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ABSTRACT

Cancer is a leading cause of death all over the world. Focusing at the intracel-

lular level, there are several cytokine signalling networks involved in inflamma-

tion and tumorigenesis. These pathways regulate the cell biological responses

to the environment, both directly and via crosstalk. Recently, there have been

several reports which have confirmed the strong relationship between inflam-

matory diseases and tumor development ( [82, 110, 163], see [294] for a review).

Two cytokines, in particular, have significant roles in wound healing, inflam-

mation and cancer Transforming growth factor β (TGF−β) and Interleukin-6

(IL − 6). Cytokine signalling pathways are an interconnected complex system

of biochemical reactions which can be represented by kinetic equations. These

signalling pathways can share proteins and genes which make the intracellular

signalling networks extremely complex.

Systems biology and mathematical modelling are new approaches for the

study of complex systems such as intracellular signalling networks. The focus

of this research is to model mathematically new descriptions of the TGF−β and

IL−6 pathways based on new logistics and then integrate them into a single, ro-

bust, self-regulated model which can be used to investigate tumor development

in the stomach and colon. At each level, experimental data sets were used iter-

atively in order to both parameterize and examine the models (e.g. the model

and experimental data of Zi et al. (2011) and further model simulations have

been used in Chapter 4 to parameterize our TGF−β model.).

Different approaches in Systems biology and their applications in cell sig-

nalling research are studied. TGF−β and IL − 6 signalling pathways and their

components are reviewed next. The previous mathematical models of TGF−β
and IL − 6 signalling are briefly discussed. Additionally, the role of individual

signalling in cancer progression and inflammation is studied.

We developed a mathematical model which captures the details of TGF−β
signalling. The detailed model consists of over 40 differential equations and

highlights the necessity for the reduction and simplification methods. The TGF−β
signalling model is simplified and reduced via analytical reduction methods to

6 differential equations and is further validated with experiment. For the first

time an explicit negative feedback loop has been included in the model. An-

other contribution of the TGF−β model is that the inherent time-delays in sig-

nalling networks are incorporated in detail. In the final chapter different input

patterns are studied for TGF−β signalling. Our model of TGF−β signalling



indicates that the positive feedback loop is one mechanism by which stability

could be achieved. The thesis reports for the first time the coupling of the posi-

tive and negative feedback loops for TGF−β signal transduction. Furthermore,

our TGF−β signalling model proposes predictions for the responses of cancer

cells to TGF−β stimulation, which suggest new experimental protocols for fu-

ture work.

We also developed a mathematical model that describes the IL−6 signalling

system thoroughly. The large number of equations involved in this model high-

lights the need for simplification. Similar to TGF−β signalling model, IL − 6

signalling model is simplified and reduced using mathematical methods. In

order to develop a realistic model specific kinetics are used for the different re-

actions. Time-delays are incorporated in the IL − 6 transduction mathematical

model for the first time. After being validated with different experimental data,

the reduced IL− 6 signalling model predicts the behaviour of cancer cells in re-

sponse to IL− 6 stimulation. Different pulsatile ligand inputs are studied using

IL−6 model and new hypotheses for the TGF−β and IL−6 signalling crosstalk

are raised.

Our initial hypothesis that IL− 6 signalling regulates TGF−β signalling via

SMAD7, is examined using our integrated IL − 6:TGF−β model. The simula-

tions produced by the integrated model confirm the importance of the negative

feedback loop of TGF−β signalling (SMAD7) via IL− 6 downstream signalling,

previously suggested by Jenkins et al. (2005). Various kinetic models are exam-

ined for the link between the two signalling pathways and several predictions

are proposed for the pulsatile inputs and different stimulation patterns. The

results of the integrated model are compared with the individual TGF−β and

IL − 6 models. IL − 6-induced activation of SMAD7 leads to suppression of

TGF−β signalling and causes double peak responses of PSMAD2 in the short-

term, however, the long-term responses of the cells to TGF−β stimulation re-

main unchanged by IL − 6 signalling. The integrated model is also validated

experimentally. Conclusively, we found that the regulation of TGF−β signal

transduction by IL − 6 signalling occurs within the first 300 minutes after stim-

ulation, i.e. within the transient phase of the response.

This thesis includes both theoretical and experimental work, performed by

the applicant. Theoretical part of the thesis consists of designing and developing

models, analytical analysis of the models and conducting numerical simulations

with the numerical simulation of the models. In the experimental part, various

experimental protocols were developed and examined in order to parameterize,

test and validate the proposed models.
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Chapter 1

Introduction

1.1 Motivation

Statistics document an increasing rate of cancer incidence worldwide [368, 399].
According to cancer council Australia, 1 in 3 women and 1 in 2 men are diag-
nosed with cancer before the age of 85 [368]. This makes cancer a major health
problem for the majority of countries. The most common types of cancer in
Australia are prostate, bowel, breast, melanoma and lung cancer respectively
(cancer council NSW annual report). As a result, research has focussed on un-
derstanding cancer and developing specific treatments.

Inflammation is reported as one of the conditions that is closely related to
different cancer types (see [56, 341, 371] for reviews). Although it is not clear
whether inflammation results from cancer or is a cancer initiator, considerable
evidence confirms the links between chronic inflammation and tumor develop-
ment [22, 23, 33, 377, 391]. As a result, it is essential to consider inflammatory
components when investigating cancer initiators, promotor and progression.

In attempting to understand cancer, the key issue is its emerging complex-
ity [188]. Cancer is a multi-scale, multi-variable and complicated disease that in-
volves deregulation of distinct, connecting pathways which control fundamen-
tal cell responses [259]. One way to tackle this problem is by applying quanti-
tative methods of Systems biology and engineering analysis to cancer research.
Furthermore, quantitative modelling creates the power of prediction in this area
of research.

Focusing on the intracellular level, there are several distinct signalling net-
works involved in cancer and inflammation that connect directly and/or indi-
rectly [394, 403]. Connections among the signalling pathways lead to a broader
range of genes which are affected by mutations of the contributing components
within the pathways.

TGF−β and IL − 6 signalling pathways are two pleiotropic signalling sys-
tems which become deregulated in tumor development and chronic inflamma-
tion, respectively. Recent studies have proposed an indirect crosstalk between

1
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these two signalling networks [207]. Jenkins et al. [207] have tested their pro-
posed system experimentally and qualitatively. Particularly, IL − 6 affects the
TGF−β signalling negative feedback and eventually regulates its anti-proliferative
pathway. This points to the need for understanding the vital role of feedback
loops in designing of the regulatory networks.

The current research investigates the signalling crosstalk between TGF−β
and IL − 6 transduction using mathematical modelling and precise analytical
analysis. We have focused on the feedback loops involved in each signalling
pathway and their effects on the stability and robustness of the individual sys-
tems as well as the integrated IL− 6:TGF−β network. Each model is validated
using experimental data from literature and/or data derived in our lab. Further-
more, several predictions are presented which pave the way for future studies
in this field.

1.2 Research Objectives

The overall goal of this research is to develop a quantitative model which de-
scribes the crosstalk between the TGF−β and IL − 6 signalling pathways and
demonstrates a better understanding of the role of feedback loops in regulat-
ing signalling networks. In order to achieve this, the following steps have been
taken:

1. To develop a mathematical model for TGF−β signalling

A biological model is designed in order to capture the interactions of TGF−β
signalling. This model then is translated to a mathematical model. In this
step every biochemical reaction maps to its corresponding equation.

2. To simplify and reduce the components of TGF−β signalling model based
on analytical methods

After development of a mathematical model for TGF−β signalling, the
model is reduced and simplified to its key components. This was done by
using rigorous mathematical methods and assumptions. Steady-state and
equilibrium analysis help us to acquire an insight to the mechanism of the
signalling system.

3. To experimentally validate our proposed TGF−β signalling model

Experimental data sets are used to validate the model predictions at this
stage. The output of the model is the time course of a protein concentration
which is specific to the signalling pathway. For TGF−β signal transduc-
tion, we used Phospho-SMAD2/3 concentration level as the marker for
TGF−β stimulation.

4. To develop a mathematical model for IL− 6 signalling
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We repeated similar steps in design and development of IL − 6 signalling
network. By the end of this step, we have two sets of mathematical equa-
tions corresponding to TGF−β and IL − 6 signalling respectively. Each
system of equations is solved in order to produce predictions from the
model.

5. To simplify and reduce the components of IL − 6 signalling model based
on analytical methods

Similar to TGF−β signalling model, we benefit from a series of mathemat-
ical and system analysis which leads to a simpler and more understand-
able model of IL−6 signalling. The key idea here is to maintain the critical
information of the system while reducing the extra details. The final out-
put of the reduced and simplified model should be as rigorous as the full
system.

6. To experimentally validate our proposed IL− 6 signalling model

The Phospho-STAT3 time course is used to experimentally validate the
IL− 6 signalling model in this step. It is also important to keep the consis-
tency in the validation steps of the two pathways.

7. To integrate the models of TGF−β and IL − 6 signalling and predict the
output level, in addition to experimental validation of the integrated model

The final step is to join the two signalling models to design an integrated
TGF−β and IL−6 model. This model predictions can be tested with more
experiment.

1.3 Thesis Outline

In this chapter a high-level introduction that motivates this research has been
provided, following by an explicit statement of the thesis objectives. The outline
of the remaining chapters is as follows.

In Chapter 2, Systems biology principles and its contribution in cytokine sig-
nalling are reviewed. The importance of mathematical modelling in studying
the biological systems is explained. TGF−β and IL− 6 signalling pathways and
their provided mathematical models in the literature are studied specifically, in
detail. This chapter will discuss about the crosstalk between TGF−β and IL− 6

signalling pathways and their critical role in tumor progression.
In Chapter 3, the methods which are developed and used in this project are

reviewed. Both experimental and theoretical methods are included in this chap-
ter. A stepwise experimental data extraction procedure is indicated. Further-
more, the materials used in this project, including the laboratory reagents and
machines, programming platforms and quantitative computer programs are de-
scribed in Chapter 3.
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Chapter 4 presents a framework for the design, analysis and validation of
TGF−β signalling network from a Systems biology point of view. Simplifica-
tion and reduction methods emphasising on the feedback loops of the signalling
system are highlighted. The simulations of the final TGF−β signalling model
are compared with the experimental results of the previous models in the litera-
ture. Model predictions are proposed and experimentally validated, explaining
the deregulated TGF−β signal transduction in tumors.

In Chapter 5, we have repeated the design and analysis steps for IL − 6 sig-
nalling pathway which lead to a simplified IL−6 mathematical model. The IL−6
signalling model explains the experimental data provided in the literature. This
model is further validated with our new sets of experimental data on normal
and immortal cells. Similar to the previous chapter, predictions are proposed
which interpret how the components of IL− 6 signalling alter in tumors.

Chapter 6 is dedicated to the integrated model of IL − 6:TGF−β and in-
vestigates how IL− 6 down-regulates TGF−β signalling, causing uncontrolled
proliferation of the cells. The integrated model provides various simulations
to predict and analyse different stimulation conditions. This chapter ultimately
proposes evidence to confirm our hypothesis on the interaction between the
TGF−β and IL − 6 signalling systems. The contributions of the currant thesis
briefly recapitulate in Chapter 6 focusing on the future areas of research.



Chapter 2

Literature Review and Background

2.0 Summary of the information included in Chap-

ter 2

Systems biology provides a unique, comprehensive approach in solving the cur-
rent issues of Biology. Researchers have been attempting to apply Systems bi-
ology principles in order to understand cancer and develop treatments. Using
mathematical models to capture the details of intracellular signalling pathways
quantitatively, is a starting step of identifying the cancer initiators. Focusing on
the close connection between tumor development and chronic inflammation,
we have studied two specific signalling pathways which are often deregulated
in cancer and inflammation(TGF−β and IL−6 signalling). Each signalling path-
way is reviewed precisely in this chapter. The previous mathematical models,
their strength and their weaknesses are analysed for individual signalling sys-
tem. Finally the advantages of crosstalk studies are specified.

2.1 Systems Biology

Systems biology is a system-level understanding of living systems which often
involves computational modelling and analysis of biological data [25, 240, 241,
245]. Although the study of biological systems commenced in the middle of 20th
century [55,245,455,470], it is only during the last decades that the developments
in science and engineering have enabled us to progress the affectiveness of the
systems approach to biology. What do we mean by "Systems biology": if we
substitute the ambiguous "systems" word by a "network of components" and
add the important "dynamic" concept, we are starting to approach the power of
Systems biology [25, 250].

In general, four steps are required to gain a systems-level understanding of
a biological process. The first and the most vital one is identification of the
system’s structure (a topology). The structure of the system includes both the
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physical structures (the actual location of implied components of the system)
and the interactions between the components (the network that confines the
system’s components). The interactions among the components determine the
final state of the physical structure of the system and hence, must be studied
in detail. However, determination of the system’s structure does not define the
status of the system completely. Dynamic changes to the components of the sys-
tem is an intrinsic characteristic of biological systems [245,250,283]. The second
step is to understand exactly how the components vary with time. This step re-
quires integration of both scientific and engineering principles, such as compu-
tational model development, new experimental information which is relevant
to the structure and dynamics of the system. The third step: the controllers of
the system and methods of control need to be determined. This step allows us to
predict and simulate the output of the system. The forth step in a system-level
understanding is to find a suitable method to simulate the biological system as
a comprehensive, robust model which can be interrogated, perturbed and anal-
ysed over a time-frame relevant to the biology [241, 245].

In the Systems biology world, the fundamental principle is to be robust
[245, 443, 457]. Robustness is the insensitivity of biological functions to var-
ious disturbances [245]. Robustness is a characteristic of biological systems
[243, 245, 276]. There is a close relationship between the evolution of a bio-
logical system and robustness [245, 457]. If a biological system lacks the suf-
ficient robustness, it will not survive environmental and genetic perturbations
[245, 372, 452, 458]. Only individuals with more robust properties survive sud-
den significant change. Robustness of a biological system cannot be identified
from the components of the system only, however, robust systems have a few
common characteristics by which they can be controlled e.g. possession of reg-
ulatory feedback loops [245,443]. Common mechanisms across engineering and
biology which give a system robustness to different perturbations are [245]:

• Extensive system control

Extensive system control refers to negative feedback loops which provide
dynamic regulation of the system and maintain the system around a sta-
bility point. Feedback loops occur when the input(s) of a system is regu-
lated by the output continuously [126]. The feedback loop can be positive
or negative depending on whether the loop enhances or dampen, respec-
tively, the perturbations from the equilibrium point [210]. Self-regulation
has been observed in bacterial chemotaxis [7, 26, 496]. Controlling bio-
logical systems can happen through positive feedbacks as well. Positive
feedbacks create bi-stability in signal transduction and cell cycle processes
which resist minor perturbations and facilitate robustness in response to
environmental changes [63, 122, 439].

• Redundancy and phenotypic plasticity or diversity
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A system can tolerate environmental change if it has alternative compo-
nents and methods [245]. Phenotypic plasticity [2, 383] is the process by
which a biological system changes its phenotype when reacting to pertur-
bations caused by environmental or genetic change. Redundancy occurs
when a critical component(s) of a system is duplicated in order to increase
the reliability of the system [243, 245]. Reliability of a system defines the
probability that the system achieves its expected function [141, 475]. In
both cases systems with alternative mechanisms can overcome perturba-
tions and are more robust [243, 245].

• Modularity

Systems with different modules consist of a number of isolated parts. Per-
turbations occur in one module is isolated to the same module and do not
affect the rest of the system. Several functions in biological evolution can
increase modularity, e.g differentiation and gene mutation [125, 128, 410].
Modularity is important during the development of a biological system, as
it helps to provide a more robust and more reliable topology by, for exam-
ple, providing the accommodation of a foreign DNA [363] and/or limiting
the developmental constrains [106, 245, 306, 446, 456].

• Decoupling

By decoupling minor perturbations in the low levels of a system, the higher
levels of the system can be protected. For example, Hsp90 limits the mis-
folding of proteins as a result of environmental stress and consequently
reduces the perturbation of the gene regulation [245, 361, 372, 373].

• Bow-tie architecture networks

Biological systems often have a special architecture (i.e. bow-tie organiza-
tion in bacterial metabolic networks [84]) which implies intrinsic robust-
ness [245]. What makes bow-tie networks powerful is that there is a large
range of inputs and outputs connecting via a much smaller range of pro-
cesses and protocols in the "core" [84, 243, 245]. In a bow-tie system, the
inputs transfer to the core via a funnel and become suitably organized
and processed. Hence, these systems are more flexible against the envi-
ronmental changes [84]. Bow-tie systems are complex (multiple interact-
ing components and linkages) and self-organized (systems which exhibit
an overall order via their local interactions between their components i.e.
biomacromolecules [54]) and are observed in metabolic pathways [288]
and signal transduction [335, 336].

Cells Mostly control their functions via the environmental cues produced by
other cells [127]. Cell functions are the results of intracellular signalling many of
which are identified in the last few decades [127]. Intracellular signallings net-
works must be precisely regulated to avoid improper responses [127]. Precision,
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robustness and versatility of the cell signalling pathways originate from the cru-
cial influences they cause [51, 127]. It has been suggested that extensive control
of signalling networks can be done by using feedback loops [51, 127]. Similarly,
redundancy, modularity and decoupling are often seen in different signalling
systems causing high robustness [51, 380, 436, 473].

Although robustness is an essential feature of a biological system, robustness
often needs to be balanced against, fragility and resource demands [243, 245].
Often, when robustness develops against a group of environmental changes,
the system becomes more fragile in response to other specific perturbations.
Diseases can be the direct result of the fragility of a biological system against
changes from the outside. In some cases, the biological system shows resistance
against therapies too [243, 245]. This can be caused by the same processes that
enhance the robustness of that system against harmful perturbations [243, 245].
One example of robustness "hijacking" is cancer [244–246](and autoimmune dis-
eases) [242, 244, 247]. It is evident that many signalling systems are deregulated
in cancer [145]. In fact, changes in the intracellular signalling networks transfer
a normal cell to cancerous conditions which then acquires new robustness. Tu-
mors are highly robust, these cells resist a wide range of therapies. Tumor cells
become robust via the same ways that were mentioned earlier [242,247]. Having
clarified the role of robustness in autoimmune diseases, it is important to build
treatment strategies based on this robustness.

Since biological systems are complex combination of networks of compo-
nents [240], crosstalk study between individual signalling systems (which arise
to a cellular function) is essential. This research is focused on how two spe-
cific signalling pathways, TGF−β and IL − 6, interact in order to regulate cell
characteristics. Additionally, we want to study disruptions of these signalling
systems in cancer. In order to achieve this, individual computational models are
designed and used to predict the cellular responses in normal and tumor cells.
In the final chapter, the two separate models are integrated to provide crosstalk
predictions.

2.2 TGF−β Signalling Pathway

Transforming growth factor, TGF−β, is a member of a transforming growth
factor superfamily which also includes bone morphogenic proteins signalling
(BMP) , Mullerian inhibitory substance, activin, inhibin, and Nodal [75,296,396].
Each family member controls a broad range of a cell’s biological characteris-
tics such as: differentiation, proliferation, migration, life time and apoptosis
[118, 290, 296]. Signal transduction from the TGF−β superfamily receptors is
initiated at the membrane of a cell by ligand binding and a range of intracel-
lular signalling reactions which cause gene responses in the nucleus [300, 433].
Recent studies revealed that ligand concentration, stimulation time, cell type
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and even the percentage of active signalling components can affect the gene
responses to TGF−β stimulation [75, 297]. Changes in TGF − β/SMAD sig-
nalling can affect the transition of normal epithelial cells to cancerous cells in the
colon [168, 206, 297, 299, 330, 396]. In spite of the many studies on TGF−β sig-
nalling, there are still unanswered questions concerning the impact of signalling
from this pathway on cancer cell progression. In particular, there are two essen-
tially opposite reactions of cancer cells to TGF−β [149, 357, 503]. When cancer
cells are in an early phase of malignancy, TGF−β acts as an inhibitor of pro-
liferation and slows down cancer progression [265]. Surprisingly, when cancer
cells are at a more advanced stage of malignancy, TGF−β stimulates prolifer-
ation (For review see [357, 376, 503]). Thus the TGF−β signalling has a dual
behaviour towards cancer cells. In order to clarify such paradoxical behaviours,
TGF−β transduction and its components need to be studied in detail. The focus
of this review is to identify the key parameters in TGF−β /SMAD signalling in-
cluding: the ligand TGF−β, the receptor proteins TGF−β R1 and TGF−β R2 ,
the mediator proteins SMADs (SMAD1, 2, 3, 4, 5, 6, 7 and 8) and finally nuclear
target genes such as JUN, MYC and COL4A1 (the key components of TGF−β
signalling are shown in Figure 2.1).
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Figure 2.1: The sketch of TGF−β signalling network. Potential phosphorylation sites

of the receptors are specified with empty circles attached to membrane receptor compo-

nents. Arrows pointing to 6 blue dots represent degradation process. The red solid ar-

rows originating from SMAD7:Smurf1/2 apply negative feedback on the receptor com-

ponents. The dot arrows represent the transcription and translation reactions. Note that

the logistics of the signalling are expanded in Figure 4.1.

2.2.1 Key Components of TGF−β Signalling

• TGF−β receptors: TGF−β R1 and TGF−β R2

Defects in TGF−β signal transduction can lead to a range of diseases, in-
cluding cancer [18,112,290,299,344]. Lack of sufficient levels of a functional
TGF−β R2 in the cell membrane is reported as one of the main reasons
of abnormal signalling in cancer cells [18, 297]. There are two ways the
ligand receptor complex can form. Firstly, TGF−β binds to TGF−β R2

[297], the TGF−β: TGF−β R2 complex then recruits TGF−β R1 and leads
the TGF−β R2 : TGF−β and TGF−βR1 : TGF−βR2 complexes to com-
bine. The second model requires the two receptor types (TGF−β R1 and
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TGF−β R2 ) to bind the ligand, but in no particular order. The latter model
occurs in BMP signal transduction [297]. Interestingly, even in the absence
of TGF−β ligand, TGF−β R1 and TGF−β R2 can form an active complex
when over-expressed [62, 297, 313, 447]. Though TGF−βR2 can bind in-
dependently with TGF−βR1 and consequently, phosphorylate other com-
ponents in the pathway to bring about downstream signalling, no data
on TGF−β responses have been reported for this particular pathway [297,
311,396]. Two different mechanisms have been suggested for TGF−βR in-
ternalization in the presence of TGF−β. The TGF−β R:ligand complex
can be internalized through a lipid raft-caveolar degradation pathway,
without participating in signalling [93, 449] or, it can activate mediator
proteins in the standard manner (through phosphorylation processes) and
degrade after recycling to the membrane [449]. These different internaliza-
tion paths will result in different TGF−βR signalling responses [194, 348].
If we are to understand the tumor-suppressive effect of TGF−β signalling
verses its tumor-promoter effects, it is essential that we understand the
kinetics of TGF−βR internalization and recycling [265, 449].

• TGF−β mediators: SMAD proteins

The first downstream proteins activated by the TGF−β R1 are from the
SMAD family [224, 290, 297]. SMADs (Sma/mad referring to Small body
sized homologues of MAD gene [297]) play a major role in TGF−β sig-
nalling transduction and its nuclear relocation. There are three categories
of SMADs (a total of 8 types of SMAD proteins) activated in TGF−β sig-
nalling [178,224,290,297,330,396]; receptor-regulated SMADs (R-SMADs)
that interact directly with TGF−β family receptor kinases [290, 297], com-
mon SMADs (Co-SMADs) that bind with R-SMADs and regulate TGF−β
transduction [290, 297] and inhibitory SMADs (I-SMADs) that inhibit -
TGF−β signalling by controlling the function of the other two groups
of SMAD family proteins (R-SMADs and Co-SMADs function) [178, 224,
290, 297, 330, 396]. SMADs are regulated not only by TGF−β signalling
but also by the mitogen-activated protein kinases (MAPK) signalling path-
way [131,260,297]. SMADs appear to mediate some aspects of MAPK sig-
nalling [14,297,506]. SMADs are continuously shuttled between cytoplasm
and nucleus independently from TGF−β induced activation [200, 386].
The cytoplasm-nucleus interchange of the SMADs is initiated through phos-
phorylation of the SMAD complex in the cytoplasm [30, 200, 386] and exit
from the nucleus is controlled by dephosphorylation [200, 290, 386]. Acti-
vation of nuclear import receptors (importin7 and importin8) on the sur-
face of the nucleus facilitates the phosphorylated R-SMADs to enter into
the nucleus [200, 386]. It is also postulated that the dephosphorylation of
R-SMADs mainly occur within the nucleus [30, 200, 386]. The TGF−β sig-
nalling system is robust, with the ability to filter rapid input and noise
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fluctuations [200, 386]. The robustness of the TGF−β signalling system is
due to the inherent delay between the input from TGF−β binding and the
nuclear internalization of the SMAD complex [200,386]. Inhibitory SMADs
(SMAD6 and SMAD7) control the intensity and/or duration of cellular re-
sponses to TGF−β stimulation [1, 297]. One of the proposed ways that
I-SMADs regulate TGF−β signalling is by binding to TGF−β family re-
ceptors in competition with R-SMADs and hence, decreasing the rate of
activation of the R-SMADs [74, 225, 297, 297, 396].

• TGF−β effectors and nuclear re-localization

TGF−β superfamily signalling pathways start from ligand binding to the
membrane receptors and leading to interactions in the nucleus and spe-
cific gene responses. The key parameter for measuring TGF−β signalling
is the level of SMAD2/3 nuclear accumulation [18, 75, 511] . It has been
shown that SMAD accumulation in the nucleus is directly proportional to
TGF−β receptor activity [73, 75, 199, 329]. As mentioned previously, there
are eight types of SMADs in mammals. These eight genes map to four
chromosomes [12]. The SMAD2, SMAD4 and SMAD7 genes which are
mutated in broad range of cancers [12, 143], are found on chromosome 18
(mostly around 18q21.1), while the SMAD3, SMAD5 and SMAD6 genes
map to chromosome 15 [12, 143]. Finally, the SMAD1 and SMAD8 genes
are located on chromosome 4 and 13 [12].

Most of the SMAD family members proteins are 400-500 amino acids in
length and all SMADs share two homology domains: MH1 (Mad homol-
ogy 1) and MH2 (Mad homology 2) [27, 290]. The SMADs have a nu-
clear localization signal (NLS) in the MH1 domain of the R-SMADs and
this appears to be the reason that the R-SMADs enter the nucleus with-
out necessarily binding to a Co-SMAD [12, 143, 262, 483]; this is one of the
important distinctions between R-SMADs and Co-SMADs [12, 262, 483].
Additionally, the MH1 domain of R-SMADs interacts with several tran-
scription factors in the nucleus [290, 486]. The MH2 domain doesn’t par-
ticipate in DNA binding but also plays a role in protein association pro-
cesses [12,27,290]. The SMAD linker region, which connects the MH1 and
MH2 domains, is required for interactions with other signalling pathways
such as, MAPK [12, 297]. It is through this linker that SMAD7 binds with
Smurf1/2 and exerts its TGF−β signal inhibitory role [12, 35, 510]. Inter-
estingly the SMADs can bind directly to DNA with low affinity [91, 319].
However, they appear to have higher binding to the transcription factors
associated with specific target genes [12, 14, 318].

• Phospho R-SMAD/SMAD4 complex; a closer look

Co-SMADs also have the MH1 and MH2 domains connected by a linker
region [179, 297, 397]. R-SMADs (except SMAD2) and Co-SMADs bind
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DNA through the MH1 domain [179,397], while binding of the SMADs to
the TGF−β receptor occurs via the MH2 domain [93, 179]. Two common
R-SMADs which participating in TGF−β signal transduction are SMAD2
and SMAD3 [297, 323, 396]; both are phosphorylated in their C-terminus
via TGF−β-R1 [91, 93, 179, 318, 323]. The phosphorylated R-SMADs bind
with SMAD4 (a Co-SMAD) through the MH2 domains [200, 465]. The de-
tails of the formation of the R-SMAD/Co-SMAD complex are still being
debated [116,179,323]. It is unclear whether the structure of this complex is
trimeric or dimeric [57,116,179,205,227,290,481]. There is evidence for for-
mation of SMAD trimers: SMAD2/SMAD2/SMAD4, SMAD3/SMAD3/
SMAD4 and SMAD2/SMAD3/SMAD4 complexes [179, 385]. One impor-
tant observation is the obligatory presence of SMAD4 in the signalling
complex. Phosphorylation of the R-SMADs changes the protein struc-
ture [133, 481]. This is more than supplying a phosphate group that nor-
mally occurs during SMAD4 activation. The difference in the responses
of R-SMADs and Co-SMADs to phosphorylation processes explains why
one SMAD4 can bind to several R-SMADs [397, 413, 481].

The affinity of the R-SMAD/Co-SMAD binding influences the time that
the complex spends in the nucleus [179, 386]. Recent studies show that
nuclear translocation of the complex is associated with the interactions be-
tween phosphorylated SMAD3 and importin-β1 [262, 483]. The MH1 do-
main of SMAD2 is unable to interact with importin-β1 [71, 360]. Instead,
the MH2 domain of SMAD2 participates in nuclear translocation [179,262].
SMAD4 is imported into the nucleus either via the interaction of its MH1
domain with importin-α [351, 482] or through the interaction via its MH2
domain with nucleoproteins CAN/Nup214 [71, 482, 487]. Also, there is
also evidence claiming an important role for transcription regulators such
as TAZ in binding with SMAD complexes [182, 445] and forcing them to
be retained in the nucleus [179, 445]. Nuclear SMAD3 uses exportin4 and
GTPase Ran which allows it to recycle from the nucleus to the cytoplasm
[351, 465]. SMAD4 also uses its nuclear export sequence, in the linker
region, to interact with exportin1/CRM1 and exit the nucleus [351, 465].
The export mechanisms of SMAD2 are not yet clear [262], however, there
are evidences which nominate different nuclear proteins which initiate nu-
clear export of SMAD2/3 and terminate TGF−β signalling [61].

• SMAD6 and SMAD7, negative regulators:

Over the last decade SMAD7 has emerged as one of the main antagonists
for TGF−β and BMP signalling [396]. SMAD6 and SMAD7 negatively
regulate signalling by TGF−β family ligands [200,396]. SMAD7 acts as an
inhibitory factor for both TGF−β and BMP signalling while SMAD6 only
inhibits the BMP signalling pathway [485]. Moreover, SMAD7 is a candi-
date element for mediating the crosstalk between TGF−β and other sig-
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nalling pathways (such as BMP and Wnt ) [69,324,343,492]. The inhibitory
feedback for the TGF−β pathway is initiated in the nucleus by stimu-
lation of smad7 mRNA [153, 162]. The inhibitory regulator SMAD7 re-
cruits Smurf1 (SMAD ubiquitin regulatory factor 1) and Smurf2 to increase
the TGF−β receptor complex degradation [74, 225]. Smurfs are ubiquitin
ligases [69]. Both SMAD7 and Smurf2 can decrease the half-life of the
TGF−β R1 [225]. There are two other mechanisms by which I-SMADs
inhibi TGF−β signalling: SMAD7 competes with R-SMADs for binding
to the TGF−β receptor and SMAD7 competes with R-SMADs for bind-
ing to Co-SMADs [216, 396]. SMAD6 and SMAD7 also contain the MH2
domain, however, there is no C-terminal SXS phosphorylation site as in
the R-SMADs [216]. SMAD7 binds to TGF−β receptor type1 with higher
affinity than the R-SMADs [216]. The competition between R-SMADs and
SMAD7 causes modulation of TGF−β signal transduction. Interaction of
the N-terminus of SMAD7 with its MH2 domain leads to the most efficient
inhibitory effect of SMAD7 on TGF−β R1 [166, 325, 492]. As mentioned
before, in order to induce the receptor type1 degradation SMAD7 recruits
a group of E3 ubiquitin ligases such as Smurf1/2. During this process,
SMAD7 is also ubiquitinated and degraded [100, 225, 423]. In the absence
of TGF−β, SMAD7 tends to reside in to the nucleus as it has NLS in its
N-terminal [225]. TGF−β stimulation causes the SMAD7/Smurf complex
to translocate to the cytoplasm [100, 225, 423, 492]. Smurfs have a nuclear
export sequence which interacts with exportin1/CRM1 [179, 427]. It has
been proposed that SMAD7 induces dephosphorylation of TGF−β recep-
tor type1 via the GADD34-PP1c phosphatase [395]. Additionally, SMAD7
interferes with the action of R-SMADs on the target genes in the nucleus
[504] by interfering with the binding of R-SMAD/SMAD4 to DNA [504].
There is evidence that SMAD7 may also affect the transcription of target
genes directly [155, 179, 261, 315, 400, 492]. SMAD7 is phosphorylated in
the linker region (Ser-249 as phosphorylation site) via kinase(s), indepen-
dent of TGF−β receptor [358]. Whilst this phosphorylation doesn’t in-
fluence SMAD7’s inhibitory function, it does affect the transcription pro-
cesses stimulated by SMAD7 [179, 358].

• TGF−β signalling target genes:

Microarray analysis has facilitated the acquisition of information on TGF−β
receptor dependent gene expression [48, 49, 96, 280, 281]. Microarray anal-
ysis has led to a number of new hypotheses on potential functions for
TGF−β signalling [49, 96]. It is well-known that the TGF−β superfamily
signalling pathways stimulate genes related to cell-cell interactions [49],
however, as the following table (derived from chapter 17 of "SMAD signal
transduction" by Dijke et. al. 2006 [49]) shows the microarray expression
analysis reveals other epithelial gene expression signatures in response to
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TGF−β stimulation.

Gene Score Cell Type Biological Pro-

cess associated

with gene prod-

uct

Source

Reference

JUN 0.75 epithelial transcription V,X,C,K,L,D

FOS 0.5 epithelial transcription Z,V,C,W

JUNB 0.5 epithelial,

fibroblast

transcription C,K,L,D

MYC 0.75 epithelial,

fibroblast

cell cycle arrest Z,V,C,K

SMAD7 0.38 epithelial, fi-

broblast, C2C12

signal transduc-

tion

Z,C,K

CTGF 0.38 epithelial, fi-

broblast, C2C12

cell-cell sig-

nalling

Z,C,K

TIMP3 0.38 epithelial,

C2C12

apoptosis Z,V,L

COL4A1 0.63 epithelial,

fibroblast

cell-matrix

adhesion

Z,X,C,K,L

ID1 0.5 epithelial,

fibroblast

transcription X,C,K,W

ID2 0.5 epithelial transcription Z,V,K,L

ID3 0.63 epithelial, fi-

broblast, C2C12

transcription Z,V,X,K,L

Table 2.1: TGF−β/SMAD gene expression signatures in cells of epithelial

origins. V = Valcourt et al., Mol.Biol.Cell, 2005 [441]; X = Xie et al., Breast

Cancer Res., 2003 [484]; C = Chen et al., Proc.Natl.Acad.Sci.U.S.A, 2001 [60]; K

= Kang et al., Mol.Cell, 2003 [220]; Levy et al., Mol.Cell Biol., 2005 [266]; Deacu

et al., Cancer Res., 2004 [89]; Z = Zavadil et al., Proc.Natl.Acad.Sci.U.S.A, 2001

[499].

1458 target genes have been reported to be TGF−β target genes in total
8 quality-verified studies [49]. To determine the level of robustness, Böt-
tinger et. al. [49] scored each TGF−β target gene in Table 2.2.1 by a number
between 0.25 (lowest) and 1 (highest). Score 1 means that the target gene
was listed in all 8 of the cross-referenced studies and score 0.25 means the
gene was named in only 2 out of 8 studies. 11 of the highly robust sig-
natures and genes which are reported frequently are listed in Table 2.2.1.
These genes include well-known TGF−β regulated proteins including the



2.2 TGF−β Signalling Pathway 16

Jun oncogene (JUN), FBJ osteosarcoma viral (v-fos) oncogene homolog
(FOS), Jun-B proto-oncogene (JUNB), c Myc proto-oncogene (MYC), MAD
homolog 7 (SMAD7), connective tissue growth factor (CTGF), TIMP met-
allopeptidase inhibitor 3 (TIMP3), procollagen, type IV, alpha 1 (COL4A1),
and Inhibitor of DNA binding proteins (ID1, ID2, ID3). Using Gene On-
tology tables, most of the known biological functions of the TGF−β sig-
nalling pathway (such as; cell cycle control, cell adhesion and cell apopto-
sis) are associated with ∼ 160 target genes [49].

2.2.2 The Role of TGF−β Signalling in Cancer

As mentioned earlier, TGF−β signalling transduction has been associated with
several disorders, especially several cancers [95, 161, 430]. TGF−βR2 is inacti-
vated in many gastrointestinal cancers [197,234,297]. The disruption in TGF−β
signalling also occurs in response to mutations in SMAD2 and SMAD4 [18, 75,
297, 330]. These mutations occur in different SMAD exons [297].

The role of TGF−β signalling in cancer cells (tumor-promoter or tumor-
suppressor) depends on both the micro-environment and the set of cancer gene
mutations in the signalling pathways [449]. For example, in vivo cancer cells
compete with neighboring cells [449]. There is evidence that the duration of ex-
posure to TGF−β might explain the dual-behaviour of cells to this signalling
protein [135]. Chronic TGF−β stimulation (2-3 weeks) can induce cells to be-
come resistant to the anti-proliferative, apoptotic effects of TGF−β signalling
[135]. In other words, TGF−β may down modulate its own signalling [135]. In
addition to all the other mutations that cause cancer, the duration of TGF−β/
SMAD signalling appears to be a critical element that changes during the tran-
sition of normal cells to cancerous cells [511]. It has been postulated that cells
respond differently to sustained and transient TGF−β stimulation [330]. Sus-
tained exposure to TGF−β may be responsible for the growth inhibition and
transient TGF−β stimulation may be required for the anti-proliferation in a cer-
tain group of tumors [330, 511].

Another detectable change that often occurs when normal cells transform
to cancer cells is the loss of E-cadherin [330]. This loss is a characteristic of an
epithelial to mesenchymal transition (EMT) [297, 330]. As a result of the com-
plexities occur in cell responses to different TGF−β simulation and the leading
role of TGF−β signal transduction in cancer development, it is essential that
powerful methods, such as mathematical modelling be used to explain the role
of TGF−β in the establishment of the robustness of the biochemical models pro-
posed for signalling during the cancer suppression, promotion and progression
phases [19, 73].
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2.2.3 Mathematical Approach to Modelling TGF−β Signalling

Although TGF−β signalling components were discovered decades ago [13,414],
the interactions which occur after activation have been difficult to understand.
The signalling components change dynamically with respect to time: both the
concentration and location of signalling components change within a few hours
of ligand stimulation [511]. The TGF−β signalling system will be best under-
stood by a reliable, robust model using well-designed mathematical simulations
of the processes [19, 511].

Even today most biological and even biochemical studies on growth fac-
tor/cytokine signalling are qualitative (for example see [28, 85, 314]). The in-
trinsic complexity of biological systems gives rise to the need for computational
simulation [123, 164]. Mathematical modelling is ideal for studying inherent,
complex processes (such as signalling systems) [123,164]. This is because math-
ematical models are amenable to computer simulations and can be systemati-
cally analyzed [123, 164]. Using mathematical modelling of the biological sys-
tems provides prediction capabilities of system’s behaviour which is otherwise
difficult to obtain due to the simultaneous involvement of numerous compo-
nents [123, 164].

Several methods for the mathematical modelling of cell signal transduction
have been developed [75, 402]. As the concentrations and locations of signal
transduction components are time variant, dynamical study of cell’s behaviour
and the signalling components is required. Generally, there are two main direc-
tions in signalling pathways system biology studies (the study of interactions
among components of a signalling pathway that control to the function and
behaviour of the system): 1. a’top-down’ approach which gathers as much ex-
perimental information as is possible from the key biological parameters and
outputs and simulates the signalling network bioinformatically [19, 392]; or 2. a
’bottom-up’ approach which uses a small-scale model with quantitative data for
each of the signalling components which are integrated to make a highly predic-
tive simulation system. In short, the top-down method deals with more quali-
tative and static data and the bottom-up method is supported by more quanti-
tative and dynamic data [19, 291]. The current challenge is how to bring both of
these methods together [19].

The most computer representations of the cytokine signalling pathways use
a set of ordinary differential equations (ODE) [230, 512]. In the ODE method,
the reaction rates are representations of the mass action kinetics, and are pro-
portional to the reactant concentrations. Generally, a system of a small number
of ODE equations can be solved either precisely or via analytical approxima-
tions [90, 172]. As the number of equations increase, providing an analytical or
graphical solution for the system becomes difficult. When all of the parame-
ters for all the components are known, a reliable interpretation of dynamic be-
haviour of the system components can be expected [230]. The parameters for
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this model need to be estimated quantitatively using mass spectrometry [472],
immunoblotting [86] or protein antibody microarrays [268]. However, for com-
plex dynamic system with so many equations, such as the cell signalling path-
ways, it is not possible to solve the ODEs analytically [123]. Consequently, nu-
merical integration solutions are used and hence, sensitivity analysis is vitally
important to identify the critical signalling components regulating the output
of the system [293]. Numerical integration can result in large changes even in
outputs from small changes in parameter values; therefore, by identifying the
components to which the system is more sensitive, a more robust and reliable
model of the system can be developed [177].

Alternative modelling methods such as Boolean, stochastic and spatially re-
solved models (e.g. PDE-based models) have been used to model cytokine sig-
nalling networks [192]. PDEs are used when attempting to model the spatial and
temporal dynamics of the biochemical species. In many intracellular signalling
networks the important spatial information is often incorporated in ODEs via
compartmentalization [192, 289]. This approach is often used in order to sim-
plify PDEs to ODEs [192, 289]. Stochastic modelling assists in the robustness
analysis of a system [192, 289]. One way to incorporate stochastic analysis in an
ODE-based model is to consider that the noise can be represented by a Gaussian
distribution. The other way is to perform sensitivity analysis on the system, thus
identifying which parameters influence the output of the model [192,289]. When
there is lack of kinetic information and transcription details, Boolean networks
are often used in gene activation and transcription models [289]. However for
larger systems, Boolean modelling becomes impractical, due to a large number
of possibilities [289].

The signalling systems studied in this thesis have numerous components
and involve all three spatial components: membrane, cytoplasm and nucleus.
Because of the complexity of the system and number of possibilities for the re-
actions, it is not sensible to use a Boolean modelling. Also we have considered
the most probable possibility for each reaction based on the experimental data
and hence, deterministic modelling is chosen over stochastic modelling. Con-
ceptually all the cytokine signalling models should consider spatial information
of the components and thus should be modelled by PDEs. However, mathe-
matical analyses of PDEs are not straight forward and it is more convenient to
simplify PDEs to ODEs where possible. We have used spatial compartmental-
ization and sensitivity analysis to develop our signal transduction models in
this thesis. Consequently, our systems meet the conditions of using ODE-based
modelling.

We have chosen to follow an ODE modelling approach. This allows us to use
experimental data (e.g. time course of protein expression) to parameterize our
models, at the same time it is possible to investigate the mechanism, robustness
and behaviour of the networks. The results of Chapter 4, 5 and 6, in which the
proposed ODE-based models are analysed and tested experimentally, confirm
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the validity of our modelling approach.
Approaches to modelling:
There have been at least 7 independent mathematical models of the TGF−β

signalling pathway (the whole pathway or only part of it), see table 7.1 in the
Appendices. Most literature models of cell signalling use differential equations
to model the networks of biochemical reactions. In the current research, we
have built on the most recent ODE model of TGF−β signalling provided by
Zi et al. [511]. We have focused on the models with inhibitory feedback of the
signalling pathway, this essential topological component seems to be missing
in most of the existing models [72, 74, 308, 449, 511, 513]. The I-SMAD role as
the inhibitory feedback component in TGF−β signal transduction assures the
stability and robustness of the system. It raises hypothesis that the signalling
system is regulated by a balance between the feed-forward and feed-back reac-
tions, therefore to achieve more accurate simulations it is essential to simulate
both the inhibitory feedback as well as the feed-forward effects (signal transduc-
tion).

SMAD7 is assumed to be a key component for the crosstalk of TGF−β sig-
nal transduction with other signalling pathways (see section 2.2.1 "SMAD6 and
SMAD7, negative regulators"). A more complete description of the topology
of the TGF−β signalling models, the parameter and values outputs is given in
Appendices.

2.3 IL− 6 Signalling Pathway

The interleukin-6 (IL − 6) family of cytokines all signal from the plasma mem-
brane to the nucleus [186,254,389,514]. These cytokines act principally by chang-
ing the function of target cells, whether it happens in a paracrine or autocrine
manner [239,251]. Cytokines of the four helix bundle family, such as IL− 6, par-
ticipate in the differentiation, growth and regulation of the cells of the immune
and hematopoietic systems [285]. However, it should be noted that members
of the IL − 6 family signal in a wide range of cell types [83, 138, 444, 476]. Sig-
nalling happens when the IL − 6 cytokine binds with its specific receptor, such
as IL − 6R (also called Gp80 [448]) and then to a common signal transduction
co-receptor, 130 kDa glycoprotein (Gp130) [253]. Equilibrium binding studies
have documented that Gp130 increases the affinity of the interactions between
the IL− 6 and IL− 6R [189].

All members of IL−6 family, IL−6, IL−11 , leukaemia inhibitory factor (LIF )
, oncostatin M (OSM ) , ciliary neurotrophic factor (CNTF ) and cardiotrophin-1
(CT-1) use Gp130 to transfer the signalling to the cytosol. It is also known that
Gp130 induces the cytoplasm signalling by activating the Janus kinases (JAK)
[187,346]. The target genes activated by IL−6 signalling participate in differen-
tiation, apoptosis, proliferation, inflammation and the immune responses [175].
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IL − 6 target genes have been studied carefully both structurally and function-
ally [175].

IL−6 family members play a significant role in the response of the body to in-
jury and inflammation [175,431,454]. Deregulation of the signalling pathways of
IL− 6 member cytokines is associated with human hematological and epithelial
malignancies [109]. IL− 6 is known to both promote and inhibit tumors [251]. It
has been reported that IL− 6 is secreted via tumor cell lines together with many
other cell types (such as fibroblasts, endothelial cells, monocytes, keratinocytes,
lymphocytes, macrophages and mast cells) [83, 170, 193, 370, 444].

IL − 6 is responsible for the regulation of many inflammatory processes
[24, 175, 431, 454]. Examples for inflammatory processes are: B cell develop-
ment, macrophage activation, initiation of organ repair and the production of
hepatic acute-phase protein [29, 83, 183, 255, 364]. An inflammatory disease oc-
curs when the natural inflammation processes get deregulated [209]. One clini-
cal treatment for inflammatory diseases is to block cytokine activities that have
caused an exaggerated inflammatory response [209]. Drugs using this method
have brought many clinical benefits to the treatment process for inflammatory
diseases [209], however, it is essential to understand completely how/why this
cytokine signalling system is distorted chronically and how this might be pre-
vented or reversed [209].

IL − 6 signal transduction is likely to vary with respect to the strength of
the initial signal i.e. the cytokine and receptor levels. In the remainder of this
section, the Gp130 co-receptor and its role in IL−6 signalling via the JAK/STAT
[421] and MAPK pathways [98, 401] and the negative auto-feedback via SOCS3
[15, 138]will be discussed. The importance of IL − 6 transduction during the

cancer progression and its effects on other signalling pathways is considered in
the following sections (2.3.6 and 2.3.6). Finally, quantitation and mathematical
modelling of IL−6 signalling are introduced in a Systems biology context as the
best approach to achieve an understanding of the signalling networks and their
role in cancer studies.
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Figure 2.2: The sketch of IL − 6:Gp130:JAK:STAT signalling. Potential phosphoryla-

tion sites of the receptors are specified with empty circles attached to membrane receptor

components. The dot arrows represent the transcription and translation reactions. Note

that the logistics of the signalling are expanded in Figure 5.1.

2.3.1 Gp130 Membrane Co-receptor

Gp130 is found on almost all cell membranes (e.g. see [34, 160, 278, 310]). For
example, cells from heart, lung, brain, kidney, spleen, colon and placenta all
express Gp130 on their plasma membrane [209, 497]. Gp130 is essential for de-
velopment [491], hematopoiesis [67], cell growth [81] and survival [113,209,497].
Gp130 regulates the binding sites for a broad range of cytokines [36, 38, 285]. In
conjunction with the cytokine specific receptors, Gp130 transmits signalling for
all of the IL− 6 family members (LIF, OSM, IL-6, IL-11, CNTF, CT-1, CLC, LIFR,
OSMR and TCCR) [15]. Gp130 contains 6 tyrosine residues in its cytoplasmic
domain, each prepares a different binding site for signalling proteins in the cy-
tosol.

Gp130 is important for participating in a complex together with IL− 6 or IL-
11 specific receptors ( the IL−6R is also known as Gp80 [181,309]). Ligand acti-
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vation of the IL− 6:Gp130 complex leads to the activation of Src [432], JAK/Tyk
tyrosine kinases [285] and STAT family transcriptional regulators [37, 176, 196].
Activation of JAK consequentially leads to phosphorylation of proximal tyro-
sine residues on Gp130 receptor [109, 209, 402]. The phosphorylated Y residues
lead to binding of STAT3 and STAT1 [109, 144, 209]. Shp2 is also regulated
through Y phosphorylation on Gp130 [109, 328, 402]. Shp2 contains a SH2 (Src
Homology 2) domain in the N-terminal region and a Grb2 binding motif in
its C-terminal region [117, 214, 453]. The activation of Shp2 is necessary for
mitogen-activated protein kinase (MAPK) signal transduction to occur. MAPK
activation involves the successive activation of Ras, RAF, MAPK MEK and ERK
[109,402,428]. It is reported that Shp2 can act as an inhibitor for IL− 6 transduc-
tion via dephosphorylation of Gp130 receptors (this fact will be discussed later
in this document). IL − 6 signalling activates two distinct pathways for trans-
ferring the incoming receptor-initiated signals to the nucleus: JAK/STAT and
MAPK pathways [175, 176, 402]. In the following subsections these two path-
ways and their components are described in more detail.

2.3.2 JAK/STAT Pathway

As discussed earlier, the two of the receptors that take part in the JAK/STAT sig-
nalling pathways are Gp130 and Gp80 (also called IL-6Rβ and IL-6Rα, respec-
tively [309]). Although Gp80 is essential for the IL− 6 transduction, it is Gp130
that activates the cytoplasmic signalling through its cytoplasmic domain [309].
This can be seen from the size of the cytoplasmic domains for each receptor.
Gp80 contains only 82 amino acids in the cytoplasmic domain [309], compared
to 277amino acids in the cytoplasmic domain of Gp130 [94, 309]. Most of the in-
tracellular signalling is through Gp130 motifs (such as the Y STV sequence for
signalling through Shp2, MAPK signalling [114, 309], and the Y XXQ motif for
STAT signalling [114, 309]).

Research on the crystallography of the cytokine/receptor complex of IL − 6

signalling pathway suggests a sequential sequence of binding [37]. First, IL− 6

binds to the extracellular domain of IL-6Rα. Next, the IL-6/IL-6Rα complex
interacts with Gp130 and finally, the resulting complex is dimerised [37,138,411].
This hexameric complex is ready to initiate JAK/STAT signalling.

The cytoplasmic domain of the hexameric receptor complex has the ability
to interact with an intracellular tyrosine kinase (JAK). In this pathway, JAK is
the key protein through which the downstream signalling is propagated [109,
181, 309]. Four members of JAK family are found in mammals: JAK1, JAK2,
JAK3 and TYK2 [214, 286, 326, 415]. All, except JAK3, are constitutively as-
sociated with cytoplasmic domain of Gp130 monomers [109, 478]. Binding of
IL − 6 initiates the activation of JAKs. JAK activation happens via an auto-
phosphorylation process after the octamer (2IL-6/2IL-6Rα/2Gp130/2JAK) is
formed [109, 175, 181, 478]. The phosphorylation of JAK triggers the phospho-
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rylation of the tyrosine residues of the two Gp130s in the complex and hence,
creates binding sites for proteins containing phosphotyrosine binding domain
(such as STAT transcription factors) [478]. It has been suggested that JAK1,
among all the family members, is the most common kinase associated with
Gp130 that triggers the STAT3 nucleocytoplasmic shuttling (reviewed by [214]).
Immediately after the phosphorylation of the Gp130s, the receptor complex is
ready to phosphorylate STAT3 [196,425]. Phosphorylated STAT3 separates from
the receptor complex in the form of a dimer [196, 425, 478]. Phospho-STAT3
dimer is imported to the nucleus, acts as a transcription factor and loses its phos-
phatase there (dephosphorylation of STAT3) [232, 490].

Mammalian STAT proteins are normally categorised into 7 major groups
(STAT1, 2, 3, 4, 5a, 5b and 6) [176,195,196,346,426]. There are no identified STAT-
like gene in unicellular organisms [176] so STATs are assumed to be the result of
the multicellular organism evolution. Reports show that STATs can be activated
via different receptor tyrosine kinases such as: epidermal growth factor(EGF) re-
ceptor [137, 139, 509], fibroblast growth factor(FGF) receptor [339, 440], platelet-
derived growth factor(PDGF) receptor [40, 338] and etc [46, 176, 332, 342]. All
IL− 6 family members activate STAT3 and STAT1.

STATs are relatively large proteins with 750 to 850 amino acids [176]. This
property let the STAT family members interact with many different proteins
through their various domains [176]. The Src homology 2 (SH2) is the domain
responsible for STAT binding to the tyrosine-phosphorylated receptor motifs
and also homo- and hetro- dimerization among the family members [152, 176,
398]. This variety in binding sites of STATs gives them the capability to be the
common transcription factors for multiple transcription factors [176, 468, 488].

The dimerization of STATs is essential for the DNA binding. The DNA bind-
ing domain is located in the middle of the STAT molecule [176, 398]. Nuclear
translocation of the STAT dimer can be followed by indirect immunofluores-
cence [176,342]. STAT translocation to the nucleus is transient, i.e. the STAT con-
centration returns to its pre-stimulus levels within 2 hours [176, 342]. A nuclear
localization sequence (NLS) has not been identified for the STATs [176,307,390].

There are number of IL− 6 target genes activated by STATs:

1. APP genes [31,500]: C-reactive proteins, α1-antichymotrypsin [66,256], α2-
macroglobulin [349, 466], lipopolysaccharide-binding protein [8, 387]and
tissue inhibitor of metalloproteinases (TIMP ) [50, 231]

2. transcription factors: JunB [78], c − Fos [184, 480], interferon regulatory
factor (IRF)-1 [167, 418] and CCAAT enhancer binding protein (C/EBP)
[252, 489]

3. Other genes: interstitial collagenase [105, 257], vasoactive intestinal pep-
tide [77, 424], pro-opiomelanocortin [366, 442], heat-shock protein hsp90
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[8, 419], bcl-x [129, 435] and IL− 6 signal transducer Gp130 [334]

2.3.3 MAPK Pathway

IL − 6 stimulation activates the MAPK pathway. Mitogen-activated protein ki-
nase (MAPK) [190, 337] is a highly conserved mechanism associated with the
regulation of cell proliferation [263]. MAPK signalling can be initiated by differ-
ent types of cytokine stimulation, including TGF−β [87, 420] and IL − 6 fam-
ily stimulations [185, 263]. MAPK activation plays a role in gene transcrip-
tion, cell cycle regulation, apoptosis, protein biosynthesis and cell differentia-
tion [229, 263].

Sh2-domain of Shp2 is used to help the phosphorylation of Tyr759 residue of
activated Gp130 [39, 331, 416]. Sh2-containing tyrosine phosphatase (SHP2) is
then phosphorylated by the activated JAKs [144, 185, 381, 416]. Phosphorylated
Shp2 interacts with growth factor receptor bound protein 2 (Grb2) [505] that
associates with son of sevenless (Sos). Sos [142]is a GDP/GTP exchanger for
Ras [58]. Activation of ERK/MAPK cascade happens through the GTP form
of Ras [180]. The activated ERK/MAPK signal is transferred to in the nucleus,
targeting the transcription factors i.e. NF-IL-6 [185, 309].

The ERK/MAPK [233] signalling pathway has been investigated in detail
[214]. In this document, we focus on the IL-6/JAK/STAT signal transduction in
order to emphasize on the STAT3 key role in inflammation and cancer [171]

2.3.4 Inhibitory Feedback of SOCS3

The mechanism for down-regulation of JAK/STAT signal transduction is caused
by the suppressor of cytokine signalling (SOCS) proteins [176]. This family of
proteins is also known as "JAK-binding proteins (JAB)" and/or "STAT-induced
STAT inhibitors (SSIs)" [15, 108, 176, 322, 417]. SOCS transcription is induced
by the IL − 6 and LIF [303] cytokines. SOCS function as inhibitors of tyrosine
phosphorylated Gp130, STAT1 and STAT3 [108, 176, 322].

The SOCS family contains 8 members: SOCS1-SOCS7 and CIS [83]. Due to
their SH2 domain, SOCS are able to directly interact with the kinase domain
of JAK family members [108, 176, 328], reducing their tyrosine kinase activity.
Thus SOCS proteins are JAK inhibitor and provide negative feedback on the
JAK/STAT signalling system [176]. The ability of SOCS to inhibit the JAKs
comes from a short motif in the SH2 domain, known as the KIR (kinase in-
hibitory region) [16,42]. JAK inhibition via KIR is the dominant mode of action
of SOCS1 and SOCS3 in vivo [16, 42, 502].

Through the carboxy-terminal SOCS box, SOCSs target the Gp130 signalling
complex for polyubiquitination and proteosomal degradation [6,83]. The SOCS
box is a C-terminal sequence of almost 40 amino acids that contains 2 conserved
regions [43, 217]. It is believed that the SOCS box is essential for the stability
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of the SOCS proteins [43, 218]. Over-expression studies reveals that SOCS box,
together with the PEST sequence of SOCS3, facilitates the degradation of the
SOCS3 [17]. Experiments show that SOCSs act as the coordinators of the bio-
logical responses to the specific cytokines, as well as, their role in attenuating
the cytokine signalling (by degradation of the active complexes on the mem-
brane [201, 379]) [83].

SOCSs proteins also compete with STATs for binding to the phosphorylated
sites on the Gp130 receptor [322, 477]. Thus SOCS3 can interact with both JAK
and Gp130 simultaneously. This property creates a ternary complex with high
overall affinity [16]. Consequently, if the binding cytokine signals through re-
ceptors with the same binding sites as the SOCS3 (such as IL − 6/Gp130), its
signal transduction will be suppressed by SOCS3 [16, 479]. It is also important
to note that SOCS3 interacts with JAK1, JAK2 and TYK2 but not JAK3 [16]. This
selectivity is because of a motif in the JAK insertion loop [16]. Through this
interaction, SOCS3 is able to identify the target JAK and distinguish between
them. The lack of this specific motif (motif1071−1073 GQM) in JAK3 removes the
SOCS3 feedback inhibition of its signalling [16].

2.3.5 IL− 6 and Cancer

Historically, IL− 6 was first discovered by Hirano and Kishimoto in 1986 as a B
cell stimulating IgG production [186, 327]. IL − 6 is produced by many tumors,
for example: melanoma [214,316], multiple myeloma [214,228]and prostate can-
cer [214,407]. IL−6 can act as autocrine and/or paracrine growth factor to stim-
ulate tumor growth. Additionally, IL − 6 levels change in age-related diseases
(e.g. Alzheimer’s [508] ). It has been assumed that the decrease in the level of
sex hormones which occurs in aging, increases the IL− 6 levels [111, 214].

As mentioned before, because of the Gp130 involvement in the IL− 6 trans-
duction, any deregulated production of IL− 6 can induce distributed undesired
inflammation in the organs. Many diseases progress via IL− 6 over-expression,
e.g. Alzheimer’s disease [99, 333], type 2 diabetes [92, 356]and some carcino-
mas [64,221]. A recent study reveals a direct relationship between the ulcerative
colitis, developing colon cancer, over-expression of IL − 6 and the level of acti-
vated STAT3 [270]. Similar findings suggest that inhibition of IL − 6 signalling
may prevent the progression of chronic inflammatory diseases and inflamma-
tion associated cancers [327].

2.3.6 Crosstalk

One of the features of IL − 6 signalling is that it interacts with other signalling
pathways via its receptor, Gp130, and the alternatives in its downstream sig-
nalling (JAK/STAT and MAPK). There is evidence that IL − 6 crosstalks with
cytokines such as BMP [493], NF-κβ [31], Wnt/β-catenin [47]and TGF−β [207].
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The focus of this project is on the IL−6 and TGF−β crosstalk, with an emphasis
on the role of SMAD7. This relationship is supported by the interaction be-
tween STAT3/SMAD7/TGF−β in tumors where the EGFR was over-expressed
and activated [287]. Persistent activation of STAT3 stimulates the SMAD7 ex-
pression, which then desensitizes TGF−β signal transduction [207,287]. Luwor
et al. (2012) showed that this relationship occurs in vivo as well as in vitro. Yao
et al [495] have reported that both TGF−β and IL − 6 are hyper-activated in
Erlotinib-resistant cells and are essential for the survival of cancerous lung cells.

The concept of this thesis is the report on IL − 6:TGF−β interactions by
Jenkins et al. (2005) [207] . They used "MEF" (mouse embryonic fibroblast)
cells and mutated Gp130 in order to over- express STAT3 or STAT1. Cells with
STAT3-hyperactivation illustrate impaired activation and nuclear translocation
of SMAD2. Therefore, the TGF−β signal transduction was down-regulated in
mutated MEFs . They tested their hypothesis using a PSMAD7-luc reporter to
follow the SMAD7 transcription levels in mutated cells. They have also repeated
the experiment in vivo with the same result [207].

The interaction between the TGF−β and IL − 6 signalling systems is very
important in inflammatory, auto-immune diseases and cancers. As a result, it is
essential to study both pathways quantitatively, and identify their precise pos-
sible interactions and predict ways to modulate the pathological signalling.

2.3.7 Mathematical Approach to the Modelling IL−6 Signalling

There are several mathematical ODE models of the JAK/STAT [70,320,402] sig-
nalling pathway. Most of the models of IL− 6 signalling concentrate on MAPK
signalling through Shp2 [402]. For our purposes, we have developed a mathe-
matical model with precisely quantified components for JAK/STAT signalling.

Singh et al. [402] proposed a model of IL − 6 signalling based on the litera-
ture data sets. The roles of SOCS3, Shp2 and PP2 (nuclear phosphatase) were
studied subsequently by knock out studies [402]. Singh et al. [402] compared
the responses of the model for perturbations of specific components in order
to specify their functions. Although their model is comprehensively designed,
there was no validation of the model. In addition a number of details that were
overlooked in their model (such as transcription and protein synthesis). No
mathematical compensations were applied to the model to compensate for these
omissions. This model, notwithstanding, is one of the first attempts to develop
a mathematical formulation from biological models of the IL − 6 signalling. I
have used some of the kinetic values and initial conditions from Sing et al. [402]
for this project.

Another IL− 6 model has been proposed by Huang et al. in 2010 [70]. They
based their model on Singh et al. [402], but used sensitivity analysis and pa-
rameter clustering to simplify the model. They provided evidence that their
simplification method was valid by comparing their results with the results of
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the original Singh’s model. Their work has identified the most important and ef-
fective components in the original model, however, the validation of the model
against experimental data was not attempted.

The most recent mathematical model of the IL − 6 signalling pathway was
published in 2010 by Moya et al. [320]. Again, the foundation of their model was
Singh’s model. They repeated the sensitivity analysis and used some new pa-
rameter estimates. They also used an implicit model of dynamics for the MAPK
pathway. Finally, they applied same analysis and methods to IL-10 signal trans-
duction. Experimental data were used in the MAPK signalling analysis. The
IL− 6 and IL-10 models were used to investigate their roles in the regulation of
STAT3. The paper perfectly filled the gap lacking in the mathematical and sta-
tistical analyses of the previous models, however, including MAPK signalling,
all signalling pathways which activate MAPK must have been considered in the
model.

Therefore, a model of the IL− 6/JAK/STAT signalling which focuses on the
signalling crosstalks via activated STAT3 is not yet available. In this thesis I
propose such a model and integrated IL − 6 signalling with the TGF−β model
to investigate interactions between these pathways.

2.4 Summary

Intracellular signalling pathways play essential roles in regulation of the cell
functions. Many diseases, such as different cancer types, are developed by
the deregulation of the signalling pathways. Because of the close connection
of inflammation and cancer, it is important to study the crosstalk between the
inflammatory the growth signalling pathways. Additionally, the complexity
of the intracellular signalling networks highlights the need for Systems biol-
ogy approach and quantitative modelling of the networks. Two specific sig-
nalling pathways are studied in the current thesis: IL−6 signalling which is up-
regulated while inflammatory responses and TGF−β signalling which causes
anti-growth responses. Individual studies have identified the major compo-
nents involved in each signalling system qualitatively. However, no quantitative
analysis and modelling are reported which emphasizes on the crosstalk between
IL− 6 and TGF−β signalling pathways.

This points to the need for development of two separate mathematical mod-
els which follow Systems biology principles in order to quantitatively identify
the components of each signalling system and their role in the final output of
the system. Next, mathematical models are experimentally validated individu-
ally. The IL−6 and TGF−β signalling models are combined together to develop
an integrated mathematical model which inspects the crosstalk between the two
pathways.

This literature review has covered four major aspects of this project:
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First, the Systems biology approach and its different methods were reviewed
as the main theme of studying the IL − 6, TGF−β and the integrated models.
Second, TGF−β signalling pathway and its key signalling components were
reviewed, focusing on the role of TGF−β signalling in cancer. Previous math-
ematical models of TGF−β signal transduction in the literature were reviewed
to specify the contribution of this project. Third, IL− 6 signalling pathway and
the interaction between its components were studied, emphasizing on the liter-
ature mathematical models of IL − 6 signalling. Fourth, the crosstalk between
IL − 6 and other signalling pathways were analysed, focusing on Jenkins et al.
(2005) [206] first discovery of the attenuation of TGF−β signalling via IL − 6

up-regulation.



Chapter 3

Methods

• All methods in this Chapter were performed by the applicant.

• In the revised thesis, all abbreviations are either explained in full or de-
tailed in the "Abbreviations" section on pages vii-ix.

3.1 Measurement of Key Signalling Components

MEFs were grown to confluence and the proteins extracted with detergent buffers.
The method we used to quantitate the levels of SMAD2, STAT3, SMAD7, PSTAT3
and PSMAD2 was Western blotting. Where needed the experimental data set
and the kinetic rates used to set initial parameters for the model were elicited
from the literature [72, 74, 308, 386, 402, 449, 479, 511, 513].

Once the initial concentrations for the key signalling components were deter-
mined for MEFs, the cells were fractionated into plasma membrane, cytosol and
nuclear compartments to measure the sub-cellular concentrations of each key
signalling component. The proteins from cultured cells were harvested from 5
minutes to 2 days after stimulation and the levels of the key signalling compo-
nents in the three subcellular compartments were measured quantitatively. The
measurements are compared to the predicted values from the computer mod-
elling.

3.1.1 Cell Culture and Cell Lysis

Mouse embryonic fibroblasts (MEFs) cells were isolated from day 13 to 15 em-
bryos. Wild type MEFs and MEF Gp130F/F [206] and SV40-immortalized MEFs
[147] cells were cultured in DMEM containing 15 % FCS . The cells were typsi-
nazed and washed with DMEM + 15 % FCS before plating. Passage 3 cells were
seeded at 1×106 MEFs/well in 60 mm plates for 0-4 hour, 0.5×106 MEFs/well
for 24 hour and 0.25×106 MEFs/well for 48 hour treatment with 1 ng/ml IL −
6 (Ref 1661.F33. WEHI) and/or 5 ng/ml TGF−β respectively (for Gp130F/F

MEFs the cell numbers changes as: 1.2×106 MEFs/well for 0-4 hours, 0.6×106

29
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MEFs/well for 24 hours and 0.3×106 MEFs/well for 48 hours). After washing
with cold PBS for two times, cells were lysed in ice-cold 200 ul RIPA lysis buffer,
containing 1M Tris/HCL, 0.5 M EDTA , 5M NaCl, 10 % Na-Doc , 10 % TX-100, 10
% SDS , protease inhibitor 100 × and H2O. The cell lysates were passed through
27 G needle for 5 times, then incubated in ice for 20 min. After incubation the
samples were spun at 13,000 rpm for 30 min at 4oC. The supernatant was trans-
ferred to new tubes where 20 ul of sample was used for a BCA protein assay
using sigma BCA assay kit (product No. B9643). 20 ul 5× SDS sample buffer
was added to 80 ul of the lysate and the samples were heated at 95oC for 10
min. The following steps were followed to prepare the samples for Western blot
experiment.

Cell Collection

• Aspirate (remove the medium by vacuum suction) the medium.

• Add 5 ml PBS to remove all FCS. Wash and aspirate it. Repeat this step
once more to remove all the medium (FCS neutralizes the trypsin therefore
any traces of media will inhibit the action of the trypsin on the cells)

• Add 2 ml TV .

• Put the plate in the incubator for about 30 sec - 1 min.

• Label cell culture flasks. ( Usually 3 or 4 flasks would be needed when
learning to seed cells at a particular cell density or number)

• Use 50 ml Falcon tube. Label it with cell name.

• Add 10 ml medium to the cells and transfer them all to the 50 ml tube.

• Re-suspend the mixture for about 5 times

• Spin the mixture for 5 minute and aspirate the above medium then re-
suspend the pellet in 10 ml fresh medium.

Cell Count

• Take a 100 ul sample of the cells. Use the 1.5 ml Eppendorf tubes

• Add 30 ul of the TB liquid to 1 well of a 96 well dish.

• Mix the 100 ul aliquot (sample) of cells and add to 30 ul of the cells to the
trypan blue volume.

• This is a 1:2 dilution (dilution factor should be considered when calculat-
ing cell number/ml)

• Insert 10 ul of the mixture on to the cover-slip of the heamocytometer.

• Count each of the 4 square separately and take the average.
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• Multiply the dilution factor and the zooming factor (1e4).This is the num-
ber of cells per ml.

• Multiply the amount of the medium (2 ml TB + 10 ml FCS DME). This
would be the total number of cells.

Cell Culture Set-up

• In order to have different cell concentrations in each flasks/dishes calcu-
late the volume of the cells for different numbers of cells per ml (i.e.: 0.5e6,
1e6, 2e6, 4e6).

• Add those calculated volumes to 10 ml of medium

• Label the flasks/dishes with cell line, passage number, date, type of medium,
total cell count added to the flask/dish and volume

3.1.2 Western Blotting

According to the protein concentration results from the protein assay, Novex
NuPAGE R© 4-12%-Bis-Tris (life technologies NP0335 Box) gels were used for
loading the lysates for each time point. PSTAT3 (XPTM Rabbit mAb) antibodies
were provided by Cell Signalling Technology (product No. 9145) and were used
at a dilution 1:500 in 3% BSA-TBS-T . Antibody directed against SMAD7 was
purchased from Santa Cruz Biotechnology and was diluted according to the
manufacture’s instructions. PSMAD2 antibody (rabbit polyclonal anti-phospho-
Smad2 antibody (1:1000 for Western blot)) was a gift from Prof. Peter ten Dijke
(Leiden University Medical Center, Netherlands). PSTAT3 (XPTM Rabbit mAb)
antibodies were provided by Cell Signalling Technology and were used at a
dilution 1:500 in 3% BSA-TBS-T.

β-tubulin, Lamin B1 and transferrin receptor were used as loading control
depending on the protein to be expressed. The gels were transferred onto ni-
trocellulose stained membrane via iBlot 2 gel transfer device (life technologies)
and the membranes were scanned quantitatively using Odyssey infrared scan-
ner (LI-COR). The following describes step by step procedure of Western blot-
ting.

• Prepare a gel. Put it inside the western blot container.

• Use the MOPS as the liquid of the western blot if the proteins are quit big
in size.

• Dilute the MOPS 1:20 (25 ml of MOPS in 500 ml of DDT ).

• Pour the diluted liquid in the centre of the western blot container. Let it to
redound to the sides spaces.
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• Wash the wells of the gel using a syringe.

• Leave one of the wells for the standard sample. Here it is see-blue. Add 7
ul of the see-blue to the well.

• Use your pre boiled samples and fill all the wells in turn.

• Apply voltage to the container for about 1 hour.(The applied voltage should
be between 150-180 V)

• Take the gel out and open it gently.

• Transfer the gel to the membrane and leave it about 6-8 min.

• Put the membrane in milk and cover it with aluminium foil and leave it
on the shaker for a night. (we use the milk to block all the empty spaces
between the layers to avoid unwanted bindings)

• Use TTBS (TBS-T) to wash the membrane. First rinse the milk. Then repeat
the washing 4 times with 10 ml of TTBS following with 5 min moving on
the shaker.

• Dilute 0.01 of the first anti body in 10 ml TTBS in Falcon tube.

• Add the 1st Ab to the membrane.

• Put the membrane on the shaker for another one hour.

• Another 4 time wash with 5 min shaking.

• Dilute 1ul of the second anti body in 10 ml TBS.

• Add the secondary Ab to the membrane and cover it with aluminium foil
in order to avoid unwanted bindings caused by light.

• Put it on the shaker for another 1 hour.

• Repeat the 4 time wash and 5 min shaking.

• The last wash is with the 10 ml PBS to remove TTBS itself.

• Scan the result using Odyssey infrared scanner (LI-COR).

3.1.3 Protein Quantitation

The western blot images were quantitated using ImageJ 1.49p [140]. The signals
for each protein were normalised using the loading controls.
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3.2 Computer Modelling

The program used in this project was PYTHON 2.7 and MATLAB 7.10. PYTHON
is known as a high-level multi-paradigm, object-oriented programming lan-
guage. It also uses fully dynamic type system which benefits from an automatic
memory management in addition to a comprehensive standard library. There
are also several interpreters used for PYTHON which are suitable for almost ev-
ery operating system. MATLAB is a well known and wildly used programming
tool. It is a high-level language and interactive environment for numerical com-
putation, visualization, and programming. Using MATLAB, you can analyze
data, develop algorithms, and create models and applications. The curve fitting
tool box of MATLAB is used for fitting the Hill equation to Figure 6,7,8 and 9
and deriving the Hill coefficients.

The other program that has been applied for the model development is CellDe-
signer [302] which is a structured diagram editor used to develop models of bio-
chemical networks. The graphical notation system is stored in the form of Sys-
tems biology Markup Language (SBML) files but, it also supports simulations
with Copasi [450]. Figures describing the model were produced via CellDe-
signer4.3 and Microsoft Power Point.

3.3 Design and Modelling Methods

3.3.1 Mathematical Modelling of the Intracellular Protein-Protein

Reactions

Most common computer representations of cytokine signalling pathways use a
set of ordinary differential equations (ODE) [20, 249]. In this method, the re-
action rates are a representation of mass action kinetics and are proportional
to the reactant concentrations. The ODE modelling method, when all of the
components are known, is a reliable interpretation of dynamic behaviour of
the system components. The parameters of this model need to be estimated
quantitatively using mass spectrometry, mass immunoblotting or protein mi-
croarrays. For complex dynamic systems, such as cell signalling pathways, it is
not possible to solve the ODEs analytically. Consequently, numerical integra-
tion solutions are required and hence, sensitivity analysis become more vital to
identify the critical signalling components which regulate the output of the sys-
tem. Furthermore, numerical integration can result in large changes even where
changes in parameter values are small; therefore, by identifying the components
to which the system is more sensitive, a more robust and reliable model of the
system can be developed [177].

As mentioned earlier, the ODE modelling method is based on a mass-action
kinetics assumption in which the rate of a reaction is defined to be proportional
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to the concentration of the species of the reaction. In cases where this assump-
tion breaks down- for example when spatial gradients of the species are impor-
tant or when the concentrations are so low that stochastic fluctuations in the
system can affect the steady-state and the states are not continuous, other mod-
elling methods are normally used (PDEs or stochastic modelling) [292, 305].

Classical modelling of biochemical reactions decompose the complex sig-
nalling networks to a series of simple one or two direction reactions. For each
reaction (both reversible and irreversible) the changes in the concentration of
each component are described by a specific differential equation. Whenever two
successive reactions share a component, the concentration of that component
appear on the RHSs (right hand side) of the differential equations as a positive
or negative term. For a review on the modelling of intracellular reaction kinetics
see [154, 408, 409].

As an example for the mathematical modelling of a biochemical reaction us-
ing differential equations, a reversible protein-protein binding reaction is illus-
trated in Figure 3.1.

Figure 3.1: A reversible biochemical reaction which shows the binding of two proteins.

M1 and M2 bind together to produce D with the rate of k+. Similarly, k− specifies the

rate of dissociation of D to M1 and M2.

The corresponding biochemical reaction can be written as:

M1 +M2
k+−⇀↽−
k−

D,

where k− and k+ represent the kinetic rates of the reaction. Below are the corre-
sponding differential equations for every component in this reaction:

dM1

dt
= −k+M1M2 + k−D

dM2

dt
= −k+M1M2 + k−D

dD

dt
= k+M1M2 − k−D

Each differential equation describes the change of the concentration of a compo-
nent with time. The kinetic rate constants appear on the RHSs.
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3.3.2 Reduction, Scaling and Non-dimensionalization Methods

Complexity and the multiplicity of the components involved in a signalling net-
work (more specifically intracellular signalling networks), often make models
difficult to solve [146]. To tackle this problem, several reduction and simplifica-
tion methods have been developed [115, 146]. Separating the reactions accord-
ing to their time-scales and dividing the system to two subsystems (fast and
slow) is one effective way of reducing the model variables and equations. In
biochemistry, this method (the time-scale based reduction method) is known as
the "rapid equilibrium assumption" [115, 203]. The rapid equilibrium assump-
tion is based on the "singular perturbation" theory for nonlinear systems [272].
Both mass-action and Michaelis-Menten kinetics in biochemistry can be treated
using singular perturbation methods (see [272] for more details). In an enzymic
reaction, the small dimensionless parameter (ε), which appears in the singular
perturbation format of the equations, is defined as the ratio of the initial concen-
trations of the enzyme and substrate [272].

In signalling networks, the system often evolves on different timescales, this
allows us to benefit from the rapid equilibrium assumption in order to reduce
and simplify the equations. We have used this method to decrease the complex-
ity of our models.

One of the most important and challenging part of modelling signalling
pathways is the matching of dimensions and units for the variables and kinetic
rates in the model equations. To avoid mistakes in calculating the units of the
variables and kinetic rates, we have used a non-dimensionalization method to
substitute dimensionless variables in the equations [65,115]. Non-dimensionaliz-
ation [65,115] can be used to ensure that every term in a model is consistent and
all parameters are defined in appropriate units, this process is often followed by
scaling of the variables and their coefficients. The parametrization of a model
(specifically, the models described by differential equations) can be simplified
via non-dimensionalization method. The non-dimensionalization method and
its benefits are described in more detail in Chapter 4, section 4.4.

Due to the different levels of protein concentrations, detected during West-
ern blot quantitation, it is important to use scaling methods. The experimental
data are scaled to allow comparison with the simulation results.

Reduction Method

The greatest advantage of reduction methods in Systems biology is that they re-
duce the number of components and elements involved in the model and thus,
the complexity of the model. It is possible to eliminate the components that do
not significantly affect the dynamics and steady-state of the system and are diffi-
cult to measure quantitatively. The reduction method used in this thesis is "rapid
equilibrium assumption". This method relies on the separation of the variables
(or the reactions) in the system into "fast" and "slow". Time-scale separation
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of the biochemical reactions allows one to simplify the kinetics at steady-state
(or equilibrium). This section provides examples of applying rapid equilibrium
assumption on biochemical systems in Chapters 4 and 5.

For instance, consider the high affinity dimerization process of R2 (TGF−β
receptor type two, see Chapter 4 for more details) that is much faster than the
other TGF−β signalling reactions. In comparison to every other reaction in the
TGF−β system, R2dimerization time scale is large enough to enable us to use
the rapid equilibrium assumptions.

The time scale of each biochemical reaction can be calculated from the corre-
sponding differential equations of the participating components. The time scale

of a conversion reaction (A
k+−⇀↽−
k−

B), for instance, is defined as the following:

τ =
1

k− + k+
,

which is calculated via solving the differential equation of A, i.e. dA/dt =

−k+A + k−B, considering the fact that the total amount of A + B is constant

in time. Note that τ � 1 if and only if


k− � 1

or

k+ � 1

. However, it is easier for

biologists to work with off rate, k−. When, k− � 1, τ can be estimated with the
inverse k−:

τ ' 1

k−

In case of τ � Ti it is allowed to implement rapid equilibrium assumptions
into our system. Here, Ti represents time scales of all other reactions of the
system.

Our initial receptor model is illustrated in the following reactions: (In this
section all primes denote the differentiation with respect to time.)

R2 + R2
K2−−⇀↽−− R22 (3.1)

R1 + R1 + R22
KRC−−−⇀↽−−− RC (3.2)

Equation 3.2 consists of two successive steps. In fact, the effect of R1dimerization
is hidden in equation 3.2. In order to apply the rapid equilibrium assumption
on our system, equation 3.2 should break into two steps:

R1 + R1
K1−−⇀↽−− R12 (3.3)

R2 + R2
K2−−⇀↽−− R22 (3.4)

R12 +R22
KRC−−−⇀↽−−− RC (3.5)



3.3 Design and Modelling Methods 37

We assume all these reactions are fast. According to equations 3.3, the differ-
ential equations describing R1 and R12 dynamics will be as the following:

R1 ′ = −2k+R1 2 + 2k−R12 (3.6)

R12
′ = k+R1 2 − k−R12 , (3.7)

where rR1 and rR12 represent other terms of the equations such as, production
and degradation of each substance or the association and dissociation of the
successive components. k+ and k− represent the forward and respectively, back-
ward kinetic rates for the R1 and R2dimerization reactions. Next, we apply the
conservation law on R1 as a substance of the reaction 3.3:

R1 T = R1 + 2R12 (3.8)

The conservation law for R1 states that the total amount of R1 , by definition,
equals to the total amount of R1 as monomers adding by twice of the amount of
R1 as dimmers (which is twice of R12 ). This law is true in every condition. At
equilibrium, the total flux for each reaction must be zero,i.e. the right arrow flux
should be equal to left arrow flux (equation 3.3):

k+R1 2 = k−R12

A new term is defined; K = k−

k+
which is called the "equilibrium constant"

and has units of "concentration". Consequently, R12 can be rewritten in terms of
R1 and K, R12 = R1 2

K
.

At equilibrium, the equation 3.8 can be written as:

R1 T = R1 + 2
R1 2

K

Now if we differentiate this equation with respect to time (the independent
variable) and subsequently we will have:

R1 ′T = R1 ′ + 4
R1

K
R1 ′ (3.9)

On the other hand, R1 ’ and R12 ’ have already been defined via stoichiome-
try equations (equations 3.6 and 3.7). Substituting equations 3.6 and 3.7 into the
recent equation for R1 ′T (equation 3.9), we would have another description for
R1 ′T:

R1 ′T = −2k+R1 2 + 2k−R12 + rR1 + 2k+R1 2 − 2k−R12 + 2rR12 or (3.10)

R1 ′T = rR1 + 2rR12

Combine the equations 3.9 and 3.10, a single equation will be derived:
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R1 ′(1 + 4
R1

K
) = rR1 + 2rR12 (3.11)

This equation propose a differential equation for R1 . In fact, we have re-
duced a system of two coupled differential equations (equations 3.6 and 3.7)
into a single differential equation for R1 and hence, eliminated the direct depen-
dence of the system on one of the variables,R12 .

The left hand side factor of equation 3.11, (1 + 4R1
K
), summarizes what hap-

pens during the dimerization process while, the right hand side describes the
other reactions that affect the R1dynamics directly or through affecting R12 dyna-
mics, for instance R1 ’s production and degradation reactions.

At equilibrium, the changes in the total amount of R1 in time (R1 T’) must
be zero. Therefore, the left hand side of the equation equals zero and, it can
be stated that equation below is the equilibrium condition of the dimerization
reaction:

rR1 = −2rR12

The nullclines in the slope field (phase portrait) is shown by R1 ′ = 0, thus it
is only rR1 +2rR12 term that determines the nullclines. The velocity vectors lon-
gitude is proportional to K through the R1 ′ = (rR1 +2rR12 )/(1 + 4R1

K
) equation.

The calculations above show the procedure of applying the rapid equilib-
rium assumptions on each fast reaction. We will benefit from this reduction
method in Chapter 4 and 5 because of its advantages. These assumptions can
be made only if the time scale of the reaction is remarkably greater than other
reactions of the system.

Equations 3.3 and 3.4 follow the same model of dimerization. Therefore, the
reductions applying to R2 are the same as R1 . The final form of the reduced
version of R1 and R2dimerization would be as the following:

(1 + 4
R1

K1

)R1 ′ = rR1 + 2rR12 (3.12)

(1 + 4
R2

K2

)R2 ′ = rR2 + 2rR22 (3.13)

The dimerization reaction between identical species is called "fast homo-
dimerization" (see equations 3.3 and 3.4). If we have a closer look at equation
3.5, it is clear that it can be interpreted as a dimerization reaction but, the sub-
stances R12 and R22 are not of the same kind. This type of dimerization is known
as "fast hetero-dimerization". In spite of the distinction between fast homo and
hetero dimerization reactions, they can be treated similarly. Therefore, we ap-
ply rapid equilibrium assumption on the reaction 3.5. The differential equations
describing the reaction 3.5 are:
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R12
′ = −k+R12R22 + k−RC + rI (3.14)

R22
′ = −k+R12R22 + k−RC + rII (3.15)

RC ′ = k+R12R22 − k−RC + rC (3.16)

Similar to previous case (R1dimerization) rI , rII and rC denote the other
terms of the equations. Now, we have two equations for totals:

R12 T = R12 +RC (3.17)

R22 T = R22 +RC (3.18)

The final goal is to eliminate RCdependency of these two equations (equa-
tions 3.17 and 3.18), assuming that reaction 3.5 happens relatively fast. At equi-
librium we have:

RC =
R12R22

K
, K =

k−

k+

Substituting RC to equations 3.17 and 3.18 we have:

R12 T = R12 +
R12R22

K

R22 T = R22 +
R12R22

K

Now we repeat the differentiation step for both equations.

R12
′
T = R12

′ +RC ′ (3.19)

R22
′
T = R22

′ +RC ′ (3.20)

We replace the terms from the equations 3.14 and 3.15:

R12
′
T = rI + rc

R22
′
T = rII + rc

Now we differentiate equations 3.19 and 3.20, while RC is replaced:

R12
′
T = R12

′ +
R22R12

′

K
+

R12R22
′

K

R22
′
T = R22

′ +
R22R12

′

K
+

R12R22
′

K

Therefore, we write the following equations:
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(1 +
R22
K

)R12
′ +

R12
K

R22
′ = rI + rc

R22
K

R12
′ + (1 +

R12
K

)R22
′ = rII + rc

At this point we use Cramer’s rule to de-couple the system:

(1 +
R12
K

+
R22
K

)R12
′ = (1 +

R12
K

)rI −
R12
K

rII + rc (3.21)

(1 +
R12
K

+
R22
K

)R22
′ = −R22

K
rII + (1 +

R22
K

)rII + rc (3.22)

The goal of section 3.3.2 is to demonstrate the reduction method. We have
eliminated R12 and R22 from the corresponding differential equations of reac-
tions 3.3 and 3.4 assuming that these reactions are fast. Later we have elimi-
nated RC from the differential equations corresponding the fast reaction 3.5. In
the next step we can substitute R12 and R22 variables in 3.21 and 3.22 and modify
3.12 and 3.13 in order to describe the whole receptor system via two differential
equations (R1 ’ and R2 ’).

3.4 Validation Methods

The following methodologies are used and explained in more details in subse-
quent chapters (Chapter 4 (section 4.5), 5 (section 5.6) and 6 (section 6.4)).

3.4.1 Quantitation Methods

Quantification of protein expression using Western blot experiments is essential
for mathematical modelling the signalling networks. ImageJ, a Java-based pro-
gram, is one of the most common programs used for quantitation of blots. The
blots can be converted to 8-bit grayscale in ImageJ analyses of standard Western
blot figures in publications. Each row in a blot needs to be normalized to the
relative loading control, however, normalization can also be performed with re-
spect to a protein that remains constant e.g. total SMAD2/3 in TGF-βand total
STAT3 in IL− 6 signalling pathways. The quantification methods are explained
in [140, 429].

3.4.2 Estimation and Curve Fitting Methods

In order to validate our proposed models with experimental data, we have used
the curve fitting toolbox of MATLAB [438, 467]. This toolbox lets the user per-
form data and regression analysis and provides adjustable initial conditions and
parameter values to improve the fittings [157].



Chapter 4

TGF−β Receptor Model of Signal

Switching in Cancer

4.0 Summary of the information included in Chap-

ter 4

• Background

Transforming growth factor β, TGF−β, signalling regulates the develop-
ment of embryos and tissue homeostasis in adults. In conjunction with
other oncogenic changes long-term perturbation of TGF−β signalling is
associated with cancer metastasis. Although TGF−β signalling can be
complex, many of the signalling components are well defined by exper-
iment; so it is possible to develop predictive models of TGF−β signalling
using reduction and scaling methods. The parameterization of our TGF−β
signalling model is consistent with the experimental results.

• Results

By adding time-delayed positive feedback to the inherent time-delayed
negative feedback for the TGF−β signalling - even when we used the
minimal reaction set, we were able to simulate the sigmoidal, switch-like
behaviour observed for the concentration dependence of long-term (> 3
hours) TGF−β stimulation. By using a “rapid equilibrium assumption”
to reduce the network of TGF−β signalling reactions and the time scales
of the individual reactions and the inclusion of both negative and positive
feedback loops, we have developed a mathematical model for the TGF−β
signalling pathway, i.e. the simplified model of TGF−β signalling. Com-
puter simulations reveal the vital role of the coupling of positive and nega-
tive feedback loops on the regulation of the TGF−β signalling system. The
incorporation of time-delays for the negative feedback loop improved the
accuracy, stability and robustness of the model. This model reproduces

41
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both the short-term and long-term switching responses for the intracel-
lular signalling pathways at different TGF−β concentrations. We have
tested the model against experimental data from MEF (mouse embryonic
fibroblasts) WT, SV40-immortalized MEFs and Gp130F/F MEFs. The pro-
ductions from the simplified model are consistent with the experimental
data.

• Conclusions

The signalling feedback loops are required to model TGF−β signal trans-
duction and its effects on normal and cancer cells. We focus on the effects
of time-delayed feedback loops and their coupling to ligand stimulation
in this system. The model was simplified and reduced to its key compo-
nents using standard methods and the rapid equilibrium assumption. We
detected differences in short-term and long-term signal switching via con-
sideration of positive and negative feedback loops in our simplified model
of TGF−β signalling. The results from the model are compared to experi-
mental data and provide predictions for TGF−β signalling in cancer cells
with different mutations.

4.1 Introduction

TGF−β is a member of the transforming growth factor superfamily, which also
includes other growth factors such as bone morphogenetic proteins, Mullerian
inhibitory substance, activin, inhibin and Nodal [75,296,396]. Each family mem-
ber controls a broad range of cellular processes, such as differentiation, prolif-
eration, migration, life span and apoptosis [118, 296]. TGF−β is secreted in an
inactive form and sequestered in the extracellular matrix, but once activated
by serine and metalloproteinases [208], TGF−β binds to cell surface TGF−β
receptor complexes. The active ligand:receptor complex now initiates intracel-
lular signalling that leads to SMAD activation and nucleocytoplasmic shuttling
and, eventually, gene responses in the nucleus [300, 433].

The TGF−β receptor complex is a tetramer comprised of Type 1 and Type
2 receptors that upon TGF−β binding becomes activated via autophosphory-
lation [178, 296, 471]. The activated TGF−β receptor complex is then internal-
ized [169, 301], where it phosphorylates and activates SMAD3 [178]. Activated
SMAD3 then forms homotrimers, which bind to SMAD4 homotrimers and then
imported into the nucleus [507]. These SMAD3:SMAD4 complexes function as
transcription factors that up-regulate a number of target genes, including Jun,
Fos, SNAIL1 and SMAD7, known inhibitor of TGF−β Type 1 receptors and
TGF−β receptor signalling [323, 451, 507].

Recent studies indicate that TGF−β concentration, stimulation time, cell
type and even the percentage of active signalling components can influence the
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gene responses, giving a multi-functional aspect to TGF−β signalling [75, 297].
This is of particular interest in cancer, where SMAD signalling is the most critical
pathway controlling the transition of normal epithelial cells to cancerous cells in
the colon [206, 297, 299, 330, 396]. In spite of the myriad studies on the TGF−β
signalling pathway, there are still many unanswered questions concerning the
impact of TGF−β signalling at different stages of cancer cell progression [18].
In particular, there are two opposing reactions of cancer cells to TGF−β: the
proliferation of cancer cells at an early stage is inhibited by TGF−β [265], yet at
more advanced stages of malignancy, proliferation of cancer cells is stimulated
by this signalling protein [198].

Although TGF−β signalling components were discovered decades ago [13],
the quantitative aspects, dynamics and locations of the signalling components
that occur within hours of TGF−β stimulation [72,74,308,386,449,511,513] have
been more difficult to understand. This has motivated the development of a
number of mathematical models of TGF−β signalling [19,72,74,75,308,386,449,
512, 513] including a recent model [511]. In a comprehensive model, Zi et al.
explains the high cooperativity and discontinuous cellular response to TGF−β
in terms of switch-like behaviour arising from ligand depletion. All of these
models, however, lack inhibitory feedback mechanisms known to regulate the
TGF−β system, including feedback through SMAD7, a key inhibitor in TGF−β
signal transduction [323]. Furthermore, SMAD7 is an important component for
mediating the crosstalk between TGF−β signal transduction and other cytokine
signalling pathways such as IL-6 or IL-11 [206].

These models also lack the more recently discovered positive feedback in
TGF−β signalling that acts by suppressing Azin1 via a microRNA (miR-433)
[269]. Azin1 promotes polyamine synthesis [212,269], which suppresses TGF−β
signalling [269, 277, 345, 365]. Azin1 accomplishes this by inhibiting antizyme,
thus preventing the degradation of ornithine decarboxylase (ODC) [212, 269].
ODC is essential for the biosynthesis of polyamines [212,269] (see Figure 4.1). In-
terestingly, over-expression of Azin1 suppresses the expression of TGF−β and
its Type 1 receptor [269]. The miR-433:Azin1:Antizyme:ODC reactions induce a
positive feedback control of TGF−β signalling.

Inclusion of such feedbacks is particularly important given that it is well
understood that positive and negative feedback loops, particularly in the pres-
ence of time-delays (typically found in cellular signalling systems involving
gene regulation and shuttling of signalling components between compartments)
can also produce both cooperativity and switch-like behaviour even in the ab-
sence of ligand depletion [120, 121, 393]. As a prelude to improving our un-
derstanding of the TGF−β signalling system we have developed a new mathe-
matical model of the TGF−β receptor system incorporating negative feedback
control via SMAD signalling, positive feedback via Azin1 and transcriptional
time-delays [248, 323]. To that end, here we present a detailed model incorpo-
rating the main mechanisms of TGF−β and SMAD signalling, including feed-
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backs and time-delays, but then reduce our model to a simpler system that is
more amenable to both standard mathematical analysis techniques and simula-
tion [459]. This permits us to fully characterise analytically the system at steady-
state while also investigating the transient dynamics of the system in response
to TGF−β signals.

4.2 Model Development

Signalling systems like the TGF−β pathway can be modelled using differen-
tial equations describing time rate of the concentration changes of the various
cellular components (e.g TGF−β receptors, SMAD4) in terms of reaction rates
corresponding to specific kinetic mechanisms, for example, first order or Henri-
Michaelis-Menten [115]. These are shown for the TGF−β signalling system in
Figure 4.1. TGF−β receptor activation starts with the dimerization of both com-
ponents (TGF−β receptor type 1 and 2, called respectively R1 and R2 ). Ex-
tensive studies have discovered that receptor dimers initiate the signalling pro-
cesses [102, 284]. The R2dimer binds to the R1dimer, resulting in the receptor
complex RC . The RC complex binds TGF−β dimers in the medium around the
cells (see Figure 4.1). This TGF−β:RC complex (LC ) contains all the compo-
nents essential for signalling, however, R1 s are not activated (phosphorylated)
so LC is not the membrane transducer of the exogenous TGF−β signal. Ac-
tivation of LC requires ligand stimulated phosphorylation of R1 by R2 to pro-
duce a fully phosphorylated ligand-receptor complex (PC ). PC initiates SMAD
signalling via stimulation of the SMAD phosphorylation processes. The acti-
vation processes start with the phosphorylation of SMAD2/3, the formation of
(PSMAD2/3)3.(SMAD4)3 [481], the translocation (Phospho-SMAD2/3)3 to the
nucleus, stimulation of the SMAD7 gene and expression of the miR-433 mi-
croRNA. Accordingly, SMAD7 is transcribed, its mRNA translated and eventu-
ally the SMAD7/SMURF complex amplifies the degradation of the R1 -associated
membrane components (note that only SMAD3 is considered in Figure 4.1 due
to its crucial role in SMAD7 and miR-433 activation). Note that the compo-
nents and reactions are estimations of the most frequent occupance among all
the possibilities in biology. For instance, receptor dimerizations of type1 and
2 receptors on the membrane are reported in different orders in the literature
[156,219,237,298], however, considering the significantly short time scale of the
receptor dimerization reactions comparing to other intracellular reactions, alter-
ing among the different dimerization orders does not change the steady-state
and equilibria of the system.
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Figure 4.1: The full TGF−β signalling biological model. Potential phosphorylation

sites of the receptors are specified with empty circles attached to R1 and R2 components.

Arrows pointing to 6 blue dots represent degradation process. The red solid arrows

originating from SMAD7/Smurf apply negative and/or positive feedback on the recep-

tor components of the membrane. Oval-shaped components written in small letters

represent micro-RNAs. In this figure, S represents the SMAD proteins. Note that the

arrow from ODC to polyamine shows a stimulatory reaction rather than conversion.

4.2.1 The Full Model

In order to simplify the intracellular reactions involving in TGF−β signalling,
we have focused on the receptor components and their interactions on the mem-
brane. Simulation of these receptor processes is achieved by collapsing the
SMAD signalling interactions (e.g. nucleocytoplasmic shuttling of activated
SMAD complexes and transcription and translation of feedback-associated pro-
teins, such as SMAD7) to a single ligand dependent feedback loop that is orig-
inated from PSMAD trimer, S3 . This simplifies the initial modelling equations
and focusses the feedback reactions on membrane components. The real feed-
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back loop in the Full Model of TGF−β signalling is the result of a sequence of
back-to-back, coupled reactions explained above (see Figure 4.1). Besides, each
one of the intracellular processes happens within a specific time interval and at
a defined kinetic rate. In order to summarize all the cytoplasmic and nuclear
reactions in one stimulatory/inhibitory reaction, a significant time-delay needs
to be included. Our model for TGF−β signalling is shown in Figure 4.2.

Altering from Figure 4.1 to Figure 4.2 a few assumptions have been made.
Primarily, Ŝ is replaced with the all the phoshorylated SMAD3 in the cytoplasm,
while the nuclear PSMAD3 is represented via Sn in Figure 4.2. SMAD4 is the
common-mediator SMAD that participates in the TGF−β signalling only by in-
teracting with PSMAD2/3. Therefore, it is possible to summarize the SMAD4
role in TGF−β signalling in Ŝ . Total (PSMAD3)3.(SMAD4)3 concentration is
represented with S3 in Figure 4.2. The negative feedback cascade via SMAD7 is
initiated from transcriptional active SMAD complex in the nucleus and is also
reducible to S3 component. However, S3 is presented as a dimer in relative terms
of negative feedback in the equations 4.1 in order to imitate the SMAD7:SMURF
interaction. The positive feedback, on the other hand, consists of a chain of bio-
chemical reactions which are triggered by nuclear (PSMAD3)3.(SMAD4)3. As a
result, Azin1:Antizyme:ODC:Polyamine reactions can be represented via a sin-
gle intermediate inhibitor, i.e. P .

Figure 4.2: The full receptor model, TGF−β signal transduction. The red dashed lines

which originate from phosphorylated SMAD trimer indirectly regulate the receptor lev-

els. All the reactions from trimerization of phospho-SMAD2/3 to SMAD7 transcription

and translation are reduced to the red dashed lines (see Figure 4.1 for clarification). The

dotted ends of red dashed lines show that included reactions could lead to both inhibi-

tion and stimulation of their targeting reactions (demonstrating negative and positive

feedback effects). In this figure S is specifically used for SMAD2/3

Referring to the model Figure 4.2, the Full Model reactions are:



4.2 Model Development 47

R1 + R1
k+1−−⇀↽−−
k−1

R12 R1
k1−⇀↽−
v1

::: S
k+S−−⇀↽−−
k−S

Ŝ S
kS−⇀↽−
vS

:::

R2 + R2
k+2−−⇀↽−−
k−2

R22 R2
k2−⇀↽−
v2

::: Ŝ
k+n−−⇀↽−−
k−n

Sn

R12 +R22
k+RC−−⇀↽−−
k−RC

RC RC
kRC−−→ ::: Sn

k+3−−⇀↽−−
k−3

S3 S3
k3−→ :::

RC + TGF2

k+LC−−⇀↽−−
k−LC

LC

LC
k+PC−−⇀↽−−
k−PC

PC PC
kPC−−→ :::

This leads to the following system of differential equations:

d [R1 ]

dt
= v1 − k1 [R1 ] − kf−1 [N ]2

[R1 ]

[R1 ] +K
−

2k+1 [R1 ] [R1 ] + 2k−1 [R12 ] − kf+1 [P ]
[R1 ]

[R1 ] +K

d [R2 ]

dt
= v2 − k2 [R2 ] − 2k+2 [R2 ] [R2 ] + 2k−2 [R22 ]

d [R12 ]

dt
= k+1 [R1 ] [R1 ] − k−1 [R12 ] − k+RC [R12 ] [R22 ] + k−RC [RC ]

d [R22 ]

dt
= k+2 [R1 ] [R1 ] − k−2 [R22 ] − k+RC [R12 ] [R22 ] + k−RC [RC ]

d [RC ]

dt
= k+RC [R12 ] [R22 ] − k−RC [RC ] −

k+LC [RC ] [TGF2 ] + k−LC [LC ] − kRC [RC ] − kf−RC [N ]2
[RC ]

[RC ] +K

d [LC ]

dt
= k+LC [RC ] [TGF2 ] − k−LC [LC ] − k+PC [LC ] + k−PC [PC ] (4.1)

d [PC ]

dt
= k+PC [LC ] − k−PC [PC ] − kPC [PC ] − kf−PC [N ]2

[PC ]

[PC ] +K

d [S ]

dt
= vS − kS [S ] − k+S [PC ]

[S ]

[S ] +KS

+ k−S [Ŝ ]

d[Ŝ ]

dt
= k+S [PC ]

[S ]

[S ] +KS

− k−S [Ŝ ] − k+n [Ŝ ] + k−n [Sn ]

d [Sn ]

dt
= k+n [Ŝ ] − k−n [Sn ] − 3k+3 [Sn ]

3 + 3k−3 [S3 ]

d [S3 ]

dt
= k+3 [Sn ]

3 − k−3 [S3 ] − k3 [S3 ]

where [P ] = KI
2/(KI

2 + [S3 (t − τ)]2) and [N ] = [S3 ] (t − τ), the positive and
negative feedback intermediate components, respectively.

The purpose of the full model is to document all of the reactions we con-
sidered to be significant in the regulation of TGF−β signalling. Analysis of the
reactions determines which reactions should remain in the reduced model and
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which could be eliminated via the rapid equilibrium assumption. We will not
solve the full model because it is not necessary to consider parameters which do
not contribute in the determination of the steady-state of the model. Having the
full model allows the readers to appreciate why and how the model is reduced.

4.2.2 The Simplified Model

The procedure of designing an effective mathematical model of the TGF−β sig-
nalling pathway incorporates several consecutive steps. The modelling was
started from a very detailed, complex model of all the protein interactions and
reactions on the membrane, in the cytoplasm and the nucleus (see Figure 4.1).
In the full receptor model, several reactions with long time scales became sum-
marized into feedback loops which originate from PSMAD trimer. We then
simplified the receptor model to 6 differential equations. It is assumed that
the R1 and R2dynamics are similar, hence the individual components were re-
placed by a receptor block, R . R then become dimerized to form RC . Besides,
LC and PC are assumed to to combine in one parameter, i.e. PC , since they
approximately follow the same kinetics. In the SMAD activation section, an in-
termediate step, Sn , has been added so as to mimic the nuclear accumulation
of phosphorylated SMAD, in comparison with the abundance of unphosphory-
lated SMAD in the cytosol. Note that these assumptions are used in order to
provide a simplified view of the Full model (Figure 4.1). No reduction method
has been used up to this point. Eventually, the reactions describing the Simpli-
fied Model could be represented as below:

R + R
k+RC−−⇀↽−−
k−RC

RC R
k2−⇀↽−
v2

:::

RC
kRC−−→ :::

RC + TGF2

k+PC−−⇀↽−−
k−PC

PC PC
kPC−−→ :::

S
k+S−−⇀↽−−
k−S

Ŝ S
kS−⇀↽−
vS

::: (4.2)

Ŝ
kŜ−→ :::

Ŝ
k+n−−⇀↽−−
k−n

Sn Sn
kSn−−→ :::

Figure 4.3 highlights the assumptions we used to simplify our receptor model.
Here, Figure 4.3A describes the reaction system corresponding to Figure 4.2,
these reactions are used to determine the equations defining the mathemati-
cal model of TGF−β signalling. By comparing the full receptor model (Figure
4.3A) and the simplified receptor model (Figure 4.3B), the key components in
the TGF−β receptor signalling model are specified. In other words, our reduc-
tion/simplification method functions similar to sensitivity analysis in keeping



4.2 Model Development 49

the critical components in a signalling pathway.

Figure 4.3: TGF−β receptor signalling system. A) The schematic receptor model,

TGF−β signal transduction. TGF and Ŝ +3S3 represent the input and the output of the

model, respectively. B) A Simplified Model of TGF−β signal transduction. TGF−β
and Ŝ + Sn + 3S3 represent the input and the output of the model, respectively.

A set of delayed differential equations describing the Simplified Model are
introduced via equations 4.3. The solutions to these equations are at equilibrium
when the left hand value is zero, i.e. where the derivatives of each variable are
zero with respect to time. The component P represents the molecules through
which the positive feedback acts on the receptors (Azin1:Antizyme:ODC:Polya-
mine in Figure 4.1). The positive feedback is indirect, being affected by two
coupled, inhibitory processes.

To achieve the most biologically compatible and robust model of TGF−β
signalling, the place of action of the individual feedback reactions contains in-
formation which affects the responses of the system. Sensitivity analysis identify
LC as the negative feedback action point. SMAD7 binds to receptors and partic-
ipates in the induction of E3 ubiquitin (Ub) ligase-mediated receptor ubiquitina-
tion [101,226]. Michaelis-Menten kinetics is used to model the negative feedback
inhibitory function. It is been reported that polyamine depletion increases the
TGF−β type 1 receptor mRNA and increases the sensitivity of cells to TGF−β-
mediated growth inhibition [269,277,365]. Consequently, we have modelled the
positive feedback successive reactions using two inhibitory reactions: first, the
inhibition the intermediate inhibitor Pvia miR-433 and second, the inhibition of
Rvia P .

Although some cooperativity within the system originates from several dimer-



4.2 Model Development 50

izations and trimerizations on the membrane, in the cytosol and in the nucleus,
the most critical cooperativity comes from the trimerization of the Phosphory-
lated SMAD3 and the binding of these oligomers to the SMAD4 trimer and the
consequential stimulation of the miR-433 and SMAD7 nuclear transcription. It
should be noted that the trimerization of Phospho-SMADs influences coopera-
tivity in both the positive and negative feedback loops (see Figure 4.1 for more
details).

The time-delay is considered in the equations representing the dynamics
of S3 . Hence, time-delays have been applied to both the positive and neg-
ative feedbacks. The time-delay compensates for the SMAD nucleocytoplas-
mic shuttling and other reactions that have been consolidated in the reduced
and simplified model (e.g. SMAD7 transcription and translation and the miR-
433/Azin1/Antizyme/ODC reactions).

For simplification, the time-delays and amplitudes of the positive and neg-
ative feedbacks are assumed to be identical, however, it is always feasible to
adjust these parameters when reliable experimental data becomes available.

d [R ]

dt
= v1 − k1 [R ] − 2k+RC [R ] 2 + 2k−RC [RC ] − kf+1 [P ]

[R ]

[R ] +K
−

kf−1 [N ]2
[R ]

[R ] +K

d [RC ]

dt
= k+RC [R ] 2 − k−RC [RC ] − kRC [RC ] − k+PC [TGF2 ] [RC ] +

k−PC [PC ] − kf−RC [N ]2
[RC ]

[RC ] +K
(4.3)

d [PC ]

dt
= k+PC [TGF2 ] [RC ] − k−PC [PC ] − kPC [PC ] − kf−PC [N ]2

[PC ]

[PC ] +K

d [S ]

dt
= vS − kS [S ] − k+S [PC ]

[S ]

[S ] +KS

+ k−S [Ŝ ]

d[Ŝ ]

dt
= k+S [PC ]

[S ]

[S ] +KS

− k−S [Ŝ ] − k+n [Ŝ ] + k−n [Sn ] − kŜ [Ŝ ]

d [Sn ]

dt
= k+n [Ŝ ] − k−n [Sn ] − kSn [Sn ]

where again, [S3 ] = [Sn ]
3/K3 , [N ] = [S3 ] (t− τ) and [P ] = KI

2/(KI
2 + [S3 (t−

τ)]2).
The parameters kf−1 , kf−RC and kf−PC represent, respectively, the strength of the

negative feedback on R , RC and PC , the R1 -associated membrane complexes.
Although we have applied the negative feedback on R , RC and PC simultane-
ously and with identical strengths and binding constants, the feedback on PC

is what produces the switching behaviour (see section 4). The positive feedback
is on R only, where Polyamine acts [269, 365], so that the cooperativity of the
system originates from the coupling of the self-regulatory positive and negative
feedback rather than from extracellular effects such as ligand dimerization or
depletion.
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In the work that follows, all calculations are performed with the simplified
model where concentrations are dimensionless and scaled such that v1 = 1. The
details of the scaling and the dimension-less parameters are described in section
4.4 The most interesting changes in total PSMAD concentration occur between
O(0.1) and O(1), TGF−β varies between 0 and O(10) and receptor concentration
varies between 0 and O(1). This is reasonable given that there is insufficient data
to constrain the model, particularly for the membrane bound receptor compo-
nents.

Total PSMAD concentration [Ŝ ] is defined as:

[Ŝ ] +
V n

V c
([Sn ] + [S3 ] )

, where Vn and Vc are defined as the volume of the nucleus and the cytoplasm
compartment, respectively. [S3 ] = [Sn ]

3/K3 and [Sn ] is calculated from the
final equation of 4.3.

4.3 Numerical Simulations

Analyses of the reduced equations and scaling make it possible to study the
performance of the model at steady-state in detail (also see "The Importance of
Feedback" in Supplementary Material). Our model uses six coupled differential
equations to represent all the reactions occurring on the membrane and within
the SMAD signalling cascade.

The Zi et al. model produced sigmoidal TGF−β concentration dependence
for the cellular responses to long-term stimulation [511]. The total concentration
of SMAD was used as an interpretation of the final cell response. According to
their results [511], the Hill coefficient of the fitted curve to the cell responses
to long-time TGF−β stimulation was approximately 4.5. The Zi et al. model’s
short-term (transient) responses to TGF−β followed the Hill equation with an
approximate coefficient of 0.8 [511]. Zi et al. proposed that the reason for such
a dramatic change in the behaviour of the system was due to a significant time-
dependent ligand depletion through ligand-receptor interaction [511]. More-
over, the level of total PSMAD concentration should be higher in the short-term
response comparing to the long-term. This difference in the level of responses is
due to the demanding overshoot of the PSMAD concentration time course (the
peak of PSMAD concentration in Figure 4.4).

In order to test our hypothesis that the positive feedback is responsible for
the change of the behaviour of the system from short-term to long-term cel-
lular responses, we repeated the simulations for the same TGF−β and stimu-
lation times. The parameter values used to produce the following figures are
shown in Table 4.3 of "Supplementary Material". Figure 4.4 shows the predicted
changes in the PSMAD concentration at different TGF−β concentrations. It is
evident that the steady-state level of PSMAD is 40% less than its short-term peak
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value. The predicted results shown in Figure 4.4 are consistent with the litera-
ture (e.g. [199, 511]) where the total PSMAD concentration peaks one hour after
the ligand stimulation. Figure 4.5 and Figure 4.6 show the predicted transient
and steady-state responses to the changes in TGF−β concentration in the sys-
tem. Note that the x axis in Figure 4.5 and Figure 4.6 denote different concen-
tration of TGF−β. Therefore, the simulation time is the same for every point
in each figure. The Hill coefficients are 0.85 for the short-term and 3.87 for the
long-term stimulation, i.e. similar to Zi et al. [511] (In order to compare the re-
production results see the Figure 5.A and 5.B of [511]. The parameter values are
fitted to a single term (Hill coefficient) for Figures 4.5, 4.6, 4.15 and 4.16.). These
results support our hypothesis that the coupling of time-delayed positive and
negative feedbacks in the TGF−β signal transduction system can account for
ultra-sensitivity responses to the ligand concentrations.

Figure 4.4: Total PSMAD time course for TGF−β = 5. The peak in the total PSMAD

concentration occurs 50-60 min after the stimulation and corresponds to the short-term

(transient) response. The constant level of PSMAD at 0.3 represents the long-term

(steady-state) response of the system.

Figure 4.5: Short-term responses of PSMAD levels to different concentrations of

TGF−β; transient response. The simulation time for each point in this figure is 50 min.

The only parameter of the model which is being changed in this figure is the TGF−β
concentration, meaning that each point has a different TGF−β input.
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Figure 4.6: Long-term responses of PSMAD levels to different concentrations of

TGF−β; steady-state response. The simulation time for each point in this figure is

1000 min. The only parameter of the model which is being changed in this figure is the

TGF−β concentration, meaning that each point has a different TGF−β input.

The negative feedback operates on all of the R1 -associated complexes on the
membrane. We suggest that it is the negative feedback through PCwhich reg-
ulates the system. PC is the only TGF−β-associated complex in the simplified
model for TGF−β signalling. The total TGF−β ligand concentration (extracel-
lular TGF−β, which is constant, and that which is bound within the PC com-
plex) decreases because of the degradation of PC via the basal degradation of,
and negative feedback on, PC . The saturation of the system with TGF−β flat-
tens the TGF−β concentration response curves at high concentrations of ligand
(Figure 4.5 and 4.6). In order to examine our hypothesis, we conducted a set
of simulations with feedback on R and RC removed (Figures 1 and 2 in Supple-
mentary Material). To accomplish this, kf−1 and kf−RC are set to zero. These sim-
ulation results corroborates our initial hypothesis that negative feedback acts
almost entirely through PC .

We speculate that PSMAD concentration time course in response to TGF−β
stimulation is modified in cancer cells due to the possible mutations in SMADs
and different receptor levels [124,235,264,462]. Figure 4.7 simultaneously shows
the model results of the responses of- what we have called- early and late stage
cancer cells to TGF−β stimulation. We simulated the biochemical conditions
of the early-stage tumors by reducing the membrane receptor and the SMAD
concentrations. More precisely, the production rates of receptors (v1 in Table
4.3) and SMADs (vs in Table 4.3) were decreased. The simulation response of
the total PSMAD time course in cells with lower receptor and SMAD concen-
trations is plotted in Figure 4.7A. A comparison of Figure 4.7A with Figure 4.4
reveals that PSMAD concentration peaks to a higher level (0.67 rather than 0.5)
but flattens to a lower level at steady-state (0.13 v.s. 0.3). This result confirms the
compatibility of our simplified receptor model of TGF−β signalling with both
normal and cancer cell lines.
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Figure 4.7: Total PSMAD time course for a certain TGF−β concentration. A) simula-

tion results for low membrane receptor concentration condition (or so called early-stage

tumors) B) simulation results for high membrane receptor concentration condition (or

so called late-stage tumors). These conditions were simulated via altering the receptor

production rate on the membrane.

In contrast, late-stage tumors express more responsiveness to TGF−β sig-
nalling. In order to establish late tumor environment, the receptors and SMADs
levels are increased, using relative production rates. Predicted response of late
tumors to TGF−β stimulation is shown in Figure 4.7B. Although total PSMAD
concentration peaks at a higher level in late tumors, its steady-state level is not
significantly lower than the peak, showing that the signalling remains high.

To investigate the role of receptor level in the signalling, we have simulated
the behaviour of PSMAD concentration while the receptor concentration in-
creases monotonically. Receptor production rate was increased to achieve an
increase in receptor concentration. TGF−β concentration was maintained at a
constant level during the experiment. This simulation was conducted for two
distinct values of TGF−β: 5 and 2. The second value of TGF−β concentration is
located approximately where the switch in the long-term steady-state PSMAD
concentration occurs (see Figure 4.6 and Figure 4.16 in Supplementary Material).
There was no distinguishable change in the PSMAD steady-state concentration
when TGF−β concentration was reduced (Figure 4.8). Low receptor concen-
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tration simulate the cancer cell (see Figure 4.8). The flat starts in both panels
of Figure 4.8 show that the cells are insensitive to TGF−β signalling when the
receptor copy numbers are very low, i.e. the situation in cancer cells. The peak
determines the receptor concentration in which the highest level of signal oc-
curs. At high concentration of the receptors, the PSMAD level reaches a satu-
ration level and stays there as the receptor concentration increases. When the
TGF−β concentration is higher (Figure 4.8A) the peak levels of PSMAD shift
to the left and all the changes happen at lower receptor levels. According to
the model formulation, negative feedback term is directly proportional to −S3

2,
while positive feedback element changes proportional to − 1

S3 2 . As a result, neg-
ative feedback dominates the positive feedback at highest S3 concentration (i.e.
the peak value of PSMAD) and decreases the PSMAD level until it reaches a
balanced and stable state (see Figure 4.8).

Figure 4.8: The effects of receptor concentration on the long-term response of PSMAD.

A) TGF−β = 5. B) TGF−β = 2. Approximately, no difference is observed between the

two panels of this figure.

We have repeated the above simulation with changing by SMAD concentra-
tion (see Figure 4.9). In neither panel of Figure 4.9 (corresponding to TGF−β = 5

and 2) is sensitivity to the TGF−β concentration evident at low SMAD levels.
PSMAD concentration level increases with SMAD concentration level until the



4.3 Numerical Simulations 56

saturation region. Moreover, decreasing the TGF−β value dramatically sup-
pressed the signal of all SMAD concentrations. At the higher concentration of
TGF−β, PSMAD levels increased even of low SMAD concentration (Figure 4.9A
compared to Figure 4.9B). The distinct saturation levels of panel A and B of Fig-
ure 4.9 are relative to the distinct steady-state levels of Figure 4.5 and Figure
4.6. More specifically, PSMAD steady-state value in Figure 4.9A varies between
0.63 and 0.74, corresponding to the saturation level of PSMAD in short-term
TGF−β stimulation. In Figure 4.9B instead, total PSMAD changes from 0.415 to
0.43, corresponding to PSMAD saturation level in long-term responses. Conse-
quently, total PSMAD concentration at higher TGF−β stimulation varies with
SMAD concentration levels as the system is stimulated with the ligand for a
short time and vise versa.

Figure 4.9: The effects of SMAD concentration on the long-term response of PSMAD.

A) TGF−β = 5 B) TGF−β = 2. The steady-state level of total PSMAD rises higher in

Figure 4.9A than in Figure 4.9B.

Figure 4.10 shows that the results of the simplified model of TGF−β sig-
nalling are consistent with the experimental data from different cell lines (wild
type MEFs and SV40-immortalized MEFs). Note that the blue line is not a fit of
the experimental data (dots). We have compared the output of the model with
the experimental data for different cell lines. Identical model parameters are
used to produce Figure 4.10A, Figure 4.10B and Figure 4.7B (the blue curves).



4.3 Numerical Simulations 57

For the wild type MEFs (Figure 4.10C), however, we have used the same model
parameters as in Figure 4.4

Figure 4.10: The validation of the simplified model with experimental data. The dots

show the level of PSMAD2 concentration obtained from experiment and the curves

specify the model predictions. A) PSMAD2 time course for 0-1h on SV40-immortalized

MEFs cell line stimulated with TGF−β and its corresponding blot B) PSMAD2 time

course for 0-4h on SV40-immortalized MEFs cell line stimulated with TGF−β and its

corresponding blot C) PSMAD2 time course for 0-4h on wild type MEFs stimulated

with TGF−β and its corresponding blot

Our simplified TGF−β signalling model was tested experimentally against
the data collected in our lab, by the applicant. Figure 4.11 shows the ability of
the model to predict the trend of the different experimental sets. The difference
between the experimental data and the simulation curves can be explained by
the errors associated by the experiments. The error bars for the experimental
data in Figure 4.11 suggest a broad range of values for each time point. How-
ever, the model simulation result (blue curve) provides a good approximation to
the general trend of the experimental data sets. Similarly, in Figure 4.12 the sim-
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plified model is fitted to the experimental data set from Gp130F/F MEFs [207].
In order to achieve this fit the parameters of the model had to be adjusted. The
level of the SMAD7 concentration is higher in Gp130F/F MEFs due to their gene
modification. As is shown in Figure 4.12, the steady-state level of PSMAD2 is
lower than in Figure 4.11. Note that the error bars are smaller in Figure 4.12 for
the longer time points.

Figure 4.11: PSMAD2 time course validation with experimental data sets from wild

type MEFs. Different dot colors specify different experiments. The curve shows the

model prediction of PSMAD2 dynamics.

Figure 4.12: PSMAD2 time course validation with experimental data sets from

Gp130F/F MEFs. The SMAD7 level is higher in Gp130F/F MEFs and the PSMAD2

steady-state level is lower compared to wild type MEFs. Different dot colors specify

different experiments. The curve shows the model prediction of PSMAD2 dynamics.
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4.4 Discussion

The importance of TGF−β signalling in the progression of cancer heralded in a
new era of cell biology research [9, 88, 350, 378]. Several models for TGF−β sig-
nalling have been proposed [72,74,308,386,449,511,513]. In each case the models
were attempting to study the complex responses of the intracellular signalling
reactions to different concentrations of TGF−β. In one of the most comprehen-
sive mathematical models Zi et al. [511] predicted that ligand depletion con-
tributed to the long-term response levels of PSMAD. Zi et al. suggested that at
higher concentrations of TGF−β, it was not depleted in the medium; as a result
there was a transfer from a transient to a switch-like response to TGF−β con-
centration. They also noted the possibility that negative feedback mechanisms
might also contribute to the switch-like response [511].

Our TGF−β model expresses less complexity than Zi et al., but at the same
time it contains the critical components that lead to robust responses to TGF−β
stimulation. The robustness of our model originates from the fact that the co-
operative output does not rely on the depletion of the ligand but is built into
the network. It is known that time-delayed positive and negative coupled feed-
backs can create robust stable signalling [120, 121, 460, 461]. In order to show
the critical role of feedback loops in the signalling networks we introduced a re-
duced model whose steady-state and equilibria were studies in the absence and
presence of a linear negative feedback. Steady-state studies with our reduced
model predict that feedback considerations can lead to a major improvement
in mathematical modelling of TGF−β signalling. One of the objectives of our
study was to design quantitative mathematical model that not only is applica-
ble to normal cells but also cancer cells. In cancer cells the number of TGF−β
receptors decreases significantly [235,264,462], thus the signalling will be down-
regulated. The time-dependent ligand depletion model of Zi et al. [511] does not
simulate the decrease in the receptor copy numbers.

We have shown that the PSMAD response of the cells is insensitive to TGF−β
stimulation for low receptor concentration. This situation could be interpreted
as TGF−β signal suppression in cancer cell lines. The relevant concentration of
receptors via which the most signal is delivered to the cells was also predicted.
Furthermore, our simulations show that the SMAD level reduction also causes
a global suppression of signalling in response to TGF−β. Due to mutations
of SMADs, many cancer cells have reduced levels of TGF−β signalling [124].
These results are consistent with the picture of early-stage tumors being asso-
ciated with the loss of TGF−β sensitivity and the decrease of TGF−β receptor
expression, a prediction that may have recently been validated in endothelial
cells and several cancer cell lines [97].

However, TGF−β transduction is stimulated in late-stage tumors (termed
"The TGF−β Paradox," for reviews refer to [3, 165]). Our self-regulatory model
can produce simulation results consistent with both roles of TGF−β in tumori-
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genesis. We simulated loss of responsiveness to TGF−β seen in early tumors
via reducing the production rates of the receptors and SMADs and the reac-
quiring of late tumors responsiveness to TGF−β via increasing their produc-
tion rates. According to our model predictions, the overshoot peak of PSMAD
in response to TGF−β is higher in early tumors and the steady-state levels of
PSMAD are lower generally, while in late tumors both steady-state and peak
levels are higher than normal cells. Additionally, the difference between the
PSMAD peak and steady-state levels becomes less in late-stage tumors to keep
the signalling on for longer time. This work can be used as a guide for future
experimental research on TGF−β effects on tumor progression.

In addition to reproducing the data in the literature ( [511]), new experi-
ments were designed. To validate our model for the abnormal receptor concen-
tration level, we have conducted experiments on an immortal cell line (SV40-
immortalized MEFs). Figure 4.10, Figure 4.11 and Figure 4.12 demonstrate how
the experimental data on immortal cells are explained via low receptor concen-
tration level (Figure 4.10A and Figure 4.10B) and how the signalling changes
for genetically modified cell lines (Figure 4.12). Concluding Figure 4.10, Figure
4.11 and Figure 4.12, they confirm that the model is compatible with the nor-
mal and/or the abnormal conditions inside a cell. Such robustness originates
from the rigorous system analysis applied on the model (see the "The Simplified
Model" and "The Importance of Feedback" in "Supplementary Material").

This model provides the basis for a mathematical study of TGF−β signal
transduction and its influence on cancer cells. By considering of a model where
coupled, positive-negative feedback loops modulate signalling, TGF−β signal
transduction can be studied more precisely using control theory analysis includ-
ing system identification methods [59, 68].

4.5 Materials and Methods

The experimental data set and the kinetic rates used to set initial parameters
for the model were elicited from the literature [72, 74, 308, 386, 449, 511, 513].
More precisely, for the initial conditions, parameter estimated values and the
interpretation of some experimental we have benefitted from Zi et al. proposed
model [511]. The values for all model parameters are documented in Table 4.3
of the Supplementary Material.
Computer modelling and simulations The programs used for these simulation
where PYTHON 2.7 and MATLAB 7.10. The curve fitting tool box of MATLAB is
used for fitting the Hill equation to Figure 4.5 and Figure 4.15 in Supplementary
Material, and deriving the Hill coefficients.
Mathematical and biochemical analysis The biochemical kinetics, equilibrium
analysis, feedback analysis, reduction analysis using rapid equilibrium assump-
tion, time-delayed analysis, asymptotic expansions and sensitivity analysis have
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been performed on the model [115].
Cell culture and cell lysis Mouse embryonic fibroblasts (MEFs) cells were iso-
lated from day 13 to 15 embryos. Wild type MEFs, SV40-immortalized MEFs
(Simian vacuolating virus 40) and Gp130F/F MEFs cells were cultured in DMEM
containing 15% FCS. The cells were typsinazed and washed with DMED + 10%
FCS before plating. Passage 3 cells with 1×106 MEFs/well were seeded in 60
mm plates for 0-4 hours, 0.5×106 MEFs/ well for 24 hour and 0.25×106 MEFs/
well for 48 hour treatment with 5 ng/ml TGF−β respectively (for Gp130F/F

MEFs the cell numbers changes as: 1.2×106 MEFs/well for 0-4 hours, 0.6×106

MEFs/well for 24 hours and 0.3×106 MEFs/well for 48 hours). After washing
with cold PBS for two times, cells were lysed in ice-cold 200 ul RIPA lysis buffer,
containing 1M Tris/HCL, 0.5 M EDTA, 5M NaCl, 10 % Na Doc, 10 % TX-100, 10
% SDS, proteinase inhibitor 100 × and H2O. The cell lysits were passed through
27 G needle for 5 times, then incubated in ice for 20 min. After incubation the
samples were span at 13,000 rpm for 30 min at 4oC. The supernatant was trans-
ferred to new tubes where 20 ul of samples were saved for BCA protein assay
using sigma BCA assay kit (B9643). 20 ul 5x sample buffer was added to 80 ul
loading sample and the samples were heated at 95oC for 10 min.
Western blotting According to the protein concentration results from the pro-
tein assay, Novex NuPAGE R© 4-12%-Bis-Tris (life technologies NP0335 Box) gels
were used for loading proper amount of sample lysate for each time point.
PSTAT3 (XPTM Rabbit mAb) antibodies were provided by Cell Signalling Tech-
nology and were used at a dilution 1:500 in 3% BSA-TBS-T. Antibody directed
against SMAD7 was provided via Santa Cruz Biotechnology and was diluted
1:1000. PSMAD2 antibody (rabbit polyclonal anti-phospho-Smad2 antibody (1:
1000 for Western blot)) was a gift from Prof. Peter ten Dijke (Leiden Univer-
sity Medical Center, Netherlands). β-tubulin, actin, Lamin b1 or transferrin re-
ceptor are used as loading control depending on the protein to be expressed.
Eventually, the gels were transformed onto nitrocellulose membrane via iBlot 2
gel transfer device (life technologies) and the membranes were scanned using
Odyssey infrared scanner (LI-COR).
Protein Quantitation The western blot images were quantitated using ImageJ
1.49p. The signals of each protein were normalised to the loading control pro-
tein.
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4.6 Supplementary Material

4.6.1 The Reduced Model

The full model described by equations 4.1 consists of two subsystems, sepa-
rated according to the participating components. The membrane subsystem is
represented by the first 7 equations and nucleocytoplasmic subsystem is de-
scribed by the remaining 4 differential equations. At this stage we are focusing
on the receptor subsystem only. The equations of the TGF−β system in this sec-
tion (equations 4.5 and 4.6) are different from our simplified model described in
Chapter 4 (equations 4.3). More specifically, we have reduced the TGF−β sys-
tem differently in this section in order to describe the behaviour of the TGF−β
signalling via only two differential equations and study the phase portrait of the
system. In reducing the TGF−β system, the rapid equilibrium assumption was
used.

As mentioned earlier in a dimerization reaction, it is almost impossible to
measure k+ (the forward reaction rate). Although k− (the backward reaction
rate) is measurable, the easiest parameter to be quantified is K (K = k−

k+
), i.e.

the equilibrium constant. The dimerization process of R1 or R2 is much faster
than the other receptor reactions. Furthermore, as discussed earlier the sym-
bolic feedback loop was replaced with a number of relatively slow reactions.
In comparison to every other reaction in the receptor system, the time scales
of R1 and R2dimerization and RC formation are fast, thus justifying the "rapid
equilibrium assumption" [115, 203, 459].

Based on the above assumptions, we apply the conservation law to R1 and
R2 , so the final form of the reduced version of the R1 , R2 and PC are:

R1 T = R1 + 2R12 + 2RC

R2 T = R2 + 2R22 + 2RC (4.4)

PC T = LC + PC

The conservation law for R1 and R2 states that the total amount of R1 and
R2 , by definition, equals to the total amount of R1 and R2 as monomers adding
by twice of the amount of R1 and R2 as dimers (which is twice of R1 and R2 ).
The same definition applies for PC T .

According to the experimentalists, we know that the dimerization reactions,
the binding reactions of the two dimers and the phosphorylation of the two
R1 s inside LC (PC association) are relatively fast comparing to the ligand bind-
ing reaction [115]. Inside the cytosol the trimerization of the phosphorylated
SMAD occurs more rapidly than the SMAD phosphorylation processes. Pur-
suant to the rapid equilibrium assumption, at equilibrium the forward and the
backward terms of the fast reactions can be considered to be equal. Therefore,
the equations describing the reduced model are:
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β11 [R1 ]
′ + β12 [R2 ]

′ = v1 − k1 [R1 ] − 2kRC [RC ] − kf−1 [N ]2
[R1 ]

R1 + K
−

2kf−RC [N ]2
[RC ]

[RC ] +K
− kf+1 [P ]

[R1 ]

[R1 ] +K

β21 [R1 ]
′ + β22 [R2 ]

′ = v2 − k2 [R2 ] − 2kRC [RC ] − 2kf−RC [N ]2
[RC ]

[RC ] +K

(1 +KPC ) [PC ] ′ = k+LC [TGF2 ] [RC ] − k−LC KPC [PC ] − k−PC [PC ] −

kf−PC [N ]2
[PC ]

[PC ] +K
(4.5)

[S ] ′ = vS − kS [S ] − k+S [PC ]
[S ]

[S ] +KS

+ k−S [Ŝ ]

[Ŝ ] ′ = k+S [PC ]
[S ]

[S ] +KS

− k−S [Ŝ ] − 3k+3 [Ŝ ] 3 + 3k−3 [S3 ]

β11 = 1 + 4
[R1 ]

K1

+
4

K1K2KRC

[R1 ] [R2 ] 2 β12 =
4

K1K2KRC

[R1 ] 2 [R2 ]

β21 =
4

K1K2KRC

[R1 ] [R2 ] 2 β22 = 1 + 4
[R2 ]

K2

+
4

K1K2KRC

[R1 ] 2 [R2 ]

and again, [N ] = [S3 ] (t− τ) and [P ] = KI
2/(KI

2 + [S3 (t− τ)]2). Note that the
equilibrium equations that formulate the reduced model can be written as:

[R12 ] =
[R1 ] 2

K1

[LC ] = KPC [PC ]

[R22 ] =
[R2 ] 2

K2

[RC ] =
[R1 ] 2 [R2 ] 2

K1K2KRC

[S3 ] =
[Ŝ ] 3

K3

=
1

K3

(
[LC ] k+S [S ]

KPC k
−
S ([S ] +KS )

)3

The Importance of Feedback

This section aims to demonstrate the effects of a negative feedback loop on the
steady-state of the TGF−β signalling system. The corresponding equations can
be shown as the following.

d [R1 ]

dt
= v1 − k1 [R1 ] − 2kRC [RC ] − kf−1 [S3 ]

2 [R1 ] − 2kf−RC [S3 ]
2 [RC ]

d [R2 ]

dt
= v2 − k2 [R2 ] − 2kRC [RC ] − 2kf−RC [S3 ]

2 [RC ]

d [PC ]

dt
= k+LC [TGF2 ] [RC ] − k−LC KPC [PC ] − k−PC [PC ] (4.6)

d [S ]

dt
= vS − kS [S ] − k+S [PC ]

[S ]

[S ] +K
+ k−S [Ŝ ]

d[Ŝ ]

dt
= k+S [PC ]

[S ]

[S ] +K
− k−S [Ŝ ]
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As is shown in equations 4.6, we have assumed that the dimerization of R1 ,
dimerization of R2 , association of RC and the association of PC are fast. Conse-
quently, R12 , R22 , RC and LC are evaluated based on R1 , R2 and PC . Further-
more, there is no Sn defined in this system and it is assumed that Ŝ represents
both nuclear and cytoplasmic phospho-SMAD.

These equations are also different from the reduced model (equations 4.5.
Specifically, we have assumed that K1 , K2 and KRC are large enough such that
β11 = β22 = 1 and β12 = β21 = 0. Additionally, the production of PC from
LC and trimerization of Ŝ occur relatively fast. Therefore, [LC ] = KPC [PC ] and
[S3 ] =

[Ŝ ]
K3

at equilibrium. In our toy model (equations 4.8), we assumed that the
negative feedback loops are applied only to R1 and RC and follow linear kinetics
(instead of Michaelis-Menten kinetics). We did not include a time-delay in the
system. With these assumptions we can write the following set of equations to
represent the system at equilibrium.

[S ] =
vS
kS

[Ŝ ] =
k+S
k−S

[LC ] KPC
[S ]

[S ] +KS

[PC ] =
k+LC [TGF2 ]

k−LC +
k−PC

KPC

(4.7)

[S3 ] =
[Ŝ ] 3

K3

=
1

K3

(
[LC ] k+S [S ]

KPC k
−
S ([S ] +K)

)3

[RC ] =
[R1 ] 2 [R2 ] 2

K1K2KRC

We have non-dimensionalized the model (equations 4.6) in order to simplify
our equations without elimination of any information from the system. Accord-
ing to [273], scaling does not change the solution of the original system. Non-
dimensionalization is often used to simplify and reduce the number of effec-
tive parameters (without changing the number of variables and equations), to
analyse the behaviour of a system without considering the units of its compo-
nents and to re-scale the variables whose amounts have vastly different magni-
tudes [76, 273]. The simplifications preserve the essential features of our model.
After applying the non-dimensionalization method, at equilibrium, the system
in equation 4.6 can be reduced to (we have named it the toy model):

0 = 1− r1 − c1r21r22 − δr131 r122 − ε1r141 r142 (4.8)

0 = 1− r2 − c2r21r22 − ε2r141 r142

, with the dimension-less variables and components defined as:
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r1 = k1 [R1 ] /v1 r2 = k2 [R2 ] /v2

c1 =
2kRC v1 v2

2

K1K2KRC k1 2k2 2
c2 =

2kRC v1
2v2

K1K2KRC k1 2k2 2
(4.9)

ε1 = 2
kb

v1K3
2

v1
14v2

14

k1 14k2 14

(
k+S vS k

+
LC [TGF2 ]

KPC k
−
S kS ( vS

kS
+K)(k−LC + kPC

KPC
)

)6
1

(K1K2KRC )7

ε2 = 2
kb

v2K3
2

v1
14v2

14

k1 14k2 14

(
k+S vS k

+
LC [TGF2 ]

KPC k
−
S kS ( vS

kS
+K)(k−LC + kPC

KPC
)

)6
1

(K1K2KRC )7

δ =
ka

v1K3
2

v1
13v2

12

k1 13k2 12

(
k+S vS k

+
LC [TGF2 ]

KPC k
−
S kS ( vS

kS +K
)(K1K2KRC )(k−LC + kPC

KPC
)

)6

Note that kf−1 = ka and kf−RC = kb. Equation 4.8 was derived after applying
the reduction method explained in Chapter 3.

The system (equations 4.6) was reduced to two effective equations as func-
tions of the concentrations of R1 and R2 . In this section, equations 4.8 are solved
and analyzed in the steady-state (equilibrium). First, we study the system in the
absence of feedback (δ = ε1 = ε2 = 0) - the simplest, symmetric system. Then,
we investigate the effects of the negative, regulatory feedback loop on the equi-
libria of the system. This negative feedback is only applied on R1 and RC . In
fact, the importance of the positive feedback and the resulted ultra-sensitivity
feature of the system are included in the "The Simplified Model". The most
critical advantage of the toy model (equations 4.8) is to analytically (since we
reduced all the equations to two) study the effects of a feedback loop (here neg-
ative feedback loop) on the steady-state and equilibria of a system. Based on
feedback study of this system, we can speculate changes in the system’s operat-
ing point after adding complementary positive and/or negative feedbacks.

As mentioned in the introduction, previous models on TGF−β signalling
lacked the consideration of the feedback loops. In other words, the steady-state
analysis of TGF−β transduction in the absence of feedback corresponds to the
previous mathematical models of TGF−β in the literature. In this section, we
demonstrate the importance of a simple, linear negative feedback on the steady-
state of the TGF−β signalling system.

The equations describing the reduced model in the absence of feedback (the
no-feedback toy model) are:

dr1
dt

= 1− r1 − c1r21r22 (4.10)

dr2
dt

= 1− r2 − c2r21r22 (4.11)

This equation can be written as:
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dr1
dt

= f1 (4.12)

dr2
dt

= f2 (4.13)

Here, r1 and r2 are the scaled values of R1 and R2 respectively. We have as-
sumed β12 and β21 are zero, e.g. KRC is very large (see Table 4.3). The clearest
way to appreciate the dynamics of the systems at equilibrium is to consider the
phase plane. In phase plane analysis of the differential equations we normally
consider the nullclines. The nullclines of f1, respectively f2, are defined by set-
ting f1(r1, r2) = 0, respectively f2(r1, r2) = 0. The steady-state of the system
is defined by a set of (r1, r2) such that f1(r1, r2) = 0 and f2(r1, r2) = 0. The
intersection of each pair of nullclines represents a fixed point of the system at
steady-state. The pattern achieved via connecting fixed points for a set of pa-
rameters shows the equilibrium curve that describes the system at steady-state.
In the absence of feedback (δ = ε1 = ε2 = 0) the nullclines are given by,

r1 =
−1±

√
1 + 4c1r22

2c1r22

r2 =
−1±

√
1 + 4c2r21

2c2r21
(4.14)

and the steady-state is the solution of,

1− r1 − c1r21r22 = 0

1− r2 − c2r21r22 = 0 (4.15)

which can be solved for:

1− r2
1− r1

=
c2
c1
≡ c. (4.16)

c is the slope of the curve in the (r1, r2) phase plane. It is important to note
that equation 4.16 does not define the steady-state of the system completely,
though it is sufficient for plotting the phase plane (phase portrait) to visualise
the behaviour of the system.

The steady-state analysis of the reduced model in the absence of feedback is
summarized in Figure 4.13. Figure 4.13A shows the steady-state curves for five
different values of c. It shows how the steady-state curve varies with c. Note that
for all values of c the steady-state curves are straight lines which pass through
1,1. Scaled total S3 (here designated as s3) is plotted against the logarithm of c to
base 2 for different values of c when δ and ε values are zero (see Figure 4.13B).
Here, s3 is a representative of the output. According to the reduced model de-
sign in "The Reduced Model", c is a ratio of v1 and v2 , the production rates of
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R1 and R2 respectively. Therefore, Figure 4.13B specifies how the abundance of
the receptors on the membrane can upregulare/downregulate the TGF−β sig-
nalling in the absence of feedback. Experimentally, v1 and v2 are estimated to
have similar values. So we expect the working point of the system to be in the
middle part of the Figure 4.13B (c = 1, log c = 0), at which the output dramat-
ically changes. This explains the importance of the receptor concentrations in
TGF−β signalling.

Figure 4.13: Steady-state analysis of the reduced model in the absence of feedback. A)

The phase plane plots of the reduced receptor system at equilibrium for different values

of c. B) The scaled total PSMAD trimer, s3, value against different values of c, where

log c = 0 corresponds to c = 1.

To understand the effects of feedback in this system, we then consider the toy
model (equations 4.8) with its simplest negative feedback loops. For the sake of
presentation, r1 and r2 are changed to x and y, respectively. As mentioned earlier
these negative feedback terms correspond to those in equations 4.5, but with the
Michaelis-Menten terms linearized. The 4.8 equations can be presented by one
14th order polynomial which characterizes the full receptor system at steady-
state.

εx14y14 + cδx13y12 − y + cx− c+ 1 = 0 ε =
c2ε1 − c1ε2

c1
, c =

c2
c1

(4.17)

There is no straight forward procedure for solving an 14th-order equation.
However, we can approximate the solution via asymptotic expansion of y as a
function of x. Perturbation expansion is used, assuming that the two parameters
of δ and ε are small. We have ignored the second order term for δ and/or ε (first
order approximation).

y(x) = cx− c+ 1 + εx14(cx− c+ 1)14 − δcx13(cx− c+ 1)12 + 14ε2x28(cx− c+ 1)27

−26cεδx27(cx− c+ 1)25 + 12c2δ2x26(cx− c+ 1)23 +O(n3), n ∈ {ε, δ} (4.18)
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The final result is illustrated in Figure 4.14 which shows how the solution
from the asymptotic expansion changes a with different set of values for δ and
ε. This figure shows the deviation of the steady-state curves when negative feed-
back is input to the system compared to no-feedback. Feedback considerations
altered the straight lines to curves which no longer pass through the (1,1) point
of the phase plane (see Figure 4.14A). In Figure 4.14A, the solid curves demon-
strate the least and highest value of the δ, while the value of ε remains zero. The
grey curves simply cover the range between these two limits. By comparing
Figure 4.14A with Figure 4.13A (where δ = 0 and ε = 0), it could be seen how
the addition of a weak negative feedback, only on R1 , change the steady-state
of the reduced model. A complete sensitivity analysis of the receptor system is
displayed in Figure 4.14B. It is apparent that for non-zero values of ε the system
is less sensitive to the changes in δ. Significantly, for the c1/c2 ratio of the second
order of magnitude, the system is very sensitive to small changes in the feed-
back strength (ε and δ). A comparison between Figure 4.13B and Figure 4.14B
reveals how the steady-state of a system can be affected via insertion of a linear
negative feedback.

Figure 4.14: The steady-state of the receptor system for different range of parameters.

A) ε = 0.5 δ = 0(0.2)1 In these panels A,B and C c = 2n for n = -2(1)2. B) δ = 0(0.2)1,

In this panel ε changes as labeled.

It is important to note that the steady-state diagrams of Figure 4.14 are ac-
quired using the asymptotic expansion estimation of the exact solution (4.18).
As a result, the curves may behave differently for large values of ε and δ. Also
note that r1, r2 and s3 in this section represent scaled receptor variables and
the level of total PSMAD trimer in the reduced model. We can follow all the
scaling steps reversely to derive receptor concentrations in terms of the produc-
tion/degradation rates and reaction binding constants. However, the function-
ality of one variable with respect to the other remains the same. We do not
expect significant divergence in the actual R1 -R2plot (and S3 plot verses v1 and
v2 ratio) from the results shown in Figure 4.14. The changes due to negative feed-
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back considerations are close to expectation. The negative feedback on R1 and
RCdoes not extremely change the steady-state of r1 and r2 (note the operating
point of log c ≈ 0 in Figure 4.14B). Such an insensitivity might be due to the lack
of positive feedback and/or negative feedback on LC (refer to the numerical
simulation, section 4).

4.6.2 Model Parameters

Components as variables Components symbols in

simulation and codes

TGF−β receptor type 1 R1

TGF−β receptor type 2 R2

TGF−β receptor type 1 dimer R12

TGF−β receptor type 2 dimer R22

Receptor complex RC

Ligand-receptor complex LC

Completely phosphorylated ligand-

receptor complex

PC

Cytoplasmic SMAD S

Phosphorylated SMAD in the cyto-

plasm

Ŝ

Phosphorylated SMAD in the nucleus Sn

Phosphorylated SMAD trimer S3

Delayed Phosphorylated SMAD

trimer

N

Positive feedback intermediate in-

hibitor

P

Extracellular TGF−β ligand TGF−β Dimer

Table 4.1: Components of the TGF−β receptor signalling model

Kinetic

rates

Description Unit

TGF−β Receptor

v1 Production rate of TGF−β receptor type 1 nMmin−1

k1 Degradation rate of TGF−β receptor type 1 min−1

v2 Production rate of TGF−β receptor type 2 nMmin−1

k2 Degradation rate of TGF−β receptor type 2 min−1

k+1 Association rate of type 1 receptor homo-dimer

complex

nM−1min−1



4.6 Supplementary Material 70

k−1 Dissociation rate of type 1 receptor homo-dimer

complex

min−1

k+2 Association rate of type 2 receptor homo-dimer

complex

nM−1min−1

k−2 Dissociation rate of type 2 receptor homo-dimer

complex

min−1

k+RC Association rate of receptor tetramer complex nM−1min−1

k−RC Dissociation rate of receptor tetramer complex min−1

kRC Degradation rate of receptor tetramer complex min−1

k+LC Association rate of ligand-receptor complex nM−1min−1

k−LC Dissociation rate of ligand-receptor complex min−1

k+PC Association rate of phosphorylated ligand-

receptor complex

min−1

k−PC Dissociation rate of phosphorylated ligand-

receptor complex

min−1

kPC Degradation rate of phosphorylated ligand-

receptor complex

min−1

SMAD Proteins

vS Production rate of cytoplasmic SMAD nMmin−1

kS Degradation rate of SMAD in the cytoplasm min−1

k+S Phosphorylation rate of SMAD in the cytoplasm min−1

k−S Dephosphorylation rate of SMAD in the cyto-

plasm

min−1

kSn Degradation rate of PSMAD in the nucleus min−1

k+n Import rate of PSMAD into the nucleus min−1

k−n Export rate of PSMAD from the nucleus min−1

k+3 Association rate of PSMAD homo-trimer com-

plex

nM−2min−1

k−3 Dissociation rate of PSMAD homo-trimer com-

plex

min−1

KRC The receptor complex binding constant nM

KS The phsphorylation binding constant nM

K3 PSMAD trimer binding constant nM2

Feedback

kf+1 Positive feedback on TGF−β receptor type 1 nMmin−1

kf−1 Negative feedback on TGF−β receptor type 1 nM−1min−1

kf−RC Negative feedback on receptor tetramer complex nM−1min−1
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kf−PC Negative feedback on phosphorylated ligand-

receptor complex

nM−1min−1

K Negative feedback inhibitory binding constant nM

KI Inhibition of the intermediate inhibitor binding

constant

nM

Table 4.2: Kinetic rates and binding constants of the model

Parameters Symbol Literature value Reference Scaled

data for

our model

Rproduction

rate

v1 0.0137 nMmin−1 [462] 1

nMmin−1

Rdegradation

rate

k1 0.00256min−1 [225, 513] 0.2min−1

Rpositive stim-

ulated degrada-

tion rate

kf+1 − 1min−1

Rnegative stim-

ulated degrada-

tion rate

kf−1 − 0.4

nM−1min−1

RC association

rate

k+RC − 0.5

nM−1min−1

RCdissociation

rate

k−RC − 0.5min−1

RCdegradation

rate

kRC − 1min−1

RCnegative

stimulated

degradation

rate

kf−RC 0.00256 nM−1min−1 [93] 0.4

nM−1min−1

PC association

rate

k+PC − 1.6

nM−1min−1

PCdissociation

rate

k−PC − 0.2min−1

PCdegradation

rate

kPC − 0.4min−1
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PCnegative

stimulated

degradation

rate

kf−PC − - 0.4

nM−1min−1

Sproduction

rate

vS − 0.01

nMmin−1

Sdegradation

rate

kS − 0.008

min−1

Ŝ association

rate

k+S 0.049 nM−1min−1 [511] 0.1min−1

Ŝdissociation

rate

k−S − 0.1min−1

Ŝdegradation

rate

kŜ 0.394min−1 [386] 0.035

min−1

Sn association

rate

k+n 0.156min−1 [386, 513] 10min−1

Sn dissociation

rate

k−n 0.739min−1 [386, 513] 8min−1

Sn degradation

rate

kŜ − 0.01min−1

positive/negative

feedback con-

stant

K − 2

Inhibition of the

intermediate in-

hibitor binding

constant

KI − 0.4

SMAD ph-

sphorylation

binding con-

stant

KS − 0.008

R initial value − 0.83 nM

RC initial value − 0.23 nM

S initial value 60.6 nM [511] 1 nM

TGF−β initial

value

to be specified [511] to be spec-

ified

Table 4.3: The parameter values of simplified TGF−β model
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4.6.3 Figures

By comparing Figure 4.15 and Figure 4.16 with Figure 4.5 and Figure 4.6 in the
numerical simulation section, we confirmed that the effects of the system’s neg-
ative feedback is almost entirely on LC .

Figure 4.15: The predicted effects of different concentrations of TGF−β on the short-

term responses of total PSMAD when the negative feedback influences LC only.

Figure 4.16: The predicted effects of different concentrations of TGF−β on the long-

term responses of total PSMAD when the negative feedback influences LC only.

4.6.4 Steady-state Analysis of the Simplified Model

There are two possible methods to solve a system of differential equations at
steady-state (or equilibrium in this case), analytical and numerical analysis. An-
alytical analysis defines the equilibria (whether it is single or multiple equilib-
rium points) explicitly. I attempted to develop analytical solutions for the equi-
librium and/or steady-state of the simplified TGF−β model.

The simplified model of TGF−β consists of 6 differential equations which
can be categorized into 2 subsystems (see equations 4.3). The first 3 equations
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belong to the membrane subsystem and the last 3 equations belong to the nucle-
ocytoplasmic subsystem. The coupling between the two subsystems is defined
such that nucleocytoplasmic subsystem feeds back on the membrane subsystem.
In order to solve the steady-state of the system analytically, we equate the RHSs
of the equations 4.19 to zero. This provides us with 6 algebraic equations whose
solution is defines the equilibrium of the whole system. In the following calcu-
lations, the variables of the system are substituted with x1 to x6 respectively, for
the sake of presentation.

dx1
dt

= v1 − k1 x1 − 2k+RC x
2
1 + 2k−RC x2 − k

f+
1 [P ]

x1
x1 +K

−

kf−1 [N ]2
x1

x1 +K
dx2
dt

= k+RC x
2
1 − k−RC x2 − kRC x2 − k+PC [TGF2 ] x2 +

k−PC x3 − k
f−
RC [N ]2

x2
x2 +K

dx3
dt

= k+PC [TGF2 ] x3 − k−PC x3 − kPC x3 − k
f−
PC [N ]2

x3
x3 +K

(4.19)

dx4
dt

= vS − kS x4 − k+S x3
x4

x4 +KS

+ k−S x5

dx5
dt

= k+S x3
x4

x4 +KS

− k−S x5 − k
+
n x5 + k−n x6 − kŜ x5

dx6
dt

= k+n x5 − k−n x6 − kSn x6

where again, [S3 ] = x36/K3 , x6 = [S3 ] (t− τ) and [P ] = KI
2/(KI

2 + [S3 ]
2).

In nucleocytoplasmic subsystem, x6 can be written in terms of x5 soling the
last equation of 4.19 for its roots. Second last equation defines x5 in terms of
x3 and x4. Considering the fact the two thermodynamic terms are in common
between fourth and fifth equations we can also write x4 in terms of x5 and x6.
All together, the nucleocytoplasmic subsystem can be represented by a single
nonlinear algebraic equation:

vS − kS x4 = (k+n + kŜ −
k−n k

+
n

k−n + kSn
)k+S x3

x4

(x4 +KS )(k−S + k+n + k−n
k+n

k−n +kSn
+ kŜ )

,

where

x6 =
k+n

k−n + kSn
x5 (4.20)

x5 = k+S x3
x4

(x4 +KS )(k−S + k+n + k−n
k+n

k−n +kSn
+ kŜ )

However, reducing the algebraic equations of the membrane subsystem is
more complex than the nucleocytoplasmic subsystem. Such complexity is mainly
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due to their high nonlinearity. The third equation of 4.19 suggests that x2 can
be written in terms of x3 and x6. Therefore, x2 can be eliminated in the first and
second equilibrium equations, giving 2 equations based on x1, x3 and x6:

0 = v1 − k1 x1 − 2k+RC x
2
1 + 2k−RC

k−PC + kPC
k+PC [TGF2 ]

x3 + kf−PC
x66x3

K3
2(x3 +K )k+PC [TGF2 ]

−kf+1
KI

2x1
(KI

2 + x66/K3
2)(x1 +K )

− kf−1
x66x1

K3
2(x1 +K )

(4.21)

0 = k+RC x
2
1 − (k−RC + kRC + k+PC [TGF2 ] )(

k−PC + kPC
k+PC [TGF2 ]

x3 + kf−PC
x66x3

K3
2(x3 +K )k+PC [TGF2 ]

)
(4.22)

+k−PC x3 − k
f−
RC

x66

(
k−PC +kPC

k+PC [TGF2 ]
x3 + kf−PC

x66x3

K3
2(x3+K )k+PC [TGF2 ]

)
K3

2
(

k−PC +kPC

k+PC [TGF2 ]
x3 + kf−PC

x66x3

K3
2(x3+K )k+PC [TGF2 ]

)
+K

,

where

x2 =
k−PC + kPC
k+PC [TGF2 ]

x3 + kf−PC
x66x3

K3
2(x3 +K )k+PC [TGF2 ]

(4.23)

On the other hand, equating the identical thermodynamic terms in the mem-
brane subsystem provides another algebraic equation in terms of x1, x3 and x6:

2 (kRC + k+PC [TGF2 ] )

(
k−PC + kPC
k+PC [TGF2 ]

x3 + kf−PC
x66x3

K3
2(x3 +K )k+PC [TGF2 ]

)
−

2 k−PC x3 + 2kf−RC

x66

(
k−PC +kPC

k+PC [TGF2 ]
x3 + kf−PC

x66x3

K3
2(x3+K )k+PC [TGF2 ]

)
K3

2
((

k−PC +kPC

k+PC [TGF2 ]
x3 + kf−PC

x66x3

K3
2(x3+K )k+PC [TGF2 ]

)
+K

) = (4.24)

v1 −k1 x1 − kf+1
KI

2

KI
2 + x66/K3

2

x1
x1 +K

− kf−1
x66
K3

2

x1
x1 +K

Equations 4.21, 4.22 and 4.24 should be solved simultaneously for x1, x3 and
x6 so that the equilibrium point or the equilibria of the system would be iden-
tified rigorously. However, the complexity of these algebraic equations makes
it hard to introduce an analytical solution for the steady-state of the simplified
system. Therefore in order to study the behaviour of the system with different
inputs, numerical methods were used (instead of analytical methods). These
numerical methods are constrained with the biological data. Several limitations
are applied to the model parameters and the initial values of the variables. For
instance, none of the components of the model can be negative since they are
concentrations, kinetic rates or binding constants, or most of the cytoplasmic
and nuclear variables are zero at the beginning of the stimulation. The equilib-
ria cannot be located in the whole R6 space.



Chapter 5

Modelling the IL− 6 Signal

Transduction System

5.0 Summary of the information included in Chap-

ter 5

Interleukin-6 is a pleiotropic cytokine that can act as both an anti- and a pro-
inflammatory regulator. Signalling via IL−6 plays a pivotal role in many the tis-
sue regulation mechanisms including cell proliferation, apoptosis and immune
responses during inflammation. Importantly, excess IL − 6 signalling is associ-
ated with a diverse range of tumors. A robust mathematical model is required
for predicting the likely cellular responses to IL−6 signalling. We have analysed
the IL− 6 signalling pathway, identified the critical components and developed
the minimal systems model capable of quantitative simulation of the network
in response to perturbations. Our reduced IL − 6 signalling model is compati-
ble with experimental data on changes in STAT3, phospho-STAT3 and SOCS3
levels at different sub-cellular locations in response to continuous or pulsed
IL − 6 stimulation. Interestingly, appropriately pulsed signalling is expected
to increase phospho-STAT3 levels more than continuous stimulation with the
same concentration of IL− 6. The model also provides a platform for predicting
the responses of the network to mutations or inhibitors of IL−6 signalling com-
ponents. IL−6 induced changes in TGF−β signalling can be predicted with the
model.

5.1 Introduction

Interleukin-6 (IL−6) is a multifunction cytokine which influences both acute and
chronic inflammation [134]. As a pro-inflammatory cytokine IL−6 can stimulate
B cells [186]. Beside the auto-immune responses and cellular growth regulation,
IL − 6 signalling acts as a mediator in many chronic inflammatory diseases,

76
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including multiple sclerosis and cancer [11,213]. Since the up-regulation of IL−6
has been reported in different types of human cancer (including renal, ovarian,
breast, pancreatic and lung cancer), many anti-cancer treatments now aim to
target the IL − 6 cytokine or its signalling pathways (see [202] for a review).
Despite its pro-inflammatory role in chronic inflammatory diseases, IL − 6 can
decrease inflammation during viral infections [353].

IL− 6-type cytokines participate in many cellular processes including differ-
entiation, apoptosis, proliferation, inflammation and immune responses [175,
431]. IL−6 signalling activates intracellular biochemical cycles from the plasma
membrane to the nucleus. Signalling occurs when IL − 6 binds to its specific
receptor IL-6R (also called Gp80) [448]. The IL − 6 :IL-6R complex then binds a
common signal transduction, 130 kDa glycoprotein (Gp130) [253]. All members
of IL − 6 family of cytokines (IL − 6, IL-11, leukaemia inhibitory factor (LIF),
oncostatin M (OSM), ciliary neurotrophic factor (CNTF) and cardiotrophin-1
(CT-1)) use Gp130 to transfer the signalling from the cell surface to the cyto-
plasm [191]. All IL − 6-type cytokines induce their signalling through the ac-
tivation of Janus kinases (JAK) [474]. Deregulation in the signalling pathways
stimulated by IL−6 member cytokines (e.g. IL−6 and IL-11) is often associated
with human hematological and epithelial malignancies [109]. Moreover, IL − 6

is also known as a pleiotropic cytokine that can potentially promote or inhibit
tumors [251].

IL − 6 signalling interacts with other signalling pathways due to the in-
volvement with Gp130, and the alternative downstream signalling (JAK/STAT
and MAPK). There is evidence that IL − 6 crosstalks with cytokines such as,
BMP [493], NF−κβ [31], Wnt/β-catenin [47]and TGF−β [207]. The focus of
our study is on the IL − 6 and TGF−β crosstalk which involves the role of
SMAD7 [207]. The interactions between TGF−β and IL−6 signalling are impor-
tant due to their involvement in inflammatory, auto-immune diseases and can-
cer. Jenkins et al. [207] used "MEF" (mouse embryonic fibroblast) cells with mu-
tated Gp130 in order to over-express STAT3. STAT3 hyperactivated MEF cells
have impaired activation and nuclear translocation of SMAD2 in response to
TGF−β [207]. Both TGF−β and IL−6 signalling are over-activated in Erlotinib-
resistant cells [495] and both signalling systems are essential for the survival of
lung cancer cells [495]. The crosstalk of TGF−β and IL−6 has also been studied
by Luwor et al. [287]: the STAT3/SMAD7/TGF−β interactions are also affected
by the activation of the EGFR. Persistent activation of STAT3 induces SMAD7
expression, which then desensitizes TGF−β transduction [207, 287].

Considering the network of processes responsible for the regulation of IL−6

signalling, it is important to study this signal transduction quantitatively. Since
the final responses of the cells will vary with respect to the strength and timing
of the initial signal, understanding the temporal changes in the IL− 6 signalling
components is critical [174, 406]. Models in Systems biology are defined as a
mapping from a biological system to a more accessible, immediate and con-
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crete system [44, 406]. Modelling of complex signalling networks helps explain
the intracellular biological mechanisms, in addition to providing predictions for
the responses of the system when it undergoes perturbations (such as environ-
mental perturbations and/or gene mutations) [174, 406]. The significant role of
mathematical modelling of signalling pathways is highlighted when it is stud-
ied in the context of cancer research. Cancer is a multi-scale, multi-pathway,
complex disease that involves many cellular functions [136, 295, 469].

Most of the models of IL − 6 signalling concentrate on MAPK signalling
through Shp2 (see [175] for a review). We have now developed a reduced model
which predicts quantitatively the behaviour of the components of JAK/STAT
signalling. The roles of SOCS3, Shp2 and PP2 (nuclear phosphatase) have been
studied subsequently by gene knock out studies [402]. Singh et al. [402] compare
the responses of the components of IL− 6 signalling for each knock out in order
to specify the function of each component. Huang et al. in 2010 [70] extended
this model and applied sensitivity analysis and parameter clustering in order
to simplify the model. Moya et al. [320] also built on Singh’s model but re-
estimated some of the parameters and included a simulation of the transcription
factor dynamics of the MAPK pathway. We focus on IL-6/Gp130/JAK/STAT/
SMAD7 signalling, simplifying and reducing the model by removing reactions
that do not affect the equilibrium state. Our modelling results are compared to
the experimentally derived cell responses of mouse embryonic fibroblasts and
mouse liver hepatocytes to IL− 6 stimulation.

5.2 Model Development

As mentioned above, IL − 6 signals via two separate pathways, Jak/STAT and
MAPK. The latter has been studied several times in the literature (for a review
see [214]). MAPK is activated by other signalling pathways including recep-
tor kineses such as the EGFR [185, 222, 258, 263, 375]. We examine the crosstalk
between IL − 6 and TGF−β signalling [207], and focus on the STAT3/SMAD7
connection via the Jak/STAT pathway.

Based on recent data [402, 479], we have designed a detailed model of the
initial phases of IL − 6 signalling which focuses on the receptor configuration
and membrane reactions ( Figure 5.1).
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Figure 5.1: Topology of the IL−6 signalling pathway model. Potential phosphorylation

sites of the components are specified with empty circles. Arrows pointing to 6 blue dots

represent degradation process. Oval-shaped components represent micro-RNAs. The

dot arrows represent the transcription and translation reactions.

The IL − 6 cytokine first interacts with the Gp80 receptor (also called IL-
6Rα chain) [37, 176, 317, 382, 404, 405]. Then, the IL − 6/Gp80 complex binds
with the JAK-associated Gp130, resulting in a ligand receptor complex. The
complex dimerizes and activates JAK through an autophosphorylation process
[317]. Phosphorylated JAK subsequently phosphorylates Gp130 and leads to
STAT3 binding [79, 138, 478]. After phosphorylation STAT3 dimerizes, leaves
the receptor complex and starts a nucleocytoplasmic shuttling cycle that in-
volves activation of transcription and dephosphorylation of the STAT3 in the
nucleus [232, 490]. Phosphorylated Gp130 can bind SOCS3 [15] which blocks
STAT3 phosphorylation. The SOCS3 gene is activated by the phosphorylated
STAT3 dimer [103, 321].

The components of the IL− 6 signalling pathway are listed as Table 5.1:
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Components as variables Components signs in sim-

ulation and codes

IL− 6 receptor, Gp80 [Gp80]

IL− 6 receptor, Gp130 [Gp130]

Gp80/IL− 6 complex [Gp80/L]

JAK associated Gp130 [Gp130/J]

Ligand-receptor complex [C]

Ligand-receptor complex dimer [C2]

Ligand-receptor complex with acti-

vated JAKs

[CJ∗]

Ligand-receptor complex with acti-

vated STAT3s

[CST ∗]

Ligand-receptor complex binding

with SOCS3s

[CSc]

STAT3 [STAT3]

STAT3 dimer [STAT32]

PSTAT3 [PSTAT3]

PSTAT3 dimer [PSTAT32]

SOCS3 [SOCS3]

SOCS3 mRNA [socs3]

Extracellular IL− 6 ligand [IL− 6]

SMAD7 mRNA [S7mRNA]

SMAD7 [S7]

Table 5.1: List of the components of the IL− 6 signalling model shown in Figure

5.1 and the standard initial conditions for the model which were constructed

from the literature

Based on the IL−6 signalling model in Figure 5.1, the differential equations of
the reaction network are of the following form. Note that we have never solved
the full model of IL− 6 signalling which is described by Table 5.2, however, the
table is useful for understanding the reduction methodology.
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Diff. eq. based on kinet-

ics

Raw diff. Eq. for simulation

d/dt[Gp80] = v1−v2−v3 d/dt[Gp80] = v80 − k∅80[Gp80] − ka80/L[IL −
6][Gp80] + kd80/L[Gp80/L]

d/dt[Gp80/L] = v3− v4 d/dt[Gp80/L] = ka80/L[IL − 6][Gp80] −
kd80/L[Gp80/L]− kac[Gp80/L][Gp130J ] + kdc[C]

d/dt[Gp130/J ] = v5 −
v6− v4

d/dt[Gp130/J ] = v130 − k∅130[Gp130/J ] −
kac[Gp80/L][Gp130/J ] + kdc[C]

d/dt[C] = v4− 2v7 d/dt[C] = kac[Gp80/L][Gp130/J ] − kdc[C] −
2ka2[C][C] + 2kd2[C2]

d/dt[C2] = v7− v8 d/dt[C2] = ka2[C][C]−kd2[C2]−kaJ [C2]+kdJ [CJ
∗]

d/dt[CJ∗] = v8− v9 d/dt[CJ∗] = kaJ [C2] − kdJ [CJ
∗] −

kph[STAT3][STAT3][CJ
∗] + kdst[CST

∗] −
kaCSc[CJ

∗][SOCS3][SOCS3]

d/dt[CST ∗] = v13− v11 d/dt[CST ∗] = kph[CJ
∗][STAT3][STAT3] −

kd130[CST
∗]

d/dt[CSc] = v12− v14 d/dt[CSc] = vST − k∅CSc[CSc] +

kaCSc[CJ
∗][SOCS3][SOCS3]

d/dt[STAT3] = −v10 +

v15− v16
d/dt[STAT3] = −kph[STAT3][STAT3][CJ∗] +
keST [STAT3in]− k∅ST [STAT3]

d/dt[PSTAT32] = v11−
v17

d/dt[PSTAT32] = kdst[CST
∗]− kiST [PSTAT32]

d/dt[PSTAT32in] =

v17− v18
d/dt[PSTAT32in] = kiST [PSTAT32] −
kdph[PSTAT32in]

d/dt[STAT3in] = 2v18−
v15

d/dt[STAT3in] = 2kdph[PSTAT32in] −
keST [STAT3in]

d/dt[socs3in] = v19−v20 d/dt[socs3in] = ktrac
[PSTAT32in]

[PSTAT32in]+KSc
−

kemRNA[socs3in]

d/dt[socs3] = v20−v21−
v22

d/dt[socs3] = kemRNA[socs3in] − k∅mRNA[socs3] −
ktrnsl[socs3]

d/dt[SOCS3] = −v23 +

v22− v12
d/dt[SOCS3] = k∅Sc[SOCS3] + ktrnsl[socs3] −
2kaCSc[C130

∗][SOCS3][SOCS3]

Table 5.2: Differential equations used to model the reactions of the IL − 6 sig-

nalling pathway shown in Figure 5.2

The critical components and reactions for IL−6 signalling are summarized in
Figure 5.2. The dashed line represents a complex series of interactions, including
genetic expression and mRNA processes (see [15] for a review) and the two
headed arrows specify reversible reactions.
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Figure 5.2: A reduced model representing the IL − 6 signal transduction network.

Arrows pointing to 6 blue dots represent degradation process. The stars represent for

the phosphorylated species. The dot arrows represent the transcription and translation

reactions.

5.3 Analysis

5.3.1 Reduction Implementation on the Receptor Part

In accordance with to the rapid equilibrium assumption [115, 203], the mem-
brane components of the IL−6 transduction can be reduced to the main compo-
nents IL−6 , Gp80 and Gp130. The relatively fast kinetic rates of the interactions
on the membrane compared to the other reactions (such as import, export, tran-
scription and translation of the intracellular proteins) enables us to apply the
reduction process. It is reported that the order of magnitudes for signalling pro-
cesses can be categorized as Table 5.3 [340].

Process Order of magnitude References

Signalling reactions < 100s [150, 271]

Transcriptional regulation 102s [304, 367, 515]

Receptor internalization 102s [119, 211]

ligand dimerization ans re-

ceptor dimerization

10−3s [374]

Table 5.3: Separation of the intracellular reactions based on their timescale [340]

The following reactions on the membrane are fast and consequently at equi-
librium these reactions can be reduced:
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IL− 6 + Gp80
K80−−⇀↽−− Gp80/L (5.1)

J +Gp130
K130−−−⇀↽−−− Gp130/J (5.2)

Gp80/L+Gp130/J
K1−⇀↽− C (5.3)

C + C
K2−⇀↽− C2 (5.4)

C2

K∗
2−−⇀↽−− CJ∗ (5.5)

In IL-6:JAK:STAT signalling, Gp130/JAK are pre-associated before binding
of IL − 6 [15, 176]. However in the equations above, we added a pre-step to
simulate Gp130 and JAK binding. Consequently, the equations 5.1 and 5.2 can
be treated similarly. Based on the fast reactions above, the equilibrium values of
the components can be written as:

[Gp80/L] =
[IL− 6] [Gp80]

K80

[Gp130/J ] =
[J ] [Gp130]

K130

[C] =
[Gp80/L] [Gp130/J ]

K1

=
[IL6] [Gp80] [J ] [Gp130]

K80K130K1

(5.6)

[C2] =
[C]2

K2

=
[IL6]2 [Gp80]2 [J ]2 [Gp130]2

K2
80K

2
130K

2
1K2

[CJ∗] =
[C2]

K∗2
=

[IL6]2 [Gp80]2 [J ]2 [Gp130]2

K2
80K

2
130K

2
1K2K∗2

Now we can write the equations for the total concentrations of Gp80 and
Gp130 based on the conservation law. These equations are written according to
the participation of each receptor in the membrane complexes:

[Gp80]T = [Gp80] + [Gp80/L] + [C] + 2 [C2] + 2 [CJ∗] (5.7)

[Gp130]T = [Gp130] + [Gp130/J ] + [C] + 2 [C2] + 2 [CJ∗]

On the other hand, we can write the following equations for the derivation
of the receptors with respect to time:

d[Gp80]

dt
= v80 − k∅80[Gp80]− 2(kaCSc[SOCS3]

[CJ∗]

[CJ∗] +K

+kdJ [CJ
∗] + kd2[C2]) (5.8)

d[Gp130]

dt
= v130 − k∅130[Gp130]− 2(kaCSc[SOCS3]

[CJ∗]

[CJ∗] +K

+kdJ [CJ
∗] + kd2[C2])

We define f1 and f2 as the RHSs of d[Gp80]
dt

and d[Gp130]
dt

in equations 5.8, re-
spectively. By differentiating the right hand sides of the conservation equations
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(equations 5.7) and equating them with the reactions by which the total number
of receptors vary (f1 and f2), we have:

A11fracd[Gp80]dt+ A12
d[Gp130]

dt
= f1

A21
d[Gp80]

dt
+ A22

d[Gp130]

dt
= f2 (5.9)

where,

A11 = 1 +
[L]

K80

+
[L][J ][Gp130]

K80K130K1

+
4[L]2[Gp80][J ]2[Gp130]2

K2
80K

2
130K

2
1K2

(1 + 1/K∗2)

A21 =
[L][J ][Gp130]

K80K130K1

+
4[L]2[Gp80][J ]2[Gp130]2

K2
80K

2
130K

2
1K2

(1 + 1/K∗2) (5.10)

A12 =
[L][Gp80][J ]

K80K130K1

+
4[L]2[Gp80]2[J ]2[Gp130]

K2
80K

2
130K

2
1K2

(1 + 1/K∗2)

A22 = 1 +
[J ]

K130

+
[L][Gp80][J ]

K80K130K1

+
4[L]2[Gp80]2[J ]2[Gp130]

K2
80K

2
130K

2
1K2

(1 + 1/K∗2)

and,

f1 = v80 − k∅80[Gp80]− 2R

f2 = v130 − k∅130[Gp130]− 2R (5.11)

and, R is given by:

R = kaCSc[SOCS3]
[CJ∗]

[CJ∗] +K
+ kdJ [CJ

∗] + kd2[C2]. (5.12)

Note that we have substituted the equilibrium values for all membrane com-
ponents, equation 5.9 can be decoupled using Cramer’s rule [355].

5.3.2 Modelling of the Nucleocytoplasmic Reactions

According to our IL − 6 signalling model, STAT3 phosphorylation occurs af-
ter binding to the IL-6:IL-6R:Gp130 complex. The biochemical reactions can be
represented as:

CJ∗ + 2STAT3→ CST ∗ → CJ∗ + PSTAT32 (5.13)

Assuming that the intermediate reactions are sufficiently fast, this can be
reduced to:

2STAT3
CJ∗
−−→ PSTAT32 (5.14)

CJ∗ represents the enzyme that catalyses the phosphorylation process. The
enzymatic reaction is modelled using Michaelis–Menten kinetics.



5.3 Analysis 85

5.3.3 Simplified Model

The rapid equilibrium assumption [115, 203] significantly decreases the com-
plexity of the IL − 6 signalling network. Gp130 uses a specific mechanism
to phosphorylate STAT3 and transfer the signal to the nucleus: As shown in
Figures 5.1 and 5.2, STAT3 becomes phosphorylated, activated and dimerized
after binding with the JAK-associated Gp130 complex. Next, the phosphory-
lated STAT3 dimer dissociates from the membrane receptor complex. Using the
mass action law for STAT3 phosphorylation adds extra complexity to the sys-
tem, however, the membrane receptor complex can be considered as an enzyme
and the STAT3 phosphorylation process an enzymic reaction. Michaelis–Menten
kinetics replaces the mass action kinetics in Figure 5.3.

Figure 5.3: Simplified model of IL − 6 signal transduction. The dashed line specifies

an enzymic reaction. Arrows pointing to 6 blue dots represent degradation process. The

stars represent for the phosphorylated species. The dot arrows represent the transcription

and translation reactions.

The equations used for the Numerical Simulations and Validation sections
are (the equations of the simplified model):
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d[Gp80]

dt
= (f1A22 − f2A12)/(A11A22 − A21A12)

d[Gp130]

dt
= (f2A11 − f1A21)/(A11A22 − A21A12)

d[STAT3]C
dt

= vST − k∅ST [STAT3]C − 2kphc[CJ
∗]

[STAT3]2C
[STAT3]2C +K2

−

2kdph[PSTAT32]C + keV nc[STAT3]N − ki[STAT3]C
d[PSTAT32]C

dt
= kphc[CJ

∗]
[STAT3]2C

[STAT3]2C +K2
− kdph[PSTAT32]C −

ki[PSTAT32]C + keV nc[PSTAT32]N)

d[SOCS3]C
dt

= ktrnslk
eV nc[socs3]N − k∅Sc[SOCS3]C (5.15)

d[STAT3]N
dt

= 2kdph[PSTAT32]N − 2kphn[STAT3]
2
N − ke[STAT3]N

+kiV cn[STAT3]C
d[PSTAT32]N

dt
= kiV cn[PSTAT32]C − kdph[PSTAT32]N + kphn[STAT3]

2
N −

k∅PSn[PSTAT32]N − ke[PSTAT32]N
d[socs3]N

dt
= −k∅mRNA[socs3]N − ktrnslke[socs3]N + ktrac

[PSTAT32]N
[PSTAT32]N +KSc

In these equations we assumed all the import and export kinetic rates are the
same for different components. Vnc and Vcn are defined as the (volume of the
nucleus)/(volume of the cytoplasm) and (volume of the cytoplasm)/(volume of
the nucleus), respectively. The kinetic rates and their units are listed in Tables
5.4 and 5.5

Kinetic

rates

Description Unit

IL− 6 Receptor

v80 Production rate of Gp80 receptor nMmin−1

k∅80 Degradation rate of Gp80 receptor min−1

v130 Production rate of Gp130 receptor nMmin−1

k∅130 Degradation rate of Gp130 receptor min−1

K80 Ligand:Gp80 binding constant nM

K130 Gp130:JAK binding constant nM

K1 Ligand-Gp80 binding constant nM

K2 Gp80/L:Gp130/J binding constant nM

K∗2 C2:CJ∗ binding constant −
STAT Proteins

vST Production rate of cytoplasmic STAT3 receptor nMmin−1

k∅ST Degradation rate of cytoplasmic STAT3 receptor min−1
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kphc Phosphorylation and dimerization rate of STAT3

protein in the cytoplasm

min−1

kdph Dephosphorylation rate of PSTAT3 protein

dimer

min−1

kphn Phosphorylation and dimerization rate of STAT3

protein in the nucleus

nM−1min−1

k∅PSn Degradation rate of phosphorylated STAT3

dimer

min−1

ki Nuclear import rate of cytoplasmic complexes min−1

ke Nuclear export rate of cytoplasmic complexes min−1

K Phosphorylation of STAT3 binding constant nM

Feedback

ktrnsl Translation rate of SOCS3 −
k∅Sc Degradation rate of SOCS3 in the cytoplasm min−1

k∅mRNA Degradation rate of socs3 mRNA in the nucleus min−1

ktrac Transcription rate of socs3 mRNA nMmin−1

kdJ Basal degradation rate of CJ∗ on the membrane min−1

kaCSc Degradation rate of CJ∗ stimulated with nega-

tive feedback

min−1

kd2 Basal degradation rate of C2 on the membrane min−1

KSc Transcription of socs3 mRNA binding constant nMmin−1

Table 5.4: Kinetic rates and binding constants of the model

Parameters

symbol

Literature value Reference Scaled data for our

model

v80 − 0.17 nMmin−1

k∅80 − 0.01min−1

v130 − 0.15 nMmin−1

k∅130 − 0.01min−1

K80 0.5 [402] 1 nM

K130 0.5 [402] 1 nM

K1 1 [402] 1 nM

K2 5 [402] 5 nM

K∗2 0.5

vST − 0.25 nMmin−1
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k∅ST − 0.4min−1

kphc − 0.0005min−1

kdph − 0.005min−1

kphn − 0.005 nM−1min−1

k∅PSn − 0.1min−1

ki 0.005min−1 [402] 0.5min−1

ke − different for different

components min−1

K − 0.5 nM

ktrnsl 0.01min−1 [402] 0.5

k∅Sc − 0.15min−1

k∅mRNA − 1min−1

ktrac 0.01 nMmin−1 [402] 6 nMmin−1

kd − 0.01min−1

kaCSc − 0.01min−1

kd2 − 0.01min−1

KSc 400 nM [402] 6 nM

Table 5.5: The parameter values of simplified IL− 6 model

Similar to the Chapter 4, the complexity and non-linearity of the simplified
IL−6 model make us to use numerical methods rather than analytical methods.

5.4 Numerical Simulations and Validation

We have quantitated the published experimental [479] Western blot results for
STAT3, PSTAT3 and SOCS3 protein expression levels in mouse liver cells. These
quantitative results were compared with the levels of these components pre-
dicted by our IL − 6 signalling model. Due to STAT3 and PSTAT3 nucleocy-
toplasmic shuttling, our model design requires total STAT3 concentration level
(including Phosphorylated STAT3 in the cytosol and nucleus) to be constant in
time. Experimental results from Wormald et al. [479] support the model as-
sumption that total STAT3 concentration is relatively stable (see Figure 5.4).
The slight decrease in the level of total STAT3 at the beginning of the simu-
lation is due to the time-scale of the STAT3 phosphorylation process. By in-
creasing the time-scale of phosphorylation reaction, the simulation curve con-
verges to the total, experimental STAT3 steady-state level faster. Note that to-
tal STAT3 (monomer) concentration is defined as [STAT3]C + 2[PSTAT32]C +

Vnc([STAT3]N + 2[PSTAT32]N).
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Figure 5.4: Total STAT3 concentration in liver extracts after IL − 6 stimulation. The

dots represent the experimental values derived from figure 1 of Wormald et al. [479].

The blue and red curves represent the fitted curve for the experimental data and the

predicted values from the model, respectively. The fitted curve is plotted via trendline

tool of Microsoft Excel.

In order to study the changes in STAT3 concentration level in the shorter
time-scale, the simulation results as a function of STAT3 concentration have
been plotted in a semi log graph (see Figure 5.5). The x axis in Figure 5.5 is a log
scale and the y axis is magnified in order to elaborate the short-term variations
of STAT3. The steady-state level of total STAT3 is slightly higher that its initial
value. As mentioned earlier, the difference in the time-scale of the phosphoryla-
tion and dephosphorylation kinetic rates in the model is the main reason for the
protein level variation.

Figure 5.5: Total STAT3 concentration time course in liver extracts after IL − 6 stim-

ulation in log timescale. The red curve is the simulation result. The figure suggests a

difference between the initial level of total STAT3 and its steady-state level. The fitted

curve is plotted via trendline tool of Microsoft Excel.

The levels of total PSTAT3 and SOCS3 were shown by Wormald et al. [479].
Figures 5.6 and 5.7 show the experimentally measured levels of total PSTAT3
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and SOCS3. The predicted trends for these protein concentrations simulated via
our model are shown in Figures 5.6 and 5.7. Although the Wormald’s published
data was not quantitated [479], we were able to use their gel images to estimate
the total STAT3, total PSTAT3 and SOCS3 levels. The original photographic films
were kindly provided by S. Wormald. The dots show the experimental values
from Wormald et al. data [479]

Figure 5.6: Total PSTAT3 concentration in liver extracts after IL− 6 stimulation. The

dots represent the experimental values derived from figure 1 of Wormald et al. [479].

The blue and red curves represent the fitted curve for the experimental data and the

predicted values from the model, respectively. The fitted curve is plotted via trendline

tool of Microsoft Excel.

Figure 5.7: SOCS3 concentration in liver extracts after IL − 6 stimulation. The dots

represent the experimental values derived from figure 1 of Wormald et al. [479]. The blue

and red curves demonstrate the fitted curve for the experimental data and the predicted

values from the model, respectively.

The final results for our simulations demonstrate that our simplified model
of IL− 6 signalling pathway can predict the protein and phospho-protein levels
accurately.
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The general trend of the experimental and modelling curves for total STAT3,
PSTAT3, and SOCS3 are similar. PSTAT3 measured by experiment peaks at 50
min and the peak value is almost 10 times larger than its steady-state value. The
modelling predicts differences in the total concentration of PSTAT3 verses time.
The simulation predicts protein levels up to 1000 min. Due to the lack of data
on the absolute amount of each protein on the gels in Wormald’s paper, PSTAT3
and SOCS3 levels were normalized to the total STAT3 loadings.

Figure 5.7 shows the SOCS3 time course for both the experiment and the
simulation. The simulation shows a peak signal approximately an hour after
IL-6 stimulation which is consistent with the results from the experiment. In
both the experimental and simulation curves, the peak value is more than 15
fold higher than the steady-state value for the concentration of SOCS3.

SMAD7 level can be predicted using our IL − 6 model. More specifically,
the SMAD7 level varies proportional to the PSTAT3 dimer in the nucleus i.e.
the transcription factor. Consequently, the SMAD7 concentration is defined as
[PSTAT32]

2
N/([PSTAT32]

2
N + 1) in Figure 5.8 and Figure 5.9. Figure 5.8 shows

time dependent changes in SMAD7 concentration for both linear and non-linear
PSTAT3/SMAD7 relation. The linear relation is modeled using mass-action ki-
netics, while Michaelis-Menten kinetics are used to show non-linear stimulation
of SMAD7 via PSTAT3 transcription factor. Furthermore, the IL− 6 ligand con-
centration changes the SMAD7 dynamics. Specifically, SMAD7 seems to decay
later at higher ligand concentration (see Figure 5.9).

Figure 5.8: SMAD7 concentration time course for linear and non-linear stimulation

via nuclear PSTAT3.
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Figure 5.9: SMAD7 concentration time course dynamics for IL−6 concentration input

= 0.5, 100 and 400 (the concentration units are arbitrary).

An advantage of a signalling model is that its predictions are not specific to
a single cell line. To show the compatibility of our model we have validated
the simplified IL− 6 signalling model with a set of experimental data extracted
from wild type mouse embryonic fibroblasts (MEFs). Figure 5.10 shows how
the model simulation of PSTAT3 dynamics explains the experimental within 1
hour after IL − 6 stimulation. For data extraction method of Figure 5.10 see
"Material and Methods" section. Changes in PSTAT3 concentration level to long-
time IL − 6 stimulation is shown in Figure 5.11. Dots with the same colour
belong to the same experimentally collected data set. The model simulation
curve explains the experimental results more precisely for short-time rather than
long-time IL− 6 stimulation (see Figure 5.10 and Figure 5.11).

Figure 5.10: Short-time simulation of total PSTAT3 dynamics. The blue curve shows

the simulation results and the dots represent the relative experimental data for 0-1 h

IL− 6 stimulation.
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Figure 5.11: Experimental and simulation results for long-time IL − 6 stimulation.

Different colored dots show different experiments.

Another interesting experiment which can be conducted via modelling is to
investigate the response of the signalling system to pulsatile IL− 6 inputs. Fig-
ure 5.12 shows how PSTAT3 concentration follows different IL− 6 stimulations
patterns. It is noticeable that the PSTAT3 steady-state changes reversely with
the "on" time increase of the stimuli. This observable phenomenon can be ex-
plained from the topology of the IL − 6 signalling network (see Figure 5.3). 20
min almost equals the time for IL − 6 signalling to reach the activated nuclear
PSTAT3 and hence, the transcription of socs3 and activation of the feedback. The
degradation of PSTAT3 happens only in the nucleus and is linearly proportional
to the nuclear PSTAT3 concentration (Mass Action kinetics). However, the pro-
duction rate of PSTAT3 (the STAT3 phosphorylation rate) is a nonlinear function
of the cytoplasmic PSTAT3 (Michaelis–Menten kinetics). Additionally, the "off"
time is not long enough to return all the signalling components to zero, includ-
ing cytoplasmic and nuclear PSTAT3. Therefore, total PSTAT3 accumulates in
the cell and peaks when the cytoplasmic and nuclear PSTAT3 peaks around 60
min. Since the activated receptor complex is limited, the signalling becomes
attenuated gradually and total PSTAT3 concentration decreases after an hour.

As the stimulation "on" time decreases, the signalling affects the down-stream
components less. The accumulated level PSTAT3 in the nucleus reduces com-
paring to longer "on" time stimulations, while cytoplasmic PSTAT3 production
follows the same pattern. Consequently, the transient (at each pulse) and steady-
state levels of total PSTAT3 increase globally. Figure 5.12 also suggests that a
pulsatile stimulation pattern may provide an alternative to the production of
genetically modified cell lines, such as MEF Gp130F/F , in which the SOCS3 feed-
back loop is knocked out in order to over-express STAT3.
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Figure 5.12: PSTAT3 responses of IL − 6 signalling system to a pulsatile input. Dif-

ferent curves correspond to distinct pulsation patterns.

By increasing the level of receptors concentration on the membrane, the IL−6
signalling attenuation which occurs after 1 hour, can be avoided. Therefore, the
steady-state level of PSTAT3 increases by increasing the total receptor concentra-
tion (see Figure 5.13). In order to vary the membrane receptor concentration in
Figure 5.13, we changed the production rates Gp80 and Gp130 simultaneously.
Variable ’m’ in Figure 5.13 is proportional to the production rates of Gp80 and
Gp130 at the membrane. Additionally, the effect of SOCS3 negative feedback
loop was decreased to decrease the degradation rate of both receptors.

Continual high level of total PSTAT3 concentration represents the responses
of cells in chronic inflammation. Our IL − 6 signalling model predicts that
chronic inflammation and hence cancer occur when the level of total receptor
concentration increases.

Figure 5.13: PSTAT3 responses of IL− 6 signalling system to different levels of mem-

brane receptors. "m" represents the level of receptor concentrations on the membrane.
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5.5 Discussion

Understanding the IL− 6 signalling pathways and its components has attracted
the interest of scientists for decades [186, 327]. Due to its roles in inflammation,
IL− 6 signalling influences the progression of tumors, such as: melanoma [214,
316], multiple myeloma [214, 228], prostate cancer [214, 407] and colon cancer
[32, 359].

A detailed mathematical models of IL− 6 signalling was proposed via Singh
et al. [402]. Although their model is comprehensive, no comparison with ex-
perimental data was attempted by the authors. Subsequent models of IL − 6

signalling have used more mathematical and statistical analyses on the basis
of Singh’s IL − 6 model [70, 320], however, these more recent reports focus on
MAPK signalling which adds an extra complexity to the system but ignores the
major specific action of IL − 6 signalling, i.e. the activation of the JAK/STAT
system.

We have focused on JAK/STAT signal transduction. Our reduction method
simplifies the complexity of the intracellular protein interactions and allows an
extended time-scale for the simulations. This reduction method is used in bio-
chemical engineering and non-linear dynamical systems analysis [115,158,422].
The final simplified model was reduced to 8 differential equations and was
solved numerically. The initial values of the parameters and scaling were based
on reported experimental data [464, 479].

Model predictions of changes in total STAT3, total PSTAT3 and SOCS3 con-
centrations compared favourably with the experimental results of Wormald et
al. [479]. Small differences between the experiments and simulations may occur
because of the lack of absolute quantitation from the Western blots of Wormald
et al. [479]. We have also tested the model results with a set of experimental
data from another cell line (MEFs) in order to demonstrate the robustness of our
model to changes in the initial conditions. Our model validates and supports
our parameter estimations, the model logistics and the reduction method [115].
Furthermore, using this model, predictions can be made for the pulsatile signal
inputs and their influences on the ultimate steady-state of the system. Pulsatile
responses to IL − 6 stimulation are confirmable in future by designing a new
experimental set up. The high level of IL− 6 signalling in chronic inflammation
and cancer was predicted by our model, which shows the robustness of this
model against different perturbations. This work can be used as a foundation
for an integrated model designed to include the IL− 6-JAK-STAT3 signalling in
more complex simulations of combined signalling pathways.

In conclusion, modelling of the IL − 6 signalling network has helped us un-
derstand the importance of the negative feedback loop for the functionality and
stability of the IL − 6 signalling network. It is interesting to see how one sig-
nalling pathway can influence and regulate another signalling network. The
importance of time-delays in such networks, caused by slow sets of reactions
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or protein complex translocations is also evident in our simulations. We also
predict how pulsatile stimulation of a signalling network can affect the strength
and the duration of IL− 6 signalling.

5.6 Material and Methods

Three major types of data analysis have been used in this project:

• Model design

In order to model the IL − 6 signalling pathways we have written ordi-
nary differential equations for the concentration of each component using
mass action or Michaelis–Menten kinetic equations [249]. The reduction
method [115] was applied to the IL− 6 model using rapid equilibrium as-
sumptions. Time-delays were considered in the equations for the PSTAT3-
induced SMAD7 stimulation.

• Computer modelling

The simulation of the mathematical model of IL − 6 signalling was per-
formed via MATLAB. We used the curve fitting package from the MAT-
LAB platform and trendline tool of Microsoft Excel in order to fit the model
predictions to compare with the experimental data from Wormald et al.
[479]. The IL−6 signalling model figure (Figure 5.1) was first designed via
CellDesigner [132] and later with Microsoft Power Point. The MATLAB
codes are available on request.

• Experimental data

The experimental data set and the kinetic rates were extracted by data
analysis from Wormald et al. published in 2006 [479] in addition to a set of
experimental data obtained in the following manner:

Cell culture and cell lysis

Mouse embryonic fibroblasts (MEFs) cells were isolated from day 13 to
15 embryos. Wild type MEF cells were cultured in DMEM containing 15%
FCS. The cells were trypsinized and washed with DMED + 15% FCS before
plating. Passage 3 cells with 1×106 MEFs/well were seeded in 60 mm
plates for 0-1 hour, treatment with 1 ng/ml IL − 6 (Ref 1661.F33. WEHI).
After washing with cold PBS for two times, cells were lysed in ice-cold 200
ul RIPA lysis buffer, containing 1M Tris/HCL, 0.5 M EDTA, 5M NaCl, 10
% Na Doc, 10 % TX-100, 10 % SDS, proteinase inhibitor 100 × and H2O.
The cell lysits were passed through 27 G needle for 5 times, then incubated
in ice for 20-30 min. After incubation the samples were span at 13,000 rpm
for 30 min at 4oC. The supernatant was transferred to new tubes where 20
ul of samples were saved for BCA protein assay using sigma BCA assay
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kit (B9643). 20 ul 5x sample buffer was added to 80 ul loading sample and
the samples were heated at 95oC for 10 min.

Western blotting

The protein concentrations were determined using the sigma BCA assay
kit (B9643), Novex NuPAGE R© 4-12%-Bis-Tris (life technologies NP0335
Box) gels were used for loading proper amount of sample lysate for each
time point. PSTAT3 (XPTM Rabbit mAb) antibodies were provided by Cell
Signalling Technology and were used at a dilution 1:500 in 3% BSA-TBS-T.
β-tubulin is used as loading control. Eventually, the gels were transformed
onto nitrocellulose membrane via iBlot 2 gel transfer device (life technolo-
gies) and the membranes were scanned using Odyssey infrared scanner
(LI-COR).

Protein Quantitation

The western blot images were quantitated using ImageJ 1.49p. The sig-
nals of each protein were normalised to the loading control protein where
possible.



Chapter 6

TGF−β and IL− 6 Signalling

Crosstalk: an integrated model

6.0 Summary of the information included in Chap-

ter 6

Crosstalk studies are inseparable parts of Systems biology approach. Systems
biology studies the crosstalk between the components of a system, emphasiz-
ing on how the ultimate systems’s function is influenced by such interactions.
Particularly in the case of intracellular signalling networks, in which individ-
ual signalling pathways share several components, it is crucial to study other
interacting signalling pathways.

Last two chapters were dedicated to individual TGF−β and IL−6 signalling
and their self-regulation. In this chapter, we introduce an "integrated" model by
which we study the regulation of TGF−β signalling via IL− 6 stimulation. The
integrated model makes predictions for the formulation and the strength of the
crosstalk between the TGF−β and IL− 6 signalling pathways.

6.1 Introduction

Cell signalling in complex biological systems regulates cellular functions. Each
signalling pathway targets a specific range of genes and consequently controls
a set of system’s characteristics. However, signalling pathways do not func-
tion as isolated systems, rather many proteins often participate in two or more
signalling pathways. The Systems biology approach can be used to study the in-
tracellular signalling networks as an interconnected complex system, where the
properties of the system are governed by several mutual interactions. Colorectal
cancer, the third most common cancer in the world [362], occurs due to an accu-
mulation of specific genetic alterations. Wnt, PGE2, EGF, TGF−β, TNF-α, IL−6

and IFNg are among the signalling pathways that interfere with the growth of
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stomach or colon cancers [80, 362, 369, 412, 494, 498, 501]. All of these signalling
pathways have been studied individually in the literature. In Chapters 4 and 5
we modelled and analyzed two of these signalling pathways (TGF−β and IL−6
signalling). This chapter focuses on TGF−β and IL− 6 signalling crosstalk and
the role of this crosstalk in gastrointestinal tumors.

TGF−β is a pleiotropic cytokine which regulates a broad range of cell’s
characteristics i.e. differentiation, proliferation, migration, life time and apop-
tosis [118, 296]. This cytokine plays a crucial role in tumorigenesis [104, 312,
350]. Acting on early-tumors, TGF−β functions as an anti-proliferative fac-
tor that causes tumor suppression [357, 434]. Notwithstanding, late-tumors be-
come stimulated by TGF−β signalling [107, 357]. Mathematical modelling and
computational analysis of TGF−β signalling help identify the conditions and
components which cause its dual-behaviour. There are reports of TGF−β sig-
nalling crosstalk with many other pathways, such as MAPK, PI3K/Akt, Wnt,
Hedeghog (Hh), Notch, ILs (including IL − 6), TNF-β, and IFN-γ [159]. Ex-
tensive crosstalk between individual signalling pathways and TGF−β is due
to the potential ability of TGF−β signalling components (e.g. SMADs) to in-
teract with other proteins outside their own direct signalling pathways [159].
Furthermore, TGF−β signal transduction has multiple transcriptional and non-
transcriptional targets which are also influenced by other signalling pathways
[159]. SMADs participate in the TGF−β signalling responsible for signal deliv-
ery from the ligand activation of the receptor to the nuclear activation events.
TGF−β downstream signalling is also regulated via its inherent negative feed-
back originated from one of the SMAD family members, SMAD7 [155, 179, 261,
315, 400, 492].

IL − 6 signalling targets genes involved in inflammation and immune re-
sponses [175,190,337,421]. IL−6 signals via the JAK-STAT and MAPK signalling
pathways (see Chapter 5), which makes IL−6 signalling potentially appropriate
for the analysis of crosstalk with other cytokine signalling. STAT3 is the target
intracellular protein which connects TGF−β and IL−6 signallings [206]. Similar
to TGF−β signalling, the IL−6 system has an intrinsic negative regulatory feed-
back loop, SOCS3 [15, 176]. Signalling through JAK/STAT pathway and hence
STAT3 level is controlled by the level of the SOCS3 protein [206].

Key parameters and mechanism of the TGF−β and IL−6 signallings crosstalk
can change dramatically depending on the cell-lines, spatial location of the in-
tracellular proteins and the developmental stage of the cells [4, 159, 402, 511].
Experimental evidence shows that TGF−β signalling can affect IL − 6 signal
transduction through the MAPK pathway in an autocrine loop [10,204,275,437].
Additionally, TGF−β expression can increase in T helper cells via activation of
STAT3 [223,238]. A TGF−β and IL− 6 signalling crosstalk via a STAT3-SMAD7
pathway interaction was first proposed via Jenkins et al. [206]. Jenkins et al.
have analyzed Gp130/JAK/STAT3 signalling and the SOCS3 negative feedback
in mouse gastric epithelial cells in order to determine the role of IL− 6 induced
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SMAD7-negative feedback on TGF−β signalling possible interactions [206]. Us-
ing the inherent feedback loops controlled by SOCS3, SMAD7 and miR-433
we have connected our previously proposed mathematical models of TGF−β
and IL − 6 signalling to study the gastric tumour model described by Jekins et
al. [207].

6.2 Model Development

According to the Jenkins et al. proposed signal exchange between the TGF−β
and IL − 6 signalling pathways [206], we have developed an integrated math-
ematical model that connects these two signal transduction systems. Our inte-
grated model is based on our previous individual models for TGF−β and IL−6.
Figure 6.1 illustrates how the two systems combine. A positive inherent feed-
back on TGF−β signalling [269] was added to the recommended model sug-
gested by Jenkins et al. The red arrow accentuates the main interaction between
the two pathways.

Figure 6.1: The schematic diagram of TGF−β and IL− 6 crosstalk. the redarrow is the

focus of the current thesis.

The parameters of each signalling model were re-evaluated and the initial
values of variables in TGF−β and IL−6 systems were adjusted according to ex-
perimental data in the literature [206]. The scaled parameters are mainly the
kinetic rates and binding constants of the IL − 6 signalling part of the inte-
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grated model. In scaling these parameters we have considered the smoothness
of the curves, non-negative values for the variables, stability and robustness of
the integrated model. We have compared two different kinetics models for the
PSTAT3/SMAD7 interaction system: mass-action and Michaelis-Menten kinet-
ics. PSTAT3 is considered to act as a transcription factor in the pathway and
activate SMAD7 transcription (Michaelis-Menten enzymic kinetics).

The equations representing the integrated model are listed below. The neg-
ative feedback terms of the [R ] , [RC ] and [PC ]differential equations have been
changed such that the phosphorylated PSTAT3 dimer in the nucleus considered
as the initiator.
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d[Gp80]

dt
= (f1A22 − f2A12)/(A11A22 − A21A12)

d[Gp130]

dt
= (f2A11 − f1A21)/(A11A22 − A21A12)

d[STAT3]C
dt

= vST − k∅ST [STAT3]C − 2kphc[CJ
∗]

[STAT3]2C
[STAT3]2C +K2

−

2kdph[PSTAT32]C + keV nc[STAT3]N − ki[STAT3]C
d[PSTAT32]C

dt
= kphc[CJ

∗]
[STAT3]2C

[STAT3]2C +K2
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,where we have the followings are defined:
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[S3 ] = [Sn ]
3/K3 (6.2)
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f1 = v80 − k∅80[Gp80]− 2R

f2 = v130 − k∅130[Gp130]− 2R (6.6)

R = kaCSc[SOCS3]
[CJ∗]

[CJ∗] +K
+ kdJ [CJ

∗] + kd2[C2]. (6.7)

6.3 Results from IL− 6:TGF−β Crosstalk Model and

Discussion

Different stimulation patterns are used in this section to predict the responses of
the integrated model to various perturbations. For the first experiment, the inte-
grated system is stimulated simultaneously with IL−6 and TGF−β, i.e. "double
stimulation". The levels of PSTAT3 and PSMAD2 are studied as the outputs of
the integrated system when it is double stimulated. Figure 6.2 compares the
PSMAD2 time course in the absence of the IL− 6 stimulation with double stim-
ulation. Due to the induced expression of SMAD7 (the negative feedback loop
for the TGF−β signalling) via PSTAT3 nuclear accumulation in double stimu-
lation experiment, the PSMAD2 concentration curve decreases to a lower level
after its first peak. The lower level of PSMAD2 leads to lower nuclear SMAD7
production in TGF−β signal transduction, so the PSMAD2 level rises again, but
peaks at a lower level than the first TGF−β induced peak (see Figure 6.2). The
dampening of the PSMAD2 peaks is because of the loss of activated IL − 6 re-
ceptors at the membrane, which leads to the reduction of the PSTAT3 signal an
hour after IL− 6 stimulation. The positive feedback loop for TGF−β signalling
is weakened as the TGF−β signalling becomes down-regulated by SMAD7 ac-
tivation. As a result, each peak of PSMAD2 is weaker than the previous peak.
The steady-state level of PSMAD2 is the same in both stimulation patterns.
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Figure 6.2: A comparison between the PSMAD2 response of the TGF−β signalling

system and the integrated IL − 6:TGF−β signalling system. The integrated model

output follows the TGF−β model output for the first 60 minutes, however it diverges

afterwards. The steady-state PSMAD2 levels of both models are identical.

Our second stimulation scenario includes a two-hour "pre-stimulation" of
the integrated system with IL− 6 followed by the TGF−β stimulation which is
started one hour after the IL − 6 stimulation. Again the total PSTAT3 and PS-
MAD2 levels are considered to be the outputs of the IL−6:TGF−β crosstalk sys-
tem. Figure 6.3 compares the response of the system to pre-stimulation and the
double stimulation patterns. The second peak of PSMAD2 response is stronger
in pre-stimulation compared to the double stimulation. When the IL − 6 sig-
nalling is terminated after 2 hours,there is a rapid decay in total PSTAT3 con-
centration and hence SMAD7 levels. Consequently, SMAD7 is only produced
through TGF−β signalling after 2 hours and PSMAD2 levels rise to higher lev-
els at the second peak. Again, the steady-state level of PSMAD2 for both stimu-
lation patterns is the same.

Figure 6.3: The integrated model output for the double stimulation and pre-stimulation

scenarios of IL− 6:TGF−β signalling.

We have also examined the response of the integrated model to a pulsatile
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stimulation of IL − 6 (the TGF−β stimulus is constant, see Figure 6.4). The
same pulsation patters in Figure 5.12 in chapter 5 are used in this experiment.
As the "on time" of the pulses increases, the PSMAD2 response trends closer
to the output of the sustained response model (see Figure 6.3 for comparison).
Studying Figure 5.12, it is clear that the PSTAT3 response is closer to sustained
IL− 6 stimulation with pulses of longer "on" duration.

The PSMAD2 dynamics in response to short IL−6 pulsation is comparable to
the system’s output in the absence of IL−6 signalling (see Figure 6.4 and Figure
6.2). Because of the steady PSTAT3 levels at short IL− 6 pulses (see Figure 5.12),
the SMAD7 level stays high and the PSMAD2 level does not peak for a second
or third time. Furthermore, the level of PSMAD2 first peak is lower in response
to short IL− 6 pulses because of the higher level of the PSTAT3 peak (see Figure
5.12).

Figure 6.4: PSMAD2 responses of the integrated model to different pulsatile inputs of

IL− 6. The TGF−β level is kept constant for the entire duration of the simulation.

In the next experiment, we have kept IL − 6 signalling constant and in-
put TGF−β pulses to the integrated system. The TGF−β pulse patterns are
identical to the previous experiment (IL − 6 pulsatile stimulation). Figure 6.6
demonstrates the responses of the integrated system to the TGF−β pulsatile
stimulation. A comparison between Figure 6.6 and Figure 6.5 reveals that the
peaks in the PSMAD2 transient response of the integrated model to IL − 6

and TGF−β stimulation appear because of the PSTAT3/SMAD7 interaction be-
tween the functions of the two proteins rather than changes to the positive feed-
back loop within the TGF−β pathway. Clearly, TGF−β signalling plays the
main role in determining the steady-state level of PSMAD2 in the integrated
model, since the equilibrium PSMAD2 levels are equivalent in both Figure 6.6
and 6.5. As expected and in a similar fashion to the previous pulsatile stimu-
lation experiments using the integrated model, as the "on" time of the pulses
increases, the model response approaches the output level of PSMAD2 for the
sustained stimulation condition.
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Figure 6.5: The simplified TGF−β model response (proposed in Chapter 4) to pulsatile

TGF−β input.

Figure 6.6: The integrated model response to pulsatile TGF−β stimulation.

Figure 6.7 shows the SMAD7 dynamics in the double stimulation of the in-
tegrated system with both IL − 6 and TGF−β. Because of the incorporation
of time-delay in PSTAT3/SMAD7 and PSMAD2/SMAD7 reactions, the SMAD7
level does not start increasing instantly, i.e. there is a 10-min delay. SMAD7
concentration decreases after 60-70 min due to the lost of activated receptors in
both signalling pathways. However, the SMAD7 level rises for the second time.
As mentioned above, the second peak is caused mainly by the non-zero but low
level of PSTAT3 produced in response to the IL− 6 stimulation. Figure 6.7 com-
pares how the different kinetics for PSTAT3/SMAD7 reactions affects the total
SMAD7 dynamics.
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Figure 6.7: SMAD7 dynamics when the integrated model is stimulated with constant

levels of IL− 6 and TGF−β.

SMAD7 dynamics is studied in a pre-stimulation experiment (see Figure 6.8).
Comparing Figure 6.8 with Figure 6.7, the second peak of SMAD7 vanishes as
the result of pre-stimulation. The existence of the second SMAD7 peak in the
double stimulation experiment was due to the non-zero level of PSTAT3. When
the system is pre-stimulated, the PSTAT3 level reduces to zero within 120 min-
utes (see Figure 6.8).

Figure 6.8: Two models of the SMAD7 dynamics when the integrated model is pre-

stimulated with IL− 6 for 2 hours and with TGF−β an hour after IL− 6 stimulation.

It is important to note that the SMAD7 level peaks around 100 min in the
mass-action model of PSTAT3/SMAD7 kinetics, compared to the Michaelis-
Menten kinetics. Whereas, the curve corresponding to Michaelis-Menten ki-
netics experiences a sudden decrease at 120 min.

In order to measure how sensitive the integrated model is to the PSTAT3/-
SMAD7 functional interaction, we have plotted the PSMAD2 response of the in-
tegrated model to pre-stimulation, while varying the strength of the activation
of SMAD7 via PSTAT3 (see Figure 6.9). The "coefficient" in Figure 6.9 is used as a
representative of the strength of the PSTAT3/SMAD7 interaction. Greater coef-
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ficient leads to stronger stimulation of SMAD7 via PSTAT3. As shown in Figure
6.9, the reduction of the PSMAD2 output after its first peak is extremely sensitive
to PSTAT3-dependent stimulation of SMAD7. The steady-state of the model re-
mains unchanged via the PTAT3/SMAD7 reactions, which confirms our previ-
ous hypothesis that the TGF−β signalling determines the ultimate steady-state
level of SMAD7 in the integrated model.

The results in Figure 6.9 support the initial hypothesis of this research, i.e.
the activated form of PSTAT3 induces the down-regulation of TGF−β signalling
and suppresses the PSMAD2 activation through over-expression of SMAD7, the
PSMAD2 level is suppressed significantly after 150 min (see Figure 6.9). After
the first peak, the effect of IL−6 signalling is eliminated and the PSMAD2 curves
loose their sensitivity to PSTA3 and IL− 6 signalling.

Figure 6.9: The variation in the integrated model output as the PSTAT3/SMAD7 in-

teraction is being reinforced gradually. Different coefficients represent different strength

of the PSTAT3-induced stimulation of SMAD7.

In order to test experimentally our integrated model we have developed and
designed an experimental protocol. In this protocol, wild type MEFs were stim-
ulated with IL − 6 for 1 hour before their double-stimulation with TGF−β and
IL − 6. The one hour pre-stimulation with IL − 6 acts as the time-delay used
in the IL− 6:TGF−β signalling connection. The 0 time point represents the ini-
tial time of the double-stimulation with TGF−β and IL−6. According to Figure
6.3, the total PSMAD2 concentration undergoes a double-peak fluctuation in the
first 300 min, before reaching the steady-state. We have measured the level of
total PSMAD2 for 0 to 4 hour after the double-stimulation. This experiment has
been designed to test the double-peak appearance in the stimulation of TGF−β
and IL− 6.

Figure 6.10 shows how the predictions of the integrated model (the blue
curve) are in accordance with the experimental data. Each replicates of the
experiment is illustrated with a specific colour and marker shape. The points
specified by a "cross" are the average of the 3 experimental sets extracted for
each time point.
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Figure 6.11 is the representative blot of the data shown in the Figure 6.10. It
is clear that PSMAD2 level rises for the second time after its minimum at 150
min. The data points in Figure 6.10 are normalised to the loading control, e.g.
actin.

Figure 6.10: The experimental validation of the integrated model. The blue curve is

the model prediction of the double-stimulation of TGF−β and IL − 6. The colored

dots represent the experimental data from wild type MEFs. Each set of experimental

data is specified with a color. The "cross"es represent the average of the 3 experimental

replicates.

It is important to note that I needed to revise the time-delay parameter con-
sidered in the feedback terms of TGF−β-part of the integrated model. A propor-
tion of the SMAD7 is induced by IL−6 signalling which also has a time-delay of
20 min and had to be added to the time-delay of the SMAD7-induced feedback
terms.

Figure 6.11: The representative blots of Figure 6.10. The top bands show the total

PSMAD2 concentration level of the double-stimulation experiment. The bottom bands

represent the loading control to which the PSMAD2 levels are normalised.
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6.4 Material and Methods

Three major types of data analysis have been used in this project:

• Model design

In order to combine the TGF−β and IL − 6 signalling pathways we have
written ordinary differential equations for the concentration of each com-
ponent using mass action or Michaelis–Menten kinetic equations [249].
Two different time-delays were considered in the equations for feedback
loops in order to compensate for the transcription and translation pro-
cesses and the connecting reaction of the two pathways.

• Computer modelling

The simulation of the mathematical model of the integrated IL−6:TGF−β
signalling was performed via MATLAB. The equations are represented by
equations 6.1. The MATLAB codes are available on request. The experi-
mental data points are produced using Microsoft Excel 2010 [352].

• Experimental data

The experimental data set and the kinetic rates were extracted by the ap-
plicant in Walter and Eliza Hall Institute of Medical research, Burgess Lab:

Cell culture and cell lysis

Mouse embryonic fibroblasts (MEFs) cells were isolated from day 13 to
15 embryos. Wild type MEF cells were cultured in DMEM containing 15%
FCS. The cells were trypsinized and washed with DMED + 15% FCS before
plating. Passage 3 cells with 1×106 MEFs/well were seeded in 60 mm
plates for 0-1 hour, treatment with 1 ng/ml IL − 6 (Ref 1661.F33. WEHI).
After washing with cold PBS for two times, cells were lysed in ice-cold 200
ul RIPA lysis buffer, containing 1M Tris/HCL, 0.5 M EDTA, 5M NaCl, 10
% Na Doc, 10 % TX-100, 10 % SDS, proteinase inhibitor 100 × and H2O.
The cell lysits were passed through 27 G needle for 5 times, then incubated
in ice for 20-30 min. After incubation the samples were span at 13,000 rpm
for 30 min at 4oC. The supernatant was transferred to new tubes where 20
ul of samples were saved for BCA protein assay using sigma BCA assay
kit (B9643). 20 ul 5x sample buffer was added to 80 ul loading sample and
the samples were heated at 95oC for 10 min.

Western blotting

The protein concentrations were determined using the sigma BCA assay
kit (B9643), Novex NuPAGE R© 4-12%-Bis-Tris (life technologies NP0335
Box) gels were used for loading proper amount of sample lysate for each
time point. PSMAD2 antibody was provided by was used at a dilution
1:500 in 3% BSA-TBS-T. PSMAD2 antibody (rabbit polyclonal anti-phospho-
Smad2 antibody (1:1000 for Western blot)) was a gift from Prof. Peter ten
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Dijke (Leiden University Medical Center, Netherlands). β-tubulin is used
as loading control. Eventually, the gels were transformed onto nitrocellu-
lose membrane via iBlot 2 gel transfer device (life technologies) and the
membranes were scanned using Odyssey infrared scanner (LI-COR).

Protein Quantitation

The western blot images were quantitated using ImageJ 1.49p. The sig-
nals of each protein were normalised to the loading control protein where
possible.
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6.5 Summary and Conclusions

The complexity of cancer and the growing rate of cancer diagnosis make this
disease one of the greatest challenges for the health sciences worldwide. Strong
correlations between cancer and other diseases of cell regulatory systems, such
as chronic inflammation, increase the complexity in developing targeted treat-
ments. Systems biology provides us a holistic approach to study biological sys-
tems and their components function-wise. Mathematical modelling, as one of
methods defined in Systems biology, allows predictions for biological systems.

Two specific cytokine signalling pathways were studied individually and
together, in this project: TGF−β and IL − 6 signalling. Separate mathematical
models were developed for TGF−β and IL− 6 signalling and each system was
parameterized and validated experimentally. Chapter 4 describes the model de-
velopment, model analysis, model validation and model predictions for TGF−β
signal transduction. The importance of feedback loops and time-delays in signal
regulation are discussed in chapter 4. The contribution of a novel positive feed-
back loop in TGF−β signalling system and the effects of the feedback coupling
in this system are studied in Chapter 4. A systematic reduction method was
introduced to simplify the number of components and variables of the TGF−β
signalling system without influencing the steady-state and transient response
of the system. Eventually, the TGF−β model was validated with a combina-
tion of experimental data extracted from the literature and the data produced
by the applicant. Developing a rigorous and precise mathematical model for
TGF−β signalling equipped us with the predictions for the response of the cells
in cancerous conditions (see Chapter 4).

Similar steps were repeated to develop a mathematical model for IL− 6 sig-
nalling based on Systems biology principles. In Chapter 5 our methodology for
designing, developing and simplifying IL− 6/Gp130/JAK/STAT3 signalling is
presented along with the experimental validation of the model. For the first
time, the time-delay is incorporated in the equations of the IL − 6 system. Two
experimental data sets were used to verify our proposed mathematical model of
IL − 6 signalling. Chapter 5 also provides model predictions for different stim-
ulation patterns and perturbations. These predictions introduce the idea of the
crosstalk between the IL − 6 and TGF−β signalling pathway via the negative
feedback loop of TGF−β signalling network, which is studied in Chapter 6. In
another novel prediction of Chapter5, it is proposed that pulsatile input of IL−6
to the system can regulate the steady-state level of the output of the system. This
method can be used to amplify the IL − 6 signalling to eliminate signalling the
negative feedback effects through SOCS3.

In order to examine our initial hypothesis concerning the suppression of
TGF−β signalling by IL− 6 over-stimulation, we combined our proposed mod-
els of TGF−β and IL− 6 signalling and designed our integrated IL− 6:TGF−β
model, in Chapter 6. The previous models were re-evaluated and re-parameterized
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to capture all the properties of both signalling networks. For instance, the time-
delay incorporated in the feedback terms of the TGF−β signalling equations
has been modified in the integrated model. The integrated model was tested
against different stimulation patterns and the responses of the models were in-
terpreted according to the network connections. The sensitivity and robustness
of the integrated model against the strength of the crosstalk were studied. The
simulation results from the integrated model are compatible with our assump-
tions and interpretation of the down-regulation of TGF−β signalling due to the
hyper-activation of IL − 6 JAK/STAT signalling pathway. In the final part of
this thesis, the integrated IL − 6:TGF−β signalling model is examined against
experimental data from the double-stimulation of wild type MEFs. These re-
sults strongly support the biological logistics of our models, our modelling ap-
proaches, the simplification and reduction methods and the parameterization of
our model.

The results from the integrated model predict that PSMAD2 levels will os-
cillate in the first two hours due to the IL− 6 stimulation (short-term response),
while the steady-state levels (long-term response) depend on the level of the
TGF−β stimulation. Specifically, the appearance of the double peak in the dy-
namics of total PSMAD2 concentration (which has been experimentally proven
for the first time) is due to the IL− 6 signalling.

6.6 Overall Conclusions and Future Work

The work described in this thesis has focussed on the development of mathe-
matical models of two signalling pathways (TGF−β and IL−6) that are compati-
ble with the latest logistical analysis of these pathways. Chapter 4 and 5 provide
well-designed models of TGF−β and IL− 6 signal transduction with minimum
sets of equations which specify the critical reactions in these signalling path-
ways. In our model of TGF−β signalling, the coupling of the positive and neg-
ative feedback loops and its important effects on the regulation of the TGF−β
signalling are proposed for the first time. This implies that more consideration
should be made when studying systems with feedback loops e.g. signalling sys-
tems. Moreover, corporation of time-delays in order to distinguish between the
fast and slow reactions is introduced for the first time in our models of TGF−β
and IL − 6 signalling. In this thesis the interactions between two distinct reg-
ulatory signalling pathways are studied quantitatively for the first time, which
paves the road for future studies of the relationship between chronic inflamma-
tion and tumor development.

While this thesis proposed a comprehensive study of the crosstalk between
two different signalling pathways in line with Systems biology approach, many
opportunities for extending the scope of this thesis remain. First, we want to
experimentally explore the predictions from our model e.g. the behaviour of
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the two signalling pathways with pulsatile input. This requires the develop-
ment of more experimental protocols. Furthermore, more experimental data is
required in order to parameterize the time-delays incorporated in the integrated
model. Considering the fact that MAPK signalling is closely related to TGF−β
and IL − 6, the immediate future step is to model MAPK signalling and study
its influences on the integrated IL − 6:TGF−β model. Inclusion of MAPK sig-
nalling in our integrated model would make it possible to study the effects of
other signalling receptors such as EGFR family members on TGF−β and IL− 6

signalling. Other modelling approaches (such as stochastic or PDE modelling)
could also be studied and compared with the results from our ODE models.



Chapter 7

Appendices

7.1 A Differential Equation Overview

Differential equations are common tools used in mathematical modelling of
physical, chemical or biological systems [41, 45, 52, 53, 236, 282]. When the com-
ponents of a system vary with respect to time, differential equations are used to
describe, formulate and solve the system. Examples of differential equations in
different areas include mass-spring systems in Physics which follows Hooke’s
law or tumor growth dynamics [45].

7.1.1 Initial Conditions and Solutions

Regardless of the type of the differential equation, there might be a set of so-
lutions to a single differential equation. These solutions differ in their starting
points. Depending on the integration constant or the arbitrary private solution,
the solutions follow different curves. Occasionally, single solution among the
family of solution curves is important for our purpose. The solution curves can
be identified based on their "initial conditions". Initial condition is written in the
form of y(t0) = y0 and the problems which provide initial conditions are called
"initial value problems" [41, 236, 282].

7.1.2 Ordinary VS. Partial

Differential equations can be categorized into "ordinary" and "partial" differen-
tial equations. Ordinary differential equations, also known as ODEs, are defined
when the dependent variable (the variable whose derivative is appeared on the
left hand side of the differential equation, e.g. u) of a system is a function of a
single independent variable (e.g. t) [41, 282].

u = u(t), (7.1)

u′ = f(u, t) (7.2)

115
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Whereas, the dependent variable in partial differential equations (PDEs) is a
function of multiple independent variables (e.g. tis) [41, 282].

u = u(t1, ..., tn), (7.3)

f(u, t1, ..., tn,
∂u

∂t1
, ...,

∂u

∂tn
,
∂2u

∂t21
, ...,

∂2u

∂t2n
, ...) = 0 (7.4)

7.1.3 Order of Differential Equations; Autonomous and Non-

autonomous Differential Equations

Both ODEs and PDEs are further classified by the order of derivatives they con-
tain. Order of a differential equation is specified by the number of the high-
est derivative on the RHS. The general form of a first-order differential equa-
tion is illustrated as u′ = f(t, u), where f is a function of t and u. The solu-
tion of equation 7.2 is defined to be u = u(t) whose derivative is defined as
u′ = f(t, u). If f does not depend directly on t, then the differential equation is
called "autonomous", otherwise, it is a "non-autonomous" differential equation.
The autonomous equations are self-governing. This means that the dynamics
described by autonomous differential equation will not change by altering the
time origin (the starting point of time) [41, 53, 282].

7.1.4 Linearity VS. Non-linearity

Differential equations are classified into "linear" and "non-linear", depending on
the power of the variables appearing on the RHS. If the variables appear only
with power one, the differential equation is called linear, otherwise it is a non-
linear differential equation [41, 282].

Pendulum, for instance, is a classic mechanical system which is formulated
by a nonlinear differential equation (because sin(θ) is not a first power in 7.5)
[41, 53, 282].

d2θ

dt2
+ sin(θ) = 0 (7.5)

7.1.5 Systems of Differential Equations

Many problems in science involve multiple differential equations and cannot be
described by one differential equation (if they are not simplified and reduced).
Depending on the number of variables, different systems of differential equa-
tions are used to describe such systems. Similar to single differential equation,
systems of differential equations are linear or non-linear. As an example of a
system of non-linear, first-order ODE, consider a simple protein dimerization
system where two monomers combine to form a dimmer:
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M +M
b−⇀↽−
a
D

∅ →M

M → ∅
D → ∅

The non-linear ODE system with two variables is of the form:

M ′ = p− 2aM2 + 2bD −mM
D′ = aM2 − bD − dD,

where p, m and d are production and degradation rates.
There is no certain method or algorithm for solving non-linear systems of

differential equations. It becomes more complicated when the equations that
describe the system are "coupled" [41, 53, 282]. In coupled system of equations,
the right hand sides of the equations are functions of two or more variables
(including the variables whose derivative are appeared on the left):

u′ = f(t, u, v)

v′ = g(t, u, v)

All systems of ordinary differential equations can be written as systems of
first-order ODEs. Most of the biological systems can be modeled with a set of
first-order ordinary differential equations. That is the reason for using ODEs in
order to model biological systems.

Having formulated the desired system into an appropriate model of differ-
ential equation, the next step is to find a solution, u(t), which provides the dy-
namics of the system. The majority of the natural systems are explained by cou-
pled non-linear systems of differential equations and may not have analytical
solutions. Analytic solutions or "closed-form" are said to be found when math-
ematical manipulations lead to a formula for u(t). In cases where an analytic
solution cannot be found, numerical methods are used. A numerical solution
is an approximate solution derived via different algorithms of approximation.
Non-linear systems can often be solved through numerical methods. Qualita-
tive methods illustrate important features of the solution without solving the
system explicitly and are useful in sketching a graphical representation of the
system [41, 53, 282].

Having the system solved, analytically or numerically, a number of "equilib-
rium points" must be found. Physical systems arising from physical phenomena
often result in a number of equilibrium points. Consequent stability analysis il-
luminates whether the equilibrium points are stable and can be explained by a
physical explanation.
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7.1.6 Qualitative Analysis; Fixed Points, Equilibrium Points and

Stability

In order to gain an understanding of the solution of first-order differential equa-
tions, we can sketch the "direction field" or "slope field". In direction field, the
slope of each small vector (slope mark) is in the direction of f(t, u) for all points
in t, u-plane. A line in the direction field which is obtained by setting f equal to
a constant is called "isocline" and the lines along which the slope field is zero are
"nullclines" [41, 282]. As an example, consider the system of first-order ODEs:

x′1 = f1(x1, ..., xn)

x′2 = f2(x1, ..., xn)
...

...
...

x′n = fn(x1, ..., xn)

The set of xjs (j = 1, ..., n)) that satisfies fj(x1, ...xn) = 0 is the nullcline set
of the system. The intersection where all nullclines meet is the "fixed point" or
the "equilibrium point". The origin (0, 0) is a fixed point of all linear systems of
ordinary differential equation, while a non-linear system may have neither fixed
points nor nullclines. In general, a fixed point is a state of the system where the
variables are constant with time. This state is called "steady-state" [41, 282].

Stability of a system is defined based on the perturbations applied to the
system near its fixed or equilibrium points. If the system converges to its equi-
librium point after applying perturbation, the equilibrium is "stable". If the sys-
tem deviates from its equilibrium point rapidly after applying perturbations,
the equilibrium is called "unstable".

Studying the direction field of an equation is important in problems that the
changes in the rate of the variables are crucial (such as equations describing
cytokine signalling pathways where the system can be reduced based on the
reaction rates). However, it is hard to visualize the slope field for systems with
more than three time-varying variables. Therefore, this feature is not applicable
to most of the biological system studies.

7.1.7 Linearization of Non-linear ODEs

As mentioned previously, most of the real world systems are non-linear and
hard to solve analytically. However, if a non-linear system has an equilibrium,
its stability can be assessed by studying the stability of an approximated linear
system near the equilibrium point. Linear systems are easier to solve. Their
behaviours are determined by their associated matrix of eigenvalues and eigen-
vectors. The general idea of linearization is to approximate a non-linear system
by the relative linear system in a neighborhood of the equilibria and use the
linear system’s features to find a proper approximated solution [41,53,236,282].



7.2 ODE Solving Methods; Numerical Consideration 119

Linearization starts by defining small perturbations around the equilibrium
point for each variable of the system. As an example, consider the system below
as the initial non-linear system:

x′ = f(x, y)

y′ = g(x, y)

If x∗ = (xe, ye) is an isolated equilibrium, u = x − xe and v = y − ye will
be defined as the small perturbations around x∗. Therefore, the equation can be
rewritten to the form:

u′ = f(xe + u, ye + v)

v′ = g(xe + u, ye + v)

Now, we can use the "Taylor series" to expand the right side of the equations.

u′ = f(xe, ye) + fx(xe, ye)u+ fy(xe, ye)v

v′ = g(xe, ye) + gx(xe, ye)u+ gy(xe, ye)v

The first term in each equation is zero. We can represent the above equations
in matrix form: (

u′

v′

)
=

(
fx(xe, ye) fy(xe, ye)

gx(xe, ye) gy(xe, ye)

)(
u

v

)

The matrix that maps

(
u

v

)
to

(
u′

v′

)
is called "Jacobian" matrix and contains

the first partial derivatives of f and g with respect to x and y. The eigenvalues of
Jacobian matrix determine the stability status of the original non-linear system
around the equilibrium point (only if the eigenvalues have nonzero real part)
[41, 52, 53, 236, 282].

7.2 ODE Solving Methods; Numerical Consideration

Solution methods of ordinary differential equations are controlled either by "ini-
tial conditions" or "boundary conditions". The distinction between these two
conditions is in the number of points by which the subsidiary conditions are
given. In initial value problems, information about a certain point (normally at t
= 0) guarantees the uniqueness of the solution, while this information is spread
among a number of points (boundaries) in boundary value problems.
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7.2.1 Analytical Solutions

Most of linear systems are solvable via analytical methods. The usual strategy
to solve linear differential equations is to reduce their order by various algo-
rithms and solve the reduced equation using different methods, depending on
the equation type [41, 52, 53, 236, 282]. Two of the most common and general
methods to deal with linear systems are: 1. Fourier transform and 2. Laplace
transform [41, 282]

Fourier transform enables us to solve linear boundary value problems which
might have solutions in the whole real line domain. Notwithstanding, Laplace
transform is able to solve linear initial value problems with the help of Fourier
transform [41, 282].

As mentioned before, in order to solve a nonlinear system of differential
equation an optimal linear system should be found in the first place. This linear
system of equations can be solved by one of the analytical methods later. There
are a few methods to approximate a nonlinear system near a point of interest.
Following subsections provide brief summary on the most applicable approxi-
mation methods used to solve nonlinear systems [41, 52, 53, 236, 282].

Iterative Methods

Picard iteration (E.Picard, 1856-1941) is the simplest approximation method
for solving nonlinear differential equation by a recursive analytic process. This
method of approximation is founded on the basis of a classical method in math-
ematics called "fixed point iteration" [41, 52, 282]. Fixed point iteration finds
solutions for general algebraic equations of the form x = g(x). Approximated
solution x∗ is generated through the iterative procedure,

xk+1 = g(xk), k = 0, 1, 2, ... (7.6)

, provided | g′(x∗) |< 1 and the initial guess of the solution is close enough
[41, 52, 282].

Picard iteration method is mostly applied to initial value problem, adopting
the fixed pint iteration idea. Consider initial conditions as the following:

u′ = f(t, u) (7.7)

u(t0) = u0 (7.8)

We integrate both sides of the first equation to derive an equation for the
solution.

u(t) = u0 +

∫ t

t0

f(s, u(s))ds (7.9)

Now Picard iteration is defined based on the fixed point iteration.
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uk+1(t) = u0 +

∫ t

t0

f(s, uk(s))ds, k = 0, 1, 2, ... (7.10)

In this equation u0(t) is the initial approximation and is usually set to be the
constant function u0(t) = u0. By applying this method, a sequence of uk(t) is
generated which converges to the absolute solution.

Technically, any solution of x = g(x) is the solution of f(x) = 0 and vise-
versa. Therefore, this set of solution satisfies the below equation.

x = g(x) = x− f(x)

h(x)
(7.11)

h(x) is a non-zero arbitrary function. By setting h(x) equals to f ′(x), the
iterative equation is defined as:

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, ... (7.12)

Now, using fixed point iteration method, xn will converge to the real solu-
tion, only if the initial guess is close enough to it. In truth, replacing h(x) with
the first derivative of f has made the convergence as rapid as possible. In other
words, the equation, known as "Newton method", is the optimal state of the
equation.

Picard iteration is a functional method for acquiring the solution, however,
the solution is guaranteed only if the right hand side function is regular. In
any case, Using Picard iteration, the solution is still found locally. Therefore,
other numerical methods are put into operation to solve initial value problem
by means of computer algorithm [41, 52, 282].

7.2.2 Numerical Solutions

Up to this point, the differential equation types and some solution methods have
been reviewed. Though, there are many important problems in engineering
and science that are potentially unsolvable with analytical methods and it is
impossible to derive from them an exact expression for the solution. As a result,
alternative methods have been created to provide an accurate approximation to
the solution of an initial value problem. These alternative methods are called
"numerical methods" [41, 52, 53, 236].

• Taylor Series Approach

Taylor series are the foundation of most of the numerical approximation
methods since they define the function f in terms of its measured deriva-
tives in a single point. The Taylor series of f(x) in x = a are of the form:

f(a) +
1

2!
f ′(a)(x− a) + 1

3!
f ′′(a)(x− a)2 + ... =

∞∑
n=0

f (n)(a)

n!
(x− a)n (7.13)
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Using the first two terms of Taylor series to extend u′(t) in u′(t) = f(t, u) is
the basis of "Euler method" for solving nonlinear differential equations. In
order to increase the order of cumulative error and obtain a more precise
approximation of the solution, the most sensible way is to extend the Euler
formula to the third term of the Taylor series. The result is the "three term
Taylor series method":

un+1 = un + hf(tn, un) +
h2

2

[
∂f

∂t
+ f

∂f

∂u

]
(tn, un), n = 0, ..., N (7.14)

Apparently, the error of the three term Taylor series method is of the order
h2 which, in comparison with Euler method, makes a great difference in
the approximated solution if h is small.

• Explicit VS. Implicit

In numerical methods approximations, whenever a point such as un+1 can
be approximated in a way that it only depends on the previous point
approximations, the equation is solved "explicitly" and the approach is
an "explicit method". Otherwise, the approximated measurement at each
point depends on both itself and previous points and the approximation
is acquired through an "implicit method". Implicit method such as, New-
ton’s method, requires solving (nonlinear) equations to find un+1 in terms
of un. First-order implicit methods provide solutions which are "absolutely
stable" while, the solutions derived via explicit methods are "conditionally
stable".

As an example of implicit and explicit methods, consider "Euler method"
formula (for more details on this method refer to next section):

un+1 = un + hf(tn, un) (7.15)

This is in fact the explicit expression of Euler method, however, this method
has implicit version as well:

un+1 − hf(tn+1, un+1) = un (7.16)

Choosing between implicit and explicit numerical methods is always a
trade-off. As mentioned before, the solutions via implicit methods are ab-
solutely stable. Thus, it is sensible if one chooses the implicit instead of the
explicit Euler method. However, applying implicit methods on nonlinear
and complex systems often leads to nonlinear equations to be solved. Nu-
merical methods used to solve nonlinear equations result in approximated
solutions. Yet, Obtaining approximated solutions means that we have al-
ready lost the stability of our solution.
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All in one, implicit methods do not induce higher stability assigning to
complex nonlinear systems. Therefore, in dealing with the majority of the
nonlinear models in biology it is more preferred to use explicit numerical
methods, such as explicit, forth-order "Runge-Kutta".

• Error Analysis of Numerical Methods

Solving IVP (initial value problem) numerically raises a number of other
properties to the solutions that need to be studied. One of these properties
is the "convergence" of the solution. Convergence means how close the
solution sequence (u1, u2, ..., un) is to the actual solution or, how small the
step size should be to give the maximum solution accuracy.

In order to quantify the convergence property, two classes of errors have
been defined. The difference between the solution obtained numerically
and the actual solution (u∗n) is known as "global truncation error", En.

En = u∗n − un (7.17)

This error is caused by both the approximation formula to determine un+1

used in each step and the approximated input to the approximation for-
mula at the following step. Now, if we assume that the input in the last
step is accurate, the only error is due to the approximation formula and is
called "local truncated error", en.

• Euler Method

Euler method, named after L. Euler (1707-1783), has got the simplest al-
gorithm among numerical approximation methods. The basic idea of this
method is to replace the continuous time model with an approximate dis-
crete time model. To achieve this, the time span is divided into smaller
intervals of the size h.

0 = t0, t1, t2, ...., tn = T tn = nh n = 0, 1, 2, ...., N (7.18)

If we use the fundamental theorem of calculus, we can write:

u(tn+1)− u(tn) =
∫ tn+1

tn

f(t, u)dt. (7.19)

This can be approximated by the left-hand rule as the following:

un+1 = un + hf(tn, un) (7.20)

In the last step, u(tn) is substituted by un for the sake of presentation. Equa-
tion is the main Euler formula. Solution at time t is calculated based on
solution at time t − h and the slope of the solution curve at the previous
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approximated point. The cumulative error is bounded by h over the time
interval. As a result, the Euler method is of the order h.

Going back to our dimerization example in Section 3.3.1, we want to solve
the system with Euler method un+1 = un + hf(tn, un), up to two steps:

M ′ = p− 2a.M2 + 2b.D −m.M (7.21)

D′ = a.M2 − b.D − d.D, (7.22)

where p, m and d represent production rate of M, degradation rate of M
and degradation rate of D, respectively. First, we should set the initial
conditions for M and D. We define M(t0) = M0 and D(t0) = D0. Now, in
the first step when n = 0 Euler equation provides:

M1 =M0 + h(p− 2a.M2
0 + 2b.D0 −m.M0)

= (2ha)M2
0 + (1−mh)M0 + (hp+ 2hbD0)

D1 = D0 + h(a.M2
0 − b.D0 − d.D0) = (ha)M2

0 + (1− hb− hd)D0

(7.23)

Having derived M1 and D1, we can obtain M2 and D2 successively, setting
n = 1.

M2 = M1 + h(p− 2a.M2
1 + 2b.D1 −m.M1) (7.24)

D2 = D1 + h(a.M2
1 − b.D1 − d.D1) (7.25)

Substituting M1 and D1 from the previous step, we can calculate the state
of the system in the second step of Euler method. The consequent steps
are calculated similarly. In order to avoid complex calculation, it is better
to set values for the constants and the initial conditions. Here, I have used
the real values for R2dimerizarion in our model:

M0 = 8.87, D0 = 0, p = 0.019, m = 0.0132, a = 0.01, b = 0.001, d = 11.8

(7.26)

Substituting h = 0.5 in equations , we will have:

M1 = 8.03 (7.27)

D1 = 0.39 (7.28)

Consequently, the solutions for n = 1 are as the following:
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M2 = 7.34 (7.29)

D2 = −3.57 (7.30)

Similarly, next step (n = 2) provides subsequent solutions:

M3 = M2 + h(p− 2a.M2
2 + 2b.D2 −m.M2) = 6.75 (7.31)

D3 = D2 + h(a.M2
2 − b.D2 − d.D2) = 17.76 (7.32)

Steps can be continued as much as it is required. Though, taking more
steps and more calculations do not increase the accuracy of the Euler method;
they just provide a better approximated solution curve.

• Modified Euler Method

The Euler method can be more accurate, using the "trapezoidal rule".

u(tn+1)− u(tn) =
h

2
[f(tn, un) + f(tn+1, un+1)] . (7.33)

This equation is called implicit Euler equation and its cumulative error is
of the order h2. At each step of solving this equation, a nonlinear equation
must be solved for un+1. To avoid such a complexity, un+1 at each step is
replaced by un+1 derived from simple Euler method. Thus, the predictor
can be calculated as:

ũn+1 = un + hf(tn, un) (7.34)

and the corrector is in the form of:

u(tn+1)− u(tn) =
h

2
[f(tn, un) + f(tn+1, ũn+1)] (7.35)

This predictor-corrector algorithm is known as modified Euler method,
Huen’s method or second-order Runge-Kutta method. The cumulative
error of modified Euler method is also of the order of h2.

• Runge-Kutta Method (A Class of Methods)

The extension of Euler method is possible either by contribution of higher
order of derivatives calculated or by multiplicity of evaluation of the func-
tion f , at each step. The idea of the latter was first proposed by Runge in
1895. In collaboration with Heun (1900) and Kutta (1901) this method was
developed to forth order and a few efforts for the fifth order was made.
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Huta (1956, 1957) introduced the sixth-order of Runge-Kutta method. Re-
cent studies are focussed on implicit Runge-Kutta methods to find numer-
ical solutions for stiff differential equations (solutions derived through nu-
merical methods are numerically unstable in stiff equations). This method
is simple and accurate at the same time and thereupon, is the most widely
used method in science and engineering.

The Runge-Kutta method is indeed a class of various methods with dif-
ferent calculation steps and different assumptions. They also can be ex-
plicit and implicit. The simple idea is that the average values of f accept
different weights in the process of finding the next approximating point.
Here, we only focus on the low-order explicit methods of standard Runge-
Kutta. In general, the two-stage Runge-Kutta method can be formulated
as below:

un+1 = un + h[b1f(un) + b2f(un + ha21f(un))] (7.36)

where tn+1 = tn+h. The constants b1, b2 and a21 should be chosen in a way
that the order of the method is as high as possible. The optimal state for
the first and second orders are:

First−Order : b1 + b2 = 1 (7.37)

Second− order : b1 + b2 = 1 , b2a21 =
1
2

(7.38)

at the same time.

Therefore, assuming U(t) as the approximated value of u(t), the method is
illustrated as:

Ui(x) = u(t0) + (t− t0)
s∑
j=1

aijf(Uj(t)) i = 1, 2, ..., s, ... (7.39)

U(t) = u(t0) + (t− t0)
s∑
j=1

bjf(Uj(t)) (7.40)

The above weights are identified by the Butcher Tableau:

c1 a11 a12...a1s

c2 a21 a22...a2s
...

...
...

...

cs as1 as2...ass

b1 b2 ...bs

(7.41)
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The numbers cis are defined as ci =
∑s

j=1 aij for i = 1, 2, ..., s. These
weights can be shown in a tree graph diagram as well.

Methods With Orders Less Than Four:

The Butcher Tableau for order 2 with two stages is provided below:

0

c2 a21

b1 b2

(7.42)

Putting b1 + b2 = 1 and b2c2 =
1
2
, c2 will be equal to a21. Two possible cases

of the tableaus meeting these conditions are:

0
1
2

1
2

0 1

(7.43)

and
0

1 1
1
2

1
2

(7.44)

Reviewing previous sections, these represent the same modified Euler meth-
od.

In order to move to third-order Runge-Kutta, three stages are essential to
fill up the tableau:

0

c2 a21

c3 a31 a32

b1 b2 b3

(7.45)

The conditions that rise immediately are:

b1 + b2 + b3 = 1, b2c2 + b3c3 =
1

2
, b2c

2
2 + b3c

2
3 =

1

3
, b3a32c2 =

1

6
(7.46)

If we solve all these equations simultaneously, three different cases would
be created, depending on the arbitrary choices of the individual constants.

The classical forth-order Runge-Kutta can be written via Butcher Tableau
as below. This is the most well-known version of Runge-Kutta method.
This is remarkably because a31, a41 and a42 are put to zero.
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0 0 0 0 0
1
2

1
2
0 0 0

1
2

0 1
2
0 0

1 0 0 1 0
1
6

1
3

1
3

1
6

(7.47)

The equations for the classical forth-order Runge-Kutta are formulated as
below:

un+1 = un +
h

6
[kn,1 + 2kn,2 + 2kn,3 + kn,4] , n = 0, 1, 2, ..., N (7.48)



kn,1 = f(tn, un)

kn,2 = f(tn +
1
2
h, un +

1
2
hkn,1)

kn,3 = f(tn +
1
2
h, un +

1
2
hkn,2)

kn,4 = f(tn + h, un + hkn,3)

(7.49)

Four functional evaluations are performed at each step in this method
while, in Euler method we evaluate only one function at a time.

The h
6
[kn,1 + 2kn,2 + 2kn,3 + kn,4] is interpreted as the average slope, calcu-

lated in 4 different points. The error in fourth-order Runge-kutta method
is of order h4, which represents the degree of accuracy of this method com-
pared to previous numerical methods.

It is time to return to the dimerization example and see how it is solved
via forth-order classical Runge-Kutta.

M ′ = p− 2a.M2 + 2b.D −m.M = f(t,M,D) (7.50)

D′ = a.M2 − b.D − d.D = g(t,M,D) (7.51)

In order to simplify the calculation, we give values to equation parameters
and initial conditions. Here, I have used the same values for R2dimerizarion
used in Euler method section:

M0 = 8.87, D0 = 0, p = 0.019, m = 0.0132, a = 0.01, b = 0.001, d = 11.8

(7.52)

Putting n = 0 and h = 0.5, k0,i i = 1, 2, 3, 4 are calculated as the following:
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k0,1 = f(t0,M0, D0)

= p− 2a.M2
0 + 2b.D0 −m.M0 = −1.67

l0,1 = g(t0,M0, D0)

= a.M2
0 − b.D0 − d.D0 = 0.79

k0,2 = f(t0 +
1

2
h,M0 +

1

2
hk0,1, D0 +

1

2
hl0,1)

= p− 2a.[M0 +
1

2
hk0,1]

2 + 2b.[D0 +
1

2
hl0,1]−m.[M0 +

1

2
hk0,1] = −1.52

l0,2 = g(t0 +
1

2
h,M0 +

1

2
hk0,1, D0 +

1

2
hl0,1)

= a.[M0 +
1

2
hk0,1]

2 − b.[D0 +
1

2
hl0,1]− d.[D0 +

1

2
hl0,1] = −1.65

k0,3 = f(t0 +
1

2
h,M0 +

1

2
hk0,2, D0 +

1

2
hl0,2)

= p− 2a.[M0 +
1

2
hk0,2]

2 + 2b.[D0 +
1

2
hl0,2]−m.[M0 +

1

2
hk0,2] = −1.53

l0,3 = g(t0 +
1

2
h,M0 +

1

2
hk0,2, D0 +

1

2
hl0,2)

= a.[M0 +
1

2
hk0,2]

2 − b.[D0 +
1

2
hl0,2]− d.[D0 +

1

2
hl0,2] = 5.59

k0,4 = f(t0 + h,M0 + hk0,3, D0 + hl0,3)

= p− 2a.[M0 + hk0,3]
2 + 2b.[D0 + hl0,3]−m.[M0 + hk0,3] = −1.41

l0,4 = g(t0 + h,M0 + hk0,3, D0 + hl0,3)

= a.[M0 + hk0,3]
2 − b.[D0 + hl0,3]− d.[D0 + hl0,3] = −32.33

(7.53)

M1 and D1 can be derived from M0 and D0 with the help of k0,is and l0,is:

M1 = M0 +
1

6
(k1 + 2k2 + 2k3 + k4) = 7.31 (7.54)

D1 = D0 +
1

6
(l1 + 2l2 + 2k3 + k4) = 0.29 (7.55)

The same procedure should be followed for the successive steps (n =

1, 2, ...). Each n represents single point in the slope plane. The curve that
connects all the points gives the solution of the system with mentioned
initial conditions and assumptions.

7.3 Review of the Mathematical Models on TGF−β
Signalling

• A Rate Equation Approach to Elucidate the Kinetics and Robustness of the
TGF−β Pathway, Melke et al. 2006 [308]
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A minimalist model of the TGF−β family signal transduction is provided
in this paper. The aim is to study the aspects of TGF−β signalling which
have not been studied in detail previously, to identify the key components
and modules (specifically SMAD7) in the pathway and gain the ability to
predict the quantities which have not been measured yet. The signalling
through ALK5 (TGF−β R1 ) and ALK1 (BMP signalling pathway recep-
tor) are compared, while the effects of inhibitory feedback of SMAD7 on
both signalling pathways have been modeled. Compared to the Vilar et
al. [449] model, the mathematical modelling equations (17 ODE equations
) of Melk et al. [308] are simple and are unable to simulate the topology
of TGF−β signal transduction. However, as the first attempt to model a
complex signalling pathway such as TGF−β, Melke et al. [308] succeeded
to introduce a robust model and discovered that SMAD7 presence as a
negative feedback for the pathway is essential to maintain this robustness.
No experimental data is provided by Melke et al. [308].

• Signal Processing in the TGF−β Superfamily Ligand-Receptor Network,
Vilar et al. 2006 [449]

In this paper Vilar et al. [449] mathematically model the TGF−β super-
family receptor trafficking. This model is based on 6 ODEs. In order to jus-
tify the dual-responding of cancer cells to TGF−β stimulation, it has been
suggested that there are two different ways for TGF−β receptors to be in-
ternalized in response to ligand binding: receptor internalization through
a lipid-raft-caveolar degradation pathway [449] in which there is no sig-
nalling initiated from the internalized receptor, and the standard internal-
ization clathrin pathway which leads to the normal signalling degradation
of the receptors. Vilar et al [449] conclude that the imbalances between the
rates of the receptor internalization pathways are the key component re-
sponsible for the duality in the role of TGF−β stimulation.



7.3 Review of the Mathematical Models on TGF−β Signalling 131

Parameters derived by Vi-

lar et al. [449]

Parameters

from the litera-

ture

Experimental data

Receptor internalization

rate (kint = 0.334 min-1)

Experimental

data sets

[200]

Ligand-induced receptor

degradation rate (klid =

0.25 min-1)

[313]

Constitutive degradation

rate (kcd = 0.028 min-1)

[93]

Receptor recycling rate

(krec = 0.034 min-1)

Ligand receptor complex

association rate (ka = 1; lig-

and concentration = 0.01

nM)

Steady and quasi-steady-

state analysis

• Systems theory of SMAD signalling, Clarke et al. 2009 [74]

In contrast to the Vilar et al. [449] model, the Clarke et al. TGF−β sig-
nalling model focuses on intracellular interactions rather than the receptor
trafficking on the cell surface. A total of 9 ODEs are used to parameterise
the TGF−β signalling system. SMAD7 inhibitory effects are not included
in this model. Clark et al. [74] conclude that the system is more sensitive
to the parameters regulating the R-SMAD phosphorylation and dephos-
phorylation processes. The importance of the role of SMAD4 in TGF−β
signal transduction is pointed in this paper. It is postulated that the im-
balance between the phosphorylation and dephosphorylation rates of the
R-SMADs (see Chapter 2) is the critical determinant of SMAD2, 3 and 4
nuclear accumulation.
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Parameters derived by

Clarke et al. [73]

Parameters

from the litera-

ture

Experimental data

Number of receptors: 1000 Other exper-

imental data

sets

[351]

Number of SMAD2/3 in

the cytoplasm: 1.62e+5

[456]

Number of SMAD2/3 in

nucleus: 1.8e+4

Number of SMAD4 in the

cytoplasm: 1.2e+5

Number of SMAD4 in the

nucleus: 3e+4

• Constraint-Based Modelling and Kinetic Analysis of the SMAD Depen-
dent TGF−β Signalling Pathway, Zi at al 2007 [513]

In this model, both receptor trafficking and SMAD nucleocytoplasmic shut-
tling are included explicitly. The aim is to study the dynamic responses to
TGF−β signalling via system biology approach. Steady-state analysis has
been performed prior to a dynamic study of the signalling components.
However, the model appears to be over-fitted. Since all of the experimen-
tal data is used for parameter estimation, no predictive analysis is com-
pared with experimental data. This model uses one of the most compre-
hensive topographies for modelling the TGF−β signalling pathway (it is
based on 16 ODEs) and provides access to experimental data for initial
data parameterization and the dynamics of the signalling components. Zi
et al. [513] develop a constraint-based modelling approach and conclude
that the most effective regulator of TGF−β signalling is the balance be-
tween clatherin dependent endocytosis and non-clatherin mediated endo-
cytosis.
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Parameters derived by Zi

et al. [513]

Parameters

from the litera-

ture

Experimental data

Type I receptor at cell sur-

face: 0.237 nM

The volume of

the epithelial

cells

[93]

Type I receptor in caveolar

lipid-raft: 2.092 nM

Internalization,

degradation

and recycling

rates of the

receptor

[93, 449]

Type I receptor in early en-

dosome: 2.06 nM

SMAD nucle-

ocytoplasmic

rates

[384]

Type II receptor at cell sur-

face: 0.202 nM

PSMAD nuclear

import rate

[486]

Type II receptor in caveolar

lipid-raft: 1.778 nM

Total amount of

SMADs

[173]

Type II receptor in early

endosome: 1.148 nM

Total receptor

number

[462]

SMAD2/3 in the cyto-

plasm: 492.61 nM

Experimental

data sets (time

course of stimu-

lated PSMAD2,

nuclear PS-

MAD2)

[21, 151, 200, 274]

SMAD2/3 in the nucleus:

236.45 nM

SMAD4 in the cytoplasm:

1149.4 nM

SMAD4 in the nucleus:

551.72 nM

V(HaCaT): 1.4e-12

Vcyt: 1.05e-12

Vnuc: 3.5e-13

• Mathematical modelling identifies SMAD nucleocytoplasmic shuttling as
a dynamic signal-interpreting system, Schmierer et al. 2008 [386]
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A more developed mathematical model of TGF−β signal transduction is
provided by Schmierer et al. [386]. They built a constrained mathemati-
cal model to quantify the components of TGF−β signalling pathway and
predict the behaviour of a cell with an impaired SMAD2 mutant [386].
Having considered the receptor trafficking and SMAD nucleocytoplasmic
shuttling, their model also includes the mechanisms of transcriptional ac-
tivation by the SMAD nuclear complex, in addition to feedback control
from the nucleus. However, the feedback control they use originates from
an artificial small molecule (SB-431542) rather from the inherent feedback
of the pathway, I-SMADs (see Chapter 2). By introducing this model,
Schemierer et al. [386] derived quantitative kinetic rates and other compo-
nents in TGF−β signalling system to which many subsequent modelling
papers refer (such as [511]).
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Parameters derived by

Schmierer et al. [386]

Parameters

from the litera-

ture

Experimental data

Concentration of receptors Concentration

of SMAD2 and

SMAD3

[73]

Nucleocytoplasmic vol-

ume ratio (using experi-

mental data)

[384]]

All the kinetic rates (from

optimization)

[200]

Total PSMAD2 [5]

SMAD2/3 in the

cytoplasm: 82800

molecules/cell = 60.6

nM

[173]

SMAD2/3 in the nucleus:

17200 molecules/cell =

28.5 nM

[462]

SMAD4 in the cytoplasm:

69400= 50.8 nM

[21, 151, 200, 274]

SMAD4 in the nucleus:

30600 molecules/cell =

50.8 nM

Receptors in the

cytoplasm: 1400

molecules/cell = 1 nM

Phosphatase in the nu-

cleus: 600 molecules/cell =

1 nM

• Quantitative Modelling and Analysis of the Transforming Growth Factor
Signalling Pathway, Chung et al. 2009 [72]

Chung et al. [72] aim to discover the changes in intracellular processes in
cancer cells during exposure of TGF−β. Their final goal is to explain the
duality of TGF−β stimulation (see Chapter 2 and 4). The model has defi-
ciencies when considering the feedback role of SMAD7; however, it is one
of the most complete models that study the TGF−β signalling pathway
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with 17 ODEs. A variety of different databases are used for their param-
eter estimations. The latter causes disruptions in the predictive nature of
the model, since the experimental conditions for the data sets were dif-
ferent. Finally, they propose a new hypothesis to justify the paradoxical
effects of TGF−β treatment for cancer cells.

Parameters derived by

Chung et al. [72]

Parameters from the

literature

Experimental data

Model analysis and simu-

lation

Experimental data

sets ( total nuclear

PSMAD2 for short

and long time stim-

ulation of TGF−β,

total cytoplasmic PS-

MAD2, total nuclear

and cytoplasmic

SMAD2 and total

SMAD4)

[200, 351]

Sensitivity analysis Model validation

data set

[274, 279, 351]

The comparison between

normal and cancerous cells

in the level of nuclear

PSMAD2-SMAD4

Experimental data

set (cancerous cell

line)

[267]

Most of the kinetic

rates

[130, 148, 274, 279,

347, 384, 388, 463]

A set of experimental

data of PSMAD2 level in

prostate cancer cell line

10000 TGF−β recep-

tors

[462]

kinetic rates Total SMAD2 and

SMAD4: 100000 each

[73, 384]

SMAD2 in the cyto-

plasm: 85000

SMAD2 in the nu-

cleus: 15000

SMAD4 in the cyto-

plasm: 87000

SMAD4 in the nu-

cleus: 13000
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• Quantitative analysis of transient and sustained transforming growth factor-
β signalling dynamics, Zi et al. 2011 [511]

Zi et al. [511] have provided the most recent mathematical model of the
TGF−β signalling. This model uses switch-like responses as outputs of
the signalling system. Their model has 19 ODEs and its main goal is to
specify the dose-dependency and time-dependency of the TGF−β sig-
nalling responses. The authors believe long-term switch-like responses to
TGF−β stimulation determine the cellular behaviours. It is because of the
different sensitivities the pathway displays in response to different ligand
doses and ligand stimulation time-scales. However, the assumptions used
to design this model are not complete and do not explain the signalling
details precisely (see Chapter 4 for more details).
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Parameters derived

by Zi et al. [511]

Parameters from the

literature

Experimental

data

Experimental data

sets (6 sets)

Initial values for the

ratio and the exact

values of cytoplasmic

and nuclear SMAD2

and SMAD4

[384, 386]

Model analysis and

model validation

Volume estimation

of the cell’s compart-

ment

[386]

A few of the kinetic

rates and initial

values (estimation

via SBML estimation

tools)

Most of the kinetic

rates

[93, 215, 225,

313,386,449,462,

513]

Two experimental

data sets for valida-

tion

[386]

Receptor type I on

the surface: 0.702 nM

[386]

Receptor type I in the

endosome: 6.523 nM

Receptor type II on

the surface: 0.201 nM

Receptor type II in

the endosome: 1.440

nM

SMAD2/3 in the cy-

toplasm: 60.6 nM

SMAD2/3 in the nu-

cleus: 28.5 nM

SMAD4 in the cyto-

plasm: 50.8

SMAD4 in the nu-

cleus: 50.8

Vcyt: 2.3e-12

Vnuc: 1e-12
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In order to compare the information derived from the mathematical mod-
els above, Table 7.1 is created. Having a closer look at the data below, a large
diversity is detected in the range of data provided by each model. As an exam-
ple, the concentration of receptors on the cell surface varies from 1 nM to 112
nM. One explanation for such diversity may be the fact that the initial values
for the components at steady-state are estimated. Depending on the demand-
ing accuracy of the model and its relative predictions, estimation methods are
different. In the explanations column, the units of the values are listed so that
it is easier to compare them. The data has been aligned in a way that is more
consistent with the hypothesis of our own model (see Figure 4.1). For instance,
individual internalization of the TGF−β receptors has not been included and
it is assumed that receptors can stimulate signal transduction only through the
ligand-receptor complex on the membrane. In order to align the data with our
model, I have included the receptor internalization rate in the receptor degrada-
tion rate and similarly, the receptor recycle rate in the receptor production rate
(see "Explanations" column of Table 7.1). Looking through all the data provided
in Table 7.1, Schmierer et al. [386] approach to data analysis and estimation is
more reliable to establish the basis of our model. Schmierer et al. [386] data
extraction, including protein concentrations or kinetic rates, follow a logical al-
gorithm. Furthermore, there is no obviously out of range data detected in the
following table in Schmierer et al. [386] experimental data (see Table 7.1).

Components Value Models Reference Explanations

Concentration of

receptors on the

membrane (in

steady-state)

Melke et

al. [308]

Mouse embryonic

endothelial cells

1.1 nM Vilar et

al. [449]

estimate HaCaT cells, 103

receptors per cell

17 nM Clarke et

al [74]

estimate HaCaT cells (Vcyt

= 9e-13, Vnuc = 1e-

13 ), 104 receptors

per cell

7.5 nM Zi et

al. 2007

[513]

estimate HaCaT cells (Vcyt

= 1.05e-12, Vnuc =

3.5e-13 )
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112 nM Schmierer

et

al [386]

estimate HaCaT cells (Vcyt

= 2.3e-12, Vnuc =

10e-13), 105 type2

receptors per cell +

1 nM type 1 recep-

tor per cell

11 nM Chung et

al [72]

estimate HaCaT cells (Vcyt

=1.13e-12, Vnuc =

3.75e-13), 104 total

receptors per cell

8.87 nM Zi et

al. 2011

[511]

estimate HaCaT cells (Vcyt

=2.3e-12, Vnuc =

1e-13)

Concentration

of SMAD2/3 in

the cytoplasm(in

steady-state)

Melke et

al [308]

Vilar et

al [449]

Vilar et al [449]

study the recep-

tor trafficking

only. No data

on nuclearcyto-

plasmic shuttling

of SMADs is

provided.

300 nM Clarke et

al [74]

estimate

492.61

nM

Zi et

al. 2007

[513]

estimate

121.2 nM Schmierer

et

al [386]

estimate

124.9 nM Chung et

al [72]

estimate

60.6 nM Zi et

al. 2011

[511]

estimate
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Concentration of

SMAD2/3 in the

nucleus(in steady-

state)

Melke et

al. [308]

Vilar et

al [449]

Vilar et al [449]

study the recep-

tor trafficking

only. No data

on nuclearcyto-

plasmic shuttling

of SMADs is

provided.

300 nM Clarke et

al [74]

estimate

236.45

nM

Zi et

al. 2007

[513]

estimate

57 nM Schmierer

et

al [386]

estimate

66 nM Chung et

al [72]

estimate

28.5 nM Zi et

al. 2011

[511]

estimate

Concentration

of SMAD4 in

the cytoplasm(in

steady-state))

Melke et

al. [308]

Vilar et

al [449]

Vilar et al [449]

study the recep-

tor trafficking

only. No data

on nuclearcyto-

plasmic shuttling

of SMADs is

provided.
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230 nM Clarke et

al [74]

estimate

1149.4

nM

Zi et

al. 2007

[513]

estimate

50.8 nM Schmierer

et

al [386]

estimate

127.8 nM Chung et

al [72]

estimate

50.8 nM Zi et

al. 2011

[511]

Schmierer

et al [386]

Concentration of

SMAD4 in the

nucleus(in steady-

state)

Melke et

al [308]

Vilar et

al [449]

Vilar et al [449]

study the recep-

tor trafficking

only. No data

on nuclearcyto-

plasmic shuttling

of SMADs is

provided.

500 nM Clarke et

al [74]

estimate

551.72

nM

Zi et

al. 2007

[513]

estimate

50.8 nM Schmierer

et

al [386]

estimate

57 nM Chung et

al [72]

estimate

50.8 nM Zi et

al. 2011

[511]

Schmierer

et al [386]
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Receptor (type1,

type2) production

rate

Melke et

al [308]

0.125,

0.25

min−1

Vilar et

al [449]

estimate 0.408 min−1 for the

total receptor pro-

duction rate plus

the receptor recy-

cle rate.

Clarke et

al [74]

0.0103,

0.029

min−1

Zi et

al. 2007

[513]

estimate 0.0433 min−1 and

0.06169 min−1 for

the each receptor

production rate

plus its recycle

rate.

Schmierer

et

al [386]

0.009

min−1
Chung et

al [72]

calculation

0.0137,

0.019

nM−1

min−1

Zi et

al. 2011

[511]

Wakefield

et

al. [462],

calcula-

tion

0.01 min−1 for

type 1 receptor

and 0.004 min−1

for type 2 receptor

Receptor (type1,

type2) degradation

rate

0.0001

min−1
Melke et

al [308]

0.028

min−1
Vilar et

al [449]

This is the con-

stitutive degrada-

tion of the recep-

tors. (0.361 min−1

for the rate of con-

stitutive degrada-

tion plus internal-

ization rate)
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Clarke et

al [74]

0.005,

0.025

min−1

Zi et

al. 2007

[513]

Kavasak

et al [225]

0.335 min−1 and

0.355 min−1 for

the rate of consti-

tutive degradation

plus internaliza-

tion rate of the

receptors.

Schmierer

et

al [386]

0.00003

min−1
Chung et

al. [72]

Vilar et al

[449]

0.00256,

0.0132

min−1

Zi et

al. 2011

[511]

Kavasak

et al [225]

, Zi et

al. [513]

Ligand-receptor

complex associa-

tion rate

Melke et

al [308]

1 min−1 Vilar et

al [449]

The units of ligand

concentration are

chosen so that the

association rate

constant is the

unit.

0.000012

nM−1

min−1

Clarke et

al [74]

2197

nM−2

min−1

Zi et

al. 2007

[513]

estimate Around 175.76 nM

min−1 and 351.52

min−1

0.11

nM−1

min−1

Schmierer

et

al [386]

Around 0.96

min−1.

0.0000102

nM−1

min−1

Chung et

al [72]

estimate Around

0.000000816 min−1
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117.897

nM−2

min−1

Zi et

al. 2011

[511]

calculation Around 16.55

min−1

PSMAD nuclear

import rate

Melke et

al [308]

Vilar et

al [449]

Vilar et al [449]

study the recep-

tor trafficking

only. No data

on nuclearcyto-

plasmic shuttling

of SMADs is

provided.

16.6

min−1
Clarke et

al [74]

0.16

min−1
Zi et

al. 2007

[513]

Schmierer

et al [386]

, Xu et

al. [486]

5.7

min−1
Schmierer

et

al [386]

0.081

min−1
Chung et

al [72]

estimate

0.889

min−1
Zi et

al. 2011

[511]

Schmierer

et al [386]

Table 7.1: Comparison of all the existing models for TGF−β transduction in

terms of included components and their values

7.4 Equations Describing the TGF−β and IL− 6 Sig-

nalling Systems

7.4.1 TGF−β Receptor Model

A11 [R1 ]
′ + A12 [R2 ]

′ = f1

A21 [R1 ]
′ + A22 [R2 ]

′ = f2
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A11 = 1 + 4
[R1 ]

K1

+
4α

K1K2KRC

[R1 ] [R2 ] 2

A21 = 1 + 4
[R2 ]

K2

+
4α

K1K2KRC

[R1 ] 2 [R2 ]

A12 =
4α

K1K2KRC

[R1 ] 2 [R2 ]

A22 =
4α

K1K2KRC

[R1 ] [R2 ] 2

f1 = v1 − k1 [R1 ] − 2

(
kRC + kLRC∗

[TGF ]

KLRCKLRC∗
+ kb [SMAD7]C

)
[R1 ] 2 [R2 ] 2

K1K2KRC

−

ka [SMAD7]C [R1 ]

f2 = v2 − k2 [R2 ] − 2

(
kRC + kLRC∗

[TGF ]

KLRCKLRC∗
+ kb [SMAD7]C

)
[R1 ] 2 [R2 ] 2

K1K2KRC

Note that the activated receptor complex, [LRC∗], is given by:

[LRC∗] =
[TGF ] [R1 ] 2 [R2 ] 2

K1K2KRCKLRCKLRC∗
.

α =

(
1 +

[TGF ]

KLRC

+
[TGF ]

KLRCKLRCp

)
.

7.4.2 Cytoplasmic SMAD Model

d [SMAD2]C
dt

= v2 − k2 [SMAD2]C − k
∗
2 [LRC

∗]
[SMAD2]C

[SMAD2]C +K∗2
− ki2 [SMAD2]C +

ke2V
N
C [SMAD2]N

d [SMAD3]C
dt

= v3 − k3 [SMAD3]C − k
∗
3 [LRC

∗]
[SMAD3]C

[SMAD3]C +K∗3
− ki3 [SMAD3]C +

ke3V
N
C [SMAD3]N

A11
d [SMAD2∗]C

dt
+ A12

d [SMAD3∗]C
dt

+ A13
d [SMAD4]C

dt
= f1

A21
d [SMAD2∗]C

dt
+ A22

d [SMAD3∗]C
dt

+ A23
d [SMAD4]C

dt
= f2

A31
d [SMAD2∗]C

dt
+ A32

d [SMAD3∗]C
dt

+ A33
d [SMAD4]C

dt
= f3

d [SMAD7]C
dt

= v7 − k7 [SMAD7]C + kt7V
N
C [SMAD7]N
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A11 = 1 + 9
[SMAD2∗]2C

K2

+ 9
[SMAD2∗]2C [SMAD4]3C

K2K4K24

A13 = 9
[SMAD2∗]3C [SMAD4]2C

K2K4K24

A22 = 1 + 9
[SMAD3∗]2C

K3

+ 9
[SMAD3∗]2C [SMAD4]3C

K3K4K34

A23 = 9
[SMAD3∗]3C [SMAD4]2C

K3K4K34

A31 = 9
[SMAD2∗]2C [SMAD4]3C

K2K4K24

A32 = 9
[SMAD3∗]2C [SMAD4]3C

K3K4K34

A33 = 1 + 9
[SMAD4]2C

K4

+ 9
[SMAD2∗]3C [SMAD4]2C

K2K4K24

+ 9
[SMAD3∗]3C [SMAD4]2C

K3K4K34

f1 = k∗2 [LRC
∗]

[SMAD2]C
[SMAD2]C +K∗2

− 3ki24
[SMAD2∗]3C [SMAD4]3C

K2K4K24

f2 = k∗3 [LRC
∗]

[SMAD3]C
[SMAD3]C +K∗3

− 3ki34
[SMAD3∗]3C [SMAD4]3C

K3K4K34

f3 = v4 −
(
k4 + ki4

)
[SMAD4]C + ke4V

N
C [SMAD4]N − 3ki24

[SMAD2∗]3C [SMAD4]3C
K2K4K24

−3ki34
[SMAD3∗]3C [SMAD4]3C

K3K4K34

Note that A12 = A21 = 0.

7.4.3 Nuclear SMAD Model

d [SMAD2]N
dt

= k∗2 [SMAD2∗]N + ki2V
C
N [SMAD2]C − k

e
2 [SMAD2]N

d [SMAD3]N
dt

= k∗3 [SMAD3∗]N + ki3V
C
N [SMAD3]C − k

e
3 [SMAD3]N

A11
d [SMAD2∗]N

dt
+ A12

d [SMAD3∗]N
dt

+ A13
d [SMAD4]N

dt
= f1

A21
d [SMAD2∗]N

dt
+ A22

d [SMAD3∗]N
dt

+ A23
d [SMAD4]N

dt
= f2

A31
d [SMAD2∗]N

dt
+ A32

d [SMAD3∗]N
dt

+ A33
d [SMAD4]N

dt
= f3

d [SMAD7]N
dt

= v7 +

(
vA + vB

[STAT3∗2]
2
N

[STAT3∗2]
2
N +K2

B

)
[SMAD3∗3 · SMAD43]

2
N

[SMAD3∗3 · SMAD43]
2
N +K2

A

−k7 [SMAD7]N
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A11 = 1 + 9
[SMAD2∗]2N

K2

+ 9
[SMAD2∗]2N [SMAD4]3N

K2K4K24

A13 = 9
[SMAD2∗]3N [SMAD4]2N

K2K4K24

A22 = 1 + 9
[SMAD3∗]2N

K3

+ 9
[SMAD3∗]2N [SMAD4]3N

K3K4K34

A23 = 9
[SMAD3∗]3N [SMAD4]2N

K3K4K34

A31 = 9
[SMAD2∗]2N [SMAD4]3N

K2K4K24

A32 = 9
[SMAD3∗]2N [SMAD4]3N

K3K4K34

A33 = 1 + 9
[SMAD4]2N

K4

+ 9
[SMAD2∗]3N [SMAD4]2N

K2K4K24

+ 9
[SMAD3∗]3N [SMAD4]2N

K3K4K34

f1 = −k∗2 [SMAD2∗]N + 3ki24V
C
N

[SMAD2∗]3C [SMAD4]3C
K2K4K24

f2 = −k∗3 [SMAD3∗]N + 3ki34V
C
N

[SMAD3∗]3C [SMAD4]3C
K3K4K34

f3 = ki4V
C
N [SMAD4]C − k

e
4 [SMAD4]N + 3ki24V

C
N

[SMAD2∗]3C [SMAD4]3C
K2K4K24

+

3ki34V
C
N

[SMAD3∗]3C [SMAD4]3C
K3K4K34

Note that A12 = A21 = 0, and that the transcription factor complex
[SMAD3∗3 · SMAD43]N is given by:

[SMAD3∗3 · SMAD43]N =
[SMAD3∗]3N [SMAD4]3N

K3K4K34

.

7.4.4 IL-6 Receptor Model

A11[80]
′ + A12[130]

′ = f1

A21[80]
′ + A22[130]

′ = f2

A11 = 1 +
[L]

K80

+
[L][J ][130]

K80K130K1

+
4[L]2[80][J ]2[130]2

K2
80K

2
130K

2
1K2

(1 + 1/K∗2)

A21 =
[L][J ][130]

K80K130K1

+
4[L]2[80][J ]2[130]2

K2
80K

2
130K

2
1K2

(1 + 1/K∗2)

A12 =
[L][80][J ]

K80K130K1

+
4[L]2[80]2[J ]2[130]

K2
80K

2
130K

2
1K2

(1 + 1/K∗2)

A22 = 1 +
[J ]

K130

+
[L][80][J ]

K80K130K1

+
4[L]2[80]2[J ]2[130]

K2
80K

2
130K

2
1K2

(1 + 1/K∗2)
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f1 = v80 − k80[80]− 2R

f2 = v130 − k130[130]− 2R

Note that R, is given by:

R = (kac + kd[SOCS3])
[L]2[80]2[J ]2[130]2

K2
80K

2
130K

2
1K
∗
2

.

7.5 Review of the Positive Feedback Loop in TGF−β
Signalling

This document investigates the existence and importance of a positive feedback
on the TGF−β signal transduction via SMADs. TGF−β signalling pathway and
its importance in cell responses have been known for decades. Previous mathe-
matical and computational models of this pathway have noticed one or two in-
herent negative feedbacks (SMAD7 and TMEPAI) by which help to explain the
long-term responses of cells to TGF−β stimulation. System analysis suggests
detection of oscillation in TGF−β signalling with negative delayed feedbacks.
These oscillations have not been reported experimentally. These clues have pro-
vided us a new hypothesis: there might be a (merely strong) positive feedback
to TGF−β signalling which couples with the SMAD7 negative feedback. We
speculate that interactions between the positive and negative feedback can ex-
plain the non-oscillatory behaviour of the cell response (here, PSMAD2) at both
short and long times after stimulation by TGF−β.

We have introduced a recently identified microRNA, miR-433, to initiate a
positive feedback via a complex series reactions. It has been known that TGF−β
is capable of regulating the expression of different groups of microRNAs. how-
ever, it was not clear which microRNA TGF−β regulates. Li et al. [269] have
introduced miR-433 as the targeted microRNA via TGF−β in fibrotic kidneys.
Using invivo and invitro studies, they have found antizyme inhibitor 1 (Azin1)
is regulated by miR-433 in renal injuries.

miR-433 is reported to have two SMAD-binding sites (SBS)s at its 5’-end in
the genomes of human, mouse and rat (at -1845 bp and - 582 bp) [269]. These
SBSs, in addition to the binding of SMAD3 to SBS2 of miR-433 in mouse embry-
onic fibroblasts, these also appears to be a physical interaction between SMAD3
with miR-433. Li et al. show that treatment of TECs (thyroid epithelial cells)
with TGF−β decreases the expression of Azin1 at the RNA and protein lev-
els [269]. It is also reported that Azin1 affects the regulation of ECM expression
in liver fibrosis [269,354]. Applying knockdown experiments to TECs and anal-
ysis with the luciferase reporter assays, Li et al. proposed an inverse relation-
ship between Azin1 and miR-433 expression. More precisely, miR-433 targets
the 3’-untranslated region of Azin1 and negatively regulates its expression.
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The role of Azin1 in promotion of polyamine synthesis has been known
[212,269]. Indeed, Azin1 binds to the antizyme and inhibits its function, includ-
ing the initiation of ornithine decarboxylase (ODC) degradation [212,269]. ODC
is essential for biosynthesis of polyamines [212, 269]. Depletion of polyamine
activates TGF−β signalling [269, 277, 345, 365]. We postulate that the Azin1 ex-
pression maintains cellular polyamine concentration, suppressing of TGF−β-
induced expression of fibrotic markers [269]. Reports show that over-expression
of Azin1 suppresses the expression levels of TGF−β and its type 1 receptor
while, it has no effects on the receptor type 2 expression levels [269].

A diagram of the positive stimulatory feedback for TGF−β signal transduc-
tion is illustrated in figure 1. Since this positive feedback includes multiple stim-
ulatory/inhibitory reactions, transcription/translation and possible change of
compartments for some components, a noticeable time-delay needs to be in-
cluded in the model.

The discovery of such a positive feedback would be an important factor for
understanding the pathway modelling of TGF−β. We believe it is now possible
to describe the dual behaviour of the cancer cell responses to TGF−β stimula-
tion with a mathematical model.

Figure 7.1: The simplified cartoon of the feedbacks in TGF−β signal transduction

system
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7.5.1 Preliminary Experimental Data Integration

Figure 7.2: A) Western blot analysis of SV40-immortalized MEF cells (immortal

MEFs) stimulated by TGF−β for different times, probed with PSMAD2 and β-tubulin

anti-bodies. The results indicate that total PSMAD2 levels peak after 60 minutes of

TGF−β stimulation. B) Western blot analysis of wild type MEF cells (MEF Gp130F/F )

stimulated with TGF−β for different duration, probed with PSMAD2 and β-tubulin

anti-bodies. The results indicate that total PSMAD2 levels peaks after 20 minutes of

TGF−β stimulation.
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Figure 7.3: Western blot analysis of wild type MEF cells (MEF Gp130F/F ) stimulated

with IL−6 (10% conditioned medium) for different duration, probed with PSTAT3 and

β-tubulin anti-bodies. Results indicate that total PSTAT3 levels rise gradually until 60

minutes of IL− 6 stimulation.

The first part of the experimental data extraction was obtained at the Ludwig
Institute for Cancer Research, Parkville branch, Epithelial laboratory. Mouse
embryo fibroblast cells (SV40-immortalized and WT MEFs) were analyzed us-
ing, protein assays and Western blot methods. Figure 7.2 shows the Western
blot results of total PSMAD2 measured in the two cell lines. These cells were
stimulated with TGF−β for different times. Stimulation activates the TGF−β
signalling from the membrane to the nucleus of a cell. By altering the stimula-
tion duration we can develop a time course for the PSMAD2 dynamic changes
in the cells. A similar protocol has been followed for detecting total PSTAT3 in
different cell lines, activating IL − 6 signalling pathway. The results of west-
ern blot analysis for wild type MEFs and the relative time course are shown in
Figure 7.3. These experimental results are for the evaluation of our model.

Clearly, it is possible to detect PSMAD2 and PSTAT3 in MEF cells. Western
blotting is not the most precise method for quantification of the experimental
data; however, it does provide initial estimate of the PSMAD2 levels in a cell
line.
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