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Abstract

Arterial Spin Labelling (ASL) provides a direct measurement of Cerebral Blood Flow
(CBF) and is known to correlate with changes in neuronal activation during fMRI
paradigms. While the Blood-Oxygenated Level Dependent (BOLD) signal also corre-
lates with neuronal activation, it results from indirect measurement of unobserved phys-
iological variables. In this thesis, mathematical models of CBF were constructed to be
profiled within a simulation framework and then used in the analysis of an experimental
ASL dataset. The validity of each model was scrutinized through a model comparison
framework. The findings of the thesis show that although higher-order models of CBF
can be constructed, they may not offer any greater insight into ASL-fMRI data than a
simple model and in fact, may be less accurate. It is concluded that the proposed model
testing framework provides a useful first pass of data to establish the level of complex-
ity used to model fMRI data. As signal acquisition methods improve, the models of
fMRI signal change to hemodynamic responses will thus become verifiable and become
a practical means of signal estimation. Until that time, complex multiparameter models
of brain physiology during fMRI experimentation may be proposed, but as this thesis
demonstrates, such models will be extremely difficult to verify experimentally.
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Chapter 1

Introduction to fMRI

When we use our brains to think or initiate an action, an entire cascade of events occur.
These events span biochemical interactions within the neuron, cell-to-cell interactions,
physiological responses in the local brain tissue, networked cortical activation across
the brain. Over the centuries, the lack of a tool that allowed one to look into the
mind at work had limited neuroscience to either diagnosis through cognitive behaviour,
investigation into physical debilitation (for example, lesions due to stroke and meta-
stasis) or experimentation through anatomical dissection and lobotomies. Development
of semi-invasive and non-invasive neuroimaging techniques such as position emission
tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG),
functional near infrared imaging (fNIRS), and functional magnetic resonance imaging
(fMRI) has allowed us to bridge the gap between the laboratory bench and the psychol-
ogist’s couch and to observe the whole brain at work.

Bandettini (2007) describes fMRI as “being comprised of four interacting, co-evolving
parts: hardware, methodology, signal interpretability and applications, each driving and
feeding off the advances of the others" (Figure 1.1). This statement summarizes the
dynamic and evolving nature of fMRI research; although it is a multidisciplinary field
of science, techniques in fMRI are so interwoven that an advance in one part is likely
to influence the direction of new research in other parts. FMRI has advantages over
other forms of functional imaging such as EEG and PET due to its ability to measure
multiple effects (Ogawa and Lee, 1990; Wong et al., 1997; Lu et al., 2003) and also
provides the best combined spatial and temporal resolution over the entire brain (Toga
and Mazziotta, 2002). However, there are definite limitations as to what can be done
with fMRI. As Logothetis (2008) emphatically states, “fMRI is not and will never be a
mind reader", he highlights the difficulties of obtaining accurate activation measurements
using such a technique. Trade offs between spatial and temporal resolution at both
local and global scales provide a soft ceiling for how far the technology can be pushed.

1



2 CHAPTER 1. INTRODUCTION TO FMRI

Figure 1.1: The four components of fMRI [according to Bandettini (2007)].

Nevertheless, despite its limits fMRI has played an unprecedented role in developing and
expanding neuroscience.

FMRI like all neuroimaging techniques is grounded in physiology. As such, many MRI
sequences for functional signal measurement have been developed to complement the ear-
liest fMRI signal, the blood-oxygenation level dependent (BOLD) signal found by Ogawa
and Lee (1990). Physiological signals that now can be measured include cerebral blood
flow (CBF) using arterial spin labelling (ASL-fMRI) (Wong et al., 1997; Jahng et al.,
2007), cerebral blood volume (CBV) using vascular space occupancy (VASO-fMRI) (Lu
et al., 2003) and venous refocusing for volume estimation (VERVE-fMRI) (Stefanovic
and Pike, 2005). Additionally, the BOLD-fMRI signal has been integrated with non-
fMRI methods of signal acquisition such as micro-electrode measurements (Goense and
Logothetis, 2008; Logothetis et al., 2001; Oeltermann et al., 2007) and EEG (Vulliemoz
et al., 2009; Christmann et al., 2007). The micro-electrode experiments have allowed
fMRI signals to be correlated with invasive studies that provide higher spatial and tem-
poral resolution of brain physiology.

As more and more fMRI signals are developed and improved, theoretical models of
physiology describing the biophysical origins of such signals enable better interpretation
of information. Most of the modelling has concentrated on investigation into the BOLD-
fMRI signal, as it is the earliest and most studied. Other fMRI sequences have not
received the same amount of attention in theoretical modelling and most researchers have
only used other sequences to add additional information to the BOLD-fMRI model such
as the measurement of ASL-fMRI signal alongside the BOLD-fMRI signal for estimation
of the cerebral metabolic rate of oxygen (CMRO2) by Davis et al. (1998). However
the ASL-fMRI signal may be analysed independently and is a closer representation of
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physiology than the BOLD-fMRI signal.

The key question that arises is whether ASL-fMRI data can be modelled better than the
existing methods through inclusion of physiologically grounded parameters. The thesis
aims to investigate this question by providing a framework for model comparison and
then using this framework to evaluate the effectiveness of current and proposed models
of CBF data collected using ASL-fMRI. Chapter 2 gives an overview of the history of
fMRI modelling, focusing on BOLD-fMRI and ASL-fMRI modelling. Chapter 3 outlines
proposed ASL-fMRI models as well as mathematical tools and analysis frameworks that
are used for model estimation and selection. Chapter 4 provides simulations using the
modelling framework and tests for the sensitivity of various CBF models to noise, sam-
pling time and other factors. Chapter 5 uses a subset of models determined to be robust
enough for analysis to ascertain the best model for use in analysis of experimental CBF
data.
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Chapter 2

Modelling of fMRI Signals

In reading any work regarding fMRI signal modelling, it is useful to keep in mind that
all fMRI signals have their origins in neuronal activation. The challenge motivating cur-
rent research is to find the most direct correlate to neuronal activation using an array of
fMRI techniques. The last section of this chapter presents evidence to support the hy-
pothesis governing this thesis: that direct modelling ASL-fMRI data may offer a better
estimate of neuronal activation than the current methods. However, understanding how
this hypothesis was reached requires an understanding of BOLD-fMRI modelling signal
and the research leading up to the work done during this thesis. This chapter primarily
describes how fMRI signals came to be measured as well as how they have been inter-
preted through biophysical modelling. ASL-fMRI, BOLD-fMRI and other theoretical
frameworks for modelling fMRI signal behaviour are introduced: first from a biophysical
viewpoint of how the signal is obtained, and then from a hemodynamic viewpoint of
how the signals interact with each other. Finally, experimental work is presented in or-
der to support the hypothesis outlined earlier thus giving the motivation for conducting
research in this area.

2.1 Biophysics of Functional Imaging

Italian scientist Angelo Mosso first described an alteration of regional brain circulation
as a response to a mental activity (Mosso, 1884). This phenomena has been repeated
in countless experiments using PET, fMRI and other techniques (Raichle, 1998). FMRI
measurement depends on hemodynamic changes affecting the local magnetic suscepti-
bility of an activated region of the brain. The two main changes are: substrate delivery
(blood flow) and substrate consumption (metabolism). These changes play a key role
in modulating signals observed using fMRI. Understanding the underlying mechanisms
driving these physiological changes therefore becomes paramount. Consequently, re-

5
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search has progressed from asking qualitative questions – “what is changing?" to asking
quantitative questions – “how is it changing?". Much experimental evidence has been
accumulated and used to propose theoretical models of brain oxygenation. Ultimately,
all of the questions asked converge on the one goal: providing accurate measurement and
modelling of brain behaviour in order to produce measured fMRI signal from stimulated
neuronal activity.

It was the early work of Roy and Sherrington (1890) and their observations of neuro-
vascular changes in various animal models under the effects of mechanical and electri-
cal stimulation and drugs that formed an understanding of the neuro-vascular coupling
mechanism. Three experiments gave remarkable insights into the dependence of brain
volume on brain chemistry. The experiments recorded cerebral blood volume, arterial
pressure and venous pressure in the brain whilst the animals were exposed to an assort-
ment of exogenous conditions designed to provoke changes in brain physiology. The first
experiment observed effects after various acids were introduced into the blood stream of
a dog. The second experiment observed effects after controlled asphyxiation was induced
in a dog. The third experiment observed effects in a dog after injection of tissue extracts
from the oxygen deprived brain of another dog. All three induced rapid increases in
the observed blood volume while not affecting blood pressure. These effects resulted in
a hypothesis that the hemodynamic response induced by neuronal activity was chemi-
cally activated due to requirements of increased local metabolism. Roy and Sherrington
(1890) concluded that,

“The chemical products of cerebral metabolism...can cause variations of the
calibre of the cerebral vessels. In this reaction the brain possesses an intrinsic
mechanism by which its vascular supply can be varied locally in correspon-
dence with local variations of functional activity."

After over a century of experimentation and technological advancement, the scientific
community has expanded upon the principle hypothesis of Roy and Sherrington (1890).
The idea that substrate delivery by blood flow increased due to the increased metabolic
requirements of the signalling neuron has been proven to be oversimplified and inaccurate.
The current body of research has undergone a conceptual shift in the modelling and
understanding of the neuronal activation response (Attwell and Iadecola, 2002). It is now
believed that mechanisms for regulation of blood flow and metabolism have quite separate
mechanisms of activation. The contribution of all hemodynamic mechanisms to the final
observed signal using fMRI is paramount in the understanding of brain dynamics. FMRI
research has responded by using mathematical modelling to infer processes governing
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Figure 2.1: Hemodynamic processes involved in activation [adapted from Buxton et al. (2004)].

physiological dynamics of the brain. Figure 2.1 depicts the physiological effects that
contribute to measurement of fMRI signals.

The two observed signals used most extensively in fMRI research are the BOLD-fMRI
signal and the calibrated-BOLD signal, equivalent to the estimated CMRO2 response.
With multi-signal acquisition capabilities, physiological signals can be measured includ-
ing ASL-fMRI (Wong et al., 1997; Jahng et al., 2007), VASO-fMRI (Lu et al., 2003),
VERVE-fMRI (Stefanovic and Pike, 2005) as well as the more contentious neuronal cur-
rent (Chen-Bee et al., 2007; Kraus et al., 2008). Understanding how the brain operates
requires many levels of conceptual modelling that interface with all associated functions
of the brain, for instance: the psychology; the anatomy; the physiology; and the bio-
chemistry. Therefore, equipment and methods that can clearly identify physiological
changes on all such levels are very important to understanding how the brain operates.
The next section details how the physiological components are observed whilst Section
2.3 examines individual dynamics of components seen in Figure 2.1.
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2.2 Observations of Biophysical Signals

This section examines the biophysical basis of MRI signals (Section 2.2.1), how they
are used in the models and presents the mathematical derivations of ASL-fMRI (Section
2.2.2) and BOLD-fMRI (Section 2.2.3) signals.

2.2.1 MRI Basics and the Theory of NMR

Nuclear magnetic resonance (NMR) was discovered in 1946 by two independent research
groups, one led by Edward Purcell and the other by Felix Bloch. The two leading
researchers’ work in radar during World War II and their subsequent development of
radiofrequency techniques allowed them to apply the same techniques to investigate
nuclear magnetism (Purcell et al., 1946; Bloch et al., 1946). The NMR effect is found
in atoms with odd numbered nuclei that therefore possess a nuclear magnetic moment,
causing them to precess around the axis of an externally directed magnetic field (B0)
at a frequency (ω0) proportional to the strength of the magnetic field. This frequency
is known as the Larmor frequency, named after Joseph Larmor, an Irish mathematician
who first explained a similar electromagnetic effect for electrons (Larmor, 1896). The
Larmor equation of nuclear magnetic resonance is:

ω0 = γB0 (2.1)

The gyro-magnetic constant, γ, is unique for every atomic nuclei. Purcell and Bloch con-
ducted experiments that looked at two different aspects of the same phenomenon. Purcell
et al. (1946) showed that energy was absorbed by a homogeneous material when an elec-
tromagnetic stimulus was applied at the Larmor frequency, whilst Bloch et al. (1946)
showed that oscillations produced by applying an external magnetic field could in fact
be measured using a coiled solenoid. These experiments demonstrated that magnetic
properties of materials were able to be quantitatively measured with high precision.

Magnetic Resonance Imaging takes advantage of the resonance property of hydrogen
nuclei in the body – abundantly found in the body allowing for a strong detectable
signal. γ of hydrogen is 42.58 MHz/T. This is used to tune the resonant frequency for
hydrogen nuclei. MRI measures the NMR signals arising from the interactions between
the tissue and an external magnetic field after electromagnetic stimulation. Lauterbur
(1973) first demonstrated the principles of MRI, applying additional encoding gradients
to localize space in a systematic manner such that a 2D or 3D reconstruction of an object
could be obtained efficiently.
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The Bloch Equation Tissues within the body can be differentiated through behaviour
of their bulk magnetisation under excitation, done using MRI. This phenomena is mod-
elled using the Bloch equation - a set of differential equations proposed by Bloch based
upon empirical observation describing the dynamics of M(t) within an external magnetic
field B(t):

dM(t)

dt
= M(t)× γB(t)−R



M(t)−





0

0

M0







 where M(t) =





Mx(t)

My(t)

Mz(t)



 (2.2)

R =





1
T2

0 0

0 1
T2

0

0 0 1
T1



 (2.3)

R is known as the ‘relaxation matrix’ and is related to how quickly each component of
M(t) returns to the equilibrium state. Equation (2.2) can be separated into its axial
components:

dMx(t)

dt
= γ[My(t)Bz(t)−Mz(t)By(t)]−

Mx(t)

T2

dMy(t)

dt
= γ[Mz(t)Bx(t)−Mx(t)Bz(t)]−

My(t)

T2
(2.4)

dMz(t)

dt
= γ[Mx(t)By(t)−My(t)Bx(t)]−

Mz(t)−M0

T1

The two constants T1 and T2 describe relaxation rates. T1 and T2 are only applicable to
tissues (bulk nuclei) and describes a group relaxation effect. T1 arises from spin-lattice
interactions and measures the half-life of longitudinal recovery due to energy transfer
between nuclei and the homogeneous lattice. T2 arises from spin-spin interactions and
measures the half-life of transverse decay. Different tissues have different values of T1

and T2 which are utilized by MRI to provide contrast.

2.2.2 Observed Model of the ASL-fMRI Signal

Perfusion imaging or measurement of whole brain CBF was first achieved using positron
emission tomography (PET) through an injection of a radioactive tracer into the blood-
stream (Phelps et al., 1975; Ter-Pogossian et al., 1975). A technique for perfusion mea-
surement was developed for MRI known as Arterial Spin Labelling or ASL-fMRI, the
advantage being that CBF images could be obtained without the need for an extrogenous
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contrast agent (Detre et al., 1992; Dixon et al., 1986; Williams et al., 1992). ASL uses
an endogenous tracer created through magnetically ‘tagging’ or exciting arterial blood
just below the head; the tagged blood can then be imaged as blood flows into the brain.

Modelling the ASL-fMRI signal requires modification of the Bloch Equations (2.4) so
that the model includes magnetization effects in the presence of flow of blood into and
out of the voxel. The theory presented is based on derivations by Williams et al. (1992)
and Alsop and Detre (1996). In their model, only the z-component of Equation (2.4) is
considered because the inverting magnetic pulse is applied in the z-direction. Assuming
contributions from Bx(t) and By(t) are zero and assuming that there is a flow of blood
f(t) into the brain with magnetization Ma(t), the z-component seen in Equation (2.4)
with inclusion of flow can be rewritten as:

dMz(t)

dt
= −Mz(t)−M0

T1
+ f(t)Ma(t)− λ(t)f(t)Mz(t) (2.5)

The first additional component, f(t)Ma(t), represents the magnetisation of the water
entering the brain. The theory then assumes that the spins are continuously inverted
such that the magnetisation is constant (Ma(t) = −Ma0). The other additional com-
ponent, f(t)λ(t)Mz(t), is the magnetisation of the water leaving the brain. λ(t) is the
fractional volume partition of the ratio between the total water content per volume of
blood compared to the total water content per volume of brain tissue. In the model,
λ(t) is assumed to be a constant (λ(t) = λ0). Note that in most formulations of ASL
citing Alsop and Detre (1996), Wang et al. (2002) and Williams et al. (1992), the con-
vention is to define another fractional volume partition where they use the inverse of
the current definition, i.e. λ = 1

λ0
. Using the current definition of λ0 results in more

tractable mathematics and is used throughout.

Continuous CBF Steady-State Model The the simplest model of CBF measure-
ment using ASL-fMRI assumes that the magnetisation is continuously applied to the
arterial blood flowing into the head. The blood is assumed to be a constant f(t) = f (m).
Furthermore, it is also assumed by the ASL-fMRI model that under fully relaxed con-
ditions for the water in both the brain and blood flowing into the brain, the in-flowing
magnetization is equal to the out-flowing magnetization:

f(t)Ma(t) = f (m)Ma0 = λ0f
(m)M0 (2.6)

λ0f (m)M0 is substituted for f(t)Ma(t) in Equation (2.5) and the solution of the differ-



2.2. OBSERVATIONS OF BIOPHYSICAL SIGNALS 11

ential equation is:

Mz(t) =
M0

1 + λ0f (m)T1

�
(1− λ0f

(m)T1) + 2λ0f
(m)T1e

−t(1/T1+λ0f (m))
�

(2.7)

It can be seen that for continuous inversion of arterial spins results in an exponential
decrease in Mz(t) with time constant T1A where:

1

T1A
=

1

T1
+ λ0f

(m) (2.8)

Assuming that the change in blood flow f (m) over time remains too small to significantly
affect the value of T1A, the steady state magnetisation, M (ss)

z = Mz(t = ∞) can be
determined to be:

M (ss)
z = Mz(t = ∞) = M0

1− λ0f (m)T1

1 + λ0f (m)T1
(2.9)

Equation (2.8) can be rearranged with T1 as the subject:

T1 =
T1A

1− λ0f (m)T1A
(2.10)

The expression for T1 is substituted into Equation (2.9):

M (ss)
z = M0

1− λ0f (m)T1A

1−λ0f (m)T1A

1 + λ0f (m)T1A

1−λ0f (m)T1A

(2.11)

Let χ = λ0f (m)T1A:

M (ss)
z = M0

1− χ
1−χ

1 + χ
1−χ

= M0
1− χ− χ

1− χ+ χ
= M0(1− 2χ)

= M0(1− 2λ0f
(m)T1A) (2.12)

So the flow f (m) can be determined by making it the subject:

f (m) =
1

2λ0T1A

�
1− M (ss)

z

M0

�
(2.13)

Since T1A, M0, M
(ss)
z are all measurable quantities of MRI, f (m) can be determined using

Equation (2.13).
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Continuous CBF Model for Varying TR The equations of the behaviour of steady-
state model can be extended for discretely sampled CBF images in time. The most
common method is for the continuous inversion of spins during the recovery period
(TR) in a conventional imaging sequence. Two images are obtained - a control image,
M (ctr)

z (t = TR), and an inverted image, M (inv)
z (t = TR), that has its spin inverted with

respect to the control. By solving the equations, the flow f (m) can be obtained. The
following derivation belongs to Williams et al. (1992). The model assumes that arterial
spins for detection are replenished with inverted spins much quicker than recovery time
so Ma(t) = −Ma0 (just like the previous model). Equation (2.5) is solved for a slice
selection pulse with tip angle φ and t = TR. When the inversion pulse is on during the
TR period, the intensity M (inv)

z (t = TR) can be written as:

M (inv)
z (t = TR) = M0

1− λ0f (m)T1

1 + λ0f (m)T1

1− e−(1/T1+λ0f (m))TR

1− cos(φ)e−(1/T1+λ0f (m))TR
(2.14)

The control image M (ctr)
z (t = TR) can be written as:

M (ctr)
z (t = TR) = M0

1− e−(1/T1+λ0f (m))TR

1− cos(φ)e−(1/T1+λ0f (m))TR
(2.15)

Similarly to Equation (2.13), the two equations can be solved by substituting Equation
(2.8) into both and then rearranging for f (m) as the subject:

f (m) =
1

2λ0T1A

�
1− M (inv)

z (TR)

M (ctr)
z (TR)

�
(2.16)

The CBF value, f (m), can then be found using the two images. With fMRI imaging,
alternate control and inverted images are sampled and a discretely sampled time series
of f (m) values can be generated.

2.2.3 Observed Model of the BOLD-fMRI Signal

Being the earliest detected signal for functional imaging studies (Ogawa et al., 1990),
the BOLD-fMRI signal has been widely used for functional magnetic resonance imaging.
It takes advantage of the fact that the T2 decay is faster than the T1 recovery. The
theoretical T2 signal is obscured by two additional effects – field inhomogeneity, T �

2, and
diffusion, TD

2 . Effects of field inhomogeneity occur at the atomic level. Diffusion effects
are significant in cavities and vessels where water is free to diffuse. The addition of these
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two terms serves to shorten the decay time, termed T ∗
2 :

1

T ∗
2

=
1

T2
+

1

T
�
2

+
1

TD
2

(2.17)

T ∗
2 is also an effective measure of magnetic susceptibility (due to the T

�
2 component’s

sensitivity to susceptibility changes). Experimental work by Ogawa and Lee (1990)
revealed that measurement of the T ∗

2 would be able to show contrast attributed to the
magnetic susceptibility effect induced by paramagnetic deoxyhemoglobin in red blood
cells. This initiated the beginnings of fMRI and research turned to discovering the cause
of this effect, coined by Ogawa et al. (1990) as the blood-oxygenation level dependent or
BOLD signal.

The BOLD contrast occurs through the differences in magnetic susceptibility of oxy-
hemoglobin and deoxyhemoglobin. When there is a change in the relative concentra-
tion of oxygenated and deoxygenated blood, there are also correlated changes in the
BOLD signal. Oxyhemoglobin and the surrounding tissues are diamagnetic whilst de-
oxyhemoglobin is paramagnetic (Pauling and Coryell, 1936). Although findings for the
paramagnetic properties of deoxyhemoglobin in blood were published in 1936, an appli-
cation of the property had not been considered until more than 50 years later. Brooks
and Chiro (1987) reviewed the MRI appearance of blood and concluded that “the field
inhomogeneity created by the concentration of paramagnetism in the red blood cells
lowers the effective T2". Ogawa et al. (1990) used these findings and performed the first
experiment showing such a contrast could be seen in brain MRI scans.

Models of the BOLD-fMRI signal stem from the theory of NMR signal behaviour in
biological tissues in the presence of static magnetic field inhomogeneities. This was pio-
neered from modelling work done by Ogawa et al. (1993) and the extension of this theory
by Yablonskiy and Haacke (1994) and Boxerman et al. (1995). The more recent versions
of the NMR model of BOLD-fMRI by Buxton et al. (1998) and corrected by Obata et al.
(2004) has used the basic framework provided by the pioneers.

The basic assumption of the BOLD-fMRI model is that the blood vasculature network
of the brain has one value of magnetic susceptibility, whilst the tissue surround the net-
work has another value. Furthermore, the voxel is also idealized: by Ogawa et al. (1993)
as a three-dimensional matrix of cubes (tissues) containing a cylindrical blood vessel of
random orientation (Figure 2.2), and by Yablonskiy and Haacke (1994) as an intercon-
necting, randomly distributed network of cylinders within a cube of tissue (Figure 2.3).
Consequently, the symmetrical properties of cylinders simplified both models to identical
mathematical equations.
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Figure 2.2: Model of the Voxel [adapted from Ogawa et al. (1993)].

Figure 2.3: Model of the Voxel [adapted from Yablonskiy and Haacke (1994)].
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Signal Changes within the Voxel Buxton et al. (1998) and Obata et al. (2004)
used results of the Ogawa et al. (1993) model for signal modelling purposes in their
integrative model of the hemodynamic origins of the BOLD signal. Their model is
presented as follows. T ∗

2 is sensitive to magnetic susceptibility changes within the tissue,
T

�
2. Equation (2.17) can be rewritten by using relaxation rates (R) instead of time

constants (T ), substituting R∗
2 = 1

T ∗
2
, R0

2 = 1
T2

, R(Hb)
2 = 1

T
�
2

and RD
2 = 1

TD

2
:

R∗
2 = R0

2 +RHb
2 +RD

2 (2.18)

In the formulation for the BOLD-signal the diffusion term, RD
2 , is assumed to be very

small: the main effects being R0
2 and RHb

2 . The change in BOLD signal from the voxel
can then modelled due to a difference in the amount of deoxy-hemoglobin to its baseline,
q(t)− q0, and the difference in the fraction volume to its baseline, λ(t)−λ0. The overall
BOLD signal, b(t), is composed of the weighted average of signals from the blood within
the capillary, b(i)(t), and the tissue outside of the capillary, b(e)(t).

First, the baseline signals are calculated. The signal, b(h)0 , is the signal emitted by a ho-
mogeneous voxel of tissue. The baseline fractional volume occupied by the capillary is λ0

and the baseline BOLD signal, b0, is expressed as a combination of baseline intervascular
b(i)0 and extravascular b(e)0 signals :

b0 = (1− λ0)b
(e)
0 + λ0b

(i)
0

b(e)0 = b(h)0 e−TR×R0
2 (2.19)

b(i)0 = b(h)0 e−TR×(R0
2+RHb

2 )

It is possible to define some more relationships be help with the definition. Let µ0

be the base signal attenuation factor and µ be the additional attenuation factor from
deoxyhemoglobin:

µ0 =
b(e)0

b(h)0

= e−TR×R0
2

µ =
b(i)0

b(e)0

= e−TR×RHb

2 (2.20)

This allows the re-expression of b(e)0 , b(i)0 and b0:

b(e)0 = b(h)0 µ0 b(i)0 = b(h)0 µ0µ

b0 = b(h)0 µ0[(1− λ0) + µλ0] (2.21)
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Activation of the brain induces further change and brings about the modulation of the
baseline values b(e)0 and b(i)0 . This allows the values to be expressed as time varying
parameters. These intra- and extra-vascular signals are modified by the additional change
in relaxation rates (∆R(e)

2 and ∆R(i)
2 ) causes attenuation inside and outside the capillary

(µ(i) and µ(e) respectively). Relationships are defined as:

µ(e) = e−TR×∆R(e)
2

µ(i) = e−TR×∆R(i)
2 (2.22)

The BOLD signal is also modulated from baseline. It is also changed into a parameterize
value and can be written as:

b(t) = b(h)0 µ0

�
(1− λ(t))µ(e) + λ(t)µ(i)

�
(2.23)

The normalized BOLD signal change (∆bn(t)) can then be written as a function of
baseline CBF flow (v0) and the CBF response (v(t)) as opposed to 0 and λ(t):

∆bn(t) =
b(t)− b0

b0
=

b(h)0 µ0
�
(1− λ(t))µ(e) + λ(t)µ(i)

�
− b0µ0[(1− λ0) + µλ0]

b0µ0[(1− λ0) + µλ0]

=
[(1− v(t))µ(e) + v(t)µµ(i)]− [(1− v0) + v0µ]

(1− v0) + v0µ

=
(1− v(t))e−TR×∆R(e)

2 + v(t)µe−TR×∆R(i)
2 − 1 + v0 − v0µ

1− v0 + v0µ
(2.24)

This equation provides an exact expression for modelling changes in signal. For small
changes in relaxation rates ∆R(e)

2 and ∆R(i)
2 , the exponential terms can be linearized

using the well-known approximation:

e−x ≈ 1− x ∀ [x : 0 < x � 1] (2.25)

Furthermore, for small blood volumes as in the case of capillaries, the divisor 1−v0+v0µ

can be approximated to one and therefore the signal change can be simplified in order
to give a linear relationship for ease of modelling:

∆bn(t) =
b(t)− b0

b0
≈ [1− v(t)](1− TR×∆R(e)

2 ) + v(t)µ(1− TR×∆R(i)
2 )− 1 + v0 − v0µ

≈ −TR×∆R(e)
2 − µv(t)TR×∆R(i)

2 − [v(t)− v0](1− µ) (2.26)

Expressions for µ, ∆R(e)
2 and ∆R(i)

2 can then be estimated and the equations will be
shown in the following sections.
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Extravascular Signal Changes Results of both Ogawa et al. (1993) and Yablonskiy
and Haacke (1994) modelling susceptibility effects from randomly orientated cylinders
showed that the transverse relaxation, R∗

2, for susceptibility differences between vessels
and the surrounding tissues is:

R∗
2 = 4.3ζ(t)v(t) where ζ(t) = ζ0(1− ρ(t)) (2.27)

ζ(t) is the frequency offset in Hz at the surface of the magnetized cylindrical vessel due
to the difference in magnetic susceptibility. ζ0 is the offset for fully deoxygenated blood
(40.3s−1 at 1.5T) and ρ(t) is the fractional oxygen saturation. Note that if the blood
is fully oxygenated (ρ(t) = 1), then the frequency offset, ζ(t), is zero and there is no
susceptibility effect. Let E(t) = 1− ρ(t) be the oxygen extraction fractional or the ratio
of deoxyhemoglobin to total hemoglobin and E0 be its baseline value. Then it is possible
to express ∆R(e)

2 :

∆R(e)
2 = 4.3ζ0v(t)E(t)− 4.3ζ0v0E0

= 4.3ζ0[v(t)E(t)− v0E0]

= 4.3ζ0[q(t)− q0] (2.28)

Further analysis of the equation shows that if total deoxyhemoglobin content is defined as
q(t) = v(t)E(t) and baseline deoxyhemoglobin content is defined as q0 = v0E0, then the
change from baseline q(t)− q0 = v(t)E(t)− v0E0 and so the extravascular signal change
is only dependent upon the change in total deoxyhemoglobin content in the blood.

Intravascular Signal Changes Calculation of intravascular signal changes are deter-
mined by the sensitivity of the rate to the amount of deoxyhemoglobin in the blood. Li
et al. (1998) acquired this data in a pig model and the results are placed in a linearized
model about the range of oxygenation values from rest to strong activation (ρ = 0.6−0.8)
or (E = 0.2− 0.4). The change in relaxation rate, R(i)

2 , over this range is approximated
to be:

∆R(i)
2 = r0E(t)− r0E0 (2.29)

= r0[E(t)− E0] with r0 = 25s−1 (Result of Li et al. (1998))

It can be interpreted from the equation that the intravascular signal change is only
dependent upon the change in fractional deoxyhemoglobin content of blood.
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Overall BOLD Signal Change from Voxel With both ∆R(e)
2 and ∆R(i)

2 defined,
it then remains to describe the change in the BOLD signal:

∆bn(t) ≈ −T ×∆R(e)
2 − µv(t)T ×∆R(i)

2 − [v(t)− v0](1− µ)

≈ −4.3ζ0T [v(t)E(t)− v0E0]− µv(t)Tr0[E(t)− E0]− [v(t)− v0](1− µ) (2.30)

Equations describing the observed model of BOLD-fMRI (2.30) show that a change in
the BOLD-fMRI signal, ∆bn(t), is an expression of fractional deoxygenation and volume.
As described in Section 2.3, fractional deoxygenation depends upon the CMRO2, cn(t),
volume has been found to depend upon blood flow, fn(t). Therefore, the observed
model allows researchers to explain changes in BOLD-fMRI through changes in these
physiologically based signals.

2.2.4 Observations of Biophysical Signals: A Summary

The biophysical nature of how fMRI signals are produced and measured have been pre-
sented in this section. Derivations of signal models were outlined from the basic princi-
ples of MRI signal production in tissues to (Section 2.2.1) to that of ASL-fMRI (Section
2.2.2) and BOLD-fMRI (Section 2.2.3) signals. As can be seen from the biophysical
model derivations, the models for BOLD-fMRI and ASL-fMRI are very different and so
may capture complementary attributes of the process of neuronal activation. Once the
signals have been acquired, researchers have to deal with the issue of how these signals
are related to each other in the neuronal activation cascade. This issue will be explored
next.

2.3 Physiological Dynamics of Functional Imaging

Although observed models of functional imaging enable the processing of fMRI-signals
into quantitative 4D images, the actual link to the underlying physiology generating
such signals require other modelling processes. As seen in Figure 2.1, there are many
physiological processes occurring within the brain; these link together to produce the
changes being recorded using fMRI. Current research has focused upon building mathe-
matical models to describe the measured relationships between the physiological signals
so that signalling can be better understood. Most researchers modelling physiological
dynamics attempt to correlate physiological signals back to BOLD-fMRI. Sections 2.3.1
and 2.3.2 discuss the primary frameworks proposed for the BOLD-fMRI signal. Models
of CBF have not been as common as BOLD-fMRI models, even less so for ASL-fMRI
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measurements of CBF. Much of the work modelling CBF have been done at the cellular
level or as part of the BOLD-fMRI model; these models are discussed in Section 2.3.3.

2.3.1 Models of the CMRO2 (Calibrated BOLD) Response

The CMRO2 measurement or the ‘calibrated BOLD’ response as it is more commonly
termed was a technique presented in seminal study by Davis et al. (1998) that is increas-
ingly popular today (Leontiev and Buxton, 2007; Chiarelli et al., 2007; Perthen et al.,
2008; Ances et al., 2009).

A large collection of experimental evidence supports the view that the CMRO2 measure-
ment is a better predictor of neuronal activity than the BOLD-fMRI signal. From an
energetic perspective, it has been shown that the main energy costs of neuronal signalling
comes from post-synaptic excitation, which consumes up to six times the energy (in the
form of ATP) needed for pre-synaptic activity preceding it (Attwell and Iadecola, 2002).
In the first step of the post-synaptic mechanism, a neuron is depolarised resulting in an
influx of Na+ ions into the cell that creates the action potential that propagates through
to its neighbouring neurons. Secondly, the ionic balance of the cell has to be reset and the
metabolism of glucose and oxygen under oxidative phosphorylation is required in order
to generate the ATP that is needed to drive the Na+/K+ pump (Ames, 2000; Attwell
and Laughlin, 2001; Erecińska and Silver, 1989). Experimental results from rats (Caesar
et al., 2003; Offenhauser et al., 2005) as well as primates (Rauch et al., 2008a,b) indicate
that post-synaptic excitation is indeed responsible for the consumption of cerebral oxy-
gen. This is opposed to the BOLD-fMRI measurement that has been found to be more
correlated with pre-synaptic activity as the work by Logothetis (2003) in motor unit
action potentials was shown to be correlated with spiking (Raichle and Mintun, 2006).

The observed model for BOLD-fMRI derived in Section 2.2.3 predict that the changes in
BOLD-fMRI signal depend upon changes in volume of the blood vasculature network in
tissue, v(t)−v0, as well as the change in fractional deoxygenation, E(t)−E0. Fractional
deoxygenation depends upon CBF, fn(t), and CMRO2, cn(t). Therefore, an expression
for the BOLD-fMRI signal can be expressed as a function of CBV, CBF and CMRO2.
Since CBF can be simultaneously measured using the ASL-fMRI technique and CBV
can be expressed as a function of CBF, the CMRO2 signal can be directly estimated and
used.

CBF changes had originally been thought to have a linear coupling to the metabolic re-
quirements of the tissue (Siesjö, 1978; Yarowsky and Ingvar, 1981). Regional correlation
experiments of resting state data showed that areas with high blood flow tend to have
high metabolic rates whilst areas with low flow have lower metabolic rates, showing re-
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gional correlation between blood flow and metabolism (Raichle et al., 1976; Baron et al.,
1984). However, Fox and Raichle (1986) demonstrated that the linear coupling does not
hold true during activation. It was found that neuronal activation due to somatosen-
sory stimulation resulted in CBF increases (29% above baseline) that far exceeded the
increase in CMRO2 (5% above baseline). As such, Fox and Raichle (1986) measured the
ratio between the normalized increase CBF, fn(t), above baseline as compared to that
of CMRO2, cn(t), defined as:

n(t) =
fn(t)− 1

cn(t)− 1
(2.31)

The time varying average of n(t) within a local brain region is known as the coupling
ratio, nav. The earliest calculation of the ratio was determined by Fox and Raichle
(1986) to be almost 6. Other earlier studies (Fox et al., 1988; Kuwabara et al., 1992)
found such a significant increase in CBF with little or no CMRO2 change that the term
‘uncoupling’ was used to describe the activation induced response. Later experiments
using PET (Roland et al., 1987; Marrett and Gjedde, 1997) and fMRI (Davis et al., 1998;
Hoge et al., 1999a; Kastrup et al., 2002; Stefanovic et al., 2004) all measured nav to be
between 2 and 3.

In creating the ‘calibrated BOLD’ model, Davis et al. (1998) assumed that the coupling
ratio (n(t)) was constant throughout the experiment. They also used results two integral
simulations: the first using results of Ogawa et al. (1993) which showed a linear rela-
tionship between the BOLD-fMRI signal and changes in CBV ; the second using results
of Boxerman et al. (1995) which determined a power relationship between blood deoxy-
hemoglobin and magnetic susceptibility. Their construct of the measured BOLD-fMRI
signal, ∆bn(t), using CBF, fn(t), and CMRO2, cn(t), is:

∆bn(t) = M
�
1− cn(t)

βf −M(t)α−β
�

(2.32)

The parameter α was previously empirically determined by Grubb et al. (1974). Using
PET scans of anesthetized rhesus monkeys, Grubb et al. (1974) measured both CBF
and CBV and used a line of best fit to map out the trend – fitting the data to a power
relationship between CBF and CBV increases. Although this relationship has been used
by many studies to set the value of α as 0.4, the link should be understood more as a
correlation rather than a tight coupling may mistakenly be inferred from the equation
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Figure 2.4: Calculation of M coupling constant between CMRO2 and CBF [from Hoge et al.
(1999b)]. a) shows the plot of BOLD vs CBF increases under induced hypercapnia. b) shows
the estimation of CMRO2 data using the calculated M value.

of the Grubb et al. (1974) study:

v(t) = 0.8f(t)α, vn(t) =
v(t)

v0
=

�
f(t)

f0

�α

= fn(t)
α where α = 0.38 (2.33)

The parameter β = 1.5 in Equation (2.32) was determined through simulations of the
influence of deoxyhemoglobin on magnetic susceptibility at 2% blood volume (Boxerman
et al., 1995). The coefficient M is a resulting parameter that can be constructed using
the simulations done by Ogawa et al. (1993) that produced a linear relationship between
signal and volume changes. It is dependent upon magnetic field strength, acquisition
time, the baseline CBV and the composition of the scanned tissue. M represents the
hypothetical maximal change in BOLD signal, which may occur if CBF increases in a
sufficiently short time so that there is no change in oxygen extraction (Chiarelli et al.,
2007).

This proposed relationship allows estimation of CMRO2 changes from combined, inter-
leaved measurements of BOLD and CBF. The primary breakthrough of the Davis et al.
(1998) study was its exploitation of results by Yang et al. (1994) showing that breath-
ing a gas mixture with elevated concentration of CO2 (hypercapnia) induced significant
changes in CBF but not CMRO2. By acquiring both BOLD and CBF signals as the
subject responds to hypercapnia, a plot of BOLD and CBF values are obtained. An
example of this is shown in Figure 2.4:

Assuming that the CMRO2 level stays constant (cn(t) = 1) throughout the calibration
sequence, the BOLD signal is can be plotted against known changes in CBF and M can
subsequently be determined (Hoge et al., 1999a,b). By doing this immediately before
a cognitive task and assuming that the relationship holds, changes in CMRO2 in latter
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scans can then be estimated using the relationship:

cn(t) =

�
1− 1

M
∆bn(t)

�1/β

fn(t)
1−α/β (2.34)

It should be noted that the Davis et al. (1998) formulation is a simplification of the NMR
model for BOLD-fMRI (2.30). Davis et al. (1998) only considered the extra-vascular
component of signal changes (2.28) which where computed through simulations by Ogawa
et al. (1993) and Boxerman et al. (1995). It has been subsequently shown that the intra-
vascular (2.29) contribution to the fMRI signal is negligible at high (7T) magnetic fields
(Duong et al., 2003) but can be significant in low field (1.5T) scanners (Fujita, 2001).

Additional Improvements The Davis et al. (1998) model of BOLD-fMRI is limited
by the simplifications that it assumes between variables within the model. The most
debated variable is that of M . Estimation of M directly impacts upon estimation of nav.
Overestimation of M leads to under estimation of nav and therefore incorrect estimation
of nav results in large systematic biasing when used in BOLD signal interpretation (Leon-
tiev et al., 2007). Recent experiments have been conducted to understand the variability
in nav. Ances et al. (2008) showed that the ratio is not constant throughout the brain and
found significant variation in nav between the cortical (nav = 2.21 in visual cortex) and
sub-cortical (nav = 1.58 in lentiform nuclei) regions. Furthermore, Liau and Liu (2009)
found that both calibrated and experimental BOLD and CBF responses all showed a
significant inverse dependence on baseline CBF, affecting inter-subject variability of the
signal. Leontiev et al. (2007) found that variability of nav across subjects improved sig-
nificantly when a fixed M equal to the average M measurement across subjects was used
for the calculation. The authors propose that assessment of the calibrated BOLD frame-
work is needed to ‘establish whether reported differences in nav are due to physiological
differences, population variability of intrinsic biases in the methods used’. Leontiev et al.
(2007)’s conclusions suggest that the true variability of nav is much smaller across in-
dividuals and has been raised artificially due to the variability in measurement of M .
All of these errors greatly affect the measurement of the CMRO2 signal and must be
accounted for when using this framework for prediction.

Another source of error lies in the robustness of the parameters α and β. Although Hoge
et al. (1999b) and Uludağ et al. (2004) showed that the model was robust to variability
in parameters α and β, more recent evidence from Lin et al. (2008) refutes their claims.
Furthermore Kida et al. (2007) found evidence of systematic bias of α under conditions
of varying in stimulus frequency and duration. Experiments by Lu et al. (2003) has
worked to rectify these shortcomings.
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Figure 2.5: Modelling of M1 and SMA fMRI Data [from Obata et al. (2004)].

Simulations of BOLD-fMRI signal by Obata et al. (2004) modelling the motor (M1) and
supplementary motor (SMA) areas show that tight coupling of CBF and CMRO2 can
generate BOLD-fMRI signals effects occuring in the M1, (Figure 2.5a). However shapes
of signal found in the SMA could be generated both ways: firstly with tight coupling
of CBF and CMRO2 whilst CBV plateaus (Figure 2.5b) and secondly, without coupling
and having CBV increase (Figure 2.5c). Note that the BOLD-fMRI signal generated by
Figures 2.5b and 2.5c are virtually identical but the underlying physiology changes are
very different. The simulations by Obata et al. (2004) show that estimation of CMRO2

signal significantly improves when the BOLD, CBV, and CBF signals are all measured.

With the development of direct measurement of the CBV signal by Lu et al. (2003)
using a technique known as VASO-fMRI, better accuracy is able to be obtained for
estimation can be obtained. Although the problem of estimation of M is still present,
the systematic bias of α is eliminated due to direct measurement of the CBV signal.
Direct measurement of CBV vn(t) removes the error present in Grubb et al. (1974)’s
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CBF/CBV power relationship (see Equation (2.33)) The equation is shown as follows:

∆bn(t) = M
�
1− cn(t)

βfn(t)
−βvn(t)

�
(2.35)

The CMRO2 response is estimated by rearranging Equation (2.35):

cn(t) =

�
1− 1

M
∆bn(t)

�1/β

fn(t)
−1/βvn(t)

−1 (2.36)

This extended model, like Davis et al. (1998) model, only accounted for the extra-vascular
component of signal changes (see Equation (2.28)). However, a systematic test of the
CMRO2 models by Lin et al. (2008) showed that when a separate model which took into
account of the intra-vascular component was compared to the extra-vascular component
only, there was minimal difference in estimation and Lin et al. (2008) concluded that
they were effectively equivalent models. However, both models introduced the CBV
measurement, vn(t), into the estimation of CMRO2 and the experimental evidence show
that the vn(t) values greatly affected estimations of CMRO2 compared to the Davis et al.
(1998) model.

The ‘calibrated BOLD’ framework relies on multiple signals (bn(t), fn(t) and vn(t)) to
be collected in order to determine the value of cn(t), thought to be a closer indicator for
neuronal activity. The collection of multiple signals also has its disadvantages: firstly,
the time for scanning becomes slower compared to if only the BOLD-fMRI signal was
collected; secondly, the framework has to deal with measurement errors in all signals and
there may be problems at lower temporal resolutions. Other groups have approached
physiological modelling from a theoretical perspective and this is outlined in the next
section.

2.3.2 Hemodynamic Models of the BOLD-fMRI Response

Although the BOLD-fMRI signal has been empirically found to be a sensitive tool for
whole brain mapping of neuronal activation, it does not directly measure neuronal ac-
tivation. The signal is sensitive to changes in physiology - CBV, CBF and CMRO2 -
that are collectively referred to as the hemodynamic response to neuronal activation. A
example of the signal can be seen in Figure 2.6. Nonlinear features of the BOLD-signal
that have physiological significance are:

• Nonlinearity of increase to CBF compared to increase in CMRO2: The
primary cause of the BOLD effect is due to an increase in CBF compared to an
increase in CMRO2. The increases in both signals were initially assumed to be lin-
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Figure 2.6: An example of a typical BOLD signal [from Obata et al. (2004)].
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early coupled (Baron et al., 1984; Raichle et al., 1976). However, experiments (Kida
et al., 2007; Lin et al., 2008) have shown that temporal and spatial aspect of the
increases can vary depending upon the features of the stimulus (duration, fre-
quency) and also depending upon the region of the brain that is stimulated (Ances
et al., 2008). In addition to CBV changes, the combined behaviour of all three
physiological signals produce the nonlinear features observed in BOLD-fMRI.

• Initial Dip: Experiments using BOLD-fMRI (Ernst and Hennig, 1994; Yacoub
et al., 2001), as well as optical imaging (Malonek and Grinvald, 1996) has re-
ported an initial dip of the BOLD signal, thought to be due to a rapid increase
in CMRO2 before the increase in CBF. Researchers have also thought that this
initial dip could potentially better localize the area of activation (as indicated by
increased metabolism) as the increase in CBF was found to cover a wider area in
the brain (Malonek and Grinvald, 1996). The initial dip is a transitory response
and is highly nonlinear. Evidence of the initial dip is not present in every experi-
ment and it has been shown that both the magnitude and the temporal fluctuates
with stimuli (Luo et al., 2009; Yeşilyurt et al., 2008; Perthen et al., 2008).

• Post Stimulus Undershoot: A post-stimulus undershoot of the signal is com-
mon in BOLD-fMRI experiments, thought to be the recovery of cells in the area
to the applied stimulus. The undershoot lasts for 30 seconds or longer and is more
pronounced when the stimulus has been applied for a longer period of time. Ev-
idence of the CBF response having a shorter undershoot than the BOLD-fMRI
signal suggests that recovery of signalling cells causes an increase in CMRO2 (Lu
et al., 2004).

• Temporal Nonlinearity: Comparing responses of the BOLD signal for brief
and extended stimuli show that a linear translation of the brief response over
predicts the true response to an extended stimulus. Studies have confirmed that
responses to short-duration stimuli cannot be used to predict responses to long-
duration stimuli in the visual (Vazquez and Noll, 1998; Yeşilyurt et al., 2008),
auditory (Glover, 1999) and motor cortices (Glover, 1999). Furthermore, when
two identical stimuli are presented close together, the total response is less than
twice the response of single presentation (Huettel and McCarthy, 2001). These
effects raise the possibility of habituation or energy conservation by the signalling
neurons.

• Negative BOLD: Evidence of inhibition detection through BOLD was first re-
ported by Shmuel et al. (2002) who found that a decrease in BOLD corresponded
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to a decrease in spiking and thus could be a marker of neuronal deactivation. The
study represented a major shift in interpretation of the ‘negative’ BOLD signal
as it was originally thought that neuronal deactivation required the same energy
needs as neuronal activation (Logothetis et al., 2001).

• Other Exogenous Features: Various other features have been found in the
BOLD data to present more nonlinearity within the BOLD-fMRI signal. Phe-
nomena include: ramping features (Harms and Melcher, 2003), stimulus offset
spiking (Duff et al., 2007) and noise autocorrelation (Casanova et al., 2008).

Model-driven nonlinear estimation of the BOLD-fMRI signal began with the balloon-
windkessel approach of Buxton et al. (1998) and Mandeville et al. (1999). The balloon
model proposed by Buxton et al. (1998) used the observation that a volume of tissue can
be modelled as an elastic compartment whose change in volume depends upon the rate
of blood flow. The balloon model takes into account many features of the BOLD that
cannot be modelled flexibly with traditional methods. Nonlinear behaviour such as the
initial dip (2), the post-stimulus undershoot (3), and temporal shifting of the signal (4)
can be simulated using this approach. However, other phenomena seen in the BOLD-
fMRI signal such as the negative BOLD response (5) as well as extrogenous features such
as task offset spikes and ramping (6) cannot be explained using this model.

Buxton et al. (1998)’s Balloon Model has been developed by many groups for BOLD-
fMRI hemodynamics. The latest refinement extended by the same group (Buxton et al.,
2004) and represents the state-of-the-art model in this field.

The basic premise of the Balloon model is that an increase in flow leads to a vaso-dilation
of the capillary volume. Figure 2.7 shows the framework of the model. The balloon model
expresses the causal relationships of the underlying physiology governing the BOLD-
fMRI signal as a set of mathematical equations. In doing so, the model introduces
variables that are not actually observed such as CBV, v(t), CBF, f(t), deoxyhemoglobin
content, q(t), and CMRO2, c(t). These variables are referred to as the hidden states
of the model. The actual BOLD-fMRI signal, b(t), can be predicted by investigating
changes occurring in these states.

Figure 2.7 models the physiology through a set of mathematical relationships between
the hidden states. They are marked as steps A to E in the figure. The responses are
explained in detail.

The Neuronal Response (Step A) The model for stepping from the stimulus, u(t),
to neuronal activity, η(t), was based upon observations of the response observed in
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Figure 2.7: Overview of the Balloon Model [from Buxton et al. (2004)].
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electrophysiology experiments (Logothetis, 2003). An inhibitory feedback system was
chosen in which the neuronal response, η(t), was treated as the difference between the
stimulus input, u(t), and an inhibitory response, i(t). The inhibitory response is an
exponential decay response with gain-factor of κi and time-constant τi. The set of
equations are:

η(t) = u(t)− i(t)

di(t)

dt
=

κiη(t)− i(t)

τi
(2.37)

The Neurovascular Coupling Responses (Steps B and C) The models offers a
linear model for the coupling of neuronal activity, η(t), to both CBF, fn(t), and CMRO2,
cn(t). Although more substantial modelling of the coupling has been proposed, Buxton
et al. (2004) used a simple assumption that the nonlinearity of signal changes found in
previous experiments were as a result of the conversion between the stimulus, u(t), to
neuronal activity, η(t), modelled in Step A and a simpler model could be therefore be
introduced. The group assumed that both CBF and CMRO2 are formed with linear
convolutions of a gamma-variate function, h(t). The form of the function is:

h(t) =
1

kτh(k − 1)!

�
t

τh

�k

e−t/τh (2.38)

with k = 3 and τh = 0.968. The value of the parameters are used to set the shape of
h(t) to resemble experimental data. The responses for CBF, fn(t), and CMRO2, cn(t),
are then:

fn(t) = 1 + (fmax − 1)h(t− δtf ) ∗ η(t) (2.39)

cn(t) = 1 + (cmax − 1)h(t− δtc) ∗ η(t) (2.40)

fmax and cmax are the maximum sustained values of fn(t) and cn(t) respectively and are
assumed to follow a relationship given by (fmax − 1) = (cmax − 1)nav where nav is the
coupling ratio, explained in Section 2.3.1. δtf and δtc are introduced delays in activation
for both responses. δtf was assumed to be 1.0 seconds longer than δtc, modelling the
behaviour of the initial dip.

The Balloon Model (Step D) First proposed by Buxton et al. (1998) and Mandeville
et al. (1999), this step is the central feature of the Buxton et al. (2004) model. It uses
a biomechanical model, following the observation that CBV returned to baseline more
slowly than CBF after the end of the stimulus. The equations have been revised by a
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number of groups (Friston et al., 2000; Riera et al., 2004; Vakorin et al., 2007), however,
the main idea of the mechanism remains the same; the venous compartment of the brain
capillary network can be treated as a balloon having and input and output; blood flowing,
fn(t), into the balloon affects the volume of the balloon, vn(t), which governs the blood
flowing out of the balloon, fout. The outputs of the model are normalized values of total
deoxyhemoglobin, qn(t), and blood volume, vn(t). The equations are:

dqn(t)

dt
=

1

τTT

�
fn(t)

E(t)

E0
− qn(t)

vn(t)
fout(vn, t)

�

dvn(t)

dt
=

1

τTT
[fn(t)− fout(vn, t)]

fout(vn, t) = vn(t)
1
α + τv

dvn(t)

dt
(2.41)

Parameters of the model are: τTT , the mean transit time through the balloon and
is assumed by the model to be 3 seconds; τv, the time constant governing the initial
resistance of a change in volume to the blood flow. The model proposed by Buxton et al.
(2004) differs slightly from the original equation (Buxton et al., 1998) where the output
fout(vn, t) was modelled as a direct function of vn(t) without the resistance component.
The addition of τv dvn(t)

dt allows more flexibility in the shape of responses by changing the
parameter τv.

The BOLD-fMRI Signal (Step E) The last step of the model uses results in Equa-
tion 2.30 to express BOLD-fMRI changes as a function of physiological changes. This
step combines outputs of Step D deoxyhemoglobin qn(t), and blood volume vn(t) to
form the BOLD-fMRI signal. Buxton et al. (2004) writes a more concise form of Equa-
tion (2.30):

∆bn(t) ≈ V0[ν1(1− qn(t))− ν2(1− vn(t))] (2.42)

ν1 and ν2 combine the parameters of the fMRI scanner. The values of the parameters
are determined to be ν1 = 3.4 and ν2 = 1.0 for a magnetic field of 1.5T with TE= 20ms
and E0 = 0.4, .

Extensions and Limitations to the Buxton et al. (1998) Model Modelling
by Zheng et al. (2002, 2005); Zheng and Mayhew (2009) have extended the Buxton et al.
(1998) model to include more features of the biomechanical mechanism of the relation-
ship between CBF fn(t) and CBV vn(t). Zheng et al. (2002) included an additional
capillary compartment to decouple the neurovascular response (fn(t) and vn(t)) and the
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cellular metabolic response, qn(t). The capillary model includes additional features: the
modelling of dynamics in oxygen transport from the capillary; the modulatory effects
of changes in tissue oxygen concentration; and the transient calculation of CMRO2 as
part of oxygen transport to tissue. Zheng et al. (2005) extends Zheng et al. (2002) to use
a three-compartment model (arterial, venous and capillary compartments) for greater
flexibility. Zheng and Mayhew (2009) modified the windkessel model to include charac-
teristics typical of visco-elastic materials such as hysteresis, creep and stress relaxation.
Such modelling adds more physiologically plausible characteristics to the original wind-
kessel model.

Riera et al. (2006) also extended the Buxton et al. (1998) model by incorporating the
model equations into a biophysical model of electrical and vascular dynamics within a
cortical unit to explain both fMRI and EEG dynamics observed in experiments. Re-
cent merging of optimization techniques (Vakorin et al., 2007) and comparison frame-
works (Deneux and Faugeras, 2006) for imaging can determine whether these additional
features are relevant to the analysis of actual data. Deneux and Faugeras (2006) com-
pared different variations of the Balloon Model and found that the models were able to
give better inferences of BOLD-fMRI signal than the GLM in most conditions. However,
the group found that the Balloon Model was sensitive to signal noise; both the GLM
and the Balloon models gave similar predictions when noise was increased.

A criticism of the Balloon Model has been the limited range of signal behaviour that the
equations have been able to model. Typical outputs of the model can be seen in Figure
2.8a where the model is able to model both the initial dip, the post-stimulus undershoot
as well as capture some nonlinear dynamics of the system. Actual BOLD-fMRI data
have more variety as can be seen in Figure 2.8b. The major limitation of the Balloon
Model lies in its inability to model onset and offset spiking behaviour (Figure 2.8b in Left
M1, Right SMA, Right Thalamus, Left Temporal Cortex) as well as ramping behaviour
(Figure 2.8b in Right SMA and Right Dentate Nucleus)

Current equations governing the Balloon Model are able to model ramping by changing
the shape of fn(t) to also include a ramping term. However, sharp spiking behaviour
at both onset and offset times cannot be modelled due to the smoothing effect of the
windkessel compartment (Step D). As such, researchers have delved further into study
of each individual hemodynamic signal (for example CBF and CBV) by modelling the
biochemistry involved in producing such responses as well as the relationships between
them. Focusing on the behaviour dynamics of an individual response allow the neuronal
coupling of the response to be studied in full. The next section focuses on models of
coupling between neuronal activation and CBF.
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Figure 2.8: Predicted and Actual Responses of BOLD-fMRI Signal. a) Predicted Responses
from Balloon Model [from Buxton et al. (2004)]. b) Actual BOLD-fMRI Signals Observed During
Finger Tapping Task [from Duff et al. (2007)].
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2.3.3 Models of the CBF Response

One stream of the research into the hemodynamic response has focused upon being
able to understand the biological behaviour causing changes in brain physiology. The
response most actively being pursued is the neurovascular response, or the mechanism
driving regional CBF changes to a neuronal stimulus. Although the Roy and Sherring-
ton (1890) experiment brought about the observation that the neurovascular response
mechanism exists, quantifiable investigation into the mechanism has only been possible
due to recent development of experimental techniques. Such a broad spectrum of exper-
imental observations include data from in vivo studies of cellular changes in tissue slices
or cell cultures, data from animal studies using fMRI (Logothetis, 2002), electrophysiol-
ogy (Logothetis, 2003), optical imaging spectroscopy (OIS) (Jones et al., 2001) and laser
doppler flowmetry (LDP) (Kennerley et al., 2005), and functional neuroimaging data
from human experiments (Ances et al., 2009; Luo et al., 2009). Developing a coherent
theoretical framework for describing the experimental observations has been the focus
for groups attempting to understand the regulation of blood flow at the cellular and
molecular level (Bennett et al., 2008a,b).

Most of the experimental work on modelling the biophysical aspects of neurovascular
activity center around two models, the astrocyte-to-neuron transfer of lactate (ANLS)
model (Aubert and Costalat, 2005; Aubert et al., 2007; Pellerin et al., 2007) and the
neuron-to-astrocyte transfer of lactate (NALS) model (Simpson et al., 2007). Although
they both agree that lactate is transferred from the one type of cell to another, they
disagree on the direction of transfer. In both models, astrocyte activity plays a crucial
role in the regulation of metabolic pathways on a cellular basis. The role of astrocytes,
their connections to both the neurons and the capillaries and their role as the cellular
inducer of neurovascular behaviour have been studied and modelled extensively (Jolivet
et al., 2010).

Physiological models of CBF dynamics have not received as much attention. Theoretical
modelling of the CBF response has generally been studied as part of the hemodynamic
model of the BOLD-fMRI signal. An example of this can be seen in Equation (2.39),
where the Buxton et al. (1998) model has incorporated an equation of fn(t) in its frame-
work. Models describing CBF, fn(t), response to a stimulus, u(t), have been described
as either a 0th, 1st, or 2nd order differential system.

A 0th-order system is of the form:

fn(t)− 1 = �u(t) (2.43)
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The change in CBF from baseline (fn(t)−1) is modelled as being a direct coupling of the
stimulus. This coupling is used in the most basic analysis of CBF data, although u(t)

may have an affine transformation applied such as convolution with a gamma function.
In terms of modelling dynamics of the CBF, the output of the system (fn(t)− 1) would
only follow features on the input, u(t), and is limited in what it can do.

A 1st-order system is of the form:

ḟn(t) + k[fn(t)− 1] = �u(t) (2.44)

This system adds an extra parameter k which determines the rate at which the change
fn(t) − 1 proceeds. Instead of instantaneous coupling experienced in the 0th-order sys-
tem, there is a transient time that is governed by k: When k is small, the coupling
occurs slower, whilst larger k means faster coupling. The Buxton et al. (2004) model
uses this system for modelling the CBF response to neuronal stimuli with an additional
convolution with a gamma function.

From observation of nonlinear features in BOLD-fMRI signal, current researchers inter-
pret the ‘initial dip’ as the CBF response lagging behind the CMRO2 response. The delay
factor is most easily modelled by viewing the CBF response having a spring/mass/damping
mechanism typical of a 2nd-order differential system. Friston et al. (2000) incorporated
this second order system into his solution of the Balloon model. The system was used
by many subsequent groups including Johnston et al. (2008); Riera et al. (2004); Zheng
et al. (2002). The 2nd-order system is of the form;

f̈n(t) + k1ḟn(t) + k2[fn(t)− 1] = �u(t) (2.45)

2.3.4 CBF Modelling using Laser Doppler Flowmetry (LDF)

Although ASL-fMRI is a direct measurement of CBF, it is a non-invasive technique.
The data can be better interpreted when underlying physiology governing is understood.
Therefore better understanding of the relationship between neural activity and CBF
are achieved when results from invasive studies are included in the modelling process.
Techniques include OIS, measuring blood volume, LDF, measuring blood flow, and elec-
trophysiology, measuring neuronal activation. All above signals provide much better
temporal resolution than fMRI and so more features of the CBF response can be seen
and modelled using these techniques.

A recent study by Zheng et al. (2010) used concurrent LDF and electrophysiology for
modelling of the neurovascular coupling as a linear third-order dynamic system. The
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Figure 2.9: The Dilation/Constriction Model of Zheng et al. (2010).

study used electrical whisker stimulation of rats and measured both neuronal activity
(using electrophysiology) and CBF (using LDF) in layer IV of the cortical surface. Their
model used the idea that CBF changes induced by neuronal stimuli, u(t), have a dilation
component (fd(t) for modelling increases CBF) and a constriction component (fc(t) for
modelling decrease in CBF) that is delayed by Tdelay (the delay for initiation signal to
propagate). Each of the components are represented as a separate third order system.
The overall relationship can be written as a set of ordinary differential equations:

...
f d(t) + a1f̈d(t) + b1ḟd(t) + c1 = K1c1u(t), fd(t) = ḟd(0) = f̈d(t) = 0
...
f c(t) + a2f̈c(t) + b2ḟc(t) + c2 = K2c2u(t), fc(t) = ḟc(0) = f̈c(t) = 0

fn(t+ Tdelay) = fd(t)− fc(t) (2.46)

The system is visualized in Figure 2.9. Zheng et al. (2010)’s model represents the most
recent model of CBF signal although it is for LDF instead of ASL-fMRI. Due to the
high temporal resolution of LDF data, use of third order differential dynamics were
required. It is a more complex model than the simple dynamics seen in Equations (2.43)
to (2.45). Having more terms than Equations (2.43) to (2.45),Zheng et al. (2010)’s model
can predict onset spiking due to the introduction of the difference terms fd(t) − fc(t).
Although ASL-fMRI data has traditionally been modelled using simpler dynamics, Zheng
et al. (2010)’s work showed that there are more complicated dynamics in the data that
can be utilized. As such, it is hypothesised that including higher-order dynamics for
ASL-fMRI may allow for better interpretation of the CBF signal.
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2.4 Chapter Summary

The motivating factors for modelling ASL-fMRI data were established in this chapter.
Models of fMRI signals and the physiology governing these were explained in detail.
As this chapter has shown, there are many signals and methods that can be used for
evidence of neuronal activation each having their own unique biophysical signal model.
However, if the most widely cited hemodynamic model (Buxton et al., 1998) is accepted,
the corollary of the model is that the CBF signal is closer in physiology to neuronal
activation than the BOLD signal. Our motivation to concentrate solely upon modelling
CBF data was largely based on the corollary of the Buxton et al. (1998) model.

The final section of this chapter presented CBF models of various complexity. Models
range from simple coupling of stimuli and CBF to third-order dynamics, introduced
by Zheng et al. (2010) for analysis of LDF measurements. Although the ASL-fMRI signal
has less temporal resolution than LDF, it too may include higher order dynamics. It is
envisaged that experimental results can be used to construct a more meaningful model
of CBF behaviour for ASL-fMRI datasets. Thus, a model governing direct correlation
between neuronal activity and ASL-fMRI data may be constructed. This will be explored
in more detail in the latter chapters.



Chapter 3

Outline of Investigation and

Methods

As outlined in the introduction, the key research question is whether ASL-fMRI data
can be modelled better than the existing methods through inclusion of physiologically
grounded parameters. In order to begin addressing this issue, two further questions
arise: (1) What type of dynamics are suitable for the modelling of ASL-fMRI data?
and (2) Can transient features such as spiking and ramping, measured for CBF using
other techniques also be found in ASL-fMRI data? Chapter 2 showed that CBF signal
dynamics has been one of the major areas of research as part of the investigation into
the underlying physiology of the BOLD-fMRI signal. Although many experiments have
used a variety of correlations and models of CBF, they have not focused on modelling
ASL-fMRI data by itself. The main concern for researchers using ASL-fMRI data for
modelling is its low temporal resolution compared to invasive methods such as LDP.
However if such a model exists and can be verified, the advantage provided by fMRI
in measuring simultaneous whole brain dynamics enables a much broader picture of
interactions across the brain.

In this chapter, a novel framework of CBF models is described; the models are inspired
from physiological responses observed in CBF experiments. The framework attempts
to address the two questions presented in the previous paragraph The questions are
investigated through analysis of simulated and experimental CBF data. The next sec-
tion presents an overview of CBF models proposed using the novel framework. All the
methods and algorithms used in the framework such as the process for selecting the best
models for ASL-fMRI and the theory of numerical methods used in such an analysis are
presented. This chapter will introduce all the necessary theory that will be used in the
two following chapters in order to address our key question: Can ASL-fMRI data can be
modelled better than the existing methods through inclusion of physiologically grounded

37
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Figure 3.1: Prediction of actual data using the Dilation-Constriction Model [from Zheng et al.
(2010)]. The graph shows predicted and measured changes in f(t) using average data for 5
subjects. The fits are for block stimulus of a) 2, b) 4, c) 8, and d) 16 seconds.

parameters?

3.1 CBF Features to be Modelled

Many theoretical models of CBF were introduced in Chapter 2 ranging from simple
linear coupling with the stimulus (0th-order dynamics) to much complicated systems
such as the 3rd-order system introduced by Zheng et al. (2010). CBF data obtained
using LDF requires more complex dynamics were needed the data had a much higher
temporal resolution than data collected using ASL-fMRI. The model was used to estimate
changes in CBF (Figure 3.1) in rats using whisker stimuli for blocks of various length (2,
4, 8 and 16 seconds). It can be seen that the predictions generated by the model are a
very close fit to that of the actual measured data. Data collected by Zheng et al. (2010)
showed that the CBF response has features that may affect the shape of the BOLD-fMRI
response. Figure 3.2 shows typical fits of the model.

Transient features observed in Figure 3.1 were modelled very accurately using the Zheng
et al. (2010) model; the equations providing very accurate fits for CBF over 16 seconds.
However, other features in the CBF signal encountered in other experiments such as
ramping over long periods of time (seen in Figure 3.3) cannot be accounted using the



3.2. FRAMEWORK FOR MODELLING CBF 39

Figure 3.2: Prediction of 16 second stimuli using the Dilation-Constriction Model [from Zheng
et al. (2010)].

Dilation/Constriction model.

A further limitation of the Zheng et al. (2010) model is that offset spiking cannot be
modelled for longer stimulations. The equations are not flexible enough to accommodate
such features. As such, models of CBF have to include these additional features in the
signal in order to truly encompass all the possible signals that can be seen in CBF data.
Development of a CBF model that includes offset spiking and ramping can have definite
advantages for modelling of CBF data. Such models will be introduced in the next
section.

3.2 Framework for Modelling CBF

Although many models have been proposed for CBF (Section 2.3.3), the models are
limited in the amount of features that can be described. The 2nd-order system proposed
by Friston et al. (2000) has been the most widely-used model of CBF. However the
model has a few short-comings; the system does not describe certain characteristics of
CBF data acquired using LDF (spikes and ramping seen in Figure 3.2) as well as ASL-
fMRI (ramping seen in Figure 3.3).

New models for describing these transient behaviors are now proposed. A new term �1

governing brain activity changes that come about from instantaneous changes in stimulus
is proposed as the coefficient of d

dtu(t). Offset spiking is introduced as �4. Since �4 is
the offset equivalent of �1, the two terms are collectively known as ‘spiking’ coefficients.
The original � coefficient coined by Friston et al. (2000), a term that measures changes
proportional to the stimulus becomes �2. A term related to the integration of stimulus
(�3) is introduced as a coefficient of

�
u(t) dt. Furthermore, transient dynamics are scaled

in proportion to the input stimulus u(t). The complete equation for the extended system
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Figure 3.3: CBF data acquired using ASL showing ramping response [from Obata et al. (2004)].

Figure 3.4: Dynamic Models and Driving Terms.
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using 2nd-order dynamics is written as:

1

k2
f̈n(t) +

k1
k2

ḟn(t) + [fn(t)− 1] = �1
d

dt
u(t) + �2u(t) + �3

�
u(t) dt, 0 < t < TON

(3.1)
1

k2
f̈n(t) +

k1
k2

ḟn(t) + [fn(t)− 1] = �4
d

dt
u(t), t ≥ TON

The onset response is from 0 < t < TON and the offset response is from t ≥ TON where
TON is the time in which the stimulus is applied. This represents the most general of all
system for modelling CBF that are proposed. Subsequently, additional systems can be
derived. Equation (3.1) can be broken up into two parts:

A Dynamic Model (DM) Equation:

DM =
1

k2
f̈n(t) +

k1
k2

ḟn(t) + [fn(t)− 1] (3.2)

And a Driving Term (DT ) Equation:

DT =
�1

d
dtu(t) + �2u(t) + �3

�
u(t) dt, 0 < t < TON

�4
d
dtu(t), t ≥ TON

(3.3)

By incorporating combinations of DM and DT , different CBF models can be produced.
This is depicted in Figure 3.4. DM determines the shape of the response fn(t). Not
only are 2nd-order systems modelled but 1st and 0th order systems can also be included.
The DT selects features that are to be included in the model (ie. �1 and �4 determines
spiking, �2 determines linear coupling and �3 determines ramping).

The Dynamic Model Equations incorporate the main CBF models proposed in Chapter
2.3.3 and are shown in order beginning with the 0th-Order model, taken from the LHS
of Equation (2.43):

DM0 = fn(t)− 1 (3.4)

1st-Order, taken from the LHS of Equation (2.44):

DM1 =
1

k
ḟn(t) + [fn(t)− 1] (3.5)

2nd-Order Critical, taken from the LHS of Equation (2.45), but further simplified by
assuming that the 2nd-order behaviour was critically damped and so k2 =

k21
4 , yielding
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a critically damped model:

DM2a =
4

k21
f̈n(t) +

4

k1
ḟn(t) + [fn(t)− 1] (3.6)

2nd-Order Non-Critical, taken from the LHS of Equation (2.45):

DM2b =
1

k2
f̈n(t) +

k1
k2

ḟn(t) + [fn(t)− 1] (3.7)

The Dynamic Model Equations are coupled with Driving Term equations, which are
formulated using the selection of combinations of Spikes, Linear Coupling and Ramping
features:

CBF Model Driving Terms

Models Spiking Coupling Ramping

DT1 = �1
d
dtu(t)

DT2 = �2u(t)
DT3 = �1

d
dtu(t) + �2u(t)

DT4 = �3
�
u(t) dt

DT5 = �1
d
dtu(t) + �3

�
u(t) dt

DT6 = �2u(t) + �3
�
u(t) dt

DT7 = �1
d
dtu(t) + �2u(t) + �3

�
u(t) dt

Table 3.1: Driving Term Equations.

Note that only the onset equations are shown. �4 is also considered spiking behaviour
and so becomes implemented in DT1, DT3, DT5 and DT7 along with �1. Therefore, a
matrix of models can be generated using combinations of Dynamic Models and Driving
Terms:

CBF Model Matrix

Dynamic Models

Driving Terms DM0 DM1 DM2a DM2b

DT1 DM0 = DT1 DM1 = DT1 DM2a = DT1 DM2b = DT1

DT2 DM0 = DT2 DM1 = DT2 DM2a = DT2 DM2b = DT2

DT3 DM0 = DT3 DM1 = DT3 DM2a = DT3 DM2b = DT3

DT4 DM0 = DT4 DM1 = DT4 DM2a = DT4 DM2b = DT4

DT5 DM0 = DT5 DM1 = DT5 DM2a = DT5 DM2b = DT5

DT6 DM0 = DT6 DM1 = DT6 DM2a = DT6 DM2b = DT6

DT7 DM0 = DT7 DM1 = DT7 DM2a = DT7 DM2b = DT7

Table 3.2: Matrix of Models from Combination of DM and DT Equations.

With four DM equations and seven DT equations, a total of twenty-eight different CBF
models can be generated. In order to determine the best model for ASL-fMRI data, a
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Figure 3.5: Workflow for Ranking Models.

method for evaluation of real data is required. This is presented next.

3.3 Model Evaluation Workflow

The proposed generalized CBF modelling framework allows flexibility to choose of mod-
els for a set of experimental data. Performance of the new models are evaluated for
their accuracy in modelling ASL-fMRI data although the framework could potentially
be modified so that other types of data could also be read in and analysed. Figure
3.5 shows the overview of what the evaluation workflow accomplishes. Individual CBF
Models that have been proposed in Table 3.2 are used to evaluate an ASL-fMRI dataset.
The end result of such an evaluation is a score given to the model. This score is based
upon the accuracy of fit as well as the number of parameters in the model. The highest
scoring model is deemed the best candidate for analysis of the ASL-fMRI dataset.

Figure 3.6 shows the actual process of model evaluation. The model is used to fit time-
series data from each voxel of each scan within the dataset. The parameters governing the
behaviour of the model are recorded for all voxels form 3 dimensional parameter maps,
one for each scans. Furthermore, the variance in the estimation between the model
generated value and the actual observed value are also recorded as 3 dimensional maps.
The parameter maps and the variance maps are used in a group analysis to determine
the accuracy of using such a model in estimation of ASL-fMRI signals dynamics and a
score is given for the analysis to be compared with other models.

Group analysis of the scans involve transforming all the scans to a standard brain image,
comparing the mean and variance of parameter estimates for voxels across the brain as
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Figure 3.6: Workflow for Evaluation and Scoring of Models.

well as the overall error for the estimation across the brain. The statistic for model
comparison is done using both the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC), that return a success of fit based upon the likelihood of fit
as well as a penalty term based upon the number of observations made and the number
of parameters in the model. This is more thoroughly explained in Section 3.7. Once
model comparison is done on a voxel level for the group, the best estimate is found by
calculating the percentage of total voxels each model is deemed to be the highest quality
fit. The model with the highest total percentage of voxels is determined to be the best
model for the ASL-fMRI dataset. Subsequent sections in this chapter explain the process
in more detail.

3.4 Estimation of Model Parameters

The theoretical model for ASL-fMRI signal derived in Section 2.2.2 and Equation 2.16
shows the noise-free representation of the signal. Measurement of the signal, however is
noisy.

Therefore, let f (m)
k be the actual CBF value at a time-point in the voxel time-series

observed using ASL-fMRI having total time Ttotal and sampled every T seconds. The
vector y(f) is of total length N where N = Ttotal

T . The elements of y(f) are yk where
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k = 1 . . . N can be defined as:

yk = f (m)
k + ek, k = 1 . . . N (3.8)

y(f) represents the measured CBF value of a system and because it is measured, there is
always an error ek associated with the measurement at any time-point k. The equation
can be expressed in vector notation:

y(f) = f (m) + e (3.9)

Moreover, there is a theoretical model associated with f (m) represented mathematically
by g(X,β) where the model parameters are defined as β, the independent variables or
inputs are defined as X, and the relationship governing parameters and inputs of the
model is defined as g. So a general model of CBF measurement can be represented in
this form:

y(f) = g(X,β) + e (3.10)

Where:

y(f) =





y1

y2

.

.

.

yN





X =





x11 ... x1p

x21 ... x2p

. ... .

. ... .

. ... .

xN1 ... xNp





β =





b1

.

.

bp




e =





e1

e2

.

.

.

eN





(3.11)

The error term e captures all other outside influences on the data unrelated to the blood
flow model, f (m) = g(X,β). Most estimation models assume the properties of the errors
(e) of the system are normally distributed.

Model estimation assumes that g, X and y(f) are known or can be observed and β,
the parameters of the model are unknown. The function g has to be specified and
is based upon predetermined knowledge about the relationship between y(f) and X.
Regression analysis requires that there is enough information in the data to estimate
a unique β (N > p) so that the model is always an over-determined system. In most
cases, the least squares regression model is used so that a solution is found for β that
minimizes the distance between the measured and predicted values of y(f). This is done
by minimizing the sum of error terms, eTe with relation to β. Let xi be the i-th row of
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X (xi = [xi1, ..., xip]), the equation is:

S(β) = eTe

=
n�

i=1

[yi − g(xi,β)]
2 (3.12)

This technique in estimation of β is called least squares estimation and includes two
main types of estimation technique - nonlinear least squares estimation and least squares
estimation based on whether g is linear or nonlinear. The techniques will be further
elaborated in the following sections.

3.5 Nonlinear Least Squares Estimation

Nonlinear least squares estimation uses an iterative approach to obtain an estimate for β
when g is nonlinear. There are many methods used for estimation and choice of method
depends upon the preference of the user for robustness, accuracy, speed and other factors.
Nonlinear least squares methods does not offer a global solution for the problem but finds
a local minima based upon the initial point that the user chooses to begin interpolation.

Most software applications for generic curve-fitting problems use the Levenberg-Marquardt
Algorithm (LMA). The algorithm was used in analysis for parameter estimation via the
‘lsqnonlin’ MATLAB function. A description of the method is provided as follows: Start-
ing with the Equation (3.12), the aim is to minimize S(β) by providing an initial guess
for β (let β = β0) and then using the algorithm to calculate a new value of β that would
then replace the previous one at each iteration. β is replaced by β + δ where the value
for δ is different depending upon the algorithm used. LMA is a variation of Newton’s
Method, where the new function can be approximated by the linearisation around β:

g([xi,β + δ) ≈ g(xi,β) + Jiδ where Ji =
∂g(xi,β)

∂β
(3.13)

The sum of squares equation with the new value of β can be expressed as:

S(β + δ) ≈
n�

i=1

[yi − g(xi,β)− Jiδ]
2 (3.14)

The sum of squares, S(β + δ), is a minimum if the gradient of S with respect to δ is
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zero. S(β + δ) is expressed in vector form:

S(β + δ) ≈ ||y(f) − g(X,β)− Jδ||2

≈ [y(f) − g(X,β)− Jδ]T [y − g(X,β)− Jδ]

≈ y(f)Ty(f) − y(f)T g(X,β)− y(f)TJδ − g(X,β)Ty(f) + g(X,β)T g(X,β)

+ g(X,β)TJδ − δTJTy(f) + δTJT g(X,β) + δTJTJδ (3.15)

The derivative of S(β+δ) can be calculated with respect to δ and then setting the result
to zero and solving for δ:

∂S(β + δ)

∂δT
= −JTy(f) + JT g(X,β) + JTJδ

= 0

∴ JTJδ = JT [y(f) − g(X,β)]

∴ δ = (JTJ)−1JT [y(f) − g(X,β)] (3.16)

The Levenberg’s contribution to the LMA replaces the Newton Method by the addition
of a damping term, θI, where I is the identity matrix and θ is the damping factor:

δ = (JTJ+ θI)−1JT [y(f) − g(X,β)] (3.17)

It can be seen that if θ is small, then the LMA would essentially be the Newton method,
however, if θ is big, then the LMA would approximate the gradient descent method where
the next step would be in the step of the biggest change in J . Marquardt’s contribution
to the LMA method is to replace I with diag(JTJ) in order to scale each component of
the gradient according to the curvature of the function so that there is larger movement
in the direction where the gradient is smaller:

δ = [JTJ+ θdiag(JTJ)]−1JT [y(f) − g(X,β)] (3.18)

For each iteration, δ is solved and then added to β to be ready for the next iteration.
When the value of δ becomes sufficiently small (as predetermined by the user), the
method is deemed to have found a minimal solution. Although computationally intensive,
nonlinear least squares can be used for parameter estimation in a broad range of nonlinear
models.
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3.6 Linear Least Squares Estimation

In the special case of Equation 3.10, when g is linearly dependent upon β, there is
an exact solution using the linear least squares method. The relationship function g is
linearly dependent upon the parameters b1...bk and so the equation can then be rewritten
in matrix form. The Linear Least Squares Method solves the matrix equation for the
best β candidate that minimizes error (e) between the observed value (y(f)) and the
estimated value (Xβ). The least squares error is minimized as follows:

e = y(f) −Xβ

∴ eTe = (y(f) −Xβ)T (y(f) −Xβ)

= (y(f)T − βTXT )(y(f) −Xβ)

= y(f)T (y(f) −Xβ)− βTXT (y(f) −Xβ)

= y(f)Ty(f) − y(f)TXβ − βTXTy(f) + βTXTXβ (3.19)

The minimum error or least squares error occurs when de2

dβT = 0 and this is the value of
β that is the most likely candidate for estimation. β is estimated as follows:

deTe

dβT
= −XTy(f) +XTXβ = 0 (3.20)

Moving −XTy(f) to the RHS:

XTXβ = XTy(f)

∴ β = (XTX)−1XTy(f) (3.21)

As can been seen in Equation (3.21), the estimate for β using the linear least squares
method has an exact solution and can be directly given from selected inputs (X) and
the measured outputs (y(f)). Parameters (β) estimated using this method can be done
on any input-output system, assuming system linearity. By expressing a system in the
form given in Equation (3.11), the estimate is directly obtainable using Equation (3.21).

3.6.1 Linear Least Squares for fMRI (GLM)

Most analysis in fMRI and neuroimaging rely on linear least squares estimation. The
most ubiquitous statistical model for analysis of neuroimaging data uses a linear model
to test for region specific effects. This model is known as the General Linear Model or
GLM. First proposed for function imaging studies by Friston et al. (1994), the GLM
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is used to analyse every voxel using the linear least squares method so that effects of
activation-inducing-stimuli on specific regions on the brain can be visualized as three-
dimensional parameter maps instead of the raw four-dimensional signals.

The GLM is a statistical technique; physiological models of the data were, until recently
largely ignored. However, the physiology-free analysis means that the GLM is very flex-
ible and the technique can be applied to all fMRI-derived and PET-derived data. First
developed for BOLD-fMRI, current analysis of ASL-fMRI data has also used this tech-
nique. X is known in GLM analysis as the ‘design matrix’ and is populated the designed
stimulus/regressors to be tested. The number of columns of X determine the number
of effects to be analysed and each column contains the input stimulus/regressors as a
series in time. The GLM satisfies the simplest requirements of modelling: converting
the observed signal into interpretable components such as effects of interest and mea-
surement error, and then to make inferences for the significance of the anatomical region
associated with the the components of interest.

The process for a GLM analysis can be seen in Figure 3.7. Once the design matrix (X)
has been established, linear least squares estimation of time series data is done for each
voxel of the image, solving for β across the entire image of the brain. A whole brain
parameter map can be generated for each element (b1, ..., bp) of β in order to determine
areas of the brain that respond to the effects established using X. If for any region of the
brain image showing bk, k ∈ {1...p} to be large, then it can be interpreted that a change
in the column inputs [ui xik], k ∈ {1...p− 1}, i ∈ 1...n) would result in a large change in
the measured output (y(f)); the input greatly affects function in that particular region
of the brain.

Before analysis, the stimulus patterns (columns of X) are usually convolved with a
Gaussian, gamma or double gamma function that typifies a standard hemodynamic
impulse response function (HRF) (Miller et al., 2001). Both BOLD-fMRI and ASL-
fMRI use this convolution. Convolution with the HRF assumes that the output and
input are coupled as a linear time-invariant system and the HRF is the output of the
system when the dirac function (impulse) is fed into the input. The convolution process
is not shown in Figure 3.7 but essentially provides smoother X inputs for the fit. The
GLM is a statistical technique; it can be applied for use to generate parameter maps for
any whole brain imaging study that has the form of Equation (3.11).

3.6.2 The OSORU Model

An extension of GLM was proposed by Harms and Melcher (2003) who implemented
the GLM solution using a novel set of basis functions (OSORU or Onset Sustained
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Figure 3.7: General Linear Model Analysis Process.
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Offset Ramp Undershoot) chosen to reflect temporal features of cortical fMRI responses
detected throughout the brain during an auditory task. Employing this model within
the (GLM) framework, they quantified BOLD-fMRI response shapes across a number of
tasks and subjects with more accuracy than the standard HRF response.

Recent studies investigating region- and task-specific signals have seen responses that
cannot be fit by the standard HRF response model. Duff et al. (2007) employed the
OSORU model for tracking signalling changes due to learning of a motor-sequence task
as they found distinctive features in the BOLD-fMRI signal similar to those characterized
by Harms and Melcher (2003). The OSORU model was extended with an additional
undershoot component and the observed response shapes were characterized through
whole-brain mapping of the OSORU components. Harms and Melcher (2003) and Duff
et al. (2007) had the option to implement other methods that could be employed to map
such dynamics including wavelet and harmonic decompositions, principle component
analysis, and finite impulse response linear models. Both groups decided using the multi-
component GLM approach as it is able to explicitly model specific waveform features.
Furthermore, being a linear model, the GLM allows analysis procedures such as model-
comparison and selection can be implemented and used for statistical interpretation. An
example of the analysis can be seen in Figure 2.8 where each signal feature was analysed
across the whole brain. The study indicates that GLM analysis with a standard HRF
response may overlook important transient information that could potentially aid in
analysis of more complex behaviour.

The GLM paradigm is very useful for determination of standard activation as a first
order approximation of the response (Friston et al., 1998). However, being a linear
time-invariant model, the GLM framework and expansions of GLM such as the OSORU
method cannot model nonlinear coupling of hemodynamic responses. This limitation
may ignore important behavioral aspects of the data that may be determined using
nonlinear methods. Therefore, research has directed its attention into two major areas:
1) to find a better signal for the measurement of neuronal activity (presented in Section
2.3.1); and 2) to find ways to model the hemodynamic activity underlying the BOLD-
fMRI signal (presented in Section 2.3.2). The severity of GLM’s limitation is explored
in the next chapter.

3.7 Model Selection Using AIC and BIC

When two or more models are proposed for the same set of data, the choice of model
becomes very important. In choosing a statistical model, one has to make a choice
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between simplicity and completeness. Simple models having fewer free parameters tend
to be easier to understand and to calculate, but may not capture the conceptual picture
of the system in which the data has been observed. Complicated models, with more
parameters, tend to provide a richer knowledge of the underlying behaviour of the system
and so may offer a better fit of the data, but they may be too complex, becoming difficult
to calculate and overfit the data.

The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
are two tools for model selection, offering a tradeoff between accuracy and complexity
of a model (Akaike, 1974, 1979). Given any dataset, competing models maybe ranked
according to their AIC/BIC score with the one having the lowest value being the best
candidate model. In any model of reality, there is a discrepancy between the model
and ‘full reality’ or the observations made of the system. This discrepancy can be
quantified by the Kullback-Leiber Discrepancy (KLD), more generally used to determine
the distance between two probability densities. Both AIC and BIC are applications for
model evaluation based upon this measure.

In the case where y is generated from a source that has independent, normally distributed
errors, the equations simplify to depend only on the number of samples n and the number
of parameters p:

AIC(n, p) = n log

�
S(β)

n

�
+ 2p (3.22)

BIC(n, p) = n log

�
S(β)

n

�
+ p log(n) (3.23)

S(β) is the sum of squared error for the fitted model. It should be noted that the AIC
or BIC scores of a single model are not important, nor are comparison of AIC and BIC
scores of the same model. The scores have to be ranked between different models. AIC
and BIC ultimately rate models given different penalty terms imposed. AIC imposes a
strict 2p penalty for the number of parameters irrespective of the number of samples,
whilst BIC imposes a p log(n) penalty that penalizes the number of parameters more
with increasing number of samples.

3.8 Chapter Summary

This chapter presented the theory governing methods and algorithms used in investiga-
tion of the feasibility of using ASL-fMRI data as a better correlate for neuronal stimulus
than BOLD-fMRI. Firstly, the general modelling and comparison framework was pre-
sented as well as a workflow of how models are compared to each other to determine
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the best performing model. Secondly, model estimation and comparison was covered in
more detail. The critical concept introduced was that of using least squares estimation to
solve for model parmaters. Another concept was that of how to compare performance of
models using the Information Criterion algorithms (AIC and BIC). These concepts and
their associated equations are used extensively throughout the analysis as will be seen
in the following two chapters. The two questions have been introducted at the begin-
ning of the chapter: What type of dynamics are suitable for the modelling of ASL-fMRI
data? Can transient features such as spiking and ramping, measured for CBF using
other techniques also be found in ASL-fMRI data? These questions will be addressed
through analyzing a combination of simulated and experimental data.



54 CHAPTER 3. OUTLINE OF INVESTIGATION AND METHODS



Chapter 4

Simulations

This chapter provides analysis of simulated CBF models described in Chapter 3. The
simulations provide better understanding of the limits in which models are able to oper-
ate. They also facilitate model comparison, highlighting differences as well as similarities
between the various CBF models. The aim is to determine the optimal CBF model suited
for analysis of ASL-fMRI datasets. Simulations provide a standardized framework to fa-
cilitate model selection on a theoretical level.

The ASL-fMRI signal is a noisy and slowly-sampled signal. Since the models model
framework presented in Table 3.2 are being used in estimation of the ASL-fMRI sig-
nal, the most important questions that are able to be answered through simulation are
that of determining the optimal model to be used in such a noisy and slowly-sampled
environment. Three questions are answered through simulation: 1) In which range of
SNR/TR values does the estimation of dynamic model parameters (k, k1 and k2) become
unnecessary? 2) In which range of SNR/TR values does the estimation of the transient
parameters �1 and �4 become unnecessary? and 3) In which range of SNR/TR values
does estimation with a lower order model yield better accuracy than a higher order
model? By answering the three questions, it is possible to have a very good indication
of the typical performance of each model for real data as well as to provide a guide-
line of additional improvements in measurement technology for inclusion of additional
parameters for estimation.

Basic analysis techniques are first introduced and then slowly integrated into a larger
analysis framework. Single estimations of model parameters were done repeatedly for
each node of a SNR/TR grid. The estimation algorithms minimize the least squares error
through linear or nonlinear least squares methods.The output of each grid were used to
provide more insight into the problem. Various factors affecting estimation performance
are explored. The modules used for analysis are presented in the earlier sections whilst

55
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the actual analysis of where the three questions presented in the previous paragraph are
answered in the latter sections 4.4, 4.5 and 4.6

4.1 Introduction to Simulations

Physical limitations of CBF Models defined in Table 3.2 were investigated through sim-
ulations. The simulation framework was constructed so that input stimuli of different
length and duration could be generated. The paradigm of the pain dataset was matched
through simulation so that generated signals were as closely matched to experimental
data as possible. Linear least squares estimation was used to solve model parameters in
most of the simulations. However, certain simulations required the use of nonlinear least
squares as some parameters were exponentially correlated to the model function. The
simulations were built up in a hierarchical manner, with the more complicated analysis
done through combinations of simpler ones. The procedure, the results and the purpose
of each simulation will be explained in greater detail through the following sections.

Modelling the CBF Response The input paradigm for simulations was matched
with that of the experimental pain dataset described in more detail in Chapter 5. The
total duration of the block is 78 seconds, there is a 12 second delay before the stimulus
is switched on for 36 seconds. There is an off period of 30 seconds before the end of
the block. The single block paradigm can be seen in Figure 4.1. This paradigm is used
throughout the simulations as the input function.

A CBF response to the input paradigm (defined in Section 3.2) can be generated using
the choice of the CBF model and the selection of parameters for the model. Examples
of how parameter choice affect the generated response can be seen in Figure 4.2. In this
example, the change in the CBF function in response to variations of single parameters
were demonstrated for �1 to �4 for a given model and input function. More complicated
responses can be obtained through combinations of parameter values. In this way, a
variety of shapes can be generated to simulate the CBF response. In general, �1 governs
the magnitude of the onset spike (Figure 4.2a), �2 governs the magnitude of the steady
state response (Figure 4.2b), �3 governs the magnitude of the ramping response (Figure
4.2c) whilst �4 governs the magnitude of the offset spike (Figure 4.2d).

Figure 4.2 showes the variations of signal whilst changing the � parameters (DTs). The
model equation itself (DMs) can also be changed. In contrast to the DTs, the DMs define
the smoothness of the CBF signal as well as the responsiveness of the signal to the input
function. Figures 4.3 and 4.4 show the variety of CBF responses that can be generated.
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Figure 4.1: Input Stimulus for Simulation.

Figure 4.3 shows example responses generated using different DMs with the same DT.
Figure 4.4 shows example responses generated using the same DM with different DTs.
The parameters used in Figures 4.3 and 4.4 are shown in Tables 4.1 and 4.2 respectively.

Driving Term

�1
d
dtu(t) + �2u(t) + �3

�
u(t) dt, 0 < t < TON

�4
d
dtu(t), t ≥ TON

�1 = 1.0, �2 = 0.4, �3 = 0.02, �4 = 0.5

Dynamic Models

A 1
k2
f̈n(t) +

k1
k2
ḟn(t) + [fn(t)− 1], k1 = 2.0, k2 = 1.09

B 1
k2
f̈n(t) +

k1
k2
ḟn(t) + [fn(t)− 1], k1 = 2.0, k2 = 0.91

C 4
k21
f̈n(t) +

4
k1
ḟn(t) + [fn(t)− 1], k1 = 2.0

D 1
k ḟn(t) + [fn(t)− 1], k = 1

E fn(t)− 1

Table 4.1: Equations and parameter settings for different DMs coupled with the same DT.
Graphs of the functions are seen in Figure 4.3

4.1.1 Signal Generation

Example responses obtained using theoretical models are shown in Figures 4.3 and 4.4.
The theoretical signals are all smooth and continuous. Experimental data however, is
noisy and is discretely sampled. Additional steps were required to convert the smooth
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(a) (b)

(c) (d)

Figure 4.2: CBF response changes of Dynamic Model: 4
k2
1
f̈n(t)+

4
k1
ḟn(t)+[fn(t)− 1], k1 = 2.0

to specific Driving Term parameters. a) Responses governed by parameter �1. b) Responses
governed by parameter �2. c) Responses governed by parameter �3. d) Responses governed by
parameter �4.

Dynamic Model

4
k21
f̈n(t) +

4
k1
ḟn(t) + [fn(t)− 1], k1 = 2.0

Driving Term

�1
d
dtu(t) + �2u(t) + �3

�
u(t) dt, 0 < t < TON

�4
d
dtu(t), t ≥ TON

A �1 = 5.0, �2 = 0.4, �3 = 0.02, �4 = 3.0
B �1 = 3.0, �2 = 1.0, �3 = 0.02, �4 = 1.0
C �1 = 0.5, �2 = 0.8, �3 = 0.02, �4 = 0.0
D �1 = 0.5, �2 = 0.7, �3 = 0.00, �4 = 0.0
E �1 = 0.0, �2 = 1.0, �3 = 0.02, �4 = 0.0

Table 4.2: Equations and parameter settings for the same DM coupled with different DTs.
Graphs of the functions can be seen in Figure 4.4.
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Figure 4.3: Simulated responses for different DM using the same DT. Systems A to E are
examples of functions with various response speeds and transient features determined by the
type of DM used. See Table 4.1 for more details.

Figure 4.4: Simulated responses for different DTs using the same DM. The responses are
more varied than Figure 4.3 due to the fact that the DT parameters (�1 to �4) contribute more
prominently to the stationary features of the generated response (spikes, blocks, and ramps).
See Table 4.2 for the list of curves generated.
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Figure 4.5: Signal generation workflow showing how a noisy signal is generated through the
simulation process. TR and SNR can be varied for for flexibility in output.

signal into a simulated CBF response. The simulation framework was set up so that
the signal to noise ratio (SNR) as well as the sampling time (TR) can be varied. Noise
was assumed to be Gaussian for ease of calculation. Figure 4.5 show the steps involved
in signal generation. Along with the ability to vary DT and DM, a wide selection of
signals can be produced through simulation. The terminology used therein for simulation
purposes refers to the model used to generate the underlying noiseless signal as the
‘generating model’. The signal that is generated referred to as the ‘noiseless signal’
or the ‘actual signal’. When noise is added to the noiseless signal, it is referred to as
‘observed signal’ or the ‘noisy signal’.

4.2 Basic Modules for Comparing Estimation of the CBF

Response

Once CBF signals can be simulated with control of noise (SNR) and sampling time (TR)
through the different models, analysis can be done for the comparison of estimation mod-
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els. The analysis of estimation models have been organized into a hierarchical manner
for programming versatility. This was done for two critical factors required for model
comparison: First, the analysis framework was required to compare and make sense of
the large number of possible combinations of DMs and DTs for estimation. Second, the
analysis framework was required to do comparisons of these estimation models over an
even greater range of noise and sampling times. These two factors compound together
to form a very large set of tests to perform. The goal of developing the analysis frame-
work was firstly to package similar tests into modules and then to be able to reuse these
modules to perform selective analysis that enables cross-sectional views across the set of
all possible CBF estimation models and their performance across various SNR and TR
values. In this chapter, modules are also known as blocks and the two terms will be used
interchangeably. In addition to the terms defined for generated signals in Section 4.1.1,
more terms are defined to distinguish between the signals that are generated from user-
defined parameters and the signals that are generated from estimated parameters. The
model that is used in the estimation algorithm is referred to as the ‘estimation model’.
The signal determined by the estimator as the best estimate of the true signal is referred
to as the ‘estimated signal’.

4.2.1 Single Instance Module

The Single Instance module forms the most basic analysis done for a given model and
its parameter and provides a general summary that is used by most other subsequent
modules. The Single Instance module allows the following question to be asked: If a
signal is generated from a given CBF model with known input parameters, can the input
parameters be accurately recovered through estimation?

The Single Instance module assumes that the generated signal uses the same model as
the estimation. The estimated signal and model parameters for the estimation model
are obtained by performing a single estimation of model parameters using the observed
signal. The estimated parameters are then compared to the original parameters used to
generate it. The system diagram and a thorough description of the module can be found
in Figure 4.6. An example of such an analysis can be seen in Figure 4.7. Models A to
D of Table 4.1 have been used to generate noisy signals with a SNR of 20.0 dB and a
TR (repeat time or sampling time) of 0.5 seconds. The same models were then used to
estimate DT and DM parameters which are then compared to the actual value.
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Figure 4.6: System diagram of a Single Instance module. The diagram of ‘Signal Generation’
blocks can be found in Figure 4.5. Steps are explained as follows: (1) The initial noisy signal is
generated from one of the ‘Signal Generation’ blocks by taking in a model and the parameters for
the model as input, as well as specified TR and SNR values to generate a noisy signal. (2) The
‘Signal Estimator’ block can be either a linear or nonlinear least squares solver depending upon
the parameters required to be solved. The ‘Signal Estimator’ block takes in the model used by
the ‘Signal Generation’ block, along with the noisy signal in order to generate an additional set
of estimate parameters. (3) Using these estimated parameters, an estimated signal is generated.
(4) (5) The estimated signal and estimated parameters are then compared to the original set of
parameters and the signal that was generated to determine a set of statistics for the estimation.
A set of sample estimates can be seen in Figure 4.7.
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(a) (b)

(c) (d)

Figure 4.7: Estimates of parameters using the Single Instance module. The same model is
used for signal generation as well as for estimation. Table 4.1 shows the model equations. a)
Sample response and estimate for DM A. b) Sample response and estimate for DM B. c) Sample
response and estimate for DM C. d) Sample response and estimate for DM D.
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Figure 4.8: System diagram of a Single Compare module. The module has some features
similar to the Single Instance module (Figure 4.6) with a few differences. Firstly, instead of
one CBF model as input, two models are required (Models A and B). Secondly, no parameter
comparison is done as input parameters are for Model A whilst the estimated parameters are
for Model B. Steps are explained as follows: (1) A noisy signal is generated through ‘Signal
Generation’ block with Model A and Params A as inputs. (2) The noisy signal is then used
along with Model B to estimate Params B. (3) Model B and Params B are used to generate the
estimated signal. (4) The RMS error between the noiseless signal and the estimated signal can
be found. A normalized RMS error is calculated by diving the RMS error with the amplitude
of the noiseless signal.

4.2.2 Single Compare Module

The Single Compare module is another foundation module but asking a different question
to that of the Single Instance module. The Single Compare module asks: How accurately
can one model be used to estimate the signal produced from a different model? This
question is important as it compares the similarities between one model to the other. If
signal estimation produces very close results, it suggests that the two models used for
comparison are similar and may in fact be substituted for each other. The block diagram
and description of the module can be seen in Figure 4.8. An example of such an analysis
can be seen in Figure 4.9. The generating model is Model A of Table 4.1. It has been
used to generate noisy signals with a SNR of 20.0 dB and a TR of 0.5 seconds. The
estimation models are models A to D of the same table.

4.2.3 Multiple Instance Module

Following the definition of the Single Instance module, a Multiple Instance module is
defined. The Single Instance module is used inside a Multiple Instance module to itera-



4.2. BASIC MODULES FOR COMPARING ESTIMATION OF THE CBF RESPONSE65

(a) (b)

(c) (d)

Figure 4.9: Estimates of parameters using the Single Compare module. Generation of signal
was done using DM A of Table 4.1 and estimation of model parameters were done through
various estimation models. See Table 4.1 for the model equations. a) Sample estimation of
generated DM A response using DM A estimator. b) Sample estimation of generated DM A
response using DM B estimator. c) Sample estimation of generated DM A response using DM
C estimator. d) Sample estimation of generated DM A response using DM D estimator.
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Figure 4.10: System diagram of the Multiple Instance module. The inputs to the module
are the number of trials, a model and its parameter inputs as well as particular SNR and TR
values. The module takes all the inputs and uses the Single Instance block (details shown in
Figure 4.6) iterates over the number of trials specified such that a summary of the outputs
are generated. The bias and variance of parameter values as well as signal estimation can be
determined. Examples are shown in 4.11 with the summary statistics of the analysis shown in
Table 4.3.

tively generate a set of statistics summarizing the bias and variance of the estimator at
predetermined SNR and TR values. Figure 4.11 show the block diagram and description
of such a setup. Figure 4.11 show results of parameter estimation for the same models in
Figure 4.7 using a SNR of 10.0 dB, a TR (repeat time or sampling time) of 0.5 seconds
and 50 repeats. Table 4.3 summarizes the statistics of each estimation model shown in
Figure 4.11. Note that the normalized standard error (NSE) instead of the standard
deviation (SD) is given. The NSE is the standard error divided by the actual parameter
value and is used to compare effectiveness of estimation between each of the parameters.
The RMS error of the estimated signal compared to that of the noiseless signal was also
calculated. The normalized RMS error (NRE), or the RMS error divided by the ampli-
tude of the noiseless signal was also calculated and used to compare between models.
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(a) (b)

(c) (d)

Figure 4.11: Summary of results using Multiple Instance module. Multiple estimates using the
same model for signal generation and estimation. Additional inputs specified are SNR of 10.0,
a TR of 0.5 seconds and 50 trials. See Table 4.1 for the model equations. a) Summary of DM A
multiple estimation. b) Summary of DM B multiple estimation. c) Summary of DM C multiple
estimation. d) Summary of DM D multiple estimation. Each of the sub-figures show four signals:
‘Sample Noisy’ is a sample of the noisy signal that was generated during the analysis process.
‘Average Noisy’ is the average of all the noisy signals that was generated. ‘Actual’ is the noiseless
signal generated. ‘Averaged Estimated’ is the estimated signal generated using the mean values
of all parameter estimates.
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Actual DM A DM B DM C DM D

�1 1.0
estimate 0.9 1.1 1.3 0.85
bias −10% 14% 27% −15%
NSE 7.6% 7.8% 8.3% 8.4%

�2 0.4
estimate 0.42 0.41 0.37 0.40
bias −4.8% 3.2% −8.1% 0.63%
NSE 3.5% 2.7% 4.5% 5.4%

�3 0.02
estimate 0.019 0.019 0.021 0.021
bias −7.2% −4.2% 4.11% 2.5%
NSE 3.7% 2.6% 3.7% 5.1%

�4 0.5
estimate 0.55 0.50 0.49 0.43
bias 13% 0.17% −2% −15%
NSE 8.4% 8.6% 9.8% 7.4%

Signal

RMS error 0.0585 0.0539 0.0654 0.09
NRS 4.5% 4.2% 4.8% 7.2%

Table 4.3: Statistics of Multiple Instance module estimations for Figure 4.11.

4.2.4 Multiple Compare Module

Similar to the Multiple Instance module, the Multiple Compare module takes the Single
Compare module and recursively generates a set of statistics summarizing the closeness
of fit for two different models. Figure 4.12 show the block diagram and description of
such a setup. Figure 4.13 show results of parameter estimation for the same models in
Figure 4.9 using a SNR of 10.0 dB, a TR (repeat time or sampling time) of 0.5 seconds
and 50 repeats.

DM A DM B DM C DM D

RMS error 0.0659 0.0667 0.0827 0.161
NRS 4.8% 4.8% 6.0% 12%

Table 4.4: Statistics of Multiple Compare module estimations for Figure 4.13.

4.3 Model Characterization through SNR/TR Profiles

Although models may give accurate estimates at high SNR and fast TR (seen in Figures
4.11 and 4.13), this may not be the case when SNR is lowered and/or TR is slowed.
Therefore, the effectiveness of a model requires that its performance can be maintained
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Figure 4.12: System diagram of the Multiple Compare module. The inputs to the module are
the number of trials, a model and its parameter inputs, a comparison model as well as particular
SNR and TR values. The module takes all the inputs and uses the Single Compare block
(details shown in Figure 4.8) iterates over the number of trials specified such that a summary of
the outputs are generated. The bias and variance of signal estimation can then be determined.
Examples are shown in 4.13 with the summary statistics of the analysis shown in Table 4.4.
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(a) (b)

(c) (d)

Figure 4.13: Generation of results using Multiple Compare module. Signal was generated
using DM A of Table 4.1 and multiple signal estimates were done through various estimation
models. Inputs specified have SNR of 10.0, a TR of 0.5 seconds and 50 trials. See Table 4.1 for
the model equations. a) Sample estimation of generated DM A response using DM A estimator.
b) Sample estimation of generated DM A response using DM B estimator. c) Sample estimation
of generated DM A response using DM C estimator. d) Sample estimation of generated DM A
response using DM D estimator. Each of the sub-figures show four signals: ‘Sample Noisy’ is a
sample of the noisy signal that was generated using the generating model. ‘Average Noisy’ is the
average of all the noisy signals that was generated. ‘Actual’ is the underlying noiseless signal.
‘Averaged Estimated’ is the estimated signal generated using the mean values of all parameter
estimates of the estimation model.
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Figure 4.14: Block diagram of the Grided Multiple Instance module. The module input takes
in a user specified model and its parameter input and also the number of trials to be performed.
Each node of the grid is a Multiple Instance module (for more details see Figure 4.14) and
each type of statistics generated by the each nodes are then stored within the grid for display
purposes. Each row of the statistics seen in Table ?? can be visualized in a grid form, making
this module an extremely useful tool for profiling models.

across all ranges of SNR and TR values. It was found through experience that any
estimation model is most effectively categorized through building a profile of model
effectiveness across a range of SNR and TR values. Thus, two types of grid analysis were
introduced - The Grided Multiple Instance Module and the Grided Multiple Compare
Module.

4.3.1 Grided Multiple Instance Module

The Grided Multiple Instance module provides visualization of all statistics generated
by the Multiple Instance module over a range of SNR and TR values. This is a very
effective tool for understanding how estimation of signal and model parameters are af-
fected through noise and sampling time. These generated profiles are incredibly useful
in choosing the right model for a given application as well as understanding where esti-
mation may start to break down within a model. The block diagram of the module and
its description can be seen in Figure 4.14.

Using the module, an SNR/TR profile can be constructed for any given CBF model.
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(a) (b)

(c) (d)

Figure 4.15: Example of results generated using the Grided Multiple Instance module.
SNR/TR profile of �2 and �3 estimates for model E in Table 4.2 using 5000 trials per SNR/TR
node. a) 3D Mean Signal Estimation RMS Error Profile. b) Cross-section of the RMS Profile
along selected TRs with standard error bars showing variability in estimation of signal. c) Bias
of estimation of parameter �2 with standard error bars. The plot shows more estimation vari-
ability at high TR (TR=6.0) compared to lower TR values (TR=0.1). d) Bias of estimation of
parameter �3 with standard error bars. The plot shows the same effect as in Figure 4.15c.

This is done by specifying a SNR and TR grid and performing a multi-signal estimation
on each of the nodes of the grid. Parameter estimates for same generating model as the
estimation model can be visualized as a 3D plot or a series of 2D plots. Figure 4.15 shows
the profile of Model E in Table 4.1, estimating parameters �2 and �3 using 5000 trials per
node. Figure 4.15a shows the mean RMS error in a mesh form across all values of SNR
and TR. Figure 4.15b shows the same plot with error bars, picking out selected TR to
plot cross-sections of the mesh. Figures 4.15c and Figure 4.15d show bias of estimation
for �2 and �3 respectively. It can be seen that in this particular case, the parameter
estimates have a bias of 0 and low standard error at short TRs, when TR increases, the
standard error also increases.
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Figure 4.16: Block diagram of the Grided Multiple Compare module. The analysis is again set
up in a grid with each node being a Multi Compare Module. Two input models are compared
against each other for closeness of fit across a specified TR/SNR profile. The RMS error or error
in estimation of the signal can be visualized in a grid form.

4.3.2 Grided Multiple Compare Module

Following on from the Grided Multiple Instance module, the same SNR/TR grid concept
was applied to the Multiple Compare module in order to build the Grided Multiple
Compare module. The block diagram of the module and its description can be seen in
Figure 4.16. The figure is very similar in concept to that seen in Figure 4.14 with the
main purpose of the module being that of compiling a profile of how one model can
effective model another through different SNR and TR values. The module accepts as
input two models - a signal generating model (Model A) and a signal estimation model
(Model B) - and builds an estimation profile across different SNR and TR values for
comparing closeness of model fits. Figure 4.17 shows two such profiles. In both profiles,
the generating model has second order dynamics, whilst the two estimation models are of
first order and a zeroth order respectively. This module has uses in determining whether
estimation can be simplified. An example of this would be the question: Instead of using
a 2nd order model for estimation of a noisy and discretely sampled signal, would a 1st
order model or even a 0th order model be sufficient?
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(a) (b)

(c) (d)

Figure 4.17: Example of results generated using the Grided Multiple Compare module.
SNR/TR profile of various estimation models for the generating model E in Table 4.1. a)
and b) show the 3D Normalized RMS Error Profile as well as selected cross-sectional plots of
estimation using a 1st Order system. c) and d) show the 3D Normalized RMS Error Profile as
well as selected cross-sectional plots of estimation using a 0th Order system.
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4.4 Analysis 1 - Estimation Bias of DM Parameters

The Grided Multiple Instance and Grided Multiple Compare modules provide visualiza-
tions for model characterization and model comparison. The through a SNR/TR Profile
the two modules effectively answers the second critical factor raised in Section 4.2 - How
to do comparisons of estimation models over a range of noise and sampling times? The
first factor is a more difficult question - How to make sense of the large number of possible
combinations of DMs and DTs for estimation? Because of the endless amount of model
possibilities, this question has to be answered in a more heuristic manner. The first
question calls for examination of the proposed models - are there any extra parameters
that can be ignored in the course of estimation? By eliminating parameters, choosing
an effective model becomes much simpler.

The first analysis looks at the effectiveness of estimating parameters within the DMs.
Grid analysis was done on 5 differing CBF systems in order to determine whether es-
timation of DM coefficients could results in a better fit of the CBF response across a
range of TR and SNR values. The five systems were chosen to provide a variety of DM
properties over 1st and 2nd order behaviour. The five systems that were chosen can be
seen in Table 4.5:

Driving Term

�1
d
dtu(t) + �2u(t) + �3

�
u(t) dt, 0 < t < TON

�4
d
dtu(t), t ≥ TON

�1 = 0, �2 = 0.4, �3 = 0, �4 = 0

Dynamic Models

A1 Oscillating 2nd Order System 1
k2
f̈n(t) +

k1
k2
ḟn(t) + [fn(t)− 1],

k1 = 2, k2 = 5
A2 Overdamped 2nd Order System 1

k2
f̈n(t) +

k1
k2
ḟn(t) + [fn(t)− 1],

k1 = 2, k2 = 0.75
A3 Critically Damped 2nd Order System 4

k21
f̈n(t) +

4
k1
ḟn(t) + [fn(t)− 1],

k1 = 2
A4 Fast 1st Order System 1

k ḟn(t) + [fn(t)− 1], k = 5
A5 Slow 1st Order System 1

k ḟn(t) + [fn(t)− 1], k = 0.5

Table 4.5: DT and DM values for determination of SNR/TR profiles for Analysis 1.

Each DM equation was coupled with the same DT equation with parameters set as �1 = 0,
�2 = 0.4, �3 = 0, �4 = 0. The equation has only �2 active as experience found that there
was significant interference of estimation between �1, �4 and the DM coefficients. It was
very difficult to estimate both of them together at the same time. For each system, two
grid analysis was done - one using linear least squares solving for just �2, the other using
nonlinear least squares solving for �2 as well as the DM coefficients (k1 and k2 for A



76 CHAPTER 4. SIMULATIONS

and B, k1 for C, k for D and E). Summary of all trials were displayed as an SNR/TR
profile with comparison of the nonlinear estimation with that of the linear estimate.
Furthermore, a grided summary of the estimated DM coefficients (nonlinear estimation
only) was also viewed to determine the effectiveness of estimation.

2nd Order Systems - Models A1, A2 and A3 Results of the 2nd order systems can
be seen in Figures 4.18, 4.19 and 4.20 - these three profiles are representative of different
types of 2nd order systems used for modelling purposes.

Model A1 - Figure 4.18a shows signal estimation error of the oscillating 2nd order system
using the nonlinear least squares method. Parameters �2, k1, and k2 where variables to be
estimated. In comparison, Figure 4.18b shows signal estimation error of the same system
using linear least squares. Only �2 was the only free parameter in the second case. It
can be seen from the comparison of the two figures that nonlinear estimation of signal
was close to the optimal case where both k1 and k2 were known. However, estimation of
k1 and k2 parameters - seen respectively in Figures 4.18c and 4.18d are not very ideal.
In fact, there is alot of bias within estimation. Both DM parameters had significant bias
within all SNR/TR combinations except for TR=0.1s and SNR>15 dB. It is interesting
to note that k1 and k2 were most biased when TR=1.0s as this corresponds directly with
the oscillation period of the signal. Furthermore, noise had a big effect in biasing of the
signal at the typical TR=6.0s expected of ASL-fMRI datasets; there was still a bias of
20000% in estimation of k1 and 5000% in the estimation of k2 at SNR=20dB, the highest
SNR profiled. Because of the enormous bias, it can be interpreted from the result that
parameters k1 and k2 have minimal effect on the model at high TRs for the oscillating
2nd order model.

Model A2 - Figures 4.19a and 4.19b show the comparative signal estimation error between
nonlinear and linear least squares estimation respectively. As can be seen in Figure
4.19a, the nonlinear least squares being only able to find a local minimum, was not
robust enough at low SNR and long TRs. Furthermore, estimation of DM parameters
proved even more difficult with the underdamped model than the oscillatory model as
parameter estimates had more biasing problems as can be seen in Figures 4.19c and
4.19d. This result matches to intuition as underdamped systems typically do not have
the same amount of features as that of oscillating systems so that DM parameters have
even less influence upon the model.

Model A3 - In the critically damped case, there is only one DM parameter for estimation
and so it is expected that there will be less bias for estimation of k1 than in the previous
two cases. Figures 4.20a and 4.20b show that nonlinear estimation was only slightly less
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(a) (b)

(c) (d)

Figure 4.18: Results of Analysis for Model A1, an oscillating 2nd order system of equation
1
k2
f̈n(t) +

k1
k2
ḟn(t) + [fn(t)− 1], k1 = 2, k2 = 5.0. a) Profile of RMS signal error using nonlinear

least squares estimation and 3 free parameters (�2, k1, and k2). b) Profile of RMS signal error
using linear least squares estimation and 1 free parameter (�2). c) Profile of bias in estimation
of k1. d) Profile of bias in estimation of k2.
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(a) (b)

(c) (d)

Figure 4.19: Results of Analysis for Model A2, an overdamped 2nd order system of equation
1
k2
f̈n(t) +

k1
k2
ḟn(t) + [fn(t)− 1], k1 = 2, k2 = 0.75. a) Profile of RMS signal error using nonlinear

least squares estimation and 3 free parameters (�2, k1, and k2). b) Profile of RMS signal error
using linear least squares estimation and 1 free parameter (�2). c) Profile of bias in estimation
of k1. d) Profile of bias in estimation of k2.
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(a) (b)

(c)

Figure 4.20: Results of Analysis for Model A3, a critically damped 2nd order system of equation
4
k2
1
f̈n(t)+

4
k1
ḟn(t)+[fn(t)− 1], k1 = 2. a) Profile of RMS signal error using nonlinear least squares

estimation and 2 free parameters (�2, k1). b) Profile of RMS signal error using linear least squares
estimation and 1 free parameter (�2). c) Profile of bias in estimation of k1.

accurate than the linear case but the biasing for estimation of k1 was clearly evident in
Figure 4.20c. Although it was an order of magnitude better than Models A1 and A2,
estimation of k1 for Model A3 still suffered significant biasing with longer TRs.

1st Order Systems - Models A4 and A5 As with the 2nd order systems, profiles
of the 1st order systems can be seen in Figures 4.21 and 4.22. Although there were less
features contained in the 1st order systems compared to that in 2nd order systems, the
responsiveness of the transition response was varied and profiled through simulations.
Although only done for 1st order systems, the profiles of responsiveness would theo-
retically also hold true for 2nd order systems in terms of observing a general trend in
estimation biasing.

Model A4 - Of all the models, estimation of the fast 1st order system yielded the lowest
biasing of the DM parameter estimate. The signal estimation profile seen in Figures 4.21a
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(a) (b)

(c)

Figure 4.21: Results of Analysis for Model A4, a fast 1st order system of equation 1
k ḟn(t) +

[fn(t)− 1], k = 5.0. a) Profile of RMS signal error using nonlinear least squares estimation and
2 free parameters (�2, k). b) Profile of RMS signal error using linear least squares estimation
and 1 free parameter (�2). c) Profile of bias in estimation of k.

and 4.21b are remarkably similar to that of Model A3. However, biasing in estimation
of k, seen in Figure 4.21c is around half a magnitude better than Model A3 and a full
magnitude better than Model A5. The profile shows the same patterning of earlier
analysis that estimation bias becomes much more pronounced with longer TR and there
is an exponential growth in estimator bias with decreasing SNR.

Model A5 - A comparison of parameter k estimation profiles of Model A4 and Model
A5 (Figure 4.21c and Figure 4.22c respectively) shows that estimation biasing of Model
A5 is much more affected by TR than that of Model A4. Although still an exponential
growth with decreasing SNR, the bias grows much more quickly. Although both have the
same signal estimation profiles - Figures 4.22a and 4.22b compared with Figures 4.21a
and 4.21b - it seems that the slow 1st order models are less sensitive to changes in k

than the fast 1st order models.
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(a) (b)

(c)

Figure 4.22: Results of Analysis for Model A5, a slow 1st order system of equation 1
k ḟn(t) +

[fn(t)− 1], k = 0.5. a) Profile of RMS signal error using nonlinear least squares estimation and
2 free parameters (�2, k). b) Profile of RMS signal error using linear least squares estimation
and 1 free parameter (�2). c) Profile of bias in estimation of k.
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Analysis Summary As demonstrated by all five models (A1 to A5) tested, estimation
of DM parameters face problems with estimator biasing, with the effect being much more
exaggerated at higher TRs. The experimental ASL-fMRI dataset has a TR of 6.0 seconds
and simulations show that it is not possible to estimate the parameters with any degree of
certainty at that value. If the TR of the experiments were closer to 0.1 seconds, then DM
parameter estimation would be beneficial as it is able to pick up the finer features offered
using a more complicated 2nd order model. However, the simulated profiles created here
clearly advises against the case for using nonlinear least squares for estimation of DM
model parameters in current ASL-fMRI datasets. The estimation model may thus be
simplified. Jittering of stimulus and detection has been used in recent experiments
involving ASL (Diekhoff et al., 2011). However, the jittering of experimental results are
in the range of seconds, an order of magnitude out from the level of jittering required
to measure the finer effects of this experiment. Results from the analysis verify that
parameters in the DM equation can be fixed to produce biologically plausible dynamics.
In this way, the parameters in the DT equation could then be estimated using linear
least squares, giving a faster estimation.

4.5 Analysis 2 - Estimation Bias for DT Parameters �1 and

�4

The transient DT parameters (�1 and �4) are responsible for the responses occurring in a
short span of time. These features in the signal may not be able to be seen during slow
TR or may be distorted during high SNR. As such, simulations were done to determine
regions within a SNR/TR profile that would be reasonable to include the parameters
for estimation. As �1 and �4 could potentially vary between a range of values as well
as being attached to different dynamic models, the simulation of such a large number
of free-variables would be very difficult. It was decided to categorize the transient pa-
rameters into 3 DT groups: ‘Weak’, ‘Normal’ and ‘Strong’ with the generating �1 and
�4 parameters taking values of 0.1, 1.0 and 10.0 respectively. Furthermore, four types of
dynamic models all having fixed parameters were representative of the different dynamics
that could be involved in real estimation. Table 4.6 shows 3 DTs and 4 DMs.

The analysis performed an SNR/TR profile of parameter estimates on each combination
of DTs and DMs using 2000 trials per node. Estimates of �1 and �4 were obtained using
the same estimation model as the generating model. There were 12 profiles calculated
in all. The profiles for parameter �1 can be seen in Figure 4.23. Because the parameter
profiles for �4 are similar to that of �1, it is omitted from the results for the sake of clarity.
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Driving Term

�1
d
dtu(t) + �2u(t) + �3

�
u(t) dt, 0 < t < TON

�4
d
dtu(t), t ≥ TON

Weak Features �1 = 0.1, �2 = 0.4, �3 = 0.02, �4 = 0.1
Normal Features �1 = 1.0, �2 = 0.4, �3 = 0.02, �4 = 1.0
Strong Features �1 = 10.0, �2 = 0.4, �3 = 0.02, �4 = 10.0

Dynamic Models

B1 Oscillating 2nd Order System 1
k2
f̈n(t) +

k1
k2
ḟn(t) + [fn(t)− 1],

k1 = 2.0, k2 = 1.09
B2 Overdamped 2nd Order System 1

k2
f̈n(t) +

k1
k2
ḟn(t) + [fn(t)− 1],

k1 = 2.0, k2 = 0.91
B3 Critically Damped 2nd Order System 4

k21
f̈n(t) +

4
k1
ḟn(t) + [fn(t)− 1],

k1 = 2.0
B4 1st Order System 1

k ḟn(t) + [fn(t)− 1], k = 1

Table 4.6: DT and DM values for determination of SNR/TR profiles for Analysis 2.

For analytical purposes, thresholding was used and an additional requirement was placed
on the simulations: For each SNR/TR profile, given a particular TR value, find the
lowest SNR that produces an estimation for �1 that is deemed to be ‘acceptable’. In this
case, the definition of ‘acceptable’ is defined arbitrarily as the estimate of �1 within 50%
variance and 10% bias. The visualization for such requirement can be seen in Figure
4.25.

Analysis Summary From the estimates seen in Figure 4.25, it is clear that the best
performing model in the majority of cases and especially at higher TR values is the 1st
Order System. It can also be seen that the SNR required to produce an acceptable model
increases very quickly from a TR = 0.1s to a TR = 0.5s and then rises more slowly as
TR becomes larger. Furthermore, both weak and strong transient features yield less
desired curves than the normal transients. Weak features, are harder to estimate as
they are relatively small compared to the other features. Strong features tend to distort
estimation of the non-transient parameters (�2 and �3)) and so would indirectly yield less
accurate estimations. Normal features fulfill the Goldilocks - ‘its just right’ - principle
to yield the best estimates out of all three features.

From the performance point of view, it is clear that the transient features are best
included when the TR is 0.5 seconds or less. A TR of 1.0 seconds or more for all second
order dynamics would require high SNR (15 or more) to compensate for the long TR.
At a TR of 6.0 seconds, which is the TR of real ASL-fMRI measurements, a SNR of 30
or more would be needed to yield acceptable transient estimates. Due to the nature of
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Figure 4.23: SNR/TR profiles for various DT and DM combinations for parameter �1. The
columns correspond to the strength of DT transients: Weak, Normal and Strong. The rows
correspond to various DMs: Oscillating 2nd Order (B1), Overdamped 2nd Order (B2), Critically
Damped 2nd Order (B3) and 1st Order (B4). The figure at each of the nodes of the matrix
correspond to the SNR/TR profile of bias in �1 bias generated for the combination of DT transient
type and DM type.
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Figure 4.24: SNR/TR profiles for various DT and DM combinations for the standard error in
bias for parameter �1. The profiles follow the same format as that in Figure 4.23 although only
the standard error is plotted.
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(a) (b)

(c)

Figure 4.25: Lowest SNR threshold to yield ‘acceptable’ estimation of �1 (within 50% variance
and 10% bias) with Weak, Normal and Strong Features. See Table 4.6 for model equations.
Each plot determines the best model for a given TR using the given value of �1. With each
group shown, the lower the bar, the better performing the model compared to its peers. For
example, in graph a) whilst estimating weak features at TR=0.1, the blue bar representing the
oscillating 2nd order system is the best performing model.
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noise in ASL-fMRI datasets, an SNR of 30 would not be achievable and so the results
shown in this simulation strongly advises including the transient �1 and �4 features in
the estimation of experimental datasets.

4.6 Analysis 3 - Model Substitution and Simplification

The third analysis assumes that the underlying signal model and the model used for
estimation can be different to each other. Because of the low SNR and long TR times
in ASL-fMRI datasets, there is a possibility that two different models may yield similar
types of signals and so may be substituted for each other. The following analysis tests
this hypothesis with the understanding that if higher order and lower models are in
fact similar for a given range of SNR/TR values, then the lower order model can be
substituted for the higher order one for ease of calculation. The models used in the
simulation can be seen in Table 4.7. Note that a 0th order system was also added as this
was the simplest model available for CBF coupling.

Each of the five models were compared to each other in a matrix form so that one model
acts as the generating model and the other acts as the estimation model. 25 model
combinations were possible and SNR/TR profiles were done for all. The number of trials
used for each node in the Grid was 2000. Results of Analysis 1 and Analysis 2 affected
choice of selecting the parameters to be estimated; estimation of DM parameters were
not included, nor that of estimation of DT parameters - the simulation was performed
by setting �1 and �4 to zero. Only the signal, �2 and �3 were solved in the analysis.

Driving Term

�1
d
dtu(t) + �2u(t) + �3

�
u(t) dt, 0 < t < TON

�4
d
dtu(t), t ≥ TON

�1 = 0.0, �2 = 0.4, �3 = 0.005, �4 = 0.0

Dynamic Models

C1 Oscillating 2nd Order System 1
k2
f̈n(t) +

k1
k2
ḟn(t) + [fn(t)− 1],

k1 = 2, k2 = 5
C2 Damped 2nd Order System 1

k2
f̈n(t) +

k1
k2
ḟn(t) + [fn(t)− 1], k1 = 2,

k2 = 0.91
C3 Critically Damped 2nd Order System 4

k21
f̈n(t) +

4
k1
ḟn(t) + [fn(t)− 1], k1 = 2

C4 1st Order System 1
k ḟn(t) + [fn(t)− 1], k = 1

C5 0th Order System fn(t)− 1

Table 4.7: DT and DM values for determination of SNR/TR profiles for Analysis 3.

Results of the analysis can be seen in Figure 4.26. The graphs on the diagonal going
from top-left to bottom-right show estimations using the same generating model as the
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estimation model. These are the ‘ideal’ estimates. The graphs also show symmetry
reflected on either side of the diagonal. This suggests that a higher order system cannot
produce a better estimation of a lower order system when only �2 and �3 are estimated.
An interesting aspect of the graphs show that although at TRs of 2.0 seconds or less,
there is an error in estimation when the estimation model used is different generating
model, at a TR of 6.0 seconds, the signals of the models begin to behave like each other.
For example, in the case of Model (C1) in Figure 4.26, which is an oscillating 2nd order
system. It is clear that at TRs of 2.0 seconds or less, when different estimations models
such as Models (C2), (C3) are used, the signal estimation error would stay at around 5%

regardless of the increase in SNR. However at a TR of 6.0 seconds, high SNR results in
the estimation error tending towards 0%. This result can be interpreted to mean that
at a TR of 6.0 seconds, the oscillating 2nd order system can be substituted with an
overdamped 2nd order system or a critically damped 2nd order system provided that
the SNR is high enough. Conclusions such as this can be drawn between models from
each of the graphs in Figure 4.26.

Because of the large amount of information provided through model comparison, an easier
way to understand the data is through thresholding. Like Analysis 2, another condition
was placed on the data for visualization purposes: Given a particular TR value, find the
lowest SNR that produces an estimation of signal that is deemed acceptable (estimated
signal RMS error of 10%). The results of each model can be seen in Figure 4.27.

Analysis Summary It can be seen from results in Figure 4.27 that at TR = 6.0
seconds, the 1st Order System can provide best fits for all the 2nd Order Systems whilst
the 0th Order System obtains different signals from the rest. This leads to the conclusion
that using a 1st Order System can be much more effective than using a whole group of
2nd Order Systems as it seems to be able to emulate the dynamics at both short and long
TR times. Furthermore, it is interesting that at TR = 6.0 seconds, all the models bar
the 0th order model have the same SNR threshold of estimation. This result indicates
that all dynamic models become indistinguishable from each other at TR = 6.0 seconds.
Effectively, it means that at a TR = 6.0 seconds, estimation of the CBF function using
higher order dynamics than a 1st Order System becomes redundant.

4.7 Chapter Summary

In this section, the basic modules of the simulation framework was described as well as
how such modules are built up in a hierarchical manner to form the model characteriza-
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Figure 4.26: SNR/TR profiles for the model combinations used for analysis. The rows of the
figure contain generating models whilst the columns of the figure contain the estimation models.
Each graph within the matrix is an SNR/TR profile generated using the Grid Multiple Compare
module having inputs of the generating model and estimation model at the indices of the graph
with the matrix. For example: the graph on row C2 and column C4 shows the SNR/TR profile
of signal comparison using the Damped 2nd Order System as the generating model and the 1st
Order System as the estimation model.
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(a) (b)

(c) (d)

(e)

Figure 4.27: The lowest thresholded SNR in order to estimate a signal with RMS error of 10%.
Each generating model has been given its own bar graph a) Oscillating 2nd Order System (C1).
b) Damped 2nd Order System (C2). c) Critically Damped 2nd Order System (C3). d) 1st Order
System (C4). e) Zeroth Order System (C5). The lower the bar, the better the estimation by
the relevant model. For example, in a) which the generating model is the Oscillating 2nd Order
System; at TR=0.5 seconds, the 1st Order System is a better estimator of the oscillating 2nd
order system than the 0th Order System, which is a better estimator that both the Damped 2nd
Order and the Critically Damped 2nd Order Systems.



4.7. CHAPTER SUMMARY 91

tion analysis work in order to describe advantages and disadvantages of using differential
models for CBF modelling. It was found from analysis that the questions posed at the
beginning of the chapter could be determined through simulation:

Question 1: In which range of SNR/TR values does the estimation of dynamic model
parameters (k, k1 and k2) become unnecessary?

Result: Using the analysis done in Section 4.4, when the data concurrently contains
TR > 0.1 seconds and SNR < 15 dB.

Question 2: In which range of SNR/TR values does the estimation of the transient
parameters �1 and �4 become unnecessary?

Result: Using the analysis done in Section 4.5, when the data concurrently contains
TR > 1.0 seconds and SNR < 10 dB.

Question 3: In which range of SNR/TR values does estimation with a lower order
model yield the same or better accuracy than a higher order model?

Result: Using the analysis done in Section 4.6, when the data is sampled at TR > 2.0
seconds.

From the results found for the different simulations, it can be seen that unless ASL-
fMRI data collection is faster than 2.0 seconds, the use of dynamic systems to model
CBF as well as any type of transient behaviour cannot be accurately done at a SNR
lower than 10 dB. Whilst transient behaviour may in fact be present in the CBF signal,
the behaviour cannot be estimated at the levels of noise and sampling rate found in
the typical experimental ASL-fMRI dataset as will be shown in the following chapter
(TR of 6.0 seconds and SNR roughly estimated to be around 20dB). These results are
important as it determines the limits of data that CBF models can be used and will affect
the decisions made for choosing models for fitting of experimental data as presented in
the next chapter.
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Chapter 5

Analysis of an Experimental Dataset

Simulations performed in chapter 4 enabled the prediction of a number of factors related
to the accuracy of model estimation in response to noise. The results however does
not provide any indication of how actual CBF data would behave as collected using
ASL-fMRI. The main goal of the thesis is to determine whether ASL-fMRI data can be
modelled better than the existing methods through inclusion of physiologically grounded
parameters. This chapter aims to provide a slight variation of the original problem,
investigating whether a model with more complex dynamics would better model CBF
data over a standard 0th order system.

Following on from the previous chapter in conducting analysis of simulated CBF data,
this chapter provides comparison of estimation using CBF models described in Chapter
3 to experimental data. Chapter 4 results enabled certain CBF models to be ommitted
due to redundancy estimation. Performance of estimation using various CBF models
were evaluated and then compared to one another to determine the best overall system
to be used in estimation of CBF data collected using ASL-fMRI. After the whole brain
was compared, regional comparison was done for various regions that looked for specific
patterns of activation that would favor one model over another. A global correlation was
performed over a number of key indicators to determine any trend in preference of one
model over another.

5.1 Analysis Overview

5.1.1 Experimental Data

The data used for analysis was collected within the Melbourne University Neuroimaging
Group for a pain analgesic study. Subjects in this study were subjected to âĂŸthumb
squishesâĂŹ using a thumbscrew. The screw was applied in an on/off block design

93
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pattern, and is referred to as the stimulus for the experiment. Subjects were asked to
rate the level of pain they experienced for each stimulus application, on a scale of 1-10.
There were 17 subjects in total each with 2 runs having 5 blocks in each run. In each
block, the stimulus was applied at 12.0 seconds and held for 36.0 seconds and then a
30.0 second rest, giving a total time block of 78.0 seconds. The TR of the scan was 6.0
seconds and so there were 13 data points collected for each block. A table of experimental
parameters can be seen in 5.1

Experiment Parameters

No. Subjects 17
No. Runs 2 per Subject
No. Blocks 5 per Run
No. Images 13 per Block
Total Time 78.0 secs per Block

390.0 secs per Run
TR 6.0 secs
Image Dimension 64 x 64 x 24
Voxel Size 3mm x 3mm x 5mm

Table 5.1: Experimental Parameters of the Pain Analgesic Study

5.1.2 Analysis Setup

Following on from model simulations performed in Chapter 4, further analysis was per-
formed on the experimental dataset. Simulation results from Chapter 4 had indicated
that models used for analysis of datasets with TR of 6.0 can be simplified. The number
of combinations of DMs and DTs needed to be analysed (originally proposed in Table
3.2) were reduced. The long TR of the dataset meant that there was no need for esti-
mation of driving term parameters �1 and �4 nor were there any need for estimation of
transient dynamic coefficients for the 1st order (k) and 2nd order models (k1 and k2).
These simplifications reduce the scope of the analysis to just 12 combinations made of
4 DMs and 3 DTs. Table 5.2 shows the equations governing the DM and DT equations
whilst Table 5.3 shows the layout producing 12 models using the possible combinations
of DMs and DTs. k, k1 and k2 were set as constants for each of the models.

As all free variables in the models are linear, analysis of the dataset was done using the
linear least squares method (presented Section 3.6). Group results using t-statistics were
produced for each of the 12 models and each set of results were compared for accuracy
of estimation.
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DM Equations

DM0 0th Order fn(t)− 1
DM1 1st Order 1

k ḟn(t) + [fn(t)− 1] k = 1.25
DM2a 2nd Order Critical 4

k21
f̈n(t) +

4
k1
ḟn(t) + [fn(t)− 1] k1 = 1.6

DM2b 2nd Order 1
k2
f̈n(t) +

k1
k2
ḟn(t) + [fn(t)− 1] k1 = 1.5, k2 = 1.0

DT Equations

DT2 Block Input �2u(t)
DT4 Ramp Input �3

�
u(t) dt

DT6 Block and Ramp Input �2u(t) + �3
�
u(t) dt

Table 5.2: Reduced Combination of DM and DT Equations.

CBF Model Matrix

Dynamic Models

Driving Terms DM0 DM1 DM2a DM2b

DT2 DM0 = DT2 DM1 = DT2 DM2a = DT2 DM2b = DT2

DT4 DM0 = DT4 DM1 = DT4 DM2a = DT4 DM2b = DT4

DT6 DM0 = DT6 DM1 = DT6 DM2a = DT6 DM2b = DT6

Table 5.3: Reduced Matrix of Models from Combination of DM and DT Equations.

5.2 Analysis Results - Overall Summary

Group analysis using each of the 12 models provided a large amount of data to be
inspected. Each DM had three different DTs producing estimates of parameters that
required comparison. An example of such an output can be seen in Figure 5.1 where
group-level parameter estimates of using 0th-order dynamics are compared with one
another.

Parameter Estimation A common feature can be observed across all 12 models that
can be seen in the following example: Figures 5.1a (which presents �2 estimations for a
block input ) and 5.1b (which presents �3 estimations for a block input) show very similar
estimation profiles. This result suggests that estimation of CBF datasets using a ramp
input can obtain relatively similar results to estimation using a block input. This result
is actually quite surprising and on closer inspection is more due to the noisy nature of
the data itself rather than any trend in modelling.

Another feature evident in the estimations across the 12 models can be found in Figures
5.1c and 5.1d which show �2 and �3 estimations for a model with block and ramp input.
Although the estimations of both parameters are bigger than those in Figures 5.1a and
5.1b, it can be seen that the estimations actually produce signals that cancel each other
out. When a region of 5.1c is red, the corresponding region of 5.1d is blue and vice-
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(a)

(b)

(c)

(d)

Figure 5.1: Samples of group-level parameter estimates calculated for the dataset using 0th-
order dynamics. They show the most active regions in the group and voxels outside of the brain
are purposely shown for indication of edge effects. a) �2 estimates calculated for a block input.
Red: �2 > 0.01, Blue: �2 < −0.01. b) �3 calculated for a ramp input. Red: �3 > 0.0004, Blue:
�3 < −0.0004. c) and d) respectively shows �2 and �3 using a block and ramp input. c) Red: �2
> 0.01, Blue: �2 < −0.01. d) Red: �3 > 0.0004, Blue: �3 < −0.0004.

versa. This seems to suggest that modelling using the block and ramp input, although
providing a better overall fit, may not be providing a better interpretation than using
only block or ramp inputs.

A closer examination of effectiveness of estimation uses calculation of Z-statistics for the
group analysis. This can be seen in Figure 5.2. The graphs of Z-statistics correspond
with parameter estimates seen in Figure 5.1. Note that Figure 5.2a displays statistics of
0th-order dynamics with a block input and is equivalent to the standard GLM analysis.
Figure 5.2b displays a remarkably similar map to that of 5.2a and confirms the observa-
tions made earlier that modelling using a ramp input may produce very similar results
to modelling using a block input. Furthermore, it can be seen that the Z-statistics are
not as high in 5.2c and 5.2d, again suggesting that two parameter estimation may not
be as effective as one parameter estimation. Also only 0th-order dynamics are shown,
the scores are similar across different DMs. Note that the Z-values are very low in 5.2

Figure 5.3 shows the same type of result found in Figure 5.1 except that instead of
using 0th-order dynamics, 2nd-order critically damped dynamics have been used. A



5.2. ANALYSIS RESULTS - OVERALL SUMMARY 97

(a)

(b)

(c)

(d)

Figure 5.2: Samples of group-level Z-statistics calculated for the dataset using 0th-order model.
The samples provide better understanding for how relevant parameter estimates are for each
voxel within the analysis shown in Figure 5.1. The statistics were all masked to the region of the
standard brain image. a) shows statistics for �2 estimates calculated for a block input. b) shows
statistics for �2 estimates calculated for a ramp input. c) and d) respectively shows statistics for
�2 and �3 using a block and ramp input.
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(a)

(b)

(c)

(d)

Figure 5.3: Samples of group-level parameter estimates calculated for the dataset using a 2nd-
order model. They show the most active regions in the group and voxels outside of the brain
are also shown for indication of edge effects. a) shows �2 estimates calculated for a block input.
Red areas show �2 estimates > 0.01 whilst blue areas show �2 < −0.01. b) shows �3 estimates
calculated for a ramp input. Red areas show �3 estimates > 0.0004 whilst blue areas show �3
< −0.0004. c) and d) respectively shows estimates for �2 and �3 using a block and ramp input.
In c) Red areas show �2 estimates > 0.01 whilst blue areas show �2 < −0.01. In d) Red areas
show �3 estimates > 0.0004 whilst blue areas show �3 < −0.0004.

comparison of the subfigures between Figure 5.1 and Figure 5.3 show very similar regions
of activation.

Model Comparison After group analysis was performed using all 12 models, the re-
sults were compared with one another to determine which model was the best. Model
selection algorithms (AIC and BIC introduced in Chapter 3) were used for model com-
parison. For each set of estimation results generated using the models, an AIC image as
well as a BIC image was generated. The models were ranked for each voxel according to
which was the most effective. Because of the sheer number of possibilities for comparing
ranking, it was decided that the best overall model can be separated into the best overall
DM and the best overall DT for easier classification. The DM comparison process and
results can be seen in Figures 5.4 and 5.5. Because the AIC and BIC gave the same
results due to the model having the same number of free parameters, Figures 5.4 and
5.5 show combined results. DT comparison process and results can be seen in Figures
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5.6 and 5.7.

DM Comparison Figure 5.5 shows results from both AIC and BIC comparison. They
are the same because the penalty term is redundant as the number of free parameters
between DMs are the same. From the results, it is clear that the best performing DM was
0th-order dynamics, outperforming all other DMs in 67% of the total voxels. However,
it can be seen that with a block input, the performance increases to 75%. An interesting
sidenote about the block input results is that when the 0th-order dynamic is not the best
performing, it becomes the worst. A faraway second is the 2nd-order critically damped
dynamic with outperformance in 21% of all voxels. the 2nd-order system was the worst
performing model across all voxels.

DT Comparison Figure 5.7 shows results from AIC and BIC comparisons of DTs.
The two comparisons show very different results. Whilst the AIC method selected the
block and ramp input as the overall best performing DT with 56% of all voxels, the BIC
selected the block input as the best performing with 75% of all voxels. Such a large
difference is due to the penalty terms punishing free-variables. The BIC is much more
harsh on the free-parameters than AIC. This can be seen as the two-parametered block
and ramp input was considered the worst performing model in all cases using the BIC
model selection method.

Figure 5.7 highlights the difficulty in model selection algorithms and the varied results
that algorithms produce. Ultimately, more information may be needed to decide the best
model other than an algorithm. As the Z-statistics in Figure 5.2 have already shown
that the block and ramp input may not be as effective as a single block or single ramp
response, it seems that BIC comparison was the better indicator of model performance
than the AIC in this case. As such, future comparisons will only show BIC comparisons
for easier comprehension.

5.3 Analysis Results - Subregion Summary

From the results of comparison seen in Section 5.2, it is clear that at the image level,
the best DM is the 0th-order system (67%) whilst the best DT is the block input (75%).
However, it may be that specific regions of the brain may prefer different DMs and DTs.
Furthermore, edge effects may also play a part in model selection. Masks were created
to segment the images so that only the voxels in a particular region were considered for
analysis. Figure 5.8 show masks M0 to M3 that were created. The M0 mask was the
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(a)

(b)

Figure 5.4: DM comparison process and results a) Ranking across each driving term, four
dynamic models were compared to create an image representation of which model could fit the
data the best. The region of interest was over all voxels. b) A sample comparison showing best
and worst performing models within each voxel masked using the standard brain. The map
compares performance of all DMs for a block DT.
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Figure 5.5: Summary of comparisons between estimator performance for different dynamic
models for each type of driving terms as well as overall score. There were three different types of
driving terms - block, ramp as well as block and ramp - with the overall performance being the
an average of the three. Comparison was done using both AIC and BIC as the free parameters
involved in estimation of driving terms were the same, both comparison framework gave the
same results.
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(a)

(b)

Figure 5.6: DT comparison process and results a) Ranking across each dynamic model, three
driving terms were compared to create an image representation of which model could fit the
data the best. The region of interest was over all voxels. b) Sample model comparison showing
best and worst performing models within each voxel masked using the standard brain. The map
compares all DTs for a 0th-Order DM.
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Figure 5.7: Summary of comparisons between estimator performance for different driving terms
for each type of dynamic models as well as an overall score. This uses the same data as Figure
5.5 but cuts across it in a different way. For each of the four dynamic models, best and worse
performing driving terms were calculated using both AIC and BIC and then summarized. An
overall score provides the average across all four models. Note that mapping frequency of models
in Figure 5.6(b) is seen in the pair of pie-charts on the right in the first row.
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Figure 5.8: Map of masks used for regional analysis of statistics. M0 masks the entire image
space. M1 masks just the volume of the brain. M2 masks inner volume of the brain and M3
masks the volume of the insular cortex.

same as previous section and only acts as a comparison for the other three. M1 masked
the standard brain image whilst M2 masked the standard brain image without the outer
volume. This was to minimize edge effects in the analysis. M3 masked the insular cortex,
a region that showed negative activation and was found to be be active in pain-related
studies (S Vulliemoz and Lemieux, 2009). The region mask was created and a recount
of voxels containing best and worst model performance was done only within the region.
Figures 5.9 and 5.10 show pie charts of the model comparisons for each of the masks.

It can be seen from Figure 5.9 that performance of the 0th-order system actually improves
through segmenting the brain into areas M1 to M4. Comparing the values of overall
statistics in M1 (70%) and M2 (71%) to M0 (67%), it is found that using the 0th-
order system within the brain actually leads to a better performance of estimation than
the entire image. Comparing M1 with M2, it can be seen that edge effects do not
play a significant effect in estimator performance. The overall score of the 0th-order
system is improved by 1% whilst there appear to be no significant change in other DMs.
There is no change for best performing models when only the block input is taken into
account. M3 masks an anatomically specific region, the 0th-order performance in M3 was
exceptionally; out of all DMs using the block input, the 0th-order model outperformed
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Figure 5.9: Summary of comparisons between estimator performance for different dynamic
models for each type of driving terms as well as overall score done for each of the masking
regions M0 to M3. The analysis for M0 can also be seen in Figure 5.5 but is shown here for
comparison with regional analysis.
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Figure 5.10: Summary of BIC comparison between estimator performance for different driving
terms for each of the masking regions M0 to M3.

all others in 83% of all voxels within the region. The worst performing model for M3
was again the 2nd-order system.

Figure 5.10 shows the overalls statistics for DT comparison across the masks. As with
the 0th-order DM, the block DT was by far the most outstanding performer and even
increases its lead over the ramp input the more region specific the mask became. The
worse performer was the block and ramp input as BIC penalized for the extra free
parameter.

5.4 Analysis Results - Anatomical Summary

The significant jump in estimator performance within the insular cortex brought up an
interesting question: Are there any trends or patterns that may influence model selec-
tion? The question was answered by creating further masks. A total of 48 anatomical
regions were used to mask the data. The masks can be seen in Figure 5.11 and their
corresponding names are given in Figure 5.12 along with key statistics.

Figure 5.12 shows key statistics for each region and shows the variability of estimated
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Figure 5.11: Map of masks used for analysis of statistics by anatomical region. The color-bar
show the masks for the 48 regions (R1 to R48) used for analysis, of which, the descriptions can
be seen in Figure 5.12
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Figure 5.12: Description and important statistics for each of the anatomical regions.
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parameters across the brain. Columns of the table are labeled A to O, each containing
a different key statistic for the region. By visualizing the columns against each other
as scatter plots, it is possible to determine trends about the data. A hypothesis tested
using scatter plots shown in Figure 5.13 was that the number of voxels in the region may
affect model selection. All three plots showed no correlation between the two as the R2

value was close to 0.

Tests to determine correspondence between parameters did not find any results that were
deemed significant. A hypothesis tested using scatter plots shown in Figure 5.14 was
that the percentage of activated voxels in the region may affect model selection. Again,
all three plots showed no correlation between the two (R2 value was close to 0).

Because of the sheer number of combinations of scatter-plots that could be produced, a
more compact representation of correlation between the columns is necessary to allow
understanding of trends in data. The Pearson’s Regression (R) can be seen in Figure
5.15 and the R2 values seen in Figure 5.16. From the two tables, it is possible to visually
determine whether there are correlations in data. For example, a correlation between the
percentage of voxels with block input as the best DT (Column F) and the percentage of
voxels with 0th-order dynamics as the best DM (Column H) shows in Figure 5.16 having
R2 value of 0.037 between the two columns, meaning minimal correlation.

From analysis of the results seen in Figures 5.13 to 5.16, there was no obvious trend
to model estimation performance being influenced by factors such as the number of
voxels in the region, the percentage of activated voxels in the region, nor by the max-
imum/minimum values of parameters estimates within the region. It seems that 0th-
order dynamics and block input are the best overall DM and DT respectively. Neither
higher-order dynamics, nor the addition of a ramping input add to the performance of
estimation both on a whole brain level as well as at a regional level and there does not
seem to be any evidence to show that higher models perform better in activated regions
or in inactive regions. Put simply, the data favors the use of the simplest model of ac-
tivation and the principle of parsimony is very much alive in modelling this particular
CBF dataset.

5.5 Chapter Summary

This chapter expands upon results of Chapter 4, using a analysis framework for investi-
gation into experimental data to understand effectiveness of fitting CBF data using the
proposed ASL-fMRI models. Evidence presented in this chapter suggests that higher-
order dynamics and additional features such as ramping do not add significant under-
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(a)

(b)

(c)

Figure 5.13: Correlations between columns of Figure 5.12. a) Correlation between Number of
Voxels (Column A) and Number of Voxels with block input as the best driving term (Column
F). b) Correlation between Number of Voxels (Column A) and Number of Voxels with 0th-order
model as best dynamic model (Column H) c) Two correlations - Number of Voxels (Column
A) and Number of Voxels with 2nd-order critical model as best dynamic model (Column J) in
blue as well as Number of Voxels (Column A) and Number of Voxels 2nd-order model as best
dynamic model (Column K) in red.
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(a)

(b)

(c)

Figure 5.14: Correlations between columns of Figure 5.12. a) Correlation between Percentage
of Voxels with �2 > 0.01 (Column B) and Percentage of Voxels with block input as the best
driving term (Column F). b) Correlation between Percentage of Voxels with �2 > 0.01 (Column
B) and Percentage of Voxels with 0th-order model as best dynamic model (Column H) c) Two
correlations - Percentage of Voxels with �2 > 0.01 (Column B) and Percentage of Voxels with
2nd-order critical model as best dynamic model (Column J) in blue as well as Percentage of
Voxels with �2 > 0.01 (Column B) and Percentage of Voxels 2nd-order model as best dynamic
model (Column K) in red.
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Figure 5.15: Pearson’s regression (R) done for each column of Figure 5.12, showing relevant
correlations between the columns.

Figure 5.16: R2 for each column of Figure 5.12.
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standing to CBF data collected using ASL-fMRI. Much of the model comparison analysis
done incorporating penalty terms for higher-order models consistently showed one thing:
the tried and true model worked better than any additional elaborations added to the
original model.

The results presented in this thesis has shown that the currently available methods are
not only just good enough - they actual surpass newer proposed methods and models
(at the very least for the current CBF dataset under investigation). The techniques that
have been developed can be used to investigate other such datasets and could even be
implemented as a prefilter for determining the eligibility of datasets to be modelled using
higher-order models. The key finding, whether a model with more complex dynamics
would better model CBF data over a standard GLM analysis, was determined to be a
definite no.
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Chapter 6

Conclusions and Future Work

Data collection in fMRI is a trade-off between signal accuracy, physiological accuracy,
temporal resolution and spatial resolution. Attempts to increase any one of the four
factors may sacrifice accuracy of the other three. Therefore analysis becomes a balancing
act where all four factors are optimized so that the best decision can be made using the
collected information. As was previously mentioned, the ultimate goal of fMRI is to
be able to quantify neuronal activation correlates across the brain. This yearning has
brought about a tremendous amount of research in signal analysis and measurement
techniques, constructing equations and tools that attempt to make sense of the complex
relationship between psychology and physiology.

The key to any measurement application is in being able to find a marker that can be
correlated to the phenomenon to be measured. For fMRI research, the phenomenon is
neuronal activity and the marker most commonly used is the BOLD-fMRI signal. How-
ever, the BOLD-fMRI signal is a downstream effect, produced through various changes
in physiology (CBF, CBV and CMRO2) that were first initiated through neuronal acti-
vation. Many groups have attempted to recover the ‘true’ neuronal activation through
modelling of the behaviour of the BOLD-fMRI signal through upstream interactions of
physiological changes in CBF, CBV and CMRO2. Although the BOLD-fMRI signal is
key to understanding brain activation, being a secondary effect of neuronal activation,
it is still not considered an accurate indication of neuronal activation. There are two
main branches of research in fMRI signal modelling, one inspired by Buxton et al. (1998)
and the other by Davis et al. (1998). The two branches have dissected the problem in
different ways.

The first branch of research focuses on providing deterministic modelling of components
of the BOLD-fMRI signal. Buxton et al. (1998) proposed the currently best accepted
hemodynamic model - the balloon model. The model has been presented in Chapter 2

115
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and is a highly complex set of mathematical equations governing how BOLD-fMRI is
produced from neuronal activation. Recent groups such as Bennett et al. (2008b) have
expanded the Buxton et al. (1998) model to include more complexity resulting from
biochemical and cell-to-cell interactions within the capillaries. It seems that there are a
multitude of physiological precursors and effects resulting in the BOLD-fMRI signal and
modelling of all such phenomena would result in a very complex model indeed.

The second branch of research focuses upon multi-modal aquisition for the better estima-
tion of CMRO2, which has traditionally been suggested as the best marker for neuronal
activity. Researchers have searched for a more direct measurement of neuronal activa-
tion. This branch of research has been very active with expansions by Lu et al. (2003)
to original Davis et al. (1998) paper to include CBV measurements in addition to CBF
and BOLD signals so that CMRO2 can be estimated with more accuracy. Physiolog-
ically grounded measurements such as ASL-fMRI for CBF and VASO-fMRI for CBV
have recently attracted a lot of interest within the research community. Although not
as fast as BOLD-fMRI, the two measurements and in particular ASL-fMRI have been
used to ‘calibrate’ the BOLD-fMRI data so that indirect measurements of CMRO2 can
be found.

It is commonly accepted that the CBF response is one of the many causes of change in the
measured BOLD-fMRI signal. Therefore, the ASL-fMRI signal, which measures CBF,
can be considered to be closer in physiology to neuronal activation. As such, we have
taken the view that a better indication for neuronal activity may be found by directly
modelling the CBF response and as such, the work done cannot be directly classified as
belonging to any of the two main branches of fMRI-signal research. However, it provides
an additional perspective to an already vibrant field.

Findings of Simulated and Experimental CBF Data Novel analysis paradigms
were developed and used for analysis of both simulated and experimental data. The
framework was developed after noticing that the accurate signal estimation was highly
dependent upon the sampling rate and the signal error. As such, the simulations focused
upon creating visualizations of how estimation of various types of models became affected
at different values of sampling frequency and signal error.

The analysis in Chapter 4 showed that transient features such as spiking (estimation of
�1 and �4) requires at least 2 data points within the time period of the spike in order
to accurately determine the feature. Ideally, a spike lasting 1.0 seconds would require
a sampling time of 0.5 seconds to be robust enough for proper estimation with noise.
Figure 3.1 shows transient features between 2.0 to 4.0 seconds. Effective modelling of
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features require sampling time (or TR) to be at least 2.0 seconds or shorter and ideally
less than 1.0 seconds in order to have an effective estimation of transients. The results
were shown in Section 4.4. Estimation of coefficients governing transient dynamics was
found to be not needed (Section 4.5). This was important as it simplified estimation
from a nonlinear problem to that of a strictly linear problem. The models were simplified
greatly so as arbitrary dynamic models were not needed to be included in estimation.
Section 4.6 showed that at sufficiently long TRs (longer than 2.0 seconds), a first-order
model was able to be used in place of all higher order models.

The analysis of experimental data in Chapter 5 extended upon the simulations in Chapter
4. The original twenty-eight models were shortlisted to twelve and each model was used
for analysis of real CBF data. Further comparison of the models using both AIC and BIC
showed that 0th-order dynamics without any ramping or spiking responses outperformed
all models across all voxels within the brain as well as in all anatomical regions of the
brain. Evidence that higher-order models were a more effective estimators of CBF data
was not found within the experimental dataset.

Implications of Findings Although there were a combination of twenty-eight pos-
sible models constructed for analysis of the CBF signal, choosing the best performing
model for a dataset becomes very important. The analysis of both simulated data (Chap-
ter 4) and real CBF data (Chapter 5) provided surprising yet compelling evidence to
suggest that the simplest model may in fact be the best performing model overall. This
simple observation raises questions regarding the current approach to modelling BOLD-
fMRI data, the most obvious being: how verifiable are the current models of neuronal
activation?

The findings of this thesis suggests that work pioneered by Buxton et al. (2004); Friston
et al. (2000) modelling the CBF response to first and second order differential equa-
tions may not be able to be seen in data measured using ASL-fMRI. A simple cou-
pling relationship defined using a zero-order differential equation would be sufficient and
even more accurate than using any model containing differential dynamics. Even if the
sampling-time or TR was decreased from 6.0 seconds to 2.0 seconds (a 66% reduction),
the zero-order system would still appear the best model for correlation with data. As
such, it puts into question the effectiveness of using a biochemical model of neuronal
activation to predict the BOLD-fMRI reponse as done by Bennett et al. (2008a,b). Even
if the model was correct, it would not be possible to verify the model at this current stage
of fMRI technology and using such a model for estimation would be highly impractical.

Furthermore, the result that signal estimation is very much affected by the temporal
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resolution places a tighter restriction on the limits of multi-modal signal acquisition.
As Kida et al. (2007) and Leontiev et al. (2007) have shown, indirect measurement of
CMRO2 is very much prone to error. It has been found in this thesis that small errors will
severely impact estimation of signals at long temporal resolutions. The findings suggest
that in order to improve upon measurement, temporal resolution and signal error are
required to be in a delicate balance. The notion that ‘the more signals acquired the
better’ must have an additional condition that accuracy does not suffer as a consequence
of additional sequence acquisitions. Studies attempting to use the Lu et al. (2003) model
should be aware of the limits demonstrated in this thesis concerning the relationship
between temporal resolution, noise and model estimation accuracy.

Although being at risk of taking a defeatist stand on the issue of fMRI modelling, we
believe that as signal acquisition methods improve, the models of fMRI signal change
to hemodynamic responses will thus become verifiable and become a practical means of
signal estimation. However, the implications of our simulations suggest that models may
not benefit from the addition of more complex dynamics and researchers should avoid
over-engineering a model without having the data to support it.

Future Work This thesis has shown that although higher-order models of CBF can
be constructed, they may not offer any greater insight into ASL-fMRI data than a simple
model and in fact, may be less accurate. It is a warning to researchers to recognize the
limits of how the data can be interpreted as opposed to becoming attached to models
that introduce greater complexities without them being in the data. The comparison
framework used this thesis can provide a practical tool for researchers to quickly deter-
mine whether modelling their data using higher order equations is suitable based upon
the sampling time as well as the included within the data. Although the tools were
developed for CBF data, they can be easily modified for BOLD-fMRI data. Future work
will consider the application of the framework to other experimental CBF datasets in
order to expand the results contained in this thesis.
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