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Abstract

THIS thesis focuses on the design of various optimal resource allocation algorithms

for wireless communication networks with imperfect channel state information

(CSI) available at the transmitter obtained via a finite-rate feedback channel from the re-

ceiver (the so-called limited feedback technique).

We first look at an M parallel block-Nakagami-fading channels where we seek to de-

sign an optimal power allocation scheme that minimize the outage probability under a

long term average transmit power (ATP) constraint with quantized CSI. A simultaneous

perturbation stochastic approximation algorithm (SPSA) based simulation-optimization

method is applied to obtain a locally optimal power codebook. As this method is compu-

tationally intensive and time-consuming, we then derive a number of reduced-complexity

suboptimal finite-rate power codebook design algorithms. For the large number of par-

allel channels case, a Gaussian approximation based low-complexity power allocation

strategy is provided.

We then consider a secondary user (SU) transmit power control problem in a spec-

trum sharing cognitive radio networks scenario with quantized channel feedback for

optimizing relevant performance measures such as secondary ergodic capacity or out-

age probability under interference power constraints (which can be restricted either by

an average (AIP) or a peak (PIP) constraint) at primary user (PU) receivers to protect

the PU, and an average transmit power (ATP) constraint on SU. Firstly, we study the

problem of ergodic capacity maximization over M parallel channels (each of which is

licensed to a distinct PU) of SU subject to an ATP constraint at SU and M individual

AIP constraints on each PU with quantized feedback of the joint channel space of SU

transmitter to SU receiver and SU transmitter to PU receivers. We develop a “modified
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generalized Lloyds-type algorithm (GLA)” for finding a locally optimal quantized power

codebook. An approximate but computationally efficient quantized power allocation al-

gorithm is then derived for the case of large number of feedback bits. It is seen that only

3-4 bits of feedback per channel band achieves SU ergodic capacity close to the full CSI

based performance. We also extend these results to the noisy limited feedback case. We

then consider the problem of throughput maximization of SU with a finite rate power

codebook under an ATP constraint at SU and N individual PIP constraints on each PU

receiver. With quantized channel (from the SU-TX to each PU-RX) knowledge, three dif-

ferent quantized power allocation schemes are proposed corresponding to three distinct

forms of CSI obtained regarding the channel from SU-TX to SU-RX link at SU-TX : full

CSI, noisy estimated CSI and quantized CSI. Finally, we consider the joint optimization

of the quantization regions and the transmission power codebook such that the outage

probability of the SU is minimized while an ATP constraint at the SU and an AIP con-

straint on the PU are met. Explicit expressions for asymptotic behavior of the SU outage

probability at high rate quantization are also developed.
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Chapter 1

Introduction

Optimizing the utilization of limited wireless resources, such as, transmission power con-

trol, rate allocation, multiple access scheme, spectrum access strategy, and so on, so as to

improve the system performance, to ensure the basic quality of services, or to diminish

the cost for the network infrastructures, plays a crucial role in wireless communication

networks design. The randomly time-varying nature of wireless communication chan-

nels, also known as “fading channels”, makes this task of optimal resource allocation

extremely challenging. Research over the last two decades has well demonstrated that

dramatically improvement on almost any information theoretic performance measure

of wireless networks can be achieved by designing system resources adaptation based

on full channel information available at the transmitter and receiver. However, while

availability of full channel state information at the receiver (CSIR) is certainly feasible (at

least in the form of channel estimates), the assumption of channel state information at

the transmitter (CSIT) is impractical due to the reasons such as bandwidth constrained

nature of the feedback channel and the substantial amount of communication overhead

involved for a time-varying wireless channel. Recent research on various types of wire-

less communication networks has addressed this concern by investigating performance

analysis with only partial channel knowledge available at the transmitter. This thesis will

concentrate on designing optimal resource allocation algorithms for important wireless

communication systems such as a single user point-to-point communication system in-

volving parallel fading channels (technologically relevant for multi-carrier systems such

as OFDM) and emerging technologies such as cognitive radio networks with quantized

channel information at the transmitter using “limited feedback” over the finite-rate feed-

1



2 Introduction

back channel.

In this chapter, we will first briefly introduce some useful information theoretic no-

tions related to the topics in this thesis. Then, we will give an overview of the thesis and

its main contributions. We will finally conclude the chapter with a list of publications

resulting from this thesis.

1.1 Resource Optimization in Wireless Communication Networks

The increasing demand for high data rate wireless services requires high performance

(such as capacity or reliability) wireless communication networks. To meet this goal, effi-

ciently and adaptively utilizing limited wireless resources, such as transmit power, rate,

etc, is essential. The channel quality of wireless communication systems is usually char-

acterized by high variability due to the factors such as mobility, interference, multipath

propagation environment, and so on [37]. Traditional fixed resource based management

schemes, where resources have to be chosen to ensure an acceptable quality performance

even with the worst-case channel conditions [16], results in a very inefficient and in-

flexible utilization of the available resource. In contrast, resources allocated adaptively

based on the instantaneous channel conditions can dramatically improve the system per-

formance. Due to the promise of such benefits, designing optimal resource allocation

schemes in order to maximize the performance of various kinds of wireless communica-

tion networks have earned a significant interest from researchers and have been widely

studied in the literature in recent years, such as [79],[64],[42],[19],[104].

Various notions of capacity for a wireless fading channel include ergodic capacity [10],

capacity versus outage probability [40] and delay-limited capacity [99], which constitute some

of the very important performance criteria for analyzing the information theoretic per-

formance limits of wireless communication networks. For delay-insensitive applications

such as wireless data networks, ergodic capacity, which is defined as the maximum

achievable rate averaged over all channel realizations [117], is a good performance met-

ric. But for delay-sensitive services such as real-time speech and video, the latter two

notions are more appropriate. These two performance measures are closely related. The
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notion of outage probability denotes the probability that the instantaneous mutual infor-

mation of a wireless channel falls below a required rate threshold and the delay-limited

capacity is defined as the maximum achievable constant transmission rate at which the

outage probability is zero [40].

Deriving a resource optimization strategy which can adapt to the instantaneous chan-

nel conditions requires the transmitter to have access to some form of knowledge of the

channel conditions, often referred to as channel state information (CSI) [34] in the litera-

ture. Due to the fact that in many wireless communication environments, changes in the

propagation environment occur on a very slow time scale with respect to the signaling

rate [40], the block-fading channel model [89],[36],[68] can be effective. In this model,

channel information changes independently from block to block, but the channels within

each transmission block experience the same CSI. Blocks can be viewed of as separated in

time (e.g., in a TDMA system) or as separated in frequency (e.g., in a multicarrier system

(OFDM))[40].

One issue which can significantly affect the resource optimization performance is to

what degree of accuracy or resolution the transmitter can obtain the CSI. Many of the

existing research work on resource optimization assume that the transmitter can obtain

perfect CSI through the techniques such as training, in order to maximize the informa-

tion theoretic performance measures of wireless communication systems. With the full

CSI assumption, it is well known that the optimal power allocation strategy for maximiz-

ing the capacity of a OFDM system with a total power constraint is ’waterfilling’ [35],

which is obtained by solving this concave optimization problem with the Karush-Kuhn-

Tucker (KKT) conditions ( KKT conditions are the necessary conditions for optimality of

an optimization problem, and if the problem is convex, the solution obtained by KKT

is a global optimum). Here the notion of ’waterfilling’ means that the transmitter allo-

cates more power to the stronger sub-carriers (which have better channel conditions),

and less or even no power to the weaker ones [35]. The optimal power control schemes

for minimizing the outage probablilty of a block-fading channel under a short or long

term average power constraint have been studied in [40]. In [53], the authors investi-

gated the service outage based power allocation problem which combines the concepts
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of both ergodic capacity and outage capacity for fading channels.

Unfortunately, the perfect CSI assumption is unrealizable in a practical system, due

to bandwidth constraints on the reverse feedback link as well as the considerable com-

munication overhead cost involved. This assumption is also not suitable for wireless

communication systems using frequency-division duplexing (FDD), where the transmit-

ter cannot obtain the forward link CSI from pilot based training techniques for the reverse

link (or vice versa) since the forward link and the reverse link in FDD generally operate

on different frequencies [34].

1.2 Limited Feedback Strategy

The use of limited channel information feedback has addressed the problem of obtain-

ing partial information about instantaneous CSIT practically at the transmitter [34]. The

general idea of the limited feedback approach is that, the receiver utilizes the reverse

link as a feedback channel and conveys a low rate data stream about the information of

forward channel conditions (such as the CSI, power, rate, etc.) to the transmitter, and

then the transmitter exploits this information to adapt its transmission on the forward

link. Such practical systems are commonly referred to as “limited feedback” or “finite-

rate feedback” systems. Over the last few years, it has been demonstrated that the system

performance obtained through the use of a small number of information bits about the

forward link conditions sent from the receiver to the transmitter, is nearly identical to

the impractical case of full CSI at the transmitter. Such encouraging results lead to the

popularity of the application of limited feedback strategy in recent years, especially in

wireless communication field, and the interest has continued to grow. In the following,

we will briefly summarize the application of limited feedback in wireless communication

systems over the past few years.

Single-user single-antenna wireless communication systems: In [107], the authors assumed

perfect CSIR and utilized quantized version of the magnitude of channel CSI as feedback

for channel adaptation in flat-fading systems, subject to either a short-term power con-

straint or a long-term power constraint. The idea of limited feedback strategy here is
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that a fixed codebook about quantized CSI information with size 2B is pre-computed and

known to both transmitter and receiver. The receiver employs its channel estimate to

pick the optimal transmitter-side CSI from the codebook. And then the B-bit binary la-

bel representing the index of the chosen CSI in the codebook is sent over the feedback

channel to the transmitter. After that the transmitter will use the codebook element as-

sociated with the feedback index to adapt its transmission strategy. Obviously, the key

technique here is the quantized codebook design. In [73], the authors considered periodic

feedback, where channel CSI is fed back to the transmitter at regular fixed time-intervals.

The performance degradation of an adaptive modulation due to feedback imperfections

was evaluated in [3]. In [111], the authors showed that utilizing the channel side infor-

mation can help reduce the complexity of code design. In [94],[57], another approach

of feedback i.e, automatic repeat request (ARQ) scheme, where power adaptation is de-

rived based on ACK/NAK feedback, was proposed. To make the system performance

robust, in [11], the authors investigated rate adaptation based on both partial CSIT feed-

back as well as ACK/NAK signaling. In broadband systems, OFDM technique is used

in multipath fading channels. In [121], the authors derived an optimal on-off subcarrier

power allocation and quantized rate control (adaptive modulation) with limited feed-

back through a slow frequency-selective fading channel. Jointly optimizing the power

allocations on the OFDM frequency tones has been studied in [32]. Power loading over

sub-channel groups with limited feedback was discussed in [74].

Single-user multiple-antenna wireless communication systems: In [23], the authors de-

signed a fixed covariance codebook using the Lloyd-like algorithm to maximize the er-

godic capacity of an isolated MIMO link with flat Rayleigh fading, where the receiver

only sends the label of the best covariance matrix in this predetermined covariance code-

book to the transmitter. The covariance codebook also can be randomly generated. Ran-

dom covariance codebooks design for MIMO channel, generated from the uniform distri-

bution on the complex unit sphere, was proposed by [2]. Except for covariance quantiza-

tion, other channel quantization approaches like channel CSI vector quantization (as ad-

dressed in [15] for a MISO system), beamforming vector quantization and linear precod-

ing quantization. In [119], the authors provided quantized transmit beamformer designs
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for the MISO case and the MIMO case under the uniform elemental power constraint. A

quantized maximum signal-to-noise ratio beamforming technique was proposed in [33]

for the MIMO case, where the beamforming vector codebooks is designed related to the

Grassmannian line packing problem. Grassmannian line packing is the problem of find-

ing the set or packing of lines that has maximum minimum distance between any pair

of lines. In [50], the authors proposed a new quantizer design criterion to construct the

beamforming quantization codebooks using a Lloyd-type vector quantization (VQ) algo-

rithm (i.e, Generalized Lloyd Algorithm (GLA)) for the MISO case. The basic idea of VQ

is to represent a large set of vectors by a smaller set of vectors in the best possible way.

To implement vector quantization, GLA, a clustering technique, is often used to design

the vector quantizer. It formulates a distortion function, and then iteratively runs the

two optimality conditions until convergence, so as to obtain a locally solution. The two

conditions are: (1) the nearest neighborhood condition, i.e, finding an optimum partition

which divide a large set of points (vectors) into groups for given codebook vectors; (2) the

centroid condition, i.e, finding optimum codebook vectors that minimize the distortion

function for a fixed partition. The conditions for the convergence and consistency of the

GLA with empirical distributions were established in [76]. The consistency property of

GLA is defined by a performance which is nearly as good as in the case of known source

statistics, and can be achieved with a large enough observed training set [102]. Another

approach to designing a limited feedback beamforming codebook is using random vector

quantization (RVQ), as shown in [29] for the MISO case. In this approach, the codebook

is generated independently from a uniform distribution on the complex unit sphere. All

these beamforming codebook design methods (Grassmannian, VQ, RVQ) can be applied

to linear precoding codebook design, see [113],[26],[114]. Furthermore, the beamform-

ing and the linear precoding techniques proposed for narrowband channels can be easily

extended to broadband case by employing OFDM. In [52], the authors designed the op-

timal beamforming vector quantization scheme and computed the beamforming vectors

for all subcarriers through interpolation for a MIMO-OFDM system. In [103], a geodesic

sampling approach was used as a linear interpolation on the Grassmann manifold to ob-

tain the precoder matrices for nonpilot subcarriers based on optimal quantized precoder
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codebooks of pilot subcarriers in a MIMO-OFDM system.

Multi-user single-antenna wireless communication systems: In a multi-user cellular net-

work, one bit feedback per user about the quality (SNR) of their channel (threshold-based

technique) was studied in [98], and it also showed that such a 1-bit scheduling can cap-

ture most of the possible throughput gain. In [85], the authors investigated the capacity

performance of the broadcast channel with limited feedback using superposition cod-

ing. As shown in [87], an opportunistic feedback protocol for an uplink MAC system

was proposed . In a broadband MAC system, multiple access can be achieved through

be orthogonal frequency-division based multiple access (OFDMA), time-division multi-

ple access (TDMA), or code-division multiple access (CDMA). In [51], the authors con-

sidered using one bit feedback per subchannel to allocate the subchannels to users in a

downlink OFDMA system. Allocation of scarce feedback resources optimally in down-

link OFDMA systems was studied in [86]. OFDMA frequency scheduling algorithms

design with limited feedback was discussed in [54],[63]. Optimal and suboptimal bit,

power and subcarrier allocation schemes for OFDMA with limited-rate feedback were

derived in [4]. In [5], the authors designed optimal power loading, quantization regions

and time slots allocation to users so as to minimize the total average transmit power for

TDMA system. To avoid interference, [115] analyzed the performance of signature opti-

mization using limited feedback for a DS-CDMA system, where RVQ scheme is utilized

to design a quantized signature codebook. And low rate feedback was also applied to

peer-to-peer multi-carrier CDMA networks [1].

Multi-user multi-antenna wireless communication systems: In downlink multiuser MIMO

systems with one receive antenna per user, the base station needs to precode the signals

so as to eliminate the inter-user interference. There exist principally two different feed-

back approaches for designing the precoding matrix with limited feedback. One is to

design the precoding matrix at the base station based on channel vector quantization

together with user channel quality (SNR) as proposed in [58]. Multiuser opportunistic

beamforming, where the base station picks the best subset of users and schedules them

for transmission based on a quantized precoder codebook together with user channel

quality (SNR), is an alternative limited feedback strategy for MIMO downlink channels
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[41]. The comparison between these two schemes was also discussed in [41]. For mul-

tiuser MIMO with multiple receive antenna users, block diagonalization transmission

technique with limited feedback was investigated in [80]. Coordinated beamforming

with limited feedback for downlink multiuser MIMO with multiple receive antenna per

user was studied in [27], where the transmit beamformers and receive combining vectors

are jointly optimized based on quantizing the symmetric Hermitian matrices derived

from the channel CSI. In (synchronous) multiuser MIMO uplinks, as shown in [48], the

limited feedback approach is similar to the point-to-point single user MIMO case.

A new exciting area where feedback can generate significant impact is cognitive ra-

dio networks. In this thesis (Chapters 3, 4 and 5), we will analyze the performance of

cognitive radio networks with finite rate feedback. There are also many other interest-

ing applications of limited feedback in wireless communication field, such as the effect

of errant feedback analysis, relay system with limited feedback, and so on. An excel-

lent overview of limited feedback in wireless communication systems is available in [34].

The future research in limited feedback involve the consideration of imperfect CSI at the

receiver, jointly encoding message information with channel feedback, considering the

effect of feedback delay, an so on.

1.3 Cognitive Radio Networks

Radio spectrum is a limited and precious natural resource, which, traditionally, is li-

censed to users by regulatory authorities in a very rigid manner where in order to avoid

interference, the licensed owner has an exclusive right to access the allocated frequency

band [7]. Consequently, as the number of wireless communication systems and services

grows, the availability of vacant spectrum becomes severely scarce. However, recent

measurements by the Federal Communications Commission reveal that many portions of

spectrum are mostly under utilized or even unoccupied. This led to the idea of cognitive

radios (CR) technology, originally introduced by J. Mitola [49], which holds a tremendous

promise for dramatically improving the efficiency of spectral utilization.

The key idea behind CR is that a CR is allowed to communicate over a frequency band
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originally licensed to some non-cognitive users, as long as its operation does not generate

unfavorable impact on these existing users’ communication. The CR users exploit the in-

formation about activity, channel conditions, coding and massages of the non-cognitive

users in the sharing spectrum [9], to carefully design their transmission strategy so as

to minimal the interference they cause on non-cognitive users and improve performance

and spectral efficiency as well. Based on the type of available information that CR can

obtain, three main categories of CR network paradigms have been proposed: underlay,

overlay and interweave [9].

In underlay paradigm, CR users (often called secondary users (SUs) in this setting) are

permitted to operate over a spectrum, regardless the activity status of the non-cognitive

users (referred to as primary users (PUs)) in this spectrum, by guaranteeing that the in-

terference inflicted by SUs is below a certain regulatory limit. Obviously, the channel

information knowledge of the interference channels (the link from SU transmitter to PU

receiver) is crucial for SUs’s transmission adaptation. This type of CR is also known as the

“spectrum sharing” [7] model. In overlay systems, the CR users require the knowledge

of non-cognitive users’ channel, codebooks and messages, and can transmit concurrently

with non-cognitive users by sacrificing part of their power, which is utilized to offset the

resulting interference to non-cognitive users. In interweave systems, the CR users pe-

riodically detect/sense the activity information of non-cognitive users in the spectrum,

and then opportunistically communicate over spectral holes that are not occupied by

non-cognitive users, to ideally avoid any interference to non-cognitive users. These three

different CR network strategies can also be combined to create new hybrid CR schemes

to overcome some drawbacks of the individual paradigms. An overview of these three

CR approaches is available in [9].

The cognitive radio networks studied in this thesis will focus on the underlay paradigm.

In [30], the interference temperature concept was proposed by FCC as a suitable criterion

to measure the tolerable interference level caused by SUs at PUs receivers. Based on this

concept, instead of placing constraints only on the transmit power as always, imposing a

constraint on the received power at the PU receiver seems much more appropriate in or-

der to protect the PUs. Thus, the underlay CR can be modelled as cognitive communica-
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tion with certain constraints imposed on the received interference signals at PUs receivers

induced by SUs’ transmission [9]. These constraints are closely related to the transmis-

sion strategy of SUs. Therefore, transmit power of SUs should be controlled properly in

a spectrum sharing CR network to achieve the best tradeoff between efficiently sharing

of the licensed spectrum (i.e, maximizing CR system performance) and at the same time,

minimizing the interference caused to the PUs (i.e, total interference power at the PUs

receivers remains below a certain level.)[69].

Transmit power adaptation for SUs in a CR network under various received power

constraints have attracted significant interest in resent years. The behavior of capacities

of various types of additive white Gaussian noise (AWGN) channels under received-

power constraints at the PU-RX was first studied in [43], which showed that for point-to-

point non-fading AWGN channels, the capacity performances with transmit and received

power constraints are essentially similar. While in [7], the authors illustrated that with

the identical limit on the received-power constraint, better capacity performance can be

achieve in severe fading channels compared to the AWGN case due to more spectrum ac-

cess opportunity for the SU. On performance analysis of spectrum sharing model in fad-

ing environments, two common received interference constraints, average interference

power constraint (AIP) and peak interference power constraint (PIP), are considered. In

[7], the authors investigated the ergodic capacity of a dynamic narrowband spectrum

sharing model with one SU and one PU under either AIP or PIP constraint at PU-RX in

various fading environments. It showed that with the AIP constraint, the optimal power

allocation policy for maximizing the capacity is similar to the waterfilling with a noncon-

stant water level which depends on the CSI of the interference channel (the link from SU

transmitter (SU-TX) to PU receiver (PU-RX)). In [45], the authors extended the work in

[7] to asymmetric fading environments. It was shown in [123] that an AIP constraint is

more favorable than a peak constraint especially in fading channels, since the AIP con-

straint is more flexible and can achieve a larger SU capacity with less PU capacity loss

than that achieved by PIP. In [66], the authors studied optimum power allocation for

three different capacity notions under both AIP and PIP constraints. In [117], the authors

also considered the transmit power constraints at the SU-TX, and investigated the opti-
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mal power allocation strategies for maximizing secondary ergodic capacity or minimiz-

ing outage probability under various combinations of secondary transmit peak/average

power constraints and interference peak/average power constraints. For CR networks

with multiple SUs and PUs (i.e, cognitive multiple-access channels networks and cog-

nitive broadcast channels networks), the sum rate maximization problem for SUs under

various combinations of transmit power constraints and interference power constraints

was addressed in [90]. In non-cognitive MAC networks, TDMA is optimal for achiev-

ing the ergodic sum rate, while [90] showed TDMA was not always the optimum for CR

MAC case and investigated the conditions for the optimality of TDMA. In [28], the au-

thors addressed a joint subcarrier and power allocation algorithm for multiuser OFDM

cognitive radio systems, where the peak power constraint is used to protect the primary

user.

It can be easily observed that the knowledge of the channel information of CR net-

work is essential to the power control optimization design. Most of above results as-

sume the availability of full CSI knowledge at SU-TX. However, since the primary and

secondary networks are usually independent and not cooperative with each other. It is

difficult for PUs to feed back the required interference channel CSI to the SUs. As a result,

imperfect CSI should be taken into account for the design of practical CR systems. This

motivates a new and challenging research direction on cognitive networks with limited

feedback, which is the focus of this thesis.

1.4 Outline and Contributions of Thesis

The focus of this thesis is on the design and the performance analysis of optimal resource

allocation algorithms for wireless communication networks with imperfect CSI knowl-

edge available at the transmitter obtained via the limited feedback technique. The main

contributions of this thesis are contained in Chapters 2 to 5. Chapter 2 deals with the

resource allocation problem with limited feedback for a single user wireless communi-

cation system using parallel fading channels, while Chapter 3, Chapter 4 and Chapter

5 study the various resource optimization schemes related to cognitive radio networks
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(within the spectrum sharing paradigm) with limited feedback. A brief description of

the major contributions of each of these chapters is given below.

In Chapter 2, we address an optimal power allocation problem for minimizing the

notion of information theoretic outage for an M parallel block-Nakagami-fading chan-

nels under a sum (across all channels) long-term average transmit power constraint with

finite rate feedback. First, a simulation-based optimization technique called simultane-

ous perturbation stochastic approximation algorithm (SPSA) is employed to numerically

derive a locally optimal power codebook. SPSA is an algorithmic method generally used

in nonlinear optimizing system with many variables where the objective function gradi-

ent is difficult or impossible to obtain. It is a type of stochastic approximation algorithm.

Due to the high computational complexity and long convergence time of SPSA, we make

an ordering assumption on the power codebook entries and derive effective hyperplane

based approximations to the channel quantization regions in order to design a number of

low-complexity suboptimal quantized power codebook design algorithms. Unlike previ-

ous work on outage minimization for MIMO channels, we do not assume that the same

transmit power is used per channel or use the Gaussian approximation in general. Based

on our power ordering assumption and hyperplane based approximations, we show that

it is not generally optimal to allocate identical power to all channels, and that this is only

asymptotically optimal at high average power (or SNR) for the Rayleigh fading case,

whereas for the general Nakagami case, the transmit power allocation for an individual

channel within each quantized region is asymptotically proportional to the correspond-

ing Nakagami fading parameter (severity of fading); and the Gaussian approximation

is seen to perform inefficiently for small number of parallel channels compared to our

low-complexity algorithms. We also present a novel diversity order result for the outage

probability for the Nakagami fading case. Finally, we derive a suitable Gaussian ap-

proximation based low-complexity power allocation scheme for large number of parallel

channels, which has important practical applications in multi-carrier systems such as

OFDM. Extensive numerical results illustrate that only a few bits of feedback (for M = 4

or M = 6) closes the gap substantially in outage performance with the full instantaneous

channel information at the transmitter. For large number of channels, less than 1 bit of
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(broadcast) feedback per channel can achieve the same outage probability (10−2) with ap-

proximately only a 2.8 dB average power or SNR gap where all channels undergo severe

Nakagami fading with the same fading parameter m = 0.5.

In Chapter 3, we consider a wideband spectrum sharing cognitive radio network

where a secondary user can share a number of orthogonal frequency bands each li-

censed to a distinct primary user. We study the problem of optimum secondary trans-

mit power allocation for its ergodic capacity maximization subject to a long term average

sum (across the bands) transmit power constraint on the secondary user and individual

average interference power constraint on each primary user, with quantized CSI(for the

vector channel space consisting of all secondary-to-secondary and secondary-to-primary

channels) at the secondary transmitter. A modified Generalized Lloyds-type algorithm

(GLA) is designed for deriving the optimal power codebook, which is proved to be glob-

ally convergent and empirically consistent. We also provide a number of useful and in-

teresting properties of the quantized powers. Based on these properties, an approximate

quantized power allocation (AQPA) algorithm is designed, which performs very close to

its modified GLA based counterpart for large number of feedback bits and is significantly

faster, making it an attractive choice for practical implementation. And it is also seen to

have a far superior performance compared to other suboptimal algorithms. After that,

we also present an extension of the modified GLA based quantized power codebook de-

sign algorithm for the noisy limited feedback case. We believe our work in this chapter is

the first to provide a systematic quantized power allocation algorithm with limited feed-

back for the spectrum sharing scenario in cognitive radio.

In Chapter 4, a spectrum sharing scenario in a cognitive radio network where a sec-

ondary user (SU) shares a narrowband with N primary users (PUs) is considered. We

investigate the SU ergodic capacity maximization problem under an average transmit

power constraint on the SU and N individual peak interference power constraints at

each PU receiver with various forms of imperfect CSI knowledge available at the SU

transmitter. For easy exposition, we first look at the case when the SU transmitter can ob-

tain perfect knowledge of the CSI from the SU-TX to SU receiver (SU-RX) link, denoted

as g1, but only can access partial CSI knowledge from the SU-TX to each PU-RX link,
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denoted as g0i, i = 1, . . . , N. Then a quantized power allocation scheme (codebook) is

obtained with quantized g0i, i = 1, . . . , N information, by using the Karush-Kuhn-Tucker

(KKT) necessary optimality conditions to numerically solve the SU maximization prob-

lem. We also analyze the asymptotic SU ergodic capacity performance for the case when

there is a large number of PUs (N → ∞) operating. For the interference-limited regime,

where the average transmit power constraint is inactive, an alternative scheme, termed

as the quantized rate allocation strategy based on quantized ratio g1
maxi g0i

information is

proposed. Subsequently, we relax the strong assumption of full CSI knowledge of g1 at

the SU-TX to imperfect g1 knowledge available at the SU-TX as well. Depending on the

way the SU-TX obtains the g1 information, two different quantized power codebooks:

one with estimated g1 and quantized g0i, i = 1, . . . , N knowledge and another with both

quantized g1 and g0i, i = 1, . . . , N information, are derived for the SU ergodic capacity

maximization problem. Efficacy of these proposed algorithms are illustrated via numer-

ical simulation results.

In Chapter 5, we study an optimal transmit power allocation problem that minimizes

the outage probability of a SU who is allowed to coexist with a PU in a narrowband

spectrum sharing cognitive radio network, under a long term average transmit power

constraint at the SU-TX and an average interference power constraint on the PU-RX,

with quantized CSI (including both the channel from SU-TX to SU-RX, denoted as g1

and the channel from SU-TX to PU-RX, denoted as g0) at the SU-TX. The optimal quanti-

zation regions in the vector channels space is proven to have a ’stepwise’ structure. With

this structure, the above outage minimization problem can be explicitly formulated and

solved by employing the KKT necessary conditions to obtain a locally optimal quantized

power codebook. A low-complexity near-optimal quantized power allocation algorithm

is derived for the case of large number of feedback bits. More interestingly, we show

that as the number of partition regions tends to infinity, when the average interference

power constraint is active, the length of interval between any two adjacent quantization

thresholds on g0 axis is asymptotically equal; while when the average interference power

constraint is inactive, the ratio between any two adjacent quantization thresholds on g1

axis is asymptotically identical. Lastly, an explicit expression for the asymptotic SU out-
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age probability at high rate quantization (as the number of feedback bits goes to infinity)

is also provided, and is shown to approximate the optimal outage behavior extremely

well for large number bits of feedback via numerical simulations.
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Chapter 2

Outage Minimization for Parallel
Fading Channels with Limited

Feedback

2.1 Introduction

Determining the information theoretic capacity of block-fading wireless channels has

been an important area of research over the past decade. Various notions of capacity

for single-user fading channels include ergodic capacity [10], delay-limited capacity [99] and

capacity versus outage probability [40]. For delay-sensitive traffic such as voice and video,

the latter two notions are rather important. In particular, the notion of outage probabil-

ity signifies the probability that the capacity of a wireless channel falls below a required

rate threshold. In [40], optimal power allocation for outage minimization in the case of

parallel fading channels (single user) was obtained with the assumption of full channel

state information (CSI) at the transmitter. However, full CSI at the transmitter is hard to

obtain in practice due to limited bandwidth in the feedback channel from the receiver to

the transmitter, and it is more common to have full CSI at the receiver. This has moti-

vated researchers over the last decade to analyze performances of wireless systems with

various forms of partial CSI at the transmitter (CSIT), such as noisy CSIT, statistical CSIT

and quantized CSIT. In particular, the idea of Grassmannian line packing was used to

design optimal beamforming codebooks for MIMO systems in [31], whereas in a related

work [61], the authors derived a lower bound on the outage performance of multiple-

antenna systems using beamforming based on quantized CSIT. More recently, in [107],

17
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maximization of expected rate over a single-input single-output slowly fading channel

is investigated using optimized discrete rate and power control with quantized CSIT.

The same authors have also investigated the diversity-multiplexing tradeoff in MIMO

channels with quantized CSIT in [106] (see also [105]). A number of recent papers have

investigated outage minimization for fading channels with limited feedback for MIMO

or multi-antenna systems. Such works include [12, 14, 71, 78, 105]. In particular, the au-

thors of [71] looks at outage minimization with a finite-rate power codebook for MIMO

systems. The key finding of [71] (see also [106]) is that the optimal power codebook has

a circular structure in that the same transmit power is allocated to the outage region and

the best channel region. In order to design the optimal power codebook, it assumes how-

ever that the same transmit power (as a function of the entire channel matrix) is used

in all transmit antennas. This allows the authors of [71] to reduce the finite-rate power

codebook design problem to an equivalent scalar quantization problem. Even then, find-

ing the cumulative density function for the equivalent scalar random variable requires

computing multi-dimensional probability integrals which is computationally complex.

Furthermore, the optimal power codebook entries are found via generic gradient search

techniques which can take unreasonably long time to converge. Using a similar setting,

the same authors have investigated the outage diversity behaviour for multiple-antenna

systems with quantized CSIT in [14] (see also [12]). In [78], the problem of outage min-

imization using quantized CSIT is investigated for the fading relay channel. In [105], a

Gaussian approximation is used to capture the probability distribution of the mutual in-

formation for a MIMO system in order to study the outage behaviour. Finally, many of

the above results only apply to Rayleigh fading channels (where the MIMO channel ma-

trix is assumed to have complex circularly symmetric Gaussian distributed entries). Note

however that the circular nature of the optimal power codebook and some of the useful

approximations developed in [12] for asymptotically large number of channel feedback

bits are also relevant for our work and we duly acknowledge this fact. Our focus is how-

ever on designing practical low-complexity but sub-optimal algorithms for designing the

quantized power codebook and derive theoretical properties of these power allocation

schemes in order to justify the various approximations used in designing the sub-optimal
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schemes.

In this chapter, we look at an M-parallel fading channels system (thus consider a sim-

pler setting than the MIMO setup) where we aim to minimize the outage probability un-

der a sum (across all channels) long term average power constraint with quantized CSIT.

We formulate the above problem and provide an iterative algorithm : simultaneous per-

turbation stochastic approximation algorithm to numerically solve for the optimal power

allocation. Based on a power ordering assumption and a hyperplane based approxima-

tion to the basic rate achieving mutual information curve in the vector channel space, we

derive a number of low-complexity suboptimal finite-rate power codebook design algo-

rithms for outage minimization without having to assume the same transmit power per

channel or use the Gaussian approximation in general. We derive these results for a more

general Nakagami-m fading model, albeit with the assumption of independence between

any two parallel channels. Since the optimal power allocation results for parallel fading

channels with full CSIT are known [40], we are able to provide a fair comparison of our

power allocation algorithms with the full CSIT based performance. Technologically, M-

parallel fading channels are useful models for various multi-carrier transmission systems

such as OFDM, MC-CDMA etc. We present a number of important and novel findings

in this chapter. We show that in the high average power (or SNR) it is asymptotically

optimal to allocate transmit power proportional to the Nakagami m fading parameter

for the individual channels within each quantized region. In the Rayleigh fading case,

this corresponds to allocating the same power across all channels within each quantized

region (but only in the high average power regime). We also derive a novel diversity or-

der result for the outage probability in the Nakagami fading case. Finally, motivated by

technological applications such as in OFDM systems, we investigate the suitability of a

Gaussian approximation scheme for the case of a large number of parallel channels. The

Gaussian approximation is seen to perform poorly for small number of parallel chan-

nels compared to our low-complexity algorithms based on a simple approximation to

the quantized regions under power ordering assumption. However, the derived Gaus-

sian approximation based optimal power allocation schemes perform efficiently for large

number of channels (e.g. M ≥ 16), thus having important practical applications to multi-
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carrier systems such as OFDM. Extensive numerical results are presented which illustrate

that only 4 bits of feedback close the gap with the outage performance of the full CSI al-

gorithm substantially for M = 4 or M = 6. For a large number of channels (M = 16), our

Gaussian approximation based algorithm performs approximately within 2.8 dB (SNR

gap) of the full CSI based algorithm at an outage probability of 10−2 with less than 1 bit

of (broadcast) feedback per channel when all channels undergo severe Nakagami fading

with identical fading parameter m = 0.5.

The organization of the chapter is as follows. Section 2.2 presents the fading chan-

nel model and the typical outage problem based on full CSIT. Section 2.3 presents the

outage minimization problem with quantized CSIT followed by the modified problem

formulation using the power ordering and hyperplane based approximation. Various

suboptimal algorithms are then presented for finding the power codebook in high aver-

age power regime along with their associated theoretical properties. A new result on the

diversity order for the outage probability is presented for the Nakagami fading case us-

ing our power allocation algorithm based on the power ordering and hyperplane based

approximation. Section 2.4 presents a Gaussian approximation based sub-optimal algo-

rithm applicable to the case of a large number of parallel channels. Section 2.5 presents an

extensive set of numerical results illustrating the efficiency of our algorithms measured

by closeness of their outage performance as compared to the full CSIT based solution.

Finally, Section 2.6 presents some concluding remarks and ideas for future extensions of

this work. All proofs are relegated to the appendix section 2.7 in this chapter.

2.2 Channel Model and Outage Minimization

We consider an M-parallel flat-fading channel model similar to that in [53], where a

transmitted codeword spans M subchannels in one fading block. For each subchannel

i, i ∈ {1, 2, ..., M}, the received signal can be written as:

yi =
√

hixi + wi (2.1)
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where hi denotes the channel power gain and xi is the channel input symbol. The noise

sequences w1, . . . , wM are independent and identically distributed (i.i.d) Gaussian ran-

dom variables with zero mean and unit variance. It is assumed that the components of

channel state vector h = (h1, . . . , hM) are mutually independent, individually i.i.d. across

fading blocks and ergodic and fading is sufficiently slow so that the input symbols trans-

mitted over the same fading block experience the same channel state. It is also assumed

that the fading block length N → ∞ so that information theoretic results can be applied.

The individual fading distributions may not be identical. However, they (and hence the

joint channel fading distribution) are assumed to be continuous.

Given a channel realization h, and assuming the availability of full channel state in-

formation (CSI) at the transmitter and receiver, denote the corresponding power alloca-

tion to the M subchannels by the vector p(h) = (p1(h), . . . , pM(h)). Then the maximum

mutual information of an M-parallel Gaussian channel is given by [53]

r(h, p(h)) =
1
M

M

∑
i=1

1
2

log(1 + hi pi(h)) (2.2)

where, the rate unit is nats per channel use.

Thus, the outage probability, defined as the probability that the instantaneous mutual

information of the channel is less than a pre-specified transmission rate r0 (nats/channel

use), can be expressed as

Pout(h, p(h), r0) = Prob [r(h, p(h)) < r0] (2.3)

Under a long term average power constraint defined by E[〈p(h)〉] ≤ Pav, (where 〈x〉

denotes the arithmetic mean of the vector x with length M, namely, 〈x〉 = 1
M ∑M

i=1 x), the

outage minimization problem can be described as

min
p(h)≥0

Prob

[
1
M

M

∑
i=1

1
2

log(1 + hi pi(h)) < r0

]
s.t. E[〈p(h)〉] ≤ Pav (2.4)
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The optimal power allocation with full CSI at the transmitter for this problem can be

found explicitly by using convex optimization techniques and was presented in Proposi-

tion 4 of [40]. The readers are referred to [40] for further details. Note that here Pav can

be thought of effectively as the transmitter side signal-to-noise ratio (since noise variance

has been normalized to unity). In the following we will address the optimal power al-

location problem for outage minimization where only partial or limited CSI is available

at the transmitter. For the purpose of analysis, we will assume that each channel hi is

gamma distributed (Nakagami fading) with mean 1
λi

, which probability density function

(pdf) is given by

f (hi) = (miλi)mi
hmi−1

i
Γ(mi)

e−miλihi , hi > 0 (2.5)

where Γ(.) is gamma function (Γ(s) =
∫ ∞

0 ts−1e−tdt) and constant mi ≥ 0.5. mi is called

the fading parameter. Larger values of the fading parameter mi imply less severe fad-

ing environments. When mi = 1, the above distribution boils down to an exponential

distribution (corresponding to Rayleigh fading) and the nonfading case corresponds to

mi = ∞.

2.3 Optimum Quantized Power Control with Finite-rate Feed-
back

It is well known that having perfect CSI at both transmitter and receiver is hard to satisfy

in a practical system due to bandwidth constraints on the receiver to transmitter feed-

back link as well as considerable communication cost overhead. In this section, we con-

sider designing a power allocation procedure for M-parallel flat-fading channels based

on quantized vector CSI h = (h1, . . . , hM) (in M dimensions) acquired via a no-delay and

error-free feedback link with limited rate from the receiver to the transmitter.

2.3.1 Optimal power allocation with limited feedback strategy

We assume that the receiver can perfectly estimate the full CSI information. Given B bits

of feedback, a power codebook P = {P1, . . . , PL}, where Pj = {p1j, . . . , pMj}, j = 1, . . . , L
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(note that power levels for different channels here are distinct as opposed to [71, 105]

where the same transmit power was allocated to all transmit antennas in the MIMO set-

ting), of cardinality L = 2B, is designed off-line purely on the basis of the statistics of h.

This codebook is known a priori by both the transmitter and the receiver. Given a channel

realization h,

• First, the receiver applies a deterministic mapping denoted as I from current instan-

taneous h information into one of L integer indices [105], where the mapping I parti-

tions the entire M-dimensional space of h into L regions R1,R2, . . . ,RL, given as I(h) =

j, if h ∈ Rj, j = 1, . . . , L.

• Second, the receiver sends the corresponding index j = I(h) to the transmitter via the

feedback link.

• Then, the jth entry of the power codebook P , i.e. Pj, will be employed by the transmitter

for transmission.

Therefore the key steps involved in the limited feedback design problem constitute

obtaining (off-line) the jointly optimal CSI partitions and power codebook design. Our

objective is to design efficient algorithms for solving this joint optimization problem of

the channel partition regions and the power codebook, so as to minimize the outage prob-

ability while satisfying a long term average power constraint.

Let Pr(Rj), E[•|Rj] denote Pr(h ∈ Rj) (the probability that h falls in the region Rj)

and E[•|h ∈ Rj], respectively. Define the indicator function xj, j = 1, . . . , L as

xj =


1, i f 1

M ∑M
i=1

1
2 log(1 + hi pij) < r0,

0, otherwise.
(2.6)

Then outage minimization problem (2.4) with limited feedback can be formulated as

min
Pj≥0, Rj, ∀j

L

∑
j=1

E[xj|Rj]Pr(Rj)

s.t.
L

∑
j=1

E[Pj
∑|Rj]Pr(Rj) ≤ Pav (2.7)
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Figure 2.1: Structure of the optimal vector quantization regions for 2 channels with B =
log2 4 bits of feedback.

where Pj
∑ = 1

M ∑M
i=1 pij, i.e, the average sum of all the elements in vector Pj. It can be

easily verified that the above optimization problem satisfies the long term average power

constraint with equality.

The dual problem of (2.7) is expressed as

min
λ>0

g(λ)− λPav, (2.8)

where λ is nonnegative Lagrange multiplier associated with the long term average power

constraint in Problem (2.7), and the Lagrange dual function g(λ) is defined as

g(λ) = min
Pj≥0, Rj, ∀j

L

∑
j=1

E[xj + λPj
∑|Rj]Pr(Rj) (2.9)

With a fixed λ, we can employ an iterative simulation-based optimization algorithm

called the simultaneous perturbation stochastic approximation algorithm (SPSA) to find

the optimal power codebook of problem (2.9). A step-by-step guide to implementation

of SPSA can be found in [100], which, when applied to our problem, can be summarized
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by the following steps.

Step 1 Initialization and Coefficient Selection: Set counter index k = 0. Pick initial guess of

the power codebook P̂0 and non-negative coefficients a, c, A, α and γ in the SPSA

gain sequences ak = a
(A+k+1)α and ck = c

(k+1)γ . For guideline on choosing these

coefficients see [100].

Step 2 Generation of Simultaneous Perturbation Vector: Generate a p-dimensional (p = ML)

random perturbation vector ∆k, where each component of ∆k are i.i.d Bernoulli±1

distributed with probability of 1
2 for each outcome.

Step 3 Loss Function Evaluations: Obtain two measurements of the loss functionL(·) based

on the simultaneous perturbation around the current power codebook P̂k: L(P̂k +

ck∆k) and L(P̂k − ck∆k) with ck and ∆k from Steps 1 and 2.

Step 4 Gradient Approximation: Generate the simultaneous perturbation approximation to

the unknown gradient ĝk(P̂k) given as,

ĝk(P̂k) =
L(P̂k + ck∆k)−L(P̂k − ck∆k)

2ck


∆−1

k1

∆−1
k2
...

∆−1
kp


where ∆ki is the ith component of the ∆k vector.

Step 5 Updating power codebook: Use the algorithm

P̂k+1 = P̂k − ak ĝk(P̂k)

to update P̂k to a new value P̂k+1.

Step 6 Iteration or Termination: Return to Step 2 with k + 1 replacing k. Terminate the

algorithm if there is little change in several successive iterations or the maximum

allowable number of iterations has been reached.

Note that in the Step 3 of the SPSA which involves calculating a loss function with a given

power codebook, we use the objective function of problem (2.9) as the loss function. And

then given a power codebook, we use the nearest neighbor condition of a generalized
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Lloyd algorithm with a Lagrangian distortion d(h, Pj) = xj + λPj
∑ to generate the opti-

mal partition regions [83], given as, j = 1, . . . , L,

Rj = {h|xj + λPj
∑ ≤ xi + λPi

∑, ∀i 6= j}. (2.10)

Therefore, with a given power codebook and resulting quantization regions, we can nu-

merically calculate the loss function. We repeatedly apply Step 2 to Step 5 of SPSA

until the resulting outage probability converges within a pre-specified accuracy ( Step

6 of SPSA). After that, we solve the dual problem for finding the optimal λ by using

a subgradient based search method, i.e, updating λ until convergence using λl+1 =

[λl − αl(Pav −∑L
j=1 E[Pj

∑|Rj]Pr(Rj))]+, where l is the iteration number, and αl is a pos-

itive scalar step sizes for the l-th iteration satisfying ∑l αl = ∞ and ∑l αl2
< ∞. Due to

the fact that problem (2.7) is not convex, in general, the optimal solution we obtain here

is only locally optimal.

Fig. 2.1 gives an example about what optimal quantization structure looks like by

using SPSA for the M = 2 channels case. From Fig. 2.1, we can see that, in general, it is

difficult to compute the surface area (or in general volumes in higher dimensional space)

of these regions which have irregular shapes. Although we can use SPSA to numeri-

cally obtain a locally optimal power codebook and partition regions, it takes a very long

time to converge and is computationally highly complex especially when the number of

feedback bits or the number of channels is large. In the next few sections, we therefore

focus on designing sub-optimal algorithms by introducing appropriate assumptions and

approximations to the quantized regions and power codebook.

2.3.2 Power ordering assumption and hyper plane approximation (POHPA)

Let P(h) represent the optimal power allocation strategy which maps the channel real-

ization h to a power level in P . Without loss of generality, we assume that power levels

are such that P1
∑ > · · · > PL

∑ corresponding to the partition R1,R2, . . . ,RL, then we

have

Lemma 2.1. Let P∗(h) denote as the minimum power level required to have no outage, i.e,
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1
M ∑M

i=1
1
2 log(1 + hi p∗i (h)) = r0. The optimal solution satisfies :

P(h) = Pj, if P∑
j+1 < (P∗(h))∑ ≤ P∑

j , j = 1, . . . , L− 1;

P(h) = PL, if (P∗(h))∑ ≤ P∑
L or (P∗(h))∑ > P∑

1 . (2.11)

Proof: The proof is similar to [105],[71], and can be found in the appendix of this

chapter.

If the same transmit power is allocated to all transmit channels, i.e, p1j = · · · = pMj =

P∑
j , the above Lemma result reduces to the case of [105],[71]. From Lemma 2.1, we also

have that there is no outage in the first L − 1 regions and outage only occurs in the last

region RL; the optimal partition satisfies that a channel realization h = {h1, . . . , hM}

either belongs to the region Rj where j ∈ {1, . . . , L} is the maximum index that can

guarantee zero outage for it or belongs toRL;RL includes two parts : {h|(P∗(h))∑ > P∑
1 }

(outage) and {h|(P∗(h))∑ ≤ P∑
L }, denoted as RL,1 and RL,2 respectively.

From Lemma 2.1, we have the boundary between Rj−1 and Rj, j = 2, . . . , L − 1 is

a hypersurface denoted as g(h1, . . . , hM−1, Pj), which is obtained by solving for hM from

equation r(h, Pj) = 1
M ∑M

i=1
1
2 log(1 + hi pij) = r0, namely,

g(h1, . . . , hM−1, Pj) =
k−∏M−1

i=1 (1 + hi pij) + 1

pMj ∏M−1
i=1 (1 + hi pij)

(2.12)

where k = e2Mr0 − 1. The boundaries betweenRL andR1, RL−1 is given by g(h1, . . . , hM−1,

P1), g(h1, . . . , hM−1, PL) respectively. Let {ri1, . . . , riL} represent the quantization thresh-

olds on hi axes (i = 1, . . . , M), from (2.12), it can be easily verified that rij = k
pij

, i ∈

{1, 2, . . . , M}, j ∈ {1, 2, . . . , L}. Therefore if we assume that the power levels in power

codebook are in descending order, i.e, P1 > · · · > PL which means pi1 > · · · > piL, i =

1, . . . , M and also implies P∑
1 > · · · > P∑

L , we can obtain ri1 < · · · < riL, i = 1, . . . , M,

which gives a simple partition structure allowing easy numerical computation of the sur-

face area (or volumes in higher dimensions) of the quantized regions. We call it the power

ordering (PO) assumption. Fig. 2.2 gives an example of the optimal quantization struc-
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Figure 2.2: Structure of the quantization regions for 2 channels with B = log2 L feedback
bits under PO assumption.

ture with the PO assumption for the M = 2 channels case. With this PO assumption, the

area below the hypersurface g(h1, . . . , hM−1, P1) defines the outage region RL,1.

Denoting F(Pj) as the probability that the channel state information (h1, . . . , hM) lies

below g(h1, . . . , hM−1, Pj), j = 1, . . . , L, we have

F(Pj) =
∫

. . .
∫
RL,1∪R1∪...∪Rj−1

f (h1, . . . , hM)dh1 . . . dhM (2.13)

where f (h1, . . . , hM) is the pdf for the channels vector {h1, . . . , hM}, given by f (h1, . . . , hM) =

∏M
i=1(miλi)mi

h
mi−1
i

Γ(mi)
e−miλihi for Nakagami fading (due to independence amongst the paral-

lel channels). Thus, the probability that the channel realization h ∈ Rj is F(Pj+1)− F(Pj)

for j = 1, . . . , L− 1, and 1− F(PL) + F(P1) for j = L. The outage minimization problem

with limited feedback (2.7) can thus be simplified as

min
{P1>...>PL−1>PL≥0}

Pout = F(P1)

s.t.
L−1

∑
j=1

(p1j + . . . + pMj)(F(Pj+1)− F(Pj))

+ (p1L + . . . + pML)(1− F(PL) + F(P1)) = MPav (2.14)

The Problem (2.14) is in general a nonlinear non-convex optimization problem. Since

g(h1, . . . , hM−1, Pj), j = 1, . . . , L is highly nonlinear, it’s hard to obtain a closed-form ex-
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Figure 2.3: The projection of structure of quantization regions on hn versus hm coordinate
plane with HPA (approximating g(hm, Pj) by D(hm, Pj)).

pression for F(Pj). Although one can use numerical integrals to calculate F(Pj), and use

randomized search techniques to find the optimum solution of problem (2.14), the as-

sociated computational complexity increases exponentially with the number of feedback

bits and channels. Next, we will employ another approach by deriving an approximation

for g(h1, . . . , hM−1, Pj), such that an analytical (approximate) closed-form expression for

F(Pj) can be easily obtained (unlike [105] where a Gaussian distribution was used to ap-

proximate the distribution of the mutual information to evaluate an analytical expression

for F(Pj)), thus significantly reducing the computational complexity of solving problem

(2.14). Then based on the obtained optimal power allocation using this approximation,

one can use Monte Carlo simulations to evaluate the “real outage” (corresponding out-

age probability performance given by F(P1)). More details on this can be found in the

Numerical Results Section.

From (2.12), the intersection of hypersurface hM = g(h1, . . . , hM−1, Pj), j = 1, . . . , L

with any arbitrary two-channel coordinate plane, i.e, hn versus hm, n, m ∈ {1, 2, . . . , M}, n 6=

m, is a curve expressed as

hn = g(hm, Pj) =
k− hm pmj

pnj(1 + hm pmj)
, (2.15)

where k = e2Mr0 − 1. It’s easy to test that the above curve is convex. And the curve
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intersects hn axis and hm axis at quantization thresholds rnj and rmj respectively. We

can approximate the curve (2.15) by a straight line r′njr
′
mj, as displayed in Fig.2.3, which

is parallel to rnjrmj and a tangent to the curve (2.15) at the intersection point ’a’. The

straight line intersects hn axis and hm axis at point r′nj and r′mj respectively. The line r′njr
′
mj

is expressed as

hn = D(hm, Pj) =
K − hm pmj

pnj
hm ∈ [0,

K
pmj

] (2.16)

where K = 2(
√

k + 1− 1), r′nj = K
pnj

, r′mj = K
pmj

(new quantization thresholds), and point ’a’

is ( K
2pmj

, K
2pnj

). We name this approximation as hyperplane approximation (HPA)(we could

also use the straight line rnjrmj to do the approximation, but simulations demonstrate

that the r′njr
′
mj approximation is always better than rnjrmj). To see clearly, Fig.2.4 gives an

example of the HPA in three-dimensional (3D) space.

Thus, with PO and HPA (POHPA), the boundaries betweenRL,1 andR1, R1 andR2,

0

0.02

0.04

0.06
0

0.01
0.02

0.03
0.04

0.05

0

0.005

0.01

0.015

0.02

0.025

0.03

h
2h

1

h 3

Figure 2.4: 3D of HPA.
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. . ., RL−1 and RL,2 can be approximated as

D(h1, . . . , hM−1, Pj) =
K −∑M−1

i=1 hi pij

pMj
, j = 1, . . . , L. (2.17)

Any channel vector below D(h1, . . . , hM−1, P1) is said to be in outage. Since D(h1, . . . , hM−1, Pj)

is linear, an analytical closed-form approximation for F(Pj) can be obtained, which is de-

noted as F′(Pj). In this case, by definition we have

F′(Pj) = Pr(D(h1, . . . , hM−1, Pj) <
K −∑M−1

i=1 hi pij

pMj
) = Pr(

M

∑
i=1

hi pij < K) (2.18)

∑M
i=1 hi pij is a weighted sum of independent gamma random variables, and F′(Pj) can be

treated as the cumulative distribution function (cdf) of ∑M
i=1 hi pij. Thus a closed-form ex-

pression for (2.18) can be obtained by using any of the following three equivalent results,

which however differ in their analytical derivations.

1) Multiple Infinite Series Representation: This analytical expression was derived in

[109],

F′(Pj) =
1

Γ(1 + ∑M
i=1 mi)

[
M

∏
i=1

(
miλiK

pij
)mi ]

×Φ(M)
2 (m1, m2, . . . , mM; 1 +

M

∑
i=1

mi;−
m1λ1K

p1j
,−m2λ2K

p2j
, . . . ,−mMλMK

pMj
) (2.19)

where Φ(M)
2 (. . .) is the confluent Lauricella multivariate hypergeometric function, involv-

ing multiple infinite sums [109]:

Φ(M)
2 (m1, . . . , mM; 1 +

M

∑
i=1

mi;−
m1λ1K

p1j
, . . . ,−mMλMK

pMj
)

=
∞

∑
n1=0

. . .
∞

∑
nM=0

[∏M
i=1(mi)ni(−

miλiK
pij

)ni 1
ni !

]

(1 + ∑M
i=1 mi)nτ

(2.20)

where nτ = ∑M
i=1 ni and the Pochhammer symbol is defined as (α)k = Γ(α+k)

Γ(k) [109]. (2.19)

can be numerically calculated. However, as M becomes large, computation of the multi-

ple infinite sum may become too prohibitive to implement.
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2) Single Infinite Series Representation: The second result provides a simpler expression

for (2.18) involving only a single infinite sum [81], which was proposed by Moschopoulos

(1985) [77].

F′(Pj) =
M

∏
i=1

(
β1

βij
)mi

∞

∑
n=0

δnγ(ρ + n, K
β1

)

Γ(ρ + n)
(2.21)

where ρ = ∑M
i=1 mi, βij = pij

miλi
, β1 = min(βij), γ(.) is incomplete gamma function (γ(s, x) =∫ x

0 ts−1e−tdt) and the coefficients δn are obtained recursively by

δn+1 =
1

n + 1

n+1

∑
l=1

[δn+1−l

M

∑
i=1

mi(1− β1

βij
)l ], n = 0, 1, . . . , δ0 = 1 (2.22)

Special Cases

• If ρ = ∑M
i=1 mi is an integer, (2.21) can be further simplified as [81]

F′(Pj) =
M

∏
i=1

(
β1

βij
)mi

∞

∑
n=0

δn{1− e−
K
β1

ρ+n−1

∑
l=0

( K
β1

)l

l!
} (2.23)

• If M = 2, let β2 = max(βij), and mθ is the corresponding fading parameter for β2,

we have

F′(Pj) = (
β1

β2
)mθ

∞

∑
n=0

(mθ)n(1− β1
β2

)n

n!

γ(ρ + n, K
β1

)

Γ(ρ + n)
(2.24)

where (mθ)n+1 represents the Pochhammer symbol.

3) Integral Representation: The third expression for the cdf of ∑M
i=1 hi pij is given as [75]

F′(Pj) =
1
2
− 1

π

∫ ∞

0
W(t)sin[θ(t)− tK]

dt
t

(2.25)

where

W(t) =
M

∏
i=1

[1 + (
pij

miλi
t)2]−

mi
2 , θ(t) =

M

∑
i=1

mi tan−1(
pij

miλi
t) (2.26)
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With POHPA, Problem (2.14) can be approximated as

min
{P1>...>PL−1>PL≥0}

F′(P1)

s.t.
L−1

∑
j=1

(p1j + . . . + pMj)(F′(Pj+1)− F′(Pj))

+ (p1L + . . . + pML)(1− F′(PL) + F′(P1)) = MPav (2.27)

It’s not hard to verify that Problem (2.27) is still nonconvex. However, we can employ the

Karush-Kuhn-Tucker (KKT) necessary conditions to achieve locally optimal solutions.

Remark 2.1. Note that KKT necessary conditions usually require regularity of a local optimum,

which amounts to (in the context of Problem (2.27)) linear independence of the gradients of the

active inequality constraints evaluated at the local optimum (see Proposition 3.3.1, pg. 310 in

[21]). In Problem (2.27), if a local optimum of the power vector satisfies P1 > . . . > PL−1 >

PL > 0, then the only active inequality constraint is the average power constraint, in which case

the linear independence property is trivially satisfied. In the case where the local optimum for

PL = 0, it can be easily shown by simple linear algebra that the gradients corresponding to these

two (PL = 0 and the average power constraint) active inequality constraints satisfy the linear

independence condition.

Since regularity of a local optimum is thus established, one can now use KKT neces-

sary conditions to obtain the following result:

Theorem 2.1. Suppose {p1j
∗, . . . , pMj

∗}L
j=1 be an optimum to Problem (2.27). Then we have

∂F′(Pj)
∂p1j

∗ = . . . =
∂F′(Pj)
∂pMj

∗ , j = 1, . . . , L (2.28)

where

∂F′(Pj)
∂pM1

∗ = − µ(F′(P2)− F′(P1))
1− µ ∑M

i=1(pi1 − piL)
,

∂F′(Pj)
∂pMj

∗ = −
F′(Pj+1)− F′(Pj)

∑M
i=1(pi,j−1 − pij)

, j = 2, . . . , L− 1,
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∂F′(PL)
∂pML∗

= −1− F′(PL) + F′(P1)
∑M

i=1(pi,L−1 − piL)
. (2.29)

Proof: The proof can be found in the appendix of this chapter.

Combining the above result with the average power constraint in (2.27), we have

following system of (ML + 1) nonlinear equations.



∑L−1
j=1 (p1j + . . . + pMj)(F′(Pj+1)− F′(Pj)) + (p1L + . . . + pML)(1− F′(PL) + F′(P1))

= MPav

∂F′(Pj)
∂p1j

∗ = . . . = ∂F′(Pj)
∂pMj

∗ , j = 1, . . . , L

∂F′(Pj)
∂pM1

∗ = − µ(F′(P2)−F′(P1))
1−µ ∑M

i=1(pi1−piL)

∂F′(Pj)
∂pMj

∗ = − F′(Pj+1)−F′(Pj)
∑M

i=1(pi,j−1−pij)
, j = 2, . . . , L− 1

∂F′(PL)
∂pML∗

= − 1−F′(PL)+F′(P1)
∑M

i=1(pi,L−1−piL)
,

P1 > · · · > PL

(2.30)

A solution to (2.30) provides a locally optimum power allocation policy {Pj
∗}L

j=1. For

small values of L and M, the above system of nonlinear equations can be solved by

various optimization softwares. However, the complexity of solving the above set of

nonlinear equations is still too high for moderately large numbers of feedback bits and

channels. Therefore, we consider several low-complexity suboptimal schemes suited to

special cases of high or low Pav as described below.

2.3.3 High Average Power Approximation (HPavA)

Theorem 2.2. For arbitrary M, in high average power (as Pav → ∞), the Multiple Infinite Series

Representation (2.19), F′(Pj), j = 1, . . . , L can be further approximated as

F′(Pj) ≈
1

Γ(1 + ∑M
i=1 mi)

M

∏
i=1

(
miλiK

pij
)mi (2.31)
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and a locally optimum power allocation scheme for (2.27) satisfies the following approximate rela-

tionship:
mi

pij
∗ ≈

ml

pl j
∗ , i, l ∈ {1, 2, . . . , M}, i 6= l, j = 1, . . . , L (2.32)

Proof: The proof can be found in the appendix of this chapter.

(2.32) implies that in high Pav, for each quantization region, the power allocated to

each channel asymptotically depends only on the severity of fading (represented by the

parameter m).

Special Cases:

• Identical Fading Parameters: If m1 = . . . = mM, from (2.32), we have

p1j
∗ ≈ . . . ≈ pMj

∗ j = 1, . . . , L (2.33)

which means, in high Pav, with identical fading parameters for all channels, for each

quantization region, the power assigned to each channel is asymptotically equal, and we

call this solution as ’Equal Power Per Channel (EPPC)’.

• Rayleigh fading: (m1 = . . . = mM = 1), from Theorem 2.2, (2.31) reduces to

F′(Pj) ≈
1

M!

M

∏
i=1

(
λiK
pij

) (2.34)

and (2.32) reduces to EPPC.

For the general case (2.32), without loss of generality, by letting pij = mi
mM

pMj, ∀i ∈

{1, 2, . . . , M− 1} and denoting pMj as pj for simplicity, the above ML + 1 equations sys-

tem (2.30) can be simplified into an L + 1 equations system only:


∑L−1

j=1 pj(F′(pj+1)− F′(pj)) + pL(1− F′(pL) + F′(p1)) = P′av

∂F′(pj)
∂pj

= − F′(pj+1)−F′(pj)
(pj−1−pj)

, j = 2, . . . , L− 1

∂F′(pL)
∂pL

= − 1−F′(pL)+F′(p1)
(pL−1−pL)

(2.35)

where P′av = Pav
MmM

∑M
i=1 mi

.
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outage

…

…

Figure 2.5: PFPPC

outage

…

…

Figure 2.6: PFPPC+ZPiOR

Thus HPavA reduces the M-dimensional vector quantization problem into a one-

dimensional scalar quantization problem, as illustrated in Fig. 2.5, with corresponding

quantization thresholds r1, . . . , rL, where rj = r′Mj = K/pj, and remarkably reduces the

complexity. We call this suboptimal scheme as the ’Proportional to Fading Parameter

Per Channel (PFPPC)’ scheme. For small values of L, the above L nonlinear equations

(where one can evaluate F′(pj) using the Single Infinite Series Representation (2.21)) can

be solved by various optimization softwares.

For large values of L (e.g. L ≥ 16 or B ≥ 4), one can use the so-called equal average

power per region (EPPR) approximation for such a scalar quantization problem by using

the mean value theorem [12]. This essentially implies that when L goes to infinity, the

total average power assigned to each quantization region is asymptotically equal and the

performance using this approximation is close to optimum for large number of bits of

feedback. In this case, we need to solve the following set of L equations instead of (2.35)

pj(F′(pj+1)− F′(pj)) =
P′av
L

, j = 1, . . . , L− 1;

pL(1− F′(pL) + F′(p1)) =
P′av
L

. (2.36)
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which can be carried out by an iterative algorithm employing the standard bisection

search method. We call this algorithm as ’PFPPC+EPPR’.

Let Pj
tot represent the total average power allocated to region Rj at PFPPC case. Then

the average power constraint in (2.35) can be rewritten as,

L

∑
j=1

Pj
tot
pj

= 1 (2.37)

Since p1 > p2 > . . . > pL, ∑L
j=1 Pj

tot = P′av, it follows that

p1 > P′av (2.38)

Thus, in the high Pav regime (Pav → ∞), r1 = K
p1
→ 0, and we have the following result

which indicates that the total power allocated to the outage region is asymptotically (as

Pav → ∞) negligible:

Lemma 2.2. In the high Pav regime, limr1→0 PL,1
tot = 0, if ∑L

j=1 ρj > 1, where ρ = ∑M
i=1 mi.

Proof: The proof can be found in the appendix of this chapter.

Therefore another effective scheme for large L is to additionally (to PFPPC) employ what

we call the ’Zero Power in Outage Region’(ZPiOR) approximation (PFPPC+ZPiOR), by

letting the power level pL = 0 resulting in rL = K
pL
→ ∞, as showed in Fig. 2.6. Thus we

have the total average power allocated to outage region RL,1, PL,1
tot = pL ∗ F′(p1) = 0.

Remark 2.2. Note that if ρ ≥ 1, the condition ∑L
j=1 ρj > 1 is clearly satisfied for any L ≥ 2.

For 0.5 < ρ < 1 (which is the case of no diversity with M = 1 or the single channel case), one

can show that there exists a finite L for which the condition ∑L
j=1 ρj > 1 is satisfied. This is easily

seen by noting that the condition ∑L
j=1 ρj > 1 is equivalent to ρL+1 < 2ρ − 1 for ρ < 1. It is

interesting to note however that when ρ = 0.5 (which is the case when one has as single Nakagami

channel with m = 0.5, the worst possible fading parameter), there is no finite value of L that can

achieve ∑L
j=1 ρj > 1. Thus in high Pav, it is near optimal to allocate zero power to the outage

region as long as ρ ≥ 1 with any L ≥ 2, or a single channel with 0.5 < m < 1 and a sufficiently

large L. For a single channel with m = 0.5, it seems that even in high Pav, one needs to allocate

nonzero power to the outage region.
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Therefore the performance of the ZPiOR approximation (except for the single channel

case with m = 0.5, in which case one can use the EPPR approximation to reduce com-

plexity) (PFPPC+ ZPiOR) becomes asymptotically (as L → ∞) close to that of the PFPPC

scheme.

In this case, (2.35) can be simplified as


∑L−1

j=1 pj(F′(pj+1)− F′(pj)) = P′av

pj−1 = pj +
F′(pj+1)−F′(pj)

−
∂F′(pj)

∂pj

j = 2, . . . , L− 1, F′(pL) = 1
(2.39)

which can be easily solved by using a standard bisection method. In fact, numerical stud-

ies illustrate (as we will see later) that the ZPiOR approximation has a near-optimum (for

Problem (2.27)) performance for large number of quantization regions. Thus, the ZPiOR

approximation achieves a better complexity-performance tradeoff than PFPPC+EPPR.

Remark 2.3. For the low Pav scenario, we can apply the ZPiOR approximation as well. This is

because it is easy to verify that

1
M

(p1L + . . . + pML) < Pav (2.40)

then when the average power is small (Pav → 0), piL → 0, i = 1, . . . , M as well, and the corre-

sponding quantization threshold riL → ∞. In this case, the region RL only includes RL,1 (the

outage region) and the corresponding power level PL = 0, thus making the ZPiOR approximation

applicable. A similar observation was also made in [105].

2.3.4 Asymptotic Behavior of Outage Probability

Here we briefly comment on the diversity behaviour of the outage minimization algo-

rithm using POHPA. Define the diversity gain d as

d = − lim
Pav→∞

log Pout

log Pav
(2.41)

Then we have the following result:
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Theorem 2.3. For an arbitrary M, with log2 L bits of quantized feedback, using the optimal

power allocation employing the POHPA approximation, we have

Pout ≈
( ρL

MmM
)ρL+...+ρcρL−1+...+ρ+1

Pav
ρL+...+ρ

(2.42)

The diversity order can be approximated as

d ≈
L

∑
j=1

(
M

∑
i=1

mi)j (2.43)

Proof: The proof can be found in the appendix of this chapter.

Special Case: Note that for Rayleigh fading case where mi = 1, ∀i = 1, 2, . . . , M, (2.43)

becomes d ≈ ∑L
j=1 Mj, which is consistent with similar results in [105] and [12].

Remark 2.4. It is possible that the result in Theorem 2.3 may hold with equality, rather than being

an approximation for the diversity order. However, due to the various levels of approximations

involved in deriving this, we are unable to prove an exact equality at this stage. This will involve

computing orders of approximation errors and showing that the error goes to zero as Pav goes to

infinity. We leave this for future work.

2.4 Large Number of Channels Analysis

The previous algorithms can be effectively applied to find locally optimal solutions or

suitable approximations for them for moderate number of parallel channels, such as

M < 10. Once M ≥ 10, these algorithms become computationally demanding. Given

that practical multi-carrier systems such as OFDM can have large number of sub-carriers

such as M = 64 or M = 128 sub-carriers, one needs to find outage minimizing power

allocation algorithms with limited feedback for large M. Below we provide such an algo-

rithm using a Gaussian approximation for large M in high Pav.
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Note that in high average power, we have

M

∑
i=1

log(1 + pijhi) ≈
M

∑
i=1

log(pijhi) =
M

∑
i=1

log(pij
fi

λi
) =

M

∑
i=1

log(
pij

λi
) +

M

∑
i=1

log( fi) (2.44)

where fi = hiλi, 1
λi

is the mean of channel gain hi, and under the Nakagami fading model,

the pdf of fi is (mi)mi

Γ(mi)
f mi−1
i e−mi fi , ∀i.

Thus F(Pj), j = 1, . . . , L for M channels can be approximated as

F(Pj) = Prob(
1
M

M

∑
i=1

1
2

log(1 + pijhi) < r0) ≈ Prob(
1
M

M

∑
i=1

log( fi) < sj) = V(sj) (2.45)

where sj = 2r0 − 1
M ∑M

i=1 log( pij
λi

) = c′ − 1
M ∑M

i=1 log(pij), c′ = 2r0 + 1
M ∑M

i=1 log(λi) and

the function V(.) denotes the cdf of 1
M ∑M

i=1 log( fi). It is easy to show that the pdf of

zi = log( fi) is fzi = (mi)mi

Γ(mi)
e−miezi emizi . Denote its mean and variance by E[zi] and Var[zi]

respectively. For the Rayleigh fading case, the pdf of zi = log( fi) is e−ezi ezi , which is the

well known Gumbel Distribution with mean E[zi] = −r, where r is Euler-Mascheroni con-

stant (r = 0.5772156649...) and variance Var[zi] = π2

6 .

Note that for large M, if m1 = · · · = mM or in the special case of Rayleigh fading

(mi = 1, ∀i), zi is i.i.d with finite mean and variance and then the Central Limit Theorem

directly applies whereby one can use a Gaussian approximation for the pdf of 1
M ∑M

i=1 zi.

However, in the general case where the fading parameters mi are different for differ-

ent channels, zi, i = {1, 2, . . . , M} are independent but not necessarily identically dis-

tributed. In this case, we can analytically proved that

Theorem 2.4. The sequence {zi − E[zi]} satisfies the Lindeberg condition (for a statement of

this condition, see page 262, [39]).

Proof: The proof can be found in the appendix of this chapter.

Therefore when the number of channels M → ∞, the cdf of 1
M ∑M

i=1 zi can still be approx-

imated (by applying Theorem 3, Chapter VIII.4 in [39]) by a Gaussian cdf with mean and

variance given by

µ =
1
M

M

∑
i=1

E[zi], σ2 =
1

M2

M

∑
i=1

Var[zi] (2.46)
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Thus, we have

V(sj) ≈
∫ sj

−∞

1
σ
√

2π
e−

(x−µ)2

2σ2 dx =
1
2
[1 + er f (

sj − µ

σ
√

2
)] (2.47)

The original problem (2.14) for a large number of channels case can be approximated as

min
{P1>P2>...>PL≥0}

V(s1)

s.t.
L−1

∑
j=1

(p1j + . . . + pMj)(V(sj+1)−V(sj))

+ (p1L + . . . + pML)(1−V(sL) + V(s1)) = MPav (2.48)

Using the KKT necessary conditions, we again get

∂V(sj)
∂p1j

= . . . =
∂V(sj)
∂pMj

, j = 1, . . . , L (2.49)

Note that

∂V(sj)
∂pij

= f (sj)
∂sj

∂pij
=

1
σ
√

2π
e−

(c− 1
M ∑M

i=1 log(pij)−µ)2

2σ2 − 1
M

1
pij

(2.50)

where f (s) = 1
σ
√

2π
e−

(s−µ)2

2σ2 . It is easily seen that the above expression for ∂V(sj)
∂pij

is a mono-

tonically increasing function of pij for all i = 1, 2, . . . , M and j = 1, 2, . . . , L. Therefore,

from (2.49), we have

p1j = . . . = pMj, j = 1, . . . , L (2.51)

The above result implies that at a local optimum, using the Gaussian approximation, the

power levels (for each quantization region) for all channels are identical, which is iden-

tical to the EPPC scheme. With a slight abuse of notation, denote pj = pij, j = 1, . . . , L.

Then we have sj = c′ − log(pj) and the vector quantization problem (2.48) can be con-

verted into the scalar quantization problem below with quantization thresholds s1, . . . , sL:

min
{p1>...>pL≥0}

V(s1)
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s.t.
L−1

∑
j=1

pj(V(sj+1)−V(sj)) + pL(1−V(sL) + V(s1)) = Pav (2.52)

After employing the corresponding KKT necessary optimality conditions and simplify-

ing, we have the system of L nonlinear equations below:


∑L−1

j=1 pj(V(sj+1)−V(sj)) + pL(1−V(sL) + V(s1)) = Pav

pj−1 = pj(
V(sj+1)−V(sj)

f (sj)
+ 1), j = 2, . . . , L− 1

pL−1 = pL(
1−V(sL)+V(s1)

f (sL) + 1)

(2.53)

When L is not large, one can solve the above equations using optimization tools 1stOpt.

When L is large (roughly L ≥ 16), we can also use the EPPR approximation or the ZPiOR

approximation to solve them, as discussed in the section on high Pav approximations. Ta-

ble 2.1 below shows the applicability of various algorithms discussed so far according to

different ranges of M, L and high Pav, where “GA” denotes the Gaussian approximation

based algorithms.

Table 2.1: Proposed power allocation strategies
Number of Channels M < 10 M ≥ 10

Optimal approach SPSA -
Approximation POHPA -

High Pav PFPPC (L ≥ 16, PFPPC+ZPiOR GA (L ≥ 16, GA+ZPiOR
or PFPPC+EPPR) or GA+EPPR)

2.5 Numerical Results

To numerically illustrate the performance of the designed power allocation strategies, we

consider an M-parallel (independent) Nakagami block-fading channels where the mean

value of the gamma distributed fading gain for each channel is assumed to be inversely

proportional to the square of the wireless propagation distance d, and the required trans-

mission rate is taken to be r0 = 0.25 nats per channel use. Outage performance with full

CSI at the transmitter is obtained with the optimal power allocation results presented in
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Figure 2.7: Outage performance comparison between SPSA, PO and POHPA for 2 chan-
nels 1 bit feedback (m1 = m2 = 0.5).

[40]. It should be noted that the results illustrate the “real outage” performance of the

proposed algorithms (the power codebook designed via the algorithms is used to obtain

the average outage probability over a large number of Monte-Carlo simulated channel

realizations). As a result, the average power required for a given real outage may not

strictly be the same as the original average power based on which the power codebook

is designed. However, for a given algorithm, the graphs can and should be used to de-

termine the minimum outage probability obtainable for a given average power and vice

versa.

Experiment 1 : The first experiment examines the performance of POHPA. Fig. 2.7

compares the outage performance of SPSA, an exhaustive search over the space of all

possible power allocation policies implementing the power ordering (PO) approxima-

tion only, and POHPA with 1 bit feedback for 2 channels case (d1 = 40m, d2 = 60m,

m1 = m2 = 0.5). It can be observed that when Pav is small, the performance of these

three methods have negligible difference, while when Pav is large, SPSA is slightly better
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than PO and POHPA. Fig. 2.8 shows the outage performance of SPSA and POHPA for

a higher dimensional case (4 channels case, d1 = 30m, d2 = 40m, d1 = 60m, d2 = 70m,

m1 = m2 = m3 = m4 = 1). Again, it can be seen clearly that with identical number of

feedback bits, the outage probability gap between SPSA and POHPA gradually increases

as Pav increases. From Fig. 2.7 and Fig. 2.8, it seems that in a higher dimensional space

(larger number of channels), with the same number of feedback bits, the outage proba-

bility gap between the two methods is bigger than the one in a low dimensional space,

especially in high Pav. And with the same value of M, as the number of feedback bits in-

creases, this gap seems to decrease, as shown in Fig. 2.8. This can be explained due to the

fact that to achieve a fixed outage probability, a larger number of feedback bits requires

less Pav.
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Figure 2.8: Outage performance comparison between SPSA and POHPA for 4 channels
(m1 = m2 = m3 = m4 = 1).
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Figure 2.9: Outage performance of HPavA (PFPPC) scheme (M = 2, B = 1, m1 = m2 =
0.5).

Experiment 2 : This experiment tests the performance of suboptimal scheme HPavA

(namely, PFPPC). Fig. 2.9 compares the outage performance of PFPPC approximation

with its optimal case (POHPA) for 2 channels (d1 = 40m, d2 = 60m) with 1 bit feedback

(m1 = m2 = 0.5). The striking observation in Fig. 2.9 is that when Pav ≤ 32dB, POHPA

only slightly outperforms PFPPC, while when Pav > 32dB, the performance of PFPPC

and POHPA almost overlaps each other ( i.e, the performance of PFPPC is very close to

its optimum), indicating that PFPPC is an efficient near-optimal scheme for POHPA espe-

cially at high Pav. In addition, Fig.2.10 illustrate the efficiency of using PFPPC+EPPR and

PFPPC+ZPiOR schemes for HPavA (PFPPC) at large number of feedback bits. As shown

in Fig.2.10, with 4 bits of feedback (16 regions), PFPPC with ZPiOR approximation (PF-

PPC+ZPiOR) achieves almost equivalent performance to PFPPC with EPPR approxima-

tion (PFPPC+EPPR), and both schemes are very close to their optimal case (PFPPC). This
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result illustrates the fact that ZPiOR can be combined with PFPPC as a computationally

simpler alternative to PFPPC+EPPR for large number of feedback bits.

Experiment 3 : The third simulation, as illustrated in Fig. 2.11 for 4 channels case
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Figure 2.10: Outage performance of PFPPC+EPPR and PFPPC+ZPiOR schemes with
4bits feedback for 2channels and m1 = m2 = 1 (ρ > 1).

(d=[30m,40m,60m,70m] and m1 = m2 = m3 = m4 = 0.5), studies the effect of increasing

the number of feedback bits on the outage performance using the proposed schemes. For

comparison, the performance of the optimal power control policy with full CSI [40] is

also shown. Instead of comparing the performance with the POHPA scheme, we plot the

outage probabilities of its computationally efficient near-optimal schemes (PFPPC and its

variants). With a small number of bits ( 1 bit and 2 bits) of feedback, PFPPC can be imple-

mented by using the optimization software 1stopt, and with 4 bits of feedback (L = 16),

we plot the performances of PFPPC+ZPiOR instead. The important observation from this

figure is that the introducing one extra bit of feedback substantially reduces the gap with
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Figure 2.11: Effect of increasing feedback bits on outage performance for 4 channels (m1 =
m2 = m3 = m4 = 0.5).

the full CSI performance and only a few bits of feedback can eliminate most of the gap

with the full CSI performance. For example, at an outage probability of 10−2, with 4 bits

of feedback, there is only around 2.5 dB power loss compared to the full CSI case. This

confirms that power allocation with limited feedback (only with a few feedback bits) can

provide a dramatic performance advantage over no CSI (channel non-adaptive power

allocation across all channels).

Fig. 2.12 depicts the diversity behaviour of the proposed outage minimization scheme

POHPA using the derived bound given in (2.42) for 4 channels with m1 = m2 = m3 =

m4 = 0.5. In high Pav, the outage performance of the PFPPC scheme is very close to

optimum (POHPA), thus here we plot the performance of the computationally efficient

PFPPC scheme instead of POHPA. We also use (2.31) to approximate the outage expres-

sion when the outage probability ≤ 10−10. As we can see from Fig. 2.12, the derived
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bound captures the slope of outage behaviour in high Pav extremely well.

Experiment 4 : Fig. 2.13 shows the effect of the fading parameter m on the outage

performance. It depicts the outage performance with 4 bits of feedback over 6 Nakagami

fading channels with different values of the fading parameter: m = 0.5, m = 1 and m = 2

(here we use identical fading parameter for each channel, i.e. m1 = . . . = m6 = m, and

d = [20, 30, 40, 60, 70, 80]). It can be noticed that as m increases, i.e., the fading severity

decreases, significant performance gains can be easily observed. To achieve a target out-
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Figure 2.12: Bound on diversity order for L=2 and 4 with PFPPC scheme (M=4, m1 =
m2 = m3 = m4 = 0.5).

age probability 10−2, 4 bits of feedback with m = 2 provides around 2.65 dB and 1.18 dB

improvements over 4 bits of feedback with m = 0.5 and m = 1 respectively, as measured

by the SNR gap with respect to their respective full CSI performances.

Experiment 5: Fig. 2.14 compares the outage performance between the PFPPC scheme

and the Gaussian approximation (GA) for 4 channels case (m1 = m2 = m3 = m4 = 0.5). It

can be seen very clearly that the PFPPC scheme outperforms GA, the benefit of the PFPPC
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scheme becoming more pronounced as Pav increases. For instance, with the same feed-

back bits, at an outage probability of 10−3, PFPPC with 1 bit requires roughly 7.8 dB less

power than GA does; and PFPPC with 2 and 4 bits feedback provide around 5.6 dB and
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Figure 2.13: Effect of the fading parameter m on outage performance for 6 channels.

2.3 dB power savings over GA respectively. Even with only with 1 bit of feedback, PFPPC

can achieve a better performance than GA with 2 bits of feedback in high Pav. These re-

sults indicate that the POHPA (with the PFPPC approximation) can achieve remarkable

performance advantage over GA, especially in high Pav. However, when the number of

channels is large, POHPA becomes computationally prohibitive. And in this case, GA is

an efficient alternative, which is consistent with similar observations (for MIMO settings)

in [25].

Fig. 2.15 illustrates the outage probability over large number of channels (16 chan-

nels) using GA, with the values of distances d1, . . . , d16 randomly obtained (with a uni-
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form distribution) from the range [20m,100m] and different identical fading parameters

(m1 = . . . = m16 = m) m= 0.5 and m = 2 respectively. We again see that only a few

bits of feedback are required to close the gap with the performance with full CSI. For

instance, to achieve a target outage probability 10−2, with m = 2, the power consump-

tion gap between 10 bits of feedback (less than one bit per channel) and its full CSI based

counterpart is only about 2.4 dB, while with m = 0.5, the gap is 2.8 dB. On the other hand,

as m decreases, i.e., the fading severity increases, the outage performance of the limited

feedback schemes deteriorates as expected.
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Figure 2.14: Outage performance comparison between POHPA and GA (M=4, B=1,2,4
bits, m1 = m2 = m3 = m4 = 0.5).



2.6 Conclusion 51

2.6 Conclusion

In this chapter, we have derived a simulation based optimization algorithm using SPSA

and presented various low-complexity sub-optimal outage minimization algorithms via

optimal power allocation with finite-rate or quantized channel feedback for an M-parallel

block-fading channels under a long term average power constraint. Numerical results

illustrate the effectiveness of these algorithms via their outage performance in compar-

ison with the performance of the optimal power allocation with full CSI. Future work

includes extension of these results to correlated fading channels, consideration of noisy

or erroneous feedback as investigated in [92] and quantized CSIT based power allocation

to more general optimization problems such as the service-outage based power and rate

allocation in [53].
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Figure 2.15: The outage performance of M = 16 channels with GA (m=0.5 and m=2).
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2.7 Appendix

2.7.1 Proof of Lemma 2.1

The proof is similar to [105][71]. For all j, 1 ≤ j ≤ L− 1, P(h) = Pj, if h ∈ Rj, let R∗
j be

the set of all h such that P∑
j+1 < (P∗(h))∑ ≤ P∑

j , we need to prove that R∗
j = Rj. Assume

the contrary, that R∗
j \Rj is a non empty set (\ denotes the set subtraction operation), i.e,

if h ∈ R∗
j \Rj, then h ∈ R∗

j and h 6∈ Rj. And we can partition the set R∗
j \Rj into two

subsets R−
j = (R∗

j \Rj)
⋂

(
⋃j−1

k=1 Rk) and R+
j = (R∗

j \Rj)
⋂

(
⋃L

k=j+1 Rk). If the set R−
j

has nonzero probability, then we can construct a new scheme by assigning all elements

of this set to Rj instead. Since ∀h ∈ R−
j , P∗(h)∑ ≤ P∑

j , such rearrangement achieves the

same outage probability but with less average power due to P∑
j < P∑

k , 1 ≤ k ≤ j − 1,

which is in contradiction with the optimality of the optimal solution P and R. On the

other hand, the set R+
j is also an empty set, otherwise, we can easily see that this set is in

outage (since ∀h ∈ R+
j , (P∗(h))∑ > P∑

j+1), thus we have larger overall outage probability

, which is also a contradiction. Therefore, we have R∗
j ⊆ Rj. We also can similarly prove

R∗
L ⊆ RL as [105] did. Since

⋃L
j=1 R∗

j =
⋃L

j=1 Rj, we can conclude that R∗
j = Rj, ∀j.

2.7.2 Proof of Theorem 2.1

We introduce µ as the Lagrange multiplier associated with the average power constraint.

The Lagrangian can be written as

J(P, µ) = F′(P1) + µ[
L−1

∑
j=1

(
M

∑
i=1

pij)(F′(Pj+1)− F′(Pj))

+(
M

∑
i=1

piL)(1− F′(PL) + F′(P1))− MPav] (2.54)

Setting the first-order partial derivatives to zero (i.e, ∂J
∂pij

∗ = 0, i = 1, . . . , M, for j =

1, . . . , L), produces

∂J
∂pi1

∗ = (1− µ
M

∑
i=1

pi1 + µ
M

∑
i=1

piL)
∂F′(P1)

∂pi1
∗ + µ(F′(P2)− F′(P1)) = 0,
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∂J
∂pij

∗ = µ[(
M

∑
i=1

pi,j−1 −
M

∑
i=1

pij)
∂F′(Pj)

∂pij
∗ + (F′(Pj+1)− F′(Pj))] = 0, 2 ≤ j ≤ L− 1

∂J
∂piL

∗ = µ[(
M

∑
i=1

pi,L−1 −
M

∑
i=1

piL)
∂F′(PL)

∂pij
∗ + (1− F′(PL) + F′(P1))] = 0 (2.55)

Since µ 6= 0 (note that otherwise ∂F′(P1)
∂pi1

∗ = 0, i = 1, . . . , M and since F′(P1) is monotoni-

cally decreasing with pi1, ∂F′(P1)
∂pi1

∗ = 0 implies pi1
∗ = ∞, corresponding to infinite average

power which is impossible), F′(P2) 6= F′(P1), thus (1 − µ ∑M
i=1 pi1 + µ ∑M

i=1 piL)) 6= 0.

Simplifying (2.55), we have,

∂F′(P1)
∂p11

∗ = . . . =
∂F′(P1)
∂pM1

∗ = − µ(F′(P2)− F′(P1))
1− µ ∑M

i=1(pi1 − piL)
∂F′(Pj)
∂p1j

∗ = . . . =
∂F′(Pj)
∂pMj

∗ = −
F′(Pj+1)− F′(Pj)

∑M
i=1(pi,j−1 − pij)

, 2 ≤ j ≤ L− 1

∂F′(PL)
∂p1L∗

= . . . =
∂F′(PL)
∂pML∗

= −1− F′(PL) + F′(P1)
∑M

i=1(pi,L−1 − piL)
(2.56)

Therefore, finally, we have

∂F′(Pj)
∂p1j

∗ = . . . =
∂F′(Pj)
∂pMj

∗ , j = 1, . . . , L (2.57)

This completes the proof.

2.7.3 Proof of Theorem 2.2

In the multiple infinite series representation (2.19), for a sufficiently high Pav, we have

| − miλiK
pij

| < 1, ∀i, j. Thus from [38], the conditions of the convergence of the power series

(2.20) are satisfied.

From (2.19), we have

F′(Pj) =
1

Γ(1 + ∑M
i=1 mi)

[
M

∏
i=1

(
miλiK

pij
)mi ]

∞

∑
n1=0

. . .
∞

∑
nM=0

[∏M
i=1(mi)ni(−

miλiK
pij

)ni 1
ni !

]

(1 + ∑M
i=1 mi)nτ

=
1

Γ(1 + ∑M
i=1 mi)

[
M

∏
i=1

(
miλiK

pij
)mi ](1 + ∑

{n1,...,nM∈Z|∑M
i=1 ni=1}

T(n1, . . . , nM)
1

∏M
i=1 pni

ij
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+ . . .

+ ∑
{n1,...,nM∈Z|∑M

i=1 ni=∞}
T(n1, . . . , nM)

1

∏M
i=1 pni

ij

) (2.58)

where T(n1, . . . , nM) =
∏M

i=1(mi)ni (−miλiK)ni 1
ni !

(1+∑M
i=1 mi)nτ

and Z is the set of non-negative integers.

Since in the high Pav regime, using the approximation 1
∏M

i=1 p
ni
ij
≈ 0 for ∑M

i=1 ni ≥ 1, we

have

F′(Pj) ≈
1

Γ(1 + ∑M
i=1 mi)

[
M

∏
i=1

(
miλiK

pij
)mi ] (2.59)

From (2.59), we have, for i = 1, . . . , M

∂F′(Pj)
∂pij

≈ −mi

pij

1
Γ(1 + ∑M

i=1 mi)

M

∏
i=1

(
miλiK

pij
)mi (2.60)

Finally, by substituting (2.60) in Theorem 2.1, we have

mi

pij
∗ ≈

ml

pl j
∗ , i, l ∈ [1, M], i 6= l, j = 1, . . . , L (2.61)

which completes the proof of Theorem 2.2.

2.7.4 Proof of Lemma 2.2

In [77], Moschopoulos justified the uniform convergence of the single infinite series in

(2.21). With PFPPC, (2.21) can be rewritten as

F′(pj) =
M

∏
i=1

(
λi

max(λi)
)mi

∞

∑
n=0

δnγ(ρ + n, KmM max(λi)
pj

)

Γ(ρ + n)
(2.62)

where ρ = ∑M
i=1 mi ≥ 0.5 (M ≥ 1, mi ≥ 0.5) and the coefficients δn are obtained recur-

sively by

δn+1 =
1

n + 1

n+1

∑
l=1

[δn+1−l

M

∑
i=1

mi(1− λi

max(λi)
)l ], δ0 = 1, n = 0, 1, . . . (2.63)
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In high the Pav regime (Pav → ∞), r1 = K
p1
→ 0, then with PFPPC, the total average power

allocated to the outage region RL,1 is

lim
r1→0

PL,1
tot = lim

r1→0
pLF′(p1) (2.64)

We have

lim
r1→0

pLF′(p1) = lim
r1→0

pL

p1
p1F′(p1)

= lim
r1→0

r1

rL
K

∏M
i=1(

λi
max(λi)

)mi ∑∞
n=0

δnγ(ρ+n,r1mM max(λi))
Γ(ρ+n)

r1

= lim
r1→0

r1

rL
C

∞

∑
n=0

δn(r1mM max(λi))ρ+n−1e−r1mM max(λi)

Γ(ρ + n)

= lim
r1→0

rρ
1

rL
C′, (2.65)

where C = KmM max(λi) ∏M
i=1(

λi
max(λi)

)mi and C′ = C (mM max(λi))ρ−1

Γ(ρ) , and the last equality

follows from the fact that when n ≥ 1, the individual terms go to zero for any ρ, as r1 → 0.

From the proof of Theorem 2.3 (see below), we have

p1 ≈
P′av

ρL−1+...+ρ+1

LρL−1+...+ρ+1cρL−2+...+ρ+1
=

P′av
∑L−1

i=0 ρi

C1
(2.66)

where C1 = LρL−1+...+ρ+1cρL−2+...+ρ+1. Thus, we have

lim
r1→0

rρ
1

rL
C′ = lim

Pav→∞

pL

pρ
1

C′Kρ−1 ≈ lim
Pav→∞

pL
Cρ

1C′Kρ−1

P′av
∑L

i=1 ρi
(2.67)

Since from the proof of Theorem 2.3, we have pL ≈ P′av
L ,

lim
r1→0

rρ
1

rL
C′ ≈ lim

Pav→∞

Cρ
1C′Kρ−1

LP′av
(∑L

i=1 ρi)−1
(2.68)

Thus, if (∑L
i=1 ρi)− 1 > 0, we have

lim
r1→0

rρ
1

rL
C′ = 0 (2.69)
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This completes the proof of Lemma 2.2.

2.7.5 Proof of Theorem 2.3

In the high Pav regime, from Theorem 2.2, we have

F′(Pj) ≈
c

p∑M
i=1 mi

j

=
c
pρ

j
, j = 1, . . . , L (2.70)

since pij = mi
mM

pMj = mi
mM

pj. Here c = ∏M
i=1(mMλiK)mi

Γ(1+ρ) where ρ = ∑M
i=1 mi. When Pav → ∞,

according to [14], all the quantization thresholds approach zero, thus the length between

any two quantization thresholds approaches zero as well resulting in the property that

the total average power assigned to each quantization region is asymptotically equal.

Thus, we have

pj(F′(pj+1)− F′(pj)) =
P′av
L

, j = 1, . . . , L− 1

pL(1− F′(pL) + F′(p1)) =
P′av
L

(2.71)

where P′av = MmM
ρ Pav. Applying (2.70) to (2.71), we have for j = 1, . . . , L− 1,

pj(
c

pρ
j+1

− c
pρ

j
)) ≈ P′av

L

1
pρ

j+1

≈
( P′av

Lc )
pj

+
1
pρ

j
(2.72)

It is clear to deduce that in the high Pav regime, for M ≥ 2 and M = 1, m ≥ 1, 1
pρ

j

compared to ( P′av
Lc )
pj

is negligible, thus (2.72) can be written as,

1
pρ

j+1

≈
( P′av

Lc )
pj

pj ≈ pρ
j+1

P′av
Lc

(2.73)
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The same approximation can be shown to hold true for M = 1, 0.5 ≤ m < 1 by contra-

diction, details are omitted due to space restrictions. Thus, we have,

p1 ≈ pρ
2

P′av
Lc

≈ (pρ
3

P′av
Lc

)ρ P′av
Lc

= pρ2

3 (
P′av
Lc

)ρ+1 ≈ . . . ≈ pρL−1

L (
P′av
Lc

)ρL−2+...+ρ+1 (2.74)

Since limPav→∞ F′(p1) = 0, from (2.71) we have,

pL(1− F′(pL)) =
P′av
L

pL(1− c
pρ

L
) ≈ P′av

L
(2.75)

Note that c
pρ

L
is negligible (→ 0) when Pav go to infinity, thus, we have,

pL ≈ P′av
L

(2.76)

Applying (2.76) to (2.74), we have

p1 ≈ (
P′av
L

)ρL−1
(

P′av
Lc

)ρL−2+...+ρ+1 =
P′av

ρL−1+...+ρ+1

LρL−1+...+ρ+1cρL−2+...+ρ+1
(2.77)

Since,

Pout = F′(P1)

≈ c
pρ

1

≈ c(
LρL−1+...+ρ+1cρL−2+...+ρ+1

P′av
ρL−1+...+ρ+1

)ρ

=
LρL+...+ρcρL−1+...+ρ+1

P′av
ρL+...+ρ

=
( ρL

MmM
)ρL+...+ρcρL−1+...+ρ+1

Pav
ρL+...+ρ

(2.78)

we have,

d = − lim
Pav→∞

log Pout

log Pav
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≈ − lim
Pav→∞

log(( ρL
MmM

)ρL+...+ρcρL−1+...+ρ+1)
log Pav

+ lim
Pav→∞

log PρL+...+ρ
av

log Pav

= 0 + ρL + . . . + ρ

=
L

∑
j=1

ρj. (2.79)

This completes the proof of Theorem 2.3.

2.7.6 Proof of Theorem 2.4

Given a random variable fi ∼ Gamma(mi, βi) (where mi is the fading parameter satisfy-

ing 1
2 ≤ mi < ∞) and E[ fi] = miβi = 1, or βi = 1

mi
, we have Var( fi) = miβ

2
i = βi. So

0 < Var( fi) ≤ 2 < ∞.

Let zi = log( fi), thus the moment-generating function of random variable zi is

Mzi(t) = E(etzi) = E(etlog( fi)) = E(( fi)t)

=
∫ ∞

0
f t
i

f mi−1
i

Γ(mi)βmi
i

e−
fi
βi d fi

=
Γ(mi + t)βmi+t

i
Γ(mi)βmi

i

∫ ∞

0

f t+mi−1
i

Γ(mi + t)βmi+t
i

e−
fi
βi d fi

=
Γ(mi + t)βmi+t

i
Γ(mi)βmi

i

=
Γ(mi + t)βt

i
Γ(mi)

(2.80)

Then,

E(zi) = M(1)
zi (0)

=
d( Γ(mi+t)βt

i
Γ(mi)

)

dt
(0)

= (
Γ(mi + t)′βt

i
Γ(mi)

+
Γ(mi + t)βt

i log(βi)
Γ(mi)

)(0)

=
Γ(mi + t)′(0)

Γ(mi)
+ log(βi)

=
(ψ(mi + t)Γ(mi + t))(0)

Γ(mi)
+ log(βi)
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= ψ(mi) + log(βi)

(2.81)

where ψ(mi) is digamma function [47]. Similarly,

E(z2
i ) = M(2)

zi (0)

=
d2( Γ(mi+t)βt

i
Γ(mi)

)

dt2 (0)

= (
Γ(mi + t)′′βt

i
Γ(mi)

+ 2
Γ(mi + t)′βt

i log(βi)
Γ(mi)

+
Γ(mi + t)βt

i log2(βi)
Γ(mi)

)(0)

=
Γ(mi + t)′′(0)

Γ(mi)
+ 2

Γ(mi + t)′(0)log(βi)
Γ(mi)

+ log2(βi)

=
Γ(mi + t)′′(0)

Γ(mi)
+ 2

Γ(mi + t)′(0)log(βi)
Γ(mi)

+ log2(βi)

=
Γ(mi + t)′′(0)

Γ(mi)
+ 2ψ(mi)log(βi) + log2(βi)

=
(ψ(mi + t)′Γ(mi + t) + ψ(mi + t)Γ(mi + t)′)(0)

Γ(mi)
+ 2ψ(mi)log(βi) + log2(βi)

=
(ψ1(mi + t)Γ(mi + t) + ψ(mi + t)2Γ(mi + t))(0)

Γ(mi)
+ 2ψ(mi)log(βi) + log2(βi)

= ψ1(mi) + ψ(mi)2 + 2ψ(mi)log(βi) + log2(βi)

= ψ1(mi) + (ψ(mi) + log(βi))2 (2.82)

where ψ1(mi) is trigamma function [47].

Let σ2
i = Var(zi), then we have

σ2
i = E(z2

i )− (E(zi))2

= ψ1(mi) + (ψ(mi) + log(βi))2 − (ψ(mi) + log(βi))2

= ψ1(mi)

=
∞

∑
n=0

1
(mi + n)2 (2.83)
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Since 1
2 ≤ mi < ∞, we can obtain,

0 <
1

m2
i

< σ2
i =

∞

∑
n=0

1
(mi + n)2 ≤ ψ1(

1
2
) =

π2

2
< ∞ (2.84)

Since mi < ∞, there exist a large enough constant C̄ so that mi ≤ C̄ < ∞. From (2.84), we

have

0 <
1

C̄2 < σ2
i ≤

π2

2
< ∞ (2.85)

Let Xi = zi − E(zi), Sn = ∑n
i=1 Xi, σ2

n = Var(Sn) = ∑n
i=1 σ2

i , then from (2.85) we have

σ2
n =

n

∑
i=1

σ2
i > n

1
C̄2 (2.86)

Thus, when n → ∞, we have

σ2
n → ∞ (2.87)

For every ε > 0, using Chebyshev’s Inequality, we can obtain,

P(|Xi| > εσn) ≤
σ2

i
ε2σ2

n
≤

max(σ2
i )

ε2σ2
n

=
π2

2
ε2σ2

n
→ 0 as n → ∞ (2.88)

Thus,

lim
n→∞

1
σ2

n

n

∑
i=1

E(X2
i I{|Xi| > εσn}) = lim

n→∞

1
σ2

n

n

∑
i=1

σ2
i

1
σ2

i
E(X2

i I{|Xi| > εσn})

≤ lim
n→∞

max(
1
σ2

i
E(X2

i I{|Xi| > εσn}))
1
σ2

n

n

∑
i=1

σ2
i

= lim
n→∞

max(
1
σ2

i
E(X2

i I{|Xi| > εσn}))

≤ lim
n→∞

C̄2 max(E(X2
i I{|Xi| > εσn})) (2.89)
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where I(A) denotes the indicator function taking the value 1 if the event A is true and

taking the value 0 otherwise. Let Yn denote the random variable X2
i I{|Xi| > εσn}, then

Yn is nonzero if and only if |Xi| > εσn. Since from (2.88), we know that this event has

probability approaching zero as n → ∞, we can also conclude that Yn
P−→ 0 where P−→

denotes convergence in probability. Since |Yn| ≤ X2
i and E(X2

i ) = σ2
i < ∞, by applying

the Dominated Convergence Theorem, we can conclude that E(Yn) → 0, namely,

E(X2
i I{|Xi| > εσn}) → 0 (2.90)

Applying the above result into (2.89), we have

lim
n→∞

1
σ2

n

n

∑
i=1

E(X2
i I{|Xi| > εσn}) = 0 (2.91)

Thus, the Lindeberg condition holds, and Xi satisfies the Central limit theorem.



Chapter 3

Throughput Maximization in
Cognitive Radio with Limited

Feedback : Average Interference
Constraints

3.1 Introduction

Scarcity of available vacant spectrum is limiting the growth of wireless products and ser-

vices [59]. Traditional spectrum licensing policies suppress unfavorable interferences at

the cost of spectral utilization efficiency. Cognitive radio (CR) technology significantly

improves the efficiency of spectral utilization and largely alleviates the spectral scarcity.

There are three categories of CR network paradigms: interweave, overlay, and underlay

[9]. In the underlay systems, also known as spectrum sharing model, which is the focus

of this chapter (also for chapter 4 and 5), the SU can transmit even when the PU is present,

but the transmitted power of SU should be controlled properly so as to ensure that the

resulting interference does not degrade the received signal quality of PU to an undesir-

able level [117] by imposing the so called interference temperature [7] constraints at PU

(average or peak interference power (AIP/PIP) constraint) and as well as to enhance the

performance of the SU-TX to SU-RX links.

It is well known that the knowledge of the channel CSI is crucial in designing the

transmit power control of SU. Most of current literatures, such as [7], [45], [66],[117],[28],

assume perfect knowledge of full CSI available at SU-TX, which is very difficult to im-

plement in practice, especially the channel information from SU-TX to PU-RX without
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PU’s cooperation. A few recent papers have emerged that address this concern by inves-

tigating performance analysis with various forms of partial CSI at SU-TX, such as noisy

CSI and quantized CSI. With assumption of perfect knowledge of the CSI from SU-TX

to SU-RX channel, the authors of [67] studied the effect of imperfect channel informa-

tion for the SU-TX to PU-RX channels under AIP or PIP constraint by considering the

channel information from SU-TX to the PU-RX as a noisy estimate of the true CSI, and

employing the so-called ’tifr’ transmission policy. Another recent work [46] also consid-

ers imperfect CSI for the SU-TX to PU-RX channel in the form of noisy channel estimate

(a range from near-perfect to seriously flowed estimates) and studied the effect of using

midriser uniform quantization CSI, while also assuming SU-TX can access full knowl-

edge of the SU-TX to SU-RX channel. In [84], the authors presented a new coding which

can achieve better error performance for cognitive radio when there is only partial CSIT.

In [60], the authors has proposed a practical design paradigm for cognitive beamforming

based on finite-rate cooperative feedback from the PU-RX to the SU-TX and cooperative

feedforward from the SU-TX to the PU-RX. Finally, the authors of [17] studied the issue of

channel quantization for resource allocation via the framework of utility maximization in

OFDMA based CR networks, but does not investigate the joint channel partitioning and

rate/power codebook design problem. Indeed, the lack of a rigorous and systematic de-

sign methodology for quantized resource allocation algorithms in the context of cognitive

radio networks forms the key motivation for our work.

In this chapter, we consider the uplink of an infrastructure-based wideband spectrum

sharing system where one SU shares M different frequency bands with M PU’s, each PU

using a separate band. We address the problem of ergodic capacity maximization of the

secondary user subject to an long term average sum (across the bands) transmit power

constraint on the secondary user and M individual average interference constraints on

each primary user, using quantized channel information about the vector channel space

consisting of all SU-TX to SU-Rx (contained in the SU Base station (SU-BS)) channels

and all SU-TX to PU-RX (contained in the primary base station (PU-BS)) channels. To

this end, we assume the availability of an entity called CR network manager who has

access to the full CSI including all secondary-to-secondary and secondary-to-primary
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channels via (possibly fibre-optic) links with the primary and secondary base stations,

which in turn are assumed to have receiver side full CSI of the secondary to primary and

secondary-to-secondary channels, respectively. An optimal power codebook is designed

off-line based on the statistical information (channel distributions) of the channels and

is known by both the SU-TX the CR network manager, and then in real-time, the CR

network manager feeds back the index of the codebook to the secondary transmitter for

every channel realization, via a B-bits per band finite-rate feedback link. The secondary

transmitter then uses the corresponding power code vector for its transmission.

We make the following key contributions: (1) First and foremost, we present a mod-

ified Generalized Lloyd’s type algorithm (GLA) for designing the optimal power code-

book using quantized channel information. For easier exposition, we focus on the nar-

rowband case first and derive the quantized power allocation algorithm, where we prove

that the modified GLA based power codebook design algorithm is globally convergent

and empirically consistent. We provide a number of useful and interesting properties

of the quantized powers. Then we present a complete description of the optimal power

codebook design algorithm for the wideband spectrum sharing case under the average

transmit power and average interference power constraints. We believe this chapter is the

first to provide a systematic quantized power allocation algorithm with limited feedback

for the spectrum sharing scenario in cognitive radio. (2) Although an offline algorithm,

GLA based quantizer designs usually require a large number of training samples and can

be computationally expensive. We therefore design an approximate quantized power

allocation algorithm based on the derived properties of the power codebook, which is

computationally significantly faster and is seen to have much better performance com-

pared to other suboptimal algorithms. (3) We then generalize the modified GLA based

algorithm for quantized power allocation algorithm to the case where the limited feed-

back channel is noisy but memoryless. (4) We present a comprehensive set of numerical

results which illustrate that (i) the modified GLA-based power codebook can achieve a

secondary ergodic capacity with only 3-4 bits of feedback at each band, that is very close

to the capacity with full CSI, (ii) the performance of the approximate quantized power

allocation algorithm is almost indistinguishable from that of the GLA-based algorithm
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with B ≥ 4 bits per band of feedback and (iii) how the performance of the quantized

power allocation degrades when the noisy feedback channel error probability increases.

This chapter is organized as follows. Section 3.2 presents the system model and as-

sumptions about the spectrum sharing problem, and derives the optimal power alloca-

tion policy for ergodic capacity of SU maximization problem based on full CSI assump-

tion. In Section 3.3, we provide the modified GLA based quantized power codebook

design algorithms along with associated convergence results and some useful proper-

ties of the quantized power vectors. The approximate quantized power allocation algo-

rithm (AQPA) and two other suboptimal algorithms are also presented. In Section 3.4,

we extend the modified GLA based power codebook design algorithm to a noisy lim-

ited feedback channel model. Numerical results are presented in Section 3.5 and finally,

concluding remarks and possible extensions are presented in Section 3.6. All proofs are

relegated to the appendix section 3.7 in this chapter.

3.2 System Model and Problem Formulation

We consider the uplink of a wideband spectrum sharing scenario in an infrastructure-

based cognitive radio network with one SU and Multiple PUs, as shown in Fig. 3.1, where

a SU is allowed to use M parallel orthogonal frequency bands (Band1 to BandM) which

are individually licensed to PU1, . . . , PUM respectively. Regardless of the ON/OFF sta-

tus of PUi, SU uses the i-th channel as long as the impact of the secondary transmission

does not substantially degrade the received signal quality PUi. It is assumed that the

channels between the secondary transmitter (SU-TX) and secondary receiver (SU-RX)

and those between the secondary transmitter and the each primary receiver are all block

fading channels. Let gi
0 and gi

1 denote the real-valued instantaneous channel power gains

for the link between the SU-TX and the receiver of PUi (at the PU-BS) and i-th channel

between the SU-TX and SU-RX (at the SU-BS) 1, respectively. These channels are as-

sumed to be stationary ergodic with absolutely continuous probability density functions

1Fig. 3.1 also shows that the PU-BS and SU-BS are connected (possibly via fibre-optic links) to a central
controller called the CR network manager, the existence of which is crucial in designing the power allocation
algorithms in the quantized feedback case (see Section 3.3 for further details).
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(pdf) f0(gi
0) and f1(gi

1). For analytical simplicity, the interference from PUi-TX to SU-RX

is neglected (similarly as in [7, 117]). In the case where the interference caused by the

primary transmitter at the secondary receiver is significant, the SU ergodic capacity re-

sults derived in this chapter can be taken as upper bounds on the actual capacity under

primary-induced interference. This assumption is justified when either the SU is outside

the PUs transmission range or the SU receiver is equipped with interference cancellation

capability particularly when the PU signal is strong. All gi
0 and gi

1 (i = 1, . . . , M) are sta-

tistically mutually independent, and without loss of generality 2 (w.l.o.g) are assumed to

have unity mean. Similarly, additive noises for each channel are independent Gaussian

random variables with zero mean and unit variance w.l.o.g. When M = 1, this system

becomes a typical narrowband spectrum sharing model considered in [7],[123],[117].

Given a channel realization g0 = {g1
0, . . . , gM

0 } and g1 = {g1
1, . . . , gM

1 }, we assume

that a channel side information (CSI) η(g0, g1) is available at the SU-TX. The power allo-

cated at the SU-TX on the M parallel SU links is represented by the vector p(η(g0, g1)) =

{p1(η(g0, g1)), . . . , pM(η(g0, g1))}, the ergodic capacity of the SU for this wideband spec-

trum sharing system can be expressed as

C =
1
M

M

∑
i=1

E
[
log
(

1 + gi
1 pi(η(g0, g1))

)]
(3.1)

where, for simplicity, we have ignored the factor 1
2 at the front of the capacity expression

and log represents the natural logarithm. Note also that the factor 1/M in front of the

capacity formula above is not strictly necessary for the problem formulation and since M

is fixed for the problem, inclusion or exclusion of it does not change the solution tech-

niques and the results (except for a scaling factor). However, channel capacity is usually

expressed in terms of per degree of freedom and in order to have a fair comparison of

capacities for various values of M, it is common practice to normalize it by the number

of degrees of freedom, in this case, M. A similar formulation can be found in the paper

2Note that here the secondary-to-primary and secondary-to-secondary fading channel power gains are
modelled as gi

p = mi
0gi

0 and gi
s = mi

1gi
1, respectively where mi

0, mi
1 are the corresponding means, and gi

0,
gi

1 have unity mean. It can be easily seen from (3.2) that any non-unity mean mi
0 can be absorbed into the

average interference threshold Qi
avg and any non-unity mean mi

1 can be absorbed into pi(.), the secondary
transmission power on the i-th band.
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SU

…

Spectrum sharing for Licensed Band

SU-BS

SU-TX CR network 
manager

PU-BS

PU-RX

B bits feedback

Figure 3.1: System model for wideband spectrum-sharing scenario

[53].

A common way to protect PU’s received signal quality is by imposing either an aver-

age or a peak interference power (AIP/PIP) constraint at PU-RX [7][123][117], although

there are other forms of PU quality of service constraints such as PU’s capacity loss and

PU’s outage probability [91]. It was shown in [123] that an AIP constraint is more favor-

able than a peak constraint especially in the context of transmission over fading channels,

since the AIP constraint is more flexible and can achieve a larger SU capacity with less

PU capacity loss than that achieved by PIP.

Motivated by this observation, we consider the following optimal power allocation

problem that maximizes the ergodic capacity of SU in a wideband spectrum sharing

scenario, under an AIP constraint at each PUi-RX and an average sum transmit power
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constraint (ATP) for the SU, given by,

max
pi(η(g0,g1))≥0,∀i

1
M

M

∑
i=1

E
[
log
(

1 + gi
1 pi(η(g0, g1))

)]
s.t. E

[
gi

0 pi(η(g0, g1))
]
≤ Qi

avg, ∀i,

1
M

M

∑
i=1

E [pi(η(g0, g1))] ≤ Pavg. (3.2)

When full channel state information (CSI) is available at the SU-Tx (i.e, η(g0, g1) =

(g0, g1)), the optimization problem is convex and the corresponding optimal secondary

transmitter power allocation policy is given by the following Theorem (here the term

“iff” refers to “if and only if”).

Theorem 3.1. With perfect channel information η(g0, g1) = (g0, g1) at the SU-TX, the optimal

power allocation for problem (3.2) is given by

p∗i (g0, g1) =



(
1

µ
f
i gi

0

− 1
gi

1

)+

iff Pavg ≥ 1
M ∑M

i=1 E

[(
1

µ
f
i gi

0

− 1
gi

1

)+
]

(a)
(

1
λ f − 1

gi
1

)+
iff E

[(
1

λ f − 1
gi

1

)+
]
≤ Qi

avg (b)(
1

λ f +µ
f
i gi

0

− 1
gi

1

)+

otherwise (c)
otherwise

(3.3)

where (x)+ = max(x, 0) and λ f , µi
f are the nonnegative Lagrange multipliers associated with

the ATP constraint and the AIP constraint of PUi respectively, and condition (a) corresponds

to the case λ f = 0, µi
f > 0, ∀i and µi

f is determined by solving E

[
gi

0

(
1

µ
f
i gi

0

− 1
gi

1

)+
]

=

Qi
avg, condition (b) corresponds to the case λ f > 0, µi

f = 0 where λ f is determined by solving

1
M ∑M

i=1 E
[(

1
λ f − 1

gi
1

)+
]

= Pavg, and condition (c) corresponds to the case λ f > 0, µi
f > 0

such that λ f and µi
f are determined by solving 1

M ∑M
i=1 E

[(
1

λ f +µ
f
i gi

0

− 1
gi

1

)+
]

= Pavg and

E

[
gi

0

(
1

λ f +µ
f
i gi

0

− 1
gi

1

)+
]

= Qi
avg.

Proof: The proof can be found in the appendix of this chapter.

One can also easily obtain the following special cases :

1) When M = 1(narrowband spectrum sharing case), from theorem 3.1, the condition
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(b)(i.e, E[( 1
λ f − 1

g1
1
)+] ≤ Qavg) becomes Pavg ≤ Qavg (note that we have removed the

superscript from Qavg as there is only one primary user), and the optimal power

allocation solution specialises to the one presented in [117].

2) When µi = 0 ∀i, i.e, only ATP is active, for this case, if additionally g1 are indepe-

dent and identically distributed, we must have Pavg ≤ min(Q1
avg, . . . , QM

avg).

3) If Q1
avg = · · · = QM

avg = Qavg and both g0 and g1 are indepedent and identically

distributed, the optimal power allocation policy is to assign equal power to each

SU link, and the power value is identical to the power allocation policy for the

M = 1 case.

Appealing to the convexity of Problem (3.2), one can show that in Theorem 3.1, one of

the cases must hold, and the corresponding power allocation scheme must be the global

optimal solution for the original problem (3.2). An algorithm can be then easily designed

to obtain p∗i (g0, g1), and the associated non-zero Lagrange multipliers can be obtained by

solving the corresponding KKT complementary slackness condition numerically.

3.3 Optimum Quantized Power Control with Finite-Rate Feed-
back

The assumption of full CSI at the SU-TX (especially that of g0) is usually unrealistic in

practical systems. In this section, we are therefore interested in designing power al-

location schemes based on quantized (g0, g1) information acquired via a no-delay and

error-free feedback link with limited rate. As shown in Fig. 3.1, here we assume that

there is a central controller termed as the CR network manager who can obtain perfect

information on g1 from SU-RX at the SU base station and perfect information on g0 from

the PU base station, possibly over fibre-optic links and then forward some appropriately

quantized CSI to SU-TX (and SU-RX for decoding purposes) through a finite-rate feed-

back link. Note that existence of such central controllers is also assumed quite commonly

in literature on multi-cell MIMO or macro-diversity based systems with cooperative base

stations in a primary network, where several base stations are assumed to be connected to

a central controller via a backhaul link so that information about out-of-cell interference
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can be obtained resulting in higher capacity [22,88]. If cognitive radio networks are to be

successful, it is imperative that the primary users cooperate with the CR service provider

at some level. In our model, we assume this cooperation in terms of primary channel

information sharing with the CR network manager via the PU-BS. Any cost incurred by

the CR service provider as a result of obtaining this information from the PU-BS can be

recovered by charging the secondary users a nominal price. This assumption is further

(and perhaps more crucially) justified by the fact that having full CSI about the joint chan-

nel space g0, g1 allows the CR network manager to design a joint channel quantizer and

power codebook that has a far superior performance than quantizing g0 and g1 sepa-

rately in the absence of this central controller, which is clearly suboptimal (see Section 3.5

on Numerical Results for further details).

In order to formulate the optimal power allocation with quantized channel feedback,

we first make the observation that due to convexity of the original problem (3.2), it can

be solved by the Lagrange duality method, namely, by solving the dual problem of (3.2):

min
λ f≥0, µ

f
i ≥0,∀i

g(λ f , {µ
f
i }) + λ f Pavg +

M

∑
i=1

µ
f
i Qi

avg, (3.4)

where the Lagrange dual function is given by

g(λ f , {µ
f
i }) = max

pi(η(g0,g1))≥0,∀i

1
M

M

∑
i=1

E[log
(

1 + gi
1 pi(η(g0, g1))

)
− λ f pi(η(g0, g1))− Mµ

f
i gi

0 pi(η(g0, g1))]. (3.5)

Here g(λ f , {µ
f
i }) can be decomposed into M parallel subproblems, which for band i, i =

1, . . . , M is given by

max
pi(η(g0,g1))≥0,∀i

E
[
log
(

1 + gi
1 pi(η(g0, g1))

)
− λ f pi(η(g0, g1))− Mµ

f
i gi

0 pi(η(g0, g1))
]

(3.6)

which implies given λ f and µ
f
i , i = 1, 2, . . . , M, we can solve the above problem indi-

vidually for each band. This observation motivates us to formulate Problem (3.2) with

quantization channel feedback individually for each band as described below.
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Under the network modelling assumptions described above, given a B-bit per band

limited feedback link between the CR network manager and the SU-TX, the power code-

book for i-th band (i = 1, . . . , M) given by Pi = {pi1, . . . , piL} of cardinality L = 2B, is

designed by the CR network manager off-line purely on the basis of the statistics of gi
0, gi

1.

These codebooks P1, . . . ,PM are known a priori by both SU-TX and CR network manager.

For the i-th band, the vector space of (gi
0, gi

1) is thus partitioned into L regions Ri
1, . . . ,Ri

L

using a quantizer Qi (such that the codebook element pij represents the power level used

in Ri
j ). For the i-th band, the CR network manager maps the current instantaneous (gi

0,

gi
1) information into one of L integer indices and sends the corresponding index to the

SU-TX via the feedback link of rate B = log2 L (e.g., if the current (gi
0, gi

1) falls in Ri
j, then

index j for i-th band will be conveyed back to SU-TX). The SU-TX will use the associated

power codebook element pij as the transmission power to adapt its transmission strategy

for the band i.

Remark 3.1. Note that it is possible to consider different feedback bit rates for different bands

and our analysis can be adapted to this scenario, but for simplicity and also due to the fact that all

bands are assumed to be statistically i.i.d., we use identical B bits of feedback for each band.

Let Pr(Ri
j), E[•|Ri

j] denote Pr((gi
0, gi

1) ∈ Ri
j) (the probability that (gi

0, gi
1) falls in the

region Ri
j) and E[•|(gi

0, gi
1) ∈ Ri

j], respectively. Then the secondary ergodic capacity

maximization problem (3.2) with limited feedback can be formulated as

max
pij≥0,∀i,j

1
M

M

∑
i=1

(
L

∑
j=1

E
[
log(1 + gi

1 pij)|Ri
j

]
Pr(Ri

j)

)

s.t.
L

∑
j=1

E[gi
0 pij|Ri

j]Pr(Ri
j) ≤ Qi

avg, ∀i,

1
M

M

∑
i=1

(
L

∑
j=1

E[pij|Ri
j]Pr(Ri

j)

)
≤ Pavg. (3.7)

Our objective is thus the joint optimization of the channel partition regions and the power

codebooks such that the ergodic capacity of SU is maximized under the above average

transmit power and average interference constraints.
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3.3.1 Narrowband spectrum-sharing case

For ease of exposition, we first look at the relatively simpler case of M = 1 (where SU

shares a narrowband spectrum with only one PU). For simplicity (with some abuse of

notation), let pj, g1, g0, Qavg,Rj represent p1j, g1
1, g1

0, Q1
avg,R1

j respectively. Thus problem

(3.7) with M = 1 becomes,

max
pj≥0,∀j

L

∑
j=1

E
[
log(1 + g1 pj)|Rj

]
Pr(Rj)

s.t.
L

∑
j=1

E[g0 pj|Rj]Pr(Rj) ≤ Qavg,

L

∑
j=1

pjPr(Rj) ≤ Pavg (3.8)

We solve the problem (3.8) based on the Lagrange duality method. First we write the La-

grangian of above problem as L(P, λ, µ) = ∑L
j=1 E[log(1 + g1 pj)−λpj−µg0 pj|Rj]Pr(Rj)+

λPavg + µQavg where λ and µ are the nonnegative Lagrange multipliers associated with

the ATP constraint and AIP constraint respectively. The Lagrange dual function g(λ, µ)

is defined as

max
pj≥0 ∀j

L

∑
j=1

E[log(1 + g1 pj)− λpj − µg0 pj|Rj]Pr(Rj) (3.9)

and the corresponding dual problem is minλ≥0, µ≥0 g(λ, µ) + λPavg + µQavg.

We first consider solving the above primal optimization problem with fixed λ and µ.

To this end, we employ an algorithm similar to a Generalized Lloyd Algorithm (GLA)

[6, 120] to design an optimal power codebook for (3.9), which is based on two optimality

conditions : 1) optimum channel partitioning for a given codebook, also called the near-

est neighbor condition (NNC) in the context of traditional vector quantization (VQ), and

2) optimum codebook design for a given partition, also known as the centroid condition

(CC) (in the context of VQ) [6]. GLA is usually initialized with a random choice of code-

book, and then the above two conditions are iterated until some pre-specified conver-

gence criterion is met. The same procedure is used here for designing an optimal quan-

tizer Q, but the design criterion for our case is minimizing the difference between the ca-

pacity with perfect CSI and the capacity with quantized power allocation under the given
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constraints. This amounts to designing an optimal power codebookQ that maximizes the

Lagrangian function for quantized CSI, ∑L
j=1 E[log(1 + g1 pj) − λpj − µg0 pj|Rj]Pr(Rj).

We call the corresponding quantized power allocation algorithm for a given λ, µ as a

modified GLA.

In practice, this modified GLA is implemented using a sufficiently large number

of training samples (channel realizations for g0, g1). Beginning with a random initial

codebook, one can design the optimal partitions using the fact that the optimal parti-

tions satisfy Rj = {(g0, g1) : (log(1 + g1 pj) − λpj − µg0 pj) ≥ (log(1 + g1 pn) − λpn −

µg0 pn), ∀n 6= j} where Rj is the corresponding partition region for power level pj in the

codebook, and ties are broken arbitrarily. Once the optimal partitions are designed, the

new optimal power codebook is found by solving for argmaxpj≥0E[log(1 + g1 pj)− λpj −

µg0 pj|Rj]Pr(Rj), ∀j = 1, 2, . . . , L. Given a partition, this optimization problem is con-

vex and by using the KKT conditions, one can obtain the optimal power as max(p∗j , 0),

where p∗j is the solution to the equation E[ g1
1+g1 pj

− (λ + µg0)|Rj] = 0. These two steps

are repeated until the resulting ergodic capacity converges within a pre-specified accu-

racy. One needs to note that GLA cannot in general guarantee global optimality, since the

two optimality conditions (NNC and CC) mentioned above are just necessary conditions

[6]. Thus it is very likely that the our resulting quantizer is only locally optimal. While

convergence (to a local optimum) of our modified GLA follows immediately by noting

that the Lagrangian ∑L
j=1 E[log(1 + g1 pj) − λpj − µg0 pj|Rj]Pr(Rj) is non-decreasing at

each iteration and is upper bounded (due to the finite average transmit power and aver-

age interference constraints), it is important and instructive to state a more formal result

along the lines of [76]. Since GLA is initialized with a random codebook and the opti-

mal partitions and codevectors are found using training samples drawn from empirical

distributions, it is crucial that GLA is globally convergent with respect to the choice of

initial codebooks and empirically consistent. For more formal definitions of these two

properties, see [76]. Under the assumption of absolutely continuous fading distributions

for g0, g1 and mild regularity assumptions satisfied by these distributions, one can show

that the modified GLA satisfies the conditions for global convergence and empirical con-

sistency stated in [76] and thus we have the following result:
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Theorem 3.2. The modified GLA that solves the optimization problem (3.9) satisfies the global

convergence and empirical consistency properties of [76].

Proof: The proof can be found in the appendix of this chapter.

Next, we present some useful properties of the optimal power solutions obtained via

the modified GLA. We use the partitions R1, . . . ,RL and the corresponding power levels

p1, . . . , pL to denote the optimal solutions after convergence. First, we state the following

Lemma from where we can obtain optimum partition regions structure:

Lemma 3.1. Given partitions R1, . . . ,RL and the corresponding power level p1, . . . , pL, (where

Rj and Rj+1, ∀j ∈ {1, . . . , L − 1} are adjacent regions and pj 6= pj+1), the boundary between

any two adjacent regions Rj and Rj+1 is given by,

g1 =
e(λ+µg0)(pj−pj+1) − 1

pj − pj+1e(λ+µg0)(pj−pj+1)
. (3.10)

When µ 6= 0, g1 is a monotonically increasing convex function of g0 and as g1 → ∞, g0 →
1
µ

(
log(

pj
pj+1

)

pj−pj+1
− λ

)
.

Proof: The proof can be found in the appendix of this chapter.

Remark 3.2. In case λ > 0, µ = 0, the AIP constraint is inactive and the ATP constraint is

satisfied with equality. In this case, the boundary between any two adjacent regions Rj and Rj+1

becomes g1 = eλ(pj−pj+1)−1
pj−pj+1eλ(pj−pj+1) . Clearly, Problem (3.7) reduces to an ergodic capacity maximiza-

tion problem with quantized channel information. For the narrowband case, it becomes a scalar

quantization problem involving quantizing g1 only. Note that while for the narrowband case, this

no longer pertains to a cognitive radio problem, these properties of the optimal quantized power

allocation scheme are still important for the wideband case (M > 1). This is due to the fact that

in the wideband case, it is possible that for a specific (say the i-th) channel, the AIP constraint is

inactive (µi > 0) while λ > 0. See Section 3.3.2 for further details.

We now give an example to illustrate what the optimum partition regions actually

look like. For this example, g0 and g1 are both exponentially distributed (Rayleigh fading)

with unit mean and L = 4 (2 bits of feedback). The optimum partition regions are as



3.3 Optimum Quantized Power Control with Finite-Rate Feedback 75

shown in Fig. 3.2 for λ > 0, µ > 0, and Fig. 3.3 for λ > 0, µ = 0.

We obtain the following properties for the optimal quantized power levels where (as

illustrated in Fig. 3.2) the regions R1,R2, . . . etc. are sequentially numbered, with R1

being the region closest to the g1 axis and RL being the region closest to the g0 axis. Note

that these properties apply regardless of whether µ > 0 or µ = 0.
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Figure 3.2: The structure of optimum partition regions with B = 2 bits of feedback given
λ = µ = 0.1, Pav = 5.6336 dB, Qav = 3.4492 dB

Theorem 3.3. i). p1 > · · · > pL

ii). All boundaries between any two adjacent partitions satisfy g1 > λ + µg0.

iii). Given B bits of feedback (or L = 2B regions), for the first L-1 regions, we always have

strictly positive power, i.e. p1 > · · · > pL−1 > 0, whereas pL is simply nonnegative, i.e.

pL ≥ 0.

iv). When λ + µ ≥ 1 (note that if λ = 0, µ ≥ 1 implies Qavg < 1, and if µ = 0, λ ≥ 1

corresponds to Pavg < 1), we always have pL = 0. In addition, when L (the number
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of quantized regions) is sufficiently large, no matter what λ, µ are, pL must be 0. Addi-

tionally, as L → ∞ the boundary between RL−1 and RL approaches g1 = λ + µg0 and

limL→∞ pL−1 = 0.

Proof: The proof can be found in the appendix of this chapter.
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Figure 3.3: The structure of optimum partition regions with B = 2 bits of feedback given
λ = 1, µ = 0, Pav = −8.3298 dB

Remark 3.3. The above properties of optimal quantized power values are interesting for two

reasons. From property ii), it is clear that (g0, g1) ∈ Rj for j = 1, 2, . . . , L − 1 satisfy the

property g1 > λ + µg0 whereas for the region RL, this property may or may not be satisfied.

Since the quantized power values in the first L− 1 regions are strictly positive, it is easy to relate

this property to the corresponding property of the full CSI based optimal power value which is

strictly positive if and only if when g1 > λ f + µ f g0. Also, as L → ∞, the boundary between

RL−1 and RL approaches g1 = λ + µg0, thus making this relationship between the quantized
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power allocation scheme and the full CSI power allocation scheme stronger. Finally, property iv)

allows one to obtain an approximate quantized power allocation scheme (AQPA) for large L by

setting pL = 0 and taking the limit as pL−1 → 0. This is particularly useful as the modified

GLA becomes computationally intensive for large L, whereas AQPA provides a performance that

is extremely close to that of the modified GLA, while requiring very little computation time. A

detailed description of the AQPA is provided in Section 3.3.3 followed by illustrative numerical

simulations in Section 3.5.

Based on Lemma 3.1 and Theorem 3.3, one also can obtain the optimal quantized

power values p1, p2, p3, . . . , pL for Problem (3.8) by solving the following set of nonlinear

equations:

E
[

g1

1 + g1 pj
− (λ + µg0)|Rj

]
= 0, j = 1, . . . , L, pL = max(0, pL) (3.11)

where if µ 6= 0, E
[

g1
1+g1 pj

− (λ + µg0)|Rj

]
=
∫ ∞

cj

∫ rj
rj−1

( g1
1+g1 pj

− (λ + µg0)) f (g0) f (g1)dg0dg1,

with cj = eλ(pj−pj+1)−1
pj−pj+1eλ(pj−pj+1) , j = 1, . . . , L − 1, cL = 0 and rj = 1

µ

(
log

pj∗g1+1
pj+1∗g1+1

pj−pj+1
− λ

)
, j =

1, . . . , L − 1, r0 = 0, rL = ∞. When µ = 0, E
[

g1
1+g1 pj

− (λ + µg0)|Rj

]
=
∫ cj−1

cj
( g1

1+g1 pj
−

λ) f (g1)dg1, with c0 = ∞. Note that (3.11) can be solved efficiently by a suitable nonlin-

ear equation solver. This particular solution methodology will be very useful in the case

of AQPA (see Section 3.3.3 for further details).

We now solve the dual problem for finding the optimal values λ and µ. Since the dual

function (3.9) is convex in λ, µ, we can find their optimal values by using an iterative sub-

gradient based method [116], where λ and µ are updated until convergence using λl+1 =

[λl − αl(Pavg − ∑L
j=1 pjPr(Rj))]+, µl+1 = [µl − βl(Qavg − ∑L

j=1 E[g0 pj|Rj]Pr(Rj))]+ re-

spectively, where l is the iteration number, αl , βl are positive scalar step sizes for the l-th

iteration and satisfy ∑∞
l=1 αl = ∞, ∑∞

l=1 βl = ∞, ∑∞
l=1 α2

l < ∞ and ∑∞
l=1 β2

l < ∞, and

[x]+ = max(x, 0). Note that this method is guaranteed to converge to the global opti-

mum of the dual function even though the primal problem is non-convex [116]. One can

then repeat the modified GLA based algorithm for finding a locally optimum quantized

power values for fixed λ, µ and the sub-gradient based method for updating λ, µ as de-
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scribed above until an overall convergence criterion is met. Note that since the primal

problem is non-convex, the resultant power allocation and codebook design can only be

guaranteed to be locally optimal. An algorithmic format for this procedure is provided

for the more general wideband (M > 1) case in the next subsection.

Remark 3.4. Note that the idea of using a Lagrangian based cost function as a modified distortion

measure for optimizing via GLA is not new. It has been used for combined adaptive power control

and beamforming for MIMO link capacity optimization with limited feedback in [110] and more

recently for optimal power and rate allocation and scheduling in TDMA based wireless sensor net-

works with limited feedback in [118]. However, these papers do not consider average interference

constraints and therefore their results cannot be applied to the problem of power allocation in cog-

nitive radio networks with limited feedback. Generic convergence results for the specific GLA used

in [110, 118] are also presented in these papers. However, what is unique in this chapter (apart

from the novel application to quantized power allocation for secondary throughput maximiza-

tion in cognitive radio) is that the detailed global convergence and empirical consistency result

presented in Theorem 2 and more importantly the properties of the quantized power allocation

scheme detailed in Theorem 3, which are specific to the case of the cognitive radio problem. Fi-

nally, these properties are used to derive a novel approximate power allocation algorithm (AQPA),

which is significantly faster than the GLA based algorithm and as will be seen later, performs very

close to it with more than 4 bits of feedback.

3.3.2 Wideband spectrum-sharing case

The above algorithm for the narrowband case can be easily extended to the wideband

case corresponding to the problem (3.7). For this scenario, the Lagrangian function be-

comes,

L(P, λ, u) =
1
M

M

∑
i=1

(
L

∑
j=1

E
[
log(1 + gi

1 pij)|Ri
j

]
Pr(Ri

j)

)
− λ(

1
M

M

∑
i=1

(
L

∑
j=1

E[pij|Ri
j]Pr(Ri

j)

)

− Pavg)−
M

∑
i=1

µi

(
L

∑
j=1

E[gi
0 pij|Ri

j]Pr(Ri
j)−Qi

avg

)
(3.12)
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where λ and µi are the nonnegative Lagrange multipliers associated with the ATP con-

straint and ith AIP constraint respectively. The Lagrange dual function g(λ, {µ′i}) is de-

fined as

max
pij≥0 ∀i,j

1
M

M

∑
i=1

L

∑
j=1

E[log(1 + gi
1 pij)− λpij − µ′ig

i
0 pij|Ri

j]Pr(Ri
j) (3.13)

where µ′i = Mµi, and the dual problem is minλ≥0, µ′i≥0,∀i g(λ, {µ′i})+ λPavg + ∑M
i=1

µ′i
M Qi

avg.

Similar to the narrowband case, we first consider the problem (3.13) to obtain g(λ, {µ′i})

with given λ and {µ′i}. As discussed before, problem (3.13) can be decomposed into M

parallel subproblems, where for each band i, i = 1, . . . , M

max
pij≥0 ∀j

L

∑
j=1

E[log(1 + gi
1 pij)− λpij − µ′ig

i
0 pij|Ri

j]Pr(Ri
j) (3.14)

is defined as the sub-dual function gi(λ, µ′i) and g(λ, {µ′i}) = 1
M ∑M

i=1gi(λ, µ′i). This kind

of duality method is also known as the ’dual decomposition algorithm’ [70]. Since each

subproblem (3.14) is similar to the problem (3.9) for the narrowband case and can be

similarly solved by using a modified GLA. λ and {µ′i} can be also obtained in a manner

similar to the narrowband case. These two steps are then repeated until a satisfactory

convergence criterion is met. Due to the increased complexity resulting from the presence

of multiple bands, we provide below a description of the overall optimization algorithm

(Algorithm 1) for solving (3.7).

Algorithm 1:

1. Let λ = 0, then all µ′i, i = 1, . . . , M must satisfy µ′i > 0. For each bandi, starting

with a random initial value for µ′i, obtain the corresponding optimal power code-

book Pi = {pi1, . . . , piL} using a modified GLA, then update µ′i by using an itera-

tive subgradient method µ′i(l + 1) = [µ′i(l)− βl
i(Qi

avg −∑L
j=1 E[gi

0 pij|Ri
j]Pr(Ri

j))]
+,

where l denotes the iteration number, βl
i > 0 is scalar step size for l-th iteration

satisfying ∑∞
l=1 βl

i = ∞ and ∑∞
l=1(βl

i)
2 < ∞ ∀i = 1, 2, . . . , M. Repeat these two

steps until convergence resulting in M power codebooks {P1, . . . ,PM} (one for

each band). With these codebooks, if 1
M ∑M

i=1

(
∑L

j=1 E[pij|Ri
j]Pr(Ri

j)
)
≤ Pavg, it is
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an optimal power codebook and stop; otherwise go to step 2).

2. If 1) is not satisfied, we must have λ > 0. Starting with a random initial value

for λ: for each i, use the modified GLA to find an optimal power codebook first

with µ′i = 0. If ∑L
j=1 E[gi

0 pij|Ri
j]Pr(Ri

j) ≤ Qi
avg, then the corresponding optimal

codebook Pi = {pi1, . . . , piL} is a locally optimal solution for this i-th subprob-

lem, otherwise, we must have µ′i > 0, the optimal value of which can be found

by using an iterative subgradient method as described in step 1). The optimal

value of λ can be obtained by a similar iterative subgradient based method given

by λl+1 = [λl − αl
(

Pavg − 1
M ∑M

i=1

(
∑L

j=1 E[pij|Ri
j]Pr(Ri

j)
))

]+, where again l is

the iteration number, αl > 0 is a scalar step size for the l-th iteration satisfying

∑∞
l=1 αl = ∞ and ∑∞

l=1(αl)2 < ∞. Repeat the modified GLA based step for finding

a local optimum for the quantized powers and the subgradient based updates for

λ and µ′i, i = 1, 2, . . . , M until convergence and the final codebook will be a locally

optimal codebook for the wideband spectrum sharing Problem (3.7).

Remark 3.5. Convergence of Algorithm 1: Note that it is straightforward to extend the global

convergence and empirical consistency results of Theorem 3.2 to the wideband case for fixed val-

ues of λ and µ′i, i = 1, 2, . . . , M. As noted in Section III.A for the narrowband case, the iterative

subgradient based methods for updating λ and µ′i converge to the globally optimal values cor-

responding to the dual function due to the convexity of the dual function with respect to the

Lagrange multipliers [116]. Thus, Algorithm 1 converges to a local optimum (since convergence

of the modified GLA can be guaranteed to a local optimum only) of the quantized power values

{pi1, . . . , piL}, i = 1, 2, . . . , M.

Remark 3.6. Theorem 3.3 also holds for the wideband case in the sense that the properties i)-iv)

hold for each {pi1, pi2, . . . piL}, ∀i = 1, 2, . . . , M with µ replaced by µi, i = 1, 2, . . . , M and λ

representing the Lagrange multiplier associated with the average sum power constraint in (3.12).
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3.3.3 Approximate Quantized Power Allocation Algorithm (AQPA)

Although an offline algorithm, the complexity of modified GLA for determining the op-

timal quantized power is very high for even a moderately large value of L. This is due to

the fact that the optimal channel partitions and the corresponding optimal power code-

book are obtained via empirically generating a large number of channel realizations as

training samples. As L increases, the number of training samples required will also in-

crease. Thus motivated, we use part iv) of Theorem 3.3 to derive a low-complexity subop-

timal scheme for implementing the modified GLA for large L values. Below we describe

this scheme for the narrowband case. A similar scheme for the wideband case can be

designed accordingly.

Note that part iv) of Theorem 3.3 states that as L → ∞, pL = 0 and pL−1 → 0.

Applying these approximations to (3.11) allows us to obtain an approximate but compu-

tationally efficient algorithm (called approximate quantized power allocation algorithm

(AQPA)) for large L. AQPA first solves E[ g1
1+g1 pL−1

− (λ + µg0)|RL−1] = 0 for pL−2 by

substituting pL = 0 and taking the limit pL−1 → 0, which, if µ > 0, is equivalent to solv-

ing
∫ ∞

λ

∫ g1−λ
µ

1
µ

(
log(1+g1 pL−2)

pL−2
−λ
)(g1 − (λ + µg0)) f (g0) f (g1)dg0dg1 = 0 for pL−2. When µ = 0,

it is equivalent to solving for pL−2 from
∫ eλpL−2−1

pL−2
λ (g1 − λ) f (g1)dg1 = 0. Note that the

above equations (for both µ > 0 and µ = 0) involve only one variable: pL−2 and are thus

straightforward to solve. One can then recursively compute pL−3, pL−4, . . . , by using the

optimality condition (3.11) for the regions RL−2,RL−3, . . . , respectively, in the reverse di-

rection. These equations can be solved by appropriate nonlinear equation solvers and

do not require the use of large number of training samples. Thus AQPA is significantly

faster than GLA and is applicable to the case of large number of feedback bits. Note

however, as this is an approximate algorithm only, the performance of this algorithm

becomes comparable to modified GLA only for large values of L. Numerical results pre-

sented in Section 3.5 illustrate that AQPA performs extremely well for L ≥ 16. Note also

that AQPA will be a suitable algorithm to use if any of the system specifications (such as

channel statistics or Pavg, Qi
avg etc.) changed and the quantized power values needed to

be recalculated.
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Other suboptimal algorithms: For comparison purposes, we also propose two other sub-

optimal methods for finding quantized power allocation in the narrowband case (exten-

sion to the wideband case is obvious). (1) In the first method, we quantize g0 and g1

separately (i.e. separate scalar quantizations) by minimizing their corresponding distor-

tion ∑L1
n=1 E[(g0 − g′0n)

2|Rn]Pr(Rn) and ∑L2
k=1 E[(g1 − g′1k)

2|R′
k]Pr(R′

k) respectively, with

the Lloyd Algorithm, where g′0n, g′1k are the reconstruction points for g0 and g1 respec-

tively, and L1 × L2 = L. We then use the resulting (locally) optimal channel quantization

regions to solve E[ g1
1+g1 pnk

− (λ + µg0)|Rn, R′
k] = 0 for finding the optimal power allo-

cation pnk for the region where g0 ∈ Rn, g1 ∈ R′
k. We call this method as “separate

channel quantization” (SCQ). (2) In the second method, we jointly quantize g0 and g1

by minimizing the distortion ∑L
m=1 E[(g0 − g′0m)2 + (g1 − g′1m)2|Rm]Pr(Rm) with Lloyd

Algorithm, and then use the resultant optimal channel quantization regions to solve

E[ g1
1+g1 pm

− (λ + µg0)|Rm] = 0 for finding the optimal power allocation pm. We call it

“joint channel quantization” (JCQ). Numerical results illustrate that AQPA significantly

outperforms these two suboptimal methods.

3.4 Optimum Quantized Power Allocation with Noisy Limited
Feedback

In the previous section, we assumed ideal error-free feedback in the limited feedback

model. However, feedback channel noise can result in unavoidable erroneous feedback,

which can cause the SU-TX to select an incorrect quantized power vector, resulting in

an inferior ergodic capacity performance compared to the case of noise-free feedback.

In this section, we allow noise in the limited feedback channel model and study the er-

godic capacity maximization problem (3.7) with noisy limited feedback. Note that in

general modelling of feedback errors in a quantized CSI feedback system is a challenging

problem. In the analysis to follow, we make some simplifying assumptions regarding

the feedback errors and operating conditions in order to formulate a tractable problem.

The noisy feedback link, assumed to be memoryless, is characterized by the index tran-

sition probabilities ρkj, (k, j = 1, . . . , L), which is defined as the probability of receiving
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index k at the SU-TX, given index j was sent from the CR network manager. For each

band, given B = log2 L bits feedback, denote binary representation of index k and j as

k1k2 . . . kB and j1 j2 . . . jB respectively, where kn, jn ∈ {0, 1} for n = 1, . . . B, and k1, j1 rep-

resent the most significant bit. For each band with B bits feedback, we model the noisy

feedback channel as B independent uses of a binary symmetric channel with crossover

probability q f for every feedback bit. Since bit errors are assumed to be independent,

ρkj = ∏B
n=1 ρkn jn = q

dk,j
f (1 − q f )B−dk,j , where dk,j is the Hamming distance between the

binary representations of k and j [93].

Thus problem (3.7) with noisy limited feedback can be reformulated as

max
pik≥0,∀i,k,Ri

j,∀i,j

1
M

M

∑
i=1

(
L

∑
j=1

L

∑
k=1

E[log(1 + gi
1 pik)|Ri

j]ρkjPr(Ri
j)

)

s.t.
L

∑
j=1

L

∑
k=1

E[gi
0 pik|Ri

j]ρkjPr(Ri
j) ≤ Qi

avg, ∀i,

1
M

M

∑
i=1

(
L

∑
j=1

L

∑
k=1

E[pik|Ri
j]ρkjPr(Ri

j)

)
≤ Pavg (3.15)

Note that for each band the binary codewords representing the feedback indices for a

power codebook of size L can be designed in L! different ways. In general, finding the

optimal index assignment scheme is computationally prohibitive and sub-optimal or ran-

domized schemes are preferred. However, it was shown in [108] in the context of capacity

optimization for MIMO links with noisy limited feedback that when the channel quan-

tizers and the precoder adaptation are jointly optimized for a given index assignment, all

index assignment schemes are equally good (see Lemma 2 in [108]). The proof of Lemma

2 in [108] is directly applicable to our scenario due to the specific discrete memoryless

nature of the feedback channel and hence all index assignment schemes are equally good

for our noisy feedback model as well. Therefore, we simply concentrate on finding the

optimum CSI partitionsRi
j, ∀j and power codebook Pi for the i-th band, i = 1, . . . , M that

jointly optimize the ergodic capacity of SU under the long term average transmit power

constraint and average interference constraint given by (3.15), for a fixed index assign-

ment scheme (which can be arbitrarily chosen). Again, to keep things simple, we look at

the narrowband spectrum-sharing case (M=1). Using the simplified notations Rj, pj, j =
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1, 2, . . . , L, and g1, g0, Qavg, we write the Lagrangian for Problem (3.15) with M = 1

as L(P, λ, µ) = ∑L
j=1 ∑L

k=1 E[log(1 + g1 pk)− λpk − µg0 pk|Rj]ρkjPr(Rj) + λPavg + µQavg,

where λ and µ are the nonnegative Lagrange multipliers associated with the ATP con-

straint and AIP constraint respectively. The Lagrange dual function g(λ, µ) is defined

as maxpk≥0, ∀k,Rj, ∀j ∑L
j=1 ∑L

k=1 E[log(1 + g1 pk)− λpk − µg0 pk|Rj]ρkjPr(Rj) and the corre-

sponding dual problem is minλ≥0, µ≥0 g(λ, µ) + λPavg + µQavg. It is obvious that this

optimization problem with fixed λ and µ can be easily solved using another modified

GLA, (termed as modified GLA-2 to distinguish it from the noise free case) resulting in a

locally optimum power codebook. For this power codebook, the optimal values λ and µ

can then be obtained via subgradient based methods similar to the ones for the noise free

case. These two steps are then repeated until a satisfactory convergence criterion is met.

It can be easily extented to the wideband case.

3.5 Numerical Results

In this section, we will evaluate the performance of the designed power allocation strate-

gies via numerical simulations. We implement a wideband spectrum sharing system

with one SU and M independent frequency bands (each band is originally licensed to a

PU), where all the channels involved are assumed to undergo Rayleigh fading, namely

all g0 and g1 are exponentially distributed with unit mean. For each simulation, 100,000

randomly generated channel realizations for each g0 or g1 are used. Any reference to the

number of feedback bits should be interpreted in a per band sense.

Fig. 3.4 shows, with prefect CSI, the capacity performance of SU-TX, which shares

spectrum with four PUs (M=4), with four different AIP constraints thresholds, i.e, (Qav1,

Qav2, Qav3, Qav4)=(−5 dB, −5 dB, 0 dB, 0 dB), (Qav1, Qav2, Qav3, Qav4)=(0 dB, 0 dB, 0 dB,

0 dB), (Qav1, Qav2, Qav3, Qav4)=(−5 dB, 0 dB, 0 dB, 5 dB) and (Qav1, Qav2, Qav3, Qav4)=(−5

dB, 0 dB, 5 dB, 5 dB). An interesting observation from Fig. 3.4 is that when Pav is small

(Pav ≤ −5 dB), no matter what the value of (Qav1, Qav2, Qav3, Qav4) is, the capacity per-

formance of four curves are almost indistinguishable. This is due to the fact that (see

Theorem 3.1), when Pav ≤ min(Qav1, Qav2, Qav3, Qav4) (since g1 is i.i.d), all AIP con-
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Figure 3.4: Capacity performance for SU-TX in only one PU case with prefect CSI ob-
tained by Algorithm 1.

straints become inactive. As the value of Pav increases, the capacity performance with

different (Qav1, Qav2, Qav3, Qav4) gradually becomes distinguishable, since in this case,

the ATP and at least one AIP constraint are effective. However, as Pav increases be-

yond a certain threshold, the capacity curves start to saturate, due to the fact that when

Pav ≥ 1
4 ∑4

i=1 E[( 1
µi gi

0
− 1

gi
1
)+], where µi is given by solving E[gi

0(
1

µi gi
0
− 1

gi
1
)+] = Qi

av, only

the AIP constraints are active. Thus no matter how Pav changes, if (Qav1, Qav2, Qav3, Qav4)

are fixed, the capacity will be unchanged. A similar observation for a narrowband spec-

trum sharing model with full CSI was made in [117]. One should note that theoretically,

the ATP corresponding to the optimal power allocation law maximizing the SU ergodic

capacity over a Rayleigh fading channel under an AIP constraint with perfect CSI is in-

finity [67]. Since here we use large numbers of randomly generated channel realizations

samples in the simulation studies, the ATP for maximizing SU ergodic capacity under an
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AIP constraint is large but not infinite.

Fig. 3.5 shows the capacity performance of SU sharing a narrowband spectrum with
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Figure 3.5: SU Ergodic capacity with quantized power allocation (using GLA) with one
PU for Qav = −5 dB and Qav = 0 dB

one PU with limited feedback for Qav = −5 dB and Qav = 0 dB respectively, and illus-

trates the effect of increasing the number of feedback bits on the capacity performance.

For comparison, we also plot the corresponding capacity performance with full CSI. The

striking observation from Fig. 3.5 is that introducing one extra bit of feedback substan-

tially reduces the gap with capacity based on perfect CSI. This property is not very ob-

vious when Pav is small, for example when Pav ≤ −5 dB (Pav ≤ 0 dB) for Qav = −5

dB (Qav = 0 dB). But with increasing Pav, it becomes more pronounced. To be specific,

for Qav = −5 dB case, at Pav = 10 dB, with 1 bit, 2 bits and 3 bits of feedback, the

percentage capacity loss is approximately 21.23%, 6.21% and 1.62% respectively, and for

both Qav = −5 dB and Qav = 0 dB cases, only 3 bits feedback can result in secondary
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ergodic capacity very close to that with full CSI. This is very encouraging since only a

small number of bits of feedback are required to achieve close performance to the full

CSI case. It can be also seen that the capacity performance with a higher AIP threshold
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Figure 3.6: SU Ergodic capacity performance with quantized power allocation (GLA) for
four PUs (M = 4) under various number of feedback bits per band.

(Qav = 0 dB) outperforms that with a lower AIP threshold (Qav = −5 dB), as expected.

A similar behaviour can be also observed in Fig. 3.6 for a M = 4 wideband spectrum

sharing case with 1, 2, 3 bits of feedback and full CSI performance respectively, where

(Qav1, Qav2, Qav3, Qav4) = (−10 dB, −5 dB, 0 dB, 5 dB).

In Fig. 3.7 we compare the performance of AQPA with modified GLA, where SU

shares the spectrum with four PUs (M = 4) and the AIP constraint thresholds (Qav1,

Qav2, Qav3, Qav4) = (−10 dB, −5 dB, 0 dB, 5 dB). It is illustrated that with the same num-

ber of bits of feedback per band, the gap between AQPA and modified GLA becomes

smaller as L increases. For example, when Pav = 15 dB, the capacity loss by using AQPA
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Figure 3.7: Capacity performance of AQPA with four PUs (M = 4, feedback bits here
refer to bits per band)

instead of GLA is about 8.38%, 3.12% and 1.42% for 2 bits, 3 bits and 4 bits of feedback

respectively. It is clearly seen that AQPA with 4 bits of feedback can almost approach the

full CSI performance. In order to determine the speedup factor of AQPA compared to

GLA for a fixed λ and µ with M = 4 and 4 bits of feedback, AQPA and GLA were imple-

mented in MATLAB (version 7.10.0.499 (R2010a)) on an Intel Core 2 Duo processor (CPU

T9600 with a clock speed of 2.80 GHz and a memory of 4 GB). It was seen that GLA (with

100,000 training samples) took approximately 7395 seconds or just over 2 hours whereas

AQPA took only 5.44 seconds to achieve comparable levels of accuracy. Furthermore, as

shown in Fig. 3.8, we also compare capacity performance of AQPA with the two other

proposed possible suboptimal methods (SCQ and JCQ) for the narrowband case with

Qav = −5 dB. For the SCQ case, various combinations of L1, L2 such that L1 × L2 = L are

investigated and the one with the best performance is reported for every value of Pav. We
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Figure 3.8: Compare capacity performance of AQPA with two other possible suboptimal
methods (M = 1)

can easily observe that even with 4 bits feedback, the performance of both JCQ and SCQ

are worse than AQPA with only 2 bits of feedback, which further confirms the efficiency

of AQPA.

Finally, we investigate the SU ergodic capacity performance with noisy limited feed-

back in Fig. 3.9, with M = 4 and (Qav1, Qav2, Qav3, Qav4) = (−10 dB, −5 dB, 0 dB, 5 dB).

It can be observed that as the feedback becomes less reliable (the crossover probabil-

ity q f increases), significant capacity performance degradation occurs, especially in high

Pavg. For example, when Pavg = 10 dB, for 3 (2) bits feedback, a noisy feedback channel

with q f = 0.01 and q f = 0.1 can result in approximately 3.843% (4.769%) and 17.394%

(18.783%) capacity loss respectively, compared to the noise-free case. This clearly illus-

trates that as the quality of feedback link degrades, the benefit of designing an optimal

power codebook diminishes rapidly.
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Figure 3.9: Capacity performance of noisy limited feedback with four PUs (M=4) and
different BSC crossover probabilities (number of feedback regions L here refer to L per
band)

3.6 Conclusions

We have derived quantized power allocation algorithms for a wideband spectrum shar-

ing system with one secondary user and multiple primary users, each licensed to use

a separate frequency band, each band modelled as independent block fading channels.

The objective has been to maximize the SU ergodic capacity under an average sum trans-

mit power constraint and individual average interference constraints at the PU receivers.

Modified Generalized Lloyd-type algorithms (GLA) have been derived and various prop-

erties of the quantized power allocation laws have been presented, along with a rigorous

convergence and consistency proof of the modified GLA based algorithm. By appropri-

ately exploiting the properties of the quantized power values for large number of bits of

feedback, we have also derived approximate quantized power allocation algorithms that
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perform very close to the modified GLA based algorithms but are significantly faster.

Finally, we have presented an extension of the modified GLA based quantized power

allocation algorithm to the case of noisy feedback channels. Future work will include

deriving expressions for asymptotic (as the number of feedback bits goes to infinity) ca-

pacity loss with quantized power allocation and quantized power allocation with other

types of interference constraints at the primary receiver.

3.7 Appendix

3.7.1 Proof of Theorem 3.1

Note that the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for a

convex optimization problem. This implies that all the conditions stated in Theorem 3.1

are necessary and sufficient.

1) When λ f = 0, from the complementary slackness condition, 1
M ∑M

i=1 E[pi(g0, g1)] ≤

Pavg does not come into play. In this case, the optimization problem (3.2) becomes M

completely independent parallel subproblems all having the same structure:

max
pi(g0,g1)≥0

E[log(1 + gi
1 pi(g0, g1))]

s.t. E[gi
0 pi(g0, g1)] ≤ Qi

avg, ∀i = 1, 2, . . . , M (3.16)

and it is easy to verify that in the above optimization problem, each constraint holds with

equality, namely E[gi
0 pi(g0, g1)] = Qi

avg ∀i. Thus for each i, from the complementary

slackness condition, one can easily show that µ
f
i > 0. Hence, in this case, we have the

optimal solution

p∗i (g0, g1) = (
1

µ
f
i gi

0

− 1
gi

1
)+ ∀i (3.17)

where µ
f
i is determined such that E[gi

0(
1

µ
f
i gi

0

− 1
gi

1
)+] = Qi

avg ∀i. From feasibility, we also

have 1
M ∑M

i=1 E[( 1
µ

f
i gi

0

− 1
gi

1
)+] ≤ Pavg.

2) When λ f > 0,we must have 1
M ∑M

i=1 E[pi(g0, g1)] = Pavg.
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• If µ
f
i > 0, then corresponding AIP constraint E[gi

0 pi(g0, g1)] = Qi
avg and hence

the optimal solution for the i-th channel is

p∗i (g0, g1) = (
1

λ f + µ
f
i gi

0

− 1
gi

1
)+ (3.18)

where µ
f
i is determined from E[gi

0(
1

λ f +µ
f
i gi

0

− 1
gi

1
)+] = Qi

avg given λ f .

• If µ
f
i = 0, then the corresponding AIP constraint satisfies E[gi

0 pi(g0, g1)] ≤ Qi
avg,

and in this case the optimal solution for the i-th channel is

p∗i (g0, g1) = (
1

λ f −
1
gi

1
)+ (3.19)

In this scenario we also have E[gi
0(

1
λ f − 1

gi
1
)+] = E[( 1

λ f − 1
gi

1
)+] ≤ Qi

avg, since g0 and g1 are

independent, and E[gi
0] = 1, ∀i.

Thus when λ f > 0, the optimal solution is given by

p∗i (g0, g1) =


( 1

λ f − 1
gi

1
)+ if E[( 1

λ f − 1
gi

1
)+] ≤ Qi

avg

( 1
λ f +µ

f
i gi

0

− 1
gi

1
)+ otherwise

(3.20)

where λ f is determined such that 1
M ∑M

i=1 E[pi] = Pavg.

3.7.2 Proof of Theorem 3.2

For the modified GLA, one can define a distortion measure d((g0, g1), p) = −(log(1 +

g1 p) − λp − µg0 p). For such non-difference distortion measures, following [101], one

can ensure nonnegativity of the distortion measure by introducing a modified distor-

tion measure as d̂((g0, g1), p) = d((g0, g1), p)−minp d((g0, g1), p). Since d((g0, g1), p) is

a convex function of p for fixed (g0, g1), we get the unique minimum p∗ = ( 1
λ+µg0

−
1
g1

)+, thus minp d((g0, g1), p) = d((g0, g1), p∗). Therefore we have d̂((g0, g1), p) ≥ 0.

Since d((g0, g1), p∗) is constant for a given (g0, g1), thus using the distortion measure

d̂((g0, g1), p) instead of d((g0, g1), p) does not affect the results of modified GLA. One can
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easily show that d̂ satisfies the following properties: (1) d̂ is continuous and d̂ ∈ [0, ∞),

(2) d̂((g0, g1), p) is a convex function of p for each fixed (g0, g1), (3) for each (g0, g1) and

some ˜(g0, g1) not identically equal to (g0, g1), d̂( ˜(g0, g1), p) → ∞, as ˜(g0, g1) → (g0, g1)

and ‖ p ‖→ ∞, and (4) the partition boundaries in the channel space (g0, g1) have zero

probability.

Properties 1), 2) and 3) are easy to show and the proofs here are omitted. Property

4) holds due to the assumption of continuous fading channels in this work. Note that

this is also a necessary condition for a codebook to be optimal for a given partition [6].

Note also that the popular fading distributions such as Rayleigh, Rician and Nakagami

and Log-normal etc. all satisfy the absolutely continuity assumption. It is then easy

to show that for these types of fading scenarios, the cumulative distribution function

(cdf) of (g0, g1), denoted by F, satisfies the following properties [76]: (5) F contains no

singular-continuous part and (6)
∫

d̂((g0, g1), p)dF(g0, g1) < ∞ for each p (implying a

finite average distortion). Next, let g denote (g0, g1). Noting that {g(ω)} is a station-

ary ergodic sequence with a cdf F, and letting Fn,ω be the empirical distribution func-

tion of the first n members of the sequence [76], one can show that for almost every ω,

{Fn,ω} and F satisfy (see Lemma 4 of [76]) (7) {Fn} converges weakly to the F and (8)

limn
∫

d̂((g0, g1), p)dFn(g0, g1) =
∫

d̂((g0, g1), p)dF(g0, g1), for every p.

Hence, from [76], we can conclude that the modified GLA satisfies properties 1) to 8).

Therefore, Lemmas 1-3 of [76] are applicable to the modified GLA designed in this chap-

ter and so the modified GLA satisfies the global convergence and empirical consistency

properties as defined in [76].

3.7.3 Proof of Lemma 3.1

From the NNC condition of the modified GLA, the boundary between two adjacent re-

gions Rj and Rj+1 satisfies

log(1 + g1 pj)− λpj − µg0 pj = log(1 + g1 pj+1)− λpj+1 − µg0 pj+1. (3.21)
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Solving the above equation for g1, the result in the Lemma 3.1 follows. It is straightfor-

ward to show that it is an increasing convex function of g0 by investigating the first and

second derivatives.

3.7.4 Proof of Theorem 3.3 i)

We need to prove that for any two adjacent regions Rj and Rj+1, j = 1, . . . , L − 1, pj >

pj+1. Given an arbitrary g0 satisfying 0 ≤ g0 < 1
µ (

log(
pj

pj+1
)

pj−pj+1
− λ) (assuming µ > 0), sup-

pose there is a point (g0, ga
1) ∈ Rj and a point (g0, gc

1) ∈ Rj+1 (neither of these two points

is on the boundary), and let (g0, gb
1) denote the point on the boundary corresponding

to the same g0, which from Lemma 3.1, is given by gb
1 = e(λ+µg0)(pj−pj+1)−1

pj−pj+1e(λ+µg0)(pj−pj+1) Then, we

have ga
1 > gb

1 > gc
1. Now suppose pj < pj+1. Since (g0, ga

1) ∈ Rj, we have log(1 + ga
1 pj)−

λpj − µg0 pj ≥ log(1 + ga
1 pj+1)− λpj+1 − µg0 pj+1 As pj < pj+1, we have (λ + µg0)(pj+1 −

pj) ≥ log( 1+ga
1 pj+1

1+ga
1 pj

) which implies e(λ+µg0)(pj+1−pj) − 1 ≥ ga
1(pj+1 − pje(λ+µg0)(pj+1−pj)). We

also have gb
1 = e(λ+µg0)(pj−pj+1)−1

pj−pj+1e(λ+µg0)(pj−pj+1) = e(λ+µg0)(pj+1−pj)−1
pj+1−pje

(λ+µg0)(pj+1−pj)
. Note that pj+1 > pj implies

e(λ+µg0)(pj+1−pj) − 1 > 0. Since gb
1 > 0, we have pj+1 − pje(λ+µg0)(pj+1−pj) > 0. Combining

the above two results, we obtain ga
1 ≤ e(λ+µg0)(pj+1−pj)−1

pj+1−pje
(λ+µg0)(pj+1−pj)

= gb
1 which is a contradiction

to ga
1 > gb

1. Similarly, we can also prove that if pj < pj+1, we have gc
1 ≥ gb

1 which is a

contradiction to gc
1 < gb

1. Thus we must have pj > pj+1.

3.7.5 Proof of Theorem 3.3 ii)

From Lemma 3.1, the boundary between any two adjacent regions Rj and Rj+1 is given

by

g1 =
e(λ+µg0)(pj−pj+1) − 1

pj − pj+1e(λ+µg0)(pj−pj+1)

=
e(λ+µg0)pj − e(λ+µg0)pj+1

pje(λ+µg0)pj+1 − pj+1e(λ+µg0)pj

= (λ + µg0)
e(λ+µg0)pε(pj − pj+1)

pje(λ+µg0)pj+1 − pj+1e(λ+µg0)pj

> λ + µg0 (3.22)
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where the last equality follows from the mean value theorem for some pε ∈ (pj+1, pj).

The last inequality holds since we have pje(λ+µg0)pε > pje(λ+µg0)pj+1 and−pj+1e(λ+µg0)pε >

−pj+1e(λ+µg0)pj . By rearranging, we get e(λ+µg0)pε (pj−pj+1)

pje
(λ+µg0)pj+1−pj+1e(λ+µg0)pj

> 1.

3.7.6 Proof of Theorem 3.3 iii)

Given a fixed channel partitioning scheme, the optimal quantized power for Rj is ob-

tained as pj = max(p∗j , 0), ∀j, where p∗j is determined by solving the equation E[ g1
1+g1 pj

−

(λ + µg0)|Rj] = 0. We can see that if E[g1|Rj] ≤ E[(λ + µg0)|Rj], then to satisfy the

equation, p∗j < 0, implying pj = max(p∗j , 0) = 0. On the other hand, if E[g1|Rj] >

E[(λ + µg0)|Rj], p∗j has to be strictly positive in order to satisfy the optimality equation,

implying max(p∗j , 0) = p∗j . We know from Theorem 3.3 ii) that all boundaries between

any two adjacent regions have a lower bound given by g1 > λ + µg0, i.e. for any given

(g0, g1) belonging to any of the first L− 1 regions, g1 > λ + µg0. Thus for the first L− 1

regions, E[g1|Rj]Pr{Rj} > E[(λ + µg0)|Rj]Pr{Rj}. Therefore the optimal quantized

power in the first L− 1 regions is strictly positive. This cannot be said however for pL as

for RL, we cannot guarantee g1 > λ + µg0 for any given (g0, g1) pair in that region. It

is thus possible to have pL to be 0. The next result shows under what circumstances one

can have pL to be exactly 0.

3.7.7 Proof of Theorem 3.3 iv)

Step 1: We know from Theorem 3.3 iii) that we always have E[ g1
1+g1 pj

− (λ + µg0)|Rj] =

0, j = 1, . . . , L− 1, and for the region RL, this equation may not be satisfied when pL = 0.

Let us assume that pL > 0. Then we have

L

∑
j=1

E[λ + µg0|Rj]Pr{Rj} =
L

∑
j=1

E[
g1

1 + g1 pj
|Rj]Pr{Rj}, (3.23)

which implies,

λ + µ =
L

∑
j=1

E[
g1

1 + g1 pj
|Rj]Pr{Rj} <

L

∑
j=1

E[g1|Rj]Pr{Rj} = 1 (3.24)



96
Throughput Maximization in Cognitive Radio with Limited Feedback : Average

Interference Constraints

due to ∑L
j=1 E[gi|Rj]Pr{Rj} = E[gi] = 1, for i = 0, 1. Hence if λ + µ ≥ 1, we must have

pL = 0.

From the optimality equation, one can write pi =
E[ g1 pi

1+g1 pi
|Ri ]

λ+µE[g0|Ri ]
when pi > 0, it is obvi-

ous that pi < 1
λ+µE[g0|Ri ]

, i = 1, 2, . . . , L− 1. Since pL ≥ 0, this is also true for region RL.

Therefore when µ 6= 0, µQavg = µ ∑L
i=1 piE[g0|Ri]Pr(Ri) < ∑L

i=1
µE[g0|Ri ]

λ+µE[g0|Ri ]
Pr(Ri) <

∑L
i=1 Pr(Ri) = 1. Similarly, if λ 6= 0, λPavg < 1. Thus µ > 1 implies Qav < 1 and λ > 1

implies Pav < 1.

Step 2: Next, we will show that no matter what λ, µ is, pL must be zero for a suffi-

ciently large L and limL→∞ pL−1 = 0 . First, we will prove that as L → ∞, the boundary

between RL−1 and RL approaches its limiting boundary g1 = λ+µg0
1−(λ+µg0)δ∗ , where δ∗ =

limL→∞ pL. Given p1 > · · · > pL ≥ 0, it is clear that the sequence {pi}, i = 1, 2, . . . , L

is a monotonically decreasing sequence bounded below, therefore it must converge to its

greatest-lower bound δ∗ (δ∗ = limL→∞ pL ≥ 0 ) as L → ∞. Therefore, it can be easily

shown that for an arbitrarily small ε > 0, we can always find a sufficiently large L such

that pL−1− pL < ε. Thus, as L → ∞, (pL−1− pL) → 0. Using this result, we can show that

the boundary between RL−1 and RL approaches the limiting boundary g1 = λ+µg0
1−(λ+µg0)δ∗

(or λ + µg0 = g1
1+g1δ∗ ) as L → ∞, (since this boundary can be written as λ + µg0 =

log(
1+g1 pL−1

1+g1 pL
)

pL−1−pL
, and limL→∞(lim(pL−1−pL)→0

log(
1+g1 pL−1

1+g1 pL
)

pL−1−pL
) = limL→∞

g1
1+g1 pL

= g1
1+g1δ∗ ). Now,

suppose there exists a pair (λ, µ) such that pL > 0 for any arbitrarily large L (implying

δ∗ > 0). Thus for any L, pL satisfies E[ g1
1+g1 pL

− (λ + µg0)|RL] = 0. From (1), we have

as L → ∞, the boundary between RL−1 and RL approaches its limit λ + µg0 = g1
1+g1δ∗ .

Note that for a finite value of L, the region RL can be divided into two parts RL1 and

RL2 where RL1 corresponds to
log(

1+g1 pL−1
1+g1 pL

)
pL−1−pL

≤ λ + µg0 < g1
1+g1δ∗ and RL2 corresponds

to g1
1+g1δ∗ ≤ λ + µg0 < ∞. As L becomes arbitrarily large, the region RL1 becomes

vanishingly small, and one obtains E(λ + µg0|RL) > E( g1
1+g1δ∗ |RL) ≥ E( g1

1+g1 pL
|RL)

for a sufficiently large L, which is a contradiction to the KKT optimality condition for

pL > 0. Hence no matter what λ, µ are, pL must be zero for a sufficiently large L. And

δ∗ = limL→∞ pL = 0. Finally, δ∗ = 0 implies the boundary between RL−1 and RL ap-

proaches g1 = λ + µg0 as L → ∞, and since as L → ∞, (pL−1 − pL) → 0 and pL = 0, we

have limL→∞ pL−1 = 0.



Chapter 4

Throughput Maximization in
Cognitive Radio with Limited
Feedback : Peak Interference

Constraints

4.1 Introduction

In chapter 3, we have studied the SU ergodic capacity maximization problem with quan-

tized channel information under an average transmit power (ATP) constraint on the SU-

TX and individual average interference power (AIP) constraint on each PU-TX. In this

chapter, instead of the AIP constraint, another type of interference constraint at the PU,

namely, the peak interference power (PIP) constraint, will be considered. This chapter

aims to design optimal power allocation algorithms in a narrowband spectral sharing

system where an SU communication link shares the same band with N PUs, that max-

imizes the SU throughput, while meeting the ATP constraint on SU-TX and the N in-

dividual peak interference constraints at each PU receiver (PU-RX), with various forms

of imperfect CSI knowledge at the SU-TX. We first look at the throughput maximization

problem with full knowledge of the CSI on the SU-TX to SU-RX link, denoted as g1, and

quantized CSI from the SU-TX to each PU-RX links, denoted as g0 = {g01, . . . , g0N} being

available at the SU-TX. We derive the structure of the optimal quantization regions and

the optimal power codebook is then obtained by solving the throughput maximization

problem using the Karush-Kuhn Tucker (KKT) necessary conditions. Asymptotic ergodic

capacity analysis for a large number of PUs is also provided. For the interference-limited

97
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regime, where only the PIP constraints are active, an alternative algorithm resulting in an

optimal quantized transmission rate codebook is also designed. Finally, we investigate

the combined effect of imperfect g1 and imperfect g0 knowledge at SU-TX in designing

the optimal power codebook. With estimated g1 and quantized g0 at SU-TX, it is not pos-

sible to guarantee that the actual PIP constraints will be satisfied with probability one.

Thus a more appropriate approach for this case is to allow the PIP constraints to be vi-

olated with a certain small probability (we call it the interference violation probability

(IVP)). The relationship between capacity loss due to the effect of estimated g1 and the

IVP is studied. For the case when both quantized g1 and g0 available at SU-TX, due to

the difficulty and complexity of optimal QPA analysis for this case, we consider a low-

complexity suboptimal design of the QPA, in which based on the boundry v = ( 1
λl
− 1

g1
)+

(like full CSI case), two different type of power codebooks are derived. Efficiency of the

various proposed algorithms is evaluated via numerical simulations.

This chapter is organized as follows. Section 4.2 describes the system model and

presents the optimal power allocation scheme for throughput maximization problem

with full CSI assumption. In Section 4.3, we design the optimal power codebook for

the throughput maximization problem with perfect g1 information and quantized g0

knowledge at SU-TX. The asymptotic SU ergodic capacity performance analysis for large

number of PUs is also provided. For the interference-limited regime, an alternative algo-

rithm called the quantized rate allocation scheme for solving the throughput maximiza-

tion problem is studied. In Section 4.4, the throughput maximization problem with both

imperfect g1 and g0 information at SU-TX is investigated. Some numerical results are

presented in Section 4.5 and Section 4.6 contains the conclusions. All proofs are relegated

to the appendix section 4.7 in this chapter.

4.2 System Model and Problem Formulation

We consider an infrastructure-based spectrum sharing scenario where a SU communi-

cates to its base station using a narrowband channel shared with multiple PUs for trans-

mission. Regardless of the on/off status of PUs, the SU is allowed to use the band
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which are licensed to PU1, . . . , PUN , as long as the impact of the secondary transmis-

sion does not substantially degrade the received signal quality of PUs. Let g1 = |h1|2

and g0i = |h0i|2 (i = 1, . . . , N) denote the nonnegative real-valued instantaneous chan-

nel power gains for the links from the secondary transmitter (SU-TX) to the secondary

receiver (SU-RX) and the SU-TX to the receiver of PUi (i = 1, . . . , N) respectively, where

h1 and h0i are corresponding complex channel amplitude gains. These channels are as-

sumed to be Rayleigh block fading channels such that all g1 and g0i (i = 1, . . . , N) are

statistically mutually independent and, without loss of generality (w.l.o.g, similar to the

assumption made in Chapter 3), are exponentially distributed with unity mean. Simi-

larly, additive noises for each channel are independent Gaussian random variables with

zero mean and unit variance w.l.o.g. Note that extensions to other distributions such as

Nakagami, Rician etc. can also be handled easily. For analytical simplicity, the inter-

ference from the primary transmitter (PU-TX) to SU-RX is neglected following previous

work such as [7,117](in the case where the interference caused by the PU-TX at the SU-RX

is significant, the SU ergodic capacity results derived in this chapter can be taken as up-

per bounds on the actual capacity under primary-induced interference). This assumption

is justified when either the SU is outside the PU’s transmission range or the SU receiver

is equipped with interference cancellation capability particularly when the PU signal is

strong.

Given a channel realization g0 = {g01, . . . , g0N} and g1, assume that the channel state

information (CSI) (g0, g1), is available at the SU-TX, and the power allocated at the SU-TX

is represented by p(g0, g1), then the ergodic capacity of the SU for this spectrum sharing

system can be expressed as

C = E[log(1 + g1 p(g0, g1))] (4.1)

where log represents the natural logarithm. A common way to protect PU’s received

signal quality is by imposing either an average or a peak interference power (AIP/PIP)

constraint at PU-RX. We studied the optimization problem of maximizing SU capacity

under both average transmit power constraint (ATP) at SU and AIP constraints at PUs

with quantized CSI in Chapter 3. Although the AIP constraint is more favorable espe-
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cially in the context of transmission over fading channels [123], there are other applica-

tions where it is desirable to impose a PIP constraint [45]. Thus motivated, we consider

the following optimal power allocation problem that maximizes the ergodic capacity of

SU in a narrowband spectrum sharing with multiple PUs, under an ATP constraint at

SU-TX and a PIP constraint at each PUi-RX, given by,

max
p(g0,g1)≥0

E[log(1 + g1 p(g0, g1))]

s.t. E[p(g0, g1)] ≤ Pav,

g0i p(g0, g1) ≤ Qpk, ∀i almost surely (4.2)

where Pav is the average transmit power of SU and the Qpk is the maximum peak inter-

ference power tolerated by each PU-RX. It is easy to show that the above PIP constraints

can be reformulated as [7][45]

p(g0, g1) ≤
Qpk

maxi g0i
, i = 1, . . . , N (4.3)

For the case of N = 1, the optimal power allocation for Problem (4.2) with the as-

sumption that full CSI is available at the SU-TX can be found in [117]. A trivial extension

of this result for N > 1 shows that the optimal solution for Problem (4.2) with full CSI is

given by

p(g0, g1) =



0, g1 ≤ λ f

1
λ f
− 1

g1
, g1 > λ f , gm <

Qpk
1

λ f
− 1

g1

Qpk
gm

, g1 > λ f , gm ≥ Qpk
1

λ f
− 1

g1

(4.4)

where gm = maxi g0i, i = 1, . . . , N, λ f is the nonnegative Lagrange multiplier associated

with the ATP constraint and can be obtained by solving λ f (E[p(g0, g1)]− Pav) = 0 .

Actually, (4.4) also can be written as

p(g0, g1) = min([
1

λ f
− 1

g1
]+,

Qpk

gm
) (4.5)
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Special Case: when Pav is sufficiently large 1 to make the ATP constraint inactive and

thus only PIP constraints is active, (termed as the ’Interference Limited Regime (ILR)’),

Problem (4.2) with full CSI reduces to the problem considered in [7],[45], where the er-

godic capacity maximization problem is studied under PIP constraints only and gives the

maximum ergodic capacity of SU as

C = E[log(1 + g1
Qpk

gm
)] = E[log(1 + zQpk)] (4.6)

where Z = g1
gm

, and the pdf of Z, is given by [7][45]

f (z) = N
N−1

∑
k=0

(−1)k(N−1
k )

1
(1 + k + z)2 . (4.7)

However, the assumption of full CSI at the SU-TX (especially that of g0) is usually un-

realistic in practical systems. In the next section, we are therefore interested in designing

power allocation schemes of the SU ergodic capacity maximization problem (4.2) based

on quantized CSI acquired via a no-delay and error-free feedback link with limited rate,

where we assume that SU-TX has perfect knowledge of g1 but only can access partial

knowledge of g0.

4.3 Optimum Quantized power allocation (QPA) with perfect g1

and imperfect g0 at SU-TX

4.3.1 Optimal QPA with limited rate feedback strategy

As shown in Fig.4.1, here we assume that there is a central controller termed as the CR

network manager who can obtain perfect information on g1 from the SU base station and

perfect information of g0 from the PU base station, possibly over fibre-optic links and

then forward some appropriately quantized V = Qpk
gm

CSI information to SU-TX through

a finite-rate feedback link. Note that the existence of such central controllers is also as-

sumed quite commonly in literature on multi-cell MIMO or macro-diversity based sys-

1For N = 1 case, this requires Pav → ∞, but for N > 1, Pav < ∞ can be sufficiently large
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Spectrum sharing for a licensed band

SU-BS

SU-TX
CR network 

manager

PU-RX

PU-BS

1

PU-RXN

…

g1

g01

g0N

B bits feedback

Figure 4.1: System model for QPA strategy

tems with cooperative base stations in a primary network, where several base stations are

assumed to be connected to a central controller via a backhaul link so that information

about out-of-cell interference can be obtained resulting in higher capacity[88][22]. Un-

der such a network modelling assumption, given B bits of feedback, a power codebook

P= {p1, . . . , pL} of cardinality L = 2B, is designed offline based on the statistics of V

and g1. This codebook is made available a priori by both SU-TX, SU-RX and CR network

manager. Given a channel realization (g0, g1), the CR network manager applies a deter-

ministic mapping I(V, g1) from the current instantaneous (V, g1) information to one of

L integer indices, which partitions the vector space of (V, g1) into L regions R1, . . . ,RL.

This mapping is defined as I(V, g1) = j, if (V, g1) ∈ Rj, j = 1, . . . , L), and then sends

the corresponding index j = I(V, g1) to the SU-TX via the feedback link. The SU-TX then

uses the associated power codebook element (e.g., if the feedback signal is j, then pj will

be used as the transmission power) to adapt its transmission strategy.

Let Pr(Rj), E[•|Rj] indicate Pr((V, g1) ∈ Rj) (the probability that (V, g1) falls in the

region Rj) and E[•|(V, g1) ∈ Rj], respectively. Then the SU ergodic capacity maximiza-

tion problem (4.2) with limited feedback can be formulated as

max
{p1,...,pL}

CL(P) =
L

∑
j=1

E[log(1 + pjg1)|Rj]Pr(Rj)
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s.t.
L

∑
j=1

E[pj|Rj]Pr(Rj) ≤ Pav,

0 ≤ pj ≤ min(v|Rj), ∀j = 1, . . . , L (4.8)

Thus we need to design the joint optimization of the channel partition regions and the

power codebook such that the ergodic capacity of SU is maximized under the above

constraints.

Lemma 4.1. Let P = {p1, . . . , pL} and the corresponding channel partitioning R1, . . . ,RL

denote the optimal solution to the optimization problem (4.8). Let p(V, g1) represent the mapping

from instantaneous (V, g1) to allocated power level, then

1) When λ > 0, let {v1, . . . , vL−1} denote the optimum quantization thresholds on V axis

(0 = v1 < · · · < vL−1 < 1
λ ) and let vL = 1

λ , we have

p(V, g1) =


p1 = 0, if g1 ≤ λ or V < ( 1

λ −
1
g1

), v1 ≤ V < v2

pj = vj, if V < ( 1
λ −

1
g1

), vj ≤ V < vj+1, j = 2, . . . , L− 1

pL = ( 1
λ −

1
g1

), if g1 > λ, V ≥ ( 1
λ −

1
g1

)

(4.9)

2) When λ = 0, let {v1, . . . , vL} denote the optimum quantization thresholds on V axis

(0 = v1 < · · · < vL < ∞) and let vL+1 = ∞, we have

p(V, g1) = pj = vj, if vj ≤ V < vj+1, j = 1, . . . , L (4.10)

where λ is the nonnegative Lagrange multiplier associated with the ATP constraint of problem

(4.8).

Proof: The proof can be found in the appendix of this chapter.

From Lemma 4.1, when λ = 0, or in other words the ATP constraint is inactive, the

quantization structure is pretty straightforward as it only involves quantization of the V

axis. Fig.4.2 illustrates the optimum partition regions structure when λ > 0. Note that

here the first region R1 includes two parts, i.e, {g1 ≤ λ} and {V < ( 1
λ −

1
g1

), v1 ≤ V <

v2}, and p1 = 0 implies that the first region is in outage.
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Figure 4.2: The structure of optimum quantization regions when λ > 0

Below we consider the two cases λ > 0 and λ = 0 separately.

1) When λ > 0 (ATP constraint is active)

Let F(v), f (v) indicate the cdf and pdf of V respectively, from Lemma4.1 the problem

(4.8) becomes,

max
{v2,...,vL−1}

CL(P) =
L−1

∑
j=2

E[log(1 + vjg1)|Rj]Pr(Rj) + E[log(1 + (
1
λ
− 1

g1
)g1)|RL]Pr(RL)

s.t.
L−1

∑
j=2

E[vj|Rj]Pr(Rj) + E[(
1
λ
− 1

g1
)|RL]Pr(RL) ≤ Pav (4.11)

Although the above optimization problem may be verified to be non-convex, we can

employ the Karush-Kuhn-Tucker (KKT) necessary conditions to find local maxima for

Problem (4.11). Taking the first derivative of the Lagrangian function of problem (4.11)
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by using Leibniz integral rule, and setting it to zero, we can obtain

∫ vj+1

vj

(
− exp( 1

vj
)E1( 1

1
λ−v

+ 1
vj

)

v2
j

+ exp(− 1
1
λ − v

)(
1
vj
− λ)) f (v)dv

= ( f̂ j(vj)− f̂ j(vj−1)) f (vj), j = 2, . . . , L− 1 (4.12)

where E1(x) is the exponential integral defined as E1(x) =
∫ ∞

x
exp(−z)dz

z and f̂2(v1) = 0,

f̂ j(v) = exp(
1
v
)E1(

1
1
λ − vj

+
1
v
) + exp(− 1

1
λ − vj

) log(1 + v
1

1
λ − vj

)− λv exp(− 1
1
λ − vj

),

(4.13)

and the λ can be obtained by solving

λ(
L−1

∑
j=2

E[vj|Rj]Pr(Rj) + E[
1
λ
− 1

g1
|RL]Pr(RL)− Pav) = 0 (4.14)

It is shown in appendix 4.7.2 that

F(v) = 1− (1− exp(−
Qpk

v
))N , f (v) =

NQpk

v2 exp(−
Qpk

v
)(1− exp(−

Qpk

v
))N−1.(4.15)

Thus, for fixed λ, given a v2, from (4.12) we can successively compute v3, . . . , vL−1 nu-

merically, and then the equation (4.12) with j = L− 1, which thus has only one unknown

variable v2, can be numerically solved for v2. Then the optimal value of λ can be obtained

by solving (4.14) with a subgradient method, i,e. by updating λ until convergence using

λl+1 = [λl − αl(Pav −
L−1

∑
j=2

E[vj|Rj]Pr(Rj)− E[(
1
λ
− 1

g1
)|RL]Pr(RL))]+ (4.16)

where l is the iteration number, αl is positive scalar step size for l-th iteration. One can

thus repeat above two steps namely solving (4.12) and (4.16) iteratively until a satisfac-

tory convergence criterion is met.

2) When λ = 0 (only the PIP constraints are active, namely the ILR case)

In this case, we can see from Lemma 4.1 that none of power levels depends on g1
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information and therefore in this case, SU-TX or CR network manager does not require

any knowledge of g1. And the problem (4.8) becomes,

max
{v2,...,vL}

CL(P) =
L

∑
j=2

E[log(1 + vjg1)](F(vj+1)− F(vj)) (4.17)

By using the KKT necessary conditions we can obtain

F(vj+1) = F(vj) + f (vj)
f̃1(vj)− f̃1(vj−1)

f̃2(vj)
, j = 2, . . . , L (4.18)

where f̃1(v1) = 0 and

f̃1(v) = E[log(1 + vg1)] = exp(
1
v
)E1(

1
v
), f̃2(v) =

∂ f̃1(v)
∂v

=
− exp( 1

v )E1( 1
v )

v2 +
1
v
(4.19)

From the expression of F(v) in (4.15), (4.18) can be rewritten as,

vj+1 = −
Qpk

log(1− (1− (F(vj) + f (vj)
f̃1(vj)− f̃1(vj−1)

f̃2(vj)
))

1
N )

, j = 2, . . . , L− 1

F(vL) + f (vL)
f̃1(vL)− f̃1(vL−1)

f̃2(vL)
= 1. (4.20)

Thus, given a specific value of v2, we can successively compute v3, . . . , vL using (4.20) ,

and then the last equation in (4.20) , which thus has only one unknown variable v2, can

be numerically solved for v2.

As the number of feedback bit B = log2(L) → ∞, the length of quantization interval

[vj, vj+1) approaches zero, by using the mean value theorem [13], we can get

f̃1(vj)− f̃1(vj−1)
f̃2(vj)

≈ vj − vj−1 (4.21)

Substituting (4.21) into (4.18), we have, for j = 2, . . . , L

F(vj+1)− F(vj) ≈ f (vj)(vj − vj−1) ≈ F(vj)− F(vj−1) (4.22)
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From (4.22), we have

F(vL+1)− F(vL) ≈ · · · ≈ F(v2)− F(v1) =
1
L

(4.23)

This implies that one can apply an equal probability per region (EPPR) approximation

yielding

F(vj) ≈
j− 1

L
, j = 2, . . . , L (4.24)

Therefore from the expression of F(v), we have,

vj = F−1(v) ≈ −
Qpk

log(1− (1− j−1
L )

1
N )

, j = 2, . . . , L (4.25)

Then we can obtain an approximate expression for the maximum ergodic capacity of SU

of problem (4.17) with large L as,

CL ≈
1
L

L

∑
j=2

exp(−
log(1− (1− j−1

L )
1
N )

Qpk
)E1(−

log(1− (1− j−1
L )

1
N )

Qpk
) (4.26)

Special Case: When in addition, N → ∞ (large number of PUs case), applying the

asymptotic cdf of v (see (4.31) below), given by F(v) → 1− e−Ne−
Qpk

v , we have,

vj ≈ −
Qpk

log(− log(1− j−1
L )

N )
, j = 2, . . . , L (4.27)

and

CL ≈
1
L

L

∑
j=2

exp(−
log(− log(1− j−1

L )
N )

Qpk
)E1(−

log(− log(1− j−1
L )

N )
Qpk

) (4.28)

So far, we have discussed how to solve the quantization problem (4.8) for the λ > 0

case and the λ = 0 case respectively. We can now combine these two procedures to define

the following two steps for finding the optimal solution for problem (4.8):

a) First, let λ = 0, then solving (4.20) gives a power codebook {p1, . . . , pL}. With this



108
Throughput Maximization in Cognitive Radio with Limited Feedback : Peak

Interference Constraints

codebook, if ∑L
j=1 E[pj|Rj]Pr(Rj) ≤ Pav, then it is an optimal power codebook for

problem (4.8) and stop; otherwise go to step b).

b) If a) is not satisfied, we must have λ > 0. Starting with a random initial value for

λ, one can solve (4.12) to obtain the corresponding power codebook {p1, . . . , pL},

and then update λ by (4.16). Repeat these steps until convergence and the final

codebook will be an optimal power codebook for problem (4.8).

4.3.2 Asymptotic Analysis with Large Number of PUs for QPA (ALNPs-QPA)

So far, we have considered one SU and N PUs. As we can see from 4.3.1, the change

of N only affects the distribution of V in (4.15). As N increases, the expression of the

distribution of V (F(v) and f (v)) becomes complex. In this section, we are interested in

finding the asymptotic distribution of V as N → ∞, so that we can significantly reduce

the computational complexity of solving Problem (4.8) for a large number of PUs.

As we know V = Qpk
gm

. Then the cdf of V is given by

F(v) = Pr(
Qpk

gm
< v) =

∫ ∞

Qpk
v

fgm(gm)dgm (4.29)

It is shown in appendix 4.7.3 that as N → ∞, the limiting asymptotic pdf of gm is given

by

fgm(gm) → N exp(−gm) exp(−Ne−gm) (4.30)

Substituting (4.30) into (4.29), we have

F(v) → 1− exp(−Ne−
Qpk

v ) (4.31)

Then after differentiation, the limiting asymptotic pdf of V is given by,

f (v) →
NQpk

v2 exp(−
Qpk

v
) exp(−Ne−

Qpk
v ). (4.32)
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This asymptotic distribution can be used as an approximation for f (v) when N becomes

large and the same techniques as the previous section can be used to find an optimum

QPA.

4.3.3 Quantized rate allocation (QRA) for ILR case

When the ATP constraint is inactive and only PIP constraints are active, we actually can

do two alternative quantization methods: 1) QPA strategy (i.e, quantized V = Qpk
gm

infor-

mation) as shown in 4.3.1 with λ = 0, or 2) QRA scheme (i.e, quantized ratio Z = g1
gm

information). It is important to note that unlike QPA with λ = 0 (here we call it QPA0),

the QRA scheme requires the assumption that SU-TX has full knowledge of g1.

The limited feedback strategy for QRA is similar to QPA case, namely, given B bits of

feedback, an operating rate codebook r= {r1, . . . , rL} is designed off line purely on the

basis of the statistics of ratio Z information. Again the codebook is known a priori by both

SU-TX and CR network manager. Given a channel realization (g0, g1), the CR network

manager applies a deterministic mapping I(Z) from the current instantaneous ratio Z

information to one of L integer indices, which partitions the nonnegative ratio informa-

tion (scalar space) into L regions R1, . . . ,RL, i.e, I(Z) = j, if Z ∈ [zj, zj+1), j = 1, . . . , L,

where zj represents the boundary point between Rj−1 and Rj, and z1 = 0, zL+1 = ∞. It

then sends the corresponding index j = I(Z) to the SU-TX via the feedback link. The

SU-TX will use the associated rate codebook element to adapt its transmission strategy.

We will show later that rj = log(1 + zjQpk), thus with the perfect knowledge of g1, the

actual transmission power at SU is pj = zjQpk
g1

, and then the actual received interference

power at PUi is

pjg0i =
zjQpk

g1
g0i

≤
zjQpk

g1
maxi g0i

≤ Qpk (4.33)

since the current ratio CSI g1
maxi g0i

falls in Rj,
g1

maxi g0i
≥ zj. (4.33) confirms that this limited

feedback strategy can guarantee that all PIP constraints are satisfied at the PU receivers.

For any given ratio state information Z = z, the corresponding maximum mutual

information of SU is given by log(1 + zQpk), denoted as R(z). Thus, for any z ∈ Rj, with
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the rate level rj, reliable transmission can be guaranteed only if R(z) ≥ rj, which means,

when R(z) < rj, an outage will occur. Let Pr(Rj), Pr(•|Rj) denote Pr(Z ∈ Rj) and

Pr(•|Z ∈ Rj), respectively. Then the ergodic capacity of SU can be expressed as,

CL(r) =
L

∑
j=1

rjPr(R(z) ≥ rj|Rj)Pr(Rj) (4.34)

Lemma 4.2. Let z∗j be the unique solution for rj = log(1 + z∗j Qpk), we have z∗j ∈ [zj, zj+1).

Proof: The proof can be found in the appendix of this chapter.

Let F(z) indicate the cdf of ratio Z, and [45] gives F(z) = 1−N ∑N−1
k=0 (−1)k(N−1

k ) 1
1+k+z ,

which actually can be rewritten as

F(z) = 1− NB(N, z + 1) (4.35)

where B(a, b) is the beta function, defined by B(a, b) = Γ(a)Γ(b)
Γ(a+b) . And the pdf f (z) of ratio

Z is given in (4.7). Then the secondary ergodic capacity maximization problem (4.6) with

QRA can be formulated as

max
{z2,...,zL,z∗1 ,...,z∗L}

L

∑
j=1

log(1 + z∗j Qpk)(F(zj+1)− F(z∗j ))

s.t. zj ≤ z∗j ≤ zj+1 ∀j (4.36)

Lemma 4.3. zj = z∗j j = 2, . . . , L.

Proof: The proof can be found in the appendix of this chapter.

Then Problem (4.36) becomes,

max
z∗j

L

∑
j=1

log(1 + z∗j Qpk)(F(z∗j+1)− F(z∗j )) (4.37)

Applying the KKT necessary condition to (4.37), we have

log(
1 + z∗j−1Qpk

1 + z∗j Qpk
) f (z∗j ) +

Qpk

1 + z∗j Qpk
(F(z∗j+1)− F(z∗j )) = 0 (4.38)
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where z∗0 = 0 and z∗L+1 = ∞. From (4.38), we have, j=2,. . . ,L

z∗j−1 =
1

Qpk
(exp {−

Qpk

1 + z∗j Qpk

F(z∗j+1)− F(z∗j )

f (z∗j )
+ log(1 + z∗j Qpk)} − 1) (4.39)

Thus, given a z∗L, from (4.39) we can successively compute z∗L−1, . . . , z∗1 , and then (4.38)

with j = 1 becomes an equation with only one unknown variable z∗L, which can be solved

numerically.

QRA has a similar asymptotic behavior in the high resolution quantization as QPA0.

From the KKT conditions (4.38), we have that, j = 1, . . . , L

F(z∗j+1)− F(z∗j )

f (z∗j )
=

log(1 + z∗j Qpk)− log(1 + z∗j−1Qpk)
Qpk

1+z∗j Qpk

(4.40)

Again as the number of feedback bits B = log2(L) → ∞, by using the mean value theo-

rem, we can get

log(1 + z∗j Qpk)− log(1 + z∗j−1Qpk)
Qpk

1+z∗j Qpk

≈ (z∗j − z∗j−1). (4.41)

Substituting (4.41) into (4.40), we have,

F(z∗j+1)− F(z∗j ) ≈ f (z∗j )(z∗j − z∗j−1) ≈ F(z∗j )− F(z∗j−1) (4.42)

From (4.42), we have

F(z∗L+1)− F(z∗L) ≈ · · · ≈ F(z∗1)− F(z∗0) =
1

L + 1
(4.43)

Which gives

F(z∗j ) ≈
j

L + 1
, j = 1, . . . , L (4.44)
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Therefore we have,

z∗j ≈ F−1(
j

L + 1
), j = 1, . . . , L (4.45)

From (4.35), we have F(z) = 1− NB(N, z + 1), then F−1( j
L+1 ) is the solution of solving

below equation for z.

1− NB(N, z + 1) =
j

L + 1
(4.46)

Then we can obtain the maximum ergodic capacity of SU as,

CL ≈
1

L + 1

L

∑
j=1

log(1 + F−1(
j

L + 1
)Qpk) (4.47)

Special cases

• N = 1 (only one PU case), from (4.46), we can obtain

F−1(
j

L + 1
) =

j
L + 1− j

(4.48)

Thus (4.47) becomes

CL ≈
1

L + 1

L

∑
j=1

log(1 +
j

L + 1− j
Qpk) (4.49)

• N → ∞ (large number of PU case), applying the asymptotic cdf of z which will be

derived below in (4.56), i.e, F(z) → 1 − exp(−N) + N−z(Γ(z + 1, N) − Γ(z + 1)), then

F−1( j
L+1 ) can be approximated as the solution of solving below equation for z.

1− e−N + N−z(Γ(z + 1, N)− Γ(z + 1)) =
j

L + 1
(4.50)

We can further approximate the above equation by applying limN→∞ Γ(z + 1, N) = 0 and

limN→∞ e−N = 0, therefore equation (4.50) becomes,

N−zΓ(z + 1) ≈ c (4.51)
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where c = 1− j
L+1 , and since j = 1, . . . , L, we have 0 < c < 1.

Lemma 4.4. For a fixed L, when N → ∞, the solution for equation (4.51) approaches zero, i.e,

z → 0.

Proof: The proof can be found in the appendix of this chapter.

Applying Lemma 4.4, we have as N → ∞, Γ(z + 1) ≈ 1− γz, where γ = 0.57721566... is

the Euler-Mascheroni constant. Thus (4.51) becomes

N−z(1− γz) ≈ c (4.52)

which gives the solution z = 1
γ −

W( 1
γ cN

1
γ log N)

log N , where W(x) is Lambert W function which

gives the principal solution for w in x = wew. Thus, for a fixed L, as N → ∞, we can

obtain

F−1(
j

L + 1
) ≈ 1

γ
−

W( 1
γ (1− j

L+1 )N
1
γ log N)

log N
(4.53)

then in this case, (4.47) is given by the following closed form approximation

CL ≈
1

L + 1

L

∑
j=1

log(1 + (
1
γ
−

W( 1
γ

L+1−j
L+1 N

1
γ log N)

log N
)Qpk) (4.54)

As in the QPA case, we also can find the asymptotic distribution of Z as N → ∞, in

order to simplify the solution to Problem (4.37) with large number of PUs, called ALNPs-

QRA. As we know Z = g1
gm

. By letting X = gm, the cdf of Z is given by

F(z) =
∫ ∞

0
P(g1 < xz|x) fX(x)dx =

∫ ∞

0
(1− e−xz) fX(x)dx (4.55)

It is shown in appendix 4.7.3 that as N → ∞, the asymptotic pdf of X is given by fX(x) →

Ne−xe−Ne−x
. Substituting it into (4.55), we have

F(z) → 1− e−N +
∫ ∞

0
e−xzNe−Ne−x

de−x = 1− e−N + N−z(Γ(z + 1, N)− Γ(z + 1)) (4.56)

where Γ(a, b) is the incomplete gamma function given by Γ(a, b) =
∫ ∞

b ta−1e−tdt and

Γ(a) is defined by Γ(a) =
∫ ∞

0 ta−1e−tdt. Then the asymptotic pdf of Z is given by ( f (z) =
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∂F(z)
∂z ),

f (z) → N
(z + 1)2 2F2(z + 1, z + 1; z + 2, z + 2;−N) (4.57)

where 2F2(a1, a2; b1, b2; x) is a generalized hypergeometric function, given by

2F2(a1, a2; b1, b2; x) =
∞

∑
k=0

(a1)k(a2)kxk

(b1)k(b2)kk!
(4.58)

in which (α)n = Γ(α+n)
Γ(α) is called the Pochhammer symbol.

As we have already shown, these two quantization methods for high Pav have some

similar nice properties, and both can be very easily extended to other symmetric or asym-

metric fading distributions (i.e, the distribution of g1 and g0i are identical or different).

However, there are also a few differences between them:

1. For QPA0, one does not need to know the instantaneous information of g1 at SU-

TX or CR network manager. But for QRA case, both SU-TX and CR network man-

ager are required to have full information of g1.

2. Compared to QRA, QPA0 requires more complex computations, since it needs to

compute expectations with respect to g1, which may not always have a closed-

form solution for arbitrarily general distributions of g1.

3. When it comes to more general distributions for g0, e.g. the Rician distribution, for

QPA0, we cannot get a nice closed-form expression for the quantization thresholds

(like in (4.20) with Rayleigh distribution) and we have to solve (4.18) for the thresh-

olds. But for QRA, no matter what the distribution of g1 and g0 is, we always have

a closed-form expression for the quantization thresholds (4.39), which can sub-

stantially reduce the complexity of solving the optimization problem especially

for a large number of feedback bits.

As we will show via simulation studies (Section 4.5), with the same number of feedback

bits, QPA0 outperforms QRA, but as the number of feedback bits increases, the capacity

gap between them is reduced, which implies that the performances of these two methods

are very close for large number of feedback bits. Therefore, when g1 or g0 has a compli-

cated distribution, for a large number of feedback bits (≥ 6 bits), we can choose to use
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QRA instead of QPA0.

4.4 Optimum QPA with imperfect g1 and g0 at SU-TX

In Section 4.3, we have studied optimum QPA scheme with perfect g1 and quantized

g0 feedback at SU-TX. So it’s natural for us to ask, what happens if g1 information is

also imperfect at SU-TX? In this section, we are interested in investigating the effect of

imperfect g1 information at SU-TX in designing the QPA scheme, where two different

ways of providing partial g1 information to SU-TX: estimated g1 and quantized g1, will

be examined.

4.4.1 Optimum QPA with quantized g0 and estimated g1

We exploit the following well establised model [62][46] for channel estimate of h1 at SU-

TX, namely ĥ1:

ĥ1 = ρ0h1 +
√

1− ρ2
0 η (4.59)

where η is the channel estimation error with standard complex normal distribution (SCND),

i.e, η ∼ CN (0, 1) (which implies that E[η] = 0, E[ηη] = E[|η|2] = 1) and η is independent

of h1; and ρ0 ∈ [0, 1] is the correlation coefficient between the true channel coefficient h1

and its estimate ĥ1, given as ρ0 = E[h1 ĥ1]−E[h1]E[ĥ1]√
Var[h1]Var[ĥ1]

. Thus the estimated g1, i.e, ĝ1, is ob-

tained by ĝ1 = |ĥ1|2. As we mentioned before,
√

g1 = |h1| is Rayleigh distributed and

E[|h1|2] = E[g1] = 1, thus h1 is also SCND. From (4.59), it’s easy to verify that the linear

transform ĥ1 is distributed also complex-normally, since E[ĥ1] = 0 and

E[ĝ1] = E[|ρ0h1 +
√

1− ρ2
0 η|2] = ρ2

0E[g1] + (1− ρ2
0) E[|η|2] = 1, (4.60)

ĥ1 is SCND too. Thus the magnitude |ĥ1| of SCND will have the Rayleigh distribution and

the squared magnitude |ĥ1|2, namely, ĝ1 will have the unit mean exponential distribution.

As stated in section 4.3.1 of optimum QPA with quantized g0 only, when λ = 0 (high

Pav case) implying that only PIP constraints are active, SU-TX is not required to have

knowledge of g1. Thus with partial g1 information available at SU-TX, the optimum
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QPA solution for this case is still the same. But when λ > 0 (ATP constraints is active),

with the estimated g1 at SU-TX, the transmit power pL for the last region RL becomes

pL = ( 1
λ −

1
ĝ1

)+. The actual PIP becomes ( 1
λ −

1
ĝ1

)+gm, which may not necessarily be

below Qpk, although one has ( 1
λ −

1
g1

)gm < Qpk (region RL condition) satisfied. Thus

with estimated g1 at SU-TX, it’s not possible to guarantee the actual instantaneous PIP

remains ≤ Qpk with probability 1. It seems that to satisfy the strict PIP constraint, the

SU-TX has to transmit at zero power in RL [67], which renders the whole RL in outage.

Actually, a more suitable measure for this case is to allow the actual PIP with estimated

g1 to exceed Qpk with a small certain probability (like 5% or less) [67], which we call as

the interference violation probability (IVP), given by

IVP = Pr((
1
λ
− 1

ĝ1
)+gm > Qpk|RL)Pr(RL) (4.61)

In order to achieve a given percentage IVP, we employ a reduced level of QPK [46], de-

noted as QPK, to design the optimal QPA codebook in section 4.3.1 with λ > 0, which

implies that the maximum IVP of a certain QPK happens when QPK = QPK. Thus opti-

mum QPA problem (4.11) with estimated g1 and QPK becomes,

max
{v2,...,vL−1}

CL =
L−1

∑
j=2

E[log(1 + vjg1)|Rj]Pr(Rj) + E[log(1 + (
1
λ′
− 1

ĝ1
)+g1)|RL]Pr(RL)

s.t.
L−1

∑
j=2

E[vj|Rj]Pr(Rj) + E[(
1
λ′
− 1

ĝ1
)+|RL]Pr(RL) ≤ Pav (4.62)

where {v2, . . . , vL−1}, {R1, . . . ,RL} denote the new optimum quantization thresholds

and regions associated with QPK respectively, and λ′ is the nonnegative Lagrange multi-

plier associated with the ATP constraint of problem (4.62). Problem (4.62) can be solved

by using similar methods as us to solve Problem(4.11). Need to note that in Problem

(4.62), the capacity of last region is given by

E[log(1 + (
1
λ′
− 1

ĝ1
)+g1)|RL]Pr(RL)

=
∫ ∞

λ′

∫ ∞

λ′
log(1 + (

1
λ′
− 1

ĝ1
)g1) f (g1, ĝ1)(1− F(

1
λ′
− 1

g1
))dg1dĝ1 (4.63)
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where F(x) = 1 − (1 − exp(−Qpk
x ))N and f (g1, ĝ1) is the joint pdf of g1 and ĝ1, which

according to the bivariate exponential distributions in Eq.(47.1) of [95], is given as

f (g1, ĝ1) =
1

1− ρ
I0(

2
√

ρg1 ĝ1

1− ρ
) exp(− g1 + ĝ1

1− ρ
) (4.64)

where ρ is the correlation coefficient between g1 and ĝ1, and I0(x) = ∑∞
k=0(

x
2k! )

2k is the

well known modified Bessel function of the first kind with order zero.

With the optimal QPA codebook obtained by QPK, the new last region RL becomes

{g1 ≥ λ′,
Qpk
gm

≥ 1
λ′ −

1
g1
} and thus IVP can be expressed as

IVP = Pr((
1
λ′
− 1

ĝ1
)+ >

Qpk

gm
|g1 ≥ λ′,

Qpk

gm
≥ 1

λ′
− 1

g1
)Pr(RL)

= Pr(
1
λ′

>
Qpk

gm
, ĝ1 >

1
1
λ′ −

Qpk
gm

|g1 ≥ λ′,
Qpk

gm
≥ 1

λ′
− 1

g1
)Pr(RL) (4.65)

Since Qpk ≤ Qpk, 1
λ′ >

Qpk
gm

, we have 1
λ′ >

Qpk
gm

. Applying it to (4.65), we have

IVP = Pr(
1
λ′

>
Qpk

gm
, ĝ1 >

1
1
λ′ −

Qpk
gm

|λ′ ≤ g1 ≤
1

1
λ′ −

Qpk
gm

)Pr(λ′ ≤ g1 ≤
1

1
λ′ −

Qpk
gm

)

=
∫ ∞

λ′Qpk

fgm(gm)(
∫ c

λ′

∫ ∞

c
f (g1, ĝ1)dĝ1dg1)dgm (4.66)

where c = 1
1

λ′−
Qpk
gm

, c = 1
1

λ′−
Qpk
gm

, and the pdf of gm is given by [7], fgm(gm) = Ne−gm(1−

e−gm)N−1. Let 4 =
∫ c

λ′

∫ ∞
c f (g1, ĝ1)dĝ1dg1. Applying (4.64) to 4, we have,

4 =
∫ c

λ′

1
1− ρ

exp(− g1

1− ρ
)(
∫ ∞

c
I0(

2
√

ρg1 ĝ1

1− ρ
) exp(− ĝ1

1− ρ
)dĝ1)dg1 (4.67)

Change of varible x =
√

2ĝ1
1−ρ , (4.67) becomes

4 =
∫ c

λ′
e−g1 Q(

√
2ρg1

1− ρ
,

√
2c

1− ρ
) dg1 (4.68)
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where Q(a, b) =
∫ ∞

b xe−
x2+a2

2 I0(ax) dx is the first order Marcum Q-function. With a

change of variable again, let y =
√

2g1, (4.68) becomes

4 =
∫ ∞
√

2λ′
ye−

y2
2 Q(

√
ρ

1− ρ
y,

√
2c

1− ρ
) dy−

∫ ∞

√
2c

ye−
y2
2 Q(

√
ρ

1− ρ
y,

√
2c

1− ρ
) dy (4.69)

Applying Eq.(14) of [82] to (4.69), we have

4 = e−λ′Q(

√
2λ′ρ

1− ρ
,

√
2c

1− ρ
)− e−cQ(

√
2λ′

1− ρ
,

√
2cρ

1− ρ
)

− e−cQ(

√
2cρ

1− ρ
,

√
2c

1− ρ
) + e−cQ(

√
2c

1− ρ
,

√
2cρ

1− ρ
) (4.70)

Thus, IVP becomes,

IVP =
∫ ∞

λ′Qpk

fgm(gm){e−λ′Q(

√
2λ′ρ

1− ρ
,

√
2c

1− ρ
)− e−cQ(

√
2λ′

1− ρ
,

√
2cρ

1− ρ
)

− e−cQ(

√
2cρ

1− ρ
,

√
2c

1− ρ
) + e−cQ(

√
2c

1− ρ
,

√
2cρ

1− ρ
)} dgm (4.71)

which can be calculated numerically.

The capacity loss with estimated g1 due to using Qpk as the PIP to obtain the optimum

QPA codebook (so that the IVP can be kept below a desired maximum), is calculated as

Closs = CL − CL, where CL is the maximum SU ergodic capacity obtained from quantiza-

tion problem (4.11) with PIP Qpk and perfect g1.

4.4.2 QPA with quantized (g0, g1) information

The limited feedback scheme here is similar to QPA in section 4.3.1 except that we quan-

tize both V and g1, not just V. Let λl represent the nonnegative Lagrange multiplier as-

sociated with the ATP constraint for this case. Again, when Pav is large enough to make

the ATP constraint inactive, only PIP constraints are effective (λl = 0) and designing the

optimum QPA does not require SU-TX to have knowledge of g1. Therefore the optimum

QPA for this scenario is same as QPA with quantized g0 only in 4.3.1 with λ = 0.
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When λl > 0, due to the difficulty and complexity of optimal QPA analysis for this

case, we consider a low-complexity suboptimal design of the QPA, in which based on

the boundry v = ( 1
λl
− 1

g1
)+ (like full CSI case), two different type of power codebooks

are derived. Let P = {p1, . . . , pL1 , p′1, . . . , p′L2
} with L1 + L2 = L and the corresponding

partitioning {R1, . . . ,RL1 ,R′
1, . . . ,R′

L2
} denote an optimal solution for current subopti-

mal setting. Let V = {v1, . . . , vL1}, q = {q1, . . . , qL2} denote the quantization thresholds

corresponding to this solution on the V axis (where 0 = v1 < · · · < vL1 < vL1+1 = 1
λ )

and the g1 axis (where λl < q1 < · · · < qL2 < qL2+1 = ∞), respectively, and p(V, g1)

represents the mapping from instantaneous (V, g1) to the allocated power level. Then

we have,

p(v, g1) =


p1 = 0, if v ≥ ( 1

λl
− 1

g1
), g1 < q1 or v < ( 1

λl
− 1

g1
), v1 ≤ v < v2

pj = vj, if v < ( 1
λl
− 1

g1
), vj ≤ v < vj+1, j = 2, . . . , L1

p′k = ( 1
λl
− 1

qk
), if v ≥ ( 1

λl
− 1

g1
), qk ≤ g1 < qk+1, k = 1, . . . , L2

(4.72)

Fig.4.3 illustrates the structure of the partition regions for λl > 0 case.

In this setting, the QPA problem of quantizing both g0 and g1 with limited feedback

becomes,

max
{v1,...,vL1 ,q1,...,qL2}

L1

∑
j=1

E[log(1 + vjg1)|Rj]Pr(Rj) +
L2

∑
k=1

E[log(1 + (
1
λl
− 1

qk
)g1)|R′

k]Pr(R′
k)

s.t.
L1

∑
j=1

E[vj|Rj]Pr(Rj) +
L2

∑
k=1

E[
1
λl
− 1

qk
|R′

k]Pr(R′
k) ≤ Pav (4.73)

By using the KKT necessary conditions, v2, . . . , vL1 can be obtained through solving

equations (4.12) with λ = λl and j = 2, . . . , L1, and q1, . . . , qL2 is given by solving follow-

ing equations:

∫ qk+1

qk

1
q2

k
(

g1

1 + ( 1
λl
− 1

qk
)g1

− λ) f1(g1)(1− F(
1
λl
− 1

g1
))dg1

= ( f k(qk)− f k(qk−1)) f1(qk)(1− F(
1
λl
− 1

qk
)), j = 1, . . . , L2, (4.74)
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Figure 4.3: A suboptimal quantization regions structure for λl > 0 case

where, f k(q) = log(1 + ( 1
λl
− 1

q )qk)− 1 + λl
q , f1(g1) = e−g1 , F(.) is given by (4.15) and

the λl can be obtained by solving

λl(
L1

∑
j=1

E[vj|Rj]Pr(Rj) +
L2

∑
k=1

E[
1
λl
− 1

qk
|R′

k]Pr(R′
k)− Pav) = 0 (4.75)

Thus, for a fixed λl , v2, . . . , vL1 can be obtained by solving equations (4.12) with λ = λl

and j = 2, . . . , L1, and given a q1, from (4.74) we can successively compute q2, . . . , qL2

numerically. Then the equation (4.74) with k = L2, which has only one unknown variable

q1, can be numerically solved for q1. Then one can update λl until convergence using a

subgradient-based method

λn+1
l = [λn

l − αn(Pav −
L1

∑
j=1

E[vj|Rj]Pr(Rj)−
L2

∑
k=1

E[
1
λl
− 1

qk
|R′

k]Pr(R′
k))]

+ (4.76)
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where n is the iteration number and αn is a positive scalar step size for n-th iteration. One

can thus repeat above two steps iteratively until a satisfactory convergence criterion is

met.

The above result is based on a given pair of values for L1 and L2. To find the optimum

L1 and L2, we need to exhaustively search all possible combinations of L1 and L2 so that

L1 + L2 = L, and pick the one which gives the best SU ergodic capacity.

4.5 Numerical Results

In this section, we examine the analytical results derived in Section 4.3 and 4.4 via nu-

merical simulations. We implement a narrow band spectrum sharing system with one SU

and N PUs, where all the channels involved are assumed to undergo identical Rayleigh

fading, i.e, all g0i and g1 are i.i.d and exponentially distributed with unit mean.

Figure 4.4 studies the ergodic capacity performance of SU sharing a narrowband

spectrum with various numbers of PUs (N = 2, 4 respectively) under both ATP and PIP

constraints with QPA strategy (quantizing g0 only) at Qpk = 0 dB, and illustrates the

effect of increasing the number of feedback bits on the capacity performance. For com-

parison, we also plot the corresponding capacity performance with full CSI. First, it can

be easily observed that the ergodic capacity increases gradually as Pav increases until Pav

reaches a certain threshold, after which the curves become flat (due to the fact that in high

Pav, only the PIP constraints are active). The capacity performance also degrades as the

number of PUs N gets larger (since the number of PIP constraints increases) as expected.

Another striking observation from Figure 4.4 is that for each N, introducing one extra bit

of feedback substantially reduces the gap with capacity based on perfect CSI.To be spe-

cific, for N = 4, at Pav = 10 dB, with 2 bits, 4 bits and 6 bits of feedback, the percentage

capacity gap between them and full CSI case are approximately 25.45%, 6.87% and 1.97%

respectively. And for any N, only 6 bits feedback can result in secondary ergodic capacity

very close to that with full CSI case. For example, with Ppk = 10 dB, 6 bits of feedback

for N = 2, 4 only generate around 2.33% and 1.97% percentage capacity loss respectively

compared to their full CSI performance, which is clearly an encouraging result.
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Figure 4.4: Ergodic capacity performance of SU using QPA scheme with perfect g1 and
quantized g0 for different numbers of PUs (Qpk = 0 dB)

Figure 4.5 compares the SU ergodic capacity performance between 6 bits QPA0 with

the EPPR approximation and its corresponding optimal 6 bits quantization case for dif-

ferent numbers of PUs (N = 2, 4, 8) respectively. An interesting observation from Figure

4.5 is that for any N, the capacity performance of using asymptotic EPPR approximation

and optimal scheme (QPA0) are not distinguishable. To be specific, with 6 bits feedback

at Qpk = 10 dB, for N = 2, 4, 8, the percentage capacity loss due to using EPPR ap-

proximation instead of using the optimal scheme is only around 0.93%, 0.9% and 0.91%

respectively. This implies that the EPPR approximation performs very close to optimum

and confirms that EPPR is an very efficient suboptimal scheme of QPA0 for large number

of quantization level L. In addition, Figure 4.6 depicts the asymptotic SU capacity behav-

ior of QPA0 obtained from (4.26) versus the number of quantization level L for different

numbers of PUs (N = 1, 2, 4, 8, 16, 32, 64) with Qpk = 10 dB. It can be noted from Figure
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Figure 4.5: Comparison of SU ergodic capacity performance between QPA0 with EPPR
approximation and corresponding optimal case for different numbers of PUs under 6 bits
of feedback

4.6 that for any N, the capacity increases as the number of quantization level L increases,

however, as L increases beyond a certain number (L ≥ 26), the capacity curves start to

saturate, which further confirms that only a small number of feedback bits (6 bits) is re-

quired to appoach the perfect CSI performance. A similar behavior also can be obtained

from QRA scheme case which is ommitted due to avoid repetition.

Next, we test the ALNPs approximation method for QPA and QRA. Here we only

plot the results for QRA. A similar observation also can be made for QPA. Figure 4.7 in-

vestigates the ergodic capacity performance of SU with quantized feedback (4 bits) using

asymptotic analysis method (ALNPs-QRA) for different numbers of PUs (N = 4, 8, 16),

and compares the results with corresponding optimal QRA (4 bits) case. Interestingly, it

can be observed that with same number of feedback bits, increasing the number of PUs
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Figure 4.6: Asymptotic capacity behaviour versus the number of quantization level L of
QPA0 case

substantially shrinks the capacity performance gap between ALNPs-QRA and the opti-

mal scheme. When N = 16, the capacity performance of ALNPs-QRA and the optimal

scheme are almost the same. For instance, with 4 bits of feedback at Qpk = 10 dB, for

N = 4, 8, 16, the percentage capacity gap between ALNPs and optimal scheme is around

3.21%, 2.21% and 0.81% respectively. These results confirm that the ALNPs approxima-

tion is an efficient alternative, especially for large number of PUs.

Figure 4.8 compares the ergodic capacity performance of two alternative quantiza-

tion methods (QPA0 and QRA) for high Pav case with N = 4 for different numbers of

bits (B = 2, 4, 6 bits). It can be observed from Figure 4.8 that, with same number of feed-

back bits, QPA outperforms QRA. However, as the number of feedback bits increases, the

capacity gap between two methods decreases, and as we can see, with 6 bits feedback,

the performance of QRA scheme is very close to QPA case. For example, at Qpk = 10 dB,
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Figure 4.7: Comparison of SU ergodic capacity performance between 4 bits feedback
ALNPs-QRA and corresponding optimal 4 bits QRA case for different numbers of PUs

with 2, 4, 6 bits, the percentage capacity gap between two quantization schemes is around

5.56%, 2.86% and 0.84% respectively.

Now we will examine the SU ergodic capacity performance with the additional ef-

fect of imperfect g1 in designing QPA schemes. Figure 4.9 shows (with Qpk = 0 dB, Pav =

−5 dB, and N = 4), the resulting percentage SU ergodic capacity loss of using QPA

schemes with estimated g1 and Qpk, against the IVP for different values of the correlation

coefficient ρ. Here the range of Qpk is from −2.871 dB to 0 dB, corresponding to IVP = 0

to the maximum value of IVP. As illustrated in Figure 4.9, for any ρ, capacity loss rises

dramatically as IVP decreases, since in order to obtain a lower IVP, we need to further de-

crease Qpk, which leads to further capacity loss. Increasing ρ lowers the capacity loss, due

to having better estimates of g1. When Qpk = Qpk = 0 dB, we obtain the maximum value

of IVP which is 0.0450, 0.0365 for ρ = 0.5 and ρ = 0.9 respectively, and the least value
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Figure 4.8: Comparison of SU ergodic capacity performance of QPA0 and QRA schemes
with N = 4

of capacity loss are 2.91% and 1.23% for ρ = 0.5 and ρ = 0.9, respectively. Interestingly,

no matter what ρ is, zero IVP is observed when Qpk decreases up to −2.871 dB which

achieves the maximum capacity loss, roughly 26.59% for all ρ. This is because when Qpk

is sufficiently small to make the ATP constraint inactive, and only the PIP constraints ac-

tive, in this case, the optimum quantized power allocation does not depend on g1, and

hence, even with estimated g1, IVP=0.

Figure 4.10 depicts the SU ergodic capacity performance of QPA with quantized

g0 and g1 under 2, 4, 6 bits of feedback respectively, and compares the results with cor-

responding performance of QPA with quantized g0 only (and perfect g1). From figure

4.10, we can easily observe that with the same number of feedback bits, these two perfor-

mances almost overlap with each other (recall that when λl = 0, they are identical, and a

difference only exists when λl > 0), and with 6 bits of feedback, QPA with quantized g0
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g1 versus the IVP for difference number of the correlation coefficient ρ (N = 4, Qpk =
0 dB, Pav = −5 dB).

and g1 are also very close to the full CSI case. For clearer visualization, in figure 4.11 we

zoom into the detail of the area of A in the figure 4.10, which shows that with the same

number of feedback bits, the performance of QPA with quantized g0 is only slightly bet-

ter than QPA with quantized g0 and g1, and with increasing number of feedback bits, the

capacity loss due to imperfect g1 information is reduced.

4.6 Conclusions

In this chapter, we have investigated the problem of ergodic capacity maximization of

a secondary user sharing the same frequency band with a number of primary users in

a narrowband spectrum sharing cognitive radio framework, under an average transmit
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Figure 4.10: The SU ergodic capacity performance of QPA with quantized (g0, g1), and
comparing it to the performance of QPA with quantized g0 only (N = 4)

power constraint at SU-TX and individual peak interference constraints at each primary

receiver. Three different quantized power codebooks are designed for the throughput

maximization problem corresponding to three different forms of channel information of

g1 and g0 at SU-TX, namely, perfect g1 and quantized information on g0, estimated g1

and quantized g0, quantized both g1 and g0 information. Numerical results present the

efficiency of our quantized feedback schemes. A general observation for these schemes

is that with only 4-6 bits of feedback, the SU ergodic capacity with quantized channel in-

formation closely approximates that with full channel information at the SU transmitter.
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Figure 4.11: Zooming in the area of A in the figure 4.10

4.7 Appendix

4.7.1 Proof of Lemma 4.1

Let λ denotes the nonnegative Lagrange multiplier associated with the ATP constraint of

problem (4.8). When λ = 0 (ATP is inactive), the problem of (4.8) becomes

max
{p1,...,pL}

L

∑
j=1

E[log(1 + pjg1)|Rj]Pr(Rj)

s.t. 0 ≤ pj ≤ min{v|Rj}, j = 1, . . . , L (4.77)

In this case, it’s easy to verify that all the constraints in (4.77) is satisfied with equality.

Let {v1, . . . , vL} denote the optimum quantization thresholds on V axis and vL+1 = ∞
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(0 = v1 < · · · < vL < ∞). We can obtain

p(V, g1) = pj = vj, if vj ≤ V < vj+1, j = 1, . . . , L. (4.78)

which is independent of g1 information

. When λ > 0, the dual problem of (4.8) is given as

min
λ≥0

g(λ) + λPav (4.79)

where the Lagrange dual function g(λ) is defined as

max
{p1,...,pL}

L

∑
j=1

E[log(1 + pjg1)− λpj|Rj]Pr(Rj)

s.t. 0 ≤ pj ≤ min{v|Rj}, j = 1, . . . , L (4.80)

which can be decomposed into L parallel subproblem, i.e, for each region Rj, j = 1, . . . , L

max
pj

E[log(1 + pjg1)− λpj|Rj]Pr(Rj)

s.t. 0 ≤ pj ≤ min{v|Rj} (4.81)

Firstly, from (4.81), we can obtain:

(a) if min{v|Rj} < ( 1
λ −

1
g1

), from the power constraint in (4.81) we must have

pj = min{v|Rj}, otherwise we always can increase the pj up to min{v|Rj} to achieve

better capacity performance of Problem (4.81);

(b) if min{v|Rj} ≥ ( 1
λ −

1
g1

)+, we must have pj = ( 1
λ −

1
g1

)+, due to the capacity of

(4.81) in this case is maximum at pj = ( 1
λ −

1
g1

)+.

Now, let {v1, . . . , vL−1} denote the optimum quantization thresholds on V axis, where

0 = v1 < · · · < vL−1 < 1
λ , let vL = 1

λ , from above (a) and (b), we can easily get:

1) if R1 = {(v, g1)|g1 ≤ λ}⋃{(v, g1)|v < ( 1
λ −

1
g1

), v1 ≤ v < v2}, then we must have

p1 = 0;

2) if Rj = {(v, g1)|v < ( 1
λ −

1
g1

), vj ≤ v < vj+1}, then we must have pj = vj,

j = 2, . . . , L− 1;
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3) if RL = {(v, g1)|v ≥ ( 1
λ −

1
g1

) > 0}, we must have pL = ( 1
λ −

1
g1

).

Secondly, we will show that with the power levels in 1), 2) and 3), the above parti-

tion regions are optimal. Let P = {p1, . . . , pL} and the corresponding channel partition-

ing R1, . . . ,RL denote the optimal solution to the optimization problem (4.8), such that

p(v, g1) = pj if (v, g1) ∈ Rj.

• Let R∗
1 = {(v, g1)|g1 ≤ λ}⋃{(v, g1)|v < ( 1

λ −
1
g1

), v1 ≤ v < v2} and assume that

the set R∗
1 \R1 is a not-empty set, where \ is the set subtraction operation (i.e, if (v, g1) ∈

R∗
1 \ R1, then (v, g1) ∈ R∗

1 but (v, g1) /∈ R1). Then we have R∗
1 \ R1 ⊆ (∪L

k=2Rk), which

gives ∀ (v, g1) ∈ (R∗
1 \ R1), p(v, g1) > 0. However, this violates the power constraint

in R∗
1 \ R1, i.e, 0 ≤ p(v, g1) ≤ min{v|R∗

1 \ R1} implying p(v, g1) = 0, which is in con-

tradiction with the optimality of the solution P ,Rj, ∀j. Therefore, R∗
1 \ R1 = ∅, namely

R∗
1 ⊆ R1.

• ∀j = 2, . . . , L− 1, let R∗
j = {(v, g1)|v < ( 1

λ −
1
g1

), vj ≤ v < vj+1} and assume that

the set R∗
j \Rj has nonzero probability. Then, the set R∗

j \Rj can be partitioned into two

subsets S−j = (R∗
j \ Rj) ∩ (∪j−1

k=1Rk) and S+
j = (R∗

j \ Rj) ∩ (∪L
k=j+1Rk). The set S−j = ∅,

otherwise, we can reassign the set S−j into region Rj without violating the power con-

straints in Problem (4.80), while the total capacity of problem (4.80) is increased, due to

the fact that ∀(v, g1) ∈ (∪j−1
k=1Rk), p(v, g1) < pj < ( 1

λ −
1
g1

), and with the reassignment

the capacity of set S−j achieves better performance, which contradics the optimality of

the solution P ,Rj, ∀j. The set S+
j = ∅ too, otherwise the power constraints in S+

j , i.e,

0 ≤ p(v, g1) ≤ vj, will be violated, due to ∀(v, g1) ∈ S+
j , p(v, g1) > vj, which is in contra-

diction with the optimality. Therefore, we have R∗
j \ Rj = ∅, which implies R∗

j ⊆ Rj.

• Let R∗
L = {(v, g1)|v ≥ ( 1

λ −
1
g1

) > 0} and assume that the set (R∗
L \ RL) 6= ∅. Then

we have R∗
L \ RL ⊆ (∪L−1

k=1Rk). Again we can repartition the set R∗
L \ RL into region

RL which still satisfies the power constraints in problem (4.80), however, this new parti-

tion increases the total capacity of problem (4.80), since ∀(v, g1) ∈ (∪L−1
k=1Rk), p(v, g1) <

( 1
λ −

1
g1

), after the repartitioning, the capacity of setR∗
L \RL achieves its maximum value,

which contradics the optimality. Therefore, we have R∗
L \ RL = ∅, i.e, R∗

L ⊆ RL.

• In summary, we have shown that ∀j = 1, . . . , L, R∗
j ⊆ Rj. Since∪L

j=1R∗
j = the whole

space of (v, g1) = ∪L
j=1Rj, and R∗

j ⊆ Rj, ∀j, we can obtain that R∗
j = Rj, ∀j = 1, . . . , L.
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4.7.2 Deriving the cdf and the pdf of V =
Qpk

maxi g0i

Let g0 = maxi g0i, i = 1, . . . , N, then the pdf of g0 is given by [7],

f (g0) = Ne−g0(1− e−g0)N−1. (4.82)

The cdf of V = Qpk
maxi g0i

can be obtained as

F(v) = Pr(
Qpk

maxi g0i
< v) = Pr(g0 >

Qpk

v
) =

∫ ∞

Qpk
v

f (g0)dg0 = 1− (1− exp(−
Qpk

v
))N(4.83)

After differentiation, the pdf of V is given as

f (v) =
NQpk

v2 exp(−
Qpk

v
)(1− exp(−

Qpk

v
))N−1. (4.84)

4.7.3 Deriving the asymptotic pdf of maxi g0i, i = 1, . . . , N, as N → ∞

Given that g01, g02, . . . , g0N are i.i.d random variables and exponentially distributed with

unit mean, let the cdf F(x) = Prob(g0i < x) = 1 − e−x and pdf f (x) = e−x. Let X =

max(g01, g02, . . . , g0N), we want to derive the asymptotic distribution (the pdf) of X as

N → ∞. First, it’s easy to get that

Prob(X < x) = FN(x) (4.85)

Since f (x) > 0 and is differentiable for all x in (x1, F−1(1)) for some x1, and

lim
x→F−1(1)

d
dx

[
1− F(x)

f (x)
] = lim

x→∞

d
dx

[1] = 0, (4.86)

according to the Theorem 10.5.2 of [44], we have that there exist constants aN > 0 and bN ,

such that

FN(aNx + bN) → e−e−x
, as N → ∞ (4.87)
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where we can choose,

bN = F−1(1− 1
N

) = log N, aN = [N f (bN)]−1 = 1 (4.88)

Therefore,

FN(x + log N) → e−e−x
, FN(x) → e−e−(x−log N)

(4.89)

and,

fX(x) =
∂FN(x)

∂x
→ Ne−xe−Ne−x

(4.90)

4.7.4 Proof of Lemma 4.2

Similar to [65], given the optimum quantization thresholds z= {z2, . . . , zL}, we assume

that the optimum rate codebook r= {r1, . . . , rL} satisfies z∗j /∈ [zj, zj+1) (namely, z∗j ≥ zj+1

or z∗j < zj). We construct a new codebook r’= {r1, . . . , rj−1, r′ j, rj+1 . . . , rL} where r′j =

R(zj) with corresponding z
′∗
j = zj. if z∗j ≥ zj+1, we have CL(r’)− CL(r) = r′jPr(Rj) > 0,

which contradicts with the optimality of rate codebook r. if z∗j < zj, we have CL(r’) −

CL(r) = (r′j − rj)Pr(Rj) > 0, which is also an contradiction with the assumed optimality.

4.7.5 Proof of Lemma 4.3

Given an optimum rate codebook r= {r1, . . . , rL}, we assume that the optimum quantiza-

tion thresholds z= {z2, . . . , zL} satisfies zj 6= z∗j , thus from Lemma 4.2, we have zj < z∗j <

zj+1. Now, we construct a new quantization thresholds z’= {z2, . . . , zj−1, z∗j , zj+1 . . . , zL},

and we can show that CL(z’)− CL(z) = [rj−1(F(z∗j )− F(z∗j−1)) + rj(F(zj+1)− F(z∗j ))]−

[rj−1(F(zj)− F(z∗j−1))+ rj(F(zj+1)− F(z∗j ))] = rj−1(F(z∗j )− F(zj)) > 0, which contradicts

with the optimality of optimum quantization thresholds z.
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4.7.6 Proof of Lemma 4.4

From (4.51), we have c = N−zΓ(z + 1), then the derivative of c is,

dc
dz

= N−zΓ(z + 1)(ψ(0)(z + 1)− logN) = c(ψ(0)(z + 1)− logN). (4.91)

where ψ(0)(x) is digamma function, defined as ψ(0)(x) = Γ′(x)
Γ(x) , and is monotonically

increasing on x ∈ [0, ∞). Therefore ψ(0)(z + 1) = logN only has one solution which

is z = ψ−1 (0)(logN) − 1. If ψ(0)(z + 1) < logN, namely, 0 ≤ z < ψ−1 (0)(logN) − 1,

we have dc
dz < 0, which means as c increases, z decreases; on the other hand, if z ≥

ψ−1 (0)(logN)− 1,we have dc
dz ≥ 0, which implies as c increases, z is non-decreasing. As

we know, for a fixed L, as j = 1, . . . , L, c = 1− j
L+1 is decreasing, solving (4.51) results

in the thresholds z1, . . . , zL respectively, such that z1 < · · · < zL. Thus, we must have

0 ≤ z < ψ−1 (0)(logN)− 1. From c = N−zΓ(z + 1), we have

log N =
1
z

log
Γ(z + 1)

c
, (4.92)

then

dlog N
dz

=
1
z
(ψ(0)(z + 1)− 1

z
log

Γ(z + 1)
c

) =
1
z
(ψ(0)(z + 1)− logN) < 0 (4.93)

which indicates that as N increases, z is monotonically decreasing. Since z ≥ 0, with

fixed L, as N → ∞, z must approaches to a non negative constant a (i.e, limN→∞ z = a).

Now, we assume a 6= 0. Then from (4.92), we have

lim
N→∞

log N = lim
N→∞

1
z

log
Γ(z + 1)

c
=

1
a

log
Γ(a + 1)

c
< ∞ (4.94)

which is contradiction with limN→∞ log N = ∞. Therefore, we must have a = 0 (i.e,

limN→∞ z = 0), which gives

1
a

log
Γ(a + 1)

c
=

1
a

log
1
c

= ∞ (4.95)



Chapter 5

Outage Minimization in Cognitive
Radio with Limited Feedback

5.1 Introduction

In this chapter, we will design optimal quantized power control policy for a different

performance measure of SU, i.e, outage probability, with only partial channel informa-

tion available at SU-TX and subject to both ATP constraint on SU-TX and the individual

AIP constraint on each PU-TX (the same constraints as Chapter 3). Similar to Chapter

3, we consider an infrastructure-based narrowband spectrum sharing scenario where a

SU communicates to its base station (SU-BS) on a narrowband channel shared with a PU

communicating to its receiver PU-RX contained within the primary base station (PU-BS).

The key problem of jointly designing the optimal partition regions of the vector chan-

nel space consisting of the SU-TX to SU-RX channel (denoted by power gain g1) and the

interfering channel between the SU-TX and PU-RX (denoted by power gain g0), and com-

putation of an optimal power codebook is solved offline at a central controller called the

CR network manager as in Chapter 3, based on the channel statistics. The CR network

manager is assumed to be able to obtain the full CSI information of the vector channel

space (g1, g0) in real-time from the SU-BS and PU-BS, respectively, possibly via wired

links (similar to backhaul links in multi-cell MIMO networks connecting multiple base

stations). This real-time channel realization is then assigned to the optimal channel par-

tition and the corresponding partition index is sent to the SU-TX (and to the SU-RX for

decoding purposes) via a finite-rate feedback link. The SU-TX then uses the power code-

book element associated with this index for data transmission. It was shown in Chapter

135
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3 that without the presence of the CR network manager, and thus without the ability to

jointly quantize the combined channel space, the SU capacity performance is significantly

degraded if one carries out separate quantization of g1 and g0. Under these networking

assumptions, we prove a ’stepwise’ structure of the optimal channel partition regions,

which helps us explicitly formulate the outage minimization problem and solve it using

the corresponding KKT necessary optimality conditions. As the number of feedback bits

go to infinity, we show that the power level for the last region approaches zero, allowing

us to derive a useful low-complexity suboptimal quantized power allocation algorithm

called ’ZPiORA’ for high rate quantization. We also derive some other useful proper-

ties related to the channel quantizer structure as the number of feedback bits approaches

infinity: (a) under an active AIP constraint, the length of interval between any two ad-

jacent quantization thresholds on the g0 axis is asymptotically the same, and (b) while

when the AIP is inactive, the ratio between any two adjacent quantization thresholds on

the g1 axis asymptotically becomes identical. Finally, with these properties, we derive ex-

plicit expressions for asymptotic (as the number of feedback bits increase) behavior of the

SU outage probability with quantized power allocation for large resolution quantization.

Numerical studies illustrate that with only 6 bits of feedback, the designed optimal algo-

rithms provide secondary outage probability very close to that achieved by full CSI. With

2-4 bits of feedback, ZPiORA provides a comparable performance, thus making it an at-

tractive choice for large number of feedback bits case. Numerical studies also show that

ZPiORA performs better than two other suboptimal algorithms constructed using exist-

ing approximations in the literature. Finally, it is also shown that the derived asymptotic

outage behavior approximates the optimal outage extremely well as the number of feed-

back bits becomes large.

This chapter is organized as follows. Section 5.2 introduces the system model and the

problem formulation based on the full CSI assumption. Section 5.3 presents the joint de-

sign of the optimal channel partition regions and an optimal power codebook algorithm.

A low-complexity suboptimal quantized power allocation strategy is also derived us-

ing novel interesting properties of the quantizer structure and optimal quantized power

codebooks. In Section 5.4, the asymptotic behavior of SU outage probability for high res-



5.2 System Model and Problem Formulation 137

olution quantization is investigated. Simulation results are given in Section 5.5, followed

by concluding remarks in Section 5.6. All proofs are relegated to the appendix section 5.7

in this chapter.

5.2 System Model and Problem Formulation

We consider an infrastructure-based spectrum sharing network where a SU communi-

cation uplink to the SU-BS coexists with a PU link (to the PU-BS) within a narrowband

channel. Regardless of the on/off status of PU, the SU is allowed to access the band

which is originally allocated to PU, so long as the impact of the transmission of SU does

not reduce the received signal quality of PU to an intolerable level. All channels here

are assumed to be Rayleigh block fading channels. Let g1 = |h1|2 and g0 = |h0|2, de-

note the nonnegative real-valued instantaneous channel power gains for the links from

the secondary transmitter (SU-TX) to the secondary receiver (SU-RX) and the SU-TX to

the receiver of PU respectively (where h1 and h0 are corresponding complex zero-mean

circularly symmetric channel amplitude gains). The exponentially distributed channel

power gain g1 and g0, are statistically mutually independent and, without loss of gen-

erality (w.l.o.g), are assumed to have unity mean. The additive noises for each channel

are independent Gaussian random variables with, w.l.o.g, zero mean and unit variance.

For analytical simplicity, the interference from the primary transmitter (PU-TX) to SU-RX

is neglected following previous work such as [7, 117](in the case where the interference

caused by the PU-TX at the SU-RX is significant, the SU outage probability results derived

in this chapter can be taken as lower bounds on the actual outage under primary-induced

interference). This assumption is justified when either the SU is outside the PU’s trans-

mission range or the SU receiver is equipped with interference cancellation capability

particularly when the PU signal is strong.

Given a channel realization (g0, g1), let the instantaneous transmit power (with full

CSI) at the SU-TX represented by p(g0, g1), then the maximum mutual information of the
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SU for this narrowband spectrum sharing system can be expressed as

R(g1, p(g0, g1)) =
1
2

log(1 + g1 p(g0, g1)) (5.1)

where log represents the natural logarithm. The outage probability of SU-TX with a pre-

specified transmission rate r0, is given as,

Pout = Pr{R(g1, p(g0, g1)) < r0} (5.2)

where Pr{A} indicates the probability of event A occurring. Using the interference tem-

perature concept in [7], a common way to protect PU’s received signal quality is by im-

posing either an average or a peak interference power (AIP/PIP) constraint at the PU-RX.

In [123], it was demonstrated that the AIP constraint is more flexible and favorable than

the PIP constraint in the context of transmission over fading channels, for both the SU

and the PU. Let Qav denote the average interference power limit tolerated by PU-RX,

then the AIP constraint can be written as,

E[g0 p(g0, g1)] ≤ Qav (5.3)

The following optimal power allocation problem that minimizes the outage proba-

bility of SU in a narrowband spectrum sharing with one PU, under both a long term

average transmit power (ATP) constraint at SU-TX and an AIP constraint at the PU-RX,

was considered in [117]

min
p(g0,g1)≥0

Pr{1
2

log(1 + g1 p(g0, g1)) < r0}

s.t. E[p(g0, g1)] ≤ Pav,

E[g0 p(g0, g1)] ≤ Qav (5.4)

where Pav is the maximum average transmit power at SU-TX.

With the assumption that perfect CSI on g0 and g1 is available at the SU-TX, the opti-
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mal power allocation scheme for Problem (3.2) is given by [117]

p(g0, g1) =


c
g1

, λ f + µ f g0 < g1
c ,

0, otherwise
(5.5)

where c = e2r0 − 1, and λ f , µ f are the nonnegative Lagrange multipliers associated with

the ATP constraint and the AIP constraint, respectively, and the optimal values of which

can be obtained by solving λ f (E[p(g0, g1)]− Pav) = 0 and µ f (E[g0 p(g0, g1)]−Qav) = 0 .

However, the assumption of full CSI at the SU-TX (especially that of g0) is usually

unrealistic and difficult to implement in practical systems, especially when this channel

is not time-division duplex (TDD). In the next section, we are therefore interested in de-

signing a power allocation strategy of the outage probability minimization Problem (5.4)

based on quantized CSI at the SU-TX acquired via a no-delay and error-free feedback link

with limited rate.

5.3 Optimum Quantized power allocation (QPA) with imperfect
g1 and g0 at SU-TX

5.3.1 Optimal QPA with limited rate feedback strategy

As shown in Fig.5.1, following our earlier work in Chapter 3, we assume that there is a

central controller termed as the CR network manager who can obtain perfect informa-

tion on g0 and g1, from PU-RX at the PU base station and SU-RX at the SU base sta-

tion respectively, possibly over fibre-optic links, and then forward some appropriately

quantized (g0, g1) information to SU-TX through a finite-rate feedback link. For further

details on the justification of and resulting benefits due this assumption, see Chapter 3.

Under such a network modelling assumption, given B bits of feedback, a power code-

book P= {p1, . . . , pL} of cardinality L = 2B, is designed offline purely on the basis of the

statistics of g0 and g1 information at the CR network manager. This codebook is known a

priori by both SU-TX and the SU-RX for decoding purposes. Given a channel realization

(g0, g1), the CR network manager employs a deterministic mapping from the current
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instantaneous (g0, g1) information to one of L integer indices (let I(g0, g1) denote the

mapping, which partitions the vector space of (g0, g1) into L regions R1, . . . ,RL, defined

as

I(g0, g1) = j, if (g0, g1) ∈ Rj, j = 1, . . . , L (5.6)

) and then sends the corresponding index j = I(g0, g1) to the SU-TX (and the SU-RX) via

the feedback link. The SU-TX then uses the associated power codebook element (e.g., if

the feedback signal is j, then pj will be used as the transmission power) to adapt its

transmission strategy.

Remark 5.1. Note that the CR network manager could be assumed to be located at the SU-BS

for the current setup and in this case, the PU-BS simply has to cooperate with the SU-BS by

sending the real-time full CSI information of g0. However, for future generalization of our work

to a multi-cell cognitive network scenario, we assume that the CR network manager is a separate

entity, which can obtain information from multiple PU-BS and SU-BS if necessary.

Spectrum sharing for a licensed band

SU-BS

CR network 
managerSU-TX

g1

g0
PU-BS

B bits feedback

Figure 5.1: System model for narrowband spectrum sharing scenario with limited rate
feedback

Define an indicator function xj, j = 1, . . . , L, as

Xj =


1, 1

2 log(1 + g1 pj) < r0,

0, otherwise
. (5.7)
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Let Pr(Rj), E[•|Rj] represent Pr((g0, g1) ∈ Rj) and E[•|(g0, g1) ∈ Rj], respectively.

Then the SU outage probability minimization Problem (5.4) with limited feedback can be

formulated as

min
pj≥0, Rj ∀j

L

∑
j=1

E[Xj|Rj]Pr(Rj)

s.t.
L

∑
j=1

E[pj|Rj]Pr(Rj) ≤ Pav

L

∑
j=1

E[g0 pj|Rj]Pr(Rj) ≤ Qav (5.8)

Thus the key problem to solve here is the joint optimization of the channel partition

regions and the power codebook such that the outage probability of SU is minimized

under the above constraints.

The dual problem of (5.8) is expressed as

max
λ≥0, µ≥0

g(λ, µ)− λPav − µQav, (5.9)

where λ, µ are the nonnegative Lagrange multipliers associated with the ATP and AIP

constraints in Problem (5.8), and the Lagrange dual function g(λ, µ) is defined as

g(λ, µ) = min
pj≥0, Rj, ∀j

L

∑
j=1

E[Xj + (λ + µg0)pj|Rj]Pr(Rj) (5.10)

The procedure to solve the above dual problem is:

Step 1: With fixed values of λ and µ, find the optimal solution (power codebook and quan-

tization regions) for the Lagrange dual function (5.10).

Step 2: Find the optimal λ and µ by solving the dual problem using subgradient search

method, i.e, updating λ, µ until convergence using

λl+1 = [λl − αl(Pav −
L

∑
j=1

E[pj|Rj]Pr(Rj))]+,
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µl+1 = [µl − βl(Qav −
L

∑
j=1

E[g0 pj|Rj]Pr(Rj))]+, (5.11)

where l is the iteration number, αl , βl are positive scalar step sizes for the l-th

iteration satisfying ∑∞
l=1 αl = ∞, ∑∞

l=1(αl)2 < ∞ and similarly for βl .

Remark 5.2. A general method to solve Step 1 is to employ a simulation-based optimization al-

gorithm called the Simultaneous Perturbation Stochastic Approximation algorithm (SPSA) (for a

step-by-step guide to implementation of SPSA, see [100]), where one can use the objective function

of Problem (5.10) as the loss function, and the optimal power codebook elements for each channel

partition are obtained via a randomized stochastic gradient search technique. Note that due to the

presence of the indicator function and no explicit expression being available for the outage proba-

bility with quantized power allocation, we can’t directly exploit the Generalized Lloyd Algorithm

(GLA) with a Lagrangian distortion, as we used in Chapter 3, to solve Problem (5.10). SPSA uses

a simulation-based method to compute the loss function and then estimates the gradient from a

number of loss function values computed by randomly perturbing the power codebook. Note that

SPSA results in a local minima (similar to GLA), but is computationally highly complex and the

convergence time is also quite long.

Due to the high computational complexity of SPSA and its long convergence time, to

solve Problem (5.10), we will next derive a low-complexity approach for solving Problem

(5.10). However, due to the original problem (5.8) not being convex with respect to the

power codebook elements, the optimal solution we can obtain is also locally optimal.

Let P = {p1, . . . , pL}, where p1 > · · · > pL ≥ 0, and the corresponding channel

partitioning R1, . . . ,RL denote the optimal solution to Problem (5.10). And let p(g0, g1)

represents the mapping from instantaneous (g0, g1) to the allocated power level. We can

obtain,

Lemma 5.1. Let {v1, . . . , vL} denotes the optimum quantization thresholds on the g1 axis (0 <

v1 < · · · < vL) and {s1, . . . , sL−1} indicates the optimum quantization thresholds on the g0 axis
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(0 < s1 < · · · < sL−1). Then we have ∀j, j = 1, . . . , L− 1:

p(g0, g1) =


pj, vj ≤ g1 < vj+1, 0 ≤ g0 < sj;

pL, otherwise.
(5.12)

where vj = c
pj

, and when µ > 0, sj = 1
µ(pj−pL) −

λ
µ ; when µ = 0, sj = ∞, condition 0 ≤ g0 < sj

becomes λ < 1
pj−pL

. The region RL includes two parts : the set RL1 = {(g0, g1) : vj ≤ g1 <

vj+1, g0 ≥ sj, ∀j = 0, . . . , L − 1} with s0 = 0, v0 = 0 and the set RL2 = {(g0, g1) : g1 ≥

vL, g0 ≥ 0}. The entire set RL1 is in outage.

Proof: The proof can be found in the appendix of this chapter.

(outage)

Figure 5.2: The ’stepwise structure’ of optimum quantization regions for µ > 0 case

Remark 5.3. When µ > 0, which implies that the AIP constraint is active, from Lemma 5.1, the
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optimum partition regions possess a stepwise structure, as shown in Fig.5.2; When µ = 0, i.e, the

AIP constraint is inactive and only ATP constraint is active (we must have λ > 0), Problem (5.8)

becomes a scalar quantization problem involving quantizing g1 only, and Lemma 5.1 reduces to

∀j, j = 1, . . . , L− 1:

p(g1) =


pj, vj ≤ g1 < vj+1;

pL, otherwise.
(5.13)

where λ < 1
pj−pL

and the two parts of RL becomes RL1 = {g1 : 0 ≤ g1 < v1} and RL2 =

{g1 : g1 ≥ vL}, and RL1 is in outage. Note that in this case we must have Qav ≥ Pav, due to

Qav ≥ ∑L
j=1 E[g0 pj|Rj]Pr(Rj) = ∑L

j=1 E[pj|Rj]Pr(Rj) = Pav.

From Lemma5.1, (due to the fading channels being independently exponentially dis-

tributed with unity mean) Problem (5.8) becomes,

min
pj≥0, ∀j

PL
out = 1− e−v1 +

L−1

∑
j=1

(e−vj − e−vj+1)e−sj

s.t. pL +
L−1

∑
j=1

(pj − pL)(e−vj − e−vj+1)(1− e−sj) ≤ Pav

pL +
L−1

∑
j=1

(pj − pL)(e−vj − e−vj+1)(1− e−sj(1 + sj)) ≤ Qav (5.14)

where PL
out denotes the outage probability with B = log2 L bits feedback QPA, vj = c

pj

and when µ > 0, sj = 1
µ(pj−pL) −

λ
µ , whereas when µ = 0, sj = ∞. Although the above

optimization problem may be verified to be non-convex, we can employ the Karush-

Kuhn-Tucker (KKT) necessary conditions to find local minima for Problem (5.14). Tak-

ing the partial derivative of first order of the Lagrangian of Problem (5.14) over pj, j =

1, . . . , L− 1, and setting it to zero, we can obtain

(e−vj − e−vj+1)[λ(1− e−sj) + µ(1− e−sj(1 + sj))]

= e−vj
c
p2

j
[ f̂ (pj−1)− f̂ (pj)], j = 1, . . . , L− 1; (5.15)
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where f̂ (p0) = 1 and

f̂ (pj) = (pj − pL)(λ + µ(1− e−sj)), 1 ≤ j ≤ L− 1. (5.16)

(5.15) also can be rewritten as j = 1, . . . , L− 1,

pj+1 =
c

vj − ln(1−
c

p2
j
[ f̂ (pj−1)− f̂ (pj)]

λ(1−e−sj )+µ(1−e−sj (1+sj))
)

, (5.17)

Equating the partial derivative of the Lagrangian function of Problem (5.14) over pL to

zero gives,

L−1

∑
j=1

(e−vj − e−vj+1)[λ(1− e−sj) + µ(1− e−sj(1 + sj))]

+ e−vL
c

p2
L

f̂ (pL−1) = λ + µ, (5.18)

Optimal values of λ and µ can be determined by solving

λ[pL +
L−1

∑
j=1

(pj − pL)(e−vj − e−vj+1)(1− e−sj)− Pav] = 0

µ[pL +
L−1

∑
j=1

(pj − pL)(e−vj − e−vj+1)(1− e−sj(1 + sj))−Qav] = 0 (5.19)

Thus, for fixed λ and µ, we need solve L equations of (5.17)(5.18) for the power codebook.

Given p1 and pL, from (5.17) we can successively compute p2, . . . , pL−1, and then we can

jointly solve the equation (5.17) with j = L− 1 and equation (5.18) numerically for p1 and

pL. The optimal value of λ and µ can be obtained by solving (5.19) with a subgradient

method, i,e. by updating λ and µ until convergence using (5.11). One can thus repeat the

above two steps (i.e, given λ and µ find the optimal power levels, and then using the re-

sulting optimal power levels update λ and µ) iteratively until a satisfactory convergence

criterion is met. This procedure can be formally summarized as:

a) First, if Pav ≤ Qav, we must have µ = 0, λ > 0. Starting with an arbitrary positive

initial value for λ, solve (5.15), (5.18) to obtain a power codebook {p1, . . . , pL}, and
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then use this codebook to update λ by (5.11). Repeat these steps until convergence

and the final codebook will be an optimal power codebook for Problem (5.14).

b) If Pav > Qav, we must have µ > 0. Let λ = 0, then solving KKT conditions gives

an optimal value of µ and corresponding power codebook {p1, . . . , pL}. With this

codebook, if ∑L
j=1 E[pj|Rj]Pr(Rj) ≤ Pav, then it is an optimal power codebook

for Problem (5.14). Otherwise we must have λ > 0 too, in which case, starting

with arbitrary positive initial values for λ and µ, obtain the corresponding power

codebook {p1, . . . , pL}, and then update λ and µ by (5.11). Repeat these steps

until convergence and the final codebook will be an optimal power codebook for

Problem (5.14).

5.3.2 Suboptimal QPA Algorithm

When the number of feedback bit B is large, the following Lemma allows us to obtain a

suboptimal but computationally efficient algorithm for large L.

Lemma 5.2. limL→∞ pL = 0

Proof: The proof can be found in the appendix of this chapter.

Remark 5.4. Lemma 5.2 shows that regardless of whether µ > 0 or µ = 0, with high rate

quantization, the power level for the last regionRL approaches zero, which implies that as L → ∞,

1) The non-outage part of RL, given by RL2, disappears gradually. In other words, RL → RL1.

Thus, when L → ∞, RL becomes the outage region with zero power.

2) When µ > 0, the quantization thresholds on g0 axis sj → s′j (s′j = 1
µpj

− λ
µ ), which gives

vj = cλ + cµs′j, and it means all the points given by coordinates (s′j, vj) lie on the line of g1 =

cλ + cµg0. Therefore, as L → ∞, the stepwise shape of the structure in µ > 0 case (i.e, the

boundary between non-outage and outage regions) approaches the straight line g1 = cλ + cµg0,

which is consistent with the full CSI-based power allocation result in (5.5).

Thus, when L is large, applying Lemma 5.2 (i.e, pL → 0) to Problem (5.14), the above L
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KKT conditions (5.15) and (5.18) can be simplified into L− 1 equations: ∀j, j = 1, . . . , L− 1

(e−vj − e−vj+1)[λ(1− e−s′j) + µ(1− e−s′j(1 + s′j))]

= e−vj
c
p2

j
[pj−1(λ + µ(1− e−s′j−1))− pj(λ + µ(1− e−s′j))] (5.20)

where when µ > 0, the quantization thresholds on g0 axis s′j = 1
µpj

− λ
µ , s′0 = 0, and

p0 = 1
λ+µs′0

; when µ = 0, s′j = ∞, s′0 = 0, and p0 = 1
λ . (5.20) also can be written as

pj+1 =
c

vj − ln(1−
c

p2
j
[pj−1(λ+µ(1−e

−s′j−1 ))−pj(λ+µ(1−e
−s′j ))]

λ(1−e
−s′j )+µ(1−e

−s′j (1+s′j))
)

, j = 1, . . . , L− 2;

λ(1− e−s′L−1) + µ(1− e−s′L−1(1 + s′L−1))
c

p2
L−1

[pL−2(λ + µ(1− e−s′L−2))− pL−1(λ + µ(1− e−s′L−1))]
= 1. (5.21)

Thus, with fixed values of λ and µ, starting with a specific value of p1, we can succes-

sively compute p2, . . . , pL−1 using (5.21). Then the second equation in (5.21) becomes an

equation in only p1, which can be easily numerically solved. We call this suboptimal QPA

algorithm as ’Zero Power in Outage Region Approximation’(ZPiORA), which is applica-

ble to the case of large number of feedback bits. Through simulation studies, we will

illustrate that ZPiORA performs well even for 4 bits of feedback.

Alternative suboptimal algorithms: For comparison purposes, we also propose two al-

ternative suboptimal algorithms described below:

(1) The first suboptimal algorithm is based on the Equal average power per region

approximation (EAPPR) algorithm, originally proposed in [13] in a non-cognitive

or typical primary network setting for an outage minimization problem with only

an ATP constraint. Alternatively, a related Equal Probability Per Region (exclud-

ing the outage region) approximation (EPrPR) algorithm may be also used. These

two methods (both have pL 6= 0) can be applied to our cognitive radio outage

minimization problem. However, ZPiORA is computationally simpler than these

two methods, especially when µ > 0. In addition, when Pav or Qav is small, ZPi-

ORA always outperforms EPrPR and EAPPR. It is seen however that when both
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Pav and Qav are large, for a small number of feedback bits, EPrPR and EAPPR may

outperform ZPiORA, whereas with a sufficiently large number of feedback bits,

ZPiORA is a more accurate approximation due to Lemma 5.2.

(2) The second algorithm is based on GLA with a sigmoid function approximation

(GLASFA) method proposed by [18], where the sigmoid function is used to ap-

proximate the indicator function in the Lagrange dual function (5.10). More specif-

ically, given a random initial power codebook, we use the nearest neighbor condi-

tion of Lloyd’s algorithm with a Lagrangian distortion d((g0, g1), j) = Xj + (λ +

µg0)pj to generate the optimal partition regions [83] given by, Rj = {(g0, g1) :

Xj + (λ + µg0)pj ≤ Xi + (λ + µg0)pi, ∀i 6= j}, i, j = 1, . . . , L,. We then use

the resulting optimal partition regions to update the power codebook by pj ≈

argminpj≥0E[σ(k( 1
2 log(1 + g1 pj) − r0)) + (λ + µg0)pj|Rj]Pr(Rj) for j = 1, . . . , L,

where we use the approximation Xj ≈ σ(k( 1
2 log(1 + g1 pj) − r0)), σ(x) = 1

1+ex

being the sigmoid function where the coefficient k controls the sharpness of the

approximation (for detailed guidelines on choosing k see [18]). The above two

steps of GLA are repeated until convergence. Numerical results illustrate that ZPi-

ORA significantly outperforms this suboptimal method. See Section 5.5 for more

details.

5.4 Asymptotic outage behaviour of QPA under high resolution
quantization

In this section, we derive a number of asymptotic expressions for the SU outage probabil-

ity when the number of feedback bits becomes very large. To this end, we will first derive

some useful properties regarding the quantizer structure at high rate quantization:

Lemma 5.3. As the number of quantization regions L → ∞, we can obtain the following results:

1) when µ > 0, the optimum quantization thresholds on the g0 axis satisfy

s′1 − s′0 ≈ s′2 − s′1 ≈ · · · ≈ s′L−1 − s′L−2 (5.22)

where s′j = 1
µpj

− λ
µ , j = 1, . . . , L− 1 and s′0 = 0.
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2) when µ = 0, the optimum quantization thresholds on the g1 axis satisfy

v1

v0
≈ v2

v1
· · · ≈ vL−1

vL−2
(5.23)

where vj = c
pj

, j = 1, . . . , L− 1 and v0 = cλ.

Proof: The proof can be found in the appendix of this chapter.

Lemma 5.4. In the high rate quantization regime, as L → ∞, we have

L−1

∑
j=1

(e−vj − e−vj+1)[λ(1− e−s′j) + µ(1− e−s′j(1 + s′j))] ≈
λPav + µQav

L− 1

L−1

∑
j=1

1
pj

. (5.24)

where for µ > 0, s′j = 1
µpj

− λ
µ . When µ = 0, s′j = ∞, and (5.24) simplifies to

ce−v1 ≈ Pav

L− 1

L−1

∑
j=1

vj, (5.25)

where vj = c
pj

.

Proof: The proof can be found in the appendix of this chapter.

With Lemma 5.3 and Lemma 5.4, the main result of this section can be obtained in the

below Theorem.

Theorem 5.1. The asymptotic outage probability of SU for a large number of feedback bits is

given as,

1) when µ > 0,

PL
out ≈ 1− e−cλ f [1− (1− e−

a
L )

1− e
−a(1+ 1

cµ f
)

1− e−
a(1+ 1

cµ f
)

L

] (5.26)

where a is a constant satisfying: (λ f Pav + µ f Qav)(λ f + a
2c )ecλ f ≈ [(λ f + µ f )(1− cµ f

1+cµ f
(1−

e
−a(1+ 1

cµ f
)
)) −

cµ2
f

(1+cµ f )2 (1 − e
−a(1+ 1

cµ f
)
(1 + a(1 + 1

cµ f
)))]. And We also have limL→∞ PL

out =

1− e−cλ f [1− 1−e
−a(1+ 1

cµ f
)

1+ 1
cµ f

].
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2) when µ = 0,

PL
out ≈ 1− e−cλ f (1+ β

L ) (5.27)

where β is a constant, given by e−cλ f ≈ λ f Pav
eβ−1

β . In this case we also have limL→∞ PL
out =

1− e−cλ f .

Proof: The proof can be found in the appendix of this chapter.

5.5 Numerical Results

In this section, we will examine the outage probability performance of the SU in the

narrow band spectrum sharing system with the proposed power allocation strategies

via numerical simulations. All the channels involved are assumed to undergo identical

Rayleigh fading, i.e, channel power gain g0 and g1 are i.i.d and exponentially distributed

with unit mean. And the required transmission rate is taken to be r0 = 0.25 nats per

channel use.

Fig. 5.3 displays the SU outage probability performance of the suboptimal algorithm

ZPiORA versus Pav with feedback bits B = {1, 2}, under Qav = −5 dB and Qav = 0

dB respectively, and compares these results with the corresponding outage probability

performance using optimal QPA. As observed from Fig. 5.3, when Qav = −5 dB, with B

fixed, the outage performance of ZPiORA and corresponding optimal QPA case almost

overlaps each other. When Qav = 0 dB, with Pav ≤ −5 dB, with same number of feedback

bits, the outage performances of these two methods are still indistinguishable; and with

Pav > −5 dB, the outage performance gap between ZPiORA and corresponding optimal

QPA is decreasing with increasing B. For example, with 1 bit feedback, at Pav = 10 dB,

the outage gap between ZPiORA and optimal QPA is 0.0347, but with 2 bits of feedback,

the outage performance of these two methods are very close to each other, which agrees

with Lemma 5.2 that ZPiORA is a near-optimal algorithm for large number of feedback

bits. Furthermore, Fig. 5.4 compares the outage performance of ZPiORA with another

suboptimal method (GLASFA) with Qav = −5 dB. We can easily observe that with a
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Figure 5.3: Outage probability performance comparison between ZPiORA and optimal
QPA

fixed number of feedback bits (2 bits or 4 bits), ZPiORA always outperforms GLASFA.

And ZPiORA is also substantially faster than GLASFA. For example, with fixed λ and µ

and 4 bits of feedback (Qav = −5dB, Pav = 10 dB), when implemented in MATLAB (ver-

sion 7.11.0.584 (R2010b)) on a AMD Quad-Core processor (CPU P940 with a clock speed

of 1.70 GHz and a memory of 4 GB), it was seen that GLASFA (with 100,000 training

samples, starting k = 20 and increasing it by a factor of 1.5 at each step which finally con-

verged at about k = 768.8672) took approximately 299.442522 seconds (different initial

guesses of the power codebook may result in different convergence time). In compari-

son, ZPiORA took only 0.006237 seconds to achieve comparable levels of accuracy. These

results further confirm the efficiency of ZPiORA.

Fig. 5.5 illustrates the outage performance of SU with optimal QPA strategy versus

Pav with feedback bits B = {2, 4, 6}, under Qav = −5 dB and Qav = 0 dB respectively, and
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Figure 5.4: Outage probability performance comparison between ZPiORA and other pos-
sible suboptimal algorithm : GLASFA

studies the effect of increasing the number of feedback bits on the outage performance.

For comparison, we also plot the corresponding SU outage performance with full CSI

case. Since ZPiORA is an efficient suboptimal method for large number of feedback bits,

we employ ZPiORA to obtain the outage performance instead of using optimal QPA for

B = 6 bits. First, it can be easily observed that all the outage curves decreases gradually

as Pav increases until Pav reaches a certain threshold, when the outage probability attains

a floor. This is due to the fact that in the high Pav regime, the AIP constraint dominates.

For a fixed number of feedback bits, the higher Qav is, the smaller the resultant outage

probability is, since higher Qav means PU can tolerate more interference. Fig. 5.5 also

illustrates that for fixed Qav, introducing one extra bit of feedback substantially reduces

the outage gap between QPA and the perfect CSI case. To be specific, for Qav = 0 dB and

Pav = 10 dB, with 2 bits, 4 bits and 6 bits of feedback, the outage gaps with the full CSI
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Figure 5.5: Effect of increasing feedback bits on outage performance of SU

case are approximately 0.1083, 0.0249 and 0.006979 respectively. And for any Qav, only 6

bits of feedback seem to result in an SU outage performance very close to that with full

CSI case.

Figure 5.6 compares the asymptotic outage performance derived in Theorem 5.1 and

the optimal QPA performance B = {4, 6, 8} under Qav = 0 dB. It is clearly observed that

increasing number of feedback bits substantially shrinks the outage performance gap be-

tween the asymptotic outage approximation and the corresponding optimal QPA perfor-

mance. For instance, with 4, 6, 8 bits of feedback at Pav = 10 dB, the outage gap between

the asymptotic outage approximation and the corresponding optimal QPA are around

0.0325, 0.00618, 0.000168 respectively. These results confirm that the derived asymptotic

outage expressions in Theorem 5.1 are highly accurate for B ≥ 8 bits of feedback. In

addition, Figure 5.7 depicts the asymptotic outage probability behavior of SU versus the
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Figure 5.6: Comparison between asymptotic outage performance and QPA performance
with Qav = 0dB

number of quantization level L at Qav = 0 dB, Pav = 10 dB, and compares the result

with corresponding full CSI performance. It can be seen from Figure 5.7 that the outage

decreases as the number of quantization level L increases, however, as L increases be-

yond a certain number (L ≥ 28, i.e, B ≥ 8 bits), the capacity curve starts to saturate and

approaches the full CSI performance. This further confirms that only a small number of

feedback bits is enough to obtain an outage performance close to the perfect CSI-based

performance.

5.6 Conclusions

In this chapter, we designed optimal power allocation algorithms for secondary outage

probability minimization with quantized CSI information for a narrowband spectrum
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sharing cognitive radio framework under an ATP constraint at SU-TX and an AIP con-

straint at PU-RX. We prove that the optimal channel partition structure has a “stepwise”

pattern based on which an efficient optimal power codebook design algorithm is pro-

vided. In the case of a large number of feedback bits, we derive a novel low-complexity

suboptimal algorithm ZPiORA which is seen to outperform alternative suboptimal algo-

rithms based on approximations used in the existing literature. We also derive explicit

expressions for asymptotic behavior of the SU outage probability for a large number of

feedback bits. Although the presented optimal power codebook design methods result

in locally optimal solutions (due to the non-convexity of the quantized power allocation

problem), numerical results illustrate that only 6 bits of feedback result in SU outage per-

formance very close to that obtained with full CSI at the SU transmitter. Future work

will involve extending the results to more complex wideband spectrum sharing scenario
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along with consideration of other types of interference constraints at the PU receiver.

5.7 Appendix

5.7.1 Proof of Lemma 5.1

We use an analysis method similar to [71] to prove our problem’s optimal quantizer struc-

ture. Let P = {p1, . . . , pL}, where p1 > · · · > pL ≥ 0, and the corresponding channel

partitioning R = {R1, . . . ,RL} denote the optimal solution to the optimization problem

(5.8), and p(g0, g1) = pj, if (g0, g1) ∈ Rj.

Let R∗
j = {(g0, g1) : vj ≤ g1 < vj+1, 0 ≤ g0 < sj}, j = 1, . . . , L − 1 and R∗

L =

R∗
L1 ∪ R∗

L2 = {(g0, g1) : vj ≤ g1 < vj+1, g0 ≥ sj, ∀j = 0, 1, . . . , L − 1} ∪ {(g0, g1) :

g1 ≥ vL, g0 ≥ 0}, where s0 = 0 and v0 = 0. We assume that the set R∗
j \ Rj is a

non-empty set, where \ is the set subtraction operation (i.e, if (g0, g1) ∈ R∗
j \ Rj, then

(g0, g1) ∈ R∗
j but (g0, g1) /∈ Rj). Then, the set R∗

j \ Rj can be partitioned into two sub-

sets S−j = (R∗
j \ Rj) ∩ (∪j−1

k=1Rk) and S+
j = (R∗

j \ Rj) ∩ (∪L
k=j+1Rk). In what follows, we

denote the empty set by ∅.

(1): We will show that S−j = ∅, ∀j = 1, . . . , L.

(a): When j = 1, it is obvious that S−1 = ∅. When 1 < j < L, if S−j 6= ∅, then we can al-

ways reassign the set S−j into region Rj without changing the overall outage probability.

This is due to the fact that within the set S−j ∈ R∗
j , we have vj ≤ g1 < vj+1 resulting in

1
2 log(1 + g1 pj) ≥ r0, and the power level in (∪j−1

k=1Rk) satisfies pk > pj. Thus S−j is never

in outage. However, the new assignment can achieve a lower Lagrange dual function

(LDF) in (5.10), due to g′(λ, µ)− g(λ, µ) = E[(λ + µg0)(pj − pk)|S−j ]Pr(S−j ) < 0, where

g′(λ, µ) denotes the LDF with the new assignment, which contradicts the optimality of

the solution P ,R.

(b) When j = L, if S−L 6= ∅, we can again reassign the set S−L into regionRL. 1) If some part

of S−L is in the set {(g0, g1) : 0 ≤ g1 < v1, g0 ≥ 0} of R∗
L1, we have 1

2 log(1 + g1 p1) < r0,

which implies that this part of S−L is always in outage. Therefore, this reassignment for

this part of S−L will not change the outage probability but will decrease the LDF due

to the power level pL in RL is the lowest. 2) For any j (j = 1, . . . , L − 1), if some part
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of S−L (called it ’S−Lp’) exists in the set {(g0, g1) : vj ≤ g1 < vj+1, g0 ≥ sj} of R∗
L1,

we have 1
2 log(1 + g1 pj) ≥ r0, 1

2 log(1 + g1 pj+1) < r0 and (λ + µg0)(pj − pL) ≥ 1.

And given S−Lp ⊂ (∪L−1
k=1Rk), let the power level for S−Lp be pk (where k could be any

value from {1, . . . , L − 1}). Reassigning this part of set S−L into region RL will dem-

inish the value of the LDF, since if k ≤ j (implying pk ≥ pj), g′(λ, µ) − g(λ, µ) =

E[1 + pL(λ + µg0) − pk(λ + µg0)|S−Lp]Pr(S−Lp) < 0 and if k > j (implying pk < pj),

g′(λ, µ) − g(λ, µ) = E[1 + pL(λ + µg0) − 1 − pk(λ + µg0)|S−Lp]Pr(S−Lp) < 0. 3) If some

part of S−L belongs to the set R∗
L2, similar to (a), we can show that the new partition for

this part of S−L does not change the overall outage probability and meanwhile reduces

the value of the LDF. These all contradict the optimality.

(2): We will now show that the set S+
j = ∅, j = 1, . . . , L. When j = L, it’s straightforward

that S+
L = ∅. When j < L, we assume that S+

j 6= ∅. Within the set S+
j ∈ R∗

j , we have

vj ≤ g1 < vj+1, implying 1
2 log(1 + g1 pj+1) < r0, or in other words, S+

j ∈ (∪L
k=j+1Rk)

is in outage. We can reallocate the set S+
j into region Rj. This reassignment not only

lowers the outage probability (S+
j with pj will not be in outage) but also lowers the

value of the LDF, given by g′(λ, µ) − g(λ, µ) = E[(λ + µg0)(pj − pk) − 1|S+
j ]Pr(S+

j ) ≤

E[(λ + µg0)(pj − pL)− 1|S+
j ]Pr(S+

j ) < 0, due to g0 < sj = 1
µ(pj−pL) −

λ
µ . This also contra-

dicts optimality.

Therefore, we have R∗
j \ Rj = ∅, ∀j = 1, . . . , L, i.e, R∗

j ⊆ Rj, ∀j = 1, . . . , L. Since

∪L
j=1R∗

j = the whole space of (g0, g1) = ∪L
j=1Rj, and R∗

j ⊆ Rj, ∀j, we can obtain that

R∗
j = Rj, ∀j = 1, . . . , L.

5.7.2 Proof of Lemma 5.2

We assume that limL→∞ pL 6= 0. Let δ = limL→∞ pL > 0. From the KKT condition (5.18),

we have

e−vL
c

p2
L
(pL−1 − pL)(λ + µ(1− e−sL−1))

= (λ + µ)(PL
out + e−vL) + µ

L−1

∑
j=1

(e−vj − e−vj+1)e−sj sj

≥ (λ + µ)(PL
out + e−vL) (5.28)
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Let P f
out denotes the outage probability with full CSI at SU-TX, then we have PL

out ≥ P f
out

and limL→∞ PL
out = P f

out. Taking the limit L → ∞ at both side of (5.28), gives,

lim
L→∞

e−vL
c

p2
L
(pL−1 − pL)(λ + µ(1− e−sL−1))

≥ (λ + µ)(P f
out + e−

c
δ ) 6= 0 (5.29)

Given p1 > · · · > pL > 0, it is clear that the sequence {pj}, j = 1, 2, . . . , L is a monotoni-

cally decreasing sequence bounded below, therefore it must converge to its greatest-lower

bound δ, as L → ∞. Therefore, it can be easily shown that for an arbitrarily small ε > 0,

we can always find a sufficiently large L such that pL−1 − pL < ε. Thus, as L → ∞,

(pL−1 − pL) → 0, which implies when µ > 0, sL−1 = 1
µ(pL−1−pL) −

λ
µ → ∞). This implies

that,

lim
L→∞

e−vL
c

p2
L
(pL−1 − pL)(λ + µ(1− e−sL−1))

= e−
c
δ

c
δ2 (λ + µ) lim

L→∞
(pL−1 − pL)

= 0. (5.30)

Which is in contradiction with (5.29). Thus, we must have

lim
L→∞

pL = 0. (5.31)

5.7.3 Proof of Lemma 5.3

As L → ∞, from Lemma 5.2, we have pL → 0. Applying it to Problem (5.14), we have

KKT conditions become (5.20).

1) µ > 0:

From s′j = 1
µpj

− λ
µ , we have pj = 1

λ+µs′j
, and we also have p0 = 1

λ+µs′0
. Applying it to

(5.20), the right hand side (RHS) of equation (5.20) becomes,

RHS = e−vj
c
p2

j
[
λ + µ(1− e−s′j−1)

λ + µs′j−1
− λ + µ(1− e−s′j)

λ + µs′j
]
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= e−vj
c(s′j−1 − s′j)

p2
j

λ+µ(1−e
−s′j−1 )

λ+µs′j−1
− λ+µ(1−e

−s′j )
λ+µs′j

s′j−1 − s′j
(5.32)

From the mean value theorem (MVT), we have

λ+µ(1−e
−s′j−1 )

λ+µs′j−1
− λ+µ(1−e

−s′j )
λ+µs′j

s′j−1 − s′j
=

−µ

(λ + µs′)2 [λ(1− e−s′) + µ(1− e−s′(1 + s′))] (5.33)

where s′ ∈ [s′j−1, s′j). As the number of feedback bits B = log2 L → ∞, the length of

quantization interval on g0 axis [s′j−1, s′j), j = 1, . . . , L − 1 approaches zero [13]. Hence

(5.33) becomes,

λ+µ(1−e
−s′j−1 )

λ+µs′j−1
− λ+µ(1−e

−s′j )
λ+µs′j

s′j−1 − s′j
≈ −µ

(λ + µs′j)2 [λ(1− e−s′j) + µ(1− e−s′j(1 + s′j))] (5.34)

Applying (5.34) to (5.32), we have

RHS ≈ e−vj cµ(s′j − s′j−1)[λ(1− e−s′j) + µ(1− e−s′j(1 + s′j))] (5.35)

Similarly, as L → ∞, we also have the length of quantization interval on g1 axis [vj, vj+1), j =

1, . . . , L− 2 approaches zero, thus from MVT,

e−vj − e−vj+1 ≈ e−vj(vj+1 − vj) (5.36)

Thus the left hand side (LHS) of equation (5.20) can be approximated as,

LHS ≈ e−vj(vj+1 − vj)[λ(1− e−s′j) + µ(1− e−s′j(1 + s′j))] (5.37)

From (5.35) and (5.37), we have j = 1, . . . , L− 2,

vj+1 − vj ≈ cµ(s′j − s′j−1) (5.38)
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since vj = cλ + cµs′j, (5.38) becomes, j = 1, . . . , L− 2,

s′j+1 − s′j ≈ s′j − s′j−1 (5.39)

namely,

s′L−1 − s′L−2 ≈ · · · ≈ s′1 − s′0 (5.40)

2) µ = 0:

In this case, we have s′j = ∞, j = 1, . . . , L− 1, (5.20) becomes,

e−vj − e−vj+1 = e−vj
c
p2

j
(pj−1 − pj) (5.41)

where j = 1, . . . , L− 1 and p0 = 1
λ . (5.41) can be rewritten as

1
vj

(e−vj − e−vj+1) =
1

vj−1
e−vj(vj − vj−1) (5.42)

where v0 = c
p0

= cλ. Applying (5.36) into (5.42), we have j = 1, . . . , L− 2,

1
vj

e−vj(vj+1 − vj) ≈
1

vj−1
e−vj(vj − vj−1) (5.43)

which gives, j = 1, . . . , L− 2

vj+1

vj
≈

vj

vj−1
(5.44)

namely,

vL−1

vL−2
≈ · · · ≈ v1

v0
(5.45)

Here completes the proof for Lemma 5.3.



5.7 Appendix 161

5.7.4 Proof of Lemma 5.4

As L → ∞, from Lemma 5.2, we have pL → 0. Adding the two equations of (5.19)

together and applying pL → 0, we have

L−1

∑
j=1

pj(e−vj − e−vj+1)[λ(1− e−s′j) + µ(1− e−s′j(1 + s′j))] = λPav + µQav (5.46)

The KKT conditions (5.20), also can be rewritten as,

pj(e−vj − e−vj+1)[λ(1− e−s′j) + µ(1− e−s′j(1 + s′j))]

= pj−1e−vj(vj − vj−1)
[ f̂ ′(pj−1)− f̂ ′(pj)]

pj−1 − pj
(5.47)

where f̂ ′(pj) = pj(λ + µ(1− e−s′j)). As mentioned before, as L → ∞, we have the length

of quantization interval on g1 axis [vj−1, vj), j = 2, . . . , L − 1 approaches zero, then we

also have [pj−1, pj), j = 2, . . . , L− 1 approaches zero, due to vj = c
pj

. Thus from MVT, we

have

e−vj−1 − e−vj ≈ e−vj(vj − vj−1)

f̂ ′(pj−1)− f̂ ′(pj)
pj−1 − pj

≈ λ(1− e−s′j−1) + µ(1− e−s′j−1(1 + s′j−1)) (5.48)

Applying (5.48) into (5.47), we can obtain, j = 2, . . . , L− 1

pj(e−vj − e−vj+1)[λ(1− e−s′j) + µ(1− e−s′j(1 + s′j))] ≈

pj−1(e−vj−1 − e−vj)[λ(1− e−s′j−1) + µ(1− e−s′j−1(1 + s′j−1))] (5.49)

Then applying the result of (5.49) into (5.46), we can have j = 1, . . . , L− 1

pj(e−vj − e−vj+1)[λ(1− e−s′j) + µ(1− e−s′j(1 + s′j))] ≈
λPav + µQav

L− 1
(5.50)
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which gives,

L−1

∑
j=1

(e−vj − e−vj+1)[λ(1− e−s′j) + µ(1− e−s′j(1 + s′j))] ≈
λPav + µQav

L− 1

L−1

∑
j=1

1
pj

. (5.51)

Here completes the proof for Lemma 5.4.

5.7.5 Proof of Theorem 5.1

1) when µ > 0

From the (5.22) of Lemma 5.3, we can easily obtain, j = 1, . . . , L− 1,

s′j ≈ js′1
1
pj

= λ + µs′j ≈ λ + jµs′1

vj =
c
pj
≈ cλ + jcµs′1 (5.52)

Let

z =
L−1

∑
j=1

(e−vj − e−vj+1)[λ(1− e−s′j) + µ(1− e−s′j(1 + s′j))]

(5.53)

where implies that 0 < z < λ + µ. Then from Lemma 5.4, we have

1
L− 1

L−1

∑
j=1

1
pj
≈ z′ (5.54)

where z′ = z
λPav+µQav

and 0 < z′ < λ+µ
λPav+µQav

. Applying (5.52) into (5.54) gives,

s′1 ≈
2(z′ − λ)

µL
=

d
L

(5.55)
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where d = 2(z′−λ)
µ . Let a = cµd = 2(z′ − λ)c, then s′1 ≈ a

cµL . Due to 0 < z′ < λ+µ
λPav+µQav

, we

have

lim
L→∞

a
L

= 0. (5.56)

From (5.53), we have

z = (λ + µ)e−v1 −
L−1

∑
j=1

(e−vj − e−vj+1)[(λ + µ)e−s′j + µe−s′j s′j]

≈ e−cλ[(λ + µ)e−
a
L − (1− e−

a
L )(λ + µ)

L−1

∑
j=1

e−j( a
L +s′1) − (1− e−

a
L )µs′1

L−1

∑
j=1

je−j( a
L +s′1)]

≈ e−cλ[(λ + µ)e−
a
L − (1− e−

a
L )(λ + µ)

L−1

∑
j=1

e−j b
L − (1− e−

a
L )

a
cL

L−1

∑
j=1

je−j b
L ] (5.57)

where b = a + Ls′1 = a(1 + 1
cµ ) and we also have limL→∞

b
L = 0. Since,

L−1

∑
j=1

e−j b
L =

1− e−b

1− e−
b
L
− 1,

L−1

∑
j=1

je−j b
L = − e(− b

L−b)(Le
b
L − eb − L + 1)

(1− e−
b
L )2

, (5.58)

(5.57) becomes

z ≈ e−cλ[(λ + µ)(1− (1− e−
a
L )

1− e−b

1− e−
b
L
)− (1− e−

a
L )

a
cL

e−
b
L (1− e−b)− Le−b(1− e−

b
L )

(1− e−
b
L )2

]

(5.59)

Since limL→∞
a
L = 0 and limL→∞

b
L = 0, we have

1− e−
a
L ≈ a

L

1− e−
b
L ≈ b

L
(5.60)
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And when L → ∞, we have

λ ≈ λ f

µ ≈ µ f (5.61)

Applying (5.60), (5.61) into (5.59) gives

z ≈ e−cλ f [(λ f + µ f )(1− a
b
(1− e−b))− a2

cb2 ((1− b
L
)(1− e−b)− be−b)]

≈ e−cλ f [(λ f + µ f )(1− a
b
(1− e−b))− a2

cb2 (1− e−b(1 + b))] (5.62)

Since

z = (λPav + µQav)z′

= (λPav + µQav)(λ +
a

2c
)

≈ (λ f Pav + µ f Qav)(λ f +
a

2c
) (5.63)

we can obtain a by solving following equation,

(λ f Pav + µ f Qav)(λ f +
a

2c
)ecλ f

≈ [(λ f + µ f )(1−
cµ f

1 + cµ f
(1− e

−a(1+ 1
cµ f

)
))−

cµ2
f

(1 + cµ f )2 (1− e
−a(1+ 1

cµ f
)
(1 + a(1 +

1
cµ f

)))]

(5.64)

From (5.64), with given Pav and Qav, a is a constant. Then when L is large,

PL
out ≈ 1− e−v1 +

L−1

∑
j=1

(e−vj − e−vj+1)e−s′j

≈ 1− e−cλ[e−
a
L − (1− e−

a
L )

L−1

∑
j=1

e−j b
L ]

= 1− e−cλ[1− (1− e−
a
L )

1− e−b

1− e−
b
L
]
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≈ 1− e−cλ f [1− (1− e−
a
L )

1− e
−a(1+ 1

cµ f
)

1− e−
a(1+ 1

cµ f
)

L

] (5.65)

and

lim
L→∞

PL
out = 1− e−cλ f [1− 1− e

−a(1+ 1
cµ f

)

1 + 1
cµ f

] (5.66)

2) when µ = 0

Let y = v1
v0

= v1
cλ > 1, then from the (5.23) of Lemma 5.3, we can get, j = 1, . . . , L− 1,

vj ≈ cλyj (5.67)

Applying (5.67) into the (5.25) of Lemma 5.4, we have,

e−cλy ≈ λPav

L− 1

L−1

∑
j=1

yj =
λPav

L− 1
yL − y
y− 1

(5.68)

Let x = y− 1. (5.68) becomes,

e−cλ(1+x) ≈ λPav(1 + x)
(1 + x)L−1 − 1

x(L− 1)
(5.69)

Now, suppose limL→∞ xL = ∞. Since

(1 + x)L−1 > 1 + (L− 1)x +
1
2
(L− 2)(L− 1)x2, (5.70)

we have

lim
L→∞

(1 + x)L−1 − 1
(L− 1)x

> lim
L→∞

1 +
1
2
(L− 2)x = ∞. (5.71)

Then taking the limit as L → ∞ on the both sides of the equation (5.69), gives

lim
L→∞

e−cλ(1+x) = ∞ (5.72)
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which contradicts with limL→∞ e−cλ(1+x) < 1, thus we must have limL→∞ xL = β < ∞

(where constant β ≥ 0), implying

as L → ∞, x → β

L
. (5.73)

Applying (5.73), (5.69) becomes,

e−cλ(1+ β
L ) ≈ λPav(1 +

β

L
)
(1 + β

L )L−1 − 1
β
L (L− 1)

(5.74)

and then taking the limit as L → ∞ on the both sides of above equation, we have

e−cλ f ≈ λ f Pav
eβ − 1

β
(5.75)

Note that limL→∞(1 + β
L )L−1 = eβ and when L is large, λ ≈ λ f . Thus, we can obtain

constant β through solving (5.75). Therefore, when L is large,

PL
out = 1− e−v1

= 1− e−cλ(1+x)

≈ 1− e−cλ f (1+ β
L ) (5.76)

and

lim
L→∞

PL
out = 1− e−cλ f (5.77)

Here completes the proof for Theorem 5.1.



Chapter 6

Conclusion

The thesis has designed various optimal resource allocation algorithms and provided

corresponding analytial justifications for wireless communication networks with limited

feedback to largely improve their system performance, as opposed to the prevalent as-

sumption of full CSI in most existing work. Below we will summarise our work, and

present some possible ideas for the future research related to the topics in this thesis.

6.1 Summary of Contributions

In chapter 2, we have studied the outage probability minimization problem with quan-

tized CSI for an M-parallel Nakagami block-fading channels under a long term average

power constraint. We formulated the outage problem with limited feedback and provide

a numerical iterative algorithm to find the optimal power codebook, followed by the

modified explicitly problem formulation using the power ordering and linearized ap-

proximation. Two low-complexity suboptimal algorithms were also presented for high

average power regime. The diversity order for the outage probability was derived for the

Nakagami fading case using our power allocation algorithm based on the power order-

ing and linearized approximation. For large number of parallel channels system, a valid

Gaussian approximation based sub-optimal algorithm was also provided.

In chapter 3, quantized power allocation algorithms for a wideband spectrum shar-

ing system were investigated. To maximize the SU ergodic capacity under an average

sum transmit power constraint and individual average interference constraints at the PU
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receivers, a Modified Generalized Lloyd-type algorithms (GLA) have been derived and

various properties of the quantized power allocation laws have been presented, along

with a rigorous convergence and consistency proof of the modified GLA based algo-

rithm. For large number bits of feedback, we have also derived an approximate quan-

tized power allocation algorithms that perform very close to the modified GLA based

algorithms but with much lower complexity and significantly faster. Finally, we have

extended the modified GLA based quantized power allocation algorithm to the case of

noisy limited feedback.

Chapter 4 considered the problem of throughput maximization for a narrowband

spectrum sharing cognitive radio network where a secondary user sharing the same fre-

quency band with a number of primary users, subject to a long term ATP constaint at

SU-TX and individual PIP constaints at each primary receiver. Three dissimilar quan-

tized power codebooks were derived along with their associated theoretical properties

for the throughput maximization problem associated with three different forms of ob-

taining the partial channel informantion of g1 and g0 at SU-TX, i.e, perfect g1 and quan-

tized g0, estimated g1 and quantized g0, quantized g1 and quantized g0.

In Chapter 5, we considered the optimal transmit power control design with quan-

tized CSI information for a narrowband spectrum sharing cognitive radio framework

to minimize the outage probability performance and meet the ATP constraint at SU-TX

and the AIP constraint at PU-RX. A complex general numerical algorithm for finding the

optimal power codebook with SPSA and another more efficient low-complexity power

codebook design approach were provided. With various useful properties, we devel-

oped a suitable explicit expression for asymptotic behavior of the SU outage probability

as number of feedback bits increases.

6.2 Future Research

For the quantized power allocation problem for parallel channels studied in Chapter 2,

possible future work will include extension of these results to correlated fading channels,

different fading environment such as rician fading, consideration of noisy or erroneous
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feedback as investigated in [92][20] and quantized CSIT based power allocation to more

general optimization problems such as the service-outage based power and rate alloca-

tion in [53].

For the work of quantized power control in cognitive radio networks, deriving ex-

pressions for asymptotic (as the number of feedback bits goes to infinity) capacity loss

with quantized power allocation in Chapter 3, extending the results of Chapter 4 and

Chapter 5 to more complex wideband spectrum sharing scenario can be done. Possible

future work also include consideration of primary interference at the secondary receiver

and quantized power allocation with other types of interference constraints at the pri-

mary receiver, such as PU’s capacity loss and PU’s outage probability [91]. It also can be

done the extension of these results to other fading environment such as Nakagami fading.

And It would be interesting to consider the asymmetric fading channels scenario. Con-

sideration of multiple secondery users and multiple primary users in quantized power

allocation design can also be investigated.

Random vector quantization (RVQ) is a simple approach to a beamforming code-

book design for multiple-antenna systems that generates the beamforming vectors in-

dependently from a uniform distribution on the complex unit sphere. It is possible to

employ RVQ to design the power codebooks in this thesis. However, RVQ is generally

suboptimal (compared to the generalized Lloyd algorithm developed in this thesis) for a

finite-size codebook and asymptotically optimal when the codebook size goes to infinity.

Hence it is more suitable for an asymptotic performance analysis. On the other hand,

the distribution of the optimal transmission power allocation policies as a function of full

channel information, as derived in the thesis are complex and do not have closed-form

expressions. Therefore the process of generating a codebook using RVQ from this distri-

bution is difficult and is possible only via numerical simulation. This defeats the purpose

of using RVQ, which is generally used to obtain an asymptotic analytical performance

of resource allocation based on quantized systems. However, we agree that as asymp-

totic analysis of our quantized power allocation scheme for spectrum sharing cognitive

radio networks is necessary and although beyond the scope of the current thesis, will be

investigated in future work.
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