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Abstract

Prediction of epileptic seizures would greatly reduce the burden of epilepsy for over 50

million people worldwide. Seizure events are typically characterised by a loss of conscious-

ness and much of the burden of this disease for patients is due to the advent of seizures

without any prior warning. Reliable seizure prediction would, in the first instance, offer

patients the ability to prepare for seizure events by reducing locational safety hazards

and providing choice in avoiding situations of social stigma. In the second instance, the

long term aspiration for seizure prediction would be the incorporation of prediction into

a closed loop device, to not only predict but ultimately prevent seizures.

Despite 35 years of research, analysis of brainwaves (EEG) has failed to reliably pre-

dict seizures. This thesis re-evaluates the current system of acquiring EEG measurements

of brain dynamics. It is argued that conventional EEG contains insufficient information

for seizure prediction, using theoretical methods from linear systems, stochastic estimation

and non-linear systems.

This thesis frames the task of inferring brain activity from EEG measurements as

an observability problem for coupled oscillator dynamics. Observability is analysed (i)

under the classical linear systems theory definition using minimal data, (ii) as a stochastic

estimator problem using linear Kalman filtering techniques and (iii) under a non-linear

framework of measure preserving maps using entropy estimates. All these analyses con-
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clude that conventional EEG signals will not reveal the secrets of brain dynamics to the

extent of predicting epileptic seizures. Instead, actively evoked EEG (recordings follow

an input stimulus) provides an opportunity to enrich the brainwaves so as to enable pre-

diction. This active measurement paradigm offers hope for a clinical solution in the future.

The contributions of this thesis are two-fold: Firstly, to mathematically demonstrate

that current passive EEG acquisition is an inherently unsuitable measurement for epileptic

seizure prediction, theoretically explaining 35 years of unsuccessful research in the field.

Secondly, to advocate the adoption of active EEG acquisition as a viable alternative for

future work in seizure prediction from EEG data.
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Introduction

On the topic of obstacles to seizure prediction, a summary of informal discussions at the
3rd International Seizure Prediction Workshop in Freiburg, Zaveri, Frei and Osario noted
that, “put bluntly, · · · it is not necessarily possible to predict states of a dynamical sys-
tem on the basis of a limited amount of measurements” [2]. This thesis seeks to formally
investigate what it is we can expect to glean from electroencephalographic recordings of
electrical brain activity towards the effort of seizure prediction in epilepsy.

Epilepsy is a neurological disorder characterised by recurrent “seizures”and is asso-
ciated with abnormal neuronal activity in the brain. Seizure events manifest clinically in
a variety of ways including loss of consciousness and involuntary muscle contraction.

The World Health Organisation (WHO) estimates that worldwide over 50 million
people suffer from epilepsy [3], while over the course of a lifetime, 100 million people will
experience an epileptic episode [4]. This makes epilepsy the single most common serious
neurological condition in the world today. A study by the WHO [3] reported that the
prevalence of epilepsy varies across geographical regions within the range of 0.5% to 4%
of the total population. In Australia, it is estimated that 2% of the population is affected
by epilepsy [5].

Current treatments for epilepsy predominantly rely on anti-epileptic drugs (AEDs)
[6]. Unfortunately these AEDs have a large number of side-effects, the more serious of
which are cognitive changes such as sedation, aggression, depression and withdrawal [7].
Furthermore, the long-term use of AEDs may1 be problematic due to the development
of tolerance [8, 9]. Tolerance is the reduction of response following prolonged use of a
drug, resulting in the controllability of seizures to become refractory to treatment with

1The author notes that the existence of tolerance to AEDs is a contentious issue
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time. There also exists an estimated 9% - 25% [10, 11] of patients for which a successful
AED or combination of AEDs cannot be found. For these patients, the surgical removal
or “resection” of the epileptic brain volume may be an option.

In addition to the unsavoury side-effects of AEDs, people with epilepsy suffer from
social stigma and vocational obstacles. Another burden is the risk of status epilepticus.
This is the condition of continuous seizure activity without a recovery of consciousness
between seizures which is a life-threatening emergency.

The ability to predict seizures would have a profound impact on the quality of life
of epilepsy sufferers [12]. In the first instance, seizure prediction with a portable warning
system [13] would dramatically reduce the risks associated with injury due to untimely loss
of consciousness. With such a warning system, reliable seizure prediction may also enable
people to hold a drivers license, who are currently ineligible due to incompliance with the
necessary seizure-free time period. However, the long term objective of seizure prediction
would be to prevent imminent seizures from occurring through direct intervention.

Seizure prevention might be achieved through either automated drug therapy or
electrical stimulation. Automated drug therapy could operate through direct short-acting
anti-epileptic drug delivery to the epileptic brain volume following seizure prediction [13].
This would be preferable over the current continuous drug treatment as it has the potential
to dramatically reduce the average amount of drugs taken over time. Reduction of drug
intake would not only reduce the side effects but may also extend the useful lifetime of the
drug by slowing the build up of tolerance. An alternate and more ideal solution to drug
therapy, would be the development of an electric stimulation treatment that could prevent
a seizure from occurring once an imminent seizure is predicted [13]. If such an electric
stimulation treatment was developed then an implantable device with both prediction and
seizure “quenching” capabilities could be envisaged. Such an implantable device would be
particularly beneficial for the 9%-25% [10, 11] of patients that have medically refractory
(unresponsive to drug therapy) epilepsy - in Australia this is up to 100,000 persons2.

In economic terms, it was estimated in 1990 that over AU$238 million was spent
per annum on the direct costs of epilepsy treatment in Australia [14]. For comparison

2For a population of 20 million, with an epilepsy prevalence of 2%[5] and 25%[11] of epilepsy patients
presenting medically refractory epilepsy
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purposes, this is on a par with the early 1990 figures for the direct economic burden of
diabetes (type 2) at AU$216.7 million per annum [15]. The indirect costs of epilepsy, that
is the productivity related costs, are also significant although more difficult to estimate
[16]. Furthermore, the existence of the intangible costs associated with the emotional
issues of the condition are generally acknowledged. Undoubtedly, better epilepsy treat-
ment, particularly prediction and subsequent prevention of epileptic seizures, would have
a marked impact on both the indirect and emotional costs. While treatment in the form of
an implantable device may not decrease the direct treatment costs of epilepsy, the benefits
in terms of quality of life are immeasurable.

With this motivation for seizure prediction, this thesis examines what we can expect
to learn about the underlying state of the brain from electroencephalographic data. The
important contribution of this work is providing theoretical limits for the amount of infor-
mation about brain dynamics that can be gleaned from data of this form. These theoretical
limits are stringent, putting the viability of current approaches to seizure prediction based
on these data in serious doubt. These results do however point to theoretically viable
avenues for seizure prediction in implantable devices of the future.

Outline of Thesis

Background and Motivation

This thesis begins with an introduction to neurophysiology in Chapter 1, which details the
structure of the brain, the condition of epilepsy and the methods of Electroencephalog-
raphy (EEG) recording. A literary review is presented in Chapter 2, which provides an
overview of existing research in the area of epileptic seizure prediction based on EEG data.

Main Research Findings

Chapter 3 provides a snapshot of typical time-frequency behaviour found in EEG signals
as motivation to investigate observability of EEG measurements from the brain. The ob-
servability problem is considered using an abstraction, a coupled oscillator model for brain
dynamics, this model is presented in Chapter 4. Chapters 5 and 6 explore observability
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issues with the coupled oscillator model which provides theoretical boundaries for the task
for predicting epileptic seizures from EEG. Chapter 5 focuses on a linear, deterministic
observability argument followed in Chapter 6 by both a stochastic argument (based on
a Kalman filtering approach) and a non-linear entropy argument (based on entropy of
measure preserving maps). Chapter 7 presents a paradigm for seizure prediction that may
overcome the theoretical limitations elucidated in Chapter 5 and 6 through the addition
of an active probing signal.

Conclusion

A discussion of the main thesis results is found in Chapter 8, together with a list of thesis
contributions. A number of fruitful avenues for potential future investigations form part
of this discussion.

xvi



Publications List

Invited Book Chapter

E. O’Sullivan-Greene, L. Kuhlmann, A. Varsavsky, D. B. Grayden, A. N. Burkitt and I.
M. Y. Mareels. Seizure Prediction and Observability of EEG Sources. In Epilepsy:
The Intersection of Neurosciences, Biology, Mathematics, Engineering and Physics,
Ed. Osorio, I. and Zaveri, H. and Frei, M. G. and Arthurs, S. CRC Press, 2011.

Fully Refereed Conference Papers

E. O’Sullivan-Greene, I. Mareels, A. Burkitt and L. Kuhlmann. Observability issues
in networked clocks with applications to epilepsy. Proceedings of the 48th IEEE
Conference on Decision and Control (IEEE CDC), p 3527–3532, 2009.

E. O’Sullivan-Greene, I. Mareels, D. Freestone, L. Kuhlmann and A. Burkitt. A paradigm
for epileptic seizure prediction using a coupled oscillator model of the brain. Pro-
ceedings of the 31st IEEE Engineering in Medicine and Biology Conference (IEEE
EMBC), p 6428–6431, 2009.

C. Savage and E. O’Sullivan-Greene, Epileptic Seizure Prediction using Random Pro-
jections, Proceedings of IEEE Intl. Conference on Intelligence Sensors, Sensor Net-
works and Information Processing (ISSNIP), p 647 - 650, 2007.

xvii



Conference Presentations

A. Peterson, E. O’Sullivan-Greene, A. Burkitt, I. Mareels, D. Grayden, M. Cook, L.
Kuhlmann and K. Fuller, Modelling for Understanding and Prediction of Epileptic
Seizures, The Inaugural Medical Bionics Conference, Lorne, Victoria, Australia, Nov
2008.

E. O’Sullivan-Greene, L. Kuhlmann and I. Mareels, A Coupled Oscillator Model model
for EEG: towards synchrony based epileptic seizure prediction, 3rd Australian Work-
shop on Mathematical and Computational Neuroscience, Melbourne, Nov 2008.

E O’Sullivan-Greene, I. Mareels and L. Kuhlmann. Modifications of the EEG signal for
delay reconstruction based seizure prediction methods,3rd International Workshop
on Epileptic Seizure Prediction, Freiburg, Germany, 2007.

xviii



Chapter 1

Epilepsy and the EEG

This chapter provides an introduction into the anatomy and electrodynamics of the brain.
The neurological disorder of epilepsy is discussed together with the measurement of brain
dynamics through Electroencephalography (EEG) recordings.

1.1 Structure of the Brain

The brain together with the spinal cord make up the central nervous system, the body’s
sensory analysis and decision making system. [17, 18, 1] provide the following information
regarding the anatomy of the brain. The brain can be subdivided into two main regions,
the brainstem and cerebrum. The cerebrum is structurally divided into two main regions
each called a cerebral hemisphere. The outer layer of the hemispheres is known as the
cerebral cortex. The cortex is a much folded structure which is estimated to contain in
the order of 1010 nerve cells or neurons [1, Ch. 1]. The cortex contains both grey matter
and white matter. Grey matter is a layer containing a high density of neuron cell bodies
while, the white matter, located underneath the grey matter, is largely composed of nerve
fibers or axons. The cortex is further divided into four main lobes, each with its own
function specification, see Figure 1.1. The brain stem connects the spinal cord to the
cerebral cortex, via the thalamus, a deep brain structure which gates the information flow
from the brainstem to the cortex, see Figure 1.2.

The fundamental unit of the nervous system is the neuron or nerve cell. Neurons
convey information by firing electrical impulses known as action potentials. Each neu-

1
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Figure 1.1: Surface view of the brain, illustrating the main lobes of the cerebral cortex
and their basic functions, taken in part from [19]

ron consists structurally of a cell body, soma, input nerve fibers, dendrites, and output
nerve fibers, the axons. Neurons connect to each other via synapses. Cortical neurons
are strongly interconnected with a single neuron connecting with up to 105 synapses that
transmit inputs from other neurons [1, Ch 1]. Pyramid cells are one such cortical neu-
ron, named after their pyramid shaped soma, see Figure 1.3. Pyramid neurons exhibit
a columnar organisation, where each column acts as a highly connected functional unit.
Columns are orientated perpendicular to the cortical surface, and have diameters in the
order of 300-600µm [17, Ch. 23].

Connections between neurons at synapses are generally regulated via chemical neu-
rotransmitters. The resulting input signal to a neuron is either excitatory , in that it
encourages the output of the neuron to fire, or inhibitory , which has the opposite effect.
These input signals are referred to as excitatory post synaptic potentials (EPSPs) and in-
hibitory post synaptic potentials (IPSPs) named after their effect on subsequent neurons
[1, Ch. 1]. A neuron will fire an output action potential if the sum of the EPSPs and
IPSPs is above a certain threshold.

The molecular basis for the occurrence of action potentials is due to ions such as
sodium and potassium [17]. Neurons have a resting cell potential of approximately -70mV
across their cell membrane [20, Ch. 4]. This resting potential arises from the distribution
of ions inside and outside of the cell. The cell membrane is however permeable to these
ions. The flow of ions across the membrane through voltage gated channels causes the
relative ion concentration to change, leading to an action potential. The voltage gated ion
channels receive their control voltage from the post synaptic potentials (both EPSP and
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Figure 1.2: Midline cross-section between the cerebral hemispheres of the brain, illustrat-
ing the brain stem, deep brain structures and their basic functions. Taken in part from
[19]

IPSP) of the synapses of connecting neurons. Figure 1.4 shows an intracellular recording
similar to that 1st recorded by Cole and Curtis with the giant neuron of a squid in 1938,
illustrating an action potential.

1.2 Epilepsy

The International League Against Epilepsy (ILAE) defines an epileptic event as “a tran-
sient occurrence of signs and symptoms due to abnormally excessive or synchronous neu-
ronal activity in the brain”[21]. Epilepsy is defined as “a disorder of the brain characterised
by an enduring predisposition to generate epileptic seizures”[21], and is usually not diag-
nosed until more than one epileptic event has occurred.

The time during a seizure is commonly referred to as the ictal period, while the
times between seizures are referred to as the inter-ictal periods. The time just before a
seizure is referred to as the pre-ictal period. Prediction of epileptic seizures is dependent
on the existence of a definitive and identifiable pre-ictal stage. The time period following a
seizure but before normal neurological function has returned is called the post-ictal period.

While much advancement has been made in the field of human neurophysiology and
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Figure 1.3: Diagram of a pyramid neuron showing its anatomical parts and its orientation
perpendicular to the cortex surface

epileptogenesis in recent years, knowledge of physiological processes remains largely in-
ferential and speculative, with much of the current understanding based on comparison
with animal models [22]. A common viewpoint is that local epileptiform discharges (a
small group of neurons that begin to fire in a synchronous manner), can somehow recruit
and entrain other nearby neurons leading to large scale synchronised epileptiform oscil-
lation [10]. It is generally thought however, that the normal connectivity and function
of the cortex, hippocampus and thalamus gives rise to the ability to generate both local
and large scale synchronised neuronal discharges [23]. These networks of brain structures
have mass recurrent excitatory connections [23] and one candidate for the mechanism of
synchronisation is a reduction of inhibition in these networks [10, Ch. 3]. However, this is
not the only candidate for the mechanism of synchronisation - a more general hypothesis
is that mass synchronisation of neurons can occur due to an imbalance between inhibition
and excitation in networks. With this more general hypothesis, synchronisation could be
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Figure 1.4: Intracellular recording of a neuron

a result of not only the aforementioned reduction of inhibition, but also a reduction in
excitation or indeed an increase in either inhibition and/or excitation [24].

An increase in inhibition is believed to be the mechanism by which some antiepilep-
tic drugs work. Antiepileptic drugs are the current standard practice in clinical epilepsy
treatment[6, 25]. Drugs commonly prescribed include phenytoin, carbamazepine and ben-
zodiazepines. In more recent times, a new generation of AEDs have materialised including
tiagabine and vigabatrin. The primary action of tiagabine, vigabatrin and benzodiazepines
is to promote GABAergic inhibition, where GABA is the main inhibitory neurotransmit-
ter in the brain [25]. The action mechanism of phenytoin and carbamazepine is that of
blockage of the voltage-dependent sodium channels [25].

With the mechanisms of epileptic seizure generation (and consequently the action of
anti-epileptic drugs) poorly understood, epileptic seizures are classified according to their
clinical manifestations. [17, 26] define the two main classification groups as partial onset
or focal onset seizures and generalised onset seizures. Partial onset seizures originate in
a small group of neurons that form the seizure focus. Such seizure focuses are often at
the site of a lesion in the brain tissue. Partial onset seizures can be further segmented
into simple partial seizures and complex partial seizures. Simple partial seizures, do not
involve a loss of consciousness, and may manifest in sensory, psychic and repetitive motor
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phenomena. Complex partial seizures, however, do involve a loss of consciousness. Gen-
eralised onset seizures entrain neuron populations in both hemispheres from the onset.
Partial onset seizures can often progress to become generalised seizures, such seizures are
labelled as secondary generalised seizures. Generalised seizures themselves can be further
streamed into tonic clonic seizures (formerly grand mal) and absence seizures (formerly
petit mal). Tonic clonic seizures are characterised by a convulsive state followed by a
definable post-ictal period, while absence seizures are associated with a non-convulsive
seizure state and no post-ictal period.

Epilepsy can be further classified as idiopathic or symptomatic epilepsy. Idiopathic
epilepsy is that with an unknown cause, while symptomatic epilepsy has an identifiable
cause. Idiopathic epilepsy is presumed to be linked with genetic inheritance [27, Ch. 27].
Some of the diverse causes of symptomatic epilepsy include damage to neural tissue due
to, for example, infections of the central nervous system such as meningitis, severe head
trauma, intracranial tumors, strokes or a structural lesion [27, Ch. 27].

1.3 Electroencephalography

Electroencephalography (EEG) is a record of the temporal fluctuations of electrical po-
tentials recorded from electrodes placed on or inside the human brain.

The electric field that is measured during the EEG is not due to the action po-
tentials in the neuron cells but instead it arises from the ionic current outside neurons
[20, 28]. Essentially the EEG “detects the same information that neurons access when
they “decide” whether or not to fire impulses, but an EEG records that information for
thousands of cells at once”, Walter J. Freeman [29]. The extracellular current that is mea-
sured by the EEG results from both the ionic current at the synapses and the excitatory
and inhibitory fluctuations in the neuron cell membrane. The extracellular electric field
that corresponds to such an extracellular current can be modelled by means of a classic
charge dipole [20, 1]. The pyramidal cells are the main neurons that contribute to EEG
signal, because these pyramid cells are orientated perpendicular to the cortical surface.
The charge dipole model corresponding to such a pyramid neuron is aligned in the same
direction as the neuron itself - perpendicular to the cortex surface, see Figure 1.5. The
ordered orientation of the pyramid cells allows the electrical fields generated by individ-
ual neurons to superimpose in an additive manner. Since this combined electric field is
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generated in a conducting medium, the field is conducted to both the cortical surface and
the scalp surface by volume conduction, where it can be recorded as the EEG signal. The
tendency of the cortical neurons to synchronise their activity in time further enhances
the electrical field from which the EEG signal is recorded [20]. Thus the EEG recorded
at both cortex and scalp level records the “fluctuating, volume conducted electrical field
generated by synaptic currents in large numbers of synchronously active cortical pyramid
neurons” [20].

Pyramidal Neuron Dipole Model

(charge dipole)

Pial Surface Pial Surface

Figure 1.5: Dipole model of a pyramid neuron

Extracranial or “scalp” EEG is recorded from the scalp surface, while intracranial
EEG is invasively recorded from the surface of the cortex. Recordings of potential are
also taken from deep brain structures and deep into the cortex tissue - such deep invasive
measurements are termed depth recordings. The amplitudes recorded in all cases depends
on size of electrode: intracranical electrodes are generally of the order of 1mm [27, Ch38];
scalp electrode size is of the order of 1cm [27, Ch7]; depth electrodes are often “micro-
electrodes” on scale of 1µm. The spatial scale of cortical matter that contributes to these
recordings ranges from 100µm for intracranical electrodes to 10cm for scalp electrodes [1,
Ch. 4]. Thus, intracranial EEG and depth recordings can provide detailed local informa-
tion, while the scalp EEG, with contributions from an estimated 100-1000 million neurons
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averaged over large tissue masses, provides “big picture” data [1].

1.3.1 Interpretation of the EEG

Considering the large numbers of neurons, whose signals are space averaged and volume
conducted through the several layers of tissue before being recorded at the scalp, it is amaz-
ing that any coherent information can be derived from scalp EEG. However, the scalp EEG
signal reveals observable patterns related to specific states of consciousness such as atten-
tion, concentration, agitation and relaxation [27, 30, 1]. Furthermore, EEG recordings
can reveal sleep stages, alcoholism, drug addiction, depth of anesthesia, seizures as well
as other neurological disorders [27, 1]. Simply by placing a pair of electrodes on a scalp,
the unprocessed differential recordings clearly shows several characteristic oscillations or
rhythms that are associated with various states of cognitive function. See Table 1.3.1 for
a list of such rhythms and their associated cognitive states. It is thought that these oscil-
lations or rhythms can be attributed to the feedback loops that exist between the cortex
and the thalamus, thalamocortical feedback, and the feedback loops that exist between
different parts of the cortex itself, corticocortical feedback [20]. This attribution is due
to the inverse linkage between the time delays that exist (due to the different distances
travelled by signals) along these feedback routes and the characteristic frequencies that
appear in the EEG [1, Ch. 11]. Therefore, the association between certain frequencies in
the EEG and certain cognitive states could be due to the specific feedback loops engaged
in that cognitive task. However, it has also been shown that the frequency ranges in the
EEG correspond to the resonance frequencies that would be supported by a sphere of size
similar to the average skull [1, Ch. 3].

Name Frequency Range Association
delta, δ 0.1-3.5 Hz unconsciousness, deep sleep,see Fig. 1.6(b)

theta, θ 4-7.5 Hz reduced consciousness, sleep,see Fig. 1.6(d)

alpha, α 8-13 Hz awake, relaxed, (clinically: awake, eyes closed),see Fig. 1.6(a)

beta, β 14-30 Hz consciously alert, agitated, tense,see Fig. 1.6(c)

gamma, γ 30 Hz + attention, sensory stimulation

Table 1.3.1: Rhythms of the EEG [1]

From an epilepsy viewpoint, visual analysis of the EEG provides useful clinical in-
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formation [27]. Seizures themselves are often accompanied by synchronous behavior across
many of the recorded channels, followed by a post-ictal period of slow activity, see Fig-
ures 1.7(a) & 1.7(b). This can be interpreted as an increase in the synchronisation of
discharging neurons in a large cortical region during the ictal period accompanied by a
loss of inhibition. Absence seizures often manifest as a 3Hz spike and wave pattern in the
EEG, see Figure 1.7(c). The inter-ictal epileptiform EEG is also likely to exhibit charac-
teristic spikes which can aid in epilepsy diagnosis. These spikes are short lasting, sharp
peaks that are clearly distinct from the surrounding background activity, see Figure 1.7(d).

It is thought that the origin of epileptiform spikes is due to the temporal summation
of abnormally discharging neurons. Although indicative of epilepsy, these epileptiform
discharges can be associated with a region of cortex that is in fact distinct from the
epileptogenic zone (the brain region where the seizures are generated). Thus, it is proba-
bly incorrect to interpret the spikes as “mini-seizures”. It is thought that spikes may in
fact reflect a process that prevents seizures from occurring, due to the increase of spikes
under the influence of some anti-epileptic drugs, e.g. carbamazepin [20, Ch. 13]. As the
presence of spikes in the inter-ictal EEG is used to aid epilepsy diagnosis, the probability
of such spikes occurring in the normal non-epileptic brain is of concern. An American
study [31] investigating the probability of spikes and other inter-ictal epileptiform dis-
charges in the general non-epileptic population found that 12.3% of the EEG recorded
from normal patients exhibited such phenonema. However, the study was biased in that
the normal patients in the study had been referred for EEG analysis due to suspected
neurological conditions. Consequently, the study concluded that although epileptiform
discharges are not uncommon in patients without epilepsy, the “majority [exhibiting such
phemomena] have underlying acute or progressive cerebral disorders”. An earlier study
in Italian children [32] found that, given activity regarded as epileptiform in the EEG of
normal children, the probability of subsequently developing epilepsy in the following 8-9
year period was only 0.077. It could be concluded that, while epileptiform EEG activity,
such as spikes, are often present in the EEG of epileptic individuals, such activity is also
not uncommon in the non-epileptic population.

While the EEG signal contains much useful clinical and diagnostic information, the
signal also contains noise elements or artefact which obscure the clinically useful signal.
Artefacts commonly found in the EEG include muscle artefact, cardiac artefact and mains
pick-up artefact. Muscle artefact can be caused by movement of the scalp muscles and
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also by eye-blinks. Such muscle movement results in large amplitude alterations to the
EEG. Cardiac artefact is that which is correlated with the timing of the heart beat. Such
cardiac artefact is caused by the pulsing of the entire cortex in sync with the heart beat.
Mains pick-up artefact is interference that is picked up from the mains power source. This
artefact oscillates at the mains frequency (50Hz ±0.5% in Australia [33]). Software filter-
ing, applied post-recording, can dramatically reduce some forms of interference, however
care must be taken as the filtering process not only removes artefact but also alters the
nature of the remaining signal. Intracranical EEG provides a much cleaner signal when
compared to scalp EEG as muscle artefact is absent.

1 second1 second

(a) alpha

1 second1 second

(b) delta

1 second1 second

(c) beta

1 second1 second

(d) theta

Figure 1.6: Example of EEG segments showing normal adult rhythms, taken from scalp
dataset in Table 1.3.2

1.3.2 Instrumentation

The EEG data acquisition system used in the recording of the majority of EEG data under
analysis for this thesis is the Compumedics E -seriesTM hardware with Profusion EEGTM

software 1. The Compumedics user guide [34] provides the following system specifications.

1Compumedics Ltd.,30-40 Flockhart Street, Abbotsford 3067, Victoria
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Figure 1.7: Examples of Epileptiform EEG activity, taken from scalp dataset in Table
1.3.2
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The system records from up to 64 channels with a choice in sampling rate of 256 Hz or 512
Hz. This system hardware filters the signals such that only data in the range 0.15 Hz -
105Hz is recorded. The Compumedics machine amplifies the signals with a gain accuracy
of ±1% and a CMRR2 of >110dB. The output noise in the recorded signal is expected to
be typically 2µVp-p in the range 0.16Hz - 70Hz. The system allows a user configerable
input range of 1mVp-p - 16mVp-p, and an electrode dc offset of up to ±350mV. The
signal is digitised with a resolution of 14 bits. Each channel is recorded with reference to
a single electrode, “REF”. The Compumedics user-guide [34] suggest that this REF elec-
trode is placed “centrally on the patient’s head near electode Fz, Cz or Pz”, see Figure 1.8.

There exists an international standard for the placement of electrodes in scalp EEG
recordings, this is known as the 10/20 electrode system [35]. This system relies on taking
measurements between certain fixed points on the head, namely the nasion, which lies at
the bridge of the nose, and the inion, which is the notch at the base of the skull at the
back of the head. The electrodes are then placed at points that are 10% and 20% of these
distances, see Figure 1.8. This standard provides a reasonably robust manner of enabling
meaningful comparison between recordings of EEG across patients and recording sites.

Inion

Nasion

10%

20%

20%

20%

20%

10%

O1 O2

PZ
P3

T5

T3A1 A2

P4

T6

T4C4CZC3

F7

Fp1 Fp2

F3
FZ

F4

F8

Figure 1.8: Electrode position and labelling of the international 10/20 system

Intracranial electrode placement is typically in the form of a grid, where the elec-
trodes are uniformly spaced and embedded in a transparent silastic material [27, Ch. 41].
An illustration of a possible grid array on the cortex surface is provided in Figure 1.9.

2Common Mode Rejection Ratio
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The exact number of electrodes on the grid and their precise location on the cortex varies
depending on the clinical purpose of the recording. The grid recordings available for this
research were recorded in patients with medically refractory epilepsy who were possible
candidates for surgical removal of the seizure focus. The recordings were for the purpose of
localising the seizure focus and ensuring that this focus was unimportant in the patient’s
cognitive function. Also available to this research are some depth intracranial recordings,
where electrodes are surgically inserted into both the cortical tissue and the deep brain
structures.

Figure 1.9: Example of electrode position with a intracranial grid, taken in part from [19]

For both scalp and intracranial EEG recordings, the signal recorded from different
amplifiers can be displayed and analysed post-recording using various electrode referencing
systems called montages [30]. In bipolar montages, consecutive pairs of electrodes are
linked. The bipolar chains of electrodes may be connected going from front to back
(longitudinal) or from left to right (transverse). Another type of montage is the unipolar
or referential montage. In this montage, each of the electrodes are tied to a common
reference electrode. Ideally, an inactive electrode, that is uninvolved in the electrical
field under observation, is chosen as the common reference. As such an ideal electrode
does not exist, an average of all the channels or the aural (ear) electrode can be used
as reference. The database acquired for the purpose of this research is recorded using a
reference electrode placed as follows: for scalp recordings the reference electrode is placed
centrally on the patient’s head near electrode Fz, Cz or Pz”, see Figure 1.8; for intracranial
recordings, the electrodes are referenced to an external scalp reference, located at the back
of the head.
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1.3.3 Research Dataset

The set of recordings available for use over the course of this thesis are detailed in Ta-
ble 1.3.2.

EEG type Recording length Number of
Patients

Origin

Scalp Continuous, longterm 15 St Vincent’s Hospital, Melbourne

Intracranial Continuous, longterm 6 St Vincent’s Hospital, Melbourne

Intracranial Interictal & ictal segments 21 University Hospital of Freiburg,
Germany (*)

Intracranial Continuous, longterm 3 Competition dataset from (*)
as part of the 3rd Interna-
tional seizure prediction work-
shop 2007, Freiburg, Germany

Table 1.3.2: EEG Database



Chapter 2

Literature Review

This chapter begins with an overview of existing research in epileptic seizure prediction
from EEG measurements. Section 2.6 discusses the current state of seizure prediction
internationally, leading to the key contributions of this Thesis in Section 2.7.

2.1 Can Seizures be Predicted?

Until the 1970s, it was believed that the transition from inter-ictal periods to ictal phe-
nomenon was instantaneous, and occurred without warning. However, mounting evidence
had lead to the postulation that this 2-stage model could be expanded to include a third
state, that of the pre-ictal period. The prospects for development of reliable epileptic
seizure prediction relies on the existence of a definable pre-ictal period. The evidence for
the existence of such a definable pre-ictal period is discussed in this section.

It is clinically undisputed that prodromal or indicative symptomatic changes exist
in certain patients prior to seizure onset [11, 36, 37]. The existence of this qualitative
phenomenon, commonly referred to as an “aura”, indicates that a quantitatively definable
pre-ictal period is likely. While it can be argued that auras which immediately proceed
a seizure could in fact be the beginning part of the seizure itself, it is well known clini-
cally that prodromal changes, as reported by both patients and their families, can exist
from several hours to days in advance. These premonitory changes involve alterations of
the nervous system and include mood changes, nausea, headache and psychic symptoms.
Such prodromal changes even allow some people to apply a self control seizure prevention

15
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strategy with varying degrees of success [36, 37]. The success of such a strategy could
be explained as the prevention of neural networks from being recruited into epileptogenic
synchronisation by the person consciously pulling those networks into some other physio-
logical processing task. It follows from this knowledge of aura existence and self control
techniques that the possibility of seizure prediction and subsequent prevention via means
of a quantitative engineering analysis is plausible.

Several studies indicate that the application of engineering analysis techniques to
EEG data may allow a pre-ictal state to be defined [38, 39, 40, 41, 42, 43, 44]. Methods
employed include approaches from nonlinear dynamics, such as pre-ictal changes in the
largest Lyaponov exponent, a pre-ictal decrease of synchronisation between EEG channels
and the use of dimensional analysis to find a pre-seizure decrease in EEG complexity.
Other methods employed looked at changes to the frequency and energy of the EEG
signal prior to seizure onset. The results and validity of these methods will be further
discussed in the subsequent sections.

2.2 Introduction to Approaches of EEG Analysis

The EEG signal appears at first glance to be a multi-frequency stochastic or “noisy” signal.
Indeed, Fourier analysis reveals that the EEG signal contains several distinct frequency
bands in the range 0.5 - 30(and higher) Hz. This has lead to a multitude of linear analysis
techniques 1 being applied to the EEG. However, the EEG may also be considered to be a
time series measured from a dynamical system, where this dynamical system is non-linear
and represents the activity of the brain. With this non-linear view, the variability of the

1Linear systems can be defined as dynamical systems ẋ = f(x, u), with some initial state x = x0 and
input u, characterised by the function f , for which the family of all possible time trajectories that the
system can produce, B:

B = {x : ∃u⇒ ẋ = f(x, u)} (2.2.1)

is a linear subspace of Rn [45]. For linear systems, f(x, u) = Ax+ Bu, where the entries of matrices A,B
are real. Such systems obey the principal of superposition:

{x1, x2 ∈ B;α, β ∈ R} ⇒ {αx1 + βx2 ∈ B}. (2.2.2)

Systems which do not obey the above are classified as non-linear. Linear analysis methods such as linear
transforms, T, (including the Fourier transform) obey

T (x1 + x2) = T (x1) + T (x2) (2.2.3)

and for a scalar λ ∈ R
T (λx) = λT (x) (2.2.4)
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signal may be attributed to the presence of an attractor rather than to noise (or both)
[46, 20, 47]. The brain as a non-linear dynamical system can be represented as being
input-driven, or alternatively as having no inputs. Both of these approaches, linear and
non-linear, will be considered in further detail in sections 2.3 & 2.4 respectively. Addi-
tionally, it is possible that the brain function may be neither linear nor non-linear and
instead stochastic in nature, where stochastic noise may be intrinsic to brain function.
An underlying stochastic brain is however not generally assumed in the existing seizure
prediction algorithms.

Much of the current literature has adopted the following conventions in statistical
performance indicators for both seizure prediction and detection algorithms [28]:

• Sensitivity refers to the ratio of correct predictions (true positives) out of the total
number of seizures, both predicted and unpredicted seizures (false negative).

Sensitivity =
# true positives

# true positives + # false negatives
(2.2.5)

• False positive rate, FPR, is a measure of the number of false positives (predictions
made at times when no seizure subsequently occurred) per unit time, T, (usually
per hour).

FPR =
# false positives

T
(2.2.6)

• Specitivity refers to the ratio of non seizure epochs that are correctly predicted (true
negatives) to the total number of non seizure epochs. This definition of specificity,
for the purpose of seizure prediction, requires that the EEG data to be discretised
into epochs of a fixed duration.

Specificity =
# true negatives

# true negatives + # false positives
(2.2.7)

Although these statistics provide a means of comparing seizure prediction algo-
rithms, the methodology used for testing the performance of each algorithm must be con-
sidered alongside the reported statistics. Many studies, especially earlier ones before large
data storage facilities became available, do not consider much, if any, control data in the
sense of large inter-ictal periods or EEG from a non-epileptic population. Therefore, these
studies focus on sensitivity while ignoring specificity and false positive rate. Although
intracranial EEG from a non-epileptic population is unavailable on ethical grounds, inter-



18 CHAPTER 2. LITERATURE REVIEW

ictal intracranial data can easily be considered for control purposes. Another aspect to
be considered when interpreting these statistical indicators, is that most of the literature
to date is not predictive in the sense of predicting the onset of a seizure at an exact time.
Instead a pre-ictal period is identified for time periods of increased likelihood of seizure
onset. The latter concept of “prediction” may prove sufficient however for adequate con-
trol of seizures with either an on-demand drug delivery treatment or perhaps preventative
electrical stimulation therapy.

2.3 Linear Approaches

As early as 1975 linear approaches of EEG analysis were attempted in an effort to predict
epileptic seizures. The advantage of linear analysis techniques is that they are both well-
established and powerful tools for quantification and prediction of signals and systems.
Linear techniques are less computationally intensive when compared to non-linear tech-
niques when dealing with the same “dimensionality” and were therefore the tool of choice
historically before the advent of modern computer processing power.

Several linear approaches to seizure prediction will be discussed in the remainder of
this section. It was found however, that the success of these methods was minimal. This
general lack of success may be attributed to the idea that the brain and its function are
most likely non-linear in nature and hense that linear measures are ultimately unsuitable
for quantifying the changes in non-linear brain state that lead to a seizure.

2.3.1 Selected Linear Measures: Performance and Scepticism

Spectral Analysis

In 1975 Viglione et al. [48] investigated the ability of pattern recognition applied to the
spectral analysis of a limited number of scalp EEG channels to predict generalised tonic-
clonic seizures. However this approach was soon abandoned due to poor results [9, 11].

Power spectral analysis was again applied to scalp EEG in an effort to predict epilep-
tic seizures in 1982, when Siegel et al. [49] showed that the pre-ictal period before absence
seizures could be distinguished with some seizures, in some patients (64%-83% of the time
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in 4 of the 5 patients studied). The findings of Inouye et al. [50] in 1994 were similar in
that they “suggested structural changes in EEG frequency composition just before SWCs
[spike and wave complexes of absence seizures] because of an epileptogenic process”, but in
this case such changes were found in each of the 10 patients they studied. The structural
change they found was an increase in “arrhythmic slow activity” [10, Ch. 13].

Such early seizure prediction attempts prompted preliminary spectral investigation
with the scalp EEG database of the University of Melbourne epilepsy research group.
This investigation has shown the frequency content of ictal EEG and the EEG immedi-
ately prior to seizure onset to contain frequencies predominately in the range 5-25 Hz.
However, a subset of these “seizure frequencies” are also common in the normal waking
“alpha” brain state, rendering any useful spectral analysis for seizure prediction difficult.
This overlap of alpha (8- 13 Hz) and seizure frequencies (3-25 Hz) was also noted by Saab
and Gotman in their seizure detection work [51].

However, with the advent of increased computational power and data storage abil-
ity, EEG recordings with a high sampling frequency have been possible. Such intracranial
and deep brain structure recordings in both animal models and human patients show that
increased spectral power at higher frequencies (80-500Hz) may relate to epileptogenesis
[52, 53]. Further investigation into the possibilities of seizure prediction with high fre-
quency oscillations is needed.

Linear Modelling

Linear modelling approaches have been applied to the EEG signal in an attempt to use
the resulting models for prediction. An example of this is the 15-coefficent autoregressive
modelling attempt of Rogowski et al. in 1981 on the scalp EEG of epileptic patients with
absence epilepsy [54]. This resulted in prediction horizons of only a few seconds. Such
short prediction horizons could be classed as detection due to the time period of a few
seconds that can exist between the onset of a seizure electrographically and clinically [10,
Ch. 12]. However it is worth noting that such short prediction horizons could be sufficient
for therapeutic intervention by means of electrical stimulation, especially if the predic-
tion/detection occurred before the patient experienced any clinical symptoms.
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Linear Statistics: Variance, Skewness, Kurtosis & Cross-correlation

More recently, basic linear statistics have been investigated as seizure prediction candi-
dates. In 2003, McSharry et al. investigated the use of variance as a predictor with
intracranial data [55]. Although there was a marked decrease in variance during seizures,
it was concluded that this basic linear statistic failed to show any alteration during the
pre-ictal period. In 2005, Mormann et al. [13] considered the ability of several linear
measures to predict epileptic seizures with intracranial data. These measures included
variance and other univariate (analysed on a single channel) measures such as the skew-
ness, kurtosis and the relative power in different spectral bands. A bivariate measure
(multichannel analysis), that of a cross-correlation estimate, was also considered. How-
ever these measures showed “no global effect in the sense of a uniform and similar change
found in all channels for all seizures of a patient”. Furthermore these linear measures ei-
ther failed to show significant pre-ictal changes or showed contradicting changes, such as a
pre-ictal increase in some channels and yet decrease in other channels for a single measure.

Accumulated Energy

Energy measures have also been considered in recent years for seizure prediction. In 2001
Litt, Esteller et al [42] found that accumulated energy increased in the 50 minute epoch
before seizure onset, when compared to a baseline of 1 hour at least 3 hours before any ictal
period. Their method was based on the premise that increases in accumulated energy are
associated with oncoming seizures. Accumulated energy was defined as the “running sum
of the square of the EEG voltage sampled at 200Hz”. Their method showed remarkable
results with a sensitivity of 90% and a specificity of 88% which corresponded to a FPR
(False positive rate) of 0.089. However, later studies by both this group and other groups
questioned these initial findings.

In 2005, Esteller et al. [56] again attempted to quantify the pre-ictal state using
estimates of energy. This study was designed to be causal by comparing the accumulated
energy measure of a 1 minute segment to a randomly chosen baseline of 20 minutes taken
from at least 4 hours prior to a seizure. Accumulated energy was defined as,

E[n] =
1
N1

n(N1−D)+D∑
i=1+(n−1)(N1−D)

x(i)2, (2.3.1)
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where N1 is the number of samples in an observation window, D is the window shifting,
x(i) is the EEG recording at time i, and n is the time index of the energy measure. If an
adaptive decision threshold, based on a long term baseline energy measure of 20 minutes,
was greater than a short term energy computed over 1 minute, a warning of imminent
seizure was declared. However the expected pre-ictal energy increases only occurred in
50% of cases, and thus “no statistically significant results were found”. The results pre-
sented indicated that pre-ictal energy showed not only increases, but also “bursts” and
“quiet periods”. Furthermore, increases in energy are also indicative of post-ictal, sleep
states and of course of ictal events themselves. Therefore it appears that, while energy
would be a quantity especially suited to an implantable device with its low computational
requirements, pre-ictal energy increase is not a viable indicator for seizure prediction. A
second paper by Harrison et al. [57] on the application of accumulated energy to EEG
data in 2005, supported this conclusion in that no pre-ictal energy indicator could be
found. With energy sensitive to amplitude levels, one notable limitation of this work is
the absence of data normalisation before the energy measure was applied, although this is
somewhat handily compensated for through the use of the baseline energy calibration step.

Measures of Synchronisation

It has been observed that epileptic seizures occur with a synchronisation of neural activity
across different brain regions. This observation has been exploited by seizure prediction
methods that aim to test for an increase in synchronisation of neuron activity before
seizure onset.

In 2003, Mormann et al. investigated synchronisation measures for “detection of a
preseizure state” with intracranical data [41, 40]. To compute the instantaneous phase,
φ(t) of each channel for comparison, the authors employed the Hilbert transform. The
analytical signal is represented as

ψ(t) = s(t) + js̃(t) = A(t)ejφ(t), (2.3.2)

where s(t) is the EEG time-series and s̃(t) is the Hilbert transform of the time series,

s̃(t) = π−1.PV.

∫ +∞

−∞

s(τ)
t− τ

dτ, (2.3.3)
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where PV is the Cauchy principal value [20]. It follows from Equation 2.3.2 that the
instantaneous phase, φ(t) can be computed as

φ(t) = tan−1

(
s̃(t)
s(t)

)
. (2.3.4)

To consider the instantaneous phase difference, ∆φ(t) between channels in a statistical
sense the concept of phase coherence, introduced by Mormann et al. in 2002 [58], is
utilised. Phase coherence, R, essentially projects the instantaneous phase differences onto
the unit circle, and computes the average length vector.

R =

∣∣∣∣∣ 1
N

N−1∑
t=0

ej∆φt

∣∣∣∣∣ , (2.3.5)

where R values are in the range [0:1]. Surprisingly the results of Mormann et al. find that
a decrease, rather than the expected increase, in synchronisation occurs before seizure
onset. The sensitivity published was 81% for a database of 32 analysed seizures [41] and
86% for a database of 14 analysed seizures [40]. In both cases a specificity of 100% (i.e
no false positives) was declared. However, prediction was allowed for lengthy time periods
up to 3 hours and 41 minutes in advance of clinical ictal onset and only short lengths of
EEG recordings were available (average length 6.5hr/patient hours) for analysis. These
two factors indicate that the false positive analysis may not be meaningful.

In 2005, Le Van Quyen et al. [59] published work on synchronisation, again using
Equations (2.3.2 - 2.3.5) with an intracranial dataset. In contrast to the findings of Mor-
mann et al. as both increases and decreases of “synchronisation” were found in pre-ictal
periods. By classifying the possible inter-ictal synchronisation profiles in a reference li-
brary and comparing the pre-ictal synchronisation profiles to this library, a sensitivity of
70% (out of 72 seizures) was found, with anticipation times hours in advance of seizure
onset. However no conclusions can really be drawn from this study as only 5 patients
were analysed, from which 5 different reference templates had to be considered. Perhaps a
patient-specific seizure prediction method could develop from this approach, but a much
larger data base would need to be considered first.

The Hilbert transform has some limitations when applied to noisy datasets due
to the nature of the transform. The Hilbert transform can give rise to large differences
between the instantaneous phase of a function f(t), φ(f(t)) and the instantaneous phase
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of the same function with small noise δ, φ(f(t) + δ). Considering that the EEG contains
significant levels of measurement noise, the Hilbert transform is most likely unsuitable
for the robust tracking of underlying synchronisation between brain regions. This may
explain why both increases and decreases in synchronisation prior to seizures are seen in
the literature using the Hilbert transform. Furthermore, as a linear transform, the Hilbert
transform is likely to fail to capture the complex synchronisation activity present in the
brain. Alternative non-linear synchronisation measures are considered in Section 2.4.1.

2.4 Non-linear Approaches

The brain is a complicated system where the interaction of billions of neurons give rise to
spatially and partially synchronised functional behaviour. Neurons themselves and small
networks of neurons are non-linear in nature, so it can be inferred that the brain system as
a whole is a non-linear dynamical system. This has lead to a range of theoretical methods
and measures in the field of non-linear dynamics to be applied to the EEG. The hope
being that somehow a low dimensional, but perhaps complex, non-linear attractor may be
sufficient to describe the brain’s behaviour.

The hope in a non-linear system approach is that the underlying dynamics are rather
simple to describe, for example by way of a set of non-linear differential equations, however
the time evolution of the corresponding states exhibits “chaotic” (noisy, erratic) behaviour.
The state of a system provides all the information necessary, besides the input, to predict
the future of the system [60], where the future of the system is determined by integrating
the system equations. State space refers to the vector space or manifold, within which,
the time evolving state of a dynamical system resides. The main non-linear approaches
consider the brain as an autonomous system, i.e. without input, or consider the input as
a “white noise”.

Non-linear analysis of recorded time series data, such as the EEG, usually calls for
a state space reconstruction to allow the underlying dynamics to be analysed. But given
a single time series recording of one of the states of the system, or indeed an arbitrary
function of several states of the system, it is less than intuitive that meaningful informa-
tion about the system as a whole can be derived. However, in 1981 Takens and Aeyels
independently proposed a remarkable delay embedding theorem which allows a model of
the dynamical system to be reconstructed directly from time series data [61, 62]. Let the
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mapping f describe the evolution of the state vector x over time. Let y be an output
measurement from the system defined by some arbitrary function φ. For simplicity y is a
scalar here.

ẋ(t) = f(x(t)) (2.4.1)

y(t) = φ(x(t)) (2.4.2)

The goal is to reconstruct the unknown state vector x given the measurement time-
series y(t). In embedding, the dynamics are reconstructed by allowing the system states to
be represented as vectors of delayed measurement signals. For example take a time-series
of measurements observed every τ seconds,

[y(t− nτ), . . . , y(t− 2τ), y(t− τ), y(t)] = [φ(x(t− nτ)), . . . , φ(x(t− 2τ)), φ(x(t− τ)), φ(x(t))]

:= Φ̃(x(t)) (2.4.3)

where x(t − nτ) are the states x = [x1, x2, x3...xm] at time t − nτ . An example
of a measurement vector Φ̃(x(t)), in the context of the brain system, could be the EEG
time-series recording from one electrode, see Figure 2.1 for an illustration of this. The
measurement vector Φ̃(x(t)) can be used to create z = [z1, z2...zd], a d-dimensional recon-
struction of the m-dimensional system with states x = [x1, x2...xm]. These reconstructed
states z are found by representing the states as delayed versions of Φ̃(x), e.g z1 = Φ̃(x(t)),
z2 = Φ̃(x(t − τ)), and zd = Φ̃(x(t − (d − 1)τ)). While Φ̃ is a mapping from Rm → R1,
more generally, this co-ordinate change from x to z can be represented by the delay
map Φ : Rm → Rd where z(t) = Φ(x(t)) and conversely x(t) = Φ−1(z(t)). Reconstruc-
tion is only guaranteed, however, under certain conditions including that the dimension
d ≥ 2m+1. Further details of the limiting conditions attached to reconstruction and their
impact are discussed later in this section.

While such a reconstructed system is not equivalent to the original system, it can be
interpreted as the same system with the co-ordinate system rescaled. More precisely, for
an underlying system f and a reconstructed system ż (t) = F (z (t)), the following holds
F = Φ ◦ f ◦ Φ−1 [63].
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Φ(x(t))

ϕ(x(t))

ϕ(x(t-τ))

ϕ(x(t-nτ))
ϕ(x(t-(n+1)τ))

τ

Φ(x(t-τ))~

~

Figure 2.1: Illustration of delay reconstruction from a single electrode time series EEG
measurement

Φ ◦ f ◦ Φ−1 (z (t)) = Φ
(
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(

Φ−1
(
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)))
;

= Φ
(
f
(
x (t)

))
;

= Φ
(
ẋ (t)

)
;

= ż (t)

= F
(
z (t)

)
(2.4.4)

As an illustrative example, consider the classic Lorenz model, which has states
x = [x1, x2, x3] and is described by the coupled non-linear differential equations:

ẋ1 = 10(x2 − x1), (2.4.5)

ẋ2 = −x1x3 + 28x1 − x2, (2.4.6)

ẋ3 = x1x2 −
8
3
x3. (2.4.7)

Each state itself looks like a stochastic (noisy) signal, see Figure 2.2(a), however a plot
of the state space of x1 vs x2 projected onto the x3 plane, as illustrated in Figure 2.2(c)
shows that the system has an underlying deterministic structure. This phase space struc-
ture, in this case a characteristic figure of eight, is referred to as the attractor of the
model. If however, access to each of the states was unavailable, but instead a measure-
ment φ(x) = 3x1 − 2x2 could be observed, see Figure 2.2(b). By reconstructing the state
space as z = [z1, z2, z3] = [Φ̃(x(t)), Φ̃(x(t−τ), Φ̃(x(t−2τ))] and then plotting z1 vs z2 pro-
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jected onto the z3 plane, the attractor in Figure 2.2(d) can be found. This reconstructed
attractor in Figure 2.2(d) is equivalent to the system attractor in Figure 2.2(c) under a
rescaling transformation of the plot axes. Therefore, scale independent measures computed
on the reconstructed system can be considered equivalent to the measures on the original
system. Such scale independent measures include measures of entropy, dimension and Lya-
punov exponents. The significance of these measures will be discussed later in this chapter.
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(a) Time evolution of the system state x1
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(c) Lorenz system attractor
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(d) Reconstructed system attractor

Figure 2.2: Example of delay reconstruction with the Lorenz model

Attractors of brain dynamics created from delay embedding of EEG data resulting
from computer simulations of the brain were published in 1991 by W. J. Freeman [29], and
in 2003 by Lopes da Silva et al. [64]. In Freeman’s simulations the phase portraits illus-
trate the differences between attractors representing simulated olfactory brain dynamics,
where one attractor represents a resting state (Figure 2.3(a)) and the other represents a
state during perception of a familiar scent (Figure 2.3(b)). These phase portraits suggest
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a more ordered, almost periodic, brain state during scent perception than at rest. Lopes
da Silva’s simulated phase portraits represent a thalmo-cortical network of a normal brain
(Figure 2.4(a)) and an epileptic brain (Figure 2.4(b)). These state space diagrams illus-
trate the idea that the brain has two attractors, representing the inter-ictal state and the
seizure state. In the normal brain these attactors are well separated such that a transition
from normal to seizure will, in all likelihood, never occur. However, in the epileptic brain
the borders between these attractors are blurred, facilitating easy input driven transition
between seizure and non-seizure states. The transition between seizure and non-seizure
states is a key question for non-linear dynamics. While the input driven transition between
two strange attractors as illustrated in Figure 2.4 is one possibility, another possibility is
that of a bifurcation. A bifurcation is a change in the stability property of a system de-
pending on the value of a bifurcation parameter. If a bifurcation existed, as suggested in
brain models such as the Robinson model [65], there would exist a parameter µ which
would indicate the seizure/non-seizure status of the brain system. If the trajectory of
such a parameter µ could be tracked, any changes in the system from a non-seizure state
towards a seizure state could be predicted, see Figure 2.5.

(a) Resting (b) Perception of familiar
scent

Figure 2.3: Phase portraits from computer models of the brains olfactory system, published
in [29]

While these models present interesting paradigms for the nature of non-linear brain
dynamics, there are however, serious theoretical limitations associated with practical delay
reconstruction on any real-world dynamical system [63]. Firstly Takens’ theorem is valid
only in the realm of autonomous systems, that is time invariant systems, that are inde-
pendent of any external inputs. Consequently, Takens’ theorem is limited to systems that
are stationary. Furthermore, delay reconstruction is only valid when working with noise-
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(a) Normal (b) Epileptic

Figure 2.4: Phase portraits from computer models of the brains thalamo-cortical network,
published in [64]
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Figure 2.5: Illustration of a bifurcation. The transition from normal inter-ictal brain state
to seizure state may be some form of bifurcation phenomenon.
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free time series measurement. There are also constraints regarding adequate amounts of
data for the reconstruction to be valid. Takens originally specified that the embedding
dimension, d must be greater than twice the dimension of the system under observation
(d > 2m+ 1). Such constraints imply that serious caution must be taken when applying
reconstruction method to any real world data, and in the interpretation of any results.

Although work applying delay construction techniques to the EEG time series is
common, within the current framework of theoretical understanding the EEG is ulti-
mately an unsuitable signal for such analysis on many fronts. Firstly, the brain is not an
autonomous system, our brains undoubtedly process external inputs and the EEG signal
is clearly non-stationary (for a overview of stationarity, or lack thereof, in the EEG sig-
nal, see the end of this section). Secondly, to reconstruct low-dimensional systems in the
order of 5 dimensions would still require over 1 million data points to reliably reconstruct
the system [66]. Considering the structural and functional complexity in the brain, it is
not unreasonable to imagine that a model of the brain would be high dimensional. This
would imply that much data is required to reconstruct the brain’s system. Furthermore,
the EEG is non-stationary, and may only be considered quasi-stationary (as required for
reconstruction) for short periods of time. Such short periods of time are most likely too
short to provide adequate data for reconstruction. Thirdly, reconstruction is only valid
for purely deterministic systems. As the EEG is a signal with a considerable amount of
measurement noise, there is a stochastic element to the time series which disqualifies it for
analysis within Takens’ original framework. However, even if the reconstruction from the
EEG time series is not a true representation of the underlying dynamics, relative measures
may still be useful indicators of changes in the dynamics of the underlying system. For
instance, rather than taking measures as precisely defining the brain dynamics at a given
time, changes in such measures over time may correlate with changes in the underlying
dynamics [20, Ch. 3].

Another consideration for delay reconstruction on the EEG is that it is a measure
on a spatially distributed dynamical system. Such a spatially distributed system can be
viewed as a collection of locally distinct systems which interact with each other. Then,
for a given EEG recording at one channel, the reconstruction would have to consider the
inputs coming into the system from the remote spatial locations. This of course would
make the local system under analysis non-autonomous and as such, unsuited to reconstruc-
tion techniques. However Stark discussed a preliminary framework for reconstructing such
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spatio-temporal systems in [63, 67], which effectively replaces the remote interactions of the
local system by noise. Stark’s framework extends Takens’ original theorem to account for
noise in the system. Stark argues that reconstructing a high-dimensional spatio-temporal
system is too complicated, in that for most real world cases, there would not be sufficient
time series data available for the reconstruction. Instead, Stark argues that reconstruct-
ing a local system may provide more useful information. Perhaps reconstruction of the
underlying brain dynamics would be somewhat sensible from this viewpoint. It may not
be unreasonable to apply reconstruction techniques to an EEG time series derived from
the difference in signals recorded from two closely spaced cortical regions. In this man-
ner it could be hypothesised that the majority of the “noise input” to the local system,
from other spatially distant systems, would be “cancelled out”. Meaningful reconstruction
could then be applied to the remaining difference signal, where any further noise elements
in that signal would be considered within the framework of Stark’s theorem for recon-
struction for systems with stochastic forcing.

Stationarity

The methods usually employed in both non-linear and linear time series analysis require
the stationarity of the data set. A data set or time-series is considered stationary in a
linear systems sense if its statistical properties and spectral characteristics are constant
over time. From a non-linear or dynamical systems point of view, stationarity essentially
implies that the dynamical law describing the system does not change (over long time
scales) [68, 69]. The clear differences in the EEG of different states (e.g. sleep, awake,
alpha rhythm, and also in the epileptic brain: ictal, pre-ictal and post-ictal), with the
mean, variance and frequency components differing between states, imply that the EEG
is undeniably a non-stationary time series. Particularly from the viewpoint of non-linear
systems measures, the criterion of stationarity in EEG time-series of sufficient length for
analysis is almost impossible to satisfy in practice.

However many methods theoretically requiring stationarity have been applied to the
EEG data with mixed success, see Section 2.4.1 of this document. Much of this literature
on applying non-linear dynamic theory to the EEG data relies on the assumption of “weak
stationarity”. Weak stationarity, or wide sense stationarity can be defined for linear sys-
tems as requiring statistical quantities up to the second order to be shift invariant. For
non-linear systems this essentially equates to the assumption that the dynamical changes
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during an EEG recording are sufficiently slow in time to allow short segments of EEG
data to be considered approximately stationary or “quasi-stationary”.

Much research has been focused on the stationarity (or rather non-stationarity) of
EEG time series, with particular emphasis on the estimated times during which EEG
segments can be regarded “quasi-stationary” for analysis. Blanco et al. [47] isolated seg-
ments of the EEG, in the order of 20 seconds during which “weak stationary criteria” (or
wide-sense stationary) were satisfied in an empirical observation of the low order statistics
of the signal. They propose that reliable dynamic measures can be computed within these
20 sec segments. Observations of a similar nature led Lopes Da Silva and Niedermeyer
to conservatively conclude that short epochs of the EEG signal, ∼10 sec, recorded while
the patient’s behavioural conditions were unchanging, could be considered stationary for
analysis [27, pg 1200]. However, Kantz and Schreiber [70, 71] see the linear systems notion
of weak stationarity, as used by both Blanco et al. and Lopes Da Silva et al. to be inad-
equate in a non-linear setting. Alternative stationary analysis from a non-linear systems
viewpoint has been conducted by Reike et al. [69, 72]. This non-linear analysis was based
on the quantification of recurrence of vectors in state space. Dikanev et al. compared both
statistical (linear) and dynamical (non-linear) analysis of EEG segments, where the dy-
namical analysis was centered around quantifying changes in the distances between vectors
in state space [68]. Dikanev et al. concluded that their non-linear stationarity analysis
segmented the EEG signal into a greater number of quasi-stationary segments than the
statistical linear stationarity analysis. The dynamically stationary epochs were found to
be in the range ∼10-12 seconds for the pre-ictal, ictal and post-ictal EEG data considered.
In addition, regarding seizure prediction, both Reike [72] and Dikanev [68] suggest that
segmentation of the various dynamical states in the EEG through stationarity analysis
may be useful in quantifying a pre-ictal state, however this has not been attempted with
any reasonable EEG database as yet.

In conclusion, non-stationarity is undoubtedly inherent in the EEG signal and anal-
yses of this signal that require stationarity must be applied to suitably qualified quasi-
stationary segments. Such quasi-stationary segments are most likely to be in the order of
10s as determined by non-linear stationarity analyses.
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2.4.1 Selected Non-Linear Measures: Performance and Scepticism

Despite the obvious limitations with delay reconstruction, including non-stationarity, a
number of non-linear statistics based on this method have been used with varying success.
These statistics, estimated by analysing the distances between points in an appropriate
embedding space, include the classic non-linear systems measures of correlation dimension,
Lyapunov exponents and entropy and also measures attempting to quantify underlying dy-
namical changes.

Dimension

The dimension of an attractor is related to the number of degrees of freedom in the system
dynamics and can be regarded as an indicator of system complexity. One type of dimension
measure is the correlation dimension, D, this is calculated as

D2 = lim
r→0

d log(Cr)
d log(r)

, (2.4.8)

where Cr is the correlation integral:

Cr =
2

N(N − w)

N−w∑
i=1

N∑
j=i+1

θ(r − |Xi −Xj |). (2.4.9)

N is the number of vectors, w is the Theiler correction, θ is the heaviside function
and |...| indicates the vector norm [20, Ch. 3]. The correlation integral computes the
likihood that any two points on the attractor will be closer than a certain distance, r.
The slope of log(Cr)

log(r) , as r tends to zero is the classic “Grassberger and Procaccia” estimate
of the correlation dimension. The Theiler correction excludes data point pairs which are
close together in state space due to being close together in time. As a distance measure-
ment, the correlation integral is sensitive to amplitude levels and thus normalisation of the
EEG signal is essential; however, normalisation of the data was not considered in this work.

It has been postulated that epileptic events should lead to a reduction in the com-
plexity of the brain’s dynamical system. Such a complexity reduction is thought to occur
due to the increase in synchronisation between recording channels (and therefore brain
regions) that is visually observed in ictal EEG. It follows then that finding a decrease in
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complexity in the brain activity, as computed from the EEG, could indicate a pre-ictal
state [44]. Estimation of the system dimension has been used as a complexity indicator
in an effort to predict seizures, with a reduction in the dimensional measure expected to
indicate a complexity reduced pre-ictal state.

In 1998 Lehnertz and Elger [43] estimated the effective correlation dimension Deff
2

from a 30-dimensional embedding of intracranical EEG data, with a database of 16 pa-
tients. The measure was computed on channels individually, and can therefore be classified
as a univariate measure. The authors defined an estimator D∗ for Deff

2 , based on the av-
erage slope of the correlation integral,

D∗ =
1
Nr

ru∑
r=rl

d log(Cr)
d log(r)

, (2.4.10)

where Nr specified the number of r values in the range [rl, ru]. The authors specified that,

Deff
2 =

D∗ if D∗ ≤ Dmax and Nr ≥ 5

Du otherwise
, (2.4.11)

where Dmax is a maximum unresolvable dimension and Du is an arbitrary fixed threshold
of 10. Pre-ictal states were declared when Deff

2 fell below a threshold for a particular du-
ration. The threshold was taken as the mean inter-ictal level of Deff

2 , while the duration
was taken to be the maximum duration that Deff

2 remained below the threshold value in
the inter-ictal data-set. The authors were careful to note that this estimate for the corre-
lation dimension should be regarded as an empirical quantity and not one with a precise
theoretical significance. Results with this method were highly promising with sensitivity
of 94% and prediction times (defined as the time between seizure onset and declaration
time of a pre-ictal state) of 4.25 - 25 min. However, no indication of the specificity was
given. In 2001 Lehnertz tested their work on a larger number of 59 patients with 95
seizures [73]. This study resulted in a lower sensitivity of 47% and a mean prediction time
of 19 sec. Again, specificity or the number of false positives was ignored. Furthermore, in
both studies the statistical significance of the results was not discussed. This highlights
the need for analysis with a large data set, particularly one containing a significant in-
terictal control element, as well as statistical significance measures, to validate the method.

The promising findings of Lehnertz et al. were later disputed when further anal-
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ysis was conducted by two other research groups: Aschenbrenner-Scheibe, Maiwald et
al. [74, 75] and Harrison et al. [76]. Aschenbrenner-Scheibe, Maiwald et al. [74] found
that by replicating Lehnertz’s method with a lengthy inter-ictal dataset, analysis of the
pre-ictal data showed “only 1 out of the 88 seizures [in their data set] was preceded by
a significant pre-ictal dimension drop”. This corresponds to a sensitivity of only 1.13%.
In an effort to improve sensitivity Aschenbrenner-Scheibe, Maiwald et al. adapted the
threshold and duration levels for prediction and evaluated the corresponding trade off
between sensitivity and false positives per hour. They found that for reasonable false pos-
itive rate of 0.1 FP/hr, the sensitivity ranged from 8.3 - 38.3% corresponding to assigned
maximum prediction length windows of 20 min and 50 min respectivly. In a later paper,
Aschenbrenner-Scheibe, Maiwald et al. [75] again evaluated Lehnertz’s method as part
of a review of several prediction methods with a database of 21 patients and 88 seizures.
They found similar results as before with a low sensitivity of 20% corresponding to a false
positive rates of 0.1 FP/hr given a maximum prediction length windows of 30 min.

A second group, that of Harrison et al. [76] sharply disputed Lehnertz’s findings
and claimed that the correlation dimension has “no predictive power for epileptic seizures”
when tested on their database of 20 patients. The authors showed that the correlation
integral (equation 2.4.9), central to Lehnertz’s algorithm, is sensitive to changes in the
energy of the signal, through investigation of both the effects of amplitude normalisation
and surrogate data testing. The authors argued that any “seizure detection ability of the
correlation-integral based measures is directly linked to the signals variation in the time-
frequency-energy characteristics rather than to any non-linear dynamics present” in the
data. These findings and the findings of Aschenbrenner-Scheibe, Maiwald et al. combine
to support the conclusion that any seizure predicting ability of the correlation dimension
is unlikely. The inability of this method can be attributed to both the limitations of delay
reconstruction for the EEG as discussed earlier in Section 2.4 and the further difficulties
associated with the correlation integral as highlighted by Harrison et al.

The dimension limitations of delay reconstruction deserves careful consideration in
the context of embedding EEG data. Leaving aside for the moment the theoretical re-
quirement that the embedding dimension, d, should be over twice the underlying system
dimension, m, consider the number of datapoints available to populate a reconstructed
state space of arbitrary dimension. This is limited by stationarity. Earlier in this Sec-
tion 2.4 stationarity was determined to be in the order of 10 seconds. At typical EEG
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sampling rates of 512Hz this gives us approximately 5000 data points to populate the
embedding space. For d = 2 an embedding plane, and d = 3, a 3-dimensional object,
this offers a reasonably dense population of points. For higher dimensions, whether or
not there would be enough points to adequately populate the embedding space in order
to distinguish an attractor (should it exist) is questionable. By d = 30, the embedding
dimension used in Lehnertz and Elger’s study [43], 5120 points (effectively 170 points per
dimension) could only populate the space in such a sparse fashion that any measures based
on distance between points would be highly illposed. Figure 2.6 provides some illustrative
insight into this showing the spareness of 170 points per dimension in both 2-dimensional
and 3 dimensional embedding spaces (341 and 512 datapoints respectively) for the Lorenz
system previously introduced at the start of Section 2.4. This issue of sparely populated
embeddings is equally problematic for the other measures in embedding space, including
Lyapunov exponents, entropy and dynamical similarity index each discussed in the forth-
coming sections. The case of doubling the data and halving the embedding dimension
(d = 16, 10240 datapoints), later utilised as the embedding space for dynamic similarity
index, is also illustrated in Figure 2.6 to show the case of 640 data points per dimension
(1920 datapoints for 3-dimensions and 1280 datapoints for 2-dimentions). Note these plots
are highly simplistic in that they ignore the time considerations - rather than embedding
a short segment of the time-series which would only provide very localised attractor in-
formation, it was assumed that our data samples are spread in time such that the all
areas of the attractor are represented. Certainly for real EEG, presuming our brains have
more complex dynamics than the three state Lorenz system, it would be impossible to
extract enough datapoints from stationary segments of EEG to adequately populate a low
dimensional embedding space (d in the range of 10-30 dimensions). Moreover, there are
additional realities impeding reconstruction:(i) d = [10, 30] is far less that the anticipated
underlying order of m (ii) the effect of noise further disorganising those few embedding
points that are available.

Lyapunov Exponents

A second non-linear measure used is that of Lyapunov exponents. These describe the
exponential divergence (or convergence) of nearby trajectories in state space, providing
an indication of the stability of solutions to small perturbations in the dynamical system.
Dynamical systems, that are both non-linear and deterministic, are classified as chaotic
if the long term behaviour of the system is highly unpredictable due to sensitivity to
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Figure 2.6: Illustrative example of the impact of data quantity in embedding space for
the Lorenz System with 3 states, x. The reconstructed states after data embedding, z are
shown for various amounts of data (i)5000 datapoints (ii) 640 datapoints per dimension
(1920 points for 3-D upper plot,1280 points for 2-D lower plot) (iii) 170 data points per
dimension (512 points for 3-D upper plot, 341 points for 2-D lower plot)
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initial conditions. Lyapunov exponents, as a measure of exponential divergence of nearby
trajectories in state space, provide a measure for how “chaotic” a dynamical system is.
For two points in state space with an initial separation, δx0 the Lyapunov exponent, λ,
that characterises the evolution of the separation between the points in time is

δx(t) = eλtδx0. (2.4.12)

There is a whole spectrum of Lyapunov exponents to characterise a system, one
for each dimension in state space, since the rate of divergence of nearby trajectories can
differ for each possible orientation of the initial separation vector between the trajectories.
The largest or maximum Lyapunov exponent, MLE, is of particular interest, as it can be
used as a measure of predictability of the dynamical system. A positive MLE implies an
exponential rate of divergence, which indicates that the underlying system may be chaotic
and therefore highly unpredictable. A positive MLE does not however imply the system is
definitely chaotic: chaotic systems require not only a positive Lyapunov exponent but also
other conditions including overall system stability. The MLE is essentially the 1st Lya-
punov exponent, λ1, which measures the exponential expansion/ contraction of adjacent
points in state space. (Note the 2nd Lyapunov exponent, λ2, measures the exponential ex-
pansion/ contraction of an area element in state space, while the 3rd Lyapunov exponent,
λ3, measures the exponential expansion/ contraction of a volume element in state space,
etc . . . )

In 1990 Iasemidis et al. first suggested the use of Lyapunov exponents for seizure
detection [77], finding in intracranial EEG that the value of the MLE decreases at seizure
onset, indicative of a decrease of system complexity during ictal periods. They also found
that the pre-ictal EEG exhibited “several abrupt drops” which could perhaps be exploited
for predictive purposes. To find the Lyapunov exponent the authors attempted the re-
construction of the brains dynamical system with an embedding dimension, d = 7, on
12 seconds of EEG data recorded at 500Hz. An adaptation of Wolf’s method [78] was
applied to the resulting attractor reconstructed for each channel recorded. Wolf’s method
was based on computing the distance, L(tk−1), between two nearby points in state space
at a time tk−1, and comparing this to the evolved distance between the two points at a
later time tk, L′(tk). The MLE was defined as

λ1 =
1

tM − t0

M∑
k=1

log2
L′(tk)
L(tk−1)

. (2.4.13)
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However, as highlighted by Kantz and Schreiber, Wolf’s method can easily obtain the
wrong results as the algorithm “does not allow one to test for the presence of exponential
divergence, but just assumes its existence and thus yields a finite component for stochastic
data also, where the true exponent is infinite” [70].

Despite this limitation of Wolf’s method, in 2003 Iasemidis et al. developed their
initial findings in an effort to predict epileptic seizures, based on a short-term MLE [9].
The authors note that since the brain system is highly non-stationary, only estimates of
short term maximum Lyapunov exponents, STLmax, from EEG segments in the order of
10 sec, are to be considered. These univariate (single channel) measures are then combined
to create a multivariate measure, called “spatio-temporal dynamical entrainment”. The
authors noticed that the STLmax profiles for each individual recording channel converged
to similar values in the pre-ictal period. Dynamical entrainment is a measure of this
similarity and is computed as

Dt
ij = STLmaxti − STLmaxti, (2.4.14)

where t indicates a particular 10 minute time window, and STLmaxti denotes a vector of
60 STLmax values for recording channel i (one STLmax value for every 10 sec recording).
A pre-ictal state was declared when the dynamical entrainment, Dt

ij , corresponded to a
value between a pair T-statistic. Results were promising with a sensitivity of 82%, a false
positive rate of 0.16 FP/hr and a mean seizure prediction horizon of 71.7 min before ictal
onset.

However, later studies by Lai, Harrison et al. questioned the suitability of Lyapunov
exponents for non-stationary, high-dimensional and noisy time series analysis [79, 80]. In
[79] the authors analysed the time-series from several non-linear models and found Lya-
punov exponents to be unsuitable for detection and prediction of underlying changes in
these models. The authors then extrapolated these findings to claim that “Lyapunov ex-
ponents do no appear to have any predictive or detective powers for epileptic seizures”.
In [80] the authors expanded their claims on the basis of illustrative models and also tests
using intracranial data. However, Iasimidis et al. replied to this claim by providing evi-
dence that the methods of Lai, Harrison et al. contained several faults, from inadequate
computation of Lyapunov exponents to misinterpretation of their models [81]. Iasimidis et
al. also highlighted that Lai, Harrison et al. did not consider dynamical entrainment. Al-
though Iasimidis et al.’s critisism of Lai, Harrison et al.’s work appears to have substance,
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their work in highlighting the unsuitability of Lyapunov exponents raises valid concerns
about the application of delay reconstruction methods to non-stationary, high-dimensional
and noisy time series such as the EEG.

Entropy

The concept of entropy has many interpretations in varied scientific fields. In physical
thermodynamics systems, entropy, S, quantifies the amount of disorder of the system at
a molecular level, where the higher the entropy the greater the disorder. The second law
of thermodynamics states that, for isolated systems, entropy will always stay constant or
increase. This implies that systems will always tend towards a state of increased disorder,
which corresponds to tending towards a state of thermodynamic equilibrium. From a
statistical thermodynamics viewpoint, assuming that the dynamics of a system can be
captured by a Markovian process of microscopic states with probability, pi, entropy can
be expressed as,

S = −k
∑
i

pi ln pi (2.4.15)

where k is Boltzmann’s constant and pi is the probability of the ith system microscopic
state, where this microstate is associated with the ith quantum energy level Ei.

A similar expression to equation 2.4.15 exists for entropy, H, as applied to informa-
tion theory. Shannon’s entropy equation, provides a measure for the average information
content of a system with information symbols xi,

H = E[I(xi)] =
∑
i

p(xi)I(xi) = −
∑
i

p(xi) log2(p(xi)) (2.4.16)

where E[...] denotes expected value, p(xi) is the probability of symbol xi occurring. I(xi)
is the information content of symbol xi, with

I(xi) = log2

(
1

p(xi)

)
(2.4.17)

for binary information. Information content of a symbol is related to the probability, p(x1),
of a symbol in the sense that if the probability of a symbol x1, is 1, then the information
gained by receiving that symbol is zero, while if probability, p(x2) of a symbol x2 is 0.2,
then the information gained by receiving that symbol is ∼0.7. In this way the less likely
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a symbol is, the more valuable its information content on a scale of 0 (no information)
to 1 (complete information). Entropy, H, is measured in units of bits/ symbol and can
accordingly also be defined as the rate of information transfer in a system.

The expansion of the entropy concept to dynamical systems is discussed next. The
aforementioned definitions specify that the system space is segmented and probabilities
are assigned to each segment - for dynamical systems the phase space of the dynamical
systems can be divided into cells, with probabilities then assigned for the likelihood of a
trajectory being in a given cell2. With this segmentation, the entropy becomes

Sn = −k
∑
r

pr ln(pr) (2.4.18)

where k is a constant and pr is the probability that a trajectory which started in a partic-
ular initial cell will be located in the rth cell after n units of time [82]. The implications
of this formula are: If all the trajectories starting in a particular cell end up in cell r after
N time steps, then the probability pr is 1, and Sn = 0 for all n. This constant change in
entropy as time evolves may occur, for example, in the case of a deterministic non-linear
system with an attractor in the form of a limit cycle (regular motion). If however, the
trajectories starting in a particular cell end up in N different cells after x time steps,
with equi-probability of ending up in any given cell r, then the probability pr is 1

N , and
Sn = −k ln( 1

N ). Therefore, the entropy is larger for a higher number of possible cells
where the trajectory could be. As N increases (or entropy increases), the ability to predict
future system behaviour decreases. Thus, an increase in the rate of change of entropy over
time implies that the system is becoming more “chaotic”. Entropy for dynamical systems
is generally computed as a change in entropy ∆Sn. This change in entropy, known as
Kolmogorov (or Kolmogorov-Sinai) entropy, K, is defined as

Kn =
1
τ

(Sn+1 − Sn) (2.4.19)

where τ represents one time step, and Sn is that described in Equation 2.4.18.

Kolmogorov entropy can be shown to be closely related to Lyapunov exponents. This
is unsurprising considering that both entropy and Lyapunov exponents are measures for the
level of chaos and hence unpredictability, in the system. In some cases, a mathematical

2Implicitly we have assumed that the state space and the dynamics are such that a Markovian symbolic
process may be inferred.
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relationship between the two can be expressed with entropy equal to the sum of the
positive Lyapunov exponents. One method for computation of Kolmogorov entropy from
time-series data, as proposed by Grassberger and Procaccia, is

K2 =
1

∆t
log2

Cm(r)
Cm+1(r)

(2.4.20)

where Cm is the correlation integral (which computes the likelihood of trajectories occur-
ring within a cell of radius r, see 2.4.10), with an embedding dimension m and an original
time-series sample time ∆t [20]. This method computes entropy by considering the change
in correlation integral for a small value of r, for two high values of the embedding dimen-
sion m, and m+1. The reliance of this method on delay reconstruction indicates that it is
unlikely to be a suitable measure for application to non-stationary, noisy, high-dimensional
EEG data.

This unsuitability of entropy measures based on delay reconstruction may indicate
the lack of success found when the method was applied to the EEG. In 2003, Van Dronge-
len et al. [83] investigated the ability of Kolmogorov entropy (with Equation 2.4.20) as a
seizure prediction candidate in the simultaneously recorded intracranial and scalp EEG of
children. The method used for entropy calculation was that described by Grassberger and
Procaccia, see equation 2.4.20. The results revealed that prediction was more successful
with intracranical data rather than scalp data, with a sensitivity of 60% (3 out of 5 pa-
tients) for intracranial data and a sensitivity of 40% (2 out of 5 patients) for scalp data.
However, both these sensitivity results are quite low. Prediction times ranged from 2-40
min in advance of seizure onset. Insufficient control (non-seizure) data was considered to
evaluate the specificity or false positive rate.

Dynamical Similarity Index

In 1999 Le Van Quyen et al. proposed a “dynamical similarity index”, DSI, algorithm
for seizure “anticipation” which compared the dynamics of a reference window with the
dynamics of a test period [44]. Le Van Quyen et al. showed results which indicated
that the dynamics are altered in the pre-ictal period, thus providing a warning sign for
seizure anticipation. Their method was based on creating a m-dimensional embedding of
a vector which was composed of the time intervals between positive going zero crossings
computed from a 25-30 second window of the EEG data series (m=10 or 16). Singular
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value decomposition was applied to this embedding, resulting in a linear reduction to a
r-dimensional model (r=3 or 4) which acted as a template for the dynamics. Templates
for both reference and test dynamics were cross-correlated, using the correlation integral,
to find the DSI measure. The cross-correlation integral was defined as C(Sref , St), where

C(Sref , St) =
1

NrefNt

Nref∑
i

Nt∑
j=1

θ(r − |Yi(Sref )−Xj(St)|). (2.4.21)

Nref and Nt are the number of vectors in the reference and test templates respec-
tively, θ is the heaviside function and |...| indicates the euclidean vector norm. The Cor-
relation integral computes the likelihood that any two vectors, X and Y , between the test
template, St, and the reference template, Sref respectively, will be closer than a certain
distance, r. A seizure is anticipated, or equivalently, pre-ictal dynamics are found, if the
statistical significance of the DSI measure, Σ, is greater than k (where k is chosen to be
5) over a time period D. By the Chebyshev inequality, the probability of the significance,
Σ, being greater than k is bounded as follows

P (|Σ| ≥ k) ≤ 1/k2, (2.4.22)

where 1/k2 = 0.04. In their original algorithm [44] D was set to 150s, however in a later
paper Le Van Quyen et al. [84] stipulated that the inequality |Σ| ≥ 5 must hold con-
tinuously up until the seizure occurs. Seizure anticipation is determined by the earliest
anticipation found across all recorded EEG channels.

The Le Van Quyen group published promising preliminary results using intracranical
data in 1999 with a sensitivity of 83% and a mean anticipation time ∼6 min [44]. Futher
studies on scalp EEG resulting in a sensitivity of 96% and a mean anticipation time of 7
min [84]. However in both cases the number of false positives was not considered. In 2002,
Navarro and Le Van Quyen extended their study to include control data and thereby find
an estimate for the false positive rate. Through analysing both intracranical and scalp
EEG they found a sensitivity of 83%, a false positive rate of 0.21 ± 0.2 FP/hr and mean
anticipation time of 7.5 mins [85].

However later analysis of the dynamical similarity method raised doubts when sev-
eral groups failed to replicate this with other data sets (including preliminary analysis with
our own group’s scalp data set), given the requirement that the DSI remains below the
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threshold continuously up until the event occurs. Maiwald et al. found only a sensitivity
of 21-42% for a false positive rate of 0.14-0.15 FP/hr with an intracranial data set [75].
De Clercq et al. found that none of the seizures in their scalp data set were predicted
[86]. Note that Le Van Quyen et al. provided one patient’s data from their data set to De
Clercq et al.. Using this data De Clercq found anticipation to be 20 minutes in advance
of seizure - showing DeClercq’s interpretation of the method to be correct.

These contradicting findings can be in part explained by some of the shortcomings
of the DSI approach. Firstly, the reduction of the dynamics templates via SVD essentially
reduces the reconstructed dynamics to a 3 or 4 dimensional linear model. This is cer-
tainly inadequate in the non-linear brain dynamics realm. Secondly, artefacts are likely to
strongly contribute to these 3-4 dimensions available in the reduced linear model. Thirdly,
an analysis that attempts time series delay reconstruction of the brain dynamics the data
contained in a 25-30 second window is undoubtedly insufficient for reasons explained ear-
lier in Section 2.4 with Figure 2.6. Fourthly, as highlighted previously in the case of the
correlation dimension, Harrison et al. showed that the correlation integral, central to
the DSI algorithm, is sensitive to changes in the energy of the signal without suitable
amplitude normalisation. Harrison et al. suggest that any “seizure detection ability of
the correlation-integral based measures is directly linked to the signals variation in the
time-frequency-energy characteristics rather than to any non-linear dynamics present” in
the data [76].

However, the reduction of the raw EEG data by taking only the zero-crossing time
intervals reduces 10-fold the data for processing, and thus allows the possibility of causal
online EEG analysis. The algorithm does seem to provide a rather robust, seizure de-
tection ability with our data, as also found by the De Clercq group, “At the start of the
epileptic seizure the similarity measure suddenly dropped”[86]. Although, relative to other
detection methods, DSI is rather computationally intensive. In addition, comparing test
windows with a reference window more than 1 hour away shows the dynamics are quite
uncorrelated. Rather than showing seizure anticipation this clearly shows that the EEG is
not stationary. As suggested by Le Van Quyen et al. 1999 [44], perhaps DSI can be used
as an indicator of which periods the EEG can be considered quasi-stationary for analysis.
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Measures of Synchronisation

Linear measures of synchronisation were discussed in Section 2.3.1, however non-linear
synchronisation measures are also available. From a dynamical systems viewpoint this
synchronisation in the brain can be considered as the synchronisation of coupled non-
linear sub-systems from different brain regions.

While some preliminary work has been conducted in the application of non-linear
measures of synchronisation or generalised synchronisation to the EEG [87, 88], to the
authors knowledge no seizure prediction or anticipation algorithms have been published
using these methods. However non-linear synchronisation analysis has been applied to
the EEG in an effort to locate the seizure focus and also to investigate synchronisation
between different brain regions. In [88] a measure of nonlinear mutual predictability was
proposed to localise the seizure focus. This measure was based on the detection of the
interdependence between delay reconstructed dynamics from two brain regions via inves-
tigating if short term predictions of trajectories from one system can be improved with
information from the other system. In [87] a measure of synchronisation likelihood was
employed. This synchronisation between reconstructed dynamics from two electrodes was
computed as the likelihood that Yj will be close to Yi given that Xj is close to Xi, where Y
and X are the attractors resulting from a reconstruction of EEG data from two different
electrodes.

A Note on Normalisation

Surprisingly, a major consideration, that seems to be absent from the reviewed literature,
is a discussion of the nature of the EEG data. Dynamical systems measures would benefit
greatly from normalisation of the EEG data prior to processing, as highlighted throughout
this literary review and therefore it is the current practice within our group to normalise
[28]. Normalisation could take the following form: for each processed segment, the mean
should be removed and the data should be normalised by the root mean squared (RMS)
value of that segment. The signal to be processed s(i) should be:

s(i) =
xzm(i)√

1
N

∑N
i=1 x

2
zm(i)

, (2.4.23)
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where

xzm(i) = x(i)− 1
N

N∑
i=1

x(i), (2.4.24)

where x is the raw EEG signal, xzm is the zero-mean (mean removed) signal, and N is the
number of data points in the segment to be processed. The removal of the mean can be
assumed to have no effect on the information content of the data since the mean or DC
value is meaningless when the data has been hardware DC filtered during the acquisition
stage. Additionally, the data represent voltages; there is no meaning that can be attached
to a DC voltage in the context of brain dynamics.

2.5 Conclusions on Seizure Prediction Algorithms

The overriding conclusion resulting from the literature, is that, seizure prediction remains
unsolved. Throughout the review it was found that initial results promising a prediction
algorithm failed to be replicated on other datasets, and are therefore unsuited for clinical
applications. Given the variety of epilepsy etiologies and clinical manifestations, it would
be wise to expect that a range of patient-specific algorithms could be required, with each
patient suiting a particular method from a database of possible algorithm choices. How-
ever, such a patient-specific approach has also yet to be achieved for a sufficiently large
patient cohort to allow for clinical use.

The algorithms reviewed in this chapter that did result in initial promising results,
but failed to reproduce such results on larger databases or when tested by other research
groups, were based on delay reconstruction /delay embedding. The limitations of de-
lay reconstruction (stationary, noiseless data recorded on a low-dimensional, autonomous
system) imply that the EEG is ultimately an unsuitable signal within the current re-
construction framework. This conclusion follows from the knowledge that the EEG is a
highly non-stationary data set, with high levels of measurement noise in EEG recordings.
In addition, the brain is not an autonomous system since our brains undoubtedly process
external inputs. Moreover, there exists no conclusive evidence that the brain (or indeed
epileptic events themselves) are low dimensional. These theoretical realisations correlate
with the lack of practical success in published methods based on delay reconstruction ap-
proaches. The conclusion is simple: to date no prediction algorithm that can work in a
clinical setting has been discovered. This conclusion is now shared by the international
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community [89].

2.6 The Current State of Seizure Prediction Internationally

The 3rd international workshop on Seizure Prediction in Epilepsy was held in Freiburg,
Germany in 2007 bringing together interdisciplinary teams of researchers to discuss the
progress made and future directions of the field of seizure prediction [90]. Attendance at
this meeting early in the research journey of this thesis provided an excellent opportunity
to assess the state of the field prior to formulating specific research questions. A follow
up 4th meeting of this group was held in Kansas, USA in 2009 where the research findings
detailed in later chapters were presented. At these international think-tanks there was
consensus on what issues have progressed and what remained to be achieved, see Section
2.6.1. Furthermore, these meetings showed marked shift in research focus from the 1995-
2005 decade of time-series analysis of EEG for clinical prediction applications as discussed
in this Chapter thus far. These new directions are discussed in Section 2.6.2.

2.6.1 Issues Solved and Outstanding

Solved: The Statistics of Seizure Prediction

There has been a successful focus on statistical evaluation of seizure prediction results.
The approaches of Schelter et al. [91], based on an analytical random predictor and those
of Andrzejak et al. [92], based on numerical monte-carlo simulation with seizure time
surragates, have been strongly adopted by the seizure prediction community to evaluate
existing methods and as a minimum criteria for the evaluation of future algorithms. Under
these frameworks, all the aforementioned approaches to EEG signal analysis, both linear
and non-linear, have failed to reliably predict seizures better than a random predictor [89].
Therefore, it is the conclusion of the international seizure prediction community that, to
date, “it has not been possible to report a successful prospective prediction of epileptic
seizures including a sound statistical analysis” [90, Ch 2].
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Solved: Data

Control data, in the form of lengthy inter-ictal recordings, is needed to ensure a true indi-
cation of specificity and false positive rate. Progress has been made with the compilation
of two large collaborative databases: (1) A European Union funded project, Epilepsiae (2)
An American project co-ordinated by the University of Pennsylvania.

Outstanding: Is Epilepsy Predictable?

Testing of the hypothesis “Is epilepsy predictable?” remains inconclusive. Although engi-
neering analysis measures have claimed to be able to find pre-ictal indicators, such predic-
tions/anticipations are questionable in that they failed to be replicated on large databases
and to stand up to statistical scrutiny. The other argument put forward for the existence
of a pre-ictal period at the beginning of this chapter was that, clinically, prodromal symp-
toms exist for some patients. A complementary question to “Is epilepsy predictable?”, is
“Does a pre-ictal period exist?”. Of particular interest is the time window over which a
pre-ictal period may exist. A suitable order of pre-ictal time period is currently undecided
in the field, with engineering analyses in the reviewed literature claiming to find pre-ictal
periods from minutes [43] to hours [41].

A physiologically motivated indication of pre-ictal time window would be particu-
larly useful to estimate a ball-park pre-ictal time window that future prediction techniques
should focus on. To estimate such a time window from a physiological point of view, data
from input-driven epilepsy could be employed. An example of input driven epilepsy is
photosensitive epilepsy, where seizures are triggered by visual light stimuli. The time de-
lay between stimuli and seizure onset could be considered to be a pre-ictal time window,
for a least some types of epilepsy. Therefore the pre-ictal stage could be expected to be
quite short, in which case, early seizure detection may be just as useful as prediction,
particularly if a rapid seizure-stopping intervention method can be found.

In a general sense it is difficult to make meaningful inferences regarding the na-
ture of epilepsy between patients. As discussed in Section 1.2, epilepsy is the manifesting
symptom of many underlying brain malfunctions. Patients with input driven epilepsy are
very likely to have entirely different seizure pre-ictal time frames (should a pre-ictal period
exist) to those with partial epilepsy or generalised absence seizures. It follows that for
seizure prediction, a patient-specific predictor is most likely to find success. Therefore the
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question of whether epilepsy is predictable can be split into these two issues: predictability
that is independent of the patient? (no); predictability that does relate to a specific pa-
tient? (perhaps). This thesis will examine the latter case, where a specific model is known.

2.6.2 Current Directions

There has been marked decline in EEG timeseries analysis for seizure prediction reported
in the recent literature owing to the lack of success in this pursuit. Instead, the focus
of established seizure prediction research hubs has shifted towards (1) Epileptogenesis,
the physiological understanding of seizure generation through modelling studies and (2)
Intervention methods for seizure abatement.

Understanding Seizures

There is currently a flurry of activity in computational modelling of the neurological net-
works involved in epilepsy based on both anatomical and electrical data from animal
models.

Lopes da Silva et al. have developed multiple dynamical model theories based on
the assumption of attractor existence and transitions between seizure/normal attractor
based on inputs [90, Ch 7]. They have shown that absence type seizures can be modelled
by a thalmo-cortical computational model which exhibits bifurcating behaviour where the
“jump” from one attractor to the other (normal to seizure activity) occurs due to stochas-
tic fluctuation of any input (rather than tweaking of model parameters). This would imply
these seizures are unpredictable and may be more suited to early detection strategies. In
contrast, the same group investigated hippocampal spiking in brain slices. When applying
probe stimuli to these brain slices, they found increased phase clustering behaviour in the
gamma band (> 40Hz) when seizures subsequently occurred. This phenomenon was best
modelled with a gradual transition to seizure state, perhaps due to slow parametric shifts
caused by inputs. This model would be suited to prediction, however, in discussions at
the workshop Lopes da Silva indicated that perhaps the preictal state existence was due
only to the microscopic scale.

There were also several other studies analysing brain electrodynamics on a micro-
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scopic scale probing into seizure genesis. Trevelyan investigated the existence of intrinsic
cortical mechanisms which oppose epileptiform activity. He found that high frequency
neuron firing (100-300Hz) may trigger inhibition to prevent recruitment of seizure activity
[90, Ch 11]. This led to passionately argued debate amongst workshop participants on
whether high frequency oscillations were indeed (1) a “last ditch” attempt to stop seizure
spread, or whether they were (2) part of common epileptiform activity and (3) not rou-
tinely observed to increase or decrease prior to seizure onset. On a separate interesting
topic, Carney et al. found, using Granger Causality, that synchronisation during seizures
in rat brains was the result of highly directional interactions between cortical regions and
deep brain structures including the hippocampus [90, Ch 4].

It is hoped that a greater understanding of seizure phenomenon will provide insights
enabling seizure prediction.

Seizure Abatement

While the ability to have just a simple warning prior to seizure onset would be a dramatic
improvement for epilepsy sufferers, ideally successful prediction would combine with a pre-
vention technique. Proposals for intervention include electrical stimulation, cooling and
UV light.

Electrical stimulation to terminate seizure activity is an area of current active re-
search. Vagus Nerve Stimulation (VNS), the most widespread technique, employs regular
pulsed stimulation to a nerve located in the neck in a continuous fashion independent of
any prediction warning. After widespread study, the effectiveness of VNS remains unclear.
Some patients report a 50% reduction of seizure frequency, however, similar rates were
found as a placebo effect with trials where implanted VNS devices were never switched
on to stimulate. What has been invaluable however, is the safety record exhibition over
20 years with over 50,000 Cyberonics R©VNS devices implanted worldwide [90, Ch 22].
Central nervous system side effects, associated with anti-epileptic drugs, have not been
found. Reported side effects are limited to mild or moderate hoarseness, coughing and
shortness of breath [90, Ch 22]. Chronic deep brain stimulation, in structures such as
the hippocampus, is an alternative stimulation option. Boon et al. report that initial
hippocampal stimulation trials with 10 patients, showed percentage reductions in seizure
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frequency over 1 year of 100% (1 patient), 90% (1 patient), 50% (5 patients), 30%-40% (2
patients) with no benefit to the single remaining patient [93]. These chronic stimulation
strategies may reduce numbers of seizures for isolated patients but ultimately full seizure
control was not achieved. Electrical stimulation that holds the promise of control is re-
sponsive in nature. Trials with a Neuropace R©responsive neuro-stimulation (RNS) device,
which stimulates only after seizure warnings, are currently ongoing [90, Ch 23].

Rothman has proposed fascinating alternatives to electrical stimulation using either
cooling or light therapy to quickly terminate seizure activity in cortical tissue [90, Ch
21]. Localised cooling of brain tissue has been shown to have anti-epileptic effects and
UV light induces robust GABAergic currents (these are neurotransmitter currents that
inhibit electrical activity). Modern thermoelectric devices such as Peltier coolers could
be a candidate for a rapid response implantable seizure preventions system. Light could
be administered through an implantable device with small UV LEDs. Light and cooling
therapy have potential for advantage over electrical stimulation in terms of side-effect min-
imisation as cooling and light rely on mechanisms not intrinsic to normal brain activity
and they may be more localised interventions.

Is Prediction Strictly Necessary?

The recent innovations in seizure abatement methods have rapid response times in com-
parison to the traditionally slow-acting anti-epileptic drugs. In the light of this, seizure
prediction, that is warning of imminent seizure prior to its onset, may not be a necessary
condition for effective treatment. Early onset seizure detection may suffice. The advantage
of detection of epileptic seizures over prediction is that it has had much more success in
the literature, and it is well known that medical doctors can detect seizures from the EEG
record.

Early seizure detection algorithms from the 1980s-1990s have good detection success
rates of 70-80% however false alarms are too frequent for therapeutic intervention [94, 95].
More recent detectors have had near perfect detection rates of 94% with a reasonable false
positive rate of 0.7 FP/hr [96] and 100% detection rate with false positives under 0.175
FP/hr [97]. Until recently, detection was pursued primarily to retrospectively automate
clinical diagnostics.
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For prospective use of detection to be useful in an epilepsy intervention solution,
there would be an additional requirement for early onset detection. That is, there would
need to be at most a small latency time between seizure onset and subsequent detection.
Ideally, we would require intervention prior to the clinical manifestation of a seizure in
patients so a maximum detection latency less than 0.5s would be desirable. Published de-
tection algorithms, where latency figures are specified, have rather more lengthy average
detection delays following seizure onset of 5s [97] to 9.6s [98].

In conclusion, current detection algorithms are too slow to enable effective inter-
vention. However, for the ultimate goal of an implantable closed loop seizure prevention
device, either prediction or early detection (prior to clinical manifestation) are equally
suitable.

In this thesis we explore models of coupled oscillators for the epileptic brain. Here,
notions of prediction of forthcoming epileptic events, as modelled by synchronous network
behaviour, are taken to be functionally synonymous with early detection of very localised
synchrony prior to large scale synchrony spread.

Obstacles to Seizure Prediction/ Early Onset Detection

On current obstacles to advancement of seizure prediction, discussion among the partic-
ipants at the 2007 seizure prediction workshop led to “The first concern, stated bluntly,
is that it is not necessarily possible to predict future states of a dynamical system on the
basis of a limited amount of measurements” [90, Ch. 26]. The limited measurement here
speaks of intracranical EEG. There are concerns that intracranial EEG provides informa-
tion only at a single-scale, while the generation of seizures (the phenomenon we wish to
predict) is most likely a multi-scale phenomenom. The seizure prediction community is
also concerned that even multiscale EEG recordings would still be based on one modality -
could more information be gleaned from multiple modalities such as neurochemicals, ionic
currents, PH and temperature.

This thesis seeks to examine the limits of our ability to predict seizures with these
thoughts in mind.
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2.7 Thesis Contributions

• Mathematical evidence, using the notion of observability, that current passive EEG
acquisition is an inherently unsuitable measurement for epileptic seizure prediction
in that it contains insufficient information to track seizure generation.

– Evidence is provided from three separate angles:

1. Deterministic linear systems theory (Linear observability), Chapter 5.

2. Stochastic linear system theory (Kalman filtering), Chapter 6

3. Non-linear system theory (Entropy of measure-preserving maps), Chapter 6

– This provides theoretical explanation for 35 years of unsuccessful research in
the field of epileptic seizure prediction.

• Demonstrated via simulation that active EEG acquisition, using brain stimulation
techniques, offers a viable alternative for developing clinical seizure prediction tech-
nology in the near future, Chapter 7.

2.7.1 Selected Publication List

Invited Book Chapter

E. O’Sullivan-Greene, L. Kuhlmann, A. Varsavsky, D. B. Grayden, A. N. Burkitt and I.
M. Y. Mareels. Seizure Prediction and Observability of EEG Sources. In Epilepsy:
The Intersection of Neurosciences, Biology, Mathematics, Engineering and Physics,
Ed. Osorio, I. and Zaveri, H. and Frei, M. G. and Arthurs, S. CRC Press, 2011.

Corresponding thesis Chapter: 5

Fully Refereed Conference Papers

E. O’Sullivan-Greene, I. Mareels, A. Burkitt and L. Kuhlmann. Observability issues
in networked clocks with applications to epilepsy. Proceedings of the 48th IEEE
Conference on Decision and Control (IEEE CDC), p 3527–3532, 2009.

Corresponding thesis Chapter: 5
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E. O’Sullivan-Greene, I. Mareels, D. Freestone, L. Kuhlmann and A. Burkitt. A paradigm
for epileptic seizure prediction using a coupled oscillator model of the brain. Pro-
ceedings of the 31st IEEE Engineering in Medicine and Biology Conference (IEEE
EMBC), p 6428–6431, 2009.

Corresponding thesis Chapter: 7



Chapter 3

Information in Intracranial EEG

Intracranial EEG, avoiding the dispersion effects of the skull, offers the best information
about brain activity. This Chapter explores intracranical EEG from a time-frequency
perspective, leading to a question of how much of the information we observe relates to
the true underlying dynamics. This in turn leads to a question of observability which is
further explored in Chapter 5.

3.1 Time & Frequency Information in Intracranial EEG

The EEG appears to exhibit oscillations in the range of 0-50Hz with a spectrum that varies
over time. In an effort to determine the rate at which this spectral information changes
over time and if it may have a use in extracting seizure prediction information from the
brain system, various time & frequency analyses are considered. Techniques such as the
spectrogram, the periodogram, the Wigner-Ville spectrum and the wavelet scalogram are
trialled.

The biological origin of these EEG oscillations is of importance in determining what
sort of information may be useful for seizure prediction. The electric field that is measured
during the EEG recording, at the cortex level, is the “fluctuating, volume conducted elec-
trical field generated by synaptic currents in large numbers of synchronously active cortical
pyramid neurons” [20]. However, the origin of the spectral content in these fluctuating
EEG fields, is the subject of much debate and speculation within the community of neu-
rologists and bio-scientists [99].

54
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One theory for the origin of these frequencies in this debate is a pacemaker the-
ory. Pacemaker theories are those which centre on the idea that cortical or sub-cortical
populations of neurons modulate the activity of populations of cortical neurons. In this
case, it is thought that these oscillations or rhythms can be attributed to the feedback
loops that exist between the cortex and the thalamus, thalamocortical feedback, and the
feedback loops that exists between different parts of the cortex itself, cortiocortical feed-
back [20]. This attribution is due to the inverse linkage between the time delays that
exist (due the different distances travelled by signals) along these feedback routes and the
characteristic frequencies that appear in the EEG [1, Ch. 11]. Therefore, the association
between certain frequencies in the EEG and certain cognitive states could be directly due
to the specific feedback loops engaged in that cognitive task. A computational model,
developed by Robinson et al. [65] shows that thalamo-cortical feedback could result in the
appearance of the typical “alpha” frequency (8-12Hz) from populations of cortical neurons.

However, in contrast to the pacemaker theory, it has also been shown that the
frequency ranges in the EEG correspond to the resonance frequencies that would be sup-
ported by a sphere of size similar to the average skull [1, Ch. 3].

3.2 Spectrogram of EEG

This section examines the spectral content of EEG from patient 2 of the Freiburg data set
through the use of classic Fourier decomposition:

|X(f)| = 1
N

∣∣∣∣∣
N−1∑
n=0

x(n)e−j2πfn
∣∣∣∣∣ , (3.2.1)

where X(f) is the Fourier transform of the signal x at frequency f . Only the magnitude
information is considered here. Changes in the Fourier decomposition over time are vi-
sualised through use of the spectrogram. A spectrogram shows the magnitude of several
Fourier decompositions at different times in the EEG recording with the magnitude or
power of the frequencies shown by colour coding.

An example of EEG from this patient is shown in Figure 3.1. This EEG segment
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is for channel 5 of an intracranial grid placed over the temporal lobe and has been pre-
processed using a common average montage (to remove common mode mains artefact).
The segment is 47 seconds long and contains a 21 second seizure (between seconds 15 to
36). Prior to the seizure the patient was at rest. Details of the montage choice and the
location of the electrodes in question are discussed in Appendix A.1.

Initially it was expected that the spectrogram of EEG would exhibit some continu-
ity across frequency bands, however, it appears that the frequency content of the EEG is
highly “discontinuous” in time. A spectrogram of the EEG segment in Figure 3.1, com-
puted using non-overlapping windows of 1 second, is shown in Figure 3.3. The power in a
particular frequency band is colour coded as shown in Figure 3.2, with red denoting high
power and blue indicating low power. It is “discontinuous” in the sense that the frequency
content is dramatically different from one second to the next. To obtain any continuity of
frequency power across time, a window with a 90% overlap must be employed as shown
in Figure 3.4. A window overlap of 90% for a one second window corresponds to a time
update of 100ms for each Fourier decomposition, or equivalently a sliding window update
of just 51 new sample points (this EEG has a sampling frequency of 512 Hz). Such a small
number of new samples means that a 90% overlapping window is creating visual continuity
in a very artificial sense. The necessity of such a large overlap to obtain a spectrogram
signal that is reasonably continuous over time leads to the conclusion that the spectro-
gram of the EEG is particularly non-continuous over time, consistent with an active brain.

Continuity of frequency content over shorter time windows is also considered, to
show that, for higher frequencies, the spectrogram is certainly discontinuous and that the
visual discontinuity is not a by-product of under-sampling in the case of the one second
windowing used earlier. For example a time window of 0.2 sec can allow examination of
frequency content greater than 10Hz. The spectrogram for this 0.2 sec window size is
shown in Figure 3.5, with a zoomed in image showing the first 10 seconds in Figure 3.6.
Clearly the frequency content remains discontinuous over time even in the 10-40Hz band.
The strong 45-50Hz frequency content is due to the strong mains pick up artefact present
in this dataset. Although the presence of this artefact was reduced though a common
average reference, some 50Hz artefact does remain. See Appendix A.1 for a comparison
of various montages for this data segment.

The analysis in this section shows that the frequency content of the EEG, extracted
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Figure 3.2: Colour coding used in all the time-frequency information plots of this chapter
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Figure 3.3: Spectrogram of the EEG segment in Figure 3.1, computed in non-overlapping
windows of 1 second
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Figure 3.4: Spectrogram of the EEG segment in Figure 3.1, computed with 90% overlap-
ping windows of 1 second
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Figure 3.5: Spectrogram of the EEG segment in Figure 3.1, computed in non-overlapping
windows of 0.2 seconds
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Figure 3.6: 1st 10 seconds of the Spectrogram in Figure 3.5, computed in non-overlapping
windows of 0.2 seconds
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with a spectrogram, is a rather nebulous concept with which to track information about
the underlying system over time. The spectrogram plots in this section almost appear to
be randomly generated at each time slice, therefore providing no useful clues about the
evolution of the underlying system over time. In principal, no information is lost in the
Fourier Transform (the inverse transform of Fourier magnitude & phase will give us an
exact replica of the original signal). Note that the plots here concentrate on the amplitude
information leaving the phase information out. Although the Fourier transform does give
us all the available information, in effect the information is too muddled to be informative.
The following section will look at some other commonly used time/frequency portraits of
signals to see if a more suitable representation aligned with time-varying dynamics may
be found.

3.3 Periodogram

The periodogram of a signal is computed as the Fourier transform of the estimate of
autocorrelation of the signal. It is effectively a method used for estimating the power
spectrum (spectrogram) of a random process. The Periodogram for a signal x at frequency
f is

P̂per(f) =
N−1∑

m=−(N−1)

r̂xxe
−j2πfm. (3.3.1)

r̂xx is the autocorrelation of the signal x,

r̂xx(k) =
1
N

N−1−|k|∑
n=0

x∗(n)x(n+ k), |k| = 0, 1, 2, ..., N − 1. (3.3.2)

An alternative and equivalent form of the magnitude component of the periodogram equa-
tion is:

P̂per(f) =
1
N

∣∣∣∣∣
N−1∑
n=0

x(n)e−j2πfn
∣∣∣∣∣
2

=
1
N
|X(f)|2, (3.3.3)

where X(f) is the Fourier transform of the signal x. As an alternative estimate of the spec-
trogram it would be expected that the periodogram would exhibit similar non-continuous
frequency content over time.

Figures 3.7 to 3.10 show the periodogram results for the EEG segment in Figure
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3.1. They shown similar discontinuity of frequency content across seizures to that of the
spectrogram in Section 3.2 as expected. Note that the visual continuity in Figure 3.8 is
artificially created by using a large overlap between consecutive windows as discussed in
Section 3.2.
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Figure 3.7: Periodogram of the EEG segment in Figure 3.1, computed in non-overlapping
windows of 1 second

3.4 Wigner-Ville Distribution

The Wigner-Ville Distribution (or “Wigner-Ville Spectrum”) is a time frequency portrait
tool that allows a time dependent frequency estimate. This spectrum is computed accord-
ing to:

Wx(t, f) =
∫ ∞
−∞

x(t+
τ

2
)x∗(t− τ

2
)e−j2πfτdτ, (3.4.1)

for a signal x at time t and frequency f . The advantage of this distribution is that it offers
a combined temporal and frequency representation (without windowing), however, this is
at the expense of the introduction of “half-frequency” artefacts.
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Figure 3.8: Periodogram of the EEG segment in Figure 3.1, computed with 90% overlap-
ping windows of 1 second
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Figure 3.9: Periodogram of the EEG segment in Figure 3.1, computed in non-overlapping
windows of 0.2 seconds
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Figure 3.10: 1st 10 seconds of the Periodogram in Figure 3.9, computed in non-overlapping
windows of 0.2 seconds

A Wigner-Ville distribution for the EEG segment in Figure 3.1 is shown in Figure
3.11. The problem of the half frequency artefact is clear at 25 Hz. While the strong power
in the 50Hz band is a true signal - the 50Hz mains artefact picked up during recording
- the power at half that frequency (25Hz) is an artefact of the Wigner-Ville spectrum
itself. To clearly illustrate this half frequency problem, a spectrogram and a Wigner-Ville
spectrum are shown for a chirp signal in Figure 3.12. The advantage of the Wigner-Ville
distribution is also evident in this chirp example with much improved “time” resolution
of frequency (narrow high-power line) over the spectrogram.

This problem of half frequency artefacts makes it difficult to determine true EEG
frequencies from the Wigner-Ville Distribution. Furthermore, the Wigner-Ville distribu-
tion of EEG is similar to the other time frequency methods investigated in that it fails to
show frequency changes smoothly over time. Therefore the conclusion is that the Wigner-
Ville method is also not well suited to tracking frequency information over time in the EEG.
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Figure 3.11: Wigner-Ville spectrum of the EEG segment in Figure 3.1
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Figure 3.12: Spectrogram and Wigner-Ville Spectrum of a Chirp signal
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3.5 Wavelet Transform

Wavelet transforms are similar to Wigner-Ville decompositions in that they combine fre-
quency and temporal aspects in the one transform. Wavelets allow decomposition of a
function into different frequency components (or scales), with a different temporal reso-
lution for each scale that is suited to that frequency. For the analysis in this section a
continuous wavelet transform was chosen:

T (s, τ) =
1√
s

∫ inf

− inf
x(t)ψ∗(

t− τ
s

)dt, (3.5.1)

where τ is the time translation and s is the time scale. The translation maps the time
position in the timeseries x(t) that is under analysis, and the scale can be mapped to a
particular frequency for a given wavelet ψ. In this analysis the wavelet type chosen was
the morlet wavelet:

φ(t) = e−t
2

cos(5t). (3.5.2)

The resulting wavelet spectrogram for the EEG segment in Figure 3.1 is shown in Figure
3.13.

Translation: Time (sec)

S
c
a

le
: 

F
re

q
u

e
n

c
y
 (

H
z
)

Wavelet Spectrogram

 

 

0 5 10 15 20 25 30 35 40 45

50

40

25

30

25

20

15

10

5

0

Figure 3.13: Wavelet spectrogram of the EEG segment in Figure 3.1
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What is clear from the high temporal resolution of the wavelet spectrum, in con-
trast to the earlier spectra, is that high-power frequency content is sparsely represented
over time. In Figure 3.1, there are just four main frequency events, (i) low frequency
content (< 5Hz) at time 0 to 5 seconds, (ii) activity in the broad frequency band 35-50Hz
at time 16 seconds at the seizure onset, (iii) further low frequency content ( < 5Hz) at
time 25 to 35 seconds during the seizure activity and (iv) further low frequency content
(< 5Hz) at time 43 to 47 seconds. Similar to the Wigner-Ville spectrum, for the Morlet
continuous wavelet there is again no apparent smooth transition in the power level of a
given frequency or frequency band across time. Furthermore, the high temporal reso-
lution but poorer frequency resolution in the higher frequency ranges lead to very broad
band filters that fail to clearly show frequency-specific strong high frequencies in the EEG.

Other wavelets, including the continuous Mexican hat, the digital Haar wavelet and
Daubachies 8 wavelet, were trialled with similar outcomes to the Morlet wavelet. In ad-
dition, various windowing segment lengths were experimented. The results in all cases
generated similar plots to that of the Morlet wavelet, therefore only the Morlet results are
shown in the figures here.

3.6 Conclusion

To investigate what features of EEG data may be useful in a seizure prediction algorithm
various time & frequency analyses tools have been considered. These analyses: Spec-
trograms, Periodograms, Wigner-Ville transforms and wavelet transforms, all use linear
transforms to pick out frequency and/or time-varying components of the EEG signal over
time. Although only results of one 47 second data segment are illustrated in this chapter,
the results presented here were found to be repeated for other EEG segments and across
patients. The main result of this investigation is that there is no clear continuity in time
that is visually evident using these measures, on any timescale. This is most likely due
to the fact that these linear measures cannot extract or track underlying brain activity
from the EEG signal. This implies that the manner in which the EEG signal changes is
not regular enough (periodic enough) to be tracked by such linear measures. This is not
surprising when one considers how highly complex the brain system is - an EEG recording
of this brain system is a representation of the spatially & temporally averaged fluctuations
of the electrical activity of a large tissue area in the order 100µm [1, Ch. 4]. Given this
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tissue area contains millions of neurons it is undoubtedly complex. It is therefore to be
expected that the EEG signal is itself rapidly changing over time, most likely in a non-
periodic manner, too irregular for traditional spectral methods.

The analysis in this chapter was undertaken to find a more suitable time-frequency
representation to track the state of the underlying brain system over time. The lack of
continuity in the results, as extracted using classic time-frequency analysis tools, leads
to a conclusion that the “frequency” information as evident in the EEG means little and
reveals little about underlining feedback loops in the brain. Certainly, even if these feed-
back loops existed in the brain system, these classical tools fail to adequately track the
time-evolution of the loop activities.

These observations lead to the fundamental question: What can be inferred from
the EEG signal about the underlying brain dynamics? Is it possible that some of the
observed results can be explained because the EEG signal is simply too poor to represent
the intricate transitions in the underlying brain activity? This raises the fundamental
question of observability. It is quite possible that there is no visible continuity in EEG
frequency information because the EEG allows us to only observe a small fraction of the
underlying dynamics.



Chapter 4

A Coupled Oscillator Model for

Synchronisation in EEG

It follows from Chapter 2 that decades of research have failed to reliably predict epileptic
seizures. In light of this failure the work of this thesis is to investigate what we can expect
to achieve toward seizure prediction through analysis of EEG signals. Chapter 3 indicates
fundamental complexities that are not easily unravelled by classical signal processing tools.
Model based signal analysis may be a better approach. In this chapter we explore suitable
model paradigms to address such an investigation.

4.1 Review of Existing Models

There is a plethora of existing models for the epileptic brain that offer fascinating insights
into how the brain may transition to a seizure state. We are most interested here in
the mesoscopic level of model which bridges the microscopic neuron level dynamics and
macroscopic brain dynamics which generate large scale EEG measures. These mesoscopic
models are phenomenological models that describe the local field potentials in subsections
of brain matter.

4.1.1 Microscopic Models

Microscopic models characterise small-scale brain activity, typically modelling neuron fir-
ing at the level of ion channels. Hodgkin and Huxley’s 1952 equations model the membrane

68
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potential, V (t), as a capacitive circuit with currents Ii based on various ion concentrations
[100].

C
dV (t)
dt

= −
∑
i

Ii. (4.1.1)

Neurons generate an action potential based on the membrane potential, V (t) (refer to
Figure 1.4 in Chapter 1).

This model provided detailed dynamics of individual neurons and small networks of
neurons, allowing the investigation of ionic concentration imbalances that lead to localised
epileptiform firing behaviour. Additionally, spatial dynamics can be incorporated using
multi-compartmental models to account for the branching structure of individual neurons
(NEURON software has been developed for this). Attempts to extrapolate Hodgkin and
Huxley dynamics & compartmental models to large scale networks quickly become com-
putationally intractable.

The integrate and fire (IF) formalism was developed to enable tractable modelling
of neural networks on a neuron population level rather than individual level. The IF
model considers spatially homogeneous populations of neurons. Rather than considering
the membrane potential V (t) of each neuron, instead for computational tractability we
consider the probability density of the membrane potential P (V (t)) and consider popu-
lation level parameters such as the mean spiking rate of action potentials in the network.
IF models exhibit behaviour that is consistent with in-vivo recordings of neural spiking
activity.

For epilepsy, however, it is as yet unclear how the localised activity, modelled by IF
networks, is related to large scale epileptic seizures [28]. An attempt to bridge between the
microscopic neuron level and macroscopic EEG activity is made with mesoscopic mean
field models.
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4.1.2 Mesoscopic Models

Mesoscopic models characterising medium-scale brain activity, typically modelling sub-
structures in the brain, for example a cortical column and the local field potentials that
they generate. By contrast, macroscopic models, characterising large-scale brain activity
typically model the intracranial EEG signals and generally involve interconnecting meso-
scopic models of various brain substructures.

Mesoscopic scale modelling attempts to bridge neuron level activity with large-scale
EEG using the mean field formalism adopted from statistical physics. The pioneering
Wilson-Cowan equations [101] consider two populations of neurons: excitatory and in-
hibitory. This model reduces the number of equations to describe many thousands of
neurons to just two: one for the excitatory population and one for the inhibitory popu-
lation. The spatio-temporal mean field is used to describe the mass activity of inhibitory
and excitatory sub-populations at any given time. Under the assumption that local field
potential recordings are proportional to the dendritic fields of the excitatory neurons in the
cortex, the model can be used to infer the brain state that may generate in-vivo recordings.
The use of the word may is important here as data-fitting to these models is an inverse
problem with many potential solutions. With any oscillatory model of N th order, any
recorded signal with N/2 frequencies can be accurately generated.

The Wilson and Cowan model has spawned many extensions. Jansen & Rit consid-
ered the effects of coupled cortical columns, where each individual column was Wilson-
Cowan based, to find that alpha and beta EEG-like activity resulted [102]. Wendling
et. al. used a Wilson-Cowan type model to investigate mesial temporal lobe epilepsy
(MTLE) in the hippocampus [103, 104, 105]. A three population model was employed.
Two populations of inhibitory neurons were interconnected with (the soma and dendrites
respectively of) a single excitatory population. The disruption to the regular balanced
ratio of excitatory to inhibitory inputs to the model resulting in localised epileptiform
activity similar to that of experimental data.

Suffczynski et. al. developed a similar model [106], fitting Wilson-Cowan style
model parameters to absence seizure data. This work also built on the earlier work by the
same group where Lopes Da Silva et. al. used a mean field approach to neuron modelling
to replicate the common “alpha” rhythm in local field potentials [107]. The interesting
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extension of Suffczynski to these earlier works was the incorporation of the corticothalamic
relay network with four sub-populations of neurons: inhibitory and excitatory populations
in both the cortex and the thalamus. The Robinson model [108, 109, 65] similarly consid-
ered the dynamics between thalamus and cortical brain regions for epilepsy. This model
can replicate many of the common frequencies of EEG (alpha, delta, theta and beta),
absence epilepsies and seizure activation by input stimuli.

The beauty of these mean field models is the reduction in computational complexity
they offer. They can be compactly simulated in state space providing us with a neat map-
ping where various sections of the state-space correspond to distinct brain activities such
as alpha activity and seizure activity. The transitions across various regions on route to a
seizure are of particular interest. Unfortunately the simplicity of these models is two-fold,
in that, it is difficult to infer the exact underlying dynamics that generate a seizure from
such reduced models. In effect, mean field models are somewhat agnostic regarding the
exact underlying dynamics at both the ionic level and the network structure level. While
these models provide many interesting theories of how seizures may occur, certainly these
models are not yet at the level of sophistication to allow us to fit EEG data and accurately
access the true brain state. The future development in this area has great potential for
understanding of epilepsy in the brain, but currently these models are not suitable for
seizure prediction.

4.2 Proposing a Generic Coupled Oscillator Model

There is much speculation about the phenomenon of seizure generation and the mech-
anisms of brain dynamics. The overriding conclusion, given the current state of this
research, is that while we have many interesting theories, the dynamics of epilepsy are
at this stage, unresolved. We do however observe in the time domain, across multiple
channels, some degree of synchronisation associated with seizures.

Indeed, much of the seizure detection and prediction work to date (discussed in
Chapter 2) has involved applying linear and non-linear techniques to both scalp and in-
tracranial EEG data in attempts to track synchrony across brain regions. Linear methods
have included cross-correlation [13] and phase analysis based on the Hilbert transform
[58, 59]. Several non-linear techniques have utilised the Takens/Aeyels Embedding Theo-
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rem [110] in an effort to reconstruct the state space, with “low” embedding dimensions of
7-16. Measures, including correlation dimension [43] and Lyapunov exponents [77], were
applied to these reconstructed state-spaces to investigate if there were a predictable transi-
tion to a lower-dimensional (more synchronised) brain state. All the approaches to seizure
prediction have failed to reliably predict seizures better than a random predictor [89].
Although seizure detection algorithms have been successfully implemented [96], the very
early detection required to allow sufficient warning time prior to clinical effects of seizures
is yet to be achieved. In light of this failure to find either a prediction or early-onset
detection method for EEG, we investigate the extent to which it is possible to observe
brain synchrony from the EEG.

We present a “synthetic” brain-like situation, fully under our control, within which
we can investigate the limits of a brain like EEG recording. While the exact nature of how
this synchronisation may arise or evolve is unknown, we do know how the EEG measure-
ment observations are made. Therefore, here we propose a top-down approach to EEG
modelling using a coupled oscillator model - this approach is centred on modelling the EEG
measurement rather than the specific underlying dynamics. It is important to highlight
that this it not a model which can tell us anything about the nature of epilepsy. Certainly,
the modelling efforts in brain dynamics discussed in Section 4.1 need to continue in order
to evolve our understanding of normal brain function, seizure generation and abatement.
This top down modelling approach is suited, however, to the specific task of investigating
what we may expect from the EEG measurement.

The phenomenon of synchronization in coupled oscillators has cultivated much re-
search interest. Mathematical modelling of such systems, in particular the Kuromoto
model [111], has provided fascinating insights into the ability of individual coupled oscilla-
tors to merge into collective behaviour without the need for a pacemaker. Synchronization
of coupled oscillators has been used to explain diverse natural phenomena from the inter-
action between brain oscillations and heartbeat [112] to the rhythmic activity of an ant
colony between populations inside and outside the nest [113].

Our biological object of interest is the brain. Mathematical modelling of small-scale
neuron to neuron interaction has shown coupled oscillator behaviour [114, Ch 5,6]. How-
ever, here our focus is on brain dynamics of a larger scale as measured by the oscillating
electric fields of the brain, the EEG. Our model abstracts the seizure prediction problem
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to the study of a simple network of second order oscillators with linear interconnection.
Such a model neglects the complexities of biologically realistic neuron-dynamics and in-
stead formulates the observability problem as a generic network of oscillators where an
EEG-like measurement is made.

To represent seizure dynamics in terms of synchronisation events, each oscillator in
the network represents a region of brain tissue that is oscillating at a certain frequency. As
the EEG is the weighted sum of oscillating potentials in the brain, the output in this model
is the weighted sum of many pendulum oscillations. This is quite a generic and scalable
model. On a microscopic scale, each pendulum represents only a small group of neurons
and the output would model depth electric potential recording from a micro-electrode (in
the order of 1µm). This model could equally apply right up to the global mesoscopic and
macroscopic scales, where each pendulum represents a large area of brain tissue. In these
cases, the output measure could model both scalp and intracranial EEG recorded from a
macro-electrode (in the order of 1mm [27, Ch38] and 0.8cm [27, Ch7] respectively).

Also available in the model is an input probe stimulus. The inclusion of an input
probe stimulus follows recent developments in epileptic seizure prediction that have fo-
cused on an active response model rather than the traditional passive manner of EEG
measurement [115]. The active response paradigm involves measuring the EEG following
an active stimulus (e.g. electric pulse) to a brain region.

A very similar coupled-oscillator model was described by Wright et al. in 1985 to
model state changes in the brain [116]. Their motivation for a generic model was that
the existing brain models of the time were constrained by “simplified neuronal relation-
ships and laws of interaction”, whose “ideas are difficult to put to critical test, and each
[model] necessarily ignores certain problems treated in the others”. Mathematical models
have developed considerably since this work, however, Wright’s comments still stand, in
that, these models are not yet at a level of sophistication suitable for parameter fitting to
EEG for the specific purpose of seizure prediction and it may follow from the analysis as
presented here in this thesis, that such models may never be rightfully linked to EEG alone.
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4.3 A Coupled Oscillator Model

EEG recordings from brain tissue are modelled as the output measurement from a system
of networked clocks. Each individual oscillator is modelled as a pendulum clock with the
oscillatory motion of the pendulum described as

ẍi + 2ζiωiẋi + ω2
i sin(xi) = Fi, i = 1 . . . N, (4.3.1)

where xi is the angular position of the ith pendulum, ζ is the damping parameter, ω is
the natural frequency of oscillation and F is the forcing term. F could take the form
sin(ωin,it) for each of any external inputs with input frequency ωin,i and

∑
j αij(xj − xi)

for coupling of the position state from other pendulums. αij denotes the coupling strength
between oscillators i and j.

The behaviour of coupled pendulum oscillators is quite fascinating. The first pen-
dulum clock was constructed by Christiaan Huygens in 1657. While experimenting to
find a clock suited to use in a maritime environment Huygens discovered “..an odd kind
of sympathy perceived by him in these watches [two pendulum clocks] suspended by the
side of each other” [117]. When two pendulums were suspended from the same table,
the pendulums became synchronised in antiphase. When the pendulums were disturbed,
the antiphase state was restored within a half-hour and persisted indefinitely. Huygens
deduced that the crucial interaction for this effect came from “imperceptible movements”
of the common frame supporting the two clocks. This was the 1st recorded synchronising
coupled oscillator system. The equations governing the dynamics of pendulum motion
came about after Huygens time and these imperceptible movements are modelled in the
coupling terms of Equation 4.3.1. Synchronisation for quite small “imperceptible” cou-
pling magnitudes occurs provided the initial frequencies are sufficiently close.

The pendulum equation in Equation 4.3.1 can be linearised to:

ẍi + 2ζiωiẋi + ωi
2xi = Fi, i = 1 . . . N, (4.3.2)

This linear system is a good approximation for small angles of oscillation. While the
linear system no longer has the capability to spontaneously synchronise, it still exhibits
clock behaviour, but more importantly allows investigation of the system with a range of
powerful linear systems tools.



4.3. A COUPLED OSCILLATOR MODEL 75

To convert the characteristic equation (Equation 7.1.1) into a state space format,
the states for clock system 1 can be labelled as x11 and x12 which are defined as fol-
lows: x11 = x1 and x12 = ẋ1. The time derivatives of the states are then ẋ11 = x12 and
ẋ12 = ẍ1 = −2ζ1ω1x12 − (ω2

1 + α12)x11 + α12x21 + sin(ωin,1t), where x21 is the 1st state of
system 2 and the forcing is comprised of one input at frequency ωin,1 and the difference
between the angles of oscillation of both clocks: Fi = sin(ωin,1t) + α12(x11 − x21).

The resulting state space model for an interacting system of two pendulums is ẋ =
Ax + Bu, where u is the input signal and the A and B matrices are as follows:

A =


0 1 0 0

−ω2
1 − α12 −2ζ1ω1 +α12 0

0 0 0 1
+α21 0 −ω2

2 − α21 −2ζ2ω2

 (4.3.3)

B =
[

1 0 1 0
]′
, (4.3.4)

u = sin(ωin,1t), (4.3.5)

where prime(′) denotes transpose.

This can be extended to a 2N state system, where there are N interconnected
pendulum clock subsystems as shown by the following A with a corresponding illustration
in Fig. 4.1:
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A =



0 1 0 0 · · · 0 0

−ω1 − α̃1k −2ζω1 α12 0 · · · α1N 0

0 0 0 1 · · · 0 0

α21 0 −ω2 − α̃2k −2ζω2 · · · α2N 0

0 0 0 0 · · · 0 0

α31 0 α32 0 · · · −α3N 0

0 0 0 0 · · · 0 0

α41 0 α42 0 · · · −α4N 0

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

0 0 0 0 · · · 0 1

αN1 0 αN2 0 · · · −ωN − α̃Nk −2ζωN


(4.3.6)

where α̃ik denotes
∑N

k=1 αik. Each subsystem is allowed to connect to all the others
and αij ≡ αji (symmetric coupling). Random interconnections can be constructed by
choosing αij ≥ 0 from a distribution of values.

The output state for a single recorded EEG channel can be described by y = Cx,

where

C =
[

0 −1 0 −1 . . . 0 −1
]
. (4.3.7)

This generic output vector Ci = [0,−1] is chosen together with Bi = [0, 1]′ such
that the transfer function, G(s) = Ci(sI − Ai)−1Bi, is normalised to 1 at DC for each
of the individual uncoupled sub-systems. Equation 4.3.7 is a measurement vector that
sums the velocity states of each sub-system equally, however the output can also be a
weighted combination. For example, the output may be a convex combination of the
angular acceleration states in the system,

C =
[

0 −δ1 0 −δ2 . . . 0 −δN
]
. (4.3.8)

where (δi ≥ 0,
∑

i δi = 1). δi ≥ 0 indicates the relative contribution clock i makes in
the “EEG” output signal.

4.4 Conclusion

The model introduced in this Chapter is a very simple behavioural description of EEG-
like signals. The underlying physiological mechanism governing the oscillations is not
considered at all. Nevertheless simulations shown in Figure 4.2 reveal behaviour that could
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Figure 4.1: The interconnection of N pendulum clock subsystems. αij is the coupling
strength between sub-system i and j. The grey signals are inputs to the system.
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Figure 4.2: EEG simulations using the coupled oscillator model show waveforms that are
consistent with typical EEG sequences, even with relatively few clocks in the network.
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easily be part of a real EEG sequence. This is unsurprising given that, in principal, any
signal f(t) over any window t ∈ [0, T ] can be approximated as f(t) =

∑N
i=1 ai sin(ωit+ϕi).

It follows that, for any EEG signal measured, there is a networked clock model that
will exhibit as its output a signal consisting of summed sinusoids, f(t), where that f(t)
approximates the specific EEG segment well. As indicated, this does not imply that
the model is a realistic representation of actual brain dynamics, however, this model can
replicate realistic behaviour. In the next chapter we investigate the level of information
about the states x that can be recovered from the EEG signal.



Chapter 5

Observability Issues in Networked

Clocks

This chapter investigates what we can expect to observe from electroencephalography
(EEG) measurements of brain dynamics. Earlier research efforts, as discussed in Chapter
2, have unsuccessfully attempted to track synchrony from EEG, viewing the brain matter
as a coupled oscillator with the seizure state resulting from global synchronization. Using
the model of networked pendulum clocks, introduced in Chapter 4, we find that observing
sufficient information to track the build up of synchrony is an ill-posed problem unless
measurements are taken from a very localised region of brain tissue.

5.1 Introduction

The question of what we can expect to observe from EEG recordings leads us to the classi-
cal systems theory notion of observability. For a linear system with state mapping matrix
A, an output measurement determined by C and an input determined by B the system
(ẋ = Ax + Bu, y = Cx) is observable, in the sense that we can recover the states x from
the output y, under the following conditions on the pair (C,A).

The pair (C,A), C ∈ Rp×N , A ∈ RN×N is observable if and only if any of the
following equivalent statements are true [118]:

79
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• The Observability Matrix, O(C,A) =
[
C′, (CA)′, (CA2)′, . . . , (CAN−1)′

]′
, is full

rank (prime ′ denotes transpose)

• Popov-Belevitch-Hautus (PBH) test: rank
([

A− λI
−−−−

C

])
= N, ∀λ ∈ C

• The polynomial matrices λI −A and C are right coprime.

These definitions of observability consider an idealised situation absent of noise.
However, EEG signals do contain considerable noise, including quantisation noise due to
the digital nature of EEG recording equipment. In this Chapter we reduced the question of
what we can observe from an EEG record to the generalised question of how quantisation
of an output, from a large-scale system, effects the observability. This effect of quantisa-
tion has implications beyond the epilepsy prediction problem for the observability of any
practical system. Given the pervasive nature of this problem across all systems where
digital measurements are made, it is not surprising that previous research has touched on
the topic.

Koplan and Sontag [119] investigated problems of this nature where the “outputs
reflect various limitations of measuring devices” resulting in y = σ(Cx) rather than the
ideal output of y = Cx. They found in particular for the extreme quantisation case
of σ(x) = sign(x), where the output was +1 or -1, that the theoretical observability is
maintained provided (loosely speaking, see [119] for further details):

(i) The non-quantised system was observable: (A,C) is an observably pair

(ii) For the set of matrices CAi−1B for i = 1, 2 . . . N there are a sufficient number of
non-zero rows.

For a single output (C is a row vector) condition (ii) is satisfied for any B not equal to
the zero vector. In the multidimensional output case, condition (ii) is satisfied provided
there are sufficient rows of C, denoted Cj such that for all i=1-N, ker(CjAi−1) = 01.
Satisfying these conditions means that the quantised system is observable in the sense that
for any B vector we will always be able to find an input u(t) such that we can distinguish
between two states at the output. While this indicates theoretical observability, finding
the various u(t) signals that can provide this distinction is not particularly practical in
general and furthermore is not available as an option in standard EEG. What are the

1ker(A), the kernel of a matrix A, that is collection of all x vectors such that Ax = 0.
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theoretical limits of observability for a practical EEG set-up?

Despite over 34 years of research, where many methods have been unsuccessfully
applied to the EEG for seizure prediction [89], the issue of observability of the brain sys-
tem from measurements of EEG has surprisingly not been explored. Instead, observability
has been simply assumed to variable extents, with EEG data analysed for seizure precur-
sors in the absence of any real consideration for whether the chosen analysis method was
mathematically suitable given the brain system and EEG measurement [77, 43, 40, 44].
Here we attempt a first investigation of what we may expect the EEG to reveal about the
underlying brain. The investigation makes use of a highly simplified situation, where we
assume to know the underlying dynamics, but only observe a low dimensional signal ex-
tracted from a high dimensional state. The question we want to explore is how observable
is a large scale system, in particular in the light of finite precision measurements?

We abstract the problem to the study of a simple network of linear oscillators with
linear interconnection. Such a model neglects the complexities of biologically realistic
neuron-dynamics and instead formulates the problem as one of a generic network of os-
cillators upon which an EEG-like measurement is made. While synchrony of coupled
oscillators is undoubtedly a non-linear process here we limit a first analysis to the linear
case and investigate observability using linear methods. If the extent of information that
an EEG-like output can reveal is limited in the simple linear case, more complex and
realistic non-linear models are unlikely to be more successful. In this context the problem
essentially involves: scale, the number of individual oscillators in the system, coupling
strength between oscillators and measurement resolution, the accuracy of the EEG mea-
surement.

In the remainder of this Chapter we show that in the most ideal abstraction of the
underlying problem, practical observability (assuming a finite precision measurement in-
strument) is not an obvious property even when the underlying system is observable in
the normal sense (i.e. for ideal measurements). The scope of the problem explored in
this chapter is defined in Section 5.2. Theoretical analysis is presented in Section 5.3 and
supporting simulations can be found in Sections 5.4 and 5.5. Sections 7.4 and 5.7 follow
with discussion and conclusions.
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5.2 Problem Formulation

5.2.1 Hypothesis

Seizure prediction from EEG has been unsuccessful because the measurement is a poor
observer of brain dynamics, in that, information from only a very limited number of the
underlying oscillations in the brain are available at the measurement electrode.

5.2.2 Assumptions

With the dynamics of the real brain unknown, the hypothesis is tested by considering the
observability of a known model. This model for EEG measurement from the brain is based
on a networked clock model, which is the linearised form of the coupled oscillator model
as described in detail in Chapter 4.

This problem formulation acts to investigate the limits of information that can be
observed from the brain in the scenario of best possible conditions because the networked
clock model is very much an over-simplification of the real-world problem. The model has
been reduced to a fully-known, linear time invariant system. All dynamical uncertainty,
measurement noise and non-stationarity are neglected. These assumptions of the model
are listed in Table 5.2.1.

Model Real Case
Dynamics known Dynamics unknown

No Noise2 Noise
Stationary Non-stationary

time-invariant time-varying
System dimension3 known System dimension unknown

Pure Clocks4, linear Non-linear oscillations
Clock interconnections:

Regular(homogeneous) & irregular(inhomogeneous) Unknown

Table 5.2.1: Assumptions of Networked Clock Model

2The effect of quantisation measurement noise is later considered, but all other noise is neglected
3System dimension in number of states, each oscillation requires two states.
4Pure clocks have a constant frequency.
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5.2.3 Aspects for Exploration

Observability is explored in this Chapter under each of the following aspects:

1. Representation

(a) Continuous-time, damped clocks

(b) Discrete-time, undamped clocks

2. Coupling geometry

(a) Regular(homogeneous), coupling strength geometrically decaying with distance
between clocks

(b) irregular(inhomogeneous), probabilistic connection between clocks independent
of spatial configuration

3. Measurement resolution

Bit length of digital measurement (10 bits, 14 bits, 24 bits)

4. Scale

The number of individual clocks in the networked system

The system structure is explored next in Section 5.3, showing that networked clocks
are theoretically observable. An analysis of the impact of coupling geometry, bit length
and scale follows in Section 5.5 showing that, under real-world considerations, observabil-
ity is an illusion.

5.3 Networked Clocks are Observable in Theory

Here observability is considered based purely on the system and measurement matrices A

and C as per the definition of observability in Section 5.1. This definition provided the
following equivalent tests for showing observability from A and C: (i) Observability matrix
rank test, O, (ii) PBH test and (iii) Coprime matrix test. For the coupled pendulum clock
system introduced in Chapter 4, the relevant C and A matrices for an N th order system
are:



84 CHAPTER 5. OBSERVABILITY ISSUES IN NETWORKED CLOCKS

C =
[

0 −δ1 0 −δ2 . . . 0 −δN
]
. (5.3.1)

where δi indicates the relative weight clock i makes in the EEG output signal (δi ≥ 0
and

∑
i δi = 1).

A =


A1 + ε11 ε12 . . . ε1N

ε21 A2 + ε22 . . . ε2N
...

...
. . .

...

εN1 εN2 . . . AN + εNN

 , (5.3.2)

where

Ai =

(
0 1
−ω2

i −2ζiωi

)
, (5.3.3)

εij =

(
0 0

+αij 0

)
for i 6= j, (5.3.4)

εij =

(
0 0

−
∑N

k=1 αik 0

)
for i = j. (5.3.5)

For a pair (C,A) of this form, testing for an observability matrix with full rank is
not practical for networks with more than a few clocks. Instead the PBH test and coprime
matrices test provide a more tractable option. The PBH test [120, Ch 2] can be used
to show that a system with an A matrix of form (5.3.7) is observable for our choice of
output matrix, C, in certain cases under the condition that the clocks oscillate at distinct
frequencies. Firstly, the case of no coupling and, secondly, the case of an upper triangular
structure of coupling. For the general cases of global coupling or indeed symmetric coupling
(αij = αji) a polynomial approach to establishing theoretical observability provides a more
elegant solution.

5.3.1 Observability with PBH test: case of no coupling

The case of no coupling between clocks can be created by setting αij = 0,∀i, j. The
definition of the PBH test given in Section 5.1 required the matrix,[

A− λI
−−−−

C

]
, (5.3.6)



5.3. NETWORKED CLOCKS ARE OBSERVABLE IN THEORY 85

to have rank N for for all possible λ in the set of complex numbers. This effectively
collapses to only requiring rank N for all λ equal to the eigenvalues of A (henceforth
denoted λ(A)) as the condition of rank N will clearly be met for all λ /∈ λ(A)2.

For the specific case of no coupling the PBH test matrix (5.3.6) has the following
structure, with the 1st N rows forming a block diagonal matrix:




A1 + ε11 ε12 . . . ε1N

ε21 A2 + ε22 . . . ε2N
...

...
. . .

...

εN1 εN2 . . . AN + εNN

− λI2N
0 −δ1 0 −δ2 . . . 0 −δN


(5.3.7)

where all ε terms are set to zero. The eigenvalues of a block diagonal matrix are
simply equal to the eigenvalue of the block diagonal elements:

λ
([

A1 0

0 A2

])
= {λ(A1), λ(A2)} (5.3.8)

It follows that the system eigenvalues can be found by solving the characteristic
polynomials of each individual clock, λ2 + 2ζiωi + ω2

i = 0. The 2N eigenvalues, λ of the
N uncoupled systems are

λi± = −ζiωi ± ωi
√
ζ2
i − 1, for i = 1 . . . N. (5.3.9)

The block diagonal structure, through its stepped placement of non-zero matrix
elements ensures that each row pair of 5.3.6 (row k and row k+1, for k odd) are guaranteed
to be linearly independent of all others row pairs. Row rank can however be lost if the
row pairs themselves are linearly dependent i.e. if,

−λ
−ω2

k

=
1

−2ζkωk − λ
. (5.3.10)

As highlighted at the start of this section, we only need test 5.3.10 for λ /∈ λ(A)
which are given in 5.3.9. Solving 5.3.10 for such λ finds that the row pairs are linearly
dependent only when ωk = ωi and ζk = ζi (refer to Appendix A.2). The requirement of
having rank N in the (N + 1)× (N) matrix 5.3.6 is satisfied for all λ, therefore the system
is observable via the PBH test, provided the systems natural frequencies and damping

2Since λ /∈ λ(A) is such that det(λI−A) 6= 0 and thus the 1st N rows of (5.3.6) are linearly independent.
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parameters do not overlap ωi 6= ωj , ζi 6= ζj ∀i, j. For mutually distinct frequencies and

damping parameters, testing with the ith eigenvalue, λi = −ζiωi±ωi
√
ζ2
i − 1, only results

in the loss of 1 row rank (between the ith and i+1th rows), and the extra C row of the PBH
test matrix ensures rank N remains provided δi 6= 0 ∀ i = 1 · · ·N . This requirement of
distinct frequencies follows intuitively when considering the expected frequency response
of the network. Here we expect peaks in the spectrum at the resonant frequencies ωi.
Should these frequencies overlap we cannot expect to tell from the frequency response
whether a single oscillator exists, or rather, if multiple oscillators exist at the same fre-
quency, each masking the distinct existence of the other.

Furthermore, it is not unreasonable to assume that a biological network would in-
deed have all ωi and all δi distinct.

5.3.2 Observability with PBH test: Case of Upper Triangular Coupling

A second interesting matrix structure where the PBH test can be used to prove observ-
ability is the case of upper triangular coupling. Here, αij = 0 ∀ i < j and thus εij = 0 ∀
i < j.

The eigenvalues of such a matrix are equal to the eigenvalues of the block diagonal
sub-matrices.

λ
([

A1 X

0 A2

])
= {λ(A1), λ(A2)} , (5.3.11)

where X can take any form.

For the network of clocks, an upper triangular structure of coupling means that the
eigenvalues of the networked system are identical to those of the subsystems (individual
clocks). Each subsystem is observable, therefore, it follows that theN+1 rows of (5.3.6) are
linearly independent for all λ and the networked system is observable, provided the clocks
oscillate at i distinct frequencies following the same argument as given in the previous
uncoupled case.
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5.3.3 Theoretical Observability: a Polynomial Approach

The eigenvalues of the A matrix are not so easily found for the general case of symmetric
coupling over all scales of system order. The eigenvalues could be approximated by the
Gershgorian circle theorem for block diagonal matrices [121], however this would lead to
somewhat of a fudged solution to theoretical observability as it is difficult to establish full
rank with the PBH test when the eigenvalues are only known within a certain radius.

A system with (A,C) of the form (5.3.7) and (5.3.1) respectively is observable if
the polynomial matrices D(λ) = A − λI and N(λ) = C are right coprime [118]. The
Bezout identity [120, Ch 6] can be used to show that for our system D(λ) and N(λ) are
indeed right coprime and the system is theoretically observable for most choices of system
parameters.

By the Bezout Identity, polynomial matrices D(λ) and N(λ), will be right coprime
if and only if there exists polynomial matrices X(λ) and Y(λ), such that,

X(λ)N(λ) + Y(λ)D(λ) = I, (5.3.12)

where I is the Identity. If we can find successive elementary row operations3 U1, U2, . . . Un

to reduce [D(λ),N(λ)]′, to [I, 0]′, then we have,

U(λ) = Un . . . U2U1 :
[

U11 U12

U21 U22

] [
D(λ)

N(λ)

]
=

[
I

0

]
. (5.3.13)

It follows that to satisfy (5.3.12), U11 = X(λ) and U12 = Y(λ). The system is
observable provided that such a U can be found with the necessary condition that U is a
unimodular matrix. A polynomial matrix is unimodular if its inverse is also a polynomial.
This is the case if det(U) equals a constant (i.e. det(U(λ)) 6= 0 and det(U(λ)) is not a
function of λ.

Here, the structure of our coupled network has sufficient zero entries across A− λI
and C such that each column of [A′− λI,C′]′ is generically independent of all the others.
Therefore, elementary row operations can be found to transform [A′ − λI,C′]′ → [I, 0]′

3Elementary row operations include either (1) Interchanging any 2 rows, (2) Adding to a row, a poly-
nomial multiple of another row or (3) Scaling a row by any real or complex number
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and the networked system is observable, except in some non-generic cases when the pa-
rameters (ω, ζ, α) combinations satisfy some polynomial equations.

An example of such a non-generic parameter set, for a network of 3 clocks, is detailed
in Appendix A.2. It shows the calculation of conditions where observability is lost under
the algebra simplifying conditions of uniform connection strength, α, uniform damping,
ζ, and a simple measurement vector C = [0, 1, 0, 0, · · · , 0, 0]. The non-generic set under
these conditions was:

α ∈ { − 1
3
ω2

1,

+
ζ2

24(−ω3 + ω2)

(
−f1(ω1, ω2, ω3, ζ) +

√
f2(ω1, ω2, ω3, ζ)

)
,

+
ζ2

24(−ω3 + ω2)

(
−f1(ω1, ω2, ω3, ζ)−

√
f2(ω1, ω2, ω3, ζ)

)
}, (5.3.14)

where f1 and f2 are functions described in Appendix A.2. For the undamped case
(ζi = 0 ∀ i), the set in equation A.3.3 simply reduces to the condition where α ∈ 1/3ω2

1, 0 .
The case of non-observability for α = 0 is obvious, remembering that for this example we
are measuring only from the 1st oscillator. If that oscillator is not connected to the re-
mainder of the network (α = 0) then we would not expect any oscillations to be visible
apart from that of the 1st oscillator and thus expect the system to be unobservable.

It is important to note that the smallest perturbation to any of the parameters
(αij , ζi, ωi) will restore the condition of full observability. The probability of finding a
non-generic set when the system parameters are assigned at random is quite low. There-
fore, the effect of the existence of non-generic sets can be considered negligible on average
for simulations with many trials of randomly assigned parameters. We expect the mean
observable percentage over multiple trials to be near 100%. Any significant deviation from
100% observability must be due to factors beyond the coincidence of random parameter
choice lying in the non-generic set.
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5.4 Non-Observable for all Practical Purposes

Even when the system is observable in the normal sense of the word, it turns out that the
simple limitation of a finite precision measurement reduces our ability to distinguish all
states drastically.

Observability is computed in this section using the 1st condition defined in Section
5.1, that is, the rank condition on the observability matrix, O(C,A). This rank condition
requires that O(C,A) contains 2N (N is the number of clocks) sufficiently independent
simultaneous equations such that we can solve for the initial state vector x, given the
output measurement over time. O(C,A) is full rank if it has 2N non-zero singular values.
In practical computation, the number of singular values of O(C,A) that are larger than
some tolerance value indicate sufficient independence. That tolerance value is found based
on the smallest number we can represent with the number of bits in the measurement.

5.4.1 Continuous Representation

The continuous companion-format state space representation of each individual pendulum
system presented thus far is numerically ill-conditioned. The singular values of the observ-
ability matrix, σ

(
O (C,A)

)
, are proportional to the spectral information in the system

matrix A,

σ
(
O (C,A)

)
∝ ω(2N−1), (5.4.1)

where ω is the natural frequency of one of the N clocks in the network. Even for modest
network orders (N ≈ 100), with ω ∈ {0.5Hz, 200Hz} we can expect to suffer numerical
ill-conditioning with very large numerical range for the singular values. To readdress these
numerical issues a state space transformation with time-scaling is proposed. This enables
us to consider fundamental observability limitations in this system isolated from issues of
numerical illposedness.

For each individual pendulum, with a companion format Ai,Bi,Ci:

Ai =

(
0 1
−ω2

i −2ζiωi

)
,Bi =

(
1
0

)
,Ci = (0,−δi) , (5.4.2)
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the transformation,

T =

(
ωi ζi

0 −
√

1− ζ2

)
(5.4.3)

is used. The transformed system becomes:

Ai =

 −ζiωi −ωi
√

1− ζ2
i

ωi

√
1− ζ2

i −ζiωi

 (5.4.4)

Bi =

(
ωi

0

)
,Ci =

0,
δi√

1− ζ2
i

 . (5.4.5)

The networked system after transformation becomes,

A =


A1 + ε11 ε12 . . . ε1N

ε21 A2 + ε22 . . . ε2N
...

...
. . .

...

εN1 εN2 . . . AN + εNN

 , (5.4.6)

B = (B1,B2 . . .BN )
′
,C = (C1,C2 . . .CN ) , (5.4.7)

where the coupling terms (ε) are transformed from 5.3.4 and 5.3.5 to:

εij = Ti

(
0 0
αij 0

)
T−1
j ∀ i6=j (5.4.8)

εii = Ti

(
0 0

−
∑

j αij 0

)
T−1
i . (5.4.9)

Time-scaling

The transformed system representation, ẋ = Ax + Bu for the networked clock model,
allows for time-scaling the frequency dependency out of the state equation as shown in
Equation 5.4.10:
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ẋ = dx
dt = ωÂx + ωB̂u

dx
dωt = dx

dτ = Âx + B̂u
(5.4.10)

The results of numerical analysis shown in the remainder of this chapter where found
using the time-scaled model (simulating in τ time). The large scale networked system was
time-scaled using the largest resonance frequency for time normalisation. The results of
these simulations can be translated back to the original system with non-normalised fre-
quencies through reverse time-scaling so no information is lost here.

Singular Values of Networked Model

Using the time-scaled system matrices for the networked system, {Â,C}, the singular
values of the observability matrix,

O =
[
C′, (CA)′, (CA2)′, . . . , (CAN−1)′

]′
(5.4.11)

were found for a globally coupled network of 50 pendulum clocks (coupling parameter
αij = 0.01 ∀ i, j). The damping parameter ζ was set to 0.001 for all clocks and the
normalised frequencies of each clock were uniformly distributed across several frequency
ranges. These frequency ranges are a narrow range of 0.98-1 Hz/Hz, a mid-range of 0.6-1
Hz/Hz and a wide range of 0.0025-1 Hz/Hz. Results with each frequency range are shown
in Fig. (5.1). As expected, the narrower the frequency range, the more difficult it is to
distinguish the various states. The singular value decomposition indicates that less than
half the states are identifiable even in a well scaled system using normal machine precision
in Matlab.

Through timescaling, we have constrained the growth towards infinity of singular
values of the observability matrix, as illustrated in Figure 5.1. In effect, we have avoided
machine overflow4in numerical simulation. However, we also need to consider that the
magnitude of singular values become arbitrarily small as the order of the network, N ,
increases.

4Overflow occurs when numerical values are too large to be represented given a certain number of
machine bits. The opposite condition underflow describes occurrences for numerical values less than the
minimum numerical representation for a given number of machine bits.
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Figure 5.1: The Singular values of the observability matrix, O =[
C′, (CA)′, (CA2)′, . . . , (CAN−1)′

]′
, are plotted for a network of N = 50 clocks

(100 states) whose natural frequencies were uniformly chosen from the normalised
frequency range of either 0.98-1 (plotted as symbol o), 0.6-1 (plotted as symbol .) or
0.0025-1 (plotted as symbol x).
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The singular value magnitude is a function of the numerical size of the entries in the
observability matrix (5.4.11). As N grows the entries of (O : CAN ) become increasingly
small when the eigenvalues of A are less than 1, as we have explicitly timescaled them to
be there. While the machine overflow problem has been circumvented, our observability
is still dramatically limited effectively due to a machine underflow problem. Furthermore,
simulation shows the change in shape and magnitude of the curve in Figure 5.1 is neg-
ligible for changes in coupling α. Intuitively, however, it is certainly not expected that
observability be independent of coupling. It seems the lack of observability is based en-
tirely on the underflow problem of numerical illposedness. Before concluding that system
observability is indeed dramatically poor based on this underflow problem, we must ask
if we have configured our system to be as well posed as possible, in the sense that we
wish to consider observability under the best possible conditions. Is there an alternative
representation of this system where the singular-values do not decay as dramatically? In
the next section, we find that an undamped and digitised problem formalisation gives us
a more well-posed problem.

5.4.2 Digital Representation

By converting to a digital representation and looking particularly at marginally stable
oscillations (undamped oscillations, ζ = 0) we can constrain the eigenvalues of the system
matrix A to a compact set. Now any ill-conditioning in the observability matrix, O(C,A),
can be isolated from the machine underflow and overflow problems in individual matrix
entries and instead attributed to poor observability. Using a digital undamped represen-
tation, observability will be found later in Section 5.5 to be effected by (i) the coupling
geometry, (ii) the number of measurement bits and (iii) scale of the network. Firstly,
however, in the remainder of this section we show why the digital undamped representa-
tion is well conditioned.

For the original analogue system with companion format (A,B,C) as per 5.4.2 after
setting ζ = 0 (undamped form) we have:

Ai =

(
0 1
−ω2

i 0

)
,Bi =

(
1
0

)
,Ci = (0,−δi) . (5.4.12)
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The transformation matrix 5.4.3 for ζ = 0 becomes:

T =

(
ω2
i 0

0 −1

)
, (5.4.13)

with the resulting transformed system having a rotational matrix Ai,

Ai =

(
0 −ωi
ωi 0

)
, (5.4.14)

Bi =

(
ωi

0

)
,Ci = (0, δi) . (5.4.15)

This corresponds to (5.4.5) after setting ζ = 0 as expected.

The advantage in system well-posedness with ζ = 0 is that all the system eigen-
values lie conveniently on the imaginary axis, λ(Ai) = ±ωij. This is convenient as by
transferring to the digital domain the underflow problem is eliminated. To transfer to
the digital domain the continuous system matrix A is mapped to eA∆T , where ∆T is the
digital sample time in seconds. For simplicity ∆T = 1 here, the implication of this is
discussed in more detail later in this section. The imaginary axis is transformed to the
unit circle in the digital domain, therefore, the eigenvalues of our digital system lie on the
unit circle and have unit magnitude. Real EEG measurement necessitates the conversion
of signals to digital form for machine storage, so transferring to the digital domain in our
model of EEG is entirely appropriate here.

With the system eigenvalues thus confined to a compact set on the unit circle, what
now of the singular values of the digital system? The transformation matrix T in equation
5.4.13 is a rotational matrix such that A

′
i + Ai = 0. The singular values of the each

individual (uncoupled) clock, σ(Aidigital) are therefore exactly unity for all frequencies ωi.
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Aidigital = eAi ,

⇒ σ(Aidigital) = σ(eAi),

and σ(K) =
√
λ(K′K) for any matrix K

⇒ σ(eAi ) =
√
λ((eAi )′eAi )

=
√
λ(eA

′
ieAi)

=
√
λ(eA

′
i+Ai) ∵ A

′
iAi = AiA

′
i

=
√
λ(e0) ∵ A

′
i + Ai = 0.

=
√
λ(I) = {1, 1} . (5.4.16)

However, the system matrix consists not just of the block diagonals of {A1,A2,A3 etc},
we also have off-diagonal coupling perturbation terms as described in equation 5.4.6. These
perturbations are specifically designed such that the coupled network system remains
purely oscillatory after coupling, i.e. eigenvalues of the coupled system remain on the
imaginary axis (analogue) or exactly on the unit circle (digital). Therefore the previous
analysis for the uncoupled case also applies here.

The proposed coupling between the clocks can be physically interpreted as repre-
senting springs attached between the clocks’ pendula. Coupling therefore only reshapes
the potential energy of the mechanical system and does not introduce any damping. Hence
the new physical system, after the addition of the springs, is still a purely oscillatory one,
but where the eigen-frequencies have shifted because of the addition of the springs. The
stronger the coupling the more the eigen-frequencies shift.

Moreover, these springs transfer some energy between the clocks. It is therefore
intuitive that as long as there is a pathway consisting of a series of springs linking one
clock to another that observing the motion of any one clock in such a network will indeed
contain information of all the clocks that are linked to it via a pathway of springs. Intu-
itively, this explains why such systems are in principal (and generically) observable.

Recall that for a network of 2 clocks, the networked system would have an A matrix
of form,
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A =

(
A1 + ε11 ε12

ε21 A2 + ε22

)
=


0 −ω1 0 0

ω1 + α12 0 −α12 0
0 0 0 −ω2

−α21 0 ω2 + α21 0

 (5.4.17)

Ai is defined in (5.4.14). The perturbation terms εij are defined in Equations 5.3.4 &
5.3.4 in Section 5.3. In general, given symmetric coupling (αij = αji) and no self-coupling
(αii = 0 ∀ i), we have a system matrix A that is block-symmetric5.

In a general for an n×n symmetric matrix A, given n linearly independent columns
(or equally rows), as was shown to be generically the case in Section 5.3, we can find an or-
thogonal matrix T to diagonalise A obtaining D = TAT−1, where D is a diagonal matrix
D = diag(λ1, . . . , λn) and where λ1, . . . , λn are the eigenvalues of A. It follows that we
can also block diagonalise A, since the 2×2 block columns (that is column pairs i and i+1
for i odd), or equally the 2× 2 block rows, of A are linearly independent from each other
by construction. Therefore a transformation T can be found to block-diagonalise A, such
that D = TAT−1 is a block diagonal matrix, D = diag(D1, . . . ,Dn

2
), where Di is a 2× 2

matrix. If we elect to choose our coupling such that A is a block-wise positive-definite
matrix6(as is the case for 5.4.17 given αij > 0 ∀ i, j), then we have that the block diagonal
elements Di have eigenvalues of ±θj, where θ ∈ R.

The proof that coupled clocks remain purely oscillatory clocks can be elegantly
demonstrated by reverting to the second order differential equation format. Consider that
the dynamics of a network of uncoupled and unforced clocks can be written as,

ẍ + Wx = 0. (5.4.18)

where ẍ = [ẍ1, ẍ2, . . . , ẍN ]
′
, x = [x1, x2, . . . , xN ]

′
, where xi is the angular displacement of

the ith clock and W is a diagonal matrix, W = diag(ω2
1, ω

2
2, . . . , ω

2
N ).

5A matrix M with sub-matrices A,B,C,D where M =

(
A B
C D

)
is block-symmetric if M

′
= M

where the transpose is in block format: M
′

=

(
A C
B D

)
.
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It follows that the coupled system (without external inputs) can be expressed in
similar form as (5.4.18), with a new W matrix containing additional diagonal and off-
diagonal terms,

W =



ω2
1 +

∑
j α1j −α12 −α13 · · · −α1N

−α12 ω2
2 +

∑
j α2j −α23 · · · −α2N

−α13 −α23 ω2
3 +

∑
j α3j · · · −α3N

...
...

...
. . .

...
−α1N −α2N −α3N · · · ω2

N +
∑

j αNj


(5.4.19)

The matrix W in (5.4.19) is a positive definite matrix for αij > 0 ∀ i, j, since it is a
symmetric matrix where (i) All the diagonal entries are positive and (ii) W is a diagonally
dominant matrix (Each diagonal entry is greater than the sum of the absolute values of
all other row entries). Since W is positive definite, there exists N positive eigenvalues
of W (W is full rank). Thus we can always find a transformation T, where we obtain a
transformed state system z = Tx with z̈ = Dz, where D = TBT−1 is a diagonal matrix,

D =



ω̃2
1 0 0 · · · 0

0 ω̃2
2 0 · · · 0

0 0 ω̃2
3 · · · 0

...
...

...
. . .

...
0 0 0 · · · ω̃2

N ,


(5.4.20)

Thus, given coupling that is chosen to be symmetric (αij = αjj) and positive (αij >
0 ∀ i, j) we can always mathematically reconfigure a coupled oscillator system with a
W matrix such as Equation (5.4.19) to that of an uncoupled system of pure oscillators in
Equation (5.4.20). The ω̃i in (5.4.20)are the natural frequencies of the reconfigured purely
oscillatory coupled network, which are simply shifted or perturbed in frequency from the
uncoupled clock frequencies ωi.

Therefore, returning to the standard state space co-ordinate system of 2N 1st order
differential equations, we can transform the pendulum clock positions x → Tx, giving

6M is a block-wise positive-definite matrix if each of the block-wise leading minors have a determinant
greater than zero. (For the M defined in the previous footnote this equates to: det(A) > 0 and det(M) > 0).
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˙(Tx) = D(Tx). In these new co-ordinates we have N independent purely oscillatory
clocks with positions Tx and frequencies θ. The new frequency at clock i, θi, is shifted
or perturbed from the original ωi by the coupling terms αij . With our coupled system
transformed to a purely oscillator network, the analysis in Equation 5.4.16 equally applies
in the coupled case (with Di replacing Ai here) and the singular values of the digital
coupled system matrix should remain unity.

In addition we can now use the theoretical argument of generic observability based on
independent clocks (see Section 5.3), with practical observability here becoming a question
of whether our new clock frequencies θi are distinct and that there is sufficient read-out
at the output to overcome any system information loss in quantisation noise.

We next consider the impact of practical observability with a biologically compatible
model of coupling. This coupling would be a relatively weak coupling between close neigh-
bours and very weak coupling between oscillators that have a long distance connection.
Index difference can be used as a surrogate distance. Additionally, there is no requirement
that each oscillator is connected to every other oscillator. In contrast, selective and organ-
ised network connection is equally biologically plausible. This is discussed in more detail
in the following Section 5.5. Here in Figure 5.2 the spread of singular values of a network
matrix A is shown for a more biologically appropriate nearest-neighbour-type organisation
of connection strength, as illustrated in Figure 5.6(a). The maximum coupling strength α
(strength between nearest neighbours) is 10−3, frequencies were chosen in the normalised
range [0.001, 1] rad/s.

Through the use of an undamped system model together with digitalisation we have
ensured that the magnitude of the singular values of the system matrix Adigital remains
unity. The concern in this chapter, however, is observability, which involves not only the
structure of the system matrix Adigital but rather the projection of output matrix C onto
Adigital,A2

digital,A
3
digital· · · AN−1

digital. The spread of singular values the observability matrix
O is shown in Figure 5.3 for the digital system with no damping. The digital version en-
joys much better observability properties, but fundamentally the problems with practical
observability persist. Figure 5.3 depicts the case where C is connected to each oscillator
in the network, C =

[
0, 1

N , 0,
1
N · · · , 0,

1
N

]
, and the frequencies are chosen with uniform

separation within the range [0.001, 1]. The plot also shows that a significant number of
the singular values remain below the numerical noise floor for this simulation of 10−16,
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Figure 5.2: Singular values of system matrix A: Comparing digital and analogue system
representations. N = 50 is the number of clocks in the system.

indicating practical difficulties with observability.

The earlier analysis of this section uses a digital sample time ∆T set to unit time. In
addition, the results of Figure 5.3 use time-scaled clock frequencies. There is a correlation
of reasoning here.

Firstly, consider the choice of ∆T . It is to be expected that the digital sampling
frequency, 1

∆T , has a significant effect on observability. Indeed, it does. For the frequency-
normalised system in Figure 5.3, the effect of increasing and decreasing ∆T is shown in
Figure 5.4.

Secondly, consider time-scaling. For the digitised system formulation it is no longer
necessary to normalise frequency such that the maximum singular values of O are con-
tained. Figure 5.5 shows the singular values for various frequency ranges to support this
(all conditions apart from frequency are identical to the simulation in Figure 5.3). This
modelling effort relates to real measurements so clock frequencies and sample time are
somewhat fixed. For a standard EEG recording we can expect the sampling frequency to
be 512Hz increasing to 1024Hz for specialised research machines. The “oscillator frequency
range” of brain activity is typically assumed to be in the range from 0.2Hz to 200Hz. This
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Figure 5.3: Singular values of the Observability matrix O: Comparing digital and analogue
system representations. N = 50 is the number of clocks in the system.

range pushes towards the Nyquist bound for a sampling frequency of 512Hz and sits nicely
at just under twice the Nyquist bound for 1024Hz sampling. The transformation matrix T
in equation 5.4.13 has provided not only a rotational system with the numerical magnitude
benefits discussed earlier, but also allows for a time-scalable system. Normalising with the
maximum frequency, the oscillation range becomes f = [0.2/200, 1]. Under the time-scale
mapping t→ τ

ω , simulating 1 second of τ time equates to 1
ωmax

seconds of real t time. For
ωmax = 2πfmax = 2πfmax = 2π200rad/s,

t =
1

ωmax
= 0.796ms ≈ 1

1024
(5.4.21)

Therefore simulating the measurement of EEG frequencies in the range [0.2, 200] Hz
sampled at 1024Hz can be equivalently achieved by simulating the normalised frequency
range [0.001, 1]Hz with a sampling time of ∆T = 1, as illustrated in Figure 5.5. This
choice of time scaling with unity digital sampling is employed throughout the remainder
of this thesis.

We now have a well-conditioned system representation to investigate observability
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Figure 5.4: Singular values of the Observability matrix O: Exploring the effect of digital
sample time ∆T . N = 50 is the number of clocks.
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Figure 5.5: Singular values of the observability matrix O. For a digital system with
normalised frequencies ωn ∈ [0.001, 1], using a sampling time, ∆T = 1s, as shown with
the marker (o) is equivalent to the system with frequencies ωn ∈ 2π[0.2, 200]rad/s with a
sample time ∆T = 0.796ms, as shown with marker (.). The analogue equivalents for each
frequency range, normalised and non-normalised, are marked as (x) and (+) respectively.
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of networked clocks: Digital, undamped representation with normalised frequencies and
unity sampling period. Despite this well conditioned system, we can see from Figure 5.5
(o or . symbols) that the magnitude of singular values of the observability matrix falls off
dramatically after a certain percentage of near unity singular values. Our earlier analysis
in this section has established that magnitude conditioning of A is not to blame. Instead,
the loss of rank in the observability matrix, O, relates to the inability to distinguish be-
tween the angles of λ(Adigital). This translates to the inability to distinguish between
elA and ekA between row pairs l and k within the observability matrix O(C,Adigital).
Essentially we are running out of space on our unit-circle compact set. In avoiding the
machine underflow and overflow problems we have constrained the system eigenvalues to
a compact set on the unit circle, however the unit circle is a small set to fit information for
N clocks such that we can distinguish between the angle of each clock with a finite number
of bits. This indicates that practical observability in a large scale system is limited by
the measurement resolution. There is clearly no reason to believe why we could, from an
EEG record, recover anything like the number of states that may be required to describe
the brain dynamics.

A Biologically Appropriate Model

To consider a digital, discretised analysis is completely in-line with the normal EEG mea-
surement set-up. Moreover, the restriction to pure oscillators is equally biologically jus-
tifiable. The alternatives to marginal stability are either (i) damped oscillation or (ii)
unstable oscillation. For the electro-magnetic activity of normal brain activity (i) and (ii)
would indicate pathological states of activity, for example decay of neural activity until
brain death and increasing neural excitability until a seizure state respectively. Therefore,
operating the coupled oscillator model on the boundary of stability is bio-realistic for nor-
mal brain function. The consequence of most interest by employing an undamped and
digitised model formalisation, is that, observability now varies as a function of coupling,
α. The impact of coupling on observability is the topic of the next section.
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5.5 Simulation Results for an EEG-like Measure

5.5.1 Observability as a Function of Network Connectivity

It is interesting to look at observability results as a function of network connection. We
will investigate this under two connection regimes. Firstly, nearest neighbour coupling,
where clocks are strongly coupled to their nearest neighbours and coupling magnitude
decreases with connection distance, such that far away connections are weak. Secondly,
a probabilistically coupled network, where a clock is coupled to any other clock with a
certain probability while coupling magnitudes remain uniform. Both of these network
structures have biological correlates. On the scale of a localised network consisting of tens
of neurons, for nearest neighbour coupling the extracellular electrical fields arising from
the oscillation activity of a few neurons will couple strongly to nearby neurons. The case
of probabilistic coupling in localised networks can be attributed to the functional connec-
tivity structure of that network. On the larger cortical scale, with a network of several
cortical columns, for nearest neighbour coupling the synaptic connections will be strongest
in the local region within a column. The case of probabilistic coupling has a biological ba-
sis in large inter-column functional networks of neurons where connectivity is more specific
than distance-based decay through specific dendrite connections and synaptic coupling.
Such connections span both median and long range scales and directly couple the spiking
activity of neurons in one area of the brain to another.

Nearest-neighbour Coupling

For the nearest neighbour connection structure shown in Figure 5.6(a), the percentage
of observable states as a function of increasing coupling strength, α, is shown in Figure
5.6(b). The clock network has normalised frequencies. The oscillator frequencies were
chosen at random from a uniform distribution in the range (0.001, 1). Fifty samples of
frequency distribution were simulated and the plotted observability percentage is the mean
value over these trials. The standard deviation from the mean was quite small, especially
for small alpha, therefore, only the mean values are shown in the plot.

Coupling was chosen here to have a geometrically decaying structure with strongest
coupling strength to the nearest neighbouring oscillator. Oscillator i is coupled to its near-
est neighbours (oscillators i ± 1 ) with strength α and to oscillators i ± n with strength
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αn where α < 1. (Note: The code is provided in Appendix A.5 for reference).

The percentage of observable states is calculated as the number of singular values
of O that can be represented by 210 digital number levels, where 10 is the number of
measurement bits. We carefully posed our system so that the maximum singular value
was of unity order. It then follows that the smallest singular value we can observe for
k = 10 bits has a magnitude of 1/210 ≈ 10−3. We find almost full observability for α = 1.
Observability is almost, but not exactly, 100% due to the stochastic nature of the fre-
quency distribution. However, coupling strength in the brain between neurons and indeed
between groups of neurons is certainly much less than one.

One crude estimate to illustrate the likely order of coupling strength is based on
numbers of connections. Take for example a mini-column of cortical tissue (0.03mm radius,
3mm height), one of the approximate 2 × 108 mini-column volumes in the whole cortex,
each containing about 100 neurons with around 10,000 synapses per neuron [1, page 21].
Say that we require 5 synapses to establish a connection between mini-columns. Then the
number of available corticocortical connections out from a single mini-column is 200,000
(10, 000×100÷5). Given this limit, based on the number of biologically present synapses,
we can find the ratio of biologically available connections to the total number of connections
for a network of mini-columns that was fully interconnected (in the sense of each mini-
column connecting to all the others) [122]. That connection ratio is just 1/1000.

Biologically Available Connections
Total Possible Connections

=
200, 000× 2.108

(2.108)2
=

1
1000

(5.5.1)

An α = 1
1000 corresponds to a very low level of observability as shown on the left hand

side of plot (b) in Figure 5.6.

The results shown in Figure 5.6 depict the case of a measurement electrode con-
nected only to the first oscillator, C = [0, 1, 0, 0, 0..., 0, 0]. This configuration is applicable
to a large-scale brain activity measurement, where from each electrode we wish to build
a picture of a large area of cortical activity. In effect, under exploration is the ability to
observe oscillations sourced far away from the electrode site through their influence on the
local network under the probe.

Next we expand the scope of C to a more realistic model for measuring local EEG



106 CHAPTER 5. OBSERVABILITY ISSUES IN NETWORKED CLOCKS

N x N Geometric Couplying Matrix (N=10)
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Figure 5.6: (a) An image showing the structure of the coupling matrix for a 2-D network
of 10 clocks. The white boxes indicate that each clock is coupled to its nearest neigh-
bours with the maximum coupling magnitude of α. Coupling strength to other clocks is
geometrically decaying by distance of clock i to clock j as indicated by the accompanying
grayscale bar. The black boxes indicate that each clock is not coupled to itself. (b) The
percentage of observable clocks as a function of coupling strength, for various networks of
N clocks. For large coupling strengths, α , the system is quite observable, however, realis-
tic strength of connection between brain areas is of the order of 10−3 where observability
is poor.
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activity with distance-based measurement. Here the elements in C follow an exponential
function centred with maximum gain on a single clock as illustrated in Figure 5.7. The
multi-electrode case is also explored with C5 of Figure 5.7. These results certainly show
a marginally improved picture of what we may glean from EEG measurements. In the
biologically appropriate coupling range of α = 10−2 − 10−3, only just over a third of the
network is observable for C1. The sobering picture that emerges from these results is that
observability is independent of coupling strength for α < 10−2 in a network of 250 clocks.
This is very limiting from an observability perspective as for a network of such modest
order we can really only expect to see 33% of the network as an upper bound. This bound
is limited by the number of angles distinguishable across the range of λ(A) with 10 bits
or 210 levels. Increasing α towards unity (biologically incompatible levels) only improves
observability as it significantly shifts the bounds of eigenvalues from λn ∈ [±0.001j,±1 j]
for the uncoupled network to λn ∈ [(±0.001± f(α))j, (±1± f(α)) j] so there is a larger
range with which to attempt fitting N eigenvalues with separation above quantisation
noise. In Section 5.5.2 we show that observability from EEG is an illusive prospect for
realistic, larger network orders.

Probabilistic Coupling

Observability as a function of increasing coupling probability yields similar results to those
of increasing coupling strength discussed in the previous section. The nature of randomly
coupled networks is to generate rather strange behaviour on first look. This fascinating
behaviour is the topic of random graph theory and small world networks. We can use
the ideas from these fields to evaluate the effect of long range probabilistic coupling on
observability.

Initially it would seem that we could evaluate the effect of probabilistic coupling by
plotting the percentage of observable clocks against the probability of connection between
any two clocks, pij . However, the results of this are difficult to interpret. To illustrate
this, take the example network of N = 10 clocks with pij = 0.1, where the coupling
strength for connected nodes is uniformly set to α = 0.01. Coupling is chosen to be
symmetric αij = αji. Two examples of randomly generated networks which satisfy this
are shown in Figure 5.8. For the first network, Figure 5.8(a), given a measurement at
clock 1, C = [0, 1, 0, 0 · · · , 0, 0] the number of observable clocks with infinite measurement
resolution is 1 (10% Observable). Clock 1 is simply not connected to any other clocks, so
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(a) Measurement matrices C1 to C5
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Figure 5.7: (a) Several possible configurations of measurement C. C1 to C4 are vectors
modelling the strength of measurement from each of the 250 clocks at a single electrode site.
C5 is a matrix of two rows, modelling the simultaneous measurement from two electrodes.
(b) The percentage of observable clocks for each of the measurement configurations in (a).
Coupling was modelled as per Figure 5.6(a).
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there is no information in the measurement about them. For the second network, Figure
5.8(a), the percentage of observable clocks under infinite resolution is 80%. We can only
see a maximum of 8 out of 10 clocks as clock 2 and 4 are completely disconnected from
the rest of the network. If we were to use these specific two trials we would have a mean
observability percentage of 45% at probability of connection pij = 0.1. This statistic con-
veys little about the expected nature of observability in either trial.

By adding the effect of finite measurement resolution to 10 bits, or 10−3 levels the
level of observability is dramatically reduced in the second network. For a normalised
system with maximum numerical magnitude of order 1, any numbers smaller than 10−3

are lost in quantisation noise. Our revised observability estimated for the networks in
Figure 5.8 (a) and (b) are now 10% and 40%. The variable of significance here is not
so much pij but rather the hop number also referred to as the shortest path length. This
refers to the number of hops needed to make a connection path between clock i and j.
For example to connect clock 1 to clock 7 with the graph in Figure 5.8(a) we have a hop
number of 2.

clock 1
1sthop−−−−−−−−−−−−−→ clock 9

2ndhop−−−−−−−−−−−−−→ clock 7

The information fed into clock 1 about clock 7 is attenuated by α2 = 10−4. This is
already less than the quantisation level, so for the quantised measurement at clock 1 can
only see clock 9 and not clock 7 in this path. In general, clocks are only observable if:

αh ≥ 1
2K

, (5.5.2)

for K number of bits and h, the hop number.

The implications of this for the measurement for the real cortical network can be
explored by considering some anatomical statistics. If we consider single neurons to be
the nodes of our graph, i.e the clocks in our network, what would our expected range of
hop numbers be? For purely random connection if each neuron in the cortex has in the
order of 104 synapses [1, page 21] it can potentially connect with 104 other neurons with
a hop number of 1. If those neurons with a hop number of 1 from our initial neuron each
connect to another 104 neurons, we have already amassed a network of 108 with just a
hop number of 2. By taking an additional hop to 3 we potentially have a network of 1012

neurons which would completely account for the expected 1010 neurons [1] in the cortex.
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Figure 5.8: Probabilistic connection matrices and associated graphs for networks ofN = 10
clocks with probability of connection between clock i and clock j, pij = 0.1
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α α3 Number of bits
0.1 10−3 10
0.01 10−6 20
0.001 10−9 30

Table 5.5.1: Number of bits required to observe a network node at 3 hops from measure-
ment site, dependent on coupling strength per hop, α

Certainly there is likely to be overlap, the 104 neurons with a hop number of 2 would be
unlikely to connect to 104 unconnected neurons in the graph, and rather connect to some
in the existing connected pool, however, this illustrates that the hop number for the brain
is likely to be low.

The literature on graph theory analysis of cortical networks supports this. Interest-
ingly, the universal finding from the literature is that cerebral cortical areas across mammal
species are not randomly linked. Instead, cortical networks exhibit small world network
characteristics [123]. That is, they do have short path lengths (hop number) in compari-
son to a network with regular ordered connection, however, these short path lengths are
close to those found by purely random network connection as considered in the earlier
analysis. The additional defining characteristic of small world networks is that they are
more intricate than random in that they have a high clustering coefficient [124]. Cortical
networks are strongly connected locally with fewer long range connections by comparison,
creating densely connected local clusters. Yet the hop number between cortical regions
is surprisingly small. Cortical connection behaves much like the classic example of small
world network behaviour: the web of human acquaintances. This web has geographically
local dense clusters and fewer long distance connections, yet the hop number between any
two people is surprisingly small through a path of mutual acquaintances. An a indicator
of order, a 2006 study on human brains suggests a mean global hop number of 2.49 as
inferred using fMRI[125]. For an expected maximum hop number of 3, what would be the
required number of bits to “see” all the nodes? Using 5.5.2 the findings are presented in
Table 5.5.1 for various coupling magnitudes.

Table 5.5.1 presents practical numbers of bits for EEG machines, however it is im-
portant to note that these numbers of bits are based on what is necessary to see each
node with path length of 3 in isolation. The prospect of attempting to see all 1010 nodes
simultaneously is highly unlikely as we cannot possibly distinguish 1010 distinct angles
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within 2π with resolution 210 or 220 bits following on from the discussion in the preceding
section. With 30 bits, 1010 equally separated angles would just fit in the range 2π with
separation 1

230 , but this would not be the case in any real network where the eigenvalues
(oscillation frequencies ± coupling perturbation) would not be exactly uniformly spaced
and noise is present. The impact of noise on what we can observe is considered later in
Chapter 6. The severity in loss of observability with increasing network order is discussed
in the next section. We find that increased number of bits does not buy much observability
when the size of the network is large.

5.5.2 Observability as a Function of Number of Bits

In this section we complete our observability analysis by considering the effect of the num-
ber of available bits. In our earlier simulations we used a conservative number of 10 bits.
In a typical EEG machine for clinical usage, the signal is digitised with a resolution of
14 bits [34]. This would indicate that there is a range of 214 levels available to represent
the singular values from largest to smallest. Some recent research-oriented EEG machines
have an A/D resolution of 24 bits [126]. Both these cases result in relatively few observable
states as shown in Figure 5.9 particularly for larger network order. A geometrically de-
caying nearest neighbours coupling paradigm is chosen with maximum coupling strength
of 0.1, clock frequencies are taken uniformly from the normalised range 0.001 − 1. The
measurement vector C is exponentially decaying, similar to those in Figure 5.7, with a de-
cay of e0.75n where n is the distance (in number of clocks) from the measurement electrode.

Figure 5.9 has shown that the system is non-observable for all practical purposes
due to the scale of the brain network. The two distinct slopes in the plot show that
(a) for small network orders, observability halves per decade increase in the number of
clocks in the network (b) for networks larger than 100 clocks, observability dramatically
falls with a 1

N scaling law. This demonstrates that for all practical purposes observability
from networked clocks is an illusion. It is important to note that the consequences of real
measurement with a typical EEG machine are more severe than the limited observability
with the clock model - the real brain-EEG interface suffers from the additional difficulty
of noise. One can conservatively simulate the effect of noise as a reduction of the number
of effective bits available. The plots shown also include the case of 10 bits to model the
case of reduced apparent accuracy due to the presence of noise.
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Figure 5.9: Percentage of states observable plotted against increasing networked size N .
For networks larger than 100 clocks observability falls dramatically, with a 1

N scaling law,
as the number of clocks increases.

The analysis in this section has been centred around observability based on the ob-
servability matrix O. This only reveals what can be observed in the minimum time frame
of N observations. The eigenvalues of the infinite observability gramian could be used to
determine limits of observability for infinitely long observation time windows, however, as
highlighted in Section 2.4, the EEG is inherently non-stationary and only short segments
can be considered quasi-stationary for analysis. Having considered the effect of a finite
resolution measurement, in the next section we look at the time constraints. The implica-
tions of observing longer time windows to attempt to average over the quantisation noise
are discussed later in Chapter 6.

5.5.3 A Question of Time

Observation time is often discussed in the context of seizure prediction because brain
dynamics are non-stationary [72, 127]. Certainly, any attempt to track the activity or
dynamics of a system over time, based on a set of measurements, requires the underlying
laws of nature not to change significantly over that analysis window. Here we wish to look
at suitable time window durations from the point of view of bits of information.
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One interpretation of the observation problem that is being highlighted in this sec-
tion can be arrived at from purely counting what we actually measure. The brain is a
system with, say, 1011 neurons [1]. For a standard EEG machine [34] with 10 bits per
sample and 512 samples per second, the measurement rate is 5120 bits per second (bits/s)
assuming the information is independent from sample to sample. If we had 64 electrodes
or channels then the rate would increase by 5120× 64 bits/s. Should we wish to observe
just 1 bit of information about each neuron (i.e. 2 possible levels of activity per neuron -
perhaps firing or not firing), then we would require 84 hours of EEG data. With estimates
of EEG dynamical stationarity in the order of 10 seconds [68] this is clearly unrealistic.
The fact that epilepsy is at all detectable from the EEG implies that it must correspond
to a vastly simplified mode of behaviour in the brain, or be a localised brain issue with
localised measurements.

We can also examine the reverse argument. Should we have 10 seconds of stationary
data, and we use this to build a dynamical model for the current behaviour of the brain
for the purpose of predicting its future behaviour, how many states can we detect? We
use the term state in the dynamical systems sense, where each state variable describes the
rate of change of a particular parameter. So a system with N states can be described by
N first-order differential equations (or equally a single N th order differential equation).
By considering epilepsy to be a global network phenomenon perhaps our concern is to
determine how many states we need to model the brain network. Of the 1011 neurons in
the brain, 1010 reside in the cortex. Each neuron makes 104 connections [1], so the number
of connections or network nodes in the brain is of the order 1014. With our information rate
of 5120× 64 b/s we would have 5120× 64× 10 bits in a 10 second quasi-stationary period.
If we wish to describe the activity of each node over time (with only a single state!)
to the accuracy of 10 bits (210 discrete levels) then we could at most detect 5120 × 64
states. This is an upper bound as the effects of the inevitable noise and sample-to-sample
dependence are not considered here. While this may seem a considerable number of 1st

order differential equations, it is sobering to think that this is just 0.0000003% of the total
network. Can the brain activity network be adequately described by a model whose order
is reduced by such a factor? Are the network dynamics of our brain indeed that simple?
The prospect seems unlikely to us.
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5.6 Discussion

We have shown that in the most ideal of situations, a very limited number of oscillators
are observable from an EEG-like measure. Very few underlying oscillators are seen given
the small coupling strengths we expect in the real brain. However, even for a reasonably
large coupling strength we show how rapidly observability is lost as the size of our network
increases. Figure 5.9 shows the percentage of observable states as a function of N , the
number of clocks, when a single EEG measurement with resolutions K = 10,14 and 24
bits is used. This plot shows that observability rapidly falls off as the number of clocks in
the network increases with approximately a 1

N scaling law. When K = 14, like in many
typical EEG machines, less than 3% of all states can be reconstructed, even in a relatively
small system with N = 1000 oscillators (2000 states). This is very limiting given that
in a system such as the brain, where the number of neurons is in the order of 1011, we
expect to find a much larger number of oscillators than 1000! Thus the EEG does not
unambiguously describe the generators of neural activity - even in an ideal situation where
there is no noise, more than 97% of the oscillations cannot be identified. This is very much
the best case scenario, introducing the challenges of a noisy measurement and the levels
of observability will greatly decrease.

If the EEG was measured to infinite precision then the system would indeed be ob-
servable. However it is shown in Figure 5.9 that even with machinery that is sophisticated
by today’s standards (K = 24) the number of observable states only increases to just under
6%. Again this is an upper limit that declines significantly if noise is introduced into the
model.

With relatively few states observable, the large scale measurements of EEG on both
scalp and cortical surface are unlikely to reveal any underlying synchrony of oscillations
as the number of underlying oscillators is far higher than the subset that is actually influ-
encing the measure. Instead seizure prediction from synchrony increases would be better
enabled via localised measurement, for example with micro-electrodes inserted into cortex
or into deep brain structures.

In that case, why is epilepsy even detectable as a synchronous event via large scale
EEG measures on the cortex and scalp? The results in this chapter imply the brain must
be in an very advanced state of synchronisation across huge areas of cortex before we
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can see it in the EEG. By the time a sufficient number of oscillators have synchronised
enough to observe this in the EEG it is most likely that the seizure would have already
commenced. This may indicate why attempts at seizure detection have had more success
with large scale EEG measures than was found for prediction [28].

The observability findings in this chapter are in stark contrast to the conventional
assumptions that surround EEG measurement. Typical intracranial EEG electrodes or
“macro-elecrodes” are assumed to have a recording domain in the order of 100µm [1,
Ch. 4]. But for a large number of oscillations, only the largest amplitude and most
spectrally distinct oscillations within this area will correspond to singular values above the
measurement bit threshold. Therefore the results in this chapter indicate that we could
see an oscillation located 100µm from an electrode only if all the other tissue was inactive.
Thus, rather than observing all the activity in the 100µm radius, instead we observe only
the dominant few percent of oscillations within this spatial area. Recent experimental
results support these findings. A 2010 paper by Worrell et. al. [128] comparing the
activity of micro-electrodes to nearby macro-electrode found that:

“Seizure-like events not detectable on clinical macroelectrodes were observed
on isolated microelectrodes”

and that

“clinical seizures begin from sub-millimetre scale epileptiform activity that
spreads to neighbouring regions before a sufficient population of synchronously
firing cells is recruited to be detectable on the macroelectrodes.”

These results were surprising and controversial results in clinical EEG as the amplitude
of seizure like events on micro-electrodes was deemed to be sufficiently large to see on the
nearby macro-electrode. These experimental findings provide experimental support to the
theoretical work in the chapter.

Therefore we conclude that tracking the build up of synchronisation in the brain from
scalp or cortical scale EEG is an ill-posed problem. The brain is not going to reveal its
secrets by looking at large-scale EEG measures. More localised micro-electrode recordings
may prove both a more useful measurement and open the possibility of intervention to
prevent seizures, however, this presents a paradox in requiring precise knowledge of where
to locate the electrodes.
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5.7 Conclusion

With observability of a simple linear clock system proving an impossible task, it is highly
unlikely that the more complex, real oscillatory system of the brain could be observable.
To extend the observability argument beyond the simple linear systems case discussed in
this chapter, both a stochastic argument and a non-linear argument follow in the next
chapter.

5.7.1 Chapter Contribution

This chapter provides hitherto unavailable evidence that clinical EEG acquisition provides
insufficient information for epileptic seizure prediction using linear observability theory.
This is an important contribution to the field of epilepsy as it signals that the current
approach to seizure prediction may well be mathematically invalid. This indicates the
likelihood of need for a major paradigm change in seizure prediction efforts, however,
encouragingly the results of this chapter do support detection for large scale epileptic
events. Early detection may prove sufficient for a closed loop seizure prevention device.



Chapter 6

Stochastic and Non-linear

Approaches to Observability in

Network Clocks

Linear deterministic approaches to observability in networked clocks provided exception-
ally poor results in Chapter 5. Can a linear stochastic or non-linear approach demonstrate
more promise for observability in brain-like dynamics? We find this not to be the case in
this chapter. The stocastic approach is considered using a Kalman Filter in Section 6.1,
while the non-linear approach is considered with measure preserving maps in Section 6.3.

6.1 A Kalman Filter Approach to Observability in Network

Clocks

The observability analysis in the previous chapter is centred on the observability matrix,
O. This tells us the extent of information observable from EEG given the minimum num-
ber of datapoints - given exactly N scalar measurements, can we solve for N states? The
results indicate poor observability with only a fraction of the N states distinguishable
given the expected constraints of biology and equipment.

The usual model of measurement that accompanies such observability matrix anal-

118
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ysis is
y(t) = Cx(t), (6.1.1)

for time, t, an output measurement vector y, a linear weighting vector C and a state vector
x. Note that C and y can be of matrix form to model multiple simultaneous measurements.
Our earlier analysis in Chapter 5 also factored in quantisation as the addition of noise to
the output. Thus equation 6.1.1 became,

y(t) = Cx(t) + ν(t), (6.1.2)

where ν is the quantisation noise.

Perhaps we can do better with more data points? Any practical attempt to recover
dynamics would never explicitly use the observability matrix with just N simultaneous
equations to solve for N states given N measurements. Additional equations will not,
however, supply new degrees of freedom. The (N + 1)st, (N + 2)nd and N +nth equations
will be somehow related to the existing N equations of the observability matrix. There-
fore the observability matrix does tell us the fundamental limitations to observability in a
system. The issue with just using N equations is that measurement noise may well cripple
any practical ability to estimate the states. Instead, assuming some degree of stationarity
in the system, a Kalman filter could be applied, using more than N datapoints to average
over the noise.

The question for this section is: Can time-averaging be used to suppress noise in
EEG? The results show, perhaps surprisingly, that a Kalman filter buys no significant im-
provement in observability for this particular class of systems. Filtering does not provide
a more reliable state estimate.

6.2 The Measurement Model

To begin the classical system and measurement model in a Kalman Filter can be expressed
as,
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xk+1 = Axk + υk (6.2.1)

yk = Cxk + νk, (6.2.2)

for discrete time k, state vector x, stable system matrix, A, measurement vector y, mea-
surement matrix, C, state noise υ and measurement noise ν.

6.2.1 The Classical System Model Fails for a Network of Clocks

We consider the model of state evolution, xk+1 in equation (6.2.1) for the specific case of
networked clocks. The main issue is that such systems, with habitation on the boundary
of stability, are not strictly stable. For simplicity and to gain some insight, the scalar case
is presented first, followed by an extension to the full vector model.

The Scalar Case

Consider the scalar system:

xk+1 = axk + υk, E[x0] = 0. (6.2.3)

υk is the system noise with zero-mean, E [υk] = 0, and variance, E
[
υ2
k

]
= σ2

υ. The noise
at time k is not correlated to noise at any other sample time, E [υkυk−`] = 0, ∀ ` 6= 0.
The variance associated with the (k + 1)th state, E

[
(xk+1)2

]
1, evolves as:

E
[
(xk+1)2

]
= E

[
(axk + υk)2

]
= a2E

[
(xk)2

]
+ 2aE [υkxk] + E

[
(υk)2

]
= a2E

[
(xk)2

]
+ E

[
(υk)2

]
∵ xk and υk are uncorrelated.

= a2E
[
(xk)2

]
+ σ2

υ. (6.2.4)

By recursion, the expected value of state variance after ` samples is

1Variance of (k+1)th state is E
[
(xk+1 − E [xk+1])2

]
= E

[
(xk+1)2

]
under the condition that E [xk+1] =

0. For the vector case E [xk+1] = E [Axk + υk] = E [axk] + E [υk] = E [Axk] = AE [xk] = 0.
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E
[
(xk+`)2

]
|a6=1 = a2`E[(xk)2] +

(
1− a2`

1− a2

)
σ2
υ,

E
[
(xk+`)2

]
|a=1 = E[(xk)2] + `σ2

υ. (6.2.5)

For |a| < 1 the system is stable, |a| > 1 the system is unstable and |a| = 1 the system
operates on the stability boundary. For large `, the stable case has bounded variance while
the variance of the unstable case grows exponentially to ∞.

Stable, (|a| < 1) lim`→∞E[(xk+`)2] =
(

1
1−a2

)
σ2
υ.

Unstable, (|a| > 1) lim`→∞E[(xk+`)2] =∞.

Marginally Stable, (|a| = 1) lim`→∞E[(xk+`)2] = lim`→∞E[(xk)2] + `σ2
υ =∞.

We are interested in the change of variance right on the stability boundary |a| = 1 as
this is where the eigenvalues of networked clocks lie. Here, the state variance grows linearly
with time with the rate of growth set to the noise variance σ2

υ. An unbounded (in the limit)
state variance indicates that we do not have a suitable model in 6.2.3. The brain system
is stable so a state with unbounded variance does not describe brain dynamics adequately.
Therefore we consider υk = 0 and a non-standard model with only measurement noise:

xk+1 = axk (6.2.6)

yk = cxk + νk, (6.2.7)

The State Noise Model: Extension to the Vector Case

Extending the model in (6.2.9)to the vector case gives:

xk+1 = Axk, E[x0] = 0, E[x0x
′
0] = Q0. (6.2.8)

yk = Cxk + νk, (6.2.9)

Kalman Filter

The true state, x, is not accessible as this is the variable we are attempting to recover from
EEG data. It follows that their variance E [xkxk

′] is equally inaccessible. Instead we can
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find the error between the true state x and our estimate, denoted x̂, and its associated
error covariance, E [(x− x̂)(x− x̂)′].

Our system and measurement model is:

xk+1 = Axk (6.2.10)

yk = Cxk + νk. (6.2.11)

The simplest estimate of x is to use the model in equation 6.2.10, and tweak our
estimate result with the corresponding output error.

x̂k+1 = Ax̂k + Hk(y − ŷ), (6.2.12)

where Hk is any appropriate gain. A Kalman filter is one where Hk is designed to be op-
timal in minimising the trace of the error covariance, this optimal Hk will be denoted Kf,k.

The Kalman filter [129] operates in a recursive manner to solve the Riccati equation
for the covariance matrix. Pk|k is the a posteriori covariance at time k given all the data
up to time k. It obeys the following recursion:

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)
′]

= Pk|k−1 −Pk|k−1C
′
[
CPk|k−1C

′
+ Rν

]−1
CPk|k−1

(6.2.13)

Rν is the covariance of the measurement error, νk ∈ N (0,Rν). The predicted estimate of
x at time k is denoted x̂k+1|k, indicating that this is an a priori estimate of the state at
the next time step, (k + 1), given the data up to and including time step k. This a priori
estimate is related to x̂k|k through the state model in 6.2.36,

x̂k+1|k = Ax̂k|k. (6.2.14)

The associated a priori error covariance, Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 −
x̂k+1|k)′], is related to Pk|k through:
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Pk+1|k = APk|kA
′. (6.2.15)

where Pk|k is the a posteriori error covariance in 6.2.13 and with x̂k|k denoting the updated
state estimate. This updated estimate of x at time k is an a posteriori estimate of the
state at the current time step, k, given the data up to and including time k. The update is
formed with the last predicted state estimate plus a correction term based on the residual
error found with the last predicted state estimate.

x̂k|k = x̂k|k−1 + Kf,k

(
yk −Cx̂(k|k−1)

)︸ ︷︷ ︸
“innovation”

, (6.2.16)

where Kf,k is the Kalman gain. The Kalman gain adjusts the relative importance of the
innovation.

Kf,k = Pk|k−1C
′(CPk|k−1C

′ + Rν

)−1
. (6.2.17)

Expressing the covariance entirely in an a posteriori fashion can be achieved by
substituting equation 6.2.15 in 6.2.13, giving:

Pk|k = APk−1|k−1A
′
−APk−1|k−1A

′
C
′ [

CAPk−1|k−1A
′
C
′

+ Rν

]−1
CAPk−1|k−1A

′
. (6.2.18)

Assuming the limit for k → ∞ exists, Pk−1|k−1 ≈ Pk|k ≈ P∞. Using Pk−1|k−1 = Pk|k =
P∞ we can rewrite (6.2.18) as:

P∞ = AP∞A
′ −AP∞A

′
C
′
[
CAP∞A

′
C
′
+ Rν

]−1
CAP∞A

′
. (6.2.19)

To gain some insight, let us consider the scalar case. We can consider the solution
for a first order system (A = a = 1,C = c = 1). Using,

xk+1 = xk = x0, E[x0] = 0, E[x2
0] = V ar[x0] = σ2

0 > 0 (6.2.20)

yk = xk + νk, (6.2.21)
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the covariance matrix in (6.2.18) reduces to:

Pk|k = Pk−1|k−1 − Pk−1|k−1

[
Pk−1|k−1 +Rν

]−1
Pk−1|k−1. (6.2.22)

If we let P0|k = 1, the recursion of equation (6.2.22) results in:

Pk+`|k+` =
Rν

Rν + `
=

1
1 + `

Rν

. (6.2.23)

For quantised noise,

Rν =
∆2

12
, (6.2.24)

where ∆ is the maximum quantisation error [130, p 29]. For a 10−bit normalised mea-
surement, ∆ = 1

210 . Therefore Rν is a small number in the order of 10−7. It follows that
Pk+`|k+` will decay to zero and the state is well estimated in this case.

For additional insight, consider the vector case for a single clock (2 states) with a sin-
gle output measurement which has similar properties to the scalar case. For a normalised
frequency, ω = 1 we have,

A =

(
0 −1
1 0

)
, (6.2.25)

and

C =
(

0 −1
)
, (6.2.26)

If we let Pk|k = I (where I is the identity), the recursion of the covariance matrix in
(6.2.18) reduces to:

Pk+2`|k+2` = I

(
1

1 + `
Rν

)
, (6.2.27)

for all `. Given equation 6.2.24, it follows that for the two-state vector case, similarly



6.2. THE MEASUREMENT MODEL 125

to the scalar case, Pk+`|k+` will decay to zero as ` → ∞ and the pair of states are well
estimated in this case 2. Although this vector example is for a single uncoupled clock,
importantly, given that the coupled oscillator network can be transformed to an equivalent
diagonalised system that is also purely oscillatory (eigenvalues of coupled system remain
purely imaginary), as detailed in Section 5.4.2, the analysis of this 2-dimensional vector
case for a pure clock can allow for reasonable inferences towards the higher dimensional
coupled oscillator network.

Having considered how well one measurement with low Rν can be used to find both
(i) a single state (in the scalar example) and (ii) a small number of states (in the vector
example for a two state clock), the natural next step is to consider how one measurement
with low Rν can be used to find a large number of states. The fundamental concern here
is how the powers of a Kalman filter scale with increasing number of states while the
measurement remains scalar (or at least low dimensional). This will be explored through
simulation in the next section, however, here an analogous situations can be considered
analytically in the scalar case. That is the case where Rν is no longer much less than the
order of the state we are attempting to estimate for a scalar constant state and scalar
measurement. Consider:

xk+1 ≡ a (6.2.29)

yk = xk + νk, (6.2.30)

where the variance of νk is Rν = a2 and E(νk) = 0. Therefore, the standard deviation of
the measurement noise, a, is of the same order of the state. The Kalman estimate, x̂ in
this case simply reduces to the standard mean:

2Note that more generally for

A =

(
0 −ω
ω 0

)
, (6.2.28)

we have the following: By converting to a digital sampled system with normalised sample period T = 1
(refer to Section 5.4.2 for sample period justification) we obtain A → eAT . Letting, Adigital = eAT =(
cos(ω) −sin(ω)
sin(ω) cos(ω)

)
, and using the recursion equation in 6.2.18 we find for ω = π

n
that with every

` a multiple of n we have, for an initial P0|0 = I, that Pk+`|k+` is again a scalar times the identity:

Pk+`|k+` = I

(
1

1+ `
Rν

)
.
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x̂k =
1
N

N∑
k=1

yk (6.2.31)

= a+
1
N

N∑
k=1

νk (6.2.32)

The expected value of the estimate gives the true state:

E [x̂k] = a (6.2.33)

since E(νk) = 0. However the variance of the estimate is dependent on the number of
samples N .

V ar [x̂k] = E

( 1
N

N∑
k=1

νk

)2


= E

[(
1
N

)2
]
E

( N∑
k=1

νk

)2


=
(

1
N2

)
(NRν)

=
Rν
N

=
a2

N
(6.2.34)

and it follows that the standard deviation of x̂k is a√
N

. With N limited to around 5000
due to stationarity considerations we are limited in how well we can recover the states.
With 5000 samples, the standard deviation of the state estimate error only reduces by a
factor of

√
(5000) ≈ 70. Extrapolating to the vector state case, reducing the standard

deviation of the measurement error by a factor of 70 will not make significant inroads in
estimating across a large number of states.

We are particularly interested in the gain between Pk|k (or V ar [x̂k] for the pre-
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vious scalar example) and Rν . In matrix form this could be represented as a gain G

such that, Pk|k = GRνG′. G tells us how much better we can estimate the state than
we can measure y. The EEG measurement y is limited due to quantisation noise. It is
anticipated that when operating on the margins of stability with systems of large order,
any measurement noise at the output will exasperate attempts to converge to a good state
estimate. Extrapolating from the scalar case, it seems that our gain G is proportional to
1
N indicating that we can only estimate the states to within an error margin that is directly
proportional to the number of sample points. As the number of states to be estimated
increases this becomes a severely limiting factor. This implies that throwing more data at
our Kalman filter to the limits of stationarity will not improve our state estimate and the
limited observability results in Chapter 5 stand.

The performance of a Kalman Filter, Kf and associated variance gain, G is ex-
plored through simulation in section 6.2.2. As expected from the analysis in this section,
these simulations show that while small networks can be reasonably well-estimated from
a single measurement, this will not scale adequately. For large networks the poor gain in
reduction of error variance over recursions of the Kalman filter become problematic and it
is impossible to obtain reasonable estimates of the states without vast quantities of data,
far exceeding what is available.

6.2.2 Simulation Results

The ability of a Kalman Filter to estimate states in a coupled clock network is investigated
in this section. The Kalman filter is tasked with estimating the associated amplitude and
phase for each oscillator. The results show that a Kalman Filter can reliably estimate the
states in small networks. For a network of 10 clocks, the Kalman filter struggles to obtain
reasonably accurate estimates within the stationarity window for EEG, taken to be 10
seconds of data. By network orders in the range of 100 clocks, the variance of the estimate
is of similar order to the amplitude variation of the states we are trying to measure, and
the Kalman estimator fails.

Simulation Set-up

To simulate the ability to estimate the states of a networked clock system, the iterative
Kalman Filter is employed. The system model used the following formulation, as justified
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in Section 6.2,

xk+1 = Axk (6.2.35)

yk = Cxk + νk. (6.2.36)

In order to maintain continuity with analysis of Chapter 5, while simultaneously
generating normalised EEG (with signal magnitude of 1) the following system parameters
were applied. The natural frequencies of the undamped clocks were uniformly distributed
across a normalised range of 0.01− 1, with a system matrix A, converted to digital form
from equation 5.4.17 in Chapter 5. Coupling was chosen to be distance-based geometri-
cally decaying as illustrated in Figure 5.6 of Chapter 5. This generates uncoupled clock
signals that oscillate with a maximum amplitude of 1, with coupled oscillations fluctuating
minimally from this while remaining of order 1. The entries of the measurement vector C

form a convex set as modelled by,

C =
[

0 δ1 0 δ2 . . . 0 δN

]
. (6.2.37)

where (δi ≥ 0,
∑

i δi = 1). δi ≥ 0 indicates the relative contribution clock i makes in
the EEG output signal. A uniform measurement of δi = 1

N was assigned. Therefore the
EEG signal has a maximum magnitude or order 1 and is easily quantised with K = 10
bits to 210 = 1024 levels between ±1. νk is the quantisation noise.

In Chapter 5, we investigated the percentage of a network with N clocks we can ex-
pect to observe given the minimum number of measurements (2N). Here simulations were
run for measurements exceeding the 2N minimum, but the number of measurements was
limited in line with EEG stationarity considerations. This upper limit was 5000 Kalman
filter iterations, showing the performance of the filter within a stationarity time limits of
approximately 10 seconds (with 512Hz sampling). Initial conditions were assigned ran-
domly, in the range [−1, 1], to each state.
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Simulation Results

While the performance of the iterative Kalman filter provided near perfect estimation
of the states for small networks, performance declined rapidly with increasing network
order. Figure 6.1 shows a comparison of the true state xk with Kalman estimate x̂k at
each iteration time step, k, for various network sizes. For a network of 2 clocks (N = 2)
the estimate aligns almost perfectly with the true state after a small number of Kalman
filter iterations. When the network is expanded to just 10 clocks (N = 10), the number
of iterations for the Kalman filter required to arrive at an accurate estimate is longer
than the N = 2 case as expected, with some error remaining after 5000 iterations. By
further expanding the network to 100 clocks (N = 100) there is a marked degradation
in performance, while the error between true state and estimate is reducing slowly over
iterations of the filter, the error remains quite large by k = 5000. Note that the higher
frequency oscillation as visible in the state shown from the N = 10 simulation is simply
due to coupling from nearby clocks.
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Figure 6.1: Comparison of true state xk with Kalman estimate x̂k at each iteration time
step, k. Plots showing networks of 2, 10 and 100 clocks are shown as N = 2, N = 10, N =
100.

The comparison of the true state xk with Kalman estimate x̂k just discussed and il-
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lustrated in 6.1 looks at just one state (of 2N possible states) from the network. While this
provides sample results it does not convey the distribution across the states in the Kalman
filter. As expected in larger networks from Chapter 5, some states are well-observed in
the EEG (and therefore well estimated by the Kalman Filter) while others are less so.
The specific set of states that find themselves well-observed is a function of the initial
conditions. This distribution is illustrated in Figure 6.2 between two states in a network
of 100 clocks.

2500 3000 3500 4000 4500 5000
-1.5

-1

-0.5

0

0.5

1

1.5
Sample Observable State Estimate for a Network of 100 Clocks (N=100)

N
o

rm
a

lis
e

d
A

m
p

lit
u

d
e

 

Time Step(k)

 

 

x

x
^

2500 3000 3500 4000 4500 5000
-1.5

-1

-0.5

0

0.5

1

1.5
Sample Observable State Estimate for a Network of 100 Clocks (N=100)

N
o

rm
a

lis
e

d
A

m
p

lit
u

d
e

 

Time Step(k)

 

 

x

x
^

Figure 6.2: Comparison of true state xk with Kalman estimate x̂k at each iteration time
step, k, in a network of N = 100 clocks. The upper trace shows a poorly estimated state,
contrasting with a well estimated state in the lower trace.

The overall Kalman Filter performance as a function of increasing network order
can be gauged by considering the average performance across states. The trace3of the
covariance matrix P(k|k) provides a good measure of this average behaviour. The diagonal
elements of the covariance matrix indicate how well the Kalman filter is estimating the
states. The ith diagonal entry is the error variance for the ith state. Small diagonal ele-
ments correspond to well-estimated states. The off diagonal elements represent the error
cross variances between states which should become close to zero after a few iterations of
the Kalman equations as the state errors are uncorrelated to each other.

3The trace of a matrix is the sum of its diagonal elements.
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To visualise the Kalman filter at work, the progression of the trace of the covariance
matrix together with the Kalman gain over iterations, k, are shown in Figure 6.3. The
upper plot shows the normalised traces, (Trace(P)/2N), while the lower plot shows the
Kalman gain, Kf of the 1st state for network orders of 2, 10 and 100 clocks. Note the
Kalman gain for N = 100 is a moving average to aid visualisation by showing the trend
without rapid local variations in signal. For a two clock network (N = 2) the Kalman
gain adjusts in the early timesteps such that the signal is well estimated (small trace) in
just 200 iterations of the Kalman equations. In contrast, the 10 clock network, (N = 10),
takes the full 10 seconds of EEG data to reduce the trace to the same level. For the
larger network of 100 clocks, the Kalman filter estimates the 200 states in the network
very poorly with a very limited reduction in trace over the 10 seconds of EEG data and a
Kalman gain that is very slowly increasing.
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Figure 6.3: The Kalman Filter at work over k iterations. The upper trace shows the
normalised trace of covariance matrix for networks with N = 2, 10, 100 clocks, illustrating
the average performance of the filter over all states. The lower trace provides a snapshot
of corresponding gain behaviour with the Kalman gain for just the 1st state plotted for
each network size.

From Figure 6.3 there is a clear degradation of estimation performance as the size
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of the system, N grows. This is as expected, however, the transition at which the network
is largely unobservable is startling. This is shown in the sigmoidal behaviour of Figure
6.4. This plot shows that for networks of order greater than 100, the average state error
variance approaches 1 after numbers of data samples appropriate to the stationarity limit
of EEG. The system was constructed in a normalised fashion such that the states we are
attempting to estimate are oscillations between limits of approximately ±1. An estimate
with a variance of 1 for a signal with an amplitude of 1 is a complete failure as an estimate.
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Figure 6.4: The normalised trace of the covariance matrix, P after iterating through 10
seconds of EEG data (5000 samples) against increasing network order, N

Statistics of Quantisation Noise

It is important to note that the findings in this chapter are based on using the Kalman filter
in an environment very close to the optimal environment for which it was designed. The
Kalman filter is optimally designed under the assumption that the observation noise, νk,
is zero mean Gaussian white noise. In this chapter νk is purely quantisation noise. Quan-
tisation noise approximates zero mean Gaussian white noise for sufficiently high quality
quantised signals. Here 3-bit quantisation (23 levels) and 10-bit quantisation (210 levels)
are compared.

Figure 6.5 illustrates the quantisation of a sinusoid. For 3-bit quantisation the error
signal is a structed time-series resulting in distinct peaks in the frequency spectrum above
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the white noise floor. For 10-bits, however, the error appears “random” and the frequency
spectrum is almost unaffected. For our purposes the EEG is quantised with between 10-24
bits, therefore the quantisation error closely approximates zero mean Gaussian white noise
and the Kalman filter is aptly applied.
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Figure 6.5: Comparing 3-bit and 10-bit quantisation noise. For 10-bits the noise looks
“random” unlike at 3 bits where a very structured error time-series is formed. The spec-
trum for the quantised 10-bit signal is near identical to the original non-quantised signal,
while for 3-bits there are distinct peaks in the spectrum above the noise floor.

Lessons from Kalman Estimation

The overriding conclusion from attempts at Kalman estimation is that more data brings
little improvement to the amount of information extracted about the underlying system.

Operating at the margins of stability, the gain in how well we can estimate the states
x from the measurement y is particularly poor. It is so poor that throwing more data at
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our filter fails to make effective inroads in error covariance reduction. Certainly, within
the constraints of stationarity a Kalman filter will not reveal the secrets of an oscillatory
system with state dimension significantly larger than the dimension of the measurement.

Having considered the stochastic approach, we next consider a non-linear argument.

6.3 Non-linear Extensions - Measure Preserving Maps

Having considered the inability of a Kalman filter to overcome measurement noise to esti-
mate the underlying states of the system, in this section we use tools from ergodic theory
(measure preserving maps) and information theory (entropy) to establish if there is some-
thing we have overlooked in the linear models and stochastic approaches discussed so far.
In effect what is under investigation here is the “gain” in error reduction over the mapping
function for both linear clocks and non-linear oscillators. The findings are consistent with
the earlier analyses of Chapter 5 and in Section 6.2.2: extended analysis of EEG signals
will not estimate the underlying states of brain oscillations, even if the underlying system
was stationary for an extended period. Most importantly, while the observability matrix
analysis applied only to linear system, ergodic theory can be extended to the non-linear
case.

6.3.1 Entropy of Measure Preserving Maps

Ergodic theory is concerned with dynamical systems with an invariant measure [131].
Consider a measurable set, X, and a sigma-algebra, Σ4. For our purposes X ∈ RN is the
set of all possible states, and Σ is a collection of subsets of the state space. A measure µ
on (X,Σ) is invariant under the mapping function f(X → X) if for every measurable set
S in Σ:

µ
(
f−1 (S)

)
= µ (S) . (6.3.1)

We will concentrate on Lebesgue measures which correspond to the “standard” measures
of space within Euclidean geometry: length in R1, area in R2, volume in R3 and so on.

4A sigma-algebra, Σ, over X is a collection of subsets of X where (i) for S ∈ Σ, its complement, S, is
also in Σ, (ii) the countable unions of sets in Σ are also in Σ, i.e. for S1, S2 ∈ Σ ⇒ S1 ∪ S2 ∈ Σ and (iii)
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A mapping function f,
xk+1 = f(xk), (6.3.2)

for a vector of states x ∈ RN , is considered to be measure preserving if a measure on set
xk ∈ Sk ⊂ RN is equivalent to the measure on the set xk+1 ∈ Sk+1 ⊂ RN after mapping.

Entropy of a map, f , is the gain in state uncertainty over iterations of the map. If
we take a measure yk where,

xk+1 = f (xk) (6.3.3)

yk = g(xk) + ν, (6.3.4)

for some function g and we measure y with some uncertainty or error ν, entropy of
the map f tells us how much the uncertainty reduces as we consider multiple mappings
{xk → xk+1 → . . .}. Should we have a single state system, x = x, with a single measure-
ment yk we can estimate x within an error of ν. If ν corresponds to a resolution of bν bits,
for a two state system, xk = [x1(k), x2(k)]′, with a single measurement yk we can estimate
each state to an accuracy of bν

2 bits. Additional time-series measurements can be used
to build up the number of bits we have at our disposal to estimate the underlying states.
Using entropy measures we wish to evaluate the additional gain in bits we can obtain
from the mapping function. Particularly for systems like EEG with a low-dimensional
measurement (y ∈ RM ) upon a high dimensional system (x ∈ RN , where N >> M) we
require positive entropy, otherwise Kalman Filtering and similar estimation techniques
will only be able to provide us with information directly proportional to the number of
measurements.

In terms of bits, consider the situation where we have M measurements, each over
the observation window k = 1 . . . n and recorded with K bits at our disposal to estimate an
underlying system with N states. Through just observation alone we have on average KMn

N

bits per state. As we are dealing with the scenario where N �M (and indeed N �Mn)
this will not provide sufficient information, as has been discussed in detail in Section 5.5.2.
Here we consider the mapping function, f , in addition to the observation data. Note that
this is explicitly using dynamics (the mapping function f) that are unavailable to us in
the real EEG-seizure prediction problem. Nonetheless, let the mapping function, f , have
positive entropy, hf > 0 in bits per map iteration. Our improved estimate of the states

Σ must contain at least one non-empty subset of X
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at each time step, k, with the addition of entropy from going nf mappings back in time
is: (hfnf+K)M

N bits. This gives us an improved (hfnf+K)Mn
N bits over the KMn

N bits from
observation alone as illustrated in the upcoming linear example with M = 1.

For linear systems,

xk+1 = Axk (6.3.5)

yk = Cxk + ν. (6.3.6)

For A an invertible mapping, with determinant d = det(A), then for a Lebesgue
measure µ:

µ
(
A−1S

)
=
µ (S)
|d|

. (6.3.7)

Therefore, linear mappings, A with a unity determinant are measure preserving.

The entropy in a discrete, invertible N ×N map A with eigenvalues λi is [132]:

hµ (A) =



∑
i:|λi|>1

log(|λi|) , forward in time

or∑
i:|λi|<1

log(
1
|λi|

) ,backwards in time

(6.3.8)

The choice of “unstable” (|λi| > 1) or “stable” (|λi| < 1) eigenvalues correspond to
entropy gained by moving forward or backwards in the timeseries respectively.

Note that marginally stable eigenvalues (|λi| = 1) generate zero entropy. This follows
intuitively considering that unity magnitude eigenvalues correspond to clock oscillations
that neither decay nor expand in amplitude over time. After one period of a constant
amplitude oscillation, there is essentially no new information to be gained by observing
further periods of timeseries data as the same information is repeated. Hence, the infor-
mation gain or entropy is zero. These concepts are demonstrated in the following linear
example.
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A linear example

The linear system,

xk+1 = Axk (6.3.9)

yk = Cxk + ν, (6.3.10)

where,

A =

(
2 0
0 1

2

)
, (6.3.11)

and

C =
(

1 1
)
, (6.3.12)

is observable (O(C,A) = [C,CA]
′

is full rank) and A is a measure preserving map
(det (A) = 1).

Lets suppose that y is measured with 2 bits and that we are dealing with a normalised
state xi ∈ (0, 1]. Normalisation provides simplicity for this example, but the analysis holds
beyond normalised systems. For a single measurement y this provides us with just 1 bit
of measurement about each state x1 and x2. Therefore our state estimate will have an
error bound of 1

2 (since the quantisation error is 1
2K

, for K bits per state). Suppose we
estimate that our state is x = [0.5, 0.5] and assume that our space including the error
is the unit square, or set S0 as shown in Figure 6.6. Mapping this unit square gives,
S0 → A(S0) = S1. The map is clearly measure preserving under a Lebesgue measure as
area is preserved. Our new set, S1 is centred at x = [0.25, 0.5]. Consider for the moment
that x=[0.25,0.5] is the mapped state at time k + 1 from the true estimate at time k.
With the knowledge that our error is bounded at 1

2 , we can “update” S1 to the criss-cross
patterned area as illustrated in Figure 6.7. By now inverting the map we find a refined
area Z0 = S0 ∩

(
A−1 (S1)

)
. With one iteration of the map A−1 between time k+ 1 and k

the error boundary on the state estimate at time k is reduced. We now have x1 estimated
with a error of 0.25 (to a resolution of 2 bits) and the error on x2 remains the same at 0.5
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(to a resolution of 1 bits). This is 3 bits per two states (an average of 1.5 bits per state)
from 2 bits of measurement. We have a entropy gain of 1 bit per iteration of the map.
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Figure 6.6: Illustration of the mapping of the space S0, the state estimate at time k
including the error on this estimate based on quantisation, to space S1 at time k+1. Area
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Figure 6.7: Illustration of the refinement of space S0 to Z0 = S0 ∩
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A−1 (S1)

)
, using two

datapoints. The estimate area is shrunk by a factor of two.

Entropy can equally be found from the eigenvalue method, using equation 6.3.8:

hµ (A) =
∑

i:|λi|>1

log2(|λi|) = log(2) = 1bit (6.3.13)

and by considering the areas directly:

hµ (A) = log2

(
µ(S0)
µ(Z0)

)
= log2

(
1
1
2

)
= log(2) = 1bit. (6.3.14)

Using two iterations of the map, we can further refine S0 to Z2
0 = S0 ∩

(
A−1 (S1)

)
∩(

A−1
(
A−1 (S2) ∩ S1

))
. In general, the notation Zn0 is the refinement of area S0 by n

iterations of the map. In this example we have used the map iterations forward in time
(where the map A stretches state x1 allowing refinement of S0 with inverse mapping by
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revising the mapped area according to our quantisation error bounds. Equally this ar-
gument holds in inverse time using the inverse mapping first where x2 is stretched, then
allowing refinement with the original (non-inverse) mapping, as illustrated in Figures 6.8
and 6.9. The facility to use the timeseries in both directions is why the entropy from
eigenvalues is the piecewise function in equation 6.3.8, split along the stability boundary
(unstable systems in reverse time are conveniently “stable” for our data mining purposes).
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Figure 6.8: Illustration of the inverse mapping of the space S0, the state estimate at time
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Now what of our earlier assumption that the true state lived exactly at the centre
of the error set S1? This can be considered to be true on average. Over a quantised
timeseries, the quantisation error will be zero on average. Therefore, the above entropy of
a measure preserving map is the entropy on average per one iteration of the map.

Entropy of a map f in terms of reduction in state estimation error, using a
Lebesgue measure, µ, is:

E [hµ (f (xk))] =
1
n
log2

(
µ(S0)
µ(Zn0 )

)
, (6.3.15)

where n is the number of iterations of the map, E is the expected value and the
units of hµ (f (x)) are bits per map iteration.

For linear systems, the map f can take the form of a matrix A with eigenvalues
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datapoints. The estimate area is shrunk by a factor of two.

λ(A) = λ1, λ2 . . . λN and,

hµ (A) =


∑

i:|λi|>1

log(|λi|) , forwards in time

∑
i:|λi|<1

log(
1
|λi|

) ,backwards in time
(6.3.16)

For non-linear systems with oscillatory dynamics, Equation 6.3.16 can also be
used with the Jacobian, J, of the system replacing the system matrix A. The Jacobian
is shown to provide a good estimate of entropy in the case of non-linear oscillatory
systems in [133].

6.3.2 Entropy of Coupled Oscillations

Our model for the brain system and its measurement by EEG is the coupled oscillator
model as introduced in Chapter 4 and further explored in Chapter 5 and Section 6.2.
The mapping for coupled oscillators that are marginally stable has zero entropy. This is
a fundamental limitation to what we can expect to observe about the high-dimensional
underlying brain system from low-dimensional EEG signals.



6.3. MEASURE PRESERVING MAPS 141

The case of linear clocks

For a single uncoupled clock with continuous system matrix,

A =

(
0 −ωi
ωi 0

)
, (6.3.17)

and corresponding digital system matrix, A→ eA for unity sample time,

Ad =

(
cos(ωi) −sin(ωi)
sin(ωi) cos(ωi)

)
, (6.3.18)

These linear clocks are measure preserving, det(Ad) = 1 and have zero entropy,
given Equation 6.3.16 with |λi(Ad)| = 1, ∀i. An illustration of these properties is given in
Figure 6.10 based on a 1-dimensional measurement with 2 bits (y ∈ R1,K = 2) similar to
the previous examples and ωi = 1rad/s.

The case of non-linear coupled oscillations

From an entropy viewpoint measurements of linear clocks reveal system information in
a very sparing manner. What of non-linear oscillators? We find that the non-linear un-
damped pendulum oscillator system can also be shown to be a zero entropy mapping.

For a single uncoupled oscillator with differential equation, ẍ + ω2
i sin(x) = 0, we

have the following continuous state mapping functions:

ẋ1 = f1(x) = x2 (6.3.19)

ẋ2 = f2(x) = −ω2
i sin(x1) (6.3.20)

This can be expressed in matrix form using the Jacobian,

J =

(
df1
dx1

df1
dx2

df2
dx1

df2
dx2

)
=

(
0 1

−ω2
i cos(x1) 0

)
. (6.3.21)
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(
A−1 (Sk+1)

)
∩
(
A−1

(
A−1 (Sk+2) ∩ Sk+1

))
and the entropy of the linear clock

map is zero.
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Transforming to a balanced matrix using T:

T =

(
ωi 0
0 −1

)
, (6.3.22)

we obtain,

TJT−1 =

(
0 −ωi

ωicos(x1) 0

)
. (6.3.23)

Now converting to digital format (Jd → eTJT−1
) for unity sample time,

Jd =

 cos(
√
cos(x1)ωi) − 1√

cos(x1)
sin(

√
cos(x1)ωi)√

cos(x1)sin(
√
cos(x1)ωi) cos(

√
cos(x1)ωi)

 , (6.3.24)

Using equation 6.3.7, these non-linear oscillations are measure preserving since
det(Jd) = 1 and would also appear to have zero entropy at first sight, given Equation 6.3.16
with |λi(Jd)| = 1,∀i. The time-varying nature of Jd along trajectories does not explicitly
allow for an analytical estimate of the entropy such as this, however, through simulation,
and averaging over trajectories, we show that the entropy of zero is indeed a very good
approximation for this non-linear system.

An illustration of these properties is given in Figure 6.11 with ωi = 2π
10 rad/s. For

an initial state estimate including error boundary of the unit square, subsequent map-
pings rotate the states by an approximate ωi = 2π

10 rad/s, while also mapping the shape
in a non-linear fashion which distorts the initial area. The mapped areas remain unity
(measure preserving). For any given discrete time k it may be possible to refine the area
according to the boundaries of error, ±0.5, however, due to the rotational nature of the
system, any refinement is cancelled on average over mappings as we rotate through 2π.
Since, regardless of non-linearity, the state is not known to be exactly at the centre of
the unit square, but instead the expected value of x is the centre point, our entropy is an
expected value over many measurements. Thus the secondary need for averaging in this
non-linear case is superfluous and entropy is still zero (in the same expected value sense
that it was defined for the linear case).

Numerical simulation assessing entropy in terms of area refinement shows that the
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Figure 6.11: Illustration of the mapping of the set S0, containing an initial estimate of two
states from a single non-linear oscillation at time 0 including the error on this estimate
based on quantisation. The map in Equation 6.3.24 is employed with a frequency ωi = 2π

10
to map Sk to Sk+1 for k = 0, 1, 2, 3, 4.
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expected value of entropy is zero, using the Jacobian of the mapping function in Equa-
tion 6.3.24. Unity digital sample time is used in combination with a oscillator natural
frequency of ωi = 2π

1000 . As discussed in Section 5.4.2 normalised frequency and sample
time are equivalent using time-scaling to the natural frequency range of brain oscillations
combined with EEG sampling period. As we are operating on the stability boundary,
small approximation errors in the Jacobian can quickly lead to unstable results. A par-
ticular small normalised frequency ( 2π

1000) is chosen here so as to minimise numerical error
impacting the stability of the simulation. The simulation results confirm that the expected
value of entropy is zero. As the state set is rotated round the origin the average distance
between the mapping of the centre point (xck = [xc,1k , xc,2k ], where the initial centre point is
xc0 = [1

2 ,
1
2 ]) and the area boundaries remains 0. Figure 6.12 illustrates that the expected

distance between the set boundaries and the centre point is zero in both the x1 and x2

state directions. As expected, the distance from boundary to centre for the error area at
each sample time k is periodic with period 1000, and averages over k (cumulative means)
to zero. Therefore the simulations support that there is no refinement of the error state set
to be gained with inverse mapping on average and the entropy of the non-linear oscillator
map is zero.

The case of a Van Der Pol oscillator

Another non-linear oscillator example is the Van Der Pol oscillator. It is described by the
equation,

ẍ− ε(1− x2)ẋ + ω2
i x = 0 (6.3.25)

With oscillatory dynamics it would be expected that the mapping has zero entropy. In-
deed that is the case. An illustration of the Van Der Pol mapping is given in Figure 6.13
with ωi = 2π

10 rad/s, for two choices of parameter ε.

Similar to the non-linear clock in the previous section we can find the Jacobian to
analyse the measure preserving capabilities of the Van Der Pol oscillator. For a single
uncoupled Van Der Pol oscillator with differential equation 6.3.25 we have the following
continuous state mapping functions:
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Figure 6.12: Evaluating an error area mapped by a non-linear oscillator. For each state
direction, x1 (grey line) and x2 (black line): The dashed lines show the mean distances
between the centre point of the error area and the error boundary points at each sample
time k, and the solid lines shows the cumulative mean of the same distance over k.
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(a) Van Der Pol equation with ε = 0.1
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(b) Van Der Pol equation with ε = 0.01

Figure 6.13: Illustration of the mapping of the set S0, containing an initial estimate of two
states from a single Van Der Pol oscillator at time 0 including the error on this estimate
based on quantisation. The map in Equation 6.3.25 is employed with a frequency ωi = 2π

10
to map Sk to Sk+1 for k = 0, 1, 2, 3, 4.
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ẋ1 = f1(x) = x2 (6.3.26)

ẋ2 = f2(x) = −ω2
i x1 + ε(1− x2

1)x2 (6.3.27)

This can be expressed in matrix form using the Jacobian,

J =

(
df1
dx1

df1
dx2

df2
dx1

df2
dx2

)
=

(
0 1
−ω2

i ε(1− x2
1)

)
. (6.3.28)

Transforming to a balanced matrix using T:

T =

(
ωi 0
0 −1

)
, (6.3.29)

we obtain,

TJT−1 =

(
0 −ωi
ωi ε(1− x2

1)

)
. (6.3.30)

The equations can be converted to digital format using Jd → eTJT−1
for unity sam-

ple time.

The Van der Pol system is not so convenient analytically as the non-linear pendulum
oscillator, however, we can still find properties that closely observe measure preserving
maps. The determinant of the digital Jacobian is approximately unity for small ε.

Jd = eε(1−x
2
1) ≈ 1(∵ ε ≈ 0). (6.3.31)

Similarly the eigenvalues of J are approximately on the imaginary axis:

λ(J) = ±ωij + δ, (6.3.32)

where δ is a function of ε and δ << ωi.

Numerical simulation assessing entropy in terms of area refinement shows that the
expected value of entropy is zero, as shown in Figure 6.14. Unity digital sample time is
used in combination with a oscillator natural frequency of ωi = 2π

1000 and Van Der Pol
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Figure 6.14: Evaluating an error area mapped by a Van Der Pol oscillator. For each state
direction, x1 (grey line) and x2 (black line): The dashed lines show the mean distances
between the centre point of the error area and the error boundary points at each sample
time k, and the solid lines shows the cumulative mean of the same distance over k.



150 CHAPTER 6. STOCHASTIC AND NON-LINEAR APPROACHES

parameter ε = 0.0001. As expected, the distance from boundary to centre for the error
area at each sample time k is periodic with period 1000, and averages over k (cumulative
means) to zero. Therefore the simulations support that there is negligible refinement of
the error state set to be gained with inverse mapping on average and the entropy of the
Van Der Pol oscillator is approximately zero.

One item for careful consideration for both the non-linear examples presented is that
we are linearising with the Jacobian. Does this provide valid results for the underlying
non-linear map? Indeed it does. Solutions for entropy of maps of linearised systems have
been proven to closely approximate that of the non-linear system for these classes of os-
cillatory systems by Kawan [133].

6.4 Conclusions from Entropy

The results in the previous sections demonstrate that for both linear clocks and non-linear
oscillators the amount of information we can glean from EEG signals of brain oscillations
is severely limited by the number of EEG electrodes and their sampling rate.

Increasing the sampling rate is possible but not to the extent necessary to generate
sufficient information. Is it not currently feasible to dramatically increase electrode num-
bers in an invasive device. Indeed the maximum of 64 electrodes for short-term in-hospital
warning systems, already most likely far exceeds the number that could be implanted per-
manently given wiring constraints and safety considerations. Future electrode grids of
1000 to 10000 electrodes with wireless communication technology are under development
at Bionic Vision Australia for a retinal prosthesis device, however, electrodes on these
grids are densely organised and would likely be too localised for epileptic seizure predic-
tion until such a time as we can reliably and finely localise the generation of seizures for
a given patient.

Clearly, the passive observation of brain dynamics provides a limited flow of infor-
mation. The results of this chapter show that oscillatory systems do not lend themselves
to information extraction. The brain is certainly an oscillatory system and our ability to
extract information from the brain is very limited in this case of low-dimensional EEG
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and furthermore, severely hampered by any noise. The noise kills any ability to estimate
underlying states of an order significantly larger that the measurement. There is a real
need to dramatically improve upon this, one feasible option is to include an input.

Including an input signal enables us to shine a strong light on a particular part of
the dynamics. The amount of information we extract is still limited, but through use of
an input we can focus the information we receive on a localised part of the dynamics. The
inclusion of an input stimulus is explored in the next chapter.

6.4.1 Chapter Contribution

This chapter provides evidence that clinical EEG acquisition provides insufficient infor-
mation for epileptic seizure prediction using stochastic Kalman estimation and entropy
of measure preserving maps. These are significant findings following on from the previ-
ous chapter result that the system was not observable in the traditional sense with the
minimum of measurements. Even with our best practical Kalman estimation attempt,
using increased amounts of data to the stationarity limit, the system remains extremely
unobservable. More fundamental is the contribution of the entropy of measure preserving
maps result. Both linear and non-linear undamped oscillations are measure preserving
maps with zero entropy. Therefore with brain dynamics appearing to be oscillatory in
nature, and close to marginally stable, this result that the system does not lend itself to
information extraction extends to all envisaged brain models and large-scale measures of
EEG. This heralds the necessity for a significant deviation from traditional seizure pre-
diction methodology. Regardless of model or analysis method, passive EEG observation
of oscillatory brain dynamics lying on the boundary of stability will not be successful for
epileptic seizure prediction.



Chapter 7

An Active Paradigm for Epileptic

Seizure Prediction

This chapter presents a novel theoretical paradigm for epileptic seizure prediction based on
a coupled oscillator model of brain dynamics. This model is used to investigate prediction
methods capable of tracking the synchronisation changes that may lead to a seizure. The
results of Chapter 5 and 6 indicate that state-space reconstruction of a coupled oscillator
model from an EEG-like signal is ill-posed, therefore, monitoring system synchronisation
via the EEG signal is unlikely to give advanced warning of imminent seizure activity.
Through simulation, it is shown that synchronisation tracking may still be viable using
an input probing stimulus to actively seek information from the coupled oscillator network.

Over the past 34 years many methods, including synchronisation measures, have
been unsuccessfully applied to EEG recordings for seizure prediction [89]. Here we ap-
proach the epileptic seizure prediction problem with a very simplified coupled oscillator
network. Despite this simplicity, such networks exhibit EEG like behaviour from a mea-
surement point of view. Our previous results in Chapter 5 show that in the most ideal
abstraction of the underlying problem, practical observability (assuming a finite precision
EEG measurement instrument) is not an obvious property, even when the underlying sys-
tem is observable in the normal sense (i.e. for ideal measurements). Coupled with the
stochastic estimation and zero entropy map findings of Chapter 6 this offers explanation
on why epilepsy prediction attempts based on passive observation of EEG signals fail - be-
cause sufficient information cannot be gleaned from the EEG signal. Due to the simplicity
of our model, it is possible to explore active signal probing as a means to early-detection

152
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and prediction of epileptic events. This paradigm is explored here using simulation studies.

The remainder of this Chapter details an active paradigm for seizure prediction with
the coupled-oscillator model introduced in Chapter 4 with supporting proof-of-concept
simulations presented in Section 7.2. Section 7.4 follows with a discussion and conclusions
on the relevance of these findings in a clinical setting.

7.1 The Coupled Oscillator Model

The coupled oscillator model used is that earlier described in Chapter 4. To briefly reit-
erate, EEG recordings from brain tissue are modelled as the output measurement from a
system of networked clocks. Each individual oscillator is modelled as a pendulum clock
with the oscillatory motion of the pendulum described as

ẍi + 2ζiωiẋi + ω2
i xi = Fi, (7.1.1)

where x is the angular position of the pendulum, ζ is the damping parameter, ω is the nat-
ural frequency of oscillation and F is the forcing term. F will take the form sin(ωint) for an
external evoked input signal of frequency ωin and F additionally includes

∑
j αij(xi− xj)

for coupling of the position state from other pendulums.

The resulting state space model for an interacting system of two pendulums is ẋ =
Ax + Bu, where u is the input signal and the A and B matrices are as follows:

A =


0 1 0 0

−ω2
1 + α12 −2ζ1ω1 −α12 0

0 0 0 1
−α21 0 −ω2

2 + α21 −2ζ2ω2

 (7.1.2)

B =
[

1 0 1 0
]′
, (7.1.3)

where prime(′) denotes transpose and the input signal is, for example, u = sin(ωint).

As earlier discussed in Chapter 4, this can be extended to an 2N state system, where
there are N interconnected pendula subsystems as illustrated in Fig. 4.1. Each subsystem
is allowed to connect to all the others and αij ≡ αji (symmetric coupling). Random graphs
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Figure 7.1: The simulation experimental set-up for a network of 25 coupled oscillators
with 4 EEG channels.

can be constructed by choosing αij ≥ 0 from a distribution of values.

The output state equation for a single recorded EEG channel can be described by
y = Cx, where

C =
[

0 −δ1 0 −δ2 . . . 0 −δn
]
. (7.1.4)

The output is a convex combination of the angular velocity states in the sys-
tem (δi ≥ 0,

∑
i δi = 1). This choice of B and C ensures that the transfer function,

G(s) = C(sI−A)−1B, is normalized to 1 at DC. δi ≥ 0 indicates the relative contribution
clock i makes in the EEG output signal.

7.2 A Paradigm for Seizure Prediction

A fully observably system would enable a reconstruction of the model to be estimated and
tracked over time from the EEG. However, we find this unlikely to be feasible with the
EEG signal. An alternative to parameter tracking and state-space estimation for seizure
prediction is investigated in this section. In particular, we study what can be learned by
probing the system with an input.

In our model we equate prediction of seizures with evidence of synchrony between
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many individual oscillators before synchrony is visible in our EEG electrode recordings.
Synchrony is defined as sustained phase locking to a particular frequency and is computed
as the least squares solution to the model

X(t) = A cos(2πft+ φ) + w(t) (7.2.1)

where f is the known frequency of the input stimulus, w(t) is zero mean white noise and
the phase, φ and amplitude, A = A(f), are estimated (see Appendix A.4 for details of
this method). X(t) can be either (1) the EEG signal used to estimate the phase-locking
response to our probe stimulus, or (2) the internal states of the model to determine phase
for individual clocks to establish if predictions from the EEG data correspond to a true
picture of the underlying system activity. This definition of phase synchrony is used as
it is more robust than the Hilbert transform (see Appendix A.4) in the presence of noise
and can be used on broadband signals without any ambiguities.

The simulated coupled oscillator network was configured as shown in Fig. (7.1).
There are 4 electrodes each influenced by the individual oscillators in their immediate
vicinity. The network was interconnected with coupling parameters αij , chosen uniformly
in the range 0-0.01. The system’s natural frequencies, ωi, were randomly chosen from a
uniform distribution spanning from 0.5 Hz-100Hz. To stimulate the case of synchronisa-
tion build up throughout the network, the damping parameters, ζi, were chosen uniformly
in the range 0.001 to 0.01. The generation of a seizure was modelled by expanding equa-
tion 7.1.1 for a single clock in the network to include a non-linear element, creating a
Van der Pol oscillator with system equation ẍ + (εx2 + 2ζω)ẋ + ω2x = F . By allowing a
negative damping parameter, ζ, in this non-linear clock an unstable oscillator (becoming
marginally stable in steady state) was formed which would slowly take over the entire
network. Matlab Simulink Diagrams and associated code are provided in Appendix A.5.7.

The prediction paradigm was centred on the knowledge that a stable coupled oscil-
lator network (modelling the normal brain state) only has significant responses to input
frequencies in close proximity to the system natural frequencies (ω1 · · ·ωn). Investigative
probing can enable the collection of normal system responses, A(f), with a library of
natural frequencies found as the peaks in this spectrum. In general we hypothesize that
the seizure state will exhibit a significantly altered response to probe stimuli. One likely
alteration to the system response is that subsequent probing with the system frequencies
should elicit a measurable response in the EEG, except when the network propagates into
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a seizure state. In the seizure state, individual oscillators are synchronised to the fre-
quency of the unstable oscillator and are therefore non-responsive to any probing stimulus
(of sufficiently low stimulation level for patient safety). Sufficiently low stimulation im-
plies that we would be operating in the subthreshold region to avoid inducing a seizure.
Subthreshold stimulations are routinely used in epilepsy surgery for mapping purposes.

Our approach to seizure prediction is to monitor when the response to probe stimuli,
A(f), is significantly altered from the library of normal responses. If we get such an altered
response on several adjoining electrode stimulation sites we can infer that the underlying
brain matter may be in a seizure state. We hypothesize that the early seizure state will
exhibit an altered response in advance of the seizure state being visible as synchronisation
across EEG channels. This hypothesis is based on the knowledge that the signal at the
EEG channel is a function of much fewer oscillators than are present in the system, thus
an oscillation would have to be widespread across the network before it is visible at the
EEG level.

Sample EEG signals generated from the coupled oscillator model are shown in Fig.
(7.3). Simulation results providing proof-of-concept are illustrated in Fig. (7.2). In this
simulation, a poor response to normally-resonant probe stimuli was found in advance of
visible synchronisation (seizure activity) at the EEG level. This paradigm acts as a predic-
tor of very immediate seizures and could be considered a form of early detection. However,
early detection could prove sufficient to provide a therapeutic window for seizure abating
stimuli in an implantable seizure control device. Note the time of the therapeutic window
was 0.58 seconds for this simulation, which was entirely dependent on the choice of damp-
ing and coupling parameters in the model. A realistic estimate of therapeutic window
time in real brain matter would require clinical data from probe stimuli.

7.3 Coupled Oscillator Model: A Conveniently Balanced

System

It is interesting to observe that the oscillator clock model used in this Chapter is rea-
sonably balanced between observability and its dual controllability. This is a convenience
worth noting when we are considering the addition of inputs to the system framework.
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Figure 7.2: The simulated time evolution of a synchronisation (or seizure event) in the
coupled oscillator model. Note that from t=0 seconds clock number 3 was unstable, by 2.9
seconds there was no longer a response to input probe stimuli in electrode one. However,
it was not until t=3.48 seconds that synchronisation to the unstable natural frequency
was measurable in the majority of EEG electrodes. Prediction therapy time window =
3.48-2.9= 0.58 seconds.

We are interested in what we could learn by probing the system with an input, as
per the active model of EEG analysis described earlier in this Chapter. The ultimate goal
of seizure prediction/ early detection, however, is to couple the advanced warning system
with a seizure prevention mechanism. Such an mechanism to prevent the spread of seizure
activity could perhaps involve further input signals to quench seizures rather than just
probe for information. To this end a balanced transformation of the system is considered
for the single output and input channel case.

A balanced transformation is one where the states of the transformed system are
constructed such that the degree of controllability and the degree of observability of each
state is the same. This implies that states that are difficult to observe are equally diffi-
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Figure 7.3: Sample EEG signals generated from the coupled oscillator model. The upper-
trace shows the EEG signal corresponding to electrode number 2 in Figure 7.2. This is
the weighted sum of the states from 4 clocks (n=4). The trace becomes synchronised to
the unstable oscillator at 3.48 seconds. The lower trace is an example of the weighted sum
of all 25 clocks (n=25) in the “normal” (stable) system, illustrating the increase of signal
complexity with model order.

cult to control and vice versa. Those states that are easily controllable and observable
have a significant component in the direction of the largest eigenvalues of the reachability
gramian P. Note the reachability gramian equals the observability gramian Q for a bal-
anced system [118].

The time-scaled clock network as earlier discussed in Figure 5.1 of Chapter 5 was
transformed to a balanced representation using the methods described in [118, Ch 7] (code
is provided Appendix A.5.8). The range of singular values in the resultant system is almost
identical to the non-transformed system as illustrated in Figure 7.4. This indicates that
the time-scaled transform generates a system close to the optimal representation, in so far
as, the limited number of states we can easily observe (those with large singular values)
are conveniently also those states we can most easily control. This is promising for fu-
ture development in design of input signals to desynchronise brain tissue for seizure control.
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whose natural frequencies were uniformly chosen from the normalised frequency range
of either 0.98-1 (plotted as symbol o), 0.6-1 (plotted as symbol .) or 0.0025-1 (plotted
as symbol x). The results for the unbalanced system are shown in black (as previously
provided in Figure 5.1 of Chapter 5), while the grey trace denotes the results of A and C
from a balanced transform. Note the black and grey traces almost entirely overlap in the
(x) and (.) datasets and are closely aligned for (o).

7.4 Discussion and Conclusion

We have provided, for a very simplistic abstraction of the real problem, a seizure pre-
diction paradigm based on synchrony for use with EEG measurement using input probe
stimuli. While the therapeutic window following prediction may be small, strategically
placed electrodes at the seizure focus may enable synchronous activity to be found and
abated prior to the emergence of clinical symptoms of epilepsy.

For this paradigm to be a viable clinical option stationarity and repeatability issues
need to be addressed. The EEG is inherently non-stationary, however, the EEG may re-
main quasi-stationary for periods long enough to build up a library of “normal” responses
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to stimuli. Also, it needs to be established if the real brain system responses to probe
stimuli are repeatable to some degree.

7.4.1 Chapter Contribution

This chapter demonstrates that evoked EEG following an active probing input signal has
potential as an information rich signal for the therapeutic advanced warning of immi-
nent seizure activity. While prediction may well remain illusive, the early detection of
synchronous seizure events may be sufficient for intervention in a closed loop seizure pre-
vention device. This is an important contribution providing initial theoretical justification
for the very recently emerging clinical experimentation in active EEG for seizure warning.



Chapter 8

Conclusions

8.1 Conclusions

Can we predict epileptic seizures from EEG data? The overriding conclusion from the
findings of this thesis is no.

The brain system is undoubtedly oscillatory with information commutated across
neural networks due to oscillatory electric field potentials. Any brain model (and indeed
all existing models) attempting to characterise the link between brain tissue and EEG
will exhibit oscillatory dynamics. It follows that the coupled oscillator model used in this
thesis is very suitable for the express purpose of investigating observability properties.
Its suitability is based on the reasoning that if the most basic coupled oscillator model
(that of coupled pendulum clocks) has limited observability with a basic measurement
of spatially averaged oscillator activity, then the prospects of any improved observability
in more complex and bio-realistic oscillator models is highly unlikely. The observability
difficulties found in the work of this thesis stem from fundamental properties of oscillators
themselves, that is dynamics which lie on the margins of stability. Therefore these results
can naturally be extended to encompass any and all variations to oscillatory networked
dynamics with an EEG-like measurement. We cannot predict the trajectories of a system
when, with limited observability, we are only privy to a small fraction of the underlying
dynamics. Seizure prediction from conventional large-scale EEG data is an exceedingly
unlikely prospect.
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A purely linear clock system is theoretically observable, however, by considering the
uncertainty induced due to digitisation alone, that is, the simple quantisation of the mea-
surement, it is not possible to estimate more than scantily few of the system’s N states
given N measurement data points. Essentially, as a simultaneous equation problem, the
level of linear independence between equations falls below the level of measurement quan-
tisation noise and indeed, for many of the equations, falls below standard computational
quantisation limits. Importantly, this is with both the oscillation frequencies and the con-
nectivity structure and strength completely known. Even in the scenario that the basic
coupled clock model was sufficient to model brain dynamics, the level of complexity in
the real-problem would be much increased to find not only the states but also frequen-
cies and system structure. Furthermore, these limitations to observability were found in
the absence of all noise sources apart from quantisation noise. Real EEG measurement
is rampant with noise artefact, so again the real-problem is far more challenging. Given
such poor observability in our simple noiseless model is is hard to envisage that real brain
dynamics could be more observable.

The application of attempting to use more data to improve estimation capabilities
by averaging over the quantisation noise was explored through iterative Kalman filtering.
It was found, however, that when taking stationarity limitations into account, the esti-
mation attempt ran out of time samples far in advance of gaining access to much system
information due to the difficulties of system habitation on the stability boundary. Most
significantly, the analysis of marginally stable oscillatory dynamics as measure preserv-
ing maps revealed that the effective expected map entropy over map iterations was zero.
That is, no information in terms of refinement of error margins on a estimated state can
be gained by iterating over oscillator map dynamics. Therefore, even if the brain remained
stationary for a long period, additional data points would not bring about significant re-
duction of error area on our estimate. This entropy result is especially significant as it is
a result which encompassed both linear and non-linear oscillatory systems.

On the restriction of the model to pure or marginally stable oscillators: It is bi-
ologically justifiable given the alternatives to marginal stability are either (i) damped
oscillation or (ii) unstable oscillation. For the electro-magnetic activity of normal brain
activity (i) and (ii) would indicate pathological states of activity, for example decay of
neural activity until brain death and increasing neural excitability until a seizure state re-
spectively. Therefore, operating the coupled oscillator model on the boundary of stability
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is bio-realistic for both normal brain function and for the pre-ictal period during which
we aim to predict upcoming seizures. While certainly the brain will naturally deviate
into both slightly underdamped and slightly damped modes of oscillation, it is envisioned
that the natural balance of excitatory and inhibitory activity in the brain will constrain
this damped and underdamped activity to dynamics that lie near to the critically damped
(marginally stable) boundary. The entropy results of this thesis find that information
extraction from marginally stable systems is difficult given limited amounts of data. The
information extraction capabilities from dynamics that lie within a small distance on ei-
ther side of the marginal stability boundary will naturally be similarly bleak.

In any case, mathematically speaking, the alternatives to pure or marginally stable
oscillators are equally problematic for system observability. Both damped and undamped
systems quickly become numerically unstable since the rows of the observability matrix,
(CAn), diverge exponentially to zero (in the case of damped oscillations) and to infinity
(for unstable oscillations). The implication of this numerical divergence is that we quickly
run out of the dynamic range with which to represent singular values of the observability
matrix and observability is again poor. Restriction to pure oscillators allows us to stay
within the dynamic range, however as the entropy results show, this is at the expense of
no longer being able to average over any noise. Therefore, oscillators in general do not
lend themselves well to practical observability.

We have considered observability in light of deterministic linear and non-linear dy-
namics, using linear, stochastic and non-linear analysis methods and found observability
to be illposed. Other outstanding possibilities are stochastic dynamics or chaotic dynam-
ics. For the stochastic case it is envisaged that any such dynamics could exhibit more
deterministic emergent mean-field phenomena on large-scale EEG levels and therefore be
incorporated into the existing analysis of this thesis. On chaotic dynamics, while this
has been hypothesised for the brain, there are neither sufficiently bio-realistic models nor
observations to support this. Nonetheless, should chaotic dynamics exist, the problem of
identifying exponents would add to the problem of identifying states with chaotic dynam-
ics having one or more positive Lyapunov exponents. Fitting data to sums of exponentials
requires significant amounts of data, so again it is envisaged that we will run out of time
and or reach a complexity barrier well before gaining significant access to information.

These observability limitations imply that, in a practical sense, we can only expect



164 CHAPTER 8. CONCLUSIONS

to fit EEG data to extremely simple models of brain activity with a limit of a a few tens
of states. At the moment, no such brain models exist currently that can realistically and
reliably model large-scale EEG measures of brain dynamics for the purpose of seizure pre-
diction.

Why are simple models of brain dynamics, with limited numbers of states, insuffi-
cient for use in predicting seizures? In much of the seizure prediction work over the past
decade the hypothesis that seizure events had low dimensional dynamics was employed
with the idea that prediction efforts would be best concentrated towards tracking this
transition from chaotic high dimensional dynamics to a low dimensional brain state. This
has been unsuccessful and the observability results in this thesis may well explain why this
is the case. The window of information that EEG provides is skewed to show only the most
dominant and spectrally distinct oscillatory activity. It follows that seizure dynamics are
visible in the EEG as abnormally excessive or synchronous activity only because they are
the most dominant activity at that time. In the build up to a seizure, other dynamics such
as those involved in motor or thinking tasks related to the persons current activity are
more likely to dominate. Therefore the dynamics that would enable us to track transition
to seizure are unlikely to make it through to be observed at the EEG until such a time as
the seizure activity is dominant. By the time seizure activity is the dominant activity, the
clinical manifestations of seizure activity will be present and it is far too late to “predict”.
While brain-to-EEG models for epilepsy with small numbers of states could be used to
classify seizures, they are insufficient to capture any build up to a seizure for prediction
purposes as the EEG data applied to them will most likely not contain any of the seizure
generating dynamics. Applying EEG data that is completed unrelated to seizure activity
to an epilepsy model will not predict seizures, that is, unless we are extremely lucky and
our electrodes happen to be in the exact right place. With current technology, however,
it is not feasible to isolate a precise area in the brain where seizures originate from for
electrode placement.

Certainly there is no logical requirement to be able to observe all the dynamics for
tracking changes in brain state towards prediction. The issue is the extent to which EEG
is a poor observer of brain activity. We would at least require the majority of the oscil-
lations within a local radius of our electrode to be observable for predicting forthcoming
seizure activity in that locality. The finding of this thesis indicate that this is not pos-
sible. The observability findings in Chapter 5 are in stark contrast to the conventional
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assumptions that surround EEG measurement. Typical intracranial EEG electrodes or
“macro-elecrodes” are assumed to have a recording domain in the order of 100µm [1, Ch.
4]. But for a large number of oscillations, only the largest amplitude and most spectrally
distinct oscillations within this area will correspond to singular values above the measure-
ment bit threshold. This tells us that we could see an oscillation located 100µm from an
electrode only if all the other tissue was inactive. Thus, rather than observing all the activ-
ity in the 100µm radius, instead we observe only the dominant few percent of oscillations
within this spatial area. As discussed at the end of Chapter 5 recent experimental results
support these findings. If we can only observe a few percent of the underlying oscillators
within the conventionally assumed measurable range of our electrode - lets take 3% - then
we would require over 97% of the underlying activity to be involved in the seizure state
before we would be guaranteed to observe the seizure activity in the EEG. To “predict” we
would need to be able to indicate that seizure activity was being generated far in advance
of that activity taking over 97% the network domain we are attempting measuring. By
the time 97% of that network is engaged in seizure activity the seizure is well-underway
and there is no longer any need for prediction.

These results do not contradict the viability of seizure detection. The results in this
thesis imply the brain must be in an very advanced state of synchronisation across huge
areas of cortex before we can see seizures in the EEG. By the time a sufficient number of
oscillators have synchronised enough to observe this in the EEG it is most likely that the
seizure would be in an established state. This indicates why research findings in seizure
detection have had more success with large scale EEG measures than was found for pre-
diction. However, sufficiently early seizure detection to enable intervention that prevents
any clinical manifestation of seizures for patients has not yet been achieved.

So what can be done to “detect” seizure activity in advance of the clinical manifes-
tations of seizures? Future promise centres on conversion to the active EEG measurement
paradigm, utilising inputs with specific frequency content to shine a selective light on a
known portion of the oscillatory dynamics. If we can only observe a few percent of the
dynamics, steering dynamics of known frequency content to be above the observability
threshold could provide the ability to determine something about the underlying brain
state in a reliable and repeatable manner. That said, while using evoked EEG for seizure
prediction is at least a theoretically possible option (unlike with non-evoked conventional
EEG), it is no less a daunting task.



166 CHAPTER 8. CONCLUSIONS

8.2 Future Work

8.2.1 Clinical Evoked Prediction/ Early Seizure Detection

The findings of this thesis indicate that success in future development of seizure prediction
from EEG signals should certainly be focused on the active approach to EEG acquisition.
To this end data from evoked potentials in the epileptic brain must be analysed to inform
further oscillator model development. We hope that such development can in turn inform
the experimental procedure of active EEG towards successful clinical seizure prediction.
Clinical trials of evoked EEG for seizure prediction are currently ongoing at St. Vincent’s
Hospital Melbourne. The brain has a range of existing inputs to complicate matters
including: sensory input; modulation by hormones, metabolism and other chemicals. The
advantage of including an evoked potential input is that most of these existing inputs can
be tolerated as well, since we are only looking for correlation with our known input.

8.2.2 Seizure Control

Following the development of a reliable evoked EEG seizure prediction method, the natural
extension of this work is towards seizure control. The balanced system property of the
coupled oscillator model, in terms of matched observability and controllability in the few
states that are accessible to our EEG electrodes, as discussed in Section 7.3, is promising
for future development in design of input signals to desynchronise brain tissue for seizure
control. Questions that remain for future work include: Can suitable input signals be
found to prevent the spread of synchrony towards a seizure? Can perturbing signals
disrupt the natural synchronisation cycle in brain tissue in such a manner as to not effect
consciousness?

8.2.3 Observability of Synchronised Systems

Future avenues for research within observability of oscillatory systems remain for the
seizure prediction and early onset detection problems, particularly concerning synchroni-
sation of these systems.
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• How synchronised must the underlying oscillators be to allow for the detection of
that synchronisation at the EEG?

• Is it possible to identify a lower dimension sub-manifold of states that are clustered
and synchronised?



Chapter A

Appendix

A.1 Comparison of Montages

This appendix section serves to provide further details on the choice of montage used for
the EEG data used in Chapter 3 to explore time and frequency information in EEG.

This data set was take from patient 2 of the Freiburg data set (refer to table 1.3.2)
and has a very strong 50Hz artefact as shown in the plot of raw data for channel 5 in Figure
A.2 and channel 6 in Figure A.3. To try to remove this strong common mode artefact
(an artefact present to an approximately equal degree on all channels), two montages are
proposed: Bipolar and Common Average. The location of these electrodes on the cortex
surface is shown in Figure A.1.

• Bipolar Montage

For this montage the difference is taken between two adjacent electrode recordings.
A zero mean function was also employed to mitigate DC offset problems as evident
in raw recording of channel 6 at time 34 seconds (see Figure A.3). The resulting sig-
nal is a representation of the difference in activity between these two closely located
areas. It can therefore be viewed as a representation of local brain activity under
these electrodes. The contribution of the reference channel is excluded. Excluding
the reference is advantageous for two reasons. Firstly, the reference is not an isolated
reference. Secondly, the reference can be located in many different locations depend-
ing on local hospital convention. These locations vary from the use of a grid electrode
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Figure A.1: Electrode placement, patient 2, Freiburg Data set
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Figure A.2: Raw EEG recording, channel 5, patient 2, Freiburg Data set
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as reference to the use of an external scalp reference. Therefore, the reference is not
necessarily indicative of the brain dynamics of interest and its effect is best removed
from the signal under analysis. A plot of a Bipolar recording between channel 5 and
channel 6 is shown in Figure A.4. One disadvantage of bipolar montaging is that if
the channel pair cross a large sulcus or fold in the cortical tissue, the bipolar signal
may no longer provide a representation of the local underlying brain function.

• Common Average Montage

For this montage the average of all the other channels (not including the reference
channels) is subtracted from the channel of interest. A zero mean function was also
employed to mitigate DC offset problems as evident in in raw recording of channel 6
at time 34 seconds (see Figure A.3). The common average of the channels represents
the reference information common to all channels. Subtracting this reference infor-
mation means the resulting signal is a representation of the activity in the cortical
area under the electrode. A plot of Common Average referenced recordings for chan-
nel 5 and channel 6 are shown in Figure A.5 and A.6 respectively. One disadvantage
of common average referencing is that channels that become disconnected during
recordings and exhibit a high level of noise can adversely skew the common average
and effect all channels montaged in this manner. A solution to this is carefully con-
tinued monitoring of all channels and adjustment to the channels that make up the
common average when necessary.
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Figure A.3: Raw EEG recording, channel 6, patient 2, Freiburg Data set
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Figure A.4: Bipolar montaged EEG recording, channel 5-6, patient 2, Freiburg Data set
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Figure A.5: Common Average montaged EEG recording, channel 5, patient 2, Freiburg
Data set
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Figure A.6: Common Average montaged EEG recording, channel 6, patient 2, Freiburg
Data set
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A.2 Observability Conditions using Popov-Belevitch-Hautus

(PBH) Test

This appendix section serves to provide further details on observability conditions using
Popov-Belevitch-Hautus (PBH) test.

In section 5.3 it was found that row rank can only be lost in a coupled oscillator
system matrix A if the row pairs k and k+1, for k odd, are themselves linearly dependent
i.e. if,

−λ
−ω2

k

=
1

−2ζkωk − λ
. (A.2.1)

It was also found in section 5.3 that the λ in equation A.2.1 was the set of eigenvalues
that can be found by solving the characteristic polynomials of each individual clock, λ2 +
2ζiωi + ω2

i = 0. The 2N eigenvalues, λ of the N uncoupled systems are

λi± = −ζiωi ± ωi
√
ζ2
i − 1, for i = 1 . . . N. (A.2.2)

Considering the kth clock with the ith eigenvalue pair we can substitute λ = λi± in
equation A.2.1. This gives us,

ζiωi ± ωi
√
ζ2
i − 1

−ω2
k

=
1

−2ζkωk + (ζiωi ± ωi
√
ζ2
i − 1)

(A.2.3)

which can be manipulated to,

(ζiωi ± ωi
√
ζ2
i − 1)2 − 2ζkωk(ζiωi ± ωi

√
ζ2
i − 1) + ω2

k = 0. (A.2.4)

By letting x = ζiωi ± ωi

√
ζ2
i − 1, equation A.2.4 becomes a quadratic in x with

solution x = ζkωk ± ωk
√
ζ2
k − 1. The equality determining linear dependence, and thus

rank deficiency is then,

x = ζiωi ± ωi
√
ζ2
i − 1 = ζkωk ± ωk

√
ζ2
k − 1. (A.2.5)

The system is observable via the PBH test provided the condition of A.2.5 does



174 CHAPTER A. APPENDIX

not occur. (i.e. provided the system natural frequencies and damping parameters do not
overlap ωi 6= ωj , ζi 6= ζj ∀i, j)
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A.3 Observability Conditions using Bezout Identity

As discussed in Chapter 5, the Bezout Identity tells us that polynomial matrices D(λ)
and N(λ), will be right coprime if and only if there exists polynomial matrices X(λ) and
Y(λ), such that,

X(λ)N(λ) + Y(λ)D(λ) = I, (A.3.1)

where I is the Identity. Here we derive the necessary conditions for D(λ) = λI −A and
N(λ) = C to be right coprime and therefore the system pair (A,C) to be observable. The
aim is to reduce the original matrix [D(λ), N(λ)]′ to [I,0]′ where ′ denotes prime, I is the
identity matrix and 0 is a vector of zeros.

This can be achieved by applying successive elementary row operations to [D(λ), N(λ)]′.
Elementary row operations, Ui, include either

1. Interchanging any 2 rows, rj
swap↔ rj

2. Adding to a row, a polynomial multiple of another row, ri → rj + f(λ)rj

3. Scaling a row by any real or complex number, ri → krj , for k ∈ C

The objective is to show for an arbitrary network of clocks that the conditions
on parameters for which the system is observable would be quite unusual. Here this is
illustrated for a network of 3 clocks under the following algebra-simplifying assumptions.

1. Uniform connection strength: αij = α ∀ i, j

2. Each clock has the same damping parameter ζ

3. The system output is measured from a single clock: C = [0, c1, 0, 0, · · · , 0, 0] for
c1 ∈ <

Using the system matrix A from (4.3), we have,

 D(λ)
N(λ)

 =



λ −1 0 0 0 0

ω2
1 + 2α λ + 2ζω1 −α 0 −α 0

0 0 λ −1 0 0

−α 0 ω2
2 + 2α λ + 2ζω2 −α 0

0 0 0 0 λ −1

−α 0 −α 0 ω2
3 + 2α λ + 2ζω3

0 c1 0 0 0 0


. (A.3.2)
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The structure of our coupled network has sufficient zero entries across A − λI and
C such that each column of [A−λI,C]′ is independent of all the others except for a small
non-generic set of unlikely (ω, ζ, α) combinations. The details of one possible path, U,
from [A − λI,C]′ to [I,0]′ are shown in table A.3.1. The system is observable provided
that our U is a unimodular matrix. A polynomial matrix is unimodular if it’s inverse is
also a polynomial. This is the case if det(U) equals a constant (i.e. det(U(λ)) 6= 0 and
det(U(λ)) 6= f(λ) for a polynomial function f). By solving num(det(U)) = 0 for the
connection strength α, where num denotes the numerator, the resultant non-generic set
was:

α ∈ { − 1
3
ω2

1,

− ζ2

24(−ω3 + ω2)

(
f1(ω1, ω2, ω3, ζ)−

√
f2(ω1, ω2, ω3, ζ)

)
,

− ζ2

24(−ω3 + ω2)

(
f1(ω1, ω2, ω3, ζ) +

√
f2(ω1, ω2, ω3, ζ)

)
},

where

f1(ω1, ω2, ω3, ζ) = −8ω2
2ζ

2ω3 + ω2ω
2
1 + ω2

1ω3 − 8ζ2ω3ω
2
1 + 2ω2

2ω3 + 4ω2ω
2
1ζ

2 + 2ω3
2,

f2(ω1, ω2, ω3, ζ) = 4ω6
2 − 32ω5

2ζ
2ω3 + 8ω5

2ω3 − 32ω4
2ζ

2ω2
3 + 4ω4

2ω
2
1

− 32ω4
2ω

2
1ζ

2 + 64ω4
2ζ

4ω2
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2ω
2
3 + 128ω3

2ω
2
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4ω3
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2ω3ω
2
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2ω
2
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2
3ω

2
1 + ω2

2ω
4
1

+ 8ω2
2ω

4
1ζ

2 − 64ω2
2ζ

4ω2
3ω
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4
1ζ
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3.(A.3.3)
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Elementary row operation U(λ)
(
D(λ)
N(λ)

)
where (U(λ) = Un . . . U2U1)

U1 :
r1− > r1 + λ

αr4

U1 =


1 0 0 λ

α
0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) −λ 0

ω2
1 + 2α λ + 2ζω1 −α 0 −α 0

0 0 λ −1 0 0

−α 0 ω2
2 + 2α λ + 2ζω2 −α 0

0 0 0 0 λ −1

−α 0 −α 0 ω2
3 + 2α λ + 2ζω3

0 c1 0 0 0 0


U2 :
r1

swap↔ r2

U2 =


0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




ω2
1 + 2α λ + 2ζω1 −α 0 −α 0

0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) −λ 0

0 0 λ −1 0 0

−α 0 ω2
2 + 2α λ + 2ζω2 −α 0

0 0 0 0 λ −1

−α 0 −α 0 ω2
3 + 2α λ + 2ζω3

0 c1 0 0 0 0


U3&U4 :
r3

swap↔ r4

r5
swap↔ r6

U4U3 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1




ω2
1 + 2α λ + 2ζω1 −α 0 −α 0

0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) −λ 0

−α 0 ω2
2 + 2α λ + 2ζω2 −α 0

0 0 λ −1 0 0

−α 0 −α 0 ω2
3 + 2α λ + 2ζω3

0 0 0 0 λ −1
0 c1 0 0 0 0


U5 :
r1 → r1

ω2
1+2α

U5 =


1

w2
1+2α

0 0 0 0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1
λ+2ζω1
ω2
1+2α

−α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) −λ 0

−α 0 ω2
2 + 2α λ + 2ζω2 −α 0

0 0 λ −1 0 0

−α 0 −α 0 ω2
3 + 2α λ + 2ζω3

0 0 0 0 λ −1
0 c1 0 0 0 0


U6 :
r3 → r3 − r5

U6 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1
λ+2ζω1
ω2
1+2α

−α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) −λ 0

0 0 ω2
2 + 3α λ + 2ζω2 −(ω2

3 − 3α) −(λ + 2ζω3)
0 0 λ −1 0 0

−α 0 −α 0 ω2
3 + 2α λ + 2ζω3

0 0 0 0 λ −1
0 c1 0 0 0 0


U7 :
r5 → r5 + αr1 k1 ∈ < : k1 = w2

3 + 2α− α2

ω2
1+2α

k2 ∈ < : k2 = −α− α2

ω2
1+2α

U7 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
α 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1
λ+2ζω1
ω2
1+2α

−α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) −λ 0

0 0 ω2
2 + 3α λ + 2ζω2 −(ω2

3 − 3α) −(λ + 2ζω3)
0 0 λ −1 0 0

0
α(λ+2ζω1)
w2

1+2α
k2 0 k1 λ + 2ζω3

0 0 0 0 λ −1
0 c1 0 0 0 0


Table A.3.1: Finding the set (α, ω, ζ) for which networked clocks are not fully observable
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Table continued · · ·

Elementary row operation U(λ)
(
D(λ)
N(λ)

)
where (U(λ) = Un . . . U2U1)

U8 :
r5 → r5 − 1

c1
α

w2
1+2α

(λ+ 2ζω1)r7

U8 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 1 0 1
c1

α(λ+2ζω1)
w2

1+2α
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1
λ+2ζω1
ω2
1+2α

−α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) −λ 0

0 0 ω2
2 + 3α λ + 2ζω2 −(ω2

3 − 3α) −(λ + 2ζω3)
0 0 λ −1 0 0
0 0 k2 0 k1 λ + 2ζω3
0 0 0 0 λ −1
0 c1 0 0 0 0


U9 :
r1 → r1 − 1

c1
λ+2ζω1

w2
1+2α

r7

U9 =


1 0 0 0 0 0 1

c1
λ+2ζω1
w2

1+2α
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) −λ 0

0 0 ω2
2 + 3α λ + 2ζω2 −(ω2

3 − 3α) −(λ + 2ζω3)
0 0 λ −1 0 0
0 0 k2 0 k1 λ + 2ζω3
0 0 0 0 λ −1
0 c1 0 0 0 0


U10 :
r4 → r4 − λ

k2
r5

U10 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 1 − λ
k2

0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) −λ 0

0 0 ω2
2 + 3α λ + 2ζω2 −(ω2

3 − 3α) −(λ + 2ζω3)

0 0 0 −1 − k1λ
k2

−λ(λ+2ζω3)
k2

0 0 k2 0 k1 λ + 2ζω3
0 0 0 0 λ −1
0 c1 0 0 0 0


U11 :
r5 → r5 − k2

(ω2
2+3α)

r3 P2, a polynomial function in λ, P2(λ) = k2(λ+2ζω2)
(ω2

2+3α)

P3, a polynomial function in λ, P3(λ) = k2(λ+2ζω3)
(ω2

2+3α)

U11 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 − k2
(ω2

2+3α)
0 1 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) −λ 0

0 0 ω2
2 + 3α λ + 2ζω2 −(ω2

3 − 3α) −(λ + 2ζω3)

0 0 0 −1 − k1λ
k2

−λ(λ+2ζω3)
k2

0 0 0 P2 k1 −
λk2

(ω2
2+3α)

P3

0 0 0 0 λ −1
0 c1 0 0 0 0


U12 :
r2 → r2 + r6

U12 =


1 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) 0 −1

0 0 ω2
2 + 3α λ + 2ζω2 −(ω2

3 − 3α) −(λ + 2ζω3)

0 0 0 −1 − k1λ
k2

−λ(λ+2ζω3)
k2

0 0 0 P2 k1 −
λk2

(ω2
2+3α)

P3

0 0 0 0 λ −1
0 c1 0 0 0 0


U13 :
r4 → r4 + k1

k2
r6 P0(λ) = −k1

k2
− λ(λ+2ζω3)

k2

U13 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 1 0
k1
k2

0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 λ
α

(w2
2 + 2α) λ

α
(λ + 2ζω2) 0 −1

0 0 ω2
2 + 3α λ + 2ζω2 −(ω2

3 − 3α) −(λ + 2ζω3)
0 0 0 −1 0 P0

0 0 0 P2 k1 −
λk2

(ω2
2+3α)

P3

0 0 0 0 λ −1
0 c1 0 0 0 0


Table A.3.1: Finding the set (α, ω, ζ) for which networked clocks are not fully observable
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Table continued · · ·

Elementary row operation U(λ)
(
D(λ)
N(λ)

)
where (U(λ) = Un . . . U2U1)

U14 :
r2 → r2 + λ(λ+2ζω2)

α r4 P1(λ) = −1− k1
k2

λ(λ+2ζω2)
α

U14 =


1 0 0

λ(λ+2ζω2)
α

0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 λ
α

(w2
2 + 2α) 0 0 P1

0 0 ω2
2 + 3α λ + 2ζω2 −(ω2

3 − 3α) −(λ + 2ζω3)
0 0 0 −1 0 P0

0 0 0 P2 k1 −
λk2

(ω2
2+3α)

P3

0 0 0 0 λ −1
0 c1 0 0 0 0


U15 :
r7 → r7 + c1r2

U15 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 c1 0 0 0 0 1




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 λ
α

(w2
2 + 2α) 0 0 P1

0 0 ω2
2 + 3α λ + 2ζω2 −(ω2

3 − 3α) −(λ + 2ζω3)
0 0 0 −1 0 P0

0 0 0 P2 k1 −
λk2

(ω2
2+3α)

P3

0 0 0 0 λ −1

0 0
c1λ(ω2

2+2α)
α

0 0 0


U16 :
r2 → r2 − 1

c1
r7

U16 =


1 0 0 0 0 0 − 1

c1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 0 0 0 0

0 0 ω2
2 + 3α λ + 2ζω2 −(ω2

3 − 3α) −(λ + 2ζω3)
0 0 0 −1 0 P0

0 0 0 P2 k1 −
λk2

(ω2
2+3α)

P3

0 0 0 0 λ −1

0 0
c1λ(ω2

2+2α)
α

0 0 0


U17 :
r3 → r3 + (λ+ 2ζω2)r4 P4(λ) = −(λ+ 2ζω3)− k1(λ+2ζω2)

k2

U17 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 (λ + 2ζω2) 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0

0 0 0 P2 k1 −
λk2

(ω2
2+3α)

P3

0 0 0 0 λ −1

0 0
c1λ(ω2

2+2α)
α

0 0 0


U18 :
r5 → r5 + P2r4

U18 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 P2 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0

0 0 0 0 k1 −
λk2

(ω2
2+3α)

P3 + P0P2

0 0 0 0 λ −1

0 0
c1λ(ω2

2+2α)
α

0 0 0


U19 :
r7 → r7 − c1λ

α
ω2

2+2α

ω2
2+3α

r3

U19 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 − c1λ
α

ω2
2+2α

ω2
2+3α

0 0 0 1




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0

0 0 0 0 k1 −
λk2

(ω2
2+3α)

P3 + P0P2

0 0 0 0 λ −1

0 0 0 0
−c1λ(ω2

3+3α)
α

ω2
2+2α

ω2
2+3α

c1P1 −
c1λ(ω2

2+2α)P4
α(ω2

2+3α)


Table A.3.1: Finding the set (α, ω, ζ) for which networked clocks are not fully observable
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Table continued · · ·

Elementary row operation U(λ)
(
D(λ)
N(λ)

)
where (U(λ) = Un . . . U2U1)

U20 :
r7 → r7

α(ω2
2+3α)

c1(ω2
2+2α)

P6 = −λP4 + P1(ω2
2+3α)

α(ω2
2+2α)

U20 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 0 0 0
α(ω2

2+3α)

c1(ω2
2+2α)




1 0 −α
ω2
1+2α

0 −α
ω2
1+2α

0

0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0

0 0 0 0 k1 −
λk2

(ω2
2+3α)

P3 + P0P2

0 0 0 0 λ −1

0 0 0 0 λ(ω2
3 + 3α) P6


U21 :
r1 → r1 + α

(ω2
2+3α)(ω2

1+2α)
r3 P5 = − λ

ω2
1+2α

+ α(ω2
3+3α)

(ω2
2+3α)(ω2

1+2α)

U21 =


1 0 α

(ω2
2+3α)(ω2

1+2α)
0 0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0

0 0 0 0 k1 −
λk2

(ω2
2+3α)

P3 + P0P2

0 0 0 0 λ −1

0 0 0 0 λ(ω2
3 + 3α) P6


U22 :
r7 → r7 + P6r6

U22 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 P6 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0

0 0 0 0 k1 −
λk2

(ω2
2+3α)

P3 + P0P2

0 0 0 0 λ −1

0 0 0 0 λ(ω2
3 + 3α) + P6 0


U23 :
r5 → r5 + k2

(ω2
2+3α)

r6 P7 = P3 + Z6Z2 − k2
(ω2

2+3α)

U23 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 1
k2

(ω2
2+3α)

0

0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 k1 P7
0 0 0 0 λ −1

0 0 0 0 λ(ω2
3 + 3α) + P6 0


U24 :
r5 → r5 + P7r6 P8 = k1 + λP7

P9 = λ(ω2
3 + 3α) + P6

U24 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 P7
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 P8 0
0 0 0 0 λ −1
0 0 0 0 P9 0


U25 :
r7 → r7 − b1λ

a1
r5 P8(λ) = a1λ

4 + a2λ
3 + a3λ

2 + a4λ+ 1,ai ∈ < ∀ i
P9(λ) = b1λ

5 + b2λ
4 + b3λ

3 + b4λ
2 + b5λ, bi ∈ < ∀ i

βi ∈ < ∀ i

U25 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 0 − b1λ
a1

0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 P8 0
0 0 0 0 λ −1

0 0 0 0 β1λ
3 + β2λ

2 + β3λ 0


Table A.3.1: Finding the set (α, ω, ζ) for which networked clocks are not fully observable
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Elementary row operation U(λ)
(
D(λ)
N(λ)

)
where (U(λ) = Un . . . U2U1)

U26 :
r5 → r5 − a1λ

β1
r7 di ∈ < ∀ i

U26 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 1 0 − a1λ
β1

0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 d1λ

3 + d2λ
2 + d3λ + d4 0

0 0 0 0 λ −1

0 0 0 0 β1λ
3 + β2λ

2 + β3λ 0


U27 :
r7 → r7 − β1

a2
r5 ei ∈ < ∀ i

U27 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 0 − β1
a2

0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 d1λ

3 + d2λ
2 + d3λ + d4 0

0 0 0 0 λ −1

0 0 0 0 e1λ
2 + e2λ + e3 0


U28 :
r5 → r5 − d1λ

e1
r7 fi ∈ < ∀ i

U28 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 1 0 − d1λ
e1

0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 f1λ

2 + f2λ + f3 0
0 0 0 0 λ −1

0 0 0 0 e1λ
2 + e2λ + e3 0


U29 :
r5 → r5 − f1

e1
r7 gi ∈ < ∀ i

U29 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 1 0 − f1
e1

0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 g1λ + g2 0
0 0 0 0 λ −1

0 0 0 0 e1λ
2 + e2λ + e3 0


U30 :
r7 → r7 − e1λ

g1
r5 hi ∈ < ∀ i

U30 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 0 − e1λ
g1

0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 g1λ + g2 0
0 0 0 0 λ −1
0 0 0 0 h1λ + h2 0


U31 :
r7 → r7 − h1

g1
r5 mi ∈ < ∀ i

U31 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 0 −h1
g1

0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 g1λ + g2 0
0 0 0 0 λ −1
0 0 0 0 m1 0


Table A.3.1: Finding the set (α, ω, ζ) for which networked clocks are not fully observable
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Table continued · · ·

Elementary row operation U(λ)
(
D(λ)
N(λ)

)
where (U(λ) = Un . . . U2U1)

U32 :
r7 → r7/m1

U32 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 0 0 0 1
m1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 g1λ + g2 0
0 0 0 0 λ −1
0 0 0 0 1 0


U33 :
r5 → r5 − (g1λ+ g2)r7

U33 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 −(g1λ + g2)
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 0 0
0 0 0 0 λ −1
0 0 0 0 1 0


U34 :
r6 → r6 − sr7

U34 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 −λ
0 0 0 0 0 0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 −(ω2

3 − 3α) P4
0 0 0 −1 0 P0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0


U35 :
r3 → r3 + (ω2

3 + 3α)r7

U35 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 1 0 0 0 (ω2
3 + 3α)

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 0 0 P5
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 0 P4

0 0 0 −1 0 P0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0


U36 :
r1 → r3 − P5r7

U36 =


1 0 0 0 0 0 −P5
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 0 0 0
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 0 P4

0 0 0 −1 0 P0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0


U37 :
r4 → r4 + P0r6

U37 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 P0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 0 0 0
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 0 P4

0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0


Table A.3.1: Finding the set (α, ω, ζ) for which networked clocks are not fully observable
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Table continued · · ·

Elementary row operation U(λ)
(
D(λ)
N(λ)

)
where (U(λ) = Un . . . U2U1)

U38 :
r3 → r3 + P4r6

U38 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 P4 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 0 0 0
αP4

(ω2
2+3α)(ω2

1+2α)
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 0 0

0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0


U39 :
r1 → r1 + α

(ω2
2+3α)(ω2

1+2α)
P4r6

U39 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




1 0 0 0 0 0
0 −1 0 0 0 0

0 0 ω2
2 + 3α 0 0 0

0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0


U40, U41, U42&U43 :
r6 → −r6

r2 → −r2

r3 → r3/(ω2
2 + 3α)

r4 → −r4

U43U42U41U40 =


1 0 0 0 0 0 0
0 −1 0 0 0 0 0

0 0 1
(ω2

2+3α)
0 0 0 0

0 0 0 −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


U44 :
r5

swap↔ r7

U44 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 =
(

I
0

)
Table A.3.1: Finding the set (α, ω, ζ) for which networked clocks are not fully observable
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A.4 Phase Estimation: Comparison of Least Squares Method

and Hilbert Transform

In Chapter 7 it is required to estimate the phase associated with a particular frequency
in order to determine the synchronisation of oscillators within a clock network and/or the
synchronisation of measurement signals. Synchronisation here is defined as the sustained
phase locking to a particular signal of frequency f , where this signal may be (i) that of an
input probing signal or (ii) an unstable (“seizure inducing”) oscillation within the clock
network.

The chosen method for phase estimation is to find the least squares solution to the
model:

X(t) = A cos(2πft+ φ) + w(t) (A.4.1)

where f is the known frequency of the input stimulus, w(t) is zero mean white noise and
the phase, φ and amplitude, A = A(f) [134, Ch. 7]. X(t) can be either (i) the EEG signal
used to estimate the phase-locking response to our probe stimulus, or (ii) the internal
states of the model to determine phase for individual clocks to establish if predictions
from the EEG data correspond to a true picture of the underlying system activity. This
definition of phase synchrony is used as it is more robust than the Hilbert transform in the
presence of noise and can be used on broadband signals without any ambiguities. Details
of the least squares solutions are provided next in this appendix followed with a compari-
son of this method and the commonly used Hilbert transform to illustrate the superiority
of this method in the presence of noise.

Equation A.4.1 can be rewritten in discrete form as:

x(n) = A cos(2πfn+ φ) + w(n) (A.4.2)

= A cos(2πfn) cos(φ)−A sin(2πfn) sin(φ) + w(n)using the cos(A+B) trigonometry rule(A.4.3)

= A cos(φ)︸ ︷︷ ︸
α1

cos(2πfn)−A sin(φ)︸ ︷︷ ︸
α2

sin(2πfn) + w(n) (A.4.4)

Since f is known, equation A.4.4 results in a linear function of unknown α1 and α2,
where
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A =
√
α2

1 + α2
2 (A.4.5)

φ = tan−1

(
−α2

α1

)
(A.4.6)

We can now write the estimation problem in matrix form as:

X = HΘ + W, (A.4.7)

where X =
[
x(0) x(1) . . . x(N − 1)

]′
, Θ =

[
α1 α2

]′
, W =

[
w(0) w(1) . . . w(N − 1)

]′
and

H =


1 0

cos(2πf) sin(2πf)
...

...
cos (2πf (N − 1)) sin (2πf (N − 1))

 . (A.4.8)

Since the noise is assumed to be Gaussian, the least squares estimator, Θ̂, is the
maximum likelihood estimator. The term to minimise is:

J(Θ) =
N−1∑
n=0

(x(n)− E[x(n)])2

= (X−HΘ)
′
(X−HΘ), (A.4.9)

since E[x(n)] = HΘ. The cost function can be written as a quadratic function in Θ.

J(Θ) = (X
′ −Θ

′
H
′
)(X−HΘ)

= X
′
X−X

′
HΘ−Θ

′
H
′
X + Θ

′
H
′
HΘ

= H
′
HΘ

′
Θ− 2Θ

′
H
′
X + X

′
X. (A.4.10)
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The estimate Θ̂ is found where ∂J/∂Θ = 0:

∂J

∂Θ
= 2H

′
HΘ̂− 2H

′
X = 0 (A.4.11)

Θ̂ = (H
′
H)−1H

′
X. (A.4.12)

As N →∞,

H
′
H =

(
N
2 0
0 N

2

)
, (A.4.13)

and

Θ̂ =

[
α1

α2

]
=

[
A cos(φ)
−A sin(φ)

]
=

[
2
N

∑N−1
n=0 x(n) cos(2πfn)

2
N

∑N−1
n=0 x(n) sin(2πfn)

]
. (A.4.14)

Figure A.7 and Figure A.8 show comparisons between the robustness of the least
squares solutions described above and the Hilbert transform as described in Section 2.3.1
of Chapter 2. Figure A.7 plots phase error against signal to noise ration (SNR) for a single
frequency with phase offset in Gaussian noise as per the model in equation A.4.1. The
least squares method dramatically out performs the Hilbert transform with least squares
providing comparable accuracy in phase estimation to the Hilbert transform when the
signal has 10 times more noise.

The noise in a evoked EEG set-up, however, will not necessarily be Gaussian. Instead
we expect the evoked EEG signal to be a multifrequency signal which may contain the
evoked input frequency, fin. We wish find the phase is the EEG signal associated with fin
to determine if there is sustained phase-locking to the input signal. Figure A.8 compares
the phase estimating powers of both methods for a signal where the noise is an additional
frequency:

X(t) = A cos(2πf1t+ φ1) +An cos(2πf2t+ φ2) (A.4.15)
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Figure A.7: Comparing phase estimator performance between least Squares method and
Hilbert transform method for a single sinusoid in Gaussian noise. The absolute value of
phase error is plotted against signal to noise ration (SNR).

where f1 is the frequency for which we are estimating the associated phase φ1. An is the
noise amplitude and the signal component An cos(2πf2t + φ2) is considered to be noise.
Again the least sqaures algorithm far exceeds the performance of the Hilbert transform.
Therefore, in Chapter 7 as the evoked input frequencies (and internal model frequencies)
are exactly known, the least squares method is used to evaluate phase synchronisation.
The MATLAB code used to generate Figure A.7 and A.8 is provided in Appendix A.5.9.
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Figure A.8: Comparing phase estimator performance between Least Squares method and
Hilbert transform method for a single sinusoid within a multi-frequency signal. The ab-
solute value of phase error is plotted against signal to noise ration (SNR).
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A.5 Additional information to enable complete reproducibil-

ity of key results

This Appendix contains additional technical particulars including Matlab Code to enable
complete reproducibility of the key results plotted in this thesis.

A.5.1 Figure 5.1: Singular Values of the Observability Matrix

Figure 5.1 compares effect of frequency range on the singular values of the time-scaled
continuous representation of the system matrix A for a network of 50 clocks (100 states).

%% Ploting singular values of Observability Matrix

% Feb 2009

% Generate time scaled model

% Plot singular values

%Define constants

N=50; %number of subsystems (=¿ 2*N number of states)

Fmax=1; %normalised maxium frequency

option=[1,2,3]; %set up for loop for each trace

for opt=1:length(option)

if opt==1

%space Fmin=0.98; %normalised minimum frequency

elseif opt==2

%space Fmin=0.6; %normalised minimum frequency

elseif opt==3

%space Fmin=0.0025; %normalised minimum frequency

end

F=Fmin+(Fmax-Fmin)*[1:1:N]/N; %equi-spaced freqs, uniform distribution over range

Wn=2*pi*F;

Wnorm=max(Wn);

D=repmat(0.001,1,N); %Define damping parameters

alpha=0.01; %Define Couping Parameters

alp=alpha*triu(ones(N),1);

A=generateDampedA(N, alp,D,Wn);

A=A/Wnorm; %Timescale

%Transformed C

C=zeros(1,2*N); %pre-memory allocate

C(1:2:2*N)=0;

C(2:2:(2*N))=-1;
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C=C/abs(sum(C)); %Make C a convex combination, so that max singular value is of order 1

obseby=obsv(A,C); %Observability Matrix

singular values=svd(obseby);

sing array(opt,:)=singular values;

end

% Plot Singular values

figure(3)

semilogy(sing array(1,:), “ko”)

hold on

grid on

title(“Singular values of the Observability Matrix”, “fontsize”, 14)

semilogy(sing array(2,:), “k.”)

semilogy(sing array(3,:), “kx”)

xlabel(“number of singular value (1:2N)”, “fontsize”, 14 )

ylabel(“singular value, σ”, “fontsize”, 14)

legend(“Normalised Frequencies 0.98-1”, “Normalised Frequencies 0.6-1”, “Normalised Frequencies

0.0025-1”)

hold off

function A=generateDampedA(N, alp,D,Wn)

%Function to generate the A matrix (dx/dt=Ax+Bu) for a large system of

%interconnected pendulum sub-systems each connected via alp (alp(i,j)

%connects sys i to sys j)

%A=generateContinuousA(N, alp,D,Wn)

%N=number of sub systems

%D= vector of damping in each subsystem

%Wn=vector of natural frequencies for each subsystem (in Rad/s)

%for N pendulum subsystems each of 2nd order=¿ 2*N states in state space

A=zeros(2*N,2*N); %Allocate memory

%define elementary matrices

AJ=[0 -1;+1 0]; %elementary rotation matrix

AC=[0 0;1 0]; %elementary coupling matrix

ACr=[1 0;0 0]; %elementary coupling matrix

ACl=[0 0;0 1]; %elementary coupling matrix

AD=[+1 0;0 +1]; %elementary diagonal matrix

AJp=[0 1;1 0]; %positive elementary rotation matrix

Ar=[+1 +1;+1 +1]; %replicate expand matrix

%Generate uncoupled A - block diagonal

A block offdiag=kron(diag(Wn.*sqrt(1-D.2)), AJ);

A block ondiag=kron(diag(-D.*Wn), AD);

A uncoupled=A block offdiag+A block ondiag;

%Generate Coupling matrix
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% Each 2x2 Block matrix Epsilon ij=T i *[0,0;a,0]*inv(T j)

% Where a is the coupling term

D term array=sqrt(1-(D).2);

SumAlpha=diag(sum(alp, 2)); % the sum of each row is the diagonal coupling term

Alpha diag=-kron(SumAlpha,Ar);

Alpha offdiag=kron(alp,Ar);

%Wscaling=repmat(kron(1./Wn,Ar), N, 1); not needed with normalised freqs

Wscaling=ones(2*N); %replacement for normalised freqs

D j=kron(D,ones(N,1));

D i=kron(D’,ones(1,N));

D divD term j=kron(D./D term array,ones(N,1));

D term i=kron(D term array’,ones(1,N));

Epsilon 11=kron(D i,ACr) ;

Epilson 12=kron(D i,AC’) .* kron(D divD term j,AC’);

Epilson 21=kron(D term i,-AC);

Epilson 22=kron(D term i,ACl) .* kron(D divD term j,-ACl);

Epsilon=(Alpha diag+Alpha offdiag).*Wscaling.*(Epsilon 11+Epilson 12+Epilson 21+Epilson 22);

A=A uncoupled+Epsilon;

end

A.5.2 Figure 5.2: Singular Values of the System Matrix

Figure 5.2 compares the singular values of continuous and discrete representations of the
system matrix A for a network of 50 clocks (100 states).

% PLOTING SINGULAR VALUES

% Comparing Digital & Continuous Representations

% 2010

% Defining Constants

N=50; % number of subsystems (clocks) ( 2*N number of states)

Wmax=1; % Max Normalised Clock Frequency

Wmin=0.001; % Max Normalised Clock Frequency

Wn=Wmin+(Wmax-Wmin)*[0:1:N-1]/(N-1); % equi-spaced freqs, uniform distribution over range

Wn=Wn([randperm(length(Wn))]);

mag=0.001; % Maximum coupling magnitude

% Defining Couplying, see function details for further info

alp=makecouplingmatrix(N,mag,0,2);

% Creating system Matrix, see function “generateA” details for further info

A=generateA(N, alp,Wn);

% Finding Singular Values

singular valuesAnal=svd(A); % Analog or continuous

singular valuesDig=svd(expm(A)); % Digital

% plotting

figure(1)
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semilogy(singular valuesAnal,’xk’)

hold on

grid on

title(“Singular values of System matrix”,“fontsize”, 18)

semilogy(singular valuesDig,“ok”)

xlabel(“number of singular value (1:2N)”,“fontsize”, 18 )

ylabel(“singular value, σ”,“fontsize”, 18)

legend(“Analog A: dx/dt = Ax”,“Digital A: xk+1 = eAT xk”)

hold off

function A=generateA(N,alp,Wn)

%2009

%Function to generate the A matrix (dx/dt=Ax+Bu) for a large system of

%interconnected pendulum sub-systems

%[A]=generateA(N, alp,Wn)

%N=number of clock sub systems

%alp=alpha matrix of coupling parameters; alp(i,j)=0 for i==j;

%alp(i,j) connects sys i to sys j

%Wn=vector of natural frequencies for each subsystem

A=zeros(2*N,2*N); %Allocate memory

%define elementary matrices

AJ=[0 -1;+1 0]; %elementary rotation matrix

AC=[0 0;1 0]; %elementary coupling matrix

AO=[-1 -1;1 -1]; %elementary damped oscillation matrix

AJp=[0 1;1 0]; %positive elementary rotation matrix

Aa=[+1 -1;+1 -1]; %alpha expand matrix

Ar=[+1 +1;+1 +1]; %replicate expand matrix

%Block diagonal elements of A

A osc=kron(diag(Wn), AJ); %block diagonal oscillation part

%The couplying term Epsilon

%Epsilon(i,i) are small pertubabtions to the diagonal

%Epsilon(i,j) are the off diagonal terms

%Given the alp matrix, the sum of each row is the diagonal coupling term

Alpha=diag(sum(alp, 2));

Epsilon diag=kron(Alpha,AC);

Epilson off diag=kron(alp,-AC);

Epsilon=(Epsilon diag+Epilson off diag);

A=A osc+Epsilon;

function alp=makecouplingmatrix(n,mag,prob,option)

% 01/10/09

% Generate various couplying matrices, alp
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% Matrix element alp(i,j) denotes coupling strength between clock i and clock j

% Option=1:5; Various coupling structure options

% n is the number of Clocks in network

% mag is the magitude of couplying

% prob is the probability that any 2 clocks are connected

% Option=1; Toplitz connection structure, linearly decaying nearest neighbour

%mag=max couplying strength, prob is n/a (can let prob=0)

% Option=2; Decaying couplying strength

%mag=max couplying strength, prob is n/a (can let prob=0)

% Option=3; Probabilitic Coupling (random long range connection)

%mag=couplying strength, prob is in range [0:1]

% Option=4; Immediate nearest neighbour

%mag=couplying strength, prob is n/a (can let prob=0)

% Option=5; Toeplitz connection structure, geometrically decaying nearest neighbours

%mag=max couplying strength, prob is n/a (can let prob=0)

if (option == 1) %Toplitz connection structure, linearly decaying nearest neighbour

%Creating matrix alp with zeros on diagonal and decreaing magnitudes on

%off-diagonal, so that any given clock is couplyed strongly with those

%nearby and less with those far away, strongest couplying is

%determined by mag parameter

alpha=toeplitz((n-1)*0.1:-0.1:0);

alpha=alpha-diag(diag(alpha));

alpha=alpha/((n-1)*0.1-0.1);

alp=mag*alpha;

end

if (option ==2) %decaying couplying strength

% Creating matrix alp of coupling terms with exponential decay

% in distance away from the node

% Coupling is of the form mag*exp(-dec*distance)

% distance = difference in clock number

dec=0.5; %rate of exponential decay

alpha=toeplitz(0:-1:-n+1);

alpha=mag*exp(dec*alpha);

alpha=alpha-diag(diag(alpha)); %remove the diagonal in the coupling matrix

%alpha=alpha-diag(sum(alpha)); %would balance the diagonal in the coupling

%matrix, don’t need as generate A does this instead

alp=alpha;

end

if option==3 % Probabilitic Coupling (random long range connection)

% Creating matrix alp of coupling terms with coupling terms modelling

% long range network connection with probability, prob

% strength of this coupling is mag (uniform across the entire field)

beta=rand(n); %create a matrix with elements between 0 and 1

beta=mag*floor(beta+prob); %select those elements greater than 1
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beta=beta-diag(diag(beta)); %remove the diagonal of the coupling matrix

beta=triu(beta); %only keep the uppertriangular part

beta=beta+beta’; %make coupling symmetric

beta=beta-diag(diag(beta)); %remove diagonal elements

%balance the diagonal of the coupling matrix - no need as done later in

%generateA

alp=beta;

end

if (option==4) % Immediate nearest neighbour

% Creating matrix alp of couplying terms modelling nearest neighbour

% connection (each node is only connected to its nearest neighbours)

alp=circshift(diag(ones(1,n)),-1);

alp=triu(alp);

alp=alp+alp’;

alp=mag*alp;

end

if (option==5) %Toeplitz connection structure, geometrically decaying nearest neighbours

% Creating matrix alp of coupling terms with geometric decay

% in distance away from the node

alpha=mag.∧toeplitz(0:+1:n-1);

alpha=alpha-diag(diag(alpha)); %remove the diagonal in the coupling matrix

alp=alpha;

end

A.5.3 Figure 5.6: Observability as a Function of Network Coupling

Figure 5.6 considers the percentage of the network that is observable as a function of
network coupling for a networks of 10,100,200 and 500 clocks.

% Observabilty versus connection strength with a geometric toplitz stucture of

% coupling strongest at nearest neighbours (distance based geometric decay

% in coupling

% 12/12/2009

N vect=[10,100,200,500]; %number of clocks

mag vect=[logspace(-3,-1,8),0.3,0.5,0.9,0.95,1]; %strength of coupling

T=1; %sample time

TT=50; %number of trials

tolerance=1/(2∧10);

r=zeros(length(mag vect), length(N vect)); %memory allocation

rp=zeros(length(N vect),TT);%memory allocation

std r=zeros(length(mag vect), length(N vect)); %memory allocation

for i=1:length(N vect)

%space N=N vect(i)

%space C=zeros(1,2*N);
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%space C(2)=1;%let C be connected to only one state

%space for t=1:TT

%spacesecond t=t

%spacesecond Wmin=0.001;

%spacesecond Wmax=1;

%spacesecond Wn=Wmin+(Wmax-Wmin)*[0:1:N-1]/N;

%spacesecond Wn=Wn([randperm(length(Wn))]);

%spacesecond for k=1:length(mag vect)

%spacesecond %space mag=mag vect(k);

%spacesecond %space alp=makecouplingmatrix(N,mag,0,5);

%spacesecond %space A=generateA(N,alp,Wn);

%spacesecond %space %check observability

%spacesecond %space O=obsv(expm(A*T),C);

%spacesecond %space rp(k,t)=ceil(rank(O,tolerance)/2/N*100);

%spacesecond end

%space end

%space r(:,i)=mean(rp’);

%space std r(:,i)=std(rp’,1);

%space figure(2)

%space h=subplot(1,1,1);

%space string colour=[’r’,’b’,’k’,’g’,’¿’,’k’,’y’,’x’];

%space errorbar(mag vect,r(:,i)’,std r(:,i)’, string colour(i));

%space set(h,’XScale’,’log’)

%space grid on

%space hold on

end

vals=num2str(N vect’);

string=repmat(’N=’, length(N vect),1);

text4legend=strcat(string, vals);

legend(text4legend);

ylabel(“Percentage of Observable Clocks (%)”)

title(“Obervability as a function of increasing coupling magnitude’)

xlabel(“Maximum Coupling Magnitude \ alpha”)

A.5.4 Figure 5.9: Observability versus Network Order

Figure 5.9 illustrates the percentage of states observable plotted against increasing net-
worked size N . For networks larger than 100 clocks observability falls dramatically, with
a 1
N scaling law, as the number of clocks increases.

%% Percentage of States Observable versus Increasing Network Order, N

% Comparing Observability with different numbers of bits

% 2010

% Define Constants

N vect=[2:2:10,20:10:100,200,300, 500, 1000]; %number of clocks

mag=0.1 %strength of coupling
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T=1; %sample time

TT=50; %number of trials

tolerance vect=[1/(2∧10),1/(2∧14),1/(2∧24)]; %smallest number represented given (10, 14, 24) mea-

surment bits

dec=0.75; %rate of decay in generating C

Wmin=0.001; %minimum normalised Freq

Wmax=1; %maximum normalised Freq

%Pre-Memory Allocate

r=zeros(length(tolerance vect), length(N vect)); %allocation

rp=zeros(length(N vect),TT);%allocation

std r=zeros(length(tolerance vect), length(N vect)); %allocation

for i=1:length(N vect)

%space N=N vect(i)

%space %let output measurement C be connected to all states with maximum

%space %connection strength at clock number N/2 and exponentally decaying

%space %strength away from clock N/2 towards clocks 1 and N

%space decay=exp([0:-dec:-(N-1)*dec/2]);

%space C=[decay(end:-1:1), decay];

%space C=kron(C,[0,1]);

%space C=C/abs(sum(C)); %Normalise C such that it is a compact set

%space for t=1:TT

%spacesecond t=t

%spacesecond %Frequencies over normalised range, Uniformly spaced

%spacesecond Wn=Wmin+(Wmax-Wmin)*[0:1:N-1]/N;

%spacesecond Wn=Wn([randperm(length(Wn))]);

%spacesecond alp=makecouplingmatrix(N,mag,0,5); %Generate coupling strength matrix

%spacesecond A=generateA(N,alp,Wn); %Generate system matrix

%spacesecond %check observability

%spacesecond O=obsv(expm(A*T),C); %Generate observability matrix

%spacesecond for k=1:length(tolerance vect)

%spacesecond %space %smallest number represented given number of measurement bits

%spacesecond %space tolerance=tolerance vect(k);

%spacesecond %space %Find number of singular values of O that are greater than tolerance

%spacesecond %space rp(i,t,k)=ceil(rank(O,tolerance)/2/N*100);

%spacesecond end

%space end

end

figure(8)

h=subplot(1,1,1);

string colour=[’r’,’b’,’k’];

for k=1:length(tolerance vect)

%space r(k,:)=mean(rp(:,:,k)’); %Find mean observability percentage over trials

%space std r(k,:)=std(rp(:,:,1)’,1); %Find standard deviation of observability percentage over trials

%space errorbar(N vect,r(k,:)’,std r(k,:)’, string colour(k));

%space grid on

%space hold on

end
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set(h,’XScale’,’log’)

set(h,’YScale’,’log’)

legend(’2∧10 bits’, ’2∧14 bits’,’2∧24 bits’);

ylabel(“% Observable”)

title(“Observability as a function of increasing Network Size” )

xlabel(“Number of Clocks (N)”)

A.5.5 Figure 6.4: Covariance Trace versus Network Order for Kalman

Estimation

Figure 5.9 shows the normalised trace of the covariance matrix for Kalman estimation, P

after iterating through 10 seconds of EEG data (5000 samples) against increasing network
order, N .

%% Kalman Trace versus Network order plot

%03/06/2010

clear all

N vect=[2,4,6,8,10,15,20,25,30,40,50,60,70,80,90,100,125,150,200,500]; %N=number of clocks

b vect=[0]; %or example [2,10,0] %b= number of bits 0⇒ inf or continuous

Itt=5000; %number of kalman itterations

for n=1:length(N vect)

%space N=N vect(n)

%space [xhat,x, Kf, Observ 10bit, tr Papr, tr Papost, P apri,O]=kalmanestimate(N,b,Itt);

%space Trace time=tr Papr/(2*N);

%space Trace(n)=Trace time(end);

end

figure(6)

semilogx(N vect, Trace)

grid on

title(“Average Variance of Kalman State Estimate”)

xlabel(“Number of Clocks N”)

ylabel(“Normalised Trace of Error Covariance”)

function [xhat,x, Kf, Observ 10bit, tr Papr, tr Papost, P apri, O]=kalmanestimate(N,b,Itt)

%[xhat,x, Kf, Observ 10bit, tr Papr, tr Papost, P apri,O]=kalmanestimate(N,b,Itt)

%INPUTS

%N num clocks

%b number of measurment bits b=0 for inf bits

%Itt number of kalman iterations

%OUTPUTS

%xhat:timseries of estimated states
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%x: timeseries of trie states

%Kf: timeseries of Kalman gains for each state

%Observ 10bit: rank of observability matrix for a 10-bit tolerance

%tr Papr: timeseries of trace of apriori covariance

%tr Papost: timeseries of trace of aposteri covariance

%P apri: final apriori covariance matrix

%O: observability matrix

%constant variables

Wmin=0.01; %min freq (normalised)

Wmax=1; %max freq (normalised)

T=1; %Ditital sample time

tolerance=1/2∧b; %smallest quantisation step

mag=0.01; %max magnitude of couplying strength

%define clock frequencies

Wn=Wmin+(Wmax-Wmin)*[0:1:N-1]/N;

Wn=Wn([randperm(length(Wn))]);

%define coupling matrix

alp=makecouplingmatrix(N,mag,0,5);

A=generateA(N,alp,Wn); %generate unsampled rotational matrix A=[0,-w;+w,0] etc

C=kron(ones(1,N), [0,1]);

O=obsv(expm(A*T),C);

%What percent of states are visible according to the rank test

if (N > 50)

%space Observ 10bit=0; %to avoid lengthy simulation time for non-main simulation result

else

%space Observ 10bit=ceil(rank(O,tolerance)/2/N*100);

end

%Compare rank result with kalman model

%x(k+1)=Ax

%y=Cx+v where v is the error added by quantisation

%initise x

x=zeros(2*N,Itt+1);

x0 firststate=rand(1,N); %initial state

x0 secondstate=cos(asin(x0 firststate));

x0=kron(x0 firststate,[1,0])+kron(x0 secondstate,[0,1]);

x0=x0’;

%y(1)=quantizer(C*x0,b);

xhat=zeros(2*N,Itt+1); %initialing state extimate

Kf=zeros(2*N,Itt); %initialing kalman gain

xhat predict(:,1)=rand(1,(2*N));

P apri=eye(2*N); %initialising P apriori

P apost=eye(2*N); %initialising P aposteri

R1=0; %variance of state noise
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R2=1; %variance of measurement noise

G=zeros(1,2*N); %models case of x(k+1)=Ax +Gw for us G=0

T=1;%Sample time

A=expm(A*T); %digitise A

C=C/N; %normalise EEG, to between bewteen +1 and -1

%(need norm for ease of quantising as nesc for comparing measures on EEG)

for k=1:Itt

%space if (k/50)==round(k/50)

%spacesecond k

%space end

%space if k==1

%spacesecond x(:,k)=A*x0;

%space else

%spacesecond x(:,k)=A*x(:,k-1);

%space end

%space if b==0

%spacesecond y(k)=C*x(:,k);

%space else

%spacesecond y(k)=quantizer(C*x(:,k),b);

%space end

%space P apri=A*P apost*A’+G*R1*G’;%update equation for new P apriori=f(P aposteri)

%space tr Papr(k) = trace(P apri);

%space Kf(:,k)=P apri*C’*inv(R2+C*P apri*C’); %Kalman gain = f(P apriori)

%space P apost=P apri-P apri*C’*inv(C*P apri*C’ +R2)*C*P apri; %P aposteri=f(P apriori)

%space tr Papost(k) =trace(P apost);

%space xhat update(:,k)=xhat predict(:,k)+Kf(:,k)*(y(k)-C*xhat predict(:,k));

%space xhat predict(:,k+1)=A*xhat update(:,k);%+G*u(k);

end

xhat= [xhat update, xhat update(:,end)];

function [xq]=quantizer(x,b)

%[xq]=quantizer(x,b)

%xq = quantized output

%x = unquatised signal

%b = number of bits

%quantising bewteen +1 and -1 with 2∧b levels

x(x>=1)=1-eps; %make signals that are near 1 just less than 1;

x(x<=-1)=-1+eps; %make signals that are near -1 just greater than 1;

xq=floor((x+1)*2∧(b-1)); %b-1
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xq=xq/2∧(b-1); %b-1

xq=xq-(2∧(b)-1)/2∧b; %xq-1; %(2∧(b)-1)/2∧b;

A.5.6 Figures 6.12 and 6.14: Distance Evaluation of Error Area for

Entropy of Measure Preserving Maps

Figures 6.12 and 6.14 illustrate the error area mapped by a non-linear oscillator and Van
Der Pol Oscillator respectively as a metric of entropy on measure preserving maps.

%% Entropy of Measure Preserving Oscillator Maps

% Visualising Mappings and evaluating entropy through distance based

% measures

% 2010

clear all

%Define initial unit square

NoPoints=10000;

x1(1,:)=rand(1,NoPoints); %state1 at initial time 1

x2(1,:)=rand(1,NoPoints); %state2 at initial time 1

x1mid(1)=0.5;

x2mid(1)=0.5;

%define unit square edge sets

Oto1=0:0.01:1;

x1edge(1,:)=[Oto1,Oto1,zeros(1,length(Oto1)),ones(1,length(Oto1))];%edge set, state1 edgetime0

x2edge(1,:)=[zeros(1,length(Oto1)),ones(1,length(Oto1)),Oto1,Oto1]; %edge set,state2 edgetime0

%% Plot example mappings

itt=7; %num of mappings

w=2*pi/10; %clock frequency

%CHOOSE MAP

%map=’Linear’;

%map=’NonLinear’;

map=’VanDarPol’;

for i=1:itt

%space [x1mid(i+1),x2mid(i+1)]=mappoints(map,x1mid(i),x2mid(i),w);

%space [x1edge(i+1,:),x2edge(i+1,:)]=mappoints(map,x1edge(i,:),x2edge(i,:),w);

end

figure(20)

legendsetup %sets up appropriate legend

plot(x1edge(1,:),x2edge(1,:),’.’, ’MarkerSize’,7, ’color’,[0.5 0.5 0.5])

hold on

plot(x1mid(1),x2mid(1),’o’,’color’,[0.5 0.5 0.5],’LineWidth’,2)

for i=2:itt
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%space plot(x1edge(i,:),x2edge(i,:),’.’, ’MarkerSize’,2, ’color’,[0.5 0.5 0.5])

%space hold on

%space plot(x1mid(i),x2mid(i),’o’,’color’,[0.5 0.5 0.5],’LineWidth’,1)

end

side=length(Oto1);

plot(x1edge(itt+1,1:side),x2edge(itt+1,1:side),’k.’)

plot(x1edge(itt+1,1+side:2*side),x2edge(itt+1,1+side:2*side),’k.’)

plot(x1edge(itt+1,1+2*side:3*side),x2edge(itt+1,1+2*side:3*side),’k.’)

plot(x1edge(itt+1,1+3*side:4*side),x2edge(itt+1,1+3*side:4*side),’k.’)

plot(x1mid(itt+1),x2mid(itt+1),’ok’,’LineWidth’,2,’MarkerSize’,7)

xlabel(’State x 1’, ’fontsize’, 14)

ylabel(’State x 2’,’fontsize’, 14)

set(gca,’FontSize’,12)

set(gca,’XLim’,[-2 2])

set(gca,’YLim’,[-2 2])

grid on

legend(’S 0’,’x 0∧c’,’S 1’,’x 1∧c’,’S 2’,’x 2∧c’,’S 3’,’x 3∧c’,’S 4’,’x 4∧c’,’S 5’,’x 5∧c’)

hold off

%% Calculate average distance of edge from centre in all directions

itt=10000; %number of mappings

w=2*pi/1000; %clock frequency

%CHOOSE MAP

%map=’Linear’;

%map=’NonLinear’;

map=’VanDarPol’;

for i=1:itt

%space [x1mid(i+1),x2mid(i+1)]=mappoints(map,x1mid(i),x2mid(i),w);

%space [x1edge(i+1,:),x2edge(i+1,:)]=mappoints(map,x1edge(i,:),x2edge(i,:),w);

end

%Distance measured to show entropy =0

for i=1:itt

%space DistancefromCentrex1 k(i,:)=x1edge(i+1,:)-x1mid(i+1); %distance form centre at each point

k

%space DistancefromCentrex2 k(i,:)=x2edge(i+1,:)-x2mid(i+1);

end

figure(8)

grey=[0.75,0.75,0.75];

%Mean at each time step

plot(mean((DistancefromCentrex1 k(:,:)’)),’–’, ’Color’, grey)

hold on

plot(mean((DistancefromCentrex2 k(:,:)’)),’–k’)

xlabel(’Sample time, k’, ’FontSize’, 14)

%Moving Mean
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movingmean x1=cumsum(mean((DistancefromCentrex1 k(:,:)’)))./[1:1:size(x1edge,1)-1];

movingmean x2=cumsum(mean((DistancefromCentrex2 k(:,:)’)))./[1:1:size(x2edge,1)-1];

plot(movingmean x1, ’Color’, grey, ’LineWidth’, 3)

hold on

plot(movingmean x2,’k’, ’LineWidth’, 3)

legend(“mean(x k∧1-x k∧c,1)”, “mean(x∧2 k-x k∧c,2)”, “cumulative mean x∧1”, “cumulative mean

x∧2”)

title(“Mean Distance between Centre Point & Edges of Error Area”, “FontSize”, 14)

ylabel(“Distance”, “FontSize”, 14)

function [x1new, x2new]=mappoints(Map, x1, x2, w)

T=1; %digital sampling time

if (strcmp(Map, ’Linear’))

%space A=[0,-w;w,0]; %continuous map

%space A=expm(A*T); %digital map

%space eigA=abs(eig(A));

%space x=[x1;x2];

%space for i=1:length(x1)

%spacesecond xnew(:,i)=A*x(:,i);

%space end

%space x1new=xnew(1,:);

%space x2new=xnew(2,:);

end

if (strcmp(Map, ’NonLinear’))

%space x=[x1;x2];

%space for i=1:length(x1)

%spacesecond A=[0,-w;w*cos(x1(i)),0]; %continuous map

%spacesecond A=expm(A*T);%digital map

%spacesecond %or could equally use the following to get equivalent result.

%spacesecond %A=[cos(sqrt(cos(x1(i)))*w), (-1/sqrt(cos(x1(i))))*sin(sqrt(cos(x1(i)))*w);

%spacesecond % (sqrt(cos(x1(i))))*sin(sqrt(cos(x1(i)))*w),cos(sqrt(cos(x1(i)))*w)]

%spacesecond eigA(:,i)=abs(eig(A));

%spacesecond xnew(:,i)=A*x(:,i);

%space end

%space x1new=xnew(1,:);

%space x2new=xnew(2,:);

end

if (strcmp(Map, ’VanDarPol’))

%space e=0.0001; %vanderpol parameter

%space x=[x1;x2];

%space for i=1:length(x1)
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%spacesecond A=[0,-w;w,-e*(1-(x1(i))∧2)];%continuous map

%spacesecond A=expm(A*T); %digital map

%spacesecond xnew(:,i)=A*x(:,i);

%space end

%space x1new=xnew(1,:);

%space x2new=xnew(2,:);

end

A.5.7 Figure 7.2: Evoked Network Clock Simulation

Figure 7.2 was generated using the Matlab Simulink simulation shown in Figure A.9 and
A.10. The contents of each second order linear clock block (clock numbers 1-2 and 4-25)
are shown in Figure A.11 with the contents of the non-linear clock (clock number 3) shown
in Figure A.12. The associated set-up code in Matlab is also provided in this section.

%%Initialisation variables for clock system simulation Model 5by5 v6

%% Constants

Total num Clock systems=25;

N=Total num Clock systems;

feedback difference=1; %set =zero for coupling to be = state of other

%systems or set=1 for the diff between current system and other systems

%% Evoked Input

Evoked Amp=10;

Evoked Freq=10;

%Switch vector E(k): 1=¿ Evoked signal is connected to system k

E=zeros(1,Total num Clock systems);

E([1,2,6,7])=1;

E([16,17,21,22])=1;

E([4,9,5,10])=1;

E([19,24,20,25])=1;

%% Clock system

%Damp(i) sets damping parameter for clock i

Damp(1)=0.01;

Damp([2,6,7])=0.0075;

Damp([3,8,13,12,11])=0.005;

Damp([4,9,14,19,18,17,16])=0.0025;

Damp([5,10,15,20,25,24,23,22,22,21])=0.001;

Damp(3)=-0.01; %unstable element

epsilon=0.00000001; %parameter in Van dar Pole clock (clock number 3)
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%uniformly distributed freq

percentage=100;

Fmid=0.5+(100-0.5)/2;

Fmax=Fmid*(1+percentage/100);

Fmin=Fmid*(1-percentage/100);

F = Fmin + (Fmax-Fmin) * rand(1,Total num Clock systems);

F(1)=10;

F(3)=6;

%% EEG output

%C=weights eg=[w1∧2, 0, w2∧2, 0 ...etc]

%but simulink only has connections to angle state =¿

%weights eg=[w1∧2, w2∧2, ...etc]

weights=(2*pi*F).∧2;

%% Clock System Coupling

%or alpha(1,1) is coupling strength of system 1 onto system 1

%alpha(1,:) the 1st row, is coupling strength row vector for all systems onto system 1

%alpha(2,:) the 2nd row, is coupling strength for all systems onto system 2

%more specifically alpha(2,5) is the coupling strength for system 5 onto system 2 etc

%Let coupling be anywhere in range 0-alp max where e.g. alp max=0.01

alp max=0.01;

alp=rand(N,N)*alp max;

alpha=alp;

alpha([1:N+1:N*N])=0; %set diagonal elements to zero (so self coupling)

%allows global connection (default)

%to mutually couple systems 1 & 2, sys coup(1,1)=2 and sys coup(2,1)=1;

%each row i corresponds to the systems to be connected to system i

sys coup=zeros(Total num Clock systems,Total num Clock systems);

sys coup(:,1)=-1*ones(1,Total num Clock systems);

%% load results

load Xsimout.mat

load tsimout

load EEG.mat

%load pulse input.mat

EEG channel(1,:)=weights(1)*X(1+1,:)+weights(2)*X(1+2,:)+weights(6)*X(1+6,:)+weights(7)*X(1+7,:);

EEG channel(2,:)=weights(4)*X(1+4,:)+weights(5)*X(1+5,:)+weights(9)*X(1+9,:)+weights(10)*X(1+10,:);

EEG channel(3,:)=weights(16)*X(1+16,:)+weights(17)*X(1+17,:)+weights(21)*X(1+21,:)+weights(22)*X(1+22,:);

EEG channel(4,:)=weights(19)*X(1+19,:)+weights(20)*X(1+20,:)+weights(24)*X(1+24,:)+weights(25)*X(1+25,:);

%% Testing of results, with evoked sig
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clear phase

clear amp

clear amp sig

clear phase sig

data=X(1,:)

%Find which clocks are synchronised to evoked input via moving window

Fs=512;

window=Fs;

step=round(window/10);

freq=10;

time whole=X(1,:);

steptime=1:step:round((length(data)-window));

phase=zeros(25,length(steptime));

amp=zeros(25, length(steptime));

phase sig=zeros(4,length(steptime));

amp sig=zeros(4,length(steptime));

for clock=1:25;

%space clock

%spacedata=X(clock+1,:);

%spacek=0;

%spacefor i=1:step:round((length(data)-window))

%spacesecond k=k+1;

%spacesecondtimeseries=data(1+(i-1):window+(i-1))’;

%spacesecondtchunk=time whole(1+(i-1):window+(i-1))’;

%spacesecond[phase(clock,k), amp(clock,k)]=is sync(timeseries, Fs,tchunk, freq);

%spaceend

end

for sig=1:4

%spacedata=EEG channel(sig,:);

%space sig=sig

%spacesteptime=1:step:round((length(data)-window));

%spacek=0;

%spacefor i=1:step:round((length(data)-window))

%spacesecond k=k+1;

%spacesecondtimeseries=data(1+(i-1):window+(i-1))’;

%spacesecondtchunk=time whole(1+(i-1):window+(i-1))’;

%spacesecond[phase sig(sig,k), amp sig(sig,k)]=is sync(timeseries, Fs,tchunk, freq);

%spaceend

end

%% plot results of previous cell

for clock=1:25

%space clock

%spacesubplot(3,1,1)

%spaceplot(X(1,:),X(clock+1,:),’r’)
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%spacesubplot(3,1,2)

%spaceplot(steptime/Fs,phase(clock,:))

%spacesubplot(3,1,3)

%spacepause

end

for sig=1:4

%spacesubplot(3,1,1)

%spaceplot(X(1,:),EEG channel(sig,:),’r’)

%spacesubplot(3,1,2)

%spaceplot(steptime/Fs,phase sig(sig,:))

%spacesubplot(3,1,3)

%spacepause

end

%% Testing of results, with Unstable osc

clear phaseBad

clear ampBad

clear amp sigBad

clear phase sigBad

data=X(1,:); %set up variable

%Find which clocks are synchronised to unstable osc,

%letting unstable ossillation be box number 3

Fs=512;

window=Fs;

freq=F(3);

time whole=X(1,:);

step=round(window/10);

steptime=1:step:round((length(data)-window));

phaseBad=zeros(25,length(steptime));

ampBad=zeros(25, length(steptime));

phase sigBad=zeros(4,length(steptime));

amp sigBad=zeros(4,length(steptime));

for clock=1:25;

%space clock

%spacedata=X(clock+1,:);

%spacesteptime=1:step:round((length(data)-window));

%spacek=0;

%spacefor i=1:step:round((length(data)-window))

%spacesecond k=k+1;

%spacesecond timeseries=data(1+(i-1):window+(i-1))’;

%spacesecond tchunk=time whole(1+(i-1):window+(i-1))’;

%spacesecond [phaseBad(clock,k), ampBad(clock,k)]=is sync(timeseries, Fs,tchunk, freq);

%space end

end
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for sig=1:4

%spacedata=EEG channel(sig,:);

%spacesig=sig

%spacesteptime=1:step:round((length(data)-window));

%spacek=0;

%spacefor i=1:step:round((length(data)-window))

%spacesecond k=k+1;

%spacesecondtimeseries=data(1+(i-1):window+(i-1))’;

%spacesecondtchunk=time whole(1+(i-1):window+(i-1))’;

%spacesecond[phase sigBad(sig,k), amp sigBad(sig,k)]=is sync(timeseries, Fs,tchunk, freq);

%spaceend

end

%% plot results of previous cell

for clock=1:25

%spacesecond clock

%spacesecondsubplot(3,1,1)

%spacesecondplot(X(1,:),X(clock+1,:),’r’)

%spacesecondgrid on

%spacesecondsubplot(3,1,2)

%spacesecondplot(steptime/Fs,phaseBad(clock,:))

%spacesecondgrid on

%spacesecondpause

end

for sig=1:4

%spacesecond sig

%spacesecondsubplot(3,1,1)

%spacesecondplot(X(1,:),EEG channel(sig,:),’r’)

%spacesecondgrid on

%spacesecondgrid on

%spacesecondsubplot(3,1,2)

%spacesecondplot(steptime/Fs,phase sigBad(sig,:))

%spacesecondgrid on

%spacesecondgrid on

%spacesecondpause

end

function [phase, amp]=is sync(timeseries, Fs,t, freq)

%[phase, amp]=is sync(timeseries, Fs,t, freq)

%where Fs is sample time

%t= time vector

%freq is frequency you want to find phase offset of, can be a vector

%% Phase estimation based on least squares

for f=1:length(freq)
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%space F=freq(f);

%space xfc=cos(2*pi*F*t);

%space xfs=sin(2*pi*F*t);

%space H=[xfc,xfs];

%space x=timeseries;

%space Theta est=[2/length(x),0;0,2/length(x)]*(H’*x);

%space phase(f)=atan(-Theta est(2)/ Theta est(1));

%space amp(f)=sqrt(Theta est(1).∧2 +Theta est(2).∧2);

end
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Figure A.9: Overall Block Digram of Network Clock Simulation in Simulink, part a
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Figure A.10: Overall Block Digram of Network Clock Simulation in Simulink, part b
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A.5.8 Figure 7.4: Comparing Singular values of the Observability Ma-

trix for Balanced and Original System State Representations.

Figure 7.4 considers the singular values of the time-scaled continuous representation of the system matrix A for a

network of 50 clocks (100 states) comparing a balanced system state representations with the original representation

used throughout this thesis.

%% Observability with the Balanced Transform

% (1) Generate transformed and time scaled model

% (2) Balanced transform

% (3) Optional Balanced system truncation

% (4) Plot singular values

% (1) Generate transformed and time scaled model

N=50; %number of subsystems (=¿ 2*N number of states)

Fmax=1; %non-normalised maximum frequency

option=[1,2,3]; %set up for loop for each trace

for opt=1:length(option)

%spaceif opt==1

%spacesecond Fmin=0.98; %normalised minimum frequency

%spaceelseif opt==2

%spacesecond Fmin=0.6; %normalised minimum frequency

%spaceelseif opt==3

%spacesecond Fmin=0.0025; %normalised minimum frequency

%spaceend

%spaceF=Fmin+(Fmax-Fmin)*[1:1:N]/N; %equi-spaced freqs, uniform distribution over range

%spaceWn=2*pi*F;

%spaceWnorm=max(Wn);

%spaceD=repmat(0.001,1,N); %Define damping parameters

%spacealpha=0.001; %Define Couping Parameters

%spacealp=alpha*triu(ones(N),1);

%spaceAold=generateDampedA(N, alp,D,Wn);

%spaceAold=Aold/Wnorm; %Timescale

%space %non-balanced B C

%spaceBold=zeros(1,2*N)’; %pre-memory allocate

%spaceBold(1:2:(2*N)-1)=Wn/Wnorm;

%spaceBold(2:2:2*N)=0;

%spaceCold=zeros(1,2*N); %pre-memory allocate

%spaceCold(1:2:2*N)=0;

%spaceCold(2:2:(2*N))=-1;
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%space% (2) Balanced transform

%spaceQ=lyap(Aold’, Cold’*Cold);

%spaceP=lyap(Aold,Bold*Bold’);

%spaceU=chol(P,’lower’);

%space[K,lam]=eig(U’*Q*U);

%spacesigma=sqrt(lam); %Singular values

%space%Or equally using the eigean values

%spaceT=sqrt(sigma)*K’*inv(U); %Balanced transformation

%spaceTinv=U*K*sigma∧(-0.5);

%spaceC=Cold*inv(T); %Balanced C

%spaceB=T*Bold; %Balanced B

%spaceA=T*Aold*inv(T); %Balanced A

%space% (3) Optional Balanced system truncation

%spacetruncate=0; %option to truncate system: 1 to truncate, 0 otherwise

%spacek=50; %order that i’m reducing system to

%spaceif truncate==1

%spacesecond %If I only had kth column of K

%spacesecond Kro=K(:,1:k); %K reduced order

%spacesecond Sigmaro=sigma(1:k,1:k);

%spacesecond T ro=sqrt(Sigmaro)*Kro’*inv(U);

%spacesecond B=T ro*Bold %Balanced B

%spacesecond Tinv ro=U*Kro*(Sigmaro)∧(-0.5);

%spacesecond C=Cold*Tinv ro %Balanced C

%spacesecond A=T ro*Aold*Tinv ro %Balanced A

%spaceend

%spaceobseby=obsv(A,C/N);

%space%Normalised C above so C is a convex combination and max singular value is of order 1

%spacesingular values=svd(obseby);

%spaceobsebyold=obsv(Aold,Cold/N);

%space%Normalised C used to so C is a convex combination and max singular value is of order 1

%spacesingular valuesold=svd(obsebyold);

%spacesing array(opt,:)=singular values;

%spacesing arrayold(opt,:)=singular valuesold;

end

% (4) Plot singular values

% Plot Singular values of non-Balanced model

semilogy(sing arrayold(1,:),’ok’)

hold on
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grid on

semilogy(sing arrayold(2,:), “.k”)

semilogy(sing arrayold(3,:), “xk”)

% Plot Singular values of Balanced model

grey=[0.75,0.75,0.75];

semilogy(sing array(1,:), “o”, “Color”, grey)

hold on

grid on

semilogy(sing array(2,:), “.”, “Color”, grey)

semilogy(sing array(3,:), “x”, “Color”, grey)

title(“Singular values of the Observability Matrix”, “fontsize”, 14)

xlabel(“number of singular value (1:2N)”, “fontsize”, 14 )

ylabel(“singular value, sigma”, “fontsize”, 14)

legend(“Normalised Frequencies 0.98-1”, “Normalised Frequencies 0.6-1”,

“Normalised Frequencies 0.0025-1”, “Balanced System, Normalised Frequencies 0.98-1”,

“Balanced System, Normalised Frequencies 0.6-1”, “Balanced System, Normalised Frequencies 0.0025-

1”)

hold off

Note the function generateDampedA is provided in A.5.1.

A.5.9 Figures A.7 and A.8: Comparing Phase Estimation Techniques

Figure A.7 compares the phase estimation performance of the least squares algorithm with
the Hilbert transforms for a signal in Gaussian Noise, while Figure A.8 compares the phase
estimation performance of the least squares algorithm with the Hilbert transforms for a
multi-frequency signal.

%% COMPARE HILBERT AND LEAST SQUARES PHASE ESTIMATION: GAUSSIAN NOISE

%2008

Fs=1/0.001; %define sampling frequency

t=0:1/Fs:2; % define time vector

f1=10; %define sinusoid freqency

%least squares phase

Nvector=logspace(-1,3,100); %level of noise

for k=1:100 %loop over noise level

%space for i=1:200 %loop over random generation of Gaussian noise vector

%spacesecond N=Nvector(k);

%spacesecond Noise=N*randn(1,length(t));

%spacesecond Noise rms=sqrt(mean(Noise. ∧ 2))’;

%spacesecond %Define Signal

%spacesecond x=cos(2*pi*f1*t +pi/4)
′

+ Noise
′
;
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%spacesecond %Least Squares Algorithm

%spacesecond xfc=cos(2*pi*f1*t)
′
;

%spacesecond xfs=sin(2*pi*f1*t)
′
;

%spacesecond H=[xfc,xfs];

%spacesecond Theta est=[2/length(x),0;0,2/length(x)]*(H
′
*x);

%spacesecond Phase(i)=atan2(-Theta est(2),Theta est(1));

%space end

%space Phase error(k)=abs((mean(Phase-pi/4)));

%space SNR(k)=(1/sqrt(2))/Noise rms;

end

figure(1)

semilogx(SNR, Phase error, “k*”)

title(“Phase error versus SNR”,“fontsize”, 14)

xlabel(“SNR”, “fontsize”, 14)

ylabel(“|Phase Error| (rad/s)”, “fontsize”, 14)

grid on

hold on

%hilbert phase

for k=1:100 %loop over noise level

%space for i=1:200 %loop over random generation of Gaussian noise vector

%spacesecond N=Nvector(k);

%spacesecond Noise=N*randn(1,length(t));

%spacesecond Noise rms=sqrt(mean(Noise. ∧ 2))
′
;

%spacesecond %Define Signal

%spacesecond x=cos(2*pi*f1*t +pi/4)
′

+ Noise
′
; %spacesecond %Compute Hilbert Phase

%spacesecond Phi=angle(hilbert(x))-angle(hilbert(cos(2*pi*f1*t
′
)));

%spacesecond %Transpose phase

%spacesecond index neg=find(Phi<-pi);

%spacesecond Phi(index neg)=Phi(index neg)+2*pi;

%spacesecond index neg=find(Phi>pi);

%spacesecond Phi(index neg)=Phi(index neg)-2*pi;

%spacesecond Phaseh(i)=mean(Phi);

%space end

%space Phase errorh(k)=abs((mean(Phaseh-pi/4)));

%space SNR(k)=(1/sqrt(2))/Noise rms;

end

semilogx(SNR, Phase errorh, “ko”)

legend(“Least Squares method”, “Hilbert method”)

hold off

%% COMPARE HILBERT AND LEAST SQUARES PHASE ESTIMATION: MULTIFREQUENCY

“NOISE”

Fs=1/0.001; %define sampling frequency

t=0:1/Fs:2; % define time vector

f1=10; %define sinusoid freqency
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f2=15; %define second sinusoid freqency

%least squares phase

Nvector=logspace(-1,3,100); %level of noise

for k=1:100 %loop over noise level

%space N=Nvector(k);

%space Noise=N*cos(2*pi*f2*t +pi/8);

%space Noise rms=N/sqrt(2);

%space %Least Squares Method

%space x=cos(2*pi*f1*t +pi/4)
′

+ Noise
′
;

%space xfc=cos(2*pi*f1*t)
′
;

%space xfs=sin(2*pi*f1*t)
′
;

%space H=[xfc,xfs];

%space Theta est=[2/length(x),0;0,2/length(x)]*(H
′
*x);

%space Phase=atan2(-Theta est(2),Theta est(1));

%spacePhase error(k)=abs(Phase-pi/4);

%space SNR(k)=(1/sqrt(2))/Noise rms;

end

figure(2)

semilogx(SNR, Phase error, “k*”)

title(“Phase error versus SNR”,“fontsize”, 14)

xlabel(“SNR”, “fontsize”, 14)

ylabel(“|Phase Error| (rad/s)”, “fontsize”, 14)

grid on

hold on

%hilbert phase

for k=1:100 %loop over noise level

%space N=Nvector(k);

%space Noise=N*cos(2*pi*f2*t +pi/8);

%space Noise rms=N/sqrt(2);

%space x=cos(2*pi*f1*t +pi/4)
′

+ Noise
′
;

%space %Compute Hilbert Phase

%space Phi=angle(hilbert(x))-angle(hilbert(cos(2*pi*f1*t
′
)));

%space index neg=find(Phi<-pi);

%space Phi(index neg)=Phi(index neg)+2*pi;

%space index neg=find(Phi>pi);

%space Phi(index neg)=Phi(index neg)-2*pi;

%space Phaseh=mean(Phi);

%space Phase errorh(k)=abs(Phaseh-pi/4);

%space SNR(k)=(1/sqrt(2))/Noise rms;

end

semilogx(SNR, Phase errorh, “ko”)

legend(“Least Squares method”, “Hilbert method”)

hold off
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