

0),1 where

k ≥ m, we cannot guarantee controllability. �

xx xx xx

x = 0x = 0 x = 0x = 0 x = 0x = 0

Case 1 Case 2 Case 3

Figure 6.7: Case 1: uδ(0) = xµd
p
(0); Case 2: uδ(0) 6= xµd

p
(0) but when up(k) = uδ(k) we

have φ fp(k, xp, {uδ}∞
0) = φ fp(k, xp, {ũδ}∞

0) where k ≥ m; Case 3: uδ(0) 6= xµd
p
(0) but when

up(k) = uδ(k) we have φ fp(k, xp, {uδ}∞
0) 6= φ fp(k, xp, {ũδ}∞

0)

Now we are ready to state the following lemma which is related to realization of

sequences from SRm

Sδ
(xp), i.e., up(k) = uδ(k), ∀k ∈N0.

Lemma 6.3 (Realizing sequences from SRm

Sδ
(xp)). Consider set SRm

Sδ
(xp) and the processing

unit µd
p. Let the corresponding network be governed by TOD protocol and let it have APCδ. If

xµd
p
(0) and uδ(0) ∈ {uδ}∞

0 ∈ SRm

Sδ
(xp) differ in at most one element, then {uδ}∞

0 is realizable.�

The results above are rather general. Moreover, due to its requirement, Lemma 6.3 is

more restrictive than Lemma 6.2.

1{ũδ}∞
0 =

{
xµd

p
(0), xµd

p
(1), . . . , xµd

p
(k− 1), uδ(k), uδ(k + 1), . . .

}

6.2 Results 143

6.2.2 Controllability: linear plants

In this section we consider a special case of (6.1), namely

Σp :


xp(k + 1) = Axp(k) + Bup(k),

yp(k) = Cxp(k)
(6.24)

where A ∈ Rnp×np , B ∈ Rnp×mp and C ∈ Rpp×np .

NCS architecture with linear plants and dynamic devices

Sufficient conditions for controllability of a NCS with a linear plant (6.24), a processing

unit µd
p and a network which imposes periodic scheduling are documented in [52]. We use

this result in the sequel.

For the sake of clarity and self-containedness, let us begin by providing some addi-

tional notation from [52]. A periodic transmission sequences is denoted by στ =
{

σ(0),

σ(1), . . . , σ(τ − 1)
}

where τ ∈ N denotes the period. Further, for each i ∈ {0, . . . , τ − 1}
we introduce a vector σ(i) ∈ {0, 1}mp with 0 denoting corresponding node not to be

updated and 1 denoting corresponding node to be updated. For simplicity we refer to

periodic transmission sequences as communication sequences.

Next, we define admissible communication sequences, which means that during pe-

riod τ every node will be updated at least once.

Definition 6.6 ([52]). Let the maximum number of nodes which can be addressed be a m̃ < mp.

If for any period τ ∈N the following is satisfied:

• for each i ∈ {0, . . . , τ − 1},
∣∣στ(i)

∣∣ ≤ m̃;

• span
(
σ(0), . . . , σ(τ − 1)

)
= Rmp ,

then the communication sequence στ is admissible. �

Notice that an admissible sequence remains admissible if an element that already

exists in the sequence or the element consisting only of zero values is added to it. We

introduce the communication sequence matrix

144 Controllability with respect to Scheduling

E(k, i) =
k

∏
j=i

(
I − diag

(
σ(j)

))
, k ≥ i. (6.25)

The communication sequence matrix polynomial is defined as

G(µ) =
τ−1

∑
l=0

((
µτ−1 I + µτ−2E(l + 1, l + 1) + · · ·+ E(l + τ− 1, l + 1)

)
diag

(
σ(l)

))
(6.26)

with the indeterminate µ. The communication sequence characteristic polynomial is de-

fined as

g(µ) = det
(
G(µ)

)
. (6.27)

Finally, the theorem that establishes controllability of a NCS with a linear plant (6.24), a

processing unit µd
p and a network which imposes periodic scheduling is stated next.

Theorem 6.1 ([52]-Theorem 1). Consider a NCS with linear plant, see Eq. 6.24 and a processing

unit µd
p. Let the corresponding network impose periodic scheduling with period τ ∈N. If

• A communication sequence στ is admissible,

• The nonzero eigenvalues of matrix A do not coincide with the zeros of the communication

sequence characteristic polynomial g(µ),

• The pair (A, B) is controllable,

then the NCS is controllable. �

Notice once again that Theorem 6.1 establishes that if we have a controllable plant, a

processing unit µd
p and a suitable admissible periodic communication sequence, then the

resulting NCS will be controllable as well. However, the theorem does not address the

existence of such a sequence. Answering this question is one of the results of this chapter.

We start by noticing that if an admissible sequence is extended so that it remains ad-

missible, then the order of the resulting polynomials in (6.27) increases accordingly. Next,

6.2 Results 145

we concentrate on the effects to the roots of the corresponding polynomials. However,

before we provide some insight, notice that simple calculations yield

G(µ) = diag
(
P1(τ, µ), . . . ,Pmp(τ, µ)

)
where

Pi(τ, µ) = µτ−1
τ−1

∑
l=0

σi(l) + µτ−2
τ−1

∑
l=0

σi(l)
l+1

∏
j=l+1

(1− σi(j)) + · · ·

· · ·+ µ
τ−1

∑
l=0

σi(l)
l+τ−2

∏
j=l+1

(1− σi(j)) +
τ−1

∑
l=0

σi(l)
l+τ−1

∏
j=l+1

(1− σi(j))

for each i ∈ {1, . . . , mp}. Furthermore, note that the “minimum-length” communication

sequence is the standard basis for Rmp .

Before we proceed, let us we define the nth root of unity, where n ∈ N, as a z ∈ C

such that zn = 1; which is primitive if it is not kth root of unity for any k ∈ {1, . . . , n− 1}.
Now, to gain some insight into the effects of enlarging the length of an admissible com-

munication sequence in the way described above, we provide Table 6.1. One should no-

tice that the “minimum-length” communication sequence (first row) and communication

sequences formed by adding elements consisting only of zero values to the “minimum-

length” communication sequence (second, fourth and seventh row) have roots on a unit

circle. In fact, by adding (0, . . . , 0)’s to the “minimum-length” communication sequence,

for each i ∈ {1, . . . , mp}, we generate polynomials Pi(τ, µ) = ∑τ−1
j=0 µj. Such polynomials

have all roots on a unit circle. However, if n is an odd number, then the corresponding

polynomial will always have one root at −1. On the other hand, in the theory on cy-

clotomic polynomials, it is a well known fact that if n = p− 1 where p is an odd prime

number (any prime number other than 2 which is the unique even prime), then the roots

of the corresponding polynomial will correspond to the pth primitive roots of the unity

(see [175], page 306). More precisely ∑
p−1
j=0 µj = µp−1

µ−1 with all roots being distinct for each

such p.

Now, before stating our first extension of Theorem 6.1 we modify Definition 6.3 so

146 Controllability with respect to Scheduling

that it periodically provides indices provided in admissible communication sequence.

Definition 6.7 (APCστ). Consider R ∈ Z≥2 nodes competing for access to the network and the

network state vector xn = (xn1 , . . . , xnR). Given an admissible communication sequence στ, then:

• There exist δ > 0,

• r̄ ∈ {1, . . . , R} is an index of a nonzero element from στ at time instant l · k where l ∈
{0, . . . , τ} and k ∈N0,

• xnr(k) := ycr(k) + δ, ∀r ∈ {1, . . . , R}, r 6= r̄.

�

Theorem 6.2. Consider a NCS with a linear plant Σp, see (6.24), and a processing unit µd
p.

Let the network be governed by the TOD protocol and let it have APCστ . If the pair (A, B) is

controllable, then the NCS is controllable. �

Remark: Results in [52] implicitly require that condition from Lemma 6.3 is satisfied

(see (4) in [52]). This appears very restrictive unless special control sequences are consid-

ered for which appropriate devices exist; see Subsection 6.2.1. �

NCS architecture with linear plants and static devices

We recall that, at each time instant, processing unit µs
p applies the received value to the

addressed node and zero values to the remaining nodes. Thus, we are considering con-

trol sequences from the set SRm

S0
(xp), xp ∈ Rnp ; see Subsection 6.2.1. This means that the

requirement as in Lemma 6.3 is not needed, making the forthcoming results less restric-

tive than Theorems 6.1 and 6.2.

Corollary 6.1. Consider a NCS with a linear plant Σp, see (6.24), and a processing unit µs
p. Let

the corresponding network impose periodic scheduling with a given period τ. If

• A communication sequence στ is admissible,

• The nonzero eigenvalues of matrix A do not coincide with the zeros of the communication

sequence characteristic polynomial g(µ),

6.3 Proofs 147

• The pair (A, B) is controllable,

then the NCS remains controllable. �

Using the same ideas as in Theorem 6.2 we state

Corollary 6.2. Consider a NCS with a linear plant Σp, see (6.24), and a processing unit µs
p. Let

the corresponding network be governed by the TOD protocol and let it have APCστ If the pair

(A, B) is controllable, then the NCS is controllable. �

6.3 Proofs

Proof of Lemma 6.1. Let r̄ ∈ {1, . . . , R} be given. Then, according to APC, for all r ∈
{1, . . . , R}, r 6= r̄, xnr(k) := upr(k) + δ. It follows that the corresponding error vector (see

(6.5)) e(k) = (δ, . . . , δ, er̄(k), δ, . . . , δ) with er̄(k) = 0. Hence, according to TOD protocol

upr̄(k) is chosen for transmission.

Proof of Lemma 6.2. Consider any sequence from SRm

S0
(xp) and an element of the corre-

sponding sequence at time instant k ∈N0. According to APC0, an index r̄ ∈ {1, . . . , R} of

the nonzero element from the corresponding control vector u0(k) or any index otherwise

is picked and xnr(k) := u0
r (k) + δ, δ > 0, ∀r ∈ {1, . . . , R}, r 6= r̄. Correspondingly, the

error vector e(k) = (δ, . . . , δ, er̄(k), δ, . . . , δ) with er̄(k) = 0; for simplicity let r̄ be also the

index if all elements of the u0(k) are equal to zero. Hence, according to TOD u0
r̄ (k) is

chosen. Effectively, processing unit µs
p receives u0(k) and according to Fig. 6.2 and (6.9)

up(k) = yµs
p
(k) = u0(k), as desired.

Proof of Lemma 6.3. Consider {uδ}∞
0 ∈ SRm

Sδ
(xp) with xµd

p
(0) = uδ(0). Next, consider

uδ(k), k ∈ N. According to APCδ an index r̄ ∈ {1, . . . , R} of differing element between

uδ(k) and uδ(k− 1) or any index otherwise is picked and xnr(k) := uδ
r (k) + δ, δ > 0, ∀r ∈

{1, . . . , R}, r 6= r̄. Correspondingly, the error vector e(k) = (δ, . . . , δ, er̄(k), δ, . . . , δ) with

er̄(k) = 0; for simplicity let r̄ be also the index if uδ(k) = uδ(k− 1). Hence, according to

TOD protocol uδ
r̄ (k) is chosen for transmission. Finally, according to Fig. 6.2 and (6.16)

up(k) = yµd
p
(k) = uδ(k) as desired.

148 Controllability with respect to Scheduling

Proof of Theorem 6.2. Consider A ∈ Rnp×np and recall that for a given τ ∈ N, the polyno-

mial ∑τ−1
j=0 µj, indeterminate µ, has all roots on the unit circle. The corresponding matrix

either has no eigenvalues on the unit circle or finitely many. If A has no eigenvalues on

the unit circle, then τ ≥ np. Otherwise, there exists a finite number of odd prime num-

bers for which roots of the corresponding polynomial coincide with the eigenvalues of A.

However, since there are infinitely many odd prime numbers, there exists an odd prime

number τ for which roots of the corresponding polynomial do not coincide with the

eigenvalues of A. We proceed with adding (0, . . . , 0) elements to the “minimum-length”

communication sequence so that the resulting length of the new admissible communi-

cation sequence equals to τ. We denote this new sequence with στ. It follows that all

conditions of Theorem 6.1 are satisfied. Hence, the NCS is controllable. Now, according

to APCστ , at time instant l · k where l ∈ {0, . . . , τ} and k ∈ N0, the index r̄ ∈ {1, . . . , R}
is an index of a nonzero element from στ, and xnr(l · k) := ycr(lk) + δ, δ > 0, ∀r ∈
{1, . . . , R}, r 6= r̄. Correspondingly, the error vector e(l · k) = (δ, . . . , δ, er̄(lk), δ, . . . , δ)

with er̄(l · k) = 0. Hence, according to TOD, ycr̄(l · k) is chosen for transmission. Finally,

according to Fig. 6.2 and (6.16), up(l · k) = yµd
p
(l · k) = yc(l · k), as desired.

Proof of Corollary 6.1. The proof follows the same lines of the proof of Theorem 6.1 in [52].

Note that u(t) = diag(σc(t))u`(t) which impacts equations from (9) to (40) in the follow-

ing way Dc(·, ?) := diag
(
σc(·)

)
).

Proof of Corollary 6.2. The proof differs from the proof of Theorem 6.2 only in the fact that

instead of Theorem 6.1, Corollary 6.1 is used and in the last line instead of yµd
p
, yµs

p
is

used.

6.3 Proofs 149

τ
σ

w
G(

µ
)

{µ
:g

(µ
)
=

0}

2
{(

0,
1)

,(
1,

0)
}

[µ
+

1
0

0
µ
+

1

]
{−

1}

3
{(

0,
1)

,(
0,

0)
,(

1,
0)
}

[µ
2 +

µ
+

1
0

0
µ

2 +
µ
+

1

]
{−

0.
5
±

i0
.8

6}
3
{(

0,
1)

,(
0,

1)
,(

1,
0)
}

[µ
2 +

µ
+

1
0

0
2µ

2 +
µ

]
{−

0.
5,

0,
−

0.
5
±

i0
.8

6}

4
{(

0,
1)

,(
0,

0)
,(

0,
0)

,(
1,

0)
}

[µ
3 +

µ
2 +

µ
+

1
0

0
µ

3 +
µ

2 +
µ
+

1

]
{−

1,
±

i}
4
{(

0,
1)

,(
0,

1)
,(

0,
0)

,(
1,

0)
}

[µ
3 +

µ
2 +

µ
+

1
0

0
2µ

3 +
µ

2 +
µ

]
{−

1,
0,
±

i,
−

0.
25
±

i0
.6

6}
4
{(

0,
1)

,(
0,

1)
,(

0,
1)

,(
1,

0)
}

[µ
3 +

µ
2 +

µ
+

1
0

0
3µ

3 +
µ

2

]
{−

1,
−

0.
33

,0
,±

i}

5
{(

0,
1)

,(
0,

0)
,(

0,
0)

,(
0,

0)
,(

1,
0)
}

[µ
4 +

µ
3 +

µ
2 +

µ
+

1
0

0
µ

4 +
µ

3 +
µ

2 +
µ
+

1

] {
−

0.
81
±

i0
.5

6,
0.

31
±

i0
.9

5,
−

0.
62
±

i0
.5

1,
0.

37
±

i0
.8
}

5
{(

0,
1)

,(
0,

1)
,(

0,
0)

,(
0,

0)
,(

1,
0)
}

[µ
4 +

µ
3 +

µ
2 +

µ
+

1
0

0
2µ

4 +
µ

3 +
µ

2 +
µ

]
{0

,−
0.

74
,0

.1
2
±

i0
.8

1,
−

0.
62
±

i0
.5

,0
.3

7
±

i0
.8
}

5
{(

0,
1)

,(
0,

1)
,(

0,
1)

,(
0,

0)
,(

1,
0)
}

[µ
4 +

µ
3 +

µ
2 +

µ
+

1
0

0
3µ

4 +
µ

3 +
µ

2

]
{0

,−
0.

81
±

i0
.5

9,
0.

31
±

i0
.9

5,
−

0.
16
±

i0
.5

5}
5
{(

0,
1)

,(
0,

1)
,(

0,
1)

,(
0,

1)
,(

1,
0)
}

[µ
4 +

µ
3 +

µ
2 +

µ
+

1
0

0
4µ

4 +
µ

3

]
{0

,−
0.

25
,−

0.
81
±

i0
.5

9,
0.

31
±

i0
.9

6}

Ta
bl

e
6.

1:
C

om
m

un
ic

at
io

n
se

qu
en

ce
m

at
ri

x
po

ly
no

m
ia

ls
fo

r
di

ff
er

en
tp

er
io

di
c

se
qu

en
ce

s
an

d
ro

ot
s

of
th

e
co

rr
es

po
nd

in
g

po
ly

no
-

m
ia

ls
fo

ra
se

co
nd

or
de

re
d

sy
st

em
;p

er
m

ut
at

io
n

of
ad

de
d

el
em

en
ts

,a
dd

in
g
(1

,0
)

in
st

ea
d

of
(0

,1
),

or
ad

di
ng

bo
th

w
he

re
po

ss
ib

le
,

do
es

no
tg

en
er

at
e

ne
w

po
ly

no
m

ia
ls

.

This page intentionally left blank.

Chapter 7

Implementation

R esults we establish rely on the corresponding theoretical models and assumptions.

In order to demonstrate that our theoretical results hold in applications which

involve real hardware and also to provide a better insight into the theory through linking

models with the real NCS we implement the considered framework.

HIL simulation:
· Real-time
· Real hardware:
 · Control Area Network (CAN)

MPC CAN Overall
buffer

Linear
plant

Simulink toolboxes:
· MPC
· dSPACE RTICANMM
· Standard

Simulator ControlDesk Next Generation®

C Code

Packet dropouts Disturbance

...

Figure 7.1: Implementation as a Hardware-In-the-Loop (HIL) simulation.

More precisely, we implement the NCS architecture considered in Chapter 3 – Chap-

151

152 Implementation

ter 5 as the so-called Hardware-In-the-Loop (HIL) simulation using dSPACE® Simulator,

see Fig. 7.1. HIL simulation, as the name suggests, is a (real-time) simulation which in-

volves real hardware. In our case, the real hardware is a Control Area Network (CAN).

Furthermore, for all simulated parts, e.g., controller, buffer(s) and plant, the correspond-

ing C code is generated and downloaded to dSPACE® Simulator processor which com-

municates with CAN bus directly.

Besides validating theoretical results, the corresponding implementation has many

other benefits. For instance, many interesting problems can arise during this process

which can lead to interesting and important extensions of the theoretical questions. Fur-

thermore, this helps to deeper understand the corresponding intrinsic processes which

in turn can correct and/or change the initial theoretical approach or even lead to new

questions.

A widespread approach in the development of complex system, especially control

systems, such as an airplane, is to implement the corresponding system (or parts of it)

as a HIL simulation before the final production. Roughly speaking, HIL simulation is a

class of real-time simulations1 which involves real hardware, see [176]. There are many

reasons why HIL simulations are so omnipresent, spanning many fields such as the de-

velopment time, cost and safety. These simulations are the standard in industry and

many manufacturers are using them when developing their products, e.g., see [176] and

references therein.

In particular, our HIL simulation is implemented by using MATLAB® and Simulink®

software together with dSPACE® hardware - simulator (real CAN bus) and software -

ControlDesk Next Generation®, see Fig. 7.1. This implementation alone is one contribu-

tion of this chapter. Additionally, some interesting extensions and/or changes, such as

closing the whole loop via network and/or changing a network (to, say, FlexRay), are

relatively easy to do and the corresponding development time is relatively short. An-

other contribution of this chapter is the verification of the considered protocol and con-

troller co-design and the concept of using predictions within MPC framework to account

for packet dropouts and scheduling. More precisely, we demonstrate that our stability

1Notice that real-time simulations are a class of simulations in which the simulated system generates the
same, time-dependent, input and output signal values as the real system.

7.1 NCS architecture 153

result from Chapter 3 and our robustness result from Chapter 5 hold, albeit with deterio-

rated performance. Namely, during the process of implementation we encountered other

communication issues such as quantization and delay which revealed that some of our

assumptions might be unrealistic or strong for certain types of networks such as CAN

bus.

The rest of the chapter is organized as follows. First, in Section 7.1, we introduce the

considered NCS architecture. Then, in Section 7.2, we check if our stability and robust-

ness assumptions are satisfied. Due to the amount of the corresponding information in

Section 7.3 we present a conceptual outline of the implementation; the missing details

can be found in Appendix A. Finally, in Section 7.4 we present implementation results.

7.1 NCS architecture

The considered NCS architecture is introduced in Chapter 3, see Fig. 3.1 and in Chapter 5,

see Fig. 5.1. For the sake of a more fluid presentation, we depict the corresponding NCS

architecture (with slight modifications) once again, namely, see Fig. 7.2.

⌃p⌃p

⌃b1
⌃b1

⌃br
⌃br

⌃n⌃n⌃c⌃c

wnwn

(a, d)(a, d)

yn1
yn1

up1
up1

ynr
ynr

upr
upr

wpwp

...

(·, . . . , ·)(·, . . . , ·) ...
(·, ·)(·, ·)

xb

xp

(xp, xb) xb1

xbr

Figure 7.2: Implemented NCS architecture.

Notice, that unlike in Fig. 3.1 and Fig. 5.1, where we were general when it comes to

how the controller knows the contents of the buffers2, in Fig. 7.2 we explicitly illustrate

2Namely, we used ACK in the feedback to denote several possibilities, one being the usage of acknowl-
edgment of receipt.

154 Implementation

that we send buffer measurements together with plant measurements; notice that since

there is no network between plant/buffer(s) output and controller input, for implemen-

tation purposes, it was much simpler to send buffer(s) and plant measurements together.

In a similar fashion as in previous chapters, we proceed with the presentation of the

parts of the considered NCS architecture.

7.1.1 Plant

We restrict our attention to linear plants since MATLAB® offers an MPC toolbox which

we use to obtain an optimal node and its sequence of optimally predicted control values.

Moreover, we restrict our attention to second-order linear plants with two inputs since

two inputs are sufficient to show scheduling. Thus, the considered discrete-time plant is

given as

Σp : x+p = fp(xp, up, wp) := Axp + Bup + Wwp. (7.1)

where xp ∈ R2 is the state, up ∈ R2 is the input and wp ∈ R2 is the exogenous disturbance

of the plant while A ∈ R2×2, B ∈ R2×2 and W ∈ R2×2. In particular we consider

A =

1 1

0 1

 ,

B =

0 1
2

1 1
2

 ,

W =

1 0

0 1

 .



(7.2)

7.1.2 Network

The model of the network we use in Chapter 3 – Chapter 5 focuses only on two communi-

cation issues, namely, packet dropouts and scheduling. It is simple, general and it can cor-

respond to many types of networks (where other communication issues can be ignored);

7.1 NCS architecture 155

for instance, it can correspond to a network which uses all seven layers of OSI/ISO com-

munication model (see Fig. A.2 in Appendix A) and it can also correspond to a network

which uses only three layers such as a CAN bus (see Fig. A.4 in Appendix A). However,

in practical applications, usually other communication issues cannot be ignored. In our

case, CAN bus imposed delay and quantization which we did not addressed in our anal-

ysis and design. Thus, one of the reasons for the implementation was to test our analysis

and design (based on a general and yet simple network mode) an a real network.

As mentioned above we use CAN bus as a network in our NCS; please see Section A.2

in Appendix A for basic information about CAN that is relevant to the implementation.

As indicated in the previous paragraph, our network model is very simple and general

but it ignores some intrinsic network phenomena such as quantization, see Fig. 7.3, and

delay, see Fig. 7.4, which are present on CAN bus.

Sent sine signal

Received sine signal

Time [s]

Figure 7.3: Demonstrating quantization issues on CAN bus; here we use only one byte to
transmit the values of sine signal since we have to use one byte to transmit the values of
each control element from the sequence of the optimally predicted controls.

Due to the fact that our network model does not account for these communication

issues there are some consequences. Namely, the issue of quantization (see Fig. 7.3) re-

sults in deteriorated performance (e.g., practical stability) as documented in Section 7.4

or it can lead to instability due to control saturation, see Section A.3.2 in Appendix A.

On the other hand, the issue of delay (Fig. 7.4) was easily and successfully addressed

within MPC toolbox; namely input delays (recall that we only have network between

156 Implementation

Sent signal

Received signal

0,401 s

0,402 s

1 ms

Time [s]

Figure 7.4: Demonstrating delay on CAN bus.

controller’s output and plant’s inputs) for linear systems can be addressed by enlarging

the dimension of plant dynamics.

On the other hand, communication on CAN bus is a communication on demand,

which is based on event-driven bus access methods such as the CSMA/CA method (Car-

rier Sense Multiple Access with Collision Avoidance). Thus, as our network model en-

sures, we can manipulate which node gets the access which is needed for the used pro-

tocol and controller co-design to work. Further, data communication on CAN bus is

performed with the so-called frames, see Fig. A.3, and only eight bytes are allocated for

useful data. Notice that in our case this will put a restriction on the length of the predic-

tion horizon, see Section A.3.2, and result in quantization issue, see Fig. 7.3.

We note that packet dropouts are not common on CAN bus due to its design. Namely,

the risk of message collisions (e.g., packet dropouts) is countered with the priority-driven

CSMA/CA method, see Section A.2. Thus, we need to generate errors in communication

which can result in packet dropouts. We do this in two ways. Both ways are used in the

automotive industry. One approach is to write a customer-specific ”faulty” CRC (Cyclic

Redundancy Check), see Listing A.1 and Fig. A.14. This sequence, when received will

cause an error which will stop an ongoing communication. It should be noted that even

though this error is induced ”artificially”, everything is still occurring on the real hard-

ware (i.e., on the real CAN bus) and all corresponding responses are real, i.e., the abortion

7.1 NCS architecture 157

of an ongoing communication. Another, more straightforward approach is that during

experiment run-time we block a sender node for a certain amount of time (see Fig. A.14)

which results in packets not being received, i.e., effectively a packet dropout(s). For the

corresponding respond in the case of ”artificially” induced packet dropout (as described

above) see Fig 7.5

Sent sine signal
Received sine signal

Due to packet dropouts

Time [s]

Figure 7.5: The effects of generated packet dropouts.

Indeed, our results are more applicable to the cases where networks are more prone

to packet dropouts such as Ethernet or a wireless network and in future we will perform

experiments on these networks as well. However, as it will be shown in the sequel, the

results we already have are a good indication of what to expect and moreover we addi-

tionally have computer simulations which make the same predictions, see Section 5.2.3.

7.1.3 Buffer

The dynamics of the buffer remains the same, see Section 3.1.3 and/or Section 5.1.3. How-

ever, due to the fact that CAN frame has only eight bytes for useful data we set the

length of each individual buffer (there are two) to seven, i.e., L = 7; see a paragraph after

equation (3.12) and also see Section A.3.2. Also, notice that we leave one byte for CRC

check-sum computed in Listing A.1, which will be used to generate packet dropouts.

158 Implementation

7.1.4 Controller

As mentioned above, we chose linear plant (7.1) for implementation since MATLAB®

provides an MPC toolbox for linear plants. Recall that due to scheduling, effectively,

we need two MPC controllers, one for each plant input, see Section 3.1.4. Also, recall

that the length of the buffers corresponds to the length of horizon, hence, h = L = 7, see

Section A.3.2. Now, following the contents from Section 3.1, the corresponding derivation

for linear plant (7.1) is as follows.

From (3.25) it follows

Σm
p :


x̃p(k + i + 1) := Ax̃p(k + i) + Bũr

p(k + i),

x̃p(k) = xp(k), k ∈N0, i ∈ {0, . . . , h− 1}.
(7.3)

The overall shift matrix (see (3.21)) remains the same, namely

S := diag(Smp1
, . . . , SmpR

), (7.4)

Furthermore, from (3.26) it follows

ũr
p :=



Γm1 x̃b
...

Γmr−1 x̃b

ũpr

Γmr+1 x̃b
...

ΓmR x̃b


= Zr x̃b + Rrũp, (7.5)

where

7.1 NCS architecture 159

Zr =


Γm1

0m2

...

0mR

+ · · ·+



0m1

...

0mr−2

Γmr−1

0mr

...

0mR


+


0m1

...

0mR

+



0m1

...

0mr

Γmr+1

0mr+2

...

0mR


+ · · ·+


0m1

...

0mR−1

ΓmR

 , (7.6)

and

Rr =



0m1 · · · 0mr−1 0mr 0mr+1 · · · 0mR

...
...

0m1 · · · 0mr−1 Imr 0mr+1 · · · 0mR

...
...

0m1 · · · 0mr−1 0mr 0mr+1 · · · 0mR


. (7.7)

Buffer model (see (3.27)) is given as

Σm
b :


x̃+b := Sx̃b,

x̃b = xb.
(7.8)

Finally, the overall NCS model used in optimization (see (3.31)) becomes

x̃+ =

A 0

0 S

x̃p

x̃b

+

B

0

 ũp

=

A 0

0 S

x̃p

x̃b

+

BZr

0

 x̃b +

BRr

0

 ũp

=

A BZr

0 S

x̃p

x̃b

+

BRr

0

 ũp.

(7.9)

(Note that in our experiment R = 2.) The corresponding MATLAB® script is given in

160 Implementation

Listing A.2.

7.2 Assumptions

In what follows we provide some comments on the assumptions we made to establish our

stability and robustness results. Recall that our stability (UGAS) result, i.e., Lemma 3.1,

relies on Assumption 3.1 – Assumption 3.4, while our robustness (partial linear gain `2

stability) result, i.e., Corollary 5.1, relies on Assumption 5.1 – Assumption 5.8.

7.2.1 Stability – UGAS

Assumption 3.1 – Bound on the number of consecutive packet dropouts

As discussed in Section A.2, CAN bus is very reliable when it comes to packet dropouts.

This is due to the fact that it uses the priority-driven CSMA/CA method to address the

risk of message collisions (e.g., packet dropouts). In fact, packet dropout usually occurs to

low-priority packet (messages) when CAN bus is very loaded. Thus, this assumption is

satisfied. In order to test our results with respect to packet dropouts we create conditions,

as described in Section 7.1.2, which induce packet dropout(s). In fact, in Section 7.4 we

violate this assumption to demonstrate that our results hold even in this scenario.

Assumption 3.2 – Semi-positive definiteness and lower bounds on stage cost function

The cost function in MATLAB® MPC tool box is quadratic, thus, this assumption is satis-

fied.

Assumption 3.3 – Terminal control law

Due to linear plant dynamics of the corresponding MPC model, quadratic cost and un-

constrained optimization problem this assumption is satisfied; e.g., see [107].

7.2 Assumptions 161

Assumption 3.4 – Class-K bound on the optimal value function

Similarly as for Assumption 3.2, since the cost function is quadratic, Assumption 3.4 is

satisfied.

7.2.2 Robustness – Partial linear gain `2 stability

Assumption 5.1 – Continuity

Due to linear dynamics this assumption is satisfied.

Assumption 5.2 – Bound on the number of consecutive packet dropouts

The same comments apply as for Assumption 3.1 made above.

Assumption 5.3 – Semi-positive definiteness and lower bound on stage cost function

The same comments apply as for Assumption 3.2 made above.

Assumption 5.4 – Terminal control law

The same comments apply as for Assumption 3.3 made above.

Assumption 5.5 – Continuity of the optimal value function

Since plant dynamics is linear, cost function is quadratic and sets where state, input and

disturbance evolve are compact, this assumptions is satisfied.

Assumption 5.6 – Class-K bound on the optimal value function

The same comments apply as for Assumption 3.1 made above.

Assumption 5.7 – Bound on plant trajectories until fist successful transmission

Due to linear dynamics and Assumption 5.1, Assumption 5.7 is satisfied.

162 Implementation

Assumption 5.8 – Positive invariance (recursive feasibility)

Recursive feasibility is a peculiar property and its explicit consideration is left for future

work. However, for the implementation purposes, following the discussion given in [107]

after Assumption 3.9, we kept the disturbance small enough so that our Assumption 5.8

is satisfied; notice that the dynamics of our plant is linear, the cost function in MATLAB®

MPC tool box is quadratic and there are no constraints.

7.3 Implementation

As mentioned in the introduction above, due to the amount of the corresponding infor-

mation, we only provide a conceptual outline of the implementation and move all the

missing details to Appendix A. However, notice that even in Appendix A we do not in-

clude all the details since the complete amount of information is vast. Namely, in order

to include all the relevant details we would have to include extensive ”how-to” infor-

mation from several manuals and tutorials. Nonetheless, we provide the corresponding

references or, if possible, we filter the necessary amount of information. Succinctly, the

setup procedure includes the following steps:

1. Setting up dSPACE® simulator and establish working connection with the corre-

sponding workstation (e.g., a PC),

2. Choosing the plant you wish to control – see Section A.3.1,

3. Designing CAN structure using Vector Informatik® CANdb++ editor – see Sec-

tion A.3.2,

4. Making the corresponding physical connections that resemble the designed CAN

structure – see Section A.3.3,

5. Designing MPC controller using MATLAB® MPC toolbox – see Section A.3.4,

6. Designing the corresponding NCS model using Simulink®, generating the corre-

sponding C-code and downloading it onto dSPACE® simulator hardware – see Sec-

tion A.3.5,

7.3 Implementation 163

7. Designing the layouts in dSPACE® Control Desk New Generation which will cap-

ture the corresponding test results – see Section A.3.6 and Section 7.4 for the corre-

sponding results.

As mentioned in the introduction above, the implementation is done as a HIL simu-

lation. In particular, we use MATLAB® and Simulink® software together with dSPACE®

hardware - simulator (real CAN bus) and software - ControlDesk Next Generation® to

achieve this, i.e., see Fig. 7.1. Theoretically, the considered NCS is depicted in Fig. 7.1

while a conceptual MATLAB®-like counterpart, which takes into account the fact that

our plant has two inputs is depicted in Fig. 7.6.

We consider linear plant (7.1) which has two inputs. This means we will need two

MPC controllers and two buffers, each for one plant input. Each MPC controller will

compute a sequence of optimal control values for its plant input and provide this se-

quence to the CAN sender node along with the corresponding value of the optimal cost

function. Then, the values of the two optimal value functions are compared to determine

the minimal one and the corresponding signal (i.e., true or false) is provided to CAN

sender node. CAN sender node will use this signal to decide which sequence of opti-

mal control values to send; i.e., the one that corresponds to the optimal value function

with the minimal value. If transmission was successful (no dropout), the corresponding

CAN receiver node will provide this information along with the information that new

data arrived and the new data (i.e., the corresponding sequence of optimal control val-

ues). These ingredients are further used to update the corresponding buffer with new

data. On the other hand, the other CAN receiver node will provide information that no

new data arrived which is further used to inform buffer to keep using its current con-

tent. Similarly, in case of a packet dropout, the corresponding CAN receiver node would

provide this information which would inform buffer to keep using its current content.

Finally, buffer values are applied to plant input and plant state along with buffer state is

sent directly to the controller(s).

164 Implementation

Sender
node

Receiver
node 1

Receiver
node 2

MPC
1

MPC
2

Minimal
cost?

Cost 2Cost 1

Sequence 2Sequence 1

New
data?

New
data?Dropout? Dropout?

Update buffer
or keep using

current content?

Update buffer
or keep using

current content?

Buffer
1

Buffer
2

Data Data

Plant

MUX

MUX

CAN
(serial bus topology)

Figure 7.6: Conceptual illustration of the considered NCS in Simulink®.

7.4 Results

We use dSPACE® ControlDesk Next Generation® to run our HIL simulation and to cap-

ture the corresponding results, see Section A.3.6. First, we present the results when the

7.4 Results 165

plant is not affected with disturbances, i.e., our UGAS result (see Lemma 3.1). Then, we

present the results when the plant is affected with disturbances, i.e, our partial linear gain

`2 stability (see Corollary 5.1).

Stability – UGAS

We first present the scheduling of inputs up1 and up2 . As documented in Fig. 7.7 and

Fig. 7.8, the dynamics is such that scheduling only occurs in, roughly, first two seconds

and then input up2 takes over. Next, in Fig. 7.9, we present Euclidean norm of the plant

state, i.e.,

||xp||2L2
:= |xp1 |2 + |xp2 |2.

As indicated with Fig. 7.7 and Fig. 7.8, input up2 takes over. As mentioned earlier, we

generate packet dropouts as described in Section A.3.6. Recall, that if a packet dropout

occurs the corresponding buffer has to use the content from its memory. We capture this

in Fig. 7.10 and we show the corresponding Euclidean norm of plant state in Fig. 7.11.

As stated above, we are violating Assumption 3.1. This combined with the quantization

issues can be a reason why there is a considerable increase in the state norm for the

second set of packet dropouts in Fig. 7.11. Additionally, notice also the performance

deterioration in Fig. 7.9 due to quantization issues; see Section A.3.2.

up1

Time [s]

Figure 7.7: Stability: scheduling of input up1

166 Implementation

up2

Time [s]

Figure 7.8: Stability: scheduling of input up2

||xp||L2

Time [s]

Figure 7.9: Stability: Euclidean norm of plant state

Robustness – Partial linear gain `2 stability

Unlike for stability results, here we do not include scheduling results since they are al-

most identical in a sense that scheduling only occurs in first two seconds. Namely, again,

input up2 takes over. Here, in Fig. 7.12 we present Euclidean norm of plant disturbance

which is followed with an indication of packet dropouts through updating contents of

7.4 Results 167

Time [s]

Figure 7.10: Stability: indication of packet dropouts through updating contents of buffer
located before input up2

||xp||L2Due to packet dropouts

Time [s]

Figure 7.11: Stability: Euclidean norm of plant state due to packet dropouts

buffer located before input up2 in Fig. 7.13. Finally, in Fig. 7.14 we show the correspond-

ing plant response.

Similarly, as for stability results, and as indicated in Fig. 7.14, the performance is

slightly deteriorated due to quantization issues, see Section A.3.2.

168 Implementation

||wp||L2

Time [s]

Figure 7.12: Robustness: Euclidean norm of plant disturbance

Time [s]

Figure 7.13: Robustness: indication of packet dropouts through updating contents of
buffer located before input up2

7.4 Results 169

||xp||L2Due to packet dropouts

Time [s]

Figure 7.14: Robustness: Euclidean norm of plant state

This page intentionally left blank.

Chapter 8

Conclusion and future work

We focused on a specific NCS architecture. In particular, we considered only the case

where the network is located between the controller output and plant input, e.g., see

Fig. 2.5. Furthermore, we focused only on two network induced communication issues,

namely, the issue of scheduling and the issue of packet dropouts. We addressed these

communication constraints by carrying out a protocol and controller co-design, e.g., see

[30]. This co-design entails exploitation of the flexible architecture of NCSs which allows

for distributed computation and the usage of MPC framework.

We first investigated the stability property, more precisely, UGAS of the augmented

state of the plant and buffer state. This result is then extended to the case where the cor-

responding NCS is governed with an Economic MPC. The following investigation deals

with the robustness property where we establish several results. Namely, we establish

partial nonlinear and linear gain `2 stability, we recover and strengthen the main result

from [30], we provide an alternative robustness characterization of the NCS considered

in [31] and we establish ISS of the augmented state of the plant and buffer state. This is

followed by considering the controllability property where we introduce an interesting

model and we establish several results. Finally, we finish with the implementation in

which we confirm our stability and robustness expectations.

There are several very interesting future directions outlined in the sequel.

171

172 Conclusion and future work

8.1 NCS architecture

The most interesting future direction is to close the whole loop over the network, e.g.,

sending plant measurements over a network as well. Indeed, this would render the cur-

rent analysis and design much harder. For instance, notice that in order for an MPC

controller to operate ”well” it needs to have access to current plant measurements. Addi-

tionally placing a network between plant’s output and controller’s input would definitely

affect that. Thus, perhaps a different approach might have to be considered. Results and

insights documented in [21, 94] would definitely be used in the pursuit of extending our

results to a more general NCSs.

It would be interesting to replace buffers with devices with more processing power,

e.g., simple predictors. This would lead to true distributed computing which in the case

of closing the whole loop over the network, might be sufficient to still use MPC frame-

work.

Another future direction is consideration of NCS architecture in which a network is

only located between plant’s output and controller’s input. This architecture, if investi-

gated properly, can help in the case of closing the whole loop over the network. Moreover,

notice that even in this simpler case we would still encounter the issue of the availability

of the current plant measurements for an MPC controller.

8.2 Network

Another direction would be the consideration of richer network models. In particular,

inclusion of the network delays and the quantization issues in the presented framework.

As shown in the implementation section these two issues can not be avoided, at least

in the case of CAN bus. Indeed, input delays for linear systems can be addressed by

enlarging the dimension of plant dynamics and quantization can lead to practical stabil-

ity. However, an explicit investigation of these two additional issues within proposed

framework would lead to a more applicable result.

8.3 Analysis and design 173

8.3 Analysis and design

Here we have several directions. First direction could be establishing all results with re-

spect to output measurements (e.g., not full state measurements). Another one is explicit

investigation of recursive feasibility. At the moment we are assuming the necessary as-

sumptions that ensure it; e.g., see Assumption 5.8. Addressing this directly would make

the presented framework more attractive.

Applying stochastic tools to the presented framework for stability with respect to

packet dropouts and scheduling for standard MPC can be another direction. Recall that

dropouts are random and incorporating that via dropout averages instead of a finite up-

per bounds in the present analysis would be very interesting. Moreover, this would result

in a deeper understanding of the corresponding NCSs.

Another direction would be the relaxation of the assumptions presented in the ro-

bustness analysis. Note that we are using continuity assumption for the optimal value

function and relaxing that would be very useful since it would apply to a larger class of

systems.

Further, extending our stability results to Economic MPC with periodic terminal con-

straints and average constraints is another interesting directions. This is in fact very likely

to be materialized soon since we have done already a first step of extending our results

to the basic Economic MPC.

Finally, with respect to our controllability results, one future direction would consist

of including packet dropouts into the system.

8.4 Implementation

One direction would consist of developing necessary solvers for the corresponding op-

timization problems coming from MPC in the case of nonlinear plant dynamics. Note

that at the moment we are using an MPC toolbox provided by the MATLAB® which

either requires linear systems or linearizations of nonlinear ones. Another direction is

testing our stability and robustness results over FlexRay network which has much larger

payload which can lead to improved performance because of smaller impact of quanti-

174 Conclusion and future work

zation. Finally, testing our results over Ethernet and/or wireless network is yet another

future direction.

Appendix A

Implementation details

The necessary information related to implementation is provided. We begin by expand-

ing on HIL simulations mentioned in the introduction of Chapter 7. Then, we pro-

vide more information about CAN bus which is followed with a more detailed simu-

lation setup description. Finally, we finish by providing specific settings of CAN-related

Simulink® blocks, e.g., RTICANMM blocks.

A.1 Hardware-in-the-loop simulation

HIL simulations belong to a class of the real-time simulations, e.g., see [176]. Real-time

simulations are a class of simulations in which the simulated system generates the same,

time-dependent, input and output signal values as the real system.

Furthermore, real-time simulations usually imply that at least one part of the (overall)

simulated system is actually real. More precisely, it is the actual hardware. In fact, this

is why the other parts of the (overall) simulated systems must be simulated in real-time;

e.g., their input and output, time-dependent, signal values must correspond to their real

counterparts. Indeed, it is possible to completely simulate a system in the real-time, and

this is done in certain occasions.

Thus, HIL simulation is a real-time simulation in which at least one part of the (over-

all) simulated system is real, i.e., the actual hardware. In control engineering practice this

is usually the controller. However, there is really no strict rule which part of the overall

control system is real and which one is simulated in real-time. For instance if a control

system consists of a controller, a network, an actuator, a plant and a sensor, then, there

175

176 Implementation details

are 32 possible scenarios of which part is real and which one is simulated in real-time.

Of course, the cases where all parts are simulated or real, are not ”true” HIL simulations.

The former one is ”software-in-the-loop” simulation while the latter one is the actual

realization of the corresponding system.

HIL simulations have became a necessity when a complex system is being developed;

especially in control related areas such as transport (cars, areoplanes and ships), military

applications, space exploration and many others. There are many reasons why HIL sim-

ulations are so omnipresent, spanning many fields such as development time, cost and

safety. Some specific reasons are provided in the sequel:

• Design and testing of the control hardware and software without the need to oper-

ate the real system,

• Testing of the control hardware and software under extreme environmental condi-

tions,

• Testing of the effects of faults and failures of system’s components,

• Operating and testing of extreme and dangerous operating conditions,

• Reproducible experiments,

• Easy operation with different man-machine interfaces,

• Saving of cost and development time (one of the most important reasons).

For a more detailed exposition on HIL simulations we refer the reader to [176] and

references therein.

A.2 Control Area Network

Control Area Network (CAN) is a type of a much larger class of communication net-

works, namely, the serial bus. In particular, the serial bus is a communication channel

A.2 Control Area Network 177

010110
n0n0 n2n2 n4n4

n1n1 n3n3 n5n5

.

Figure A.1: Serial bus networking; node n· is an abstraction for a communication partici-
pant, e.g., a plant.

on which an information is communicated in a form of bit-serial exchange of the corre-

sponding data; e.g, this is a process of sequentially transmitting the corresponding data

one bit at a time, see Fig. A.1.

There is an extensive literature on CAN, for instance, see [177, 178] and references

therein or on-line resources, such as the ones provided by Vector Informatik®; cross-

referencing Vector Informatik with CAN in Google® search engine will result in the cor-

responding resources. In fact, in the sequel, we use the corresponding on-line resources

(https://elearning.vector.com/vl_index_en.html) to provide the basic in-

formation about CAN. So, let us begin.

In the year 1983, the International Standardization Organization (ISO) standardized

the implementation of a serial data communication process with the Open System Inter-

connection (OSI) communication model, see Fig. A.2. We notice that including all detail

about the OSI 7 layer communication model is not necessary for our purposes; however,

those interested in the details can start by consulting [177, 178] and references therein.

For our purposes, we borrow an illustration provided by Vector Informatik® which suc-

cinctly captures the basic principles of communication between two 7-layer nodes (in a

Peer-to-Peer communication fashion).

As illustrated in Fig. A.3, layer 2 - layer 7, in the sender node, adds an extra informa-

tion (e.g., PCI - x, x ∈ {2, . . . , 7}) to the actual data (i.e., Payload), which forms the data

frame that is sent over a physical transmission medium. Notice that addition of this extra

data enables a layer in the sender node to communicate with the corresponding layer in

178 Implementation details

Layer Data unit Function

1. Physical

2. Data link

3. Network

4. Transport

5. Session

6. Presentation

7. Application

Bit

Bit/Frame

Packet/
Datagram

Segments

Data

Transmission and reception of raw bit streams
over a physical medium…

Reliable transmission of data frames between
two nodes connected by a physical layer…

Structuring and managing a multi-node
network, including addressing, routing and
traffic control…

Reliable transmission of data segments between
points on a network, including segmentation,
acknowledgement and multiplexing…

Managing communication sessions, i.e.
continuous exchange of information in the form
of multiple back-and-forth transmissions…

Translation of data between a networking
service and an application; e.g., data
compression, encryption/decryption…

High-level application programming interface,
including resource sharing, remote file access,
directory services and virtual terminals…

Figure A.2: OSI 7 layer communication model.

the receiver node; e.g., layer 3 in sender node communicates with layer 3 in receiver node.

A detailed description of the latter procedure can be found, for instance, in [177, 178].

Since we concentrate on CAN, we need mention that it does not uses all 7 layers

to communicate but 3. In particular, it uses Data Link Layer and the Physical Layer

while the functions of unconsidered layers are usually assigned to Application Layer, see

Fig. A.4.

Before presenting relevant information about CAN let us acknowledge that it was a

result of the research initiated by Bosch® in the year 1983 to develop a communication

system tailored for the automotive industry. Now, the most important resource in se-

rial bus communication is the access to the bus. In CAN, all nodes have equal access

to the bus rights or the corresponding interaction between the nodes is said to be the

A.2 Control Area Network 179

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

ApplicationPayload

PCI-7Payload

PCI-7Payload PCI-6

PCI-7Payload PCI-6 PCI-5

PCI-7Payload PCI-6 PCI-5 PCI-4

PCI-7Payload PCI-6 PCI-5 PCI-4

PCI-7Payload PCI-6 PCI-5 PCI-4

PCI-3

PCI-3 PCI-2

PDU-7

PDU-6

PDU-5

PDU-4

PDU-3

PDU-2

Frame

7Application

6Presentation

5Session

4Transport

3Network

2Data Link

1Physical

Application Payload

PCI-7 Payload

PCI-7 PayloadPCI-6

PCI-7 PayloadPCI-6PCI-5

PCI-7 PayloadPCI-6PCI-5PCI-4

PCI-7 PayloadPCI-6PCI-5PCI-4

PCI-7 PayloadPCI-6PCI-5PCI-4

PCI-3

PCI-3PCI-2

PDU-7

PDU-6

PDU-5

PDU-4

PDU-3

PDU-2

Frame

Physical transmission medium

Sender Recevier

Figure A.3: Basic communication principles in OSI 7 layer communication model; PCI -
Protocol Control Information, PDU - Protocol Data Unit.

Layer Function

1. Physical

2. Data Link

7. Application

Description of the physical bus
interface and conventions for
physical signal transmission…

Addressing, message building
(Framing), bus access,
synchronisation, error detection
and error correction…

Functions of unconsidered layers…

Figure A.4: Three Layer model.

180 Implementation details

Multi-Master Interaction; e.g., each node is a master as opposed to a slave in the Master-

Slave Interaction which needs the permission from a master to access the communica-

tion medium. This is prerequisite for implementing communication on demand which

is based on event-driven bus access methods such as the CSMA/CA method (Carrier

Sense Multiple Access with Collision Avoidance). The central aspect of serial bus systems

with demand-based interaction is that any bus node can access the common transmission

medium at any time. Unfortunately, with increasing bus loads the risk of message colli-

sions increases. In CAN this risk is countered by the priority-driven CSMA/CA method.

However, this method does not prevent delays in transmission of low priority messages

with increasing bus loads, and in the worst case scenario they may be blocked.

Physically, all communication participants (e.g., bus nodes) are connected passively

to a common transmission medium (bus). This means that all data reaches all bus nodes,

making a serial bus topology implicitly a diffusion network or a broadcast system. Signif-

icant advantage of this topology is that it permits any desired logical interaction structure

but, unfortunately, its bus length and number of bus nodes are limited. Moreover, long

electrical lines must be terminated by a so-called ”characteristic impedance” to prevent

signal reflections at the line ends. Also, note that a break in the transmission medium

prevents further communication; see Fig. A.1.

Data communication in a serial bus system is performed by so-called frames. As

indicated in Fig. A.3, the frame (message), besides containing the actual useful data (Pay-

load), also contains other information (e.g., PCI - ·). This exta information is used to:

produce a unique assignment between the useful data and the bus node (e.g., address-

ing); provide communication partners with information for synchronization; and pro-

vide information for protecting the useful data. Let us borrow the exposition from Vector

Informatik® on-line resources on a data frame that is used for data transmission in CAN,

see Fig. A.5. Namely, the data frame begins with a synchronization bit, the so-called start

bit (Start Of Frame - SOF). This is followed by the frame’s Identifier. The next bit, the RTR

bit (Remote Transmission Request), indicates the frame type (Data or Remote frame). The

sender uses the IDE bit (Identifier Extension) that follows to indicate the frame format

(standard or extended format); in standard format the identifier comprises 11 bits, while

A.2 Control Area Network 181

in extended format it is made up of 29 bits. This is followed by the DLC (Data Length

Code), which indicates the number of useful bytes. Only then does the data field begin,

which comprises a maximum of eight useful bytes. Next there is the CRC (Cyclic Redun-

dancy Check) sequence that is used to protect all information and useful data. Before

the terminating EOF (End Of Frame) symbol there is the ACK field (Acknowledgement).

Before proceeding with the information on bus access let us emphasize that there is only

eight useful bytes for the actual (useful) data; in our case this will lead to quantization

issues since we are sending a sequence of control values.

3bit7bit1bit1bit1bit15bit64bit4bit1bit1bit1bit11bit1bit
Bus
Idle

Bus
Idle

CAN Data Frame

Arbitration
Field

Control
Field

CRC
Field

ACK
Field

SOF

Identifier

RTR

IDE

r

DLC

Data
Field

CRC
Sequence

DEL

ACK

DEL

EOF

ITM

Figure A.5: CAN data framing.

As mentioned above, all CAN nodes have equal rights. Thus, the right to bus access

in CAN is not pre-determined which makes possible to grant each and every bus node

access to the bus as needed. This induces the probabilistic nature to the corresponding

bus access method. The unpredictability of bus access increases the risk of collisions with

increasing bus load. Such problems may be alleviated by various approaches such as the

CSMA/CA method. To prevent an ongoing data transmission from being destroyed, bus

nodes wishing to send must sample the bus before accessing it (Carrier Sense). A node

may only send if the bus is idle.

Bus access by the CSMA/CA method enables very quick reactions to events. How-

ever, it still suffers the fundamental risk that multiple bus nodes might wish to access

the bus at the same time. This on the other hand can result in collisions. To prevent

182 Implementation details

Frame X Frame A Frame BITM ITM ITM

1

2

Carrier Sense

Carrier Sense Carrier Sense

3 4

CAN Bus
Node A

Node B

Frame A
(High Priority)

Frame B
(Low Priority)

4

3

2

1

Event

After ITM expires the Bus becomes idle and Node B is granted the access to transmit
its message (Frame B).

After ITM expires the Bus becomes idle and Node A is granted the access since its
message (Frame A) has higher priority; Node B waits for the Bus to be idle again.

Node B wants to access the Bus but because it is busy Node B has to wait for ITM to
expire, hence, Node B monitors (Carrier Sense) the Bus to detect this.

Node A wants to access the Bus but because it is busy Node A has to wait for ITM to
expire, hence, Node A monitors (Carrier Sense) the Bus to detect this.

Description

Figure A.6: Principle of CAN bus access; ITM - Intermission.

collisions, to each message a corresponding priority is assigned. Then, with simultane-

ous bus accesses, the CSMA/CA method employs bitwise bus arbitration to ensures that

the bus node with the highest priority frame obtains bus access. Roughly speaking, the

higher the priority of a frame, the sooner the frame can be transmitted on the bus. The

node losing arbitration makes another attempt to access the bus as soon as the bus be-

comes available again, see Fig. A.6. Note that if the bus load is not too high, this type

of random, nondestructive and priority-driven bus access offers fair and quick bus ac-

cess. However, low-priority frames are delayed with increasing bus load. In the worst

case scenario, this can lead to lack of real-time capability. Moreover, in the case of poor

system design, there is even a risk that low-priority frames might are be transmitted.

We finish with a note on data protection. One of the most effective physical data

protection measures is symmetrical signal transmission over a twisted pair line. On the

other hand, logical data protection is based on five error detection mechanisms: send-

ing CAN nodes compare each sent bit level with the actual bus level (bus monitoring);

A.3 Simulation setup 183

they also evaluate the acknowledgments of the CAN nodes (ACK check); receiving CAN

nodes check each data frame for accuracy based on the arriving CRC sequence (Cyclic

Redundancy Check); they then inform the sender of the results in the form of a positive

or negative acknowledgment; finally, receivers check the specified format (Form check)

and conformance to the bit stuffing rule (Stuff check). As soon as a CAN node discovers

a transmission error, it stops transmitting data and immediately transmits an error signal

(error flag). This causes all CAN nodes to detect a bit stuffing error. Data consistency is

assured, because all CAN nodes then abort the data transmission with an error flag. As

soon as the CAN bus is available again, the sender repeats the aborted data frame.

We remind the reader that we have omitted a considerable amount of information

about serial bus and CAN since we believe its inclusion would considerably distract the

reader; for those who wish to learn more about the missing topics please see, for instance,

see [177, 178] and references therein and many on-line resources provided by manufac-

tures of related hardware and software, e.g., Vector Informatik®, dSPACE®, etc.

A.3 Simulation setup

As mentioned in Section 7.3, we include only some parts related to implementation (HIL

simulation) setup. Recall that we take this approach since inclusion of all the details

would require to include extensive information from several help and guide manuals

form different companies; i.e., MathWorks® (MATLAB®, Simulink®, MPC toolbox, etc.),

dSPACE® (hardware, Simulink® RTICANMM toolbox, ControlDesk Next Generation®)

and Vector Informatik® (CANdb++ editor). As outlined in Section 7.3, the setup proce-

dure includes:

1. Setting up dSPACE® simulator and establish working connection with the corre-

sponding workstation (e.g., a PC),

2. Choosing the plant you wish to control,

3. Designing CAN structure using Vector Informatik® CANdb++ editor,

184 Implementation details

4. Making the corresponding physical connections that resemble the designed CAN

structure,

5. Designing MPC controller using MATLAB® MPC toolbox,

6. Designing the corresponding NCS model using Simulink®, generating the corre-

sponding C-code and downloading it onto dSPACE® simulator hardware,

7. Designing the layouts in dSPACE® ControlDesk Next Generation which will cap-

ture the corresponding test results and running the tests.

Except for the first item we will expand upon the rest further in the sequel. The reason

we omit providing more detail on the first item is because hardware setting up (e.g.,

installing and interconnecting the corresponding boards within dSPACE® Simulator) was

done by employees from dSPACE®. Furthermore, installing the corresponding software

and interconnecting dSPACE® Simulator with a working station (i.e., a PC) is described

in the corresponding dSPACE® manuals.

A.3.1 Considered plant

As mentioned in Section 7.1.1, we restrict our attention to linear plants (7.1) because

MATLAB® provides an MPC toolbox which ca be used to design the corresponding MPC

controller.

A.3.2 Designing CAN structure

We consider a plant with two inputs which means we will need two CAN nodes which

will receive the corresponding messages. Furthermore, due to scheduling only one plant

input can be accessed at each time instant which means we only need one CAN node

which will send the corresponding control values. So, we have two receiver CAN nodes

corresponding to plant inputs and one sender CAN node corresponding to controller

output. For the sake of simplicity, we will not add more nodes to the CAN structure.

One of the software packages that can be used to design CAN structure is Vector

Informatik® CANdb++ editor, see Fig. A.7.

A.3 Simulation setup 185

Figure A.7: CAN structure designed in Vector Informatik® CANdb++ editor

As captured in Fig. A.7, we added three nodes. Node ”InpNtw” is the node used

for transmitting the sequence of control values, while nodes ”Otp1” and ”Otp2” are

nodes used for receiving the corresponding sequence. Further, we created two messages

”Mss 1” and ”Mss 2” which will (depending on scheduling) be sent by node ”InpNtw”

to nodes ”Otp1” and ”Otp2”, respectively.

Now, recall that CAN message (frame) has only eight bytes of useful data. In this soft-

186 Implementation details

ware package one exploits this resource via ”Signals”. We have decided to dedicate first

seven bytes for control values while the last byte is needed for CRC-checksum results, see

the corresponding algorithm code in Listing A.1; notice that this is a template provided

by dSPACE® which is accordingly modified. We have eight signals in each message, e.g.,

Sgn 1 0” to ”Sgn 1 7”, ”Sgn 1 CRC” in message ”Mss 1” and ”Sgn 2 0” to ”Sgn 2 7”,

”Sgn 2 CRC” in message ”Mss 2”. First seven correspond to control values and the last

one is used in CRC .

Listing A.1: CRC-checksum code

/***/

/* Automatic generated File from RTI CAN MultiMessage Blockset: */

// CRC.h */

/* INPUT PARAMETER(S) */

/* (1) option : crc / crccheck */

/* 0: TX (calculate) */

/* 1: RX (check) */

/* (2) Pointer to MsgData */

/* (3) Index of CRC see array in rticanmm_customer */

/* (4) StartBit of ChecksumSignal */

/* (5) Length of ChecksumSignal */

/* */

/* OUTPUT PARAMETER(S) */

/* (1) crccheck (RX) */

/* DESCRIPTION: */

/* defines customer-specific CRCs */

/* AUTHOR(S): */

/* generated by dSPACE(R) RTICANMM */

/* ***/

static UInt8 rticanmmcrc(int crcoption, RTICANMMMsgStruct* Msg,

int crctype, int CsBitPos, int CsLength)

{

UInt32 crc = 0;

UInt8 CRCResult = 0;

A.3 Simulation setup 187

int i=0;

int BytePos=0;

// Msg_Length = Msg->len;

// Id = Msg->identifier;

switch (crctype)

{

case 1: // CRConByte7

case 2: // CRConByte7_false

BytePos=7;

break;

}

/* CRC calculation */

for (i = 0; i<Msg->len; i++)

{

if(i != BytePos) /* exclude crc byte */

crc = 0xFF & (crc + Msg->RAW_DATA[i]);

}

switch(crctype) {

case 1:{ //CRConByte7

// Your CRC-Calculation here: Example:

crc = 0xFF & crc;

}; break;

case 2:{ //CRConByte7_false

// Your CRC-Calculation here: Example:

crc = 0xFF & (crc + 1);

if(crc > 254)

{

188 Implementation details

crc = 0;

}

}; break;

default: {return(1);}

}

CRCResult = (UInt8)(crc);

if(crcoption==0){

// Return of CRC (TX)

Msg->RAW_DATA[BytePos]=CRCResult;

return(0);

}

else{

// Return of CRC-Check (RX)

return (Msg->RAW_DATA[BytePos]!=CRCResult);

}

}

Due to data types (e.g., Signed, Unsigned, Float, Double etc.) and the needed cor-

responding number of bytes, the seven bytes we were left with gave us few options to

choose from. Note that, for instance, the range for Signed (Factor 1, Offset 0) is −128 to

127 and one needs only one byte. On the other hand, for instance, the range for Double

is −1.7 · 10308 to 1.7 · 10308 (precision of 15 decimal places) and one needs eight bytes. So,

in order to have the longest MPC horizon possible, we have decided to represent with

each byte one control value. Note that this upper bounded MPC horizons with seven.

Then, we chose the Value Type to be Singed, the Factor of 0.1 and the Offset of 0.001 giv-

ing us the range with the minimum value −12.799 and the maximum value 12.701. This

induces the issue of quantization which in turn induces the issue of saturation, which

is not accounted for theoretically. However, when control values are within the range

where saturation does not occur, i.e., between −12.799 and 12.701, the results are still

relatively good which is promising and it motivates one to consider the issue of quanti-

A.3 Simulation setup 189

zation explicitly within the considered framework; e.g., perhaps adaptive quantization is

a promising direction to mitigate the effects of quantization.

Indeed, our results were tailored for networks which have more useful data like

FlexRay or Ethernet network. However, testing on CAN revealed the effects of quan-

tization issues which can lead to instability. As stated above, this provides additional

incentives for considering this issue directly in future work.

A.3.3 Physical realization of CAN structure

Within dSPACE® Simulator there are eight CAN boards. Each board provides four CAN

channels (nodes), see Fig. A.8. Since we need only three nodes, one CAN board is used.

CAN
Boards

Figure A.8: dSPACE® Simulator - back view.

Each CAN node (channel) has 9 pins, see [179]. Generally, in order to establish serial

bus topology one really needs to be careful which pins have to be connected and how.

However, since we will not connect a real plant (i.e., the corresponding sensors) nor an

actuator, establishing the serial bus topology, see Fig. A.1, simplifies. In particular, it

translates to connecting all CAN High pins together and all CAN Low pins together, see

Fig. A.9.

A.3.4 Designing MPC controller(s)

Mathematical derivations are provided in Section 7.1.4 and here we only provide the

corresponding MATLAB® script code. Notice that we use ”InputDelay” when defining

190 Implementation details

Sending
node

Receiving
nodes

Serial bus
topology

Sending
node

Receiving
node

Receiving
node

CAN_HighCAN_Low

Figure A.9: Physical connections resembling the designed CAN connection structure.

plant models. This is yet another benefit of implementation. Namely, we did not consider

delay that network induces but it cannot be avoided. Luckily, it was easy to include the

corresponding delay and address it successfully in MPC toolbox. A detailed investigation

of the issue of delay within the considered protocol and control co-design is left for future

work.

Listing A.2: MATLAB® script code

%% MPC controllers

% Clear MATLAB workspace and terminal

clear all

clc

% Plant matrices

A = [1., 1.; .0, 1.];

B = [.0, .5; 1., .5];

C = eye(2);

D = zeros(2);

W = eye(2);

% Shift matrix (note that buffer length is 7)

S = [diag([1 1 1 1 1 1], 1.), zeros(7); zeros(7), diag([1 1 1 1 1 1], 1.)];

% Matrices used in MPC model for first plant input, i.e., MPC1

A.3 Simulation setup 191

Z_u1 = [zeros(1, 14); zeros(1, 7) 1. zeros(1, 6)];

R_u1 = [1. .0; .0 .0];

A_u1 = [A, B*Z_u1; zeros([14, 2]), S];

B_u1 = [B*R_u1; zeros(14,2)];

C_u1 = eye(16);

D_u1 = zeros(16, 2);

% Plant model for MPC1

Model_u1 = ss(A_u1, B_u1, C_u1, D_u1, 0.001, 'InputDelay', [1; 1]);

% Matrices used in MPC model for second plant input, i.e., MPC2

Z_u2 = [1. zeros(1, 13); zeros(1, 14)];

R_u2 = [.0 .0; .0 1.];

A_u2 = [A, B*Z_u2; zeros([14, 2]), S];

B_u2 = [B*R_u2; zeros(14,2)];

C_u2 = eye(16);

D_u2 = zeros(16, 2);

% Plant model for MPC2

Model_u2 = ss(A_u2, B_u2, C_u2, D_u2, 0.001, 'InputDelay', [1; 1]);

% Setting MPC data

% Sampling time

Ts = 0.001;

% Horizon

p=7;

% Length of output sequence

m=7;

% MPC controllers

% MPC1

MPC_u1 = mpc(Model_u1, Ts, p, m);

% MPC2

MPC_u2 = mpc(Model_u2, Ts, p, m);

192 Implementation details

A.3.5 NCS model

The conceptual diagram is provided in Fig. 7.6. The corresponding Simulink® model that

captures this concept is given in Fig. A.10 while in Fig. A.11 we provide other sub-models

custom-made using standard Simulink® blocks. Note that standard Simulink® blocks are

thoroughly covered in the corresponding MATLAB® help and user guide manuals (read-

ily available either within MATLAB® software package or as a free on-line resource).

Thus, we will omit the details on how sub-models in Fig. A.11 are generated and how

they work. Similarly, network related blocks, namely RTICANMM blocks (see Fig. A.12),

are exceptionally covered in [180]. Due to the volume of the corresponding material and

complexity, in the sequel, we only provide screen-shots capturing settings of used RTI-

CANMM blocks, see Section A.4; notice, we provide only setting that differ from default

ones. Notice that generating the corresponding C-code is done within Simulink®. Once

the code is generated it is automatically downloaded onto dSPACE® simulator hardware

because the of item one of our setup procedure.

MPC

Sequence 1

Sequence 2

Minimal value?

Network

Buffer(s)Plant

CAN sender
node

CAN receiver
node 1

CAN receiver
node 2

Received data

Actual buffer

New data?

Dropout?

Update content?

Figure A.10: Simulink® model of the implementation of the corresponding NCS.

A.3 Simulation setup 193

Figure A.11: Other custom made Simulink® sub-models.

Figure A.12: dSPACE® RTICANMM Simulink® blockset.

A.3.6 ControlDesk Next Generation®

We only provide a screen-shot of a layout in ControlDesk New Generation®, namely,

see Fig. A.13. Creating the needed layouts is quite easy and the ”how-to” is covered

194 Implementation details

in the corresponding ControlDesk New Generation® help manuals (available within the

software package).

Figure A.13: dSPACE® ControlDesk New Generation®.

As indicated in Section 7.1.2, CAN bus uses a priority-driven CSMA/CA method to

avoid packet dropouts (e.g., packet collisions). Since in our case only one node trans-

mits a message, packet dropout is very unlikely to occur. Thus, we need to generate

signals which when detected on real CAN bus hardware result in abortion of communi-

cation, e.g., packet dropout. Usual practice in automotive industry, see [180], is to write a

”faulty” CRC algorithm which creates an incorrect checksum which receiving node rec-

ognizes as an error in communication, i.e., communication is aborted which is effectively

a packet dropout (e.g., our buffer has to use values from its memory). The corresponding

manipulation of the CRC algorithm is provided in Listing A.1. Moreover, we also pro-

vide a ControlDesk Next Generation® layout in which we choose this ”faulty” CRC to be

sent for certain amount of time, see Fig. A.14. Another method is much simpler, namely,

during experiment run-time one blocks (”time-out”) a sender node for a certain amount

of time which results in packets not being received, i.e., effectively a packet dropout(s);

A.4 Specific settings of RTICANMM blocks 195

see Fig. A.14.

 Picking “faulty” CRC

Determining for how long
“faulty” CRC will be sent

Determining for how long will a sender node be blocked

Figure A.14: Generating communication errors and/or misbehaviors which are effec-
tively packet dropouts.

A.4 Specific settings of RTICANMM blocks

196 Implementation details

(a) RTI CAN Multi Message general setup.
(b) RTI CAN Multi Message controller
setup for a sender node.

Figure A.15: Specific settings of RTICANMM blocks

(a) RTI CAN Multi Message controller
setup for receiver node 1 (e.g., plant input
1).

(b) RTI CAN Multi Message controller
setup for receiver node 2 (e.g., plant input
2.

Figure A.16: Specific settings of RTICANMM blocks

A.4 Specific settings of RTICANMM blocks 197

(a) RTI CAN Multi Message TX message(s)
for a sender node.

(b) RTI CAN Multi Message RX message(s)
for a sender node.

Figure A.17: Specific settings of RTICANMM blocks

(a) RTI CAN Multi Message message ma-
nipulations for a sender node.

(b) RTI CAN Multi Message general set-
tings for a sender node.

Figure A.18: Specific settings of RTICANMM blocks

(a) RTI CAN Multi Message message trig-
gering for a sender node.

(b) RTI CAN Multi Message cycle time for
a sender node.

Figure A.19: Specific settings of RTICANMM blocks

198 Implementation details

(a) RTI CAN Multi Message triggering
mapping for a sender node.

(b) RTI CAN Multi Message TX signals for
a sender node.

Figure A.20: Specific settings of RTICANMM blocks

(a) RTI CAN Multi Message RX signals for
a sender node.

(b) RTI CAN Multi Message TX signal map-
pings for a a sender node.

Figure A.21: Specific settings of RTICANMM blocks

(a) RTI CAN Multi Message checksum
messages for a sender node.

(b) RTI CAN Multi Message checksum def-
inition for a sender node.

Figure A.22: Specific settings of RTICANMM blocks

A.4 Specific settings of RTICANMM blocks 199

(a) RTI CAN Multi Message general set-
tings for a receiver node (note that only dif-
ference between two receiver nodes with
respect to settings is in the corresponding
index, i.e., 1 or 2.).

(b) RTI CAN Multi Message TX messages
for a receiver node.

Figure A.23: Specific settings of RTICANMM blocks

(a) RTI CAN Multi Message RX messages
for a receiver node.

(b) RTI CAN Multi Message RX status time
ports for a receiver node.

Figure A.24: Specific settings of RTICANMM blocks

(a) RTI CAN Multi Message RX error ports
for a receiver node.

(b) RTI CAN Multi Message RX error dis-
play for a receiver node.

Figure A.25: Specific settings of RTICANMM blocks

200 Implementation details

(a) RTI CAN Multi Message checksum
messages for a receiver node.

(b) RTI CAN Multi Message checksum def-
inition for a receiver node.

Figure A.26: Specific settings of RTICANMM blocks

(a) RTI CAN Multi Message TX signals for
a receiver node.

(b) RTI CAN Multi Message RX signals for
a receiver node.

Figure A.27: Specific settings of RTICANMM blocks

Bibliography

[1] W. Rudin, Principles of mathematical analysis. McGraw-Hill New York, 1976, vol. 3.

[2] D. Nešić, A. R. Teel, and E. D. Sontag, “Formulas relating KL stability estimates

of discrete-time and sampled-data nonlinear systems,” Systems and Control Letters,

vol. 38, no. 1, pp. 49–60, 1999.

[3] E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems.,

2nd ed., ser. Textbooks in Applied Mathematics, Number 6. Springer, 1998.

[4] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control system design. Prentice

Hall New Jersey, 2001, vol. 240.

[5] K. J. Aström and R. M. Murray, Feedback systems: an introduction for scientists and

engineers. Princeton university press, 2010.

[6] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback control of dynamic sys-

tems, 6th ed. Pearson Education, 2009.

[7] S. P. Boyd, C. H. Barratt, S. P. Boyd, and S. P. Boyd, Linear controller design: limits of

performance. Prentice Hall Englewood Cliffs, NJ, 1991.

[8] O. Katsuhiko, Modern control engineering, 4th ed. Aeeizh, 2010.

[9] Y.-B. Zhao, G.-P. Liu, and D. Rees, “Actively compensating for data packet disorder

in networked control systems,” Circuits and Systems II: Express Briefs, IEEE Transac-

tions on, vol. 57, no. 11, pp. 913–917, Nov 2010.

201

202 BIBLIOGRAPHY

[10] Y. Tipsuwan and M.-Y. Chow, “Control methodologies in networked control sys-

tems,” Control Engineering Practice, vol. 11, no. 10, pp. 1099 – 1111, 2003, special

Section on Control Methods for Telecommunication.

[11] T. Yang, “Networked control system: a brief survey,” IEE Proceedings - Control The-

ory and Applications, vol. 153, pp. 403–412(9), July 2006.

[12] J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in networked

control systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 138–162, Jan 2007.

[13] R. Gupta and M.-Y. Chow, “Networked control system: Overview and research

trends,” Industrial Electronics, IEEE Transactions on, vol. 57, no. 7, pp. 2527–2535,

July 2010.

[14] Z. Lixian, G. Huijun, and O. Kaynak, “A survey of network-induced constraints

in networked control systems,” Industrial Informatics, IEEE Transactions on, vol. 9,

no. 1, pp. 403–416, Feb 2013.

[15] R. M. Murray, Ed., Control in an Information Rich World. Society for Industrial and

Applied Mathematics, 2003. [Online]. Available: http://epubs.siam.org/doi/abs/

10.1137/1.9780898718010

[16] T. Samad and A. M. E. Annaswamy, “The impact of control technology,” IEEE Con-

trol Systems Society, Tech. Rep., 2011.

[17] D. R. Boggs, J. C. Mogul, and C. A. Kent, Measured capacity of an Ethernet: Myths and

reality. ACM, 1988, vol. 18, no. 4.

[18] A. Kamerman and G. Aben, “Net throughput with IEEE 802.11 wireless LANs,” in

Wireless Communications and Networking Confernce, 2000. WCNC. 2000 IEEE, vol. 2.

IEEE, 2000, pp. 747–752.

[19] F. Lian, J. Moyne, and D. Tilbury, “Performance evaluation of control networks:

Ethernet, ControlNet, and DeviceNet,” Control Systems, IEEE, vol. 21, no. 1, pp.

66–83, 2001.

BIBLIOGRAPHY 203

[20] J. R. Moyne and D. Tilbury, “The emergence of industrial control networks for man-

ufacturing control, diagnostics, and safety data,” Proceedings of the IEEE, vol. 95,

no. 1, pp. 29–47, Jan 2007.

[21] L. Greco, A. Chaillet, and A. Bicchi, “Exploiting packet size in uncertain nonlinear

networked control systems,” Automatica, vol. 48, no. 11, pp. 2801–2811, 2012.

[22] D. Hristu-Varsakelis and W. S. Levine, Eds., Handbook of Networked and Embedded

Control Systems, ser. Control Engineering. Birkhäuser Boston, 2005.

[23] V. Saligrama, Networked Sensing Information and Control. Springer, 2007.

[24] A. Bemporad, M. Heemels, and M. Johansson, “Networked control systems,” Lec-

ture Notes in Control and Information Sciences. Heidelberg: Springer Verlag, vol. 406,

2010.

[25] L. Bushnell, “Networks and control [guest editorial],” Control Systems, IEEE,

vol. 21, no. 1, pp. 22–23, Feb 2001.

[26] M.-Y. Chow, “Specail section papers on distributed networed-based control sys-

tems and applications [guest editorial],” Industrial Electronics, IEEE Transactions on,

vol. 51, no. 6, pp. 1126–1126, Dec 2004.

[27] P. Antsaklis and J. Baillieul, “Guest editorial special issue on networked control

systems,” Automatic Control, IEEE Transactions on, vol. 49, no. 9, pp. 1421–1423, Sept

2004.

[28] ——, “Special issue on technology of networked control systems,” Proceedings of the

IEEE, vol. 95, no. 1, pp. 5–8, Jan 2007.

[29] A. Bemporad, “Predictive control of teleoperated constrained systems with un-

bounded communication delays,” Proceedings of the 37th IEEE Conference on Decision

and Control, 1998., vol. 2, pp. 2133–2138, 1998.

[30] D. E. Quevedo, E. I. Silva, and D. Nešić, “Design of multiple actuator-link control

systems with packet dropouts,” in Proc. of the 17th IFAC World Congress, 2008.

204 BIBLIOGRAPHY

[31] D. Quevedo and D. Nešić, “Input-to-state stability of packetized predictive control

over unreliable networks affected by packet-dropouts,” IEEE TAC, vol. 88, pp. 792–

800, Apr 2015.

[32] M. Lješnjanin, D. E. Quevedo, and D. Nešić, “Packetized MPC with dynamic

scheduling constraints and bounded packet dropouts,” Automatica, vol. 50, no. 3,

pp. 784–797, 3 2014.

[33] L. Xiao, A. Hassibi, and J. P. How, “Control with random communication delays

via a discrete-time jump system approach,” in American Control Conference, 2000.

Proceedings of the 2000, vol. 3. IEEE, 2000, pp. 2199–2204.

[34] H. Lin and P. J. Antsaklis, “Stability and persistent disturbance attenuation proper-

ties for a class of networked control systems: switched system approach,” Interna-

tional Journal of Control, vol. 78, no. 18, pp. 1447–1458, 2005.

[35] P. Seiler and R. Sengupta, “An H∞ approach to networked control,” Automatic Con-

trol, IEEE Transactions on, vol. 50, no. 3, pp. 356–364, march 2005.

[36] W. Zhang, M. Branicky, and S. Phillips, “Stability of networked control systems,”

Control Systems, IEEE, vol. 21, no. 1, pp. 84–99, Feb 2001.

[37] D. Yue, Q.-L. Han, and C. Peng, “State feedback controller design of networked

control systems,” in Control Applications, 2004. Proceedings of the 2004 IEEE Interna-

tional Conference on, vol. 1. IEEE, 2004, pp. 242–247.

[38] L. Zhang and D. Hristu-Varsakelis, “Communication and control co-design for net-

worked control systems,” Automatica, vol. 42, no. 6, pp. 953–958, 2006.

[39] H. Gao and T. Chen, “Network-based output tracking control,” Automatic Control,

IEEE Transactions on, vol. 53, no. 3, pp. 655–667, April 2008.

[40] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and S. Sastry,

“Kalman filtering with intermittent observations,” Automatic Control, IEEE Trans-

actions on, vol. 49, no. 9, pp. 1453–1464, Sept 2004.

BIBLIOGRAPHY 205

[41] Z. Wang, F. Yang, D. W. C. Ho, and X. Liu, “Robust control for networked systems

with random packet losses,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, vol. 37, no. 4, pp. 916–924, Aug 2007.

[42] N. Elia and J. Eisenbeis, “Limitations of linear control over packet drop networks,”

Automatic Control, IEEE Transactions on, vol. 56, no. 4, pp. 826–841, April 2011.

[43] T. Gommans, W. Heemels, N. W. Bauer, and N. Wouw, “Compensation-based con-

trol for lossy communication networks,” International Journal of Control, vol. 86,

no. 10, pp. 1880–1897, 2013.

[44] G. Walsh, O. Beldiman, and L. Bushnell, “Asymptotic behavior of nonlinear net-

worked control systems,” Automatic Control, IEEE Transactions on, vol. 46, no. 7, pp.

1093–1097, jul 2001.

[45] G. Walsh and H. Ye, “Scheduling of networked control systems,” Control Systems

Magazine, IEEE, vol. 21, no. 1, pp. 57–65, 2001.

[46] G. Walsh, H. Ye, and L. Bushnell, “Stability analysis of networked control systems,”

Control Systems Technology, IEEE Transactions on, vol. 10, no. 3, pp. 438–446, may

2002.

[47] D. Nešić and A. Teel, “Input-output stability properties of networked control sys-

tems,” IEEE TAC, vol. 49, no. 10, pp. 1650–1667, Oct 2004.

[48] D. Nešić and A. R. Teel, “Input-to-state stability of networked control systems,”

Automatica, vol. 40, no. 12, pp. 2121 – 2128, 2004.

[49] D. Carnevale, A. R. Teel, and D. Nešić, “A Lyapunov Proof of an Improved Maxi-

mum Allowable Transfer Interval for Networked Control Systems,” Automatic Con-

trol, IEEE Transactions on, vol. 52, no. 5, pp. 892–897, may 2007.

[50] M. Tabbara, D. Nešić, and A. Teel, “Stability of wireless and wireline networked

control systems,” Automatic Control, IEEE Transactions on, vol. 52, no. 9, pp. 1615–

1630, Sept 2007.

206 BIBLIOGRAPHY

[51] M. Tabbara and D. Nešić, “Input-output stability of networked control systems

with stochastic protocols and channels,” Automatic Control, IEEE Transactions on,

vol. 53, no. 5, pp. 1160–1175, June 2008.

[52] T. Suzuki, M. Kono, N. Takahashi, and O. Sato, “Controllability and stabilizability

of a networked control system with periodic communication constraints,” Systems

& Control Letters, vol. 60, no. 12, pp. 977 – 984, 2011.

[53] F. Smarra, A. D’Innocenzo, and M. D. D. Benedetto, “Fault tolerant stabilizability of

mimo multi-hop cotrol networks,” in 3rd IFAC Workshop on Distributed Estimiation

and Control in Networked Systems, September 2012.

[54] A. D’Innocenzo, M. Di Benedetto, and E. Serra, “Fault tolerant control of multi-hop

control networks,” IEEE TAC, vol. 58, no. 6, pp. 1377–1389, June 2013.

[55] X. Yu and S. B. Andersson, “Effect of switching delay on a network control system,”

in 52nd IEEE Conference on Decision and Control, 2013.

[56] M. Lješnjanin, D. E. Quevedo, and D. Nešić, “Controllability of discrete-time

networked control systems with try once discard protocol,” in 19th IFAC World

Congress, Cape Town, South Africa, 2014.

[57] D. Yue, Q.-L. Han, and J. Lam, “Network-based robust control of systems with

uncertainty,” Automatica, vol. 41, no. 6, pp. 999–1007, 6 2005.

[58] M. Cloosterman, N. van de Wouw, W. Heemels, and H. Nijmeijer, “Stability of Net-

worked Control Systems With Uncertain Time-Varying Delays,” Automatic Control,

IEEE Transactions on, vol. 54, no. 7, pp. 1575–1580, july 2009.

[59] Y. Zheng, H. Fang, and H. Wang, “Takagi-sugeno fuzzy-model-based fault detec-

tion for networked control systems with markov delays,” Systems, Man, and Cy-

bernetics, Part B: Cybernetics, IEEE Transactions on, vol. 36, no. 4, pp. 924–929, Aug

2006.

BIBLIOGRAPHY 207

[60] N. B. Almutairi, M.-Y. Chow, and Y. Tipsuwan, “Network-based controlled dc mo-

tor with fuzzy compensation,” in Industrial Electronics Society, 2001. IECON’01. The

27th Annual Conference of the IEEE, vol. 3. IEEE, 2001, pp. 1844–1849.

[61] G. Pin and T. Parisini, “Networked predictive control of uncertain constrained non-

linear systems: Recursive feasibility and input-to-state stability analysis,” IEEE

TAC, vol. 56, no. 1, pp. 72–87, Jan 2011.

[62] L. Zhang, Y. Shi, T. Chen, and B. Huang, “A new method for stabilization of net-

worked control systems with random delays,” Automatic Control, IEEE Transactions

on, vol. 50, no. 8, pp. 1177–1181, Aug 2005.

[63] A. Casavola, E. Mosca, and M. Papini, “Predictive teleoperation of constrained dy-

namic systems via Internet-like channels,” Control Systems Technology, IEEE Trans-

actions on, vol. 14, no. 4, pp. 681–694, july 2006.

[64] P. L. Tang and C. W. de Silva, “Compensation for transmission delays in an

ethernet-based control network using variable-horizon predictive control,” Control

Systems Technology, IEEE Transactions on, vol. 14, no. 4, pp. 707–718, 2006.

[65] Y.-B. Zhao, G. Liu, and D. Rees, “Improved predictive control approach to net-

worked control systems,” Control Theory Applications, IET, vol. 2, no. 8, pp. 675–681,

Aug 2008.

[66] H. Lin and P. J. Antsaklis, “Robust regulation of polytopic uncertain linear hybrid

systems with networked control system applications,” in Stability and control of dy-

namical systems with applications. Springer, 2003, pp. 71–96.

[67] D. Delchamps, “Stabilizing a linear system with quantized state feedback,” Auto-

matic Control, IEEE Transactions on, vol. 35, no. 8, pp. 916–924, 1990.

[68] W. S. Wong and R. Brockett, “Systems with finite communication bandwidth con-

straints. ii. stabilization with limited information feedback,” Automatic Control,

IEEE Transactions on, vol. 44, no. 5, pp. 1049–1053, May 1999.

208 BIBLIOGRAPHY

[69] N. Elia and S. Mitter, “Stabilization of linear systems with limited information,”

Automatic Control, IEEE Transactions on, vol. 46, no. 9, pp. 1384–1400, Sep 2001.

[70] M. Fu and L. Xie, “The sector bound approach to quantized feedback control,”

Automatic Control, IEEE Transactions on, vol. 50, no. 11, pp. 1698–1711, Nov 2005.

[71] R. Brockett and D. Liberzon, “Quantized feedback stabilization of linear systems,”

Automatic Control, IEEE Transactions on, vol. 45, no. 7, pp. 1279–1289, 2000.

[72] D. Liberzon, “On stabilization of linear systems with limited information,” Auto-

matic Control, IEEE Transactions on, vol. 48, no. 2, pp. 304–307, feb. 2003.

[73] ——, “Hybrid feedback stabilization of systems with quantized signals,” Automat-

ica, vol. 39, no. 9, pp. 1543–1554, 9 2003.

[74] D. Liberzon and D. Nesic, “Input-to-State Stabilization of Linear Systems With

Quantized State Measurements,” Automatic Control, IEEE Transactions on, vol. 52,

no. 5, pp. 767–781, may 2007.

[75] D. Liberzon and J. P. Hespanha, “Stabilization of nonlinear systems with limited

information feedback,” Automatic Control, IEEE Transactions on, vol. 50, no. 6, pp.

910–915, 2005.

[76] D. Nešić and D. Liberzon, “A Unified Framework for Design and Analysis of Net-

worked and Quantized Control Systems,” Automatic Control, IEEE Transactions on,

vol. 54, no. 4, pp. 732–747, april 2009.

[77] B. Wittenmark, J. Nilsson, and M. Törngren, “Timing problems in real-time control

systems,” in In Proceedings of the American Control Conference. Citeseer, 1995.

[78] B. Hu and A. N. Michel, “Stability analysis of digital feedback control systems with

time-varying sampling periods,” Automatica, vol. 36, no. 6, pp. 897–905, 6 2000.

[79] E. Fridman, A. Seuret, and J.-P. Richard, “Robust sampled-data stabilization of lin-

ear systems: an input delay approach,” Automatica, vol. 40, no. 8, pp. 1441–1446,

2004.

BIBLIOGRAPHY 209

[80] Y. S. Suh, “Stability and stabilization of nonuniform sampling systems,” Automat-

ica, vol. 44, no. 12, pp. 3222–3226, 2008.

[81] W. Zhang and M. S. Branicky, “Stability of networked control systems with time-

varying transmission period,” in Proceedings Of The Annual Allerton Conference On

Communication Control And Computing, vol. 39, no. 2, 2001, pp. 1205–1214.

[82] L. A. Montestruque and P. J. Antsaklis, “On the model-based control of networked

systems,” Automatica, vol. 39, no. 10, pp. 1837–1843, 10 2003.

[83] L. Montestruque and P. Antsaklis, “Stability of model-based networked control sys-

tems with time-varying transmission times,” Automatic Control, IEEE Transactions

on, vol. 49, no. 9, pp. 1562–1572, Sept 2004.

[84] M. Garcia-Rivera and A. Barreiro, “Analysis of networked control systems with

drops and variable delays,” Automatica, vol. 43, no. 12, pp. 2054–2059, 12 2007.

[85] H. Li, M.-Y. Chow, and Z. Sun, “Optimal stabilizing gain selection for networked

control systems with time delays and packet losses,” Control Systems Technology,

IEEE Transactions on, vol. 17, no. 5, pp. 1154–1162, Sept 2009.

[86] L. Schenato, “Optimal estimation in networked control systems subject to random

delay and packet drop,” Automatic Control, IEEE Transactions on, vol. 53, no. 5, pp.

1311–1317, June 2008.

[87] Y.-C. Tian and D. Levy, “Compensation for control packet dropout in networked

control systems,” Information Sciences, vol. 178, no. 5, pp. 1263–1278, 3 2008.

[88] J. Wang, W. X. Zheng, and T. Chen, “Identification of linear dynamic systems op-

erating in a networked environment,” Automatica, vol. 45, no. 12, pp. 2763–2772, 12

2009.

[89] J. Xiong and J. Lam, “Stabilization of networked control systems with a logic zoh,”

Automatic Control, IEEE Transactions on, vol. 54, no. 2, pp. 358–363, Feb 2009.

210 BIBLIOGRAPHY

[90] L. Hetel, J. Daafouz, and C. Iung, “Analysis and control of lti and switched sys-

tems in digital loops via an event-based modelling,” International Journal of Control,

vol. 81, no. 7, pp. 1125–1138, 2014/06/18 2008.

[91] A. Sala, “Computer control under time-varying sampling period: An lmi gridding

approach,” Automatica, vol. 41, no. 12, pp. 2077–2082, 12 2005.

[92] N. van de Wouw, P. Naghshtabrizi, M. B. G. Cloosterman, and J. P. Hespanha,

“Tracking control for sampled-data systems with uncertain time-varying sampling

intervals and delays,” International Journal of Robust and Nonlinear Control, vol. 20,

no. 4, pp. 387–411, 2010.

[93] M. B. G. Cloosterman, L. Hetel, N. van de Wouw, W. P. M. H. Heemels, J. Daafouz,

and H. Nijmeijer, “Controller synthesis for networked control systems,” Automat-

ica, vol. 46, no. 10, pp. 1584–1594, 10 2010.

[94] I. G. Polushin, P. X. Liu, and C.-H. Lung, “On the model-based approach to nonlin-

ear networked control systems,” Automatica, vol. 44, no. 9, pp. 2409–2414, 9 2008.

[95] D. B. Dačić and D. Nešić, “Quadratic stabilization of linear networked control sys-

tems via simultaneous protocol and controller design,” Automatica, vol. 43, no. 7,

pp. 1145–1155, 2007.

[96] D.-S. Kim, D.-H. Choi, and P. Mohapatra, “Real-time scheduling method for net-

worked discrete control systems,” Control Engineering Practice, vol. 17, no. 5, pp.

564–570, 5 2009.

[97] K.-C. Lee, S. Lee, and M. H. Lee, “Qos-based remote control of networked control

systems via profibus token passing protocol,” Industrial Informatics, IEEE Transac-

tions on, vol. 1, no. 3, pp. 183–191, Aug 2005.

[98] W. Heemels, A. Teel, N. van de Wouw, and D. Neš andić and, “Networked Control

Systems With Communication Constraints: Tradeoffs Between Transmission Inter-

vals, Delays and Performance,” Automatic Control, IEEE Transactions on, vol. 55,

no. 8, pp. 1781–1796, aug. 2010.

BIBLIOGRAPHY 211

[99] M. Donkers, W. Heemels, N. van de Wouw, and L. Hetel, “Stability Analysis of Net-

worked Control Systems Using a Switched Linear Systems Approach,” Automatic

Control, IEEE Transactions on, vol. 56, no. 9, pp. 2101–2115, sept. 2011.

[100] D. Liberzon, “Quantization, time delays, and nonlinear stabilization,” Automatic

Control, IEEE Transactions on, vol. 51, no. 7, pp. 1190–1195, july 2006.

[101] E. Fridman and M. Dambrine, “Control under quantization, saturation and delay:

An lmi approach,” Automatica, vol. 45, no. 10, pp. 2258–2264, 10 2009.

[102] K. Tsumura, H. Ishii, and H. Hoshina, “Tradeoffs between quantization and packet

loss in networked control of linear systems,” Automatica, vol. 45, no. 12, pp. 2963 –

2970, 2009.

[103] Y. Ishido, K. Takaba, and D. E. Quevedo, “Stability analysis of networked control

systems subject to packet-dropouts and finite-level quantization,” Systems &

Control Letters, vol. 60, no. 5, pp. 325–332, 2011.

[104] R. R. Bitmead, M. Gevers, and V. Wertz, Adaptive Optimal Control: The Thinking

Man’s GPC. Prentice Hall, 1990.

[105] E. F. Camacho and C. A. Bordons, Model predictive control in the process industry.

Springer-Verlag New York, Inc., 1997.

[106] J. M. Maciejowski, Predictive control: with constraints. Pearson education, 2002.

[107] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design. Madi-

son, WI: Nob Hill Publishing, LCC, 2009.

[108] L. Grüne and J.Pannek, Nonlinear Model Predictive Control: Theory and Algorithms,

1st ed. Springer-Verlag, 2011.

[109] E. F. Camacho and C. B. Alba, Model predictive control. Springer, 2013.

[110] J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model predictive heuristic control:

Applications to industrial processes,” Automatica, vol. 14, no. 5, pp. 413–428, 1978.

212 BIBLIOGRAPHY

[111] C. E. Garcı́a, D. M. Prett, and M. Morari, “Model predictive control: Theory and

practice - A survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989.

[112] J. B. Rawlings, E. S. Meadows, and K. R. Muske, “Nonlinear model predictive con-

trol: A tutorial and survey.” Preprints IFAC Symposium ADCHEM, 1994, pp.

185–197.

[113] D. Q. Mayne, “Optimization in model based control.” Proceedings of the IFAC

Symposium on Dynamics and Control of Chemical Reactors and Batch Processes,

1995, pp. 229–242.

[114] ——, “Nonlinear model predictive control: An assessment.” AMERICAN INSTI-

TUTE OF CHEMICAL ENGINEERS, 1997, pp. 217–231.

[115] J. H. Lee and B. Cooley, “Recent advances in model predictive control and other

related areas,” vol. 93, no. 316. American Institute of Chemical Engineers, 1997,

pp. 201–216.

[116] S. J. Qin and T. A. Badgwell, “An overview of industrial model predictive control

technology,” in AIChE Symposium Series, vol. 93, no. 316. New York, NY: American

Institute of Chemical Engineers, 1971-c2002., 1997, pp. 232–256.

[117] H. Chen and F. Allgöwer, “Nonlinear model predictive control schemes with guar-

anteed stability,” Nonlinear Model Based Process Control, pp. 465–494, 1998.

[118] M. Morari and J. H. Lee, “Model predictive control: past, present and future,”

Computers & Chemical Engineering, vol. 23, pp. 667–682, 5 1999. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0098135498003019

[119] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model

predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814,

6 2000.

[120] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive

control technology,” Control Engineering Practice, vol. 11, no. 7, pp. 733–764,

BIBLIOGRAPHY 213

7 2003. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0967066102001867

[121] R. Scattolini, “Architectures for distributed and hierarchical Model Predictive Con-

trol – A review,” Journal of Process Control, vol. 19, no. 5, pp. 723–731, 2009.

[122] G. Grimm, M. J. Messina, S. E. Tuna, and A. R. Teel, “Examples when nonlinear

model predictive control is nonrobust,” Automatica, vol. 40, no. 10, pp. 1729–1738,

2004.

[123] G. Grimm, M. Messina, S. Tuna, and A. Teel, “Model predictive control: for want

of a local control Lyapunov function, all is not lost,” Automatic Control, IEEE Trans-

actions on, vol. 50, no. 5, pp. 546–558, may 2005.

[124] S. S. Keerthi and E. G. Gilbert, “Optimal infinite-horizon feedback laws for a gen-

eral class of constrained discrete-time systems: Stability and moving-horizon ap-

proximations,” Jurnal of Optimization Theory and Applications, vol. 57, no. 2, pp. 265–

293, may 1988.

[125] D. Q. Mayne and H. Michalska, “Receding horizon control of nonlinear systems,”

Automatic Control, IEEE Transactions on, vol. 35, no. 7, pp. 814–824, 1990.

[126] J. B. Rawlings and K. R. Muske, “The stability of constrained receding horizon

control,” Automatic Control, IEEE Transactions on, vol. 38, no. 10, pp. 1512–1516,

1993.

[127] H. Michalska and D. Mayne, “Robust receding horizon control of constrained non-

linear systems,” Automatic Control, IEEE Transactions on, vol. 38, no. 11, pp. 1623–

1633, nov 1993.

[128] D. Chmielewski and V. Manousiouthakis, “On constrained infinite-time linear

quadratic optimal control,” in Decision and Control, 1996., Proceedings of the 35th

IEEE Conference on, vol. 2. IEEE, 1996, pp. 1319–1324.

[129] P. O. Scokaert and J. B. Rawlings, “Constrained linear quadratic regulation,” Auto-

matic Control, IEEE Transactions on, vol. 43, no. 8, pp. 1163–1169, 1998.

214 BIBLIOGRAPHY

[130] C. Chen and L. Shaw, “On receding horizon feedback control,” Automatica, vol. 18,

no. 3, pp. 349–352, 1982.

[131] A. Bemporad, L. Chisci, and E. Mosca, “On the stabilizing property of siorhc,”

Automatica, vol. 30, no. 12, pp. 2013–2015, 1994.

[132] G. de Nicolao, L. Magni, and R. Scattolini, “On the robustness of receding-horizon

control with terminal constraints,” Automatic Control, IEEE Transactions on, vol. 41,

no. 3, pp. 451–453, mar 1996.

[133] L. Magni and R. Sepulchre, “Stability margins of nonlinear receding-horizon con-

trol via inverse optimality,” Systems & Control Letters, vol. 32, no. 4, pp. 241–

245, 1997.

[134] J. A. Primbs and V. Nevistic, “Constrained finite receding horizon linear quadratic

control,” in Decision and Control, 1997., Proceedings of the 36th IEEE Conference on,

vol. 4. IEEE, 1997, pp. 3196–3201.

[135] A. Jadbabaie, J. Primbs, and J. Hauser, “Unconstrained receding horizon control

with no terminal cost,” in American Control Conference, 2001. Proceedings of the 2001,

vol. 4, 2001, pp. 3055–3060 vol.4.

[136] F. A. Fontes, “A general framework to design stabilizing nonlinear model predic-

tive controllers,” Systems & Control Letters, vol. 42, no. 2, pp. 127–143, 2001.

[137] D. Limón Marruedo, T. Alamo, and E. Camacho, “Stability analysis of systems with

bounded additive uncertainties based on invariant sets: Stability and feasibility of

mpc,” in American Control Conference, 2002. Proceedings of the 2002, vol. 1. IEEE,

2002, pp. 364–369.

[138] H. Chen, C. Scherer, and F. Allgower, “A game theoretic approach to nonlinear

robust receding horizon control of constrained systems,” in American Control Con-

ference, 1997. Proceedings of the 1997, vol. 5, jun 1997, pp. 3073–3077 vol.5.

[139] L. Magni, H. Nijmeijer, and A. Van Der Schaft, “A receding horizon approach to

the nonlinearH∞ problem,” Automatica, vol. 37, no. 3, pp. 429–435, 2001.

BIBLIOGRAPHY 215

[140] L. Magni, G. De Nicolao, R. Scattolini, and F. Allgöwer, “Robust model predictive

control for nonlinear discrete-time systems,” International Journal of Robust and Non-

linear Control, vol. 13, no. 3-4, pp. 229–246, 2003.

[141] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained model

predictive control using linear matrix inequalities,” Automatica, vol. 32, no. 10, pp.

1361–1379, 10 1996. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/0005109896000635

[142] J. a. Lee and Z. Yu, “Worst-case formulations of model predictive control for sys-

tems with bounded parameters,” Automatica, vol. 33, no. 5, pp. 763–781, 1997.

[143] P. Scokaert and D. Mayne, “Min-max feedback model predictive control for con-

strained linear systems,” Automatic Control, IEEE Transactions on, vol. 43, no. 8, pp.

1136–1142, aug 1998.

[144] G. De Nicolao, L. Magni, and R. Scattolini, “Robustness of receding horizon con-

trol for nonlinear discrete-time systems,” in Robustness in identification and control.

Springer, 1999, pp. 408–421.

[145] W. Langson, I. Chryssochoos, S. Raković, and D. Q. Mayne, “Robust model predic-

tive control using tubes,” Automatica, vol. 40, no. 1, pp. 125–133, 2004.

[146] D. Q. Mayne, M. M. Seron, and S. V. Rakovic, “Robust model predictive control of

constrained linear systems with bounded disturbances.” Automatica, vol. 41, no. 2,

pp. 219–224, 2005.

[147] J. B. Rawlings, D. Bonné, J. B. Jorgensen, A. N. Venkat, and S. B. Jorgensen, “Un-

reachable setpoints in model predictive control,” Automatic Control, IEEE Transac-

tions on, vol. 53, no. 9, pp. 2209–2215, 2008.

[148] J. B. Rawlings and R. Amrit, “Optimizing process economic performance using

model predictive control,” in Nonlinear Model Predictive Control, L. Magni, D. M.

Raimondo, and F. Allgöwer, Eds. Springer, 2009, pp. 119–138.

216 BIBLIOGRAPHY

[149] D. Angeli, R. Amrit, and J. Rawlings, “On average performance and stability of eco-

nomic model predictive control,” Automatic Control, IEEE Transactions on, vol. 57,

no. 7, pp. 1615–1626, July 2012.

[150] D. Angeli, R. Amrit, and J. B. Rawlings, “Receding horizon cost optimization for

overly constrained nonlinear plants,” in proceeding of CDC/CCC 2009. IEEE, 2009,

pp. 7972–7977.

[151] M. A. Müller, D. Angeli, and F. Allgöwer, “On convergence of averagely con-

strained economic MPC and necessity of dissipativity for optimal steady-state op-

eration,” in American Control Conference (ACC), 2013. IEEE, 2013, pp. 3141–3146.

[152] D. Angeli and J. B. Rawlings, “Receding horizon cost optimization and control for

nonlinear plants,” in 8th IFAC Symposium on Nonlinear Control Systems, 2010, pp.

1217–1223.

[153] R. Amrit, J. B. Rawlings, and D. Angeli, “Economic optimization using model pre-

dictive control with a terminal cost,” Annual Reviews in Control, vol. 35, no. 2, pp.

178–186, 2011.

[154] D. Angeli, R. Amrit, and J. B. Rawlings, “Enforcing Convergence in Nonlinear Eco-

nomic MPC,” in proceedings CDC-ECC, 2003., Dec. 2011.

[155] M. Diehl, R. Amrit, and J. Rawlings, “A Lyapunov Function for Economic Opti-

mizing Model Predictive Control,” Automatic Control, IEEE Transactions on, vol. 56,

no. 3, pp. 703–707, march 2011.

[156] L. Grüne, “Economic receding horizon control without terminal constraints,” Au-

tomatica, vol. 49, no. 3, pp. 725–734, 2013.

[157] D. E. Quevedo, E. I. Silva, and G. C. Goodwin, “Packetized predictive control over

erasure channels,” in American Control Conference, 2007. ACC’07, 2007, pp. 1003–

1008.

BIBLIOGRAPHY 217

[158] T. Kameneva and D. Nešić, “On l2 Stabilization of Linear Systems With Quantized

Control,” Automatic Control, IEEE Transactions on, vol. 53, no. 1, pp. 399–405, Feb.

2008.

[159] M. Lješnjanin, D. Nešić, and D. E. Quevedo, “Uniform global asynptotic stability

of networked contorl systems with bounded packet dropouts and scheduling con-

straints,” Automatica (submitted), 2014.

[160] G. Kreisselmeier and T. Birkholzer, “Numerical nonlinear regulator design,” Auto-

matic Control, IEEE Transactions on, vol. 39, no. 1, pp. 33–46, jan 1994.

[161] A. R. Teel and L. Praly, “A smooth Lyapunov function from a class-KL estimate

involving two positive semidefinite functions,” ESAIM: Control, Optimisation and

Calculus of Variations, vol. 5, pp. 313–367, 1 2000.

[162] C. Kellett and A. Teel, “On the robustness of KL-stability for difference inclusions:

Smooth discrete-time Lyapunov functions,” SIAM Journal on Control and Optimiza-

tion, vol. 44, no. 3, pp. 777–800, 2005.

[163] A. Hekler, J. Fischer, and U. D. Hanebeck, “Sequence-based control for networked

control systems based on virtual control inputs,” in Decision and Control (CDC),

2012 IEEE 51st Annual Conference on. IEEE, 2012, pp. 7–13.

[164] D. Quevedo, E. Silva, and G. Goodwin, “Control over unreliable networks affected

by packet erasures and variable transmission delays,” Selected Areas in Communica-

tions, IEEE Journal on, vol. 26, no. 4, pp. 672–685, 2008.

[165] L. Grüne, J. Pannek, and K. Worthmann, “A networked unconstrained nonlinear

MPC scheme,” in Proceedings of the European Control Conference, 2009.

[166] M. Huang and S. Dey, “Stability of Kalman filtering with Markovian packet losses,”

Automatica, vol. 43, no. 4, pp. 598–607, 2007.

[167] D. E. Quevedo, A. Ahlén, and J. Østergaard, “Energy efficient state estimation with

wireless sensors through the use of predictive power control and coding,” Signal

Processing, IEEE Transactions on, vol. 58, no. 9, pp. 4811–4823, 2010.

218 BIBLIOGRAPHY

[168] D. E. Quevedo, A. Ahlén, A. S. Leong, and S. Dey, “On Kalman filtering over fading

wireless channels with controlled transmission powers,” Automatica, vol. 48, no. 7,

pp. 1306–1316, 2012.

[169] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.

[170] L. Magni, D. M. Raimondo, and R. Scattolini, “Regional input-to-state stability

for nonlinear model predictive control,” Automatic Control, IEEE Transactions on,

vol. 51, no. 9, pp. 1548–1553, 2006.

[171] B. Ingalls, E. Sontag, and Y. Wang, “Generalizations of asymptotic gain character-

izations of ISS to input-to-output stability,” in American Control Conference, 2001.

Proceedings of the 2001, vol. 3, 2001, pp. 2279–2284 vol.3.

[172] F.-L. Lian, J. Moyne, and D. Tilbury, “Network protocols for networked control

systems,” in Handbook of Networked and Embedded Control Systems, ser. Control En-

gineering. Birkhäuser Boston, 2005, pp. 651–675.

[173] R. Findeisen and P. Varutti, “Stabilizing nonlinear predictive control over nondeter-

ministic communication networks,” in Nonlinear Model Predictive Control, ser. Lec-

ture Notes in Control and Information Sciences. Springer Berlin Heidelberg, 2009,

vol. 384, pp. 167–179.

[174] D. Munoz de la Pena and P. Christofides, “Lyapunov-based model predictive con-

trol of nonlinear systems subject to data losses,” IEEE TAC, vol. 53, no. 9, pp. 2076–

2089, Oct 2008.

[175] H. Riesel, Prime numbers and computer methods for factorization. Springer, 1994, vol.

126.

[176] R. Isermann, J. Schaffnit, and S. Sinsel, “Hardware-in-the-loop simulation for the

design and testing of engine-control systems,” Control Engineering Practice, vol. 7,

no. 5, pp. 643–653, 1999.

[177] D. Paret, Multiplexed networks for embedded systems: CAN, LIN, Flexray, Safe-by-Wire...

John Wiley & Sons, 2007.

BIBLIOGRAPHY 219

[178] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding and using the con-

troller area network communication protocol: theory and practice. Springer, 2012.

[179] dSPACE GmbH, dSPACE Hardware Installationand and Configuration Reference, Re-

lease 7.4, vol. Release 7.4.

[180] ——, RTI CAN MultiMessage Blockset - Tutorial, 2013, vol. Release 7.4.

